Old Dominion University

ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Spring 2009

Algorithms for Vertex-Weighted Matching in
Graphs

Mahantesh Halappanavar
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience etds

b Part of the Programming Languages and Compilers Commons, and the Theory and Algorithms

Commons

Recommended Citation

Halappanavar, Mahantesh. "Algorithms for Vertex-Weighted Matching in Graphs" (2009). Doctor of Philosophy (PhD), dissertation,
Computer Science, Old Dominion University, DOI: 10.25777/el1rS-yp32
https://digitalcommons.odu.edu/computerscience_etds/S7

This Dissertation is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in
Computer Science Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact

digitalcommons@odu.edu.

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/57?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

ALGORITHMS FOR
VERTEX-WEIGHTED MATCHING IN GRAPHS

by

Mahantesh Halappanavar
B.S. August 1996, Karnataka University
M.S. December 2003, Old Dominion University

A Dissertation Submitted to the Faculty of
0Old Dominion University in Partial Fulfillment of the
Requirement for the Degree of

DOCTOR OF PHILOSOPHY
COMPUTER SCIENCE

OLD DOMINION UNIVERSITY
May 2009

Approved by:

Alex Pothen (Director)

Jessica (ﬁxch

Bruce Hendrickeenrr

Stephan Olap

Mohammad Zubair

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 3371496

Copyright 2009 by
Halappanavar, Mahantesh

All rights reserved

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform 3371496
Copyright 2009 by ProQuest LLC
All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

ALGORITHMS FOR
VERTEX-WEIGHTED MATCHING IN GRAPHS

Mahantesh Halappanavar
Old Dominion University, 2009
Director: Dr. Alex Pothen

A matching M in a graph is a subset of edges such that no two edges in M are incident on
the same vertex. Matching is a fundamental combinatorial problem that has applications in
many contexts: high-performance computing, bioinformatics, network switch design, web
technologies, etc. Examples in the first context include sparse linear systems of equations,
where matchings are used to place large matrix elements on or close to the diagonal, to
compute the block triangular decomposition of sparse matrices, to construct sparse bases
for the null space or column space of under-determined matrices, and to coarsen graphs
in multi-level graph partitioning algorithms. In the first part of this thesis, we develop
exact and approximation algorithms for vertex weighted matchings, an under-studied vari-
ant of the weighted matching problem. We propose three exact algorithms, three half
approximation algorithms, and a two-third approximation algorithm. We exploit inherent
properties of this problem such as lexicographical orders, decomposition into sub-problems,
and the reachability property, not only to design efficient algorithms, but also to provide
simple proofs of correctness of the proposed algorithms. In the second part of this thesis,
we describe work on a new parallel half-approximation algorithm for weighted matching.
Algorithms for computing optimal matchings are not amenafﬂe to parallelism, and hence
we consider approximation algorithms here. We extend the existing work on a parallel half
approximation algorithm for weighted matching and provide an analysis of its time com-
plexity. We support the theoretical observations with experimental results obtained with
MatchBoxP, toolkit designed and implemented in C++ and MPI using modern software
engineering techniques. The work in this thesis has resulted in better understanding of
matching theory, a functional public-domain software toolkit, and modeling of the sparsest

basis problem as a vertex-weighted matching problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

©Copyright, 2009, by Mahantesh Halappanavar, All Rights Reserved

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENTS

“One can pay back the loan of gold, but one dies forever in debt to those who

are kind.” - Malayan Proverb

First and foremost, I would like to thank my advisor Alex Pothen, without him this
thesis would have been impossible. He not only introduced me to the subject, but has
also been a constant inspiration throughout. His support and encouragement has been
invaluable both personally and professionally, for which I will remain forever indebted.

This work has evolved in collaboration with Florin Dobrian, a friend, guide and mentor
who has irreversibly changed my thinking. I will also remain indebted to Assefaw Ge-
bremedhin for his friendship and generousness in improving my presentation on numerous
occasions.

I remain thankful to my committee members Jessica Crouch, Bruce Hendrickson,
Stephan Olariu and Mohammad Zubair. Their comments have been thought provoking,
and their suggestions invaluable. I also want to thank Erik Boman for his time and efforts
in helping my research.

I will remain indebted to my supervisor Mike Sachon and coworkers Amit Kumar and
Ruben Igloria, for providing flexibility, support and a productive work environment. Special
thanks are due to Amit Kumar for his friendship that has only grown over the years.

I was introduced to academic research in my Masters program by Ravi Mukkamala. I
will remain forever indebted for his mentorship - academic as well as spiritual.

I would like to thank the following departments at Old Dominion University - the
Office of Graduate Studies for the University Graduate Fellowship during 2005 to 2006;
the Office of Research and the Department of Computer Science for teaching and research
assistanceships during 2001 to 2005; and the Office of Study Abroad for travel assistance
in 2005.

With long hours away from home, the last five years have been especially hard on my
wife Savitha and daughter Anika. They have accepted it in stride and I cannot thank them
enough for it. I will remain thankful to my parents who have always emphasized education

- above everything else, my sister for being my inspiration, my in-laws for their support, and
my very large extended family where everyone has made a special impression on me.

This research used resources of the National Energy Research Scientific Computing
Center, which is supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

Page
LIST OF TABLES e e e e e e viii
LIST OF FIGURES e e XV
CHAPTERS
1 Introduction. 1
I1 Outline e 2
1.2 Combinatorial Scientific Computing 3
I3 DMotivation 4
14 Contributions 8
1.5 Chapter Summary P 9
II Background and Related Work 10
II.1 Introduction. e 10
II.2 Foundations e 14
11.3 Maximum Cardinality Matching 23
II.4 Maximum Edge-Weight Matching 26
I1.5 Approximation Algorithms 30
II.6 Chapter Summary it 36
III Exact Algorithms 37
III.1 Introduction and Related Work 37
III.2 Foundations e 39
II1.3 New Algorithms for Maximum Vertex-weight Matching 44
I11.3.1 Algorithm GlobalOptimal 45
I11.3.2 Algorithm LocalOptimal 47
II1.3.3 Algorithm HybridOptimal 49
I11.3.4 Negative Weights i 49
II1.4 Proof of Correctness i i it i i 52
I11.5 A Reachability-Based Algorithm 57
II1.6 Chapter Summary« o v v v v ittt e e e e 58
IV Approximation Algorithms, 60
IVl Introduction L 60
IV.2 New %—approx Algorithms 60
IV.3 Proof of Correctness 66
IV .4 Global %—approx Algorithm 73
IV.4.1 Proof of Correctness v v vt i 74
IV.5 Potential Local %-approx Algorithm 82
IV.5.1 Correctness of Algorithm LOCALTWOTHIRD 83
IV.6 Experimental Results. 84
IV.7 Chapter Summary 88
V Parallel Approximate Algorithms 89
V.1 Introduction. e 89
V.1.1 Complexity Analysis 93
V.2 Distributed Algorithm of Hoepman 95
V.2.1 Complexity Analysis 98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vi

V.3 Parallel %—approx Algorithm 99
V.3.1 Complexity Analysis - 110

V.4 Experimental Results. 112
V.4.1 Data Set for Experiments 112
V.4.2 Performance of Serial Matching Algorithms 114
V.4.3 Performance of Parallel Matching Algorithm: 120
V.4.4 Performance of Parallel Matching on Graphs from Applications . . . 133
V.4.5 Analysis of Communication 136

V.5 Chapter Summary 140
VI Conclusions and Future Work 141
VI1 Future Work 142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vii

LIST OF TABLES

Page

1 Algorithms for mazimum cardinality matching [66]. For a graph G = (V, E),

n = |V| represents the number of vertices, and m = |E| the number of edges.

For graph types, B denotes bipartite graphs, and G denotes nonbipartite
graphs. L. L 25

2 Power of data structures. For a graph G = (V, E), n = |V| represents the
number of vertices, and m = |E| the number of edges. 29

3 Algorithms for mazimum edge-weight matching [66]. For a graph G = (V, E)

with weight function w : E — R, n = |V| represents the number of ver-

tices, m = |E| the number of edges, and W is the largest absolute value

of an integer weight. For graph types, B represents bipartite, and G the

nonbipartite graphs. 29
4 Algorithms for approximate weighted matching. For a graph G = (V| E),

n = |V| represents the number of vertices, m = |E| the number of edges in

G, and € — R™ is a positive real number. 30
5 A survey of algorithms for mazimum vertez-weight matching. For a given

graph G = (V, E), n = |V| represents the number of vertices, and m = |E|

the number of edges. 43
6 A summary of algorithms proposed for vertex weighted matchings. Bipartite

and general graphs are represented with B and G respectively. For a bipartite

graph G = (S,T,E), n = (|S| + |T|) represents the number of vertices,

m = |E| the number the edges, and dy, is a generalization of the vertex degree

that denotes the average number of distinct alternating paths of length at

most k edges starting at avertexinG. 44
7 A summary of algorithms proposed for vertex weighted matchings. Bipartite

and general graphs are represented with B and G respectively. For a bipartite

graph G = (S,T,E), n = (|S| + |T|) represents the number of vertices,

m = | E| the number the edges, and d, is a generalization of the vertex degree

that denotes the average number of distinct alternating paths of length at

most k£ edges starting at avertexin G. Lo 61
8 Matriz Instances. Downloaded from the University of Florida Matrix Col-
lection and listed in an increasing order of the number of edges. 84
9 Performance of Global-based Algorithms. The numbers represent compute
timeinseconds. 85
10 Relative Performance of Global and Local-based Algorithms. The numbers
represent compute timeinseconds.o 86

11 Matriz Instances downloaded from University of Florida Matrix Collection.
Unsymm represents unsymmetric matrices and Symm represents symmetric
MAatTICeS. v . o o e e e e e e e e e e e e e e e e e 113

12 Synthetic and Model Graphs. SSCA#2 graphs are generated using GT-
Graph generator. The number of vertices in the original graph are dou-
bled to convert it into a bipartite graph to eliminate self-loops; duplicate
edges, if any, are also eliminated. RGGs and grid graphs are generated with
MatchBox-P and have random edge weights. 115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13 Performance of serial approx algorithm. The second column represents the
ratio of weights of approximate and exact matchings. Similarly, the third
column represents the ratio of cardinality of the two matchings. Fourth and
fifth columns show the time in seconds to compute approximate and exact
matchings respectively. Lo L

14 Grid graphs for weak scalability studies. Columns three and four represent
the number of processors used to solve the grid graphs of a given size.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

viii

ix
LIST OF FIGURES

Page
1 Landscape of the matching problems. The vertex-weighted matching prob-
lem can be formulated as an edge-weighted matching problem. The weighted
matching algorithms utilize techniques developed for the cardinality match-
ing problem. The arrows indicate these relationships. 2
2 Representation of a sparsest column-space basis problem. A matrix A with k
rows and n columns, and a basis B with k rows and k linearly independent
COlUMNS. o e e e e e e e 6
3 A greedy algorithm for computing a sparsest column-space basis. (a) State
before augmenting a basis B; with a column of current heaviest weight wyaz
from C; (b) state after augmenting a basis with a sparsest linearly indepen-
dent column from C. 7
4 Computation of a sparsest column-space basis with a mazimum vertex-weight
matching. (a) A matrix A; (b) A bipartite graph (G) representation of
A. Numbers on the right indicate the weight of each S vertex. Bold lines
represent the matched edges, and matched vertices are colored black; (¢) A
candidate basis as computed by a maximum vertex-weight matching in G. . 8
5 An example of matching. (a) A bipartite graph G, (b) a matching M in G.
Bold lines represent matched edges, and matched vertices are colored black. 11
6 Types of matchings. Matched edges are represented with bold lines and
matched vertices are filled with black color. (a) A maximal matching, (b) a
maximum matching, and (c) a perfect matching. 12
7 Types of paths. Matched edges are represented with bold lines and matched
vertices are colored black. (a) An alternating path starting with an un-
matched vertex, (b) an alternating path starting with a matched vertex,
and (c) an augmenting path. oo 14
8 Augmentation by symmetric difference. The matched edges are represented
with bold lines and matched vertices are colored black. (a) Before augmen-
tation, (b) after augmentation. 14
9 The symmetric difference of two matchings Ms® Mp. Dashed lines represent
edges in Mg and Solid lines represent edges in Mz. (a) A cycle; (b)-(e)
Augmenting or alternating paths. 16
10 Effect of M @ P. Bold lines represent matched edges and matched vertices
are colored black. (a) Paths P and @ do not intersect; (b) paths P and Q
intersect. This figure has been adapted from [57). 17
11 Breadth-first search. The vertex being processed at a given step is colored
purple, and also marked by an arrow. The shaded lines represent the pro-
cessed edges. The vertices that have already been processed are colored
black. The adjacency list for each vertex is maintained in an increasing or-
der of the indices of vertices. (a) The input graph before execution, (b)-(f)
the intermediate states of execution. State of the pseudo-queue at each step:
(b) [2,3,4] (c) [3,4,5], dequeue 2, enqueue 5; (d) [4, 5, 6] dequeue 3, enqueue
6; (e) [5, 6] dequeue 4; (f) [6] dequeue 5. 20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

13

14

15

16

17

18

19
20

Depth-first search. The vertex being processed at a given step is colored pur-
ple, and also marked by an arrow. The shaded lines represent the processed
edges. The vertices that have already been processed are colored black. The
adjacency list for each vertex is maintained in an increasing order of the
indices of vertices. (a) The input graph before execution. (b)-(f) the in-
termediate states of execution. State of the pseudo-stack at each step: (b)
[2,3,4] (c) [2,3,5] pop 4, move 2, move 3, push 5; (d) [3,2,6] pop 5, move
2, push 6; (e) [2,3] pop 6, move 3; (f) [2]. 21
Single-source single-path technique. The vertex being processed at a given
step is colored purple, and also pointed by an arrow. The shaded lines rep-
resent potential augmenting paths. Bold lines represent matched edges and
matched vertices are colored black. (a) The input graph before execution,
(b)-(d) the intermediate states of execution, and (e) the final state. 21
Multiple-source single-path technigue. The vertices being processed at a
given step are colored purple. The shaded lines represent potential aug-
menting paths. Bold lines represent matched edges and matched vertices
are colored black. (a) The input graph before execution, (b)-(d) the inter-
mediate states of execution, and (e) the final state. 22
Multiple-source multiple-path technigue. The vertices processed at a given
step are colored purple. The shaded lines represent potential augmenting
paths, bold lines represent matched edges and matched vertices are colored
black. (a) The input graph before execution, (b) the intermediate state of
execution, and (c¢) the finalstate. Lo L. 22
Ezecution of Algorithm GLOBALHEAVY. The weights are associated with
the edges. Bold lines represent matched edges, and matched vertices are
colored black. Vertices processed at a given step are colored purple. Dashed
lines represent the edges that are removed from the graph. (a) The input
graph before execution, (b)-(c) the intermediate states of execution, and (d)
the final state. e 31
Ezecution of Algorithm LAM. The weights are associated with the edges.
Bold lines represent matched edges. Matched vertices are colored black,
and the vertices being processed at a given step are colored purple. The
shaded edges represent dominating edges at a current step, and dashed lines
represent the edges that are removed from the graph. (a) The input graph
before execution, (b)-(e) the intermediate states of execution, and (f) the
final state. e e 33
Execution of Algorithm PATHGROW. The weights are associated with the.
edges. The solid bold-lines represent edges matched in M;, and the dashed
bold-lines represent the edges matched in Mj. The matched vertices are col-
ored black, and the vertices processed at a given step are colored purple. The
shaded edges highlight the edges that are being processed for matching at a
given step. (a) The input graph before execution, (b)-(f) the intermediate
states of execution. e 35
Decomposition of the mazimum vertez-weight matching problem. 38
The symmetric difference of two matchings Mg® My. Dashed lines represent
edges in Mg and Solid lines represent edges in Mr. (a) A cycle; (b)-(e)
Augmenting or alternating paths. 39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

22

23

24

25

26

27

28

29

Ezecution of Algorithm GLOBALOPTIMAL. (a) The input graph G =
(S,T, E) before execution, weights are associated only with the S vertices.
(b)-(e) The intermediate states of execution. Bold lines represent matched
edges, and matched vertices are colored black. The shaded edges highlight
the shortest augmenting path from a given S vertex. Vertices colored Violet
represent the vertex processed at a given step, and the end-point of an aug-
menting path if one exists. The arrows indicate the S vertex that is being
processed at a given step.
Ezecution of Algorithm LOCALOPTIMAL. (a) The input graph G = (5,7, E)
before execution, weights are associated only with the S vertices. (b)-(d) The
intermediate states of execution, (e) the final state. Bold lines represent
matched edges, and matched vertices are colored black. The shaded edges
highlight all the augmenting paths that exist from a given 7" vertex. The
arrows indicate the T vertex that is being processed at a given step.

Transformation of graphs with negative weights. (a) The input graph G =
(S,T, E) with some negative weights associated with the vertices, (b) the
new graph G'(Sl, T, E/) with zero or positive weights. The new vertices are
filled with Black color.
Illustration of the reachability property. Bold lines represent the matched
edges and matched vertices are colored black.
Tllustrates that reachability property holds for Algorithm GLOBALOPTIMAL.
Bold lines represent the matched edges and matched vertices are colored
black. (a) State before (k + 1)-th augmentation, (b) state after (k + 1)-th
augmentation. L Lo S
Greedy initialization. Bold lines represent matched edges, and matched ver-
tices are colored black. (a) The input graph G = (S,T, E), weights are
associated only with the T vertices, (b) a greedy initialization that picks
best augmenting paths of length one, and (c¢) an optimal matching.
Ezecution of Algorithm GLOBALHALF. (a) The input graph G = (5,T, F)
with weights associated only with the S vertices, (b)-(e) the intermediate
states of execution. Bold lines represent matched edges, and matched ver-
tices are colored black. The shaded edges mark the augmenting paths of
length one (an unmatched edge) from a given S vertex, (f) the final state. .
Ezxecution of Algorithm LOCALHALF. (a) The input graph G = (S,T,E)
with weights associated only with the S vertices, (b)-(d) the intermediate
states of execution, (e) the final state. Bold lines represent matched edges,
and matched vertices are colored black. The shaded edges mark all the
augmenting paths of length one (unmatched edges) that exist from a given
T vertex. o o i e e e
Ezecution of Algorithm GLOBALTWOTHIRD. (a) The input graph G =
(S, T, E) before the execution, weights are associated only with S vertices,
(b)-(e) the intermediate states of execution. Bold lines represent matched
edges, and matched vertices are colored black. The shaded edges highlight
the shortest augmenting path from a given S vertex, and (f) the final state.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xi

49

53

64

74

30

31

32

33

34

35

36

37

38

xii

Symmetric difference. (2) Input graph, weights are associated only with the
S vertices such that s; > s3 > s3 > s4; (b) an optimal matching M, com-
puted by Algorithm GLOBALOPTIMAL. Bold lines represent matched edges.
At step one, edge e(s1,t3) is matched; at step two, edge e(sg, t2) is matched,;
at step three, the matching is augmented via path [ss3, %2, s2,%3,s1,%1]; no
path exists at step four; (c) a %-approx matching M3 computed by Algo-
rithm GLOBALTWOTHIRD, Wavy lines represent matched edges; At step
one, edge e(s1,t3) is matched; at step two, edge e(sz,t2) is matched; at step
three, no augmenting path of length three exists; at step four, the match-
ing is augmented via path [s4,3,s1,%1]; and (d) the symmetric difference
M, & M3. The bold lines denote edges matched in M,, and wavy lines
denote edges matched in M3. 75
Intuition for proof of %-approz algorithm GLOBALTWOTHIRD. For each
failed S vertex, Algorithm GLOBALTWOTHIRD will match two S vertices
that are at least as heavy as the failed vertex. Note that the association of
matched vertices with failed vertices is dynamic. The figure is representative
of a state at a particular step of execution. 76
New augmenting paths. Bold lines represent the matched edges and matched
vertices are colored black. The two kinds of paths in Lemma IV .4.1 are shown
as Prand Po. e e e e 77
Ezecution of Algorithm LOCALTWOTHIRD. (a) The input graph G =
(S, T, E) before the execution, weights are associated only with S vertices,
(b)-(d) the intermediate states of execution, and (e) the final state. Bold
lines represent matched edges, and matched vertices are colored black. The
shaded edges highlight all the augmenting paths that exist from a given T
VEIEEX. « v o v e e e e e e e e e e e e e e e e e e e 83
Performance of Approzimation Algorithms. Cardinality of matchings of the
approximation algorithms as a ratio of the cardinality of the exact algorithm. 87
Performance of Approxzimation Algorithms. Weight of matchings of the ap-
proximation algorithms as a ratio of the weight of the exact algorithm. . . . 87
New augmenting paths. (a) No augmenting path of length less than or equal
to five exist starting at vertex s; in graph G at step k; (b) an augmenting
path of length five is available from s; at astepafter k. 88
Ezecution of Algorithm 22. (a) The input graph G = (V, F) with weights
associated with the edges; (b) an intermediate step of execution where the
pointers are set for each vertex in the graph; (c) an intermediate step where
vertices that are pointing to each other are matched. Bold lines represent
matched edges. Dashed lines represent the edges removed from the graph;
(d) reset pointers for vertices 4 and 6; (e) edge (4,5) is matched; (d) the

final state. Matched vertices are colored black. 93
Complexity analysis. A sample graph G with weights associated with the
edges such that (w(e1) > w(eg) > - >wleg)). 94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

40

41

42

43
44
45

46
47
48
49

50
51

xiii

FEzecution of Hoepman’s Algorithm. (a) The input graph G = (V, E) with
weights associated with the edges, vertices {1,2,3} are assigned to proces-
sors {P1, Py, P3} respectively; (b) an intermediate step of execution when
REQUEST messages are sent by each processor to their neighbors of choice;
(c) an intermediate step when edge (2,3) is matched. (d) A possible in-
termediate step when processors P, and P3 send UNAVAILABLE messages to
P; in that order, (d’) an alternative situation when P; gets an UNAVAILABLE
message from Ps, and sends a REQUEST to P». Eventually, P; will also receive
an UNAVAILABLE message from P,. (e) The final state. Matched vertices are
colored black. e 97
Data distribution among processors. (a) The input graph G = (V, E) with
weights associated with the edges; (b) The vertex set V is partitioned among
two processors Py and P;. Processor Py owns vertices {0, 3,4} and Processor
P, owns vertices {1,2,6}. (c) Data storage on the processors. Along with
internal edges, each processor will also store the endpoints of the edges that
get cut (cross-edges). These vertices are called the ghost vertices and are
colored purple in the figure. L. 100
Possible communication patterns. Message types are denoted by R for
REQUEST, U for UNAVAILABLE, and F for FAILURE. (a) When two requests
match, it results in a matched edge. An UNAVAILABLE message from P to
P, can be responded by an UNAVAILABLE message (b), or a FAILURE mes-
sage (c) from Py to P;. (d) An UNAVAILABLE message from Py can either be
responded with an UNAVAILABLE or a FAILURE message by P;. 107
Ezecution of parallel approrimation algorithm. (a) The input graph G =
(V, E) with weights associated with the edges, vertices {0, 3,4} are assigned
to processor {Fp}, and vertices {1,2,6} are assigned to processor {P;}.
(b) an intermediate step of execution when local computations are done.
REQUEST(4, 1) message is sent from Py to P;; (c) Processor Py matches edge
(0, 3) and sends messages: UNAVAILABLE(0, 6) and REQUEST(4, 6) to P;. Pro-
cessor P; matches edge (1,2) and sends messages: UNAVAILABLE(1,4) and
REQUEST(6,4) to Py. (d) Processor Py matches edge (4,6) and sends mes-
sage UNAVAILABLE(4,1) to P;. Processor P, matches edge (6,4) and sends

message UNAVAILABLE(6,0) to Pp. 109
Hllustration of different imbalance factors on Processor P;. 110
Visualization of matrix structures. 113
Random geometric graph. A random geometric graph with 1,000 vertices as

visualized with Pajek. 0oL 114
SSCA#2 graph. An SSCA#2 graph with 1,024 vertices as visualized with

Pajek. o e 115

Five-point grid graph. A 10 X 10 five-point grid graph visualized with Pajek. 115
Nine-point grid graph. A 10 X 10 nine-point grid graph visualized with Pajek.116
Performance of Serial Approzimation Algorithms: Weight. The path grow-

ing algorithms are represented by PG1, PG2, and PG3. 118
Performance of Serial Approximation Algorithms: Cardinality. 118
Performance of Serial Approzimation Algorithms: Compute Time. 119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

53

54

55
56
57
o8
59

60

61

62

63
64
65

66

67

68
69
70

71

xiv

4k grid graph: Edgecut as a function of number of vertices. Actual edgecut
for different number of partitions using multi-level K-way partitioning algo-
rithm in Metis, and ideal edgecut given by (21/|V|(V/P — 1)), where V is
the number of vertices and P is the number of partitions. 121
4k grid graph: Compute time (mazimum). Maximum time is the time in
seconds of the slowest processor in the group of processors used to solve the
problem. L 122
4k grid graph: Compute time (average). Average time is the sum of compute
time on each processor in the group divided by the number of processors in

that group. 122
Speedup for 4k x 4k grid graph. oL 123
4k grid graph: Cardinality after Phase-1. 124
Weak scaling for grid graphs: Series-1 uses the graph size and processor
combinations as shown in Table 14. 125
Weak scaling for grid graphs: Series-2 uses the graph size and processor
combinations as shown in Table 14. 126
Edgecut and number of messages for different grid graphs: The graph size
and processor combinations are shown in Table 14. 126

320k RGG: Edgecut as a function of number of vertices. Actual edgecut for
different number of partitions using multi-level K-way partitioning algorithm
inMetis. e 127
320k RGG: Compute time (mazimum). Maximum time is the time in sec-
onds of the slowest processor in the group of processors used to solve the
problem. L 127
320k RGG: Compute time (average). Average time is the sum of compute
time on each processor in the group divided by the number of processors in

that group. L 128
320k RGG: Speedup. o o e e e e 128
320k RGG: Cardinality after Phase-1. 129

524k SSCA#2: Edgecut as a function of number of vertices. Actual edgecut
for different number of partitions using K-way partitioning algorithm in Metis.130
524k SSCA#82: Compute time (mazimum). Maximum time is the time in
seconds of the slowest processor in the group of processors used to solve the
problem. e 131
524k SSCA#2: Compute time (average). Average time is the sum of com-
pute time on each processor in the group divided by the number of processors

inthat group. 131
524k SSCA#2: Speedup. 132
524k SSCA#2: Cardinality after Phase-1. 132
Edgecut for graphs from applications. Percentage of edges cut is a ratio of

edgecut to the number of edges in the graph. 133

Graphs from Applications: Compute time for different matrices with different
number of processors. Compute time in seconds (log, scale) is plotted on
the Y-axis, and the number of processors is plotted on the X-axis. Max is
the maximum time on any given processor in the set, and Avg is the average
time for a given set of processors. L., 134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

73

74

75

76

(4

Graphs from Applications: Compute time for different matrices with different
number of processors. Compute time in seconds (logarithmic scale with base
two) is plotted on the Y-axis, and the number of processors is plotted on the
X-axis. Max is the maximum time on any given processor in the set, and
Avg is the average time for a given number of processors. The Figure also
has results for two instances of SSCA#2 graphs.
Communication. Total number of messages sent are bounded between twice
and thrice theedgecut.
Communication. Total number of messages sent are bounded between twice
and thrice theedgecut. L.
Message Bundling. Percentage bundled represents the number of messages
that could be bundled in Phase 1, higher the better. Percentage sent rep-
resents the actual number of messages that get sent due to bundling, lower
the better.
Message Bundling. Percentage bundled represents the number of messages
that could be bundled in Phase 1, higher the better. Percentage sent rep-
resents the actual number of messages that get sent due to bundling, lower
the better.
Limitations of the pointer-based approach. (a) The input graph G = (V, E)
with weights associated with the edges; (b) an intermediate step of execution
where the pointers are set for each vertex in the graph; (c) an intermediate
step where vertices that are pointing to each other are matched. Bold lines
represent matched edges. Dashed lines represent the edges removed from
the graph; (d) the final state. Matched vertices are colored black.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Xv

CHAPTER 1

INTRODUCTION

“Pioneered by the work of Jack Edmonds, polyhedral combinatorics has proved
to be a most powerful, coherent, and unifying tool throughout combinatorial

optimization.” - Alexander Schrijver [66]

Given a graph G = (V, E) with a set of vertices V, and a set of edges E, a matching M
is a subset of edges such that no two edges in M are incident on the same vertex. A
graph can additionally have weights associated with the edges, or the vertices, or both.
The objective of the matching problem can be to maximize the number of edges in M
(a maximum cardinality matching); or to maximize the total weight of matched edges (a
maximum edge-weight matching problem); or to maximize the total weight of matched
vertices (a maximum vertex-weight matching). Thus, we have three basic variations of the

matching problem:
1. Maximum cardinality matching (MCM),
2. Maximum edge-weight matching (MEM), and
3. Maximum vertex-weight matching (MVM).

Figure 1 sketches a landscape of the matching problems. While the three problems
are closely related, they also have unique features that distinguish them from each other.
The cardinality and the edge-weighted matching problems have been studied extensively.
However, the vertex-weighted matching problem has not received as much attention. The
main focus of our work, therefore, is on the vertex-weighted matching problem.

An underlying combinatorial problem in many scientific computing applications is find-
ing matchings in graphs. For example, the problem of coarsening a graph without losing
the characteristics of the original graph in multi-level partitioning algorithms can be solved
by computing a matching problem. The matching problem can be solved in polynomial
time, and we will provide a detailed discussion of some of these algorithms in Chapter II.
However, for many of the large-scale scientific computing applications, polynomial-time so-
lutions are not always sufficient. Thus, there is a need for faster approximation algorithms
for the matching problem. The weighted matching problem in particular has numerous

applications and therefore many linear-time approximation algorithms have been proposed

This dissertation follows the style of Society for Industrial And Mathematics (SIAM) Journal on Sci-
entific Computing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bipartite General

Vertex Wtd Matching

Exact Approx
Bipartite General Bipartite General
Edge Wtd Matching Cardinality Matching
Exact Approx Exact Approx

FIGURE 1. Landscape of the matching problems. The vertex-weighted matching problem can be formu-
lated as an edge-weighted matching problem. The weighted matching algorithms utilize techniques developed
for the cardinality matching problem. The arrows indicate these relationships.

for the same [24, 64]. The best known approximation for the edge-weighted matching prob-
lem is a (£ — €)-approx algorithm with a run time of O(|E|log 1), where |E]| represents the
number of edges and € is a positive real number [59]. In this work we propose a %-approx
algorithm for vertex-weighted matching with linear-time performance for a class of graphs
with some restrictions.

Along with the development of new algorithms, there is a need for good open source im-
plementation of the matching algorithms. Driven by these needs, we propose to accomplish

the following with this dissertation:
e development of new exact and approximation MVM-algorithms,
o development of open source implementation of these algorithms, and
e development of use-case models for the vertex weighted matching problem.

We will now provide a brief outline of this thesis.

I.1 OUTLINE

The thesis is organized into six chapters. In this chapter we present an overview and

motivation for this work. The second chapter provides an introduction to the matching

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

theory, and discusses background and related work. Third and fourth chapters discuss the
exact and approximation algorithms for the maximum vertex-weight matching problem
(MVM) respectively. In chapter five we provide details of a parallel half-approximation
algorithm and experimental results on a distributed memory parallel computer. The sixth
chapter provides conclusions and plans for the future work.

In order to motivate our work, we will now provide a brief introduction to a field of
study known as combinatorial scientific computing (CSC), where this dissertation belongs
to. CSC encompasses three broad fields - computer science, applied mathematics, and

operations research.

1.2 COMBINATORIAL SCIENTIFIC COMPUTING

Combinatorial scientific computing is the development, analysis and application of discrete
algorithms for applications in scientific computing [33, 34]. The three components that
characterize CSC are (¢) identifying a scientific computing problem, and building an ap-
propriate combinatorial model for this problem; (¢7) developing an efficient solution for
the combinatorial problem; and (iii) developing required software tools and evaluating the
performance on representative test instances.

Computational simulation of a physical phenomenon is a better alternative to exper-
iments in many situations, and in some cases the only alternative. However, realistic
simulations of physical phenomena are extremely difficult. Computational challenges and
massive resource requirements for numerous applications in science and engineering have
been extensively documented by hundreds of field experts in the SCaLeS (A Science-Based
Case for Large-Scale Simulation) reports [42]. Combinatorial algorithms play a critical role
in computational science by enhancing the efficiency of numerical algorithms, and in many
cases enables a computation which would be infeasible otherwise. The role of combinatorial
algorithms in scientific computing have been discussed in detail elsewhere, and we refer the
readers to a paper by Hendrickson and Pothen [34] for one such discussion.

Approximation algorithms are generally developed for intractable problems [35]. How-
ever, approximation algorithms for problems that have known polynomial-time solutions
are increasingly becoming popular. The motivation for this comes from the fact that many
polynomial-time algorithms can be computationally very expensive for large-scale problems.
A further need for approximation algorithms can come from resource limitations. One ex-
ample is a scheduling problem in high-speed network switches, where the algorithms not
only need to be fast, but should also be easy to implement in hardware [52].

As one of the fundamental combinatorial problems, matching is important both theo-

retically and practically. Theoretically, it is interesting because of its similarity to many

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NP-complete problems like the Integer Programming Problem, while at the same time
lending itself to a polynomial time solution [57]. Such solutions have been made possi-
ble due to ingenious techniques like augmenting paths, and the identification and shrink-
ing of blossoms [8, 48]. We believe that further study of these tools and techniques
will promote good solutions for other combinatorial problems. The matching problem
is also important from a practical perspective because of its use in many applications
in diverse fields of science and engineering. Some of these applications are discussed in
[1, 24, 25, 26, 8, 40, 46, 53, 62, 63, 64, 65]. In this thesis, we will discuss two such applica-

tions in order to motivate this study.

1.3 MOTIVATION

Vertex-weighted matching has many applications. Some of the problems that use maximum

vertex-weighted matching (MVM) are:
e Sparsest column-space basis problem [60],
e Facility scheduling problem [11], and
e Reverse spanning tree problem [2].

In order to illustrate the process of modeling an application as a vertex-weighted match-
ing problem, we will discuss two specific examples. The first problem is a specialized version
of the dating problem provided as an exercise in [9] that we call a mercenary dating prob-

lem, and the second is the computation of a sparsest column-space basis of a matrix [60].

Mercenary Dating Problem

A dating service is provided with data from m men and n women sufficient to determine
which pairs of men and women are compatible. The data also includes the price that each
person will pay for getting matched; assume unique positive prices. The total revenue for
the dating service is proportional to the total number of dates that it can arrange, and on
the individual price that it receives from the matched people. The objective is to mazimize
the total revenue for the dating service (mercenary). Note that the with the assumption of
positive prices revenué can always be increased by increasing the number of people that will
get matched. We will prove this later. Some people might remain unmatched (a perfect
matching may not exist).

Let us model the problem as a bipartite graph G(S,T, F) with weight functions wg :
S — Rt and wr : T — RT. The vertex set S represents men and the vertex set T

represents women. A vertex in S (and T') represents a single person. The compatibility

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of a man s with a woman t is represented as an edge e;; € E. The weight function on
the vertices represents the commission that each person is willing to pay if matched. The
objective function of the mercenary dating problem can be accomplished by computing an
MVM in G.

We will now provide an intuition for solving the problem by computing a maximum
vertex-weight matching in the graph. The details of the algorithm will be discussed in
Chapter III. First, ignore the weights associated with the 7 vertices. Try to maximize
the revenue that can be generated by matching as many men as possible based on the
weights associated with the S vertices. This simply reduces to computation of a maximum
cardinality matching in G with a particular order for processing the vertices (decreasing
order of weights). Similarly, repeat the process by ignoring the weights associated with the
S vertices and by trying to maximize the revenue by matching as many women as possible.
Thus, we now have two different matchings from two separate computations. We can no
merge these two matchings together by retaining all the S vertices matched in the first
matching as well as all the T vertices matched in the second matching. This results in an
optimal solution to the mercenary dating problem. The details are provided in Chapter
III.

Sparsest column-space Basis Problem

Another application of vertex weighted matching arises in the computation of a sparsest
column-space basis (SCB) of a matrix. The sparsest column-space basis problem is an
instance of the nice-basis problem that has numerous applications in scientific computing,
including models of deforming structures, circuit and device modeling, equality constrained
optimization, etc. We refer the readers to [60] for details. We will now briefly discuss
the role of vertex weighted matching in the solution of SCB. This is a novel method for
computing a SCB and has not been published elsewhere.

Consider a matrix A with k£ rows and n columns, n > k, and rank k. A set of columns
C = {c1,¢2," - ¢} is linearly independent if none of the columns in C can be expressed as
a linear combination of the others. The maximal number of linearly independent columns
of A is called the column rank of A. The row rank of A is defined similarly. Since the
row and column ranks are equal, they are called the rank of A. A generalized diagonal of
A is a subset of nonzeros with at most one chosen from each row and each column. The
maximum number of nonzeros in a generalized diagonal is called the structural rank of A.
The numerical rank of a matrix (we have called this the rank) is less than or equal to the
structural rank of A. In the following discussions we will make a simplifying assumption

that the numerical and the structural ranks of a matrix are equal.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A basis for the column-space of A is a linearly independent set of columns with maxi-
mum rank (by the assumption on A, this is k). A sparsest basis for the column-space of A
is a basis with the fewest nonzeros in it. Formally, the sparsest column-space basis problem
(SCB) can be defined as:

Definition 1.3.1. Given a sparse matriz A of rank k, with k rows and n > k columns,

find a sparsest basis B for its column-space.

A

FIGURE 2. Representation of a sparsest column-space basis problem. A matriz A with k rows and n
columns, and a basis B with k rows and k linearly independent columns.

The sparsest column-space basis selects £ out of n sparse columns of A. A graphical
representation of SCB is given by Figure 2. For a matrix with k rows and n columns there
could be (Z) potential column-space bases. However, a simple greedy algorithm, as follows,
works: Start with an empty set (of columns) B. Find the sparsest column based on the
number of non-zeros in the column and represented with a weight function w;. Add this
column to B. Until k£ columns have been added to B, add new (sparsest) columns such
that they are linearly independent of the current columns in B. The set B now represents
the sparsest set over all choices of sparsest column-space bases. One step of this algorithm
is illustrated in Figure 3. A sparsest column-space basis can be computed in O(k?n) time
and a i-approx solution in O(nnz(A) + k?) time, where nnz(A) denotes the number of
nonzero elements in A [60].

The proof that such a greedy algorithm will solve the sparsest column-space basis
problem is given by a theory about greedy algorithms: combinatorial structures known as

matroids, as named by Hessler Whitney [19, 45].

Definition 1.3.2. A matroid M = (E,Z) is defined as a set of elements E, and a nonempty
collection of subsets, Z, of E defined to be independent. The three properties that an

independent set I € T needs to satisfy are:
1. The empty set is independent;

2. Subsets of an independent set are independent;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Wmax

B; Cl

(@)

Bist Cin

(b)

FIGURE 3. A greedy algorithm for computing a sparsest column-space basis. (a) State before augmenting
a basis B; with a column of current heaviest weight Wmaz from C; (b) state after augmenting a basis with
a sparsest linearly independent column from C.

3. Given two independent sets with unequal cardinalities, the smaller set can be aug-
mented with some element from the larger set to form a larger independent set (this

is called the exchange property).

Based on this background, we will now discuss how computing a sparsest column-space
basis can be transformed into a maximum vertex-weight matching problem. A matrix A
with k& rows and n columns can be represented as a bipartite graph G = (S, T, E) with
weight function w : § — R™, where set S represents the columns, set T represents the
rows, and each nonzero element in A is represented by an edge e;; € E. The weight of a
column vertex is given by w(s) = k + 1 — deg(s), where deg(s) represents the number of
nonzeros in column s. A matrix and its bipartite graph representation are shown in Figures
4.(a) and 4.(b).

A matching M in G corresponds to a subset of nonzeros in A, with at most one from
each column and each row (see Figure 4.(a) for an example). By permuting the rows and
columns of A, we can put the nonzeros corresponding to a matching on the diagonal of A.
This is illustrated in Figure 4.(c). As discussed earlier, the maximum number of nonzeros
in a matching is the structural rank of a matrix. If we make a simplifying assumption that
the numerical rank of A is equal to the structural rank of A, then a maximum matching
in G will result in a candidate basis with full structural rank. While the assumption that
the numerical rank of a matrix is equal to the structural rank is true for many scientific
computing applications, it is not always a correct assumption. However, the correctness of
a candidate basis with full structural rank can be checked by numerical factorization.

Thus, the greedy algorithm for computing a sparsest basis, discussed earlier, can now

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

s s
la b ¢ d e J]a d b e
1m® x x o o MT® ¢ x o
T2lx 0 x ® © T2(x ® 0o O
3o ® x o «x 3lo 0 ® «x
410 0 x x ® 4o x 0 ®
(a) ()

FIGURE 4. Computation of a sparsest column-space basis with a mazimum vertez-weight matching. (a)
A matriz A; (b) A bipartite graph (G) representation of A. Numbers on the right indicate the weight of each
S vertez. Bold lines represent the matched edges, and matched vertices are colored black; (c) A candidate
basis as computed by a maximum vertez-weight matching in G.

be replaced by an algorithm for computing a matching. Specifically, a maximum vertex-
weight matching, since it will compute a maximum matching that is as sparse as possible.
The weights on the S vertices are formulated such that maximizing the total weight of the
matched vertices will minimize the number of nonzeros in the submatrix induced by this
matching (basis B).

Spencer and Mayr provide a O(y/nmlogn) time algorithm [69] for computing a maxi-
mum vertex-weight matching, where n denotes the number of vertices and m denotes the
number of edges in a graph. Exact algorithms tend to be expensive for large-scale prob-
lems, and therefore, there is a need for approximation algorithms. We provide detailed
discussions on exact and approximate MVM-algorithms in Chapters III and IV.

In summary the motivation for this work comes from:
e Theory: the need for a systematic study of vertex-weighted matching problem,
e Implementation: the need for public-domain tools that implement matchings, and

o Applications: the need for solutions of applications of vertex-weighted matching.

1.4 CONTRIBUTIONS

The contributions of this thesis are:
1. Theory:

e New framework for developing proof of correctness for vertex weighted match-
ings;

o New %—approx algorithms for vertex weighted matchings;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e New %-approx algorithm for bipartite vertex weighted matchings;

2. Experiments:

e Open-source library of C++ routines to compute various kinds of matchings;
e Open-source library of C++ and MPI routines to compute approximate match-
ings in parallel.

¢ Extensive experimental study of various (serial) matching algorithms, and scal-

ability study of %—a,pprox parallel algorithm with up to 8, 192 processors.

3. Applications:

e Study of applicability of vertex weighted matchings in solving the sparsest basis

problem.

¢ Study of approximation algorithms in sparse matrix computations.

1.5 CHAPTER SUMMARY

In this chapter we provided the motivation and rationale for this dissertation. We also
introduced two specific application of the vertex weighted matching problem. We show how
the sparsest-basis problem can be efficiently solved by modeling it as a maximum vertex-
weight matching problem and concluded the chapter by listing some of the contributions

of this work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

CHAPTER II

BACKGROUND AND RELATED WORK

“It (matching) is included in (class) P, thanks to the ingenious introduction of
nontrivial combinatorial tools such as alternating paths and blossoms.” -
Marek Karpinski and Wojciech Rytter [39]

Matching theory has been studied in great detail [8, 45, 48, 57, 66]. In this chapter, we
will provide a brief introduction to matchings in graphs. We will also introduce the basic
tools and techniques to compute a matching. We will discuss both exact and approxima-
tion algorithms for the maximum cardinality and the maximum edge-weight matchings in
bipartite graphs. The approximation algorithms are also applicable to nonbipartite graphs.
We will keep the discussion on the exact algorithms brief. Our goal is to provide sufficient
background for a better understanding of the proposed algorithms. Since the approxima-
tion algorithms have been more recently developed, we will discuss them at a relatively
greater detail. We refer the reader to above cited references for a thorough discussion on

matching theory and algorithms.

II.1 INTRODUCTION

A graph G is a pair (V| E), where V is a set of vertices and F is a set of edges that represent
a binary relation on V. A simple instance of a graph is shown in Figure 5. The vertices are
represented with small circles, and the lines that connect two vertices represent the edges.
In a graph, weights can be associated with edges, vertices, or both. In this proposal, we
will only consider weights with real positive numbers. Graphs with negative weights will
have to be considered separately. The association of weights in a graph G = (V, E) can be
represented as w : E — R™* for a weight function on edges, and w : V — R* for a weight
function on vertices.

A bipartite graph G = (S,T, E) is a graph in which the vertex set V = SUT can be
partitioned into two sets S and T, SNT = ¢, such that no two vertices in S, or in T, are
joined by an edge. An example of a bipartite graph is shown in Figure 5. Since edges in
a bipartite graph always join an S vertex to a T vertex, cycles of odd length cannot exist.
Absence of odd-length cycles is a distinguishing characteristic of bipartite graphs, that is
important and well exploited in the context of matching algorithms.

We use the following notations. Given a graph G = (V, E), an edge e belong to Set
E. We can further specify the two endpoints (u, v) of an edge as ey,. The weight assigned

with an edge is denoted as w(e), and the weight of a vertex v is denoted as w(v). Given

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

a vertex v € V, the set of edges incident on it is called the adjacency set, and denoted as
adj(v). We will introduce other symbols and notations where appropriate.

A matching in a graph can be defined as follows:

Definition I1.1.1. Given a graph G = (V, E) with a set of vertices V, and a set of edges

E, a matching M is a subset of edges such that no two edges in M are incident on the

same vertex.

A matching can also be seen as a pairing of two objects in the set. Using the example
of mercenary dating problem that we introduced in Chapter 1, the set of men is denoted
by {S1, 52,53}, and the set of women is denoted by {T3,T%,T3}. A matching is pairing of a
man with a woman such that no man is paired with more than one woman, and no woman

is paired with more than one man. This is illustrated in Figure 5.

FIGURE 5. An ezample of matching. (a) A bipartite graph G, (b) a matching M in G. Bold lines
represent matched edges, and matched vertices are colored black.

CLASSIFICATION

Based on different criteria the matching problem can be classified as follows:
e Input graph: Bipartite and Nonbipartite,
e Objective function: Cardinality and Weighted,
e Placement of weights in the graph: Edge-weighted and Vertex-weighted,

o Optimality: Exact and Approximate.

A given matching problem can thus be specified as an exact maximum edge-weight
matching problem, or as a %—approx vertex-weighted matching problem. The landscape of
matching algorithms is provided in Figure 1.

The odd-length cycles that exist in nonbipartite graphs need special consideration and
will significantly increase the conceptual complexity of a matching algorithm for nonbipar-
tite graphs. However, the computational complexity might remain the same as that for

bipartite graphs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

The cardinality of a matching is the number of edges in it and is denoted by |M]|.
Based on the cardinality there can be three types of matchings. A maximal matching is
a matching that cannot be augmented by adding a new edge to it. However, it might be
possible to increase the cardinality of a maximal matching by changing the set of matched
edges. A mazimum matching in a graph is a matching of maximum cardinality among all
possible matchings. When all the vertices are matched, the matching is called a perfect
matching. While a maximum matching is also a maximal matching, a maximal matching is
not always a maximum matching. However, a perfect matching necessarily has maximum

cardinality. These three types of matchings are illustrated in Figure 6.

O-- ,’ 375
‘o % ele
{a) (b) {c}

FIGURE 6. Types of matchings. Matched edges are represented with bold lines and matched vertices are
filled with black color. (a) A mazimal matching, (b) a mazimum matching, and (c) a perfect matching.

In a graph G = (V, E) with weight function w : E — R™, the edge-weight of a matching
M is the sum of weights of the matched edges }_ ., w(e). For a graph G = (V, E) with
weight function w : V' — R7¥, the vertez-weight of a matching is the sum of weights of
matched vertices Zvev(M) w(v), where V(M) represents the set of matched vertices. We
will denote the edge-weight and the vertex-weight as weight, and depend on the context for
specific reference as to whether the weights are associated with the edges or the vertices.
For the current discussion we will only consider positive weights. We will later show that
the same algorithms can be extended to include negative weights. A mazimum edge-weight
matching, also known as a maximum weighted matching, is a matching of maximum edge-
weight among all possible matchings in a graph. A maximum edge-weight matching can
be of maximal, maximum or perfect cardinality. A mazimum vertez-weight matching is a
matching of maximum vertex-weight among all possible matchings in a graph. When the
weights are positive, a maximum vertex-weight matching is also a matching of maximum
cardinality, which will proved in Chapter III.

An a-approx algorithm computes a solution that is within a factor of a of the optimal
value. For example, a %-approx algorithm for a maximum edge-weight matching problem
guarantees that the weight of an approximate matching computed by the algorithm is at

least half of the weight of an optimal matching. If M; denotes a matching computed by a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

—21——approx algorithm, and M, denotes an optimal matching, then

> we) >3 3 wle) &

Approximation algorithms for maximum cardinality matching are relatively easier than
approximation algorithms for weighted matchings. While computing a linear time %—approx
to maximum cardinality matching (maximal) is trivial, computing the same for weighted

matching is not. We will discuss these approximation algorithms in Section II.5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

II.2 FOUNDATIONS

One of the most fundamental techniques in matching is the technique of augmentation.
Given a graph G = (V, E) and a matching M in G, a path is said to be alternating if
it alternates between an edge in M (matched) and an edge not in M (unmatched). An
alternating path that starts and ends with edges that are not in M (unmatched) is called
an augmenting path. Note that an augmenting path will always have an odd number of
edges and an even number of vertices. A few examples of paths are illustrated in Figure 7.
O .—(a.)- *—o
e—e-—9 -0
{b)
C-0—0-0-90-0O
(c)
FIGURE 7. Types of paths. Matched edges are represented with bold lines and matched vertices are

colored black. (a) An alternating path starting with an unmatched vertez, (b) an alternating path starting
with a matched vertez, and (c) an augmenting path.

The symmetric difference of two sets, denoted by the symbol @, is computed by choosing
the elements that are present in either of the sets, but not in both. Mathematically, the
symmetric difference of two sets M and P is shown in Equation 2. The operator \ represents
the set resulting from retaining only those elements in the set on the left hand side of the
operator that do not also exist in the set on the right hand side of the operator (the set

minus operator).

MeP=(M\P)u(P\M) (2)
In the context of matching, the symmetric difference operation is important due to
Lemma II.2.1, which states that the cardinality of a current matching can always be in-
creased by performing a symmetric difference with an augmenting path. The process of
symmetric difference is illustrated in Figure 8. Note that although the matched edges
change, the matched vertices will always remain matched.
(a)

—0o-00-09

(1)

FIGURE 8. Augmentation by symmetric difference. The matched edges are represented with bold lines
and matched vertices are colored black. (a) Before augmentation, (b) after augmentation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

Lemma I1.2.1. Consider a graph G = (V, E) and a matching M. Let P be an augmenting
path in G with respect to M. The symmetric difference, M' = M & P, is a matching of
cardinality (|M| + 1).

Proof. There are two parts to the proof. First we will prove that the symmetric difference
M & P will result in a matching, and then we will prove that the symmetric difference will
result in a matching that increases the cardinality by one.

(z) An augmenting path P is of the form [e;,e2,€3, -, e,], where all odd-indexed edges
{ei1,es, - ,en} are unmatched, and all even-indexed edges {e2,e4,- - ,en_1} are matched.
Also, edges e; and e, are unmatched, and 7 is an odd number. The symmetric difference is
given by M@ P = (M \ P)U(P\ M). The edges obtained by the operation (M \ P) contain
those edges that are in M, but are not part of the path P, and therefore a set of independent,
edges (it retains the matched edges independent of P). The edges obtained by the operation
(P\ M) contain those edges that are on the path P, but are not in M (the unmatched edges
in P). By definition, an augmenting path P connects two distinct unmatched vertices, and
therefore, edges e; and e, are independent edges. All the intermediate edges in {P \ M}
are also independent edges because they share vertices with matched edges. Therefore, the
symmetric difference M @ P results in a matching.

(77) An augmenting path P starts and ends with an unmatched edge, therefore, the number
of unmatched edges in P is exactly one larger than than the number of matched edges in

P. Thus, symmetric difference M & P results in a matching of cardinality of (|M|+1). O

The concept of symmetric difference immediately gives us a basic technique to compute
a matching: find an augmenting path, and perform the symmetric difference. The proof of

correctness for such an algorithm is given by Theorems I1.2.1 and 11.2.2.

Theorem I1.2.1 (Berge [1957]). A matching M in a graph G is a mazimum matching if
and only if there is no M-augmenting path in G.

Proof. There are two aspects to the proof.

(¢) Suppose there exists an M-augmenting path in G, then the cardinality of M can be
increased by one, and therefore, M is not a maximum matching and contradicts the as-
sumption (follows from Lemma I1.2.1). Therefore, if M is a maximum matching, then there
exist no M-augmenting paths in G.

(i3) Suppose that there exist no M-augmenting paths in G, and yet, M is not a maximum
matching. Let M* be a maximum matching in G. The symmetric difference M & M* will
result in a collection of alternating paths and cycles as illustrated in Figure 9. If one of
these alternating paths is M-augmenting, then there also exists an M-augmenting path in

G, and therefore, contradicts the assumption (follows from part ()). Also, by assumption

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

there are no M* augmenting paths in M & M*. Thus, the symmetric difference M & M*
will consist of alternating paths that are not augmenting paths, and cycles, and therefore,
an equal number of edges from M and M*. Alternatively, |M| = |M*|, and the theorem
holds. O

$ T s T
---0 O-._ o0
o/ Yo
~
0 o--3 o/o -0
{a) Cycle (b) Ms- (c) M; - (d) Ms - (e) Mr -
augmenting augmenting alternating alternaling

FIGURE 9. The symmetric difference of two matchings Ms @& Mr. Dashed lines represent edges in Ms
and Solid lines represent edges in Mr. (a) A cycle; (b)-(e) Augmenting or alternating paths.

Theorem 11.2.2. Consider a graph G = (V, E) and a matching M. Let P be an augment-
ing path with two unmatched vertices v and w as endpoints. If there exists no augmenting
path in G starting from an unmatched vertex u with respect to M, then there is no aug-

menting path from u with respect to M & P either.

Proof. Let the augmenting path starting at u be @, and the augmenting path between v
and w be P. This is illustrated in Figure 10. There are two possibilities:

(¢) Paths P and @ do not intersect. This means that the two paths do not have any vertices
or edges in common. This is illustrated in Figure 10.(a). In such a case P will not have
any effect on the possibility of an augmenting path starting at «. If no augmenting path
exists from u with respect to M, then no augmenting path exists from u with respect to
M & P either. Therefore, the theorem holds.

(it) Paths P and @ intersect each other. Path Q is of the form [u,uy,--- ,uj,--- ,u']. Let
u; be the first vertex on Q that is also on P. This is illustrated in Figure 10.(b). The
portion of @ from u up to u;, along with the portion of P that is incident on u; with a
matched edge (Q/ in Figure 10.(b)), forms an augmenting path starting at u with respect

to M. This contradicts the assumption, and therefore, the theorem holds. O
Corollary I1.2.1. If at some stage of an augmentation-based matching algorithm, there is

no augmenting path starting at vertex u, then there will be no augmenting path from v at

any future step in the algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

d /./" /ud-_/“

{a) {b)

FIGURE 10. Effect of M & P. Bold lines represent matched edges and matched vertices are colored
black. (a) Paths P and Q do not intersect; (b) paths P and Q intersect. This figure has been adapted from

[57].

Proof. Inducting on the number of steps that remain after discovering that no augmenting
path exists from a vertex u, we can use Theorem II.2.2 to show that there never will be an

augmenting path from u, if none existed when v was processed the first time. O

Thus, from Corollary I1.2.1, it is enough if we process a given vertex only once. We will

now discuss techniques to perform the search for augmenting paths in a graph.

GRAPH SEARCH TECHNIQUES FOR MATCHING

Searching for an augmenting path in a graph with respect to a matching is one the basic
steps in the computation of a matching. There are two basic approaches to find an aug-
menting path - a breadth-first search, and a depth-first search. The difference between a
breadth-first and a depth-first search comes from the way the elements are queued during
a search. We will define two data structures known as a pseudo-queue, and a pseudo-stack.
A pseudo-queue is different from a regular queue data structure in that the former ex-
cludes duplicate elements. Note, that Algorithm 1 does not attempt to add duplicates,
and therefore, does need this special data structure. Similarly, there are no duplicates in
a pseudo-stack. An additional characteristic of a pseudo-stack is that if a new element
that is being added to the pseudo-stack already exists, then it is moved to the top of the
pseudo-stack. We need vectors to store information about the parent-child relationships
(parent), distance from the source (depth), and state of processing (color). We initialize
color with ¢ for all vertices, and update it to PROCESSABLE or PROCESSED.

A breadth-first search is illustrated in Algorithm 1, and works as follows. Initialize the
data structures by setting the color, parent and depth values to zeros. Start with a vertex

u and add it to the pseudo-queue data structure and mark it as PROCESSABLE. Enqueue

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

the vertices adjacent to u and mark them as PROCESSABLE. Add u as the parent of all the
enqueued vertices and set the depth values for these elements one greater than the depth
value of the parent. Repeat the steps by dequeing the front of the queue each time, until
all the vertices have been processed. A breadth-first search on a small graph is illustrated

in Figure 11.

Algorithm 1 Input: A graph G and a vertex source u. Qutput: A breadth-first
tree. Associated data structures: @ is a queue data structure. Effect: perform a

breadth-first search.
1: procedure BREADTHFIRSTSEARCH(G = (V, E), u)

2 for allv €V do > Initialization

3: color[v] = ¢;

4: parent|v] = 0;

5: depth[v] = 0;

6: end for

7 Qe {u}

8: color[u] « PROCESSABLE;

9: while Q # ¢ do > Graph search
10: pick v from @Q; > Head of the queue
11 Q — Q\v; > Dequeue
12: color[v] «+ PROCESSED;

13: for all w € adj[v] do

14: if color[w] # ¢ then

15: continue;

16: end if

17: parent|w] « v;

18: depth|w] « depth[v] + 1;

19: Q — QU {w} > Enqueue
20: color[w] «— PROCESSABLE;

21: end for

22: end while
23: end procedure

A depth-first search is illustrated in Algorithm 2. The algorithm functions as follows.
Start with a vertex u and mark it as PROCESSED. Enqueue the vertices adjacent to u
in a pseudo-stack data structure, and mark them as PROCESSABLE. Add u as the parent
of all the enqueued vertices, and a depth value one greater than the depth of the parent.
Dequeue the top of the pseudo-stack, and repeat the steps until all the vertices have been
processed. A depth-first search on a small graph is illustrated in Figure 12.

The search for an augmenting path can be breadth-first, depth-first or a combination of
these. The search could either start from one vertex (single-source), or simultaneously from
a set of unmatched vertices (multiple-source). The general strategy is to find a shortest-

augmenting path. Therefore, breadth-first search is generally used. Once an augmenting

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

Algorithm 2 Input: A graph G and a vertex source u. Output: A breadth-first
(or depth-first) tree. Associated data structures: S is a pseudo-stack data structure.
Effect: perform a depth-first search.

1: procedure DEPTH-FIRST-SEARCH(G = (V, E),u)

2 for all v € V do > Initialization

3 color[v] = ¢;

4: parent[v] = 0;

5: depth[v] = 0;

6: end for

7: S — {u};

8: color|u] «— PROCESSABLE;

9: while Q # ¢ do > Graph search
10: pick v from S; > Top of the pseudo-stack
11: S « S\v; > Dequeue
12: color[v] <« PROCESSED;

13: for all w € adj[v] do

14: if color{w] # ¢ then

15: move w to the top of S;

16: continue;

17: end if

18: parentjw] « v;

19: depth[w] < depthlv] + 1;

20: S — Su{w}; > Enqueue
21: color[w] « PROCESSABLE;

22: end for

23: end while
24: end procedure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

FIGURE 11. Breadth-first search. The vertex being processed at a given step is colored purple, and
also marked by an arrow. The shaded lines represent the processed edges. The vertices that have already
been processed are colored black. The adjacency list for each vertex is maintained in an increasing order of
the indices of vertices. (a) The input graph before execution, (b)-(f) the intermediate states of ezecution.
State of the pseudo-queue at each step: (b) [2,3,4] (c) [3,4,5], dequeue 2, enqueuve 5; (d) [4,5,6] dequeue 3,
enqueue 6; (e) [5,6] dequeue 4; (f) [6] dequeue 5.

path is discovered, augmentation can be performed by either along a single path, or si-
multaneously along a set of vertex-disjoint augmenting paths. Thus the three strategies

are:
1. Single-source single-path, illustrated in Figure 13, uses a breadth-first search.
2. Multiple-source single-path, illustrated in Figure 14, uses a breadth-first search.

3. Multiple-source multiple-path, illustrated in Figure 15, uses a combined breadth-first
and depth-first search.

We will provide more details about these approaches in the following discussions on maxi-

mum cardinality and maximum edge-weight matching algorithms.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

FIGURE 12. Depth-first search. The vertex being processed at a given step is colored purple, and also
marked by an arrow. The shaded lines represent the processed edges. The vertices that have already been
processed are colored black. The adjacency list for each verter is maintained in an increasing order of the
indices of vertices. (a) The input graph before ezecution. (b)-(f) the intermediate states of execution. State
of the pseudo-stack at each step: (b) [2,3,4] (¢) [2,3,5] pop 4, move 2, move 3, push 5; (d) [3,2,6] pop 5,
move 2, push 6; (e) [2,3] pop 6, move 3; (f) [2].

{e)

FIGURE 13. Single-source single-path technique. The vertex being processed at a given step is colored
purple, and also pointed by an arrow. The shaded lines represent potential augmenting paths. Bold lines
represent matched edges and matched vertices are colored black. (a) The input graph before execution, (b)-(d)
the intermediate states of ezecution, and (e) the final state.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

{d) {e)

FIGURE 14. Multiple-source single-path technigue. The vertices being processed at a given step are
colored purple. The shaded lines represent potential augmenting paths. Bold lines represent matched edges
and matched vertices are colored black. (a) The input graph before execution, (b)-(d) the intermediate states
of execution, and (e) the final state.

(c)

FIGURE 15. Multiple-source multiple-path technigque. The vertices processed at a given step are colored
purple. The shaded lines represent potential augmenting paths, bold lines represent matched edges and
matched vertices are colored black. (a) The input graph before execution, (b) the intermediate state of
execution, and (c) the final state.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

II.3 MAXIMUM CARDINALITY MATCHING

Maximum cardinality matching (MCM) algorithms for bipartite graphs are conceptually
easier than those for nonbipartite graphs. In this section, we will discuss MCM algorithms
for bipartite graphs, and refer the readers to [28, 29, 8, 45, 48, 57, 66, 73] for discussions
on algorithms for nonbipartite graphs. We will provide two algorithms for MCM, a simple
algorithm based on the single-source single-path approach, and an advanced algorithm
based on the multiple-source multiple-path approach for searching an augmenting path.
The simple version of MCM is given in Algorithm 3. The algorithm functions as follows.
Let G = (S, T, E) be a bipartite graph, and M an empty matching. Find an M-augmenting
path P in G, and perform the symmetric difference M @ P to increase the cardinality of
the current matching. Repeat the process until no M-augmenting paths exist in G. A
breadth-first or depth-first search, as described in Algorithms 1 and 2, can be used to find
an augmenting path starting at a given vertex. However, the former is preferred because
it retrieves the shortest augmenting path from a given source, if such a path exists. This
graph search operation is bounded by O(m), where m = |E| is the number of edges in
G. Since G is a bipartite graph, edges will always connect an S vertex to a T vertex.
Therefore, it is sufficient to loop either over the S vertices, or the T vertices. A vertex
needs to be processed only once, this follows from Corollary 11.2.1. Thus, Algorithm MAX-
CARD1 can be computed in O(nm) time, where n is either the number of S vertices
or T vertices, depending on the vertex set used. Execution of Algorithm MAX-CARD1
based on a single-source single-path approach is illustrated in Figure 13, and that for a

multiple-source multiple-path is illustrated in Figure 14.

Algorithm 3 Input: A bipartite graph G. Output: a matching M. Effect: computes
a maximum cardinality matching using a single-source single-path approach.

1: procedure MAX-CARDI1(G = (S,T, E), M)

2 M — ¢;
3 for all s € § do > Can also loop over T vertices
4: Find an augmenting path P starting at s;
5: if P found then
6
7
8
9:

M~ M®oP;
end if
end for
end procedure

In the previous section we briefly mentioned about the multiple-source multiple-path
approach for finding augmenting paths in a graph and illustrated it in Figure 15. Hopcroft
and Karp [37] use a similar technique and show that the worst-case bounds for such an

approach in bipartite graphs is O(y/nm), where n is the number of vertices and m the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

number of edges. From a simple observation of Figure 15, possibly many vertex-disjoint
augmenting paths can be found with each pass, and therefore, drastically reduces the total
number of steps that need to be performed. In fact, the number of steps is bounded by
O(y/n). We refer the reader to [37] for a proof.

A multiple-source multiple-path search approach works by finding a set of vertex-
disjoint M-augmenting paths per iteration; specifically, a maximal set of shortest length
vertex-disjoint M-augmenting paths. A breadth-first search is first performed to compute
the length of the shortest augmenting path. Then, depth-first searches are done simulta-
neously from each unmatched vertex to find a maximal set of vertex-disjoint paths. Thus,
the cardinality of a matching advances by |M'| = |M|+d, where d is the number of vertex-
disjoint augmenting paths, instead of |M'| = |M| + 1 for single-path approach. Algorithm
4 sketches a multiple-path technique for computing a maximum cardinality matching in a

bipartite graph.

Algorithm 4 Input: a bipartite graph G. Output: a matching M. Effect: computes a
maximum cardinality matching M in G using a mulitple-source multiple-path approach.

1: procedure MAX-CARD2(G = (S,T,E), M)

2: M «— ¢;

3: repeat

4 Pe—{P,P,....,P}; > a maximal set of vertex-disjoint paths of shortest
length

5: M~ MaoP

6: until P = ¢;
7: end procedure

We conclude our discussion on the maximum cardinality matching algorithms with
Table 1 that summarizes the development of MCM algorithms in bipartite and nonbipartite
graphs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

TABLE 1
Algorithms for mazimum cardinality matching [66]. For a graph G = (V,E), n = |V| represents the
number of vertices, and m = |E| the number of edges. For graph types, B denotes bipartite graphs, and G
denotes nonbipartite graphs.

| Year | Authors | Graph Type | Complexity |
1931 | Konig B O(nm)
1955 | Kuhn B O(nm)
1965 | Edmonds G O(n’m)
1972 | Gabow G O(n?)
1973 | Hopcroft and Karp B O(y/nm)
1974 | Kameda and Munro G O(nm)
1974 | Even and Kariv G O(n?%)
1976 | Kariv G O(y/nmloglogn)
1980 | Micali and Vazirani G O(yv/nm)
1991 | Alt, Blum, Melhorn and Paul B O(nt® \/ =
1991 | Feder and Motwani B O(y/nmlog, (J"Ti))
1995 | Goldberg and Karzanov G O(y/nmlog, %2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

II.4 MAXIMUM EDGE-WEIGHT MATCHING

Given a graph G = (V, E) with weight function w : E — R*, and a matching M, the weight
of a matching is the sum of weight of matched edges }_ ., w(e). A matching M in G is
a maximum edge-weight matching (MEM) if it has the largest weight of all matchings in
the graph. Conceptually, an algorithm for computing a MEM is similar to an algorithm to
compute a maximum cardinality matching (MCM). In both the cases, the general technique
is to find augmenting paths and perform symmetric differences to increase the current size
of the matching. However, for a MEM one also has to consider the weights associated
with the edges. This will add complexity to the MEM algorithms. Traditionally, the MEM
problem has been formulated as a linear programming problem, and is an example of the
theory of duality. The intuition for such a formulation is given by Theorem I1.4.1. The
theorem highlights relationships between maximization and minimization, and between the
weights on the edges and the weights on the vertices. We refer the reader to [66] for a proof

of the theorem.

Theorem I1.4.1 (Egervary (1931 |). Consider a bipartite graph G = (S, T, E) with weight
function w : E — R*. Let V = {SUT} represent the set of vertices. The mazimum weight
of a matching M in G is equal to the minimum weight of y(V), wherey: V — R is a set
of dual weights on V such that, for each edge es; € E,

Ys + Y > w(est)-

Linear programming (LP) problems are optimization (minimization or maximization)
problems with linear objective function subject to linear inequality constraints. Linear
programming problems are usually formulated as primal problems. Every primal formula-
tion can also be recast as a dual LP problem (this primal-dual formulation for the MEM
problem will be described shortly). The dual of a dual is the primal problem. The dual of
a primal problem can be obtained by changing the objective function and the constraints.
If one is a maximization problem, then other is a minimization problem. A solution to
the objective function that satisfies all the constraints is known as a feasible solution. By
design, every feasible solution to the dual program gives an upper bound on the optimal
value of the primal feasible solution, and vice versa. The solution is optimal when the
primal and dual solutions are equal.

The primal-dual solution for the MEM problem in bipartite graphs is known as the
Hungarian method for the assignment problem as proposed by Harold W. Kuhn [43].
Consider a bipartite graph G = (S, T, E) with weight function w : E —» R™*. Let ng = [S|

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

and np = |T| represent the number of S and T vertices respectively, and m = |E| represents
the number of edges. Let n denote the total number of S and T vertices, n = ng+ng. If a
vertex pair (s;,t;) does not exist in the edge set £, then the weight wg; is set to zero. The
primal-dual formulation for the MEM problem is given by:

Primal problem:

ng nr
2 = maximize Z Z Wet Lt
s=1 t=1
subject to constraints:
ng
szt =1 fort=1,..,nr,
s=1
nr
szt =1 fors=1,...,ng,
t=1
zse € {0,1} for s=1,...,ng; t=1,..,nr
Dual problem:
ngs nr
w = minimize Z Uug + Z Vg,
s=1 t=1
subject to constraints:
Us +v > Wt for s=1,...,ng; t=1,..,nr,
Us, Ut 2 0.

The primal variable x4 is assigned to the edges, and can take a value of 1 if matched,
and O if not. The dual variables u; and v; are assigned to the vertices, and help guide the
graph search procedures. The optimality of the primal-dual solution is given by Lemma
I1.4.1. We refer the reader to [76] for a proof.

Lemma II.4.1 (Complementary slackness condition). If there exist vectors u,v € R™ and

a matching X € {0,1}™ with the following properties:
1. Ws = (w(est) —us —vy) <0 for all s, t, and
2. Xst =1 only when wg = 0,
then the matching X is optimal and has a value (355, us + D 101 Vt).

Based on the complimentary slackness condition, the key idea for the primal-dual al-
gorithm is to maintain dual feasibility at all times (Condition 1 from Lemma I1.4.1), and
form a subgraph of these edges, known as the tight edges, for which Ws = 0. From a vertex,

a search for an augmenting path is made in this subgraph. If an augmenting path exists,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

then the current matching is augmented with this path and proceed to the next vertex.
If no such path can be found in the tight subgraph, the duals are adjusted such that an
augmenting path might become possible. The process repeats until the current vertex is
matched. The process of updating the duals is nontrivial and assumes the presence of a
perfect matching in the graph. Note that the required number of edges with zero weights
can be trivially added to the initial bipartite graph in order to facilitate a perfect matching.
When the number of S and T vertices differ (ng # nr), a perfect matching is either an
S-perfect or a T-perfect matching based on the cardinalities. A skeleton for computing an

S-perfect matching is described in Algorithm 5.

Algorithm 5 Input: A bipartite graph G. Output: a matching M. Effect: computes
a maximum edge-weight S-perfect matching M in G.

1: procedure MAX-WT(G = (S,T,E), w: E —» R*, M)

2 M «— ¢; > Initialization
3 Vs € S, dual[s] = maz(w(est)), for ¢t € adj(s);

4: Vvt € T, dual[t] = maz((w(es) — dual[s])), for s € adj(t);

5: for all s € S do > Compute matching
6 while (true) do > Repeat until s gets matched.
7 w(est) = (w(est) — dualls] — duallt]);

8 G = (S,T,E), where E C E such that Vey; € E, W(est) = 0;

9: Find an augmenting path P,..; in G with respect to M;
10 if P found then
11: M—M®eoP;

12: break;

13: else
14: 8 «— minimum change required to update duals; > Dijkstra-like search
15: dual[s] < dual[s] — 6;
16: dual(t] — dual[t] + ;

17: end if

18: end while

19: end for
20: end procedure

The search strategy in Algorithm MAX-WT is based on the single-source single-path
approach, and iterations are made through the § vertices. The complexity of the graph
search procedure is bounded by O(m), where m = |E| denotes the number of edges in
G. However, there is an additional task of updating the dual variables when a search for
an augmenting path fails. From a given source, shortest augmenting paths to all possible
unmatched vertices are built. The typical approach at this step is to use a Dijkstra-like
search [19] to compute the smallest change in dual variables that is required to create
a new augmenting path. This step is critical in determining the overall complexity of

the algorithm. Updating the dual variables requires manipulation of priority queues, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

therefore, the complexity of the algorithm is influenced by the choice of the priority queue
implementation. The complexities as determined by some of the common data structures
is summarized in Table 2.

TABLE 2
Power of data structures. For a graph G = (V,E), n = |V| represents the number of vertices, and
m = |E| the number of edges.

[Data structure | Time to update duals [

Simple vectors O(n?)
Binary heaps O(mlogn)
Fibonacci heaps | O(m + nlogn)

We will conclude the discussion on MEM algorithms with a summary of historical

development of MEM algorithms for bipartite and nonbipartite graphs as listed in Table 3.

TABLE 3
Algorithms for mazimum edge-weight matching [66]. For a graph G = (V, E) with weight function
w: E — RY, n=|V| represents the number of vertices, m = |E| the number of edges, and W is the largest
absolute value of an integer weight. For graph types, B represents bipartite, and G the nonbipartite graphs.

Year | Authors Graph Type | Complexity

1957 | Berge (theoretical) - -

1955 | Kuhn, Munkres B O(n?)

1960 | Iri B O(n*m)

1965 | Edmonds G o(n?)

1969 | Dinits and Kronrod B om3)

1973 | Gabow G O(n®)

1976 | Lawler G O(n®)

1982 | Galil, Micali and Gabow G O(nmlogn)

1983 | Ball and Derigs G O(nmlogn)

1988 | Gabow and Tarjan B O(y/nmlog{(nW))

1989 | Gabow, Galil, and Spencer G O(n(mloglog 10g, 00 m 9y 7 + nlog n))
1990 | Gabow G O(n(m +nlogn))

1991 | Gabow and Tarjan B O(mlog(nW)+/na(n, m)logn)
1992 | Orlin and Ahuja B O(y/nmlog(nW))

2001 | Kao, Lam, Sung, and Ting B O(y/nmW log,,(n?/m))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

II.5 APPROXIMATION ALGORITHMS

Approximation algorithms are generally developed for intractable problems [35]. Given
that the matching algorithms are polynomial, approximation techniques for matchings
were initially developed for greedy initialization in exact algorithms [25]. However, recent
developments in approximation algorithms for matching have been motivated by scientific
computing applications (24, 64]. For some applications matchings need to be computed on
very large graphs, while for other applications, matchings need be computed a large number
of times, although for small or medium sized graphs. The optimality of the matching is
not critical for many of these applications, and therefore, motivate the development of fast
approximation algorithms. Yet another motivation for the development of approximation
algorithms for matchings is the simplicity in parallel implementations. In this section
we will discuss some of the recent developments in approximation theory for matching

algorithms as summarized in Table 4.

TABLE 4
Algorithms for approzimate weighted matching. For a graph G = (V, E), n = |V| represents the number
of vertices, m = | E| the number of edges in G, and ¢ — R is a positive real number.

| Year | Author(s) | Strategy | Approx | Complexity |
1983 | Avis Global maximum 7 O(mlogn)
1999 | Preis Local maximum 3 O(m)
2003 | Drake and Hougardy | Path-growing (PG) 2 O(m)
2003 | Drake and Hougardy | PG with short augmentations | % — € O(m?)
2004 | Pettie and Sanders Randomized, Deterministic £—€ O(mlog %)

Avis proposed a simple heuristic algorithm for computing approximate matching [4].
The algorithm is as follows. Given a graph G = (V, E) with weight function w : E — R¥,
consider the edges in decreasing order of weights. Pick a heaviest unmatched edge and add
it to the matching M (initially empty). From G, remove all the edges that are incident
on the endpoints of the current matched edge. Repeat the process until all the edges have
been processed. This is illustrated in Algorithm 6.

It is ease to see that Algorithm GLOBALHEAVY computes a maximal matching in G.
Given the fact the cardinality of a maximal matching is at least half of a maximum cardi-
nality, the weight of the matching computed by GLOBALHEAVY guarantees a %-approx to
a maximum edge-weight matching in G. Since the edges need to be considered in sorted or-
der, the time complexity for Algorithm GLOBALHEAVY is O(m logm +m), where m = |E|
is the number of edges in G. Execution of Algorithm GLOBALHEAVY on a simple graph is

illustrated in Figure 16.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

Algorithm 6 Input: A graph G. Output: a matching M. Effect: computes a %——approx
matching M in G.
1: procedure GLOBALHEAVY(G = (V,E),w: E - R*, M)
2 M — ¢;
3 repeat
4 Pick a globally heaviest edge ey, € E;
5: M — M U eyy;
6
7
8

Delete all edges incident on v and v from E;
until £ = ¢;
: end procedure

FIGURE 16. Ezecution of Algorithm GLOBALHEAVY. The weights are associated with the edges. Bold
lines represent matched edges, and matched vertices are colored black. Vertices processed at a given step
are colored purple. Dashed lines represent the edges that are removed from the graph. (a) The input graph
before execution, (b)-(c) the intermediate states of execution, and (d) the final state.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

The locally-heaviest approximation algorithm (LAM) proposed by Robert Preis guar-
antees a %-approx for both cardinality and weight, and runs in linear time [54, 64]. The
basic strategy for LAM is conceptually similar to a Tabu Search [31], in that local decisions
made greedily will result in global optimization. The general structure of the algorithm is
as follows. Given a graph G = (V, E) with weight function w : E — R™, arbitrarily pick an
unmatched edge ey, € E. Scan the edges that are incident on the vertices © and v. If an
edge eyy (0T €yy) is found such that w(eyz) > w(eyw), then proceed to the edge e,;. Repeat
this process recursively. An edge ey is said to be a locally-heaviest or locally-dominating
if it is heavier than all the edges incident on the vertices z and y. Stop the recursive search
when a locally-heaviest edge is found, and add it to the matching set. Remove all the edges
that are incident on the matched edge, and repeat the process until all the edges have
been processed. A simple overview of the process is given in Algorithm 7. It is involved to
show that the algorithm runs in linear time O(m). We refer the readers to [64] for details.

Execution of LAM on a simple graph is shown in Figure 17.

Algorithm 7 Input: A graph G. Output: a matching M. Effect: computes a %—approx
matching M in G.
1: procedure LAM(G = (V,E), w: E - R*, M)
2 M < ¢;
3 repeat
4 Pick a locally-heaviest edge e, € E;
5: M — M U eyy;
6
7
8:

Delete all edges incident on v and v from E;
until £ = ¢;
end procedure

While LAM is conceptually simple, its implementation is nontrivial. Drake and
Hougardy propose a simpler algorithm [24] based on the concept of growing a path in
a given graph. The algorithm is sketched in Algorithm 8. The path-growing algorithm
guarantees a %-approx for both cardinality and weight. The path-growing algorithm works
as follows. Given a graph G = (V, E) with weight function w : E — R*, two empty
matching sets M; and Ms, start with an arbitrary unmatched vertex u. Search for the
heaviest edge ey, € F incident on u, and add it to the matching set M;. Remove u and all
the edges incident on u from G. Now proceed to v and perform the same steps. This time
add the heaviest edge e,,, € E incident on v to the matching set My. Repeat the process
adding new edges alternatively to sets M; and Ma.

There are many schemes to select the final matching from path-growing approach.
One can maintain the temporary matchings M; and M locally or globally. In the global
approach, as illustrated in Algorithm 8, the two sets M; and Ms are compared only at

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

\\ ’/
15’\/20
U]

(d)

FIGURE 17. Ezecution of Algorithm LAM. The weights are associated with the edges. Bold lines
represent matched edges. Matched vertices are colored black, and the vertices being processed at a given
step are colored purple. The shaded edges represent dominating edges at a current step, and dashed lines
represent the edges that are removed from the graph. (a) The input graph before execution, (b)-(e) the
intermediate states of execution, and (f) the final state.

the end of the execution. The final matching is the heavier of M; and Ms. For a local
approach, M; and Ms can be compared at the beginning of each new path during the
execution, and the heavier of M7 and M> is added to the final matching at the end of each
step. Alternatively, dynamic programming can also be used to compute the final matching.
Dynamic programming will yield the best matching, and local selection will yield better
results than global selection. For a given graph, an edge will be processed only once by
Algorithm PATHGROW, thus resulting in a linear time algorithm. We refer the reader to
(24] for details.

In more recent work [74, 59], advances have been made to improve the approximation
ratio from half to (% — €). The basic technique is to iteratively improve the weight and
the cardinality by performing short-augmentations that meet a certain threshold for im-
provement. An augmenting path of certain length, usually of length three or five edges, is
called a short-augmenting path. One such simple scheme that looks for augmenting paths
of length three in a graph with an initial maximal matching M is shown in Algorithm 9.
Augmenting with short paths will not always increase the weight of the final matching.
Therefore, a greedy decision is made based on a threshold # that represents the ratio of
weight of the existing matching, and the weight of the matching after augmentation. For
example, if the value of 3 is one, then augmentation will be performed only if the weight

of the final matching at least remains the same (while the cardinality will increase). A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

Algorithm 8 Input: A graph G. Output: a matching M. Effect: computes a %—approx
matching M in G.

1: procedure PATHGROW(G = (V,E), w: E — R*, M)

2 M — ¢; My « ¢; My — ¢ > Initialization
3 1+ 1;

4 while E # ¢ do > Compute M; and My
5: My — ¢; My — ¢;

6 7 — 1

7 Arbitrarily pick a vertex u € V of degree > 1;

8 while deg(v) > 1 do > deg(v) represents the number of edges incident on a

vertex v

9: Pick the heaviest edge ey, € E incident on u;

10: M, — M; U {euv};

11: i (3—1); > Alternate between M; and Ms
12: Delete u and all edges incident on u from Gj

13: U — v;
14: end while

15: end while

16: if w(M;) > w(Ms) then > Compute M
17: M «— My,

18: else

19: M «— Moy;

20: end if
21: end procedure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

FIGURE 18. Ezecution of Algorithm PATHGROW. The weights are associated with the edges. The solid
bold-lines represent edges matched in M1, and the dashed bold-lines represent the edges matched in My. The
matched vertices are colored black, and the vertices processed at a given step are colored purple. The shaded
edges highlight the edges that are being processed for matching at a given step. (a) The input graph before
ezecution, (b)-(f) the intermediate states of execution.

%—approx matching computed with one of the algorithms discussed before, for example

GLOBALHEAVY, can be used to compute the initial maximal matching M.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

Algorithm 9 Input: A graph G, and a maximal matching M. Output: a matching M "
Effect: improve cardinality and weight of the input matching M.

1: procedure IMPROVE-MATCHING(G = (V,E), w: E - R*, M, M’)

2: M —M ;

3 repeat k times
4 for all e € M’ do
5: Find B-augmenting path P centered at e; > 3 is the threshold value
6: if P found then
7
8
9

M — M & P;
end if
end for
10: until
11: end procedure

II.6 CHAPTER SUMMARY

In this chapter, we gave a brief introduction to matching and discussed exact and ap-
proximation algorithms for matching in graphs. The scope of the exact algorithms was
restricted to bipartite graphs. Some of the recent developments in approximation tech-
niques for matchings were also discussed. One of the goals for this chapter has been to

build the necessary background for presenting our work in the following chapters.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

CHAPTER III

EXACT ALGORITHMS

“The complexity of the vertez-weighted matching problem is close to that of

the unweighted matching problem.” - Thomas Spencer and Ernst Mayr [69]

The maximum vertex-weight matching (MVM) problem is simple as well as challenging,
the complexity lies between that of the unweighted and the edge-weighted versions of the
matching problem. Unlike the maximum edge-weight matching, the maximum vertex-
weight matching problem has received little attention by researchers. After extensive
search, we could locate only a handful of publications dedicated to the vertex-weighted
matching problem. In this chapter we will provide an introduction, discuss related work
and provide three new algorithms for the exact vertex-weighted matching problem. The

approximation algorithms for vertex-weighted matching will be discussed in Chapter IV.

III.1 INTRODUCTION AND RELATED WORK

A maximum vertex-weight matching (MVM) can be defined as:

Definition III.1.1. Given a graph G = (V,E) with weight function w : V — R*, a
mazimum vertez-weight matching M in G is a matching that mazimizes the sum of weights

of the matched vertices, denoted by V(M):

Mazimize Z w(v) (3)
veV(M)

Note that an MVM problem can also be formulated as a maximum edge-weight match-
ing problem by defining the weight of an edge as the sum of the weights of its incident
vertices. However, we will show that an MVM is conceptually as well as computationally
easier than an MEM problem. We will also show that the MVM problem is conceptually
similar to the MCM problem.

The maximum vertex-weight matching problem was studied by Thomas Spencer and
Ernst Mayr [69]. A brief mention of maximum vertex-weight matching is also made by Ke-
tan Mulmuley, Umesh Vazirani and Vijay [55]. With specific application in Input Queueing
Switches, Tabatabaee, Georgiadis and Tassiulas [71] also propose an MVM algorithm. In
this chapter we will provide relevant concepts from these two papers and use them in our
subsequent work. Detailed descriptions of the new algorithms and the proof sketch of

correctness will also be provided.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

Spencer and Mayr show that the MVM problem in a nonbipartite graph can be reduced
to the MVM problem in a bipartite graph. Further, the bipartite MVM problem itself can
be simplified into two subproblems of computing the MVM in special bipartite graphs
called the restricted bipartite graphs. Spencer and Mayr also show how to transform the
MVM problem in a graph with negative weights to the MVM problem in a graph with
positive weights. Thus, computing the MVM in a restricted bipartite graph will lead to a

solution in general graphs. This relationship is illustrated in Figure 19.

Restricted
bipartite with
positive weights

Nonbipartite
with positive
weights

Nonbipartite General bipartite
with general with positive
weights

weights

Restricted
bipartite with
positive weights

FIGURE 19. Decomposition of the mazimum vertez-weight matching problem.

Given a bipartite graph G = (S, T, E) and weight functions ws : § — R* and wr :
T — R™, the two restricted bipartite graphs can be defined as: (i) G = (S, T, E) and weight
function wg : § — RT, and (ii) G = (S, T, E) and weight function wr : T — R*. In the
first restricted bipartite graph the weights on T" vertices are set to zero and in the second
the weights on S vertices are set to zero, while everything else remains the same. The fact
that the matching problem in a bipartite graph can be simplified into two subproblems of

computing matchings in the restricted bipartite graphs is given by Theorem III.1.1.

Theorem II1.1.1 (Mendelsohn-Dulmage). Given two matchings Mg and Mr in a bipartite
graph G = (S,T,E), a new matching M C Mg U Mt can be computed in linear time such
that M matches all the S vertices matched by Mg and all the T vertices matched by Mr.

Proof. Compute the symmetric difference Mg @ M, this will contain a set of cycles and
paths as enumerated in Figure 20. In each case it is possible to pick edges for M such that
it covers all the vertices of S matched by Mg and all the T vertices matched by Mp. The
edges that are matched by both Mg and My should also be added to M. All the above

operations are bounded by O(|E|). All these operations can be summarized as follows:
(a) A cycle: arbitrarily choose Mg or Mr edges,
(b) Mg-augmenting path: choose Mr edges,

(¢) Mp-augmenting path: choose Mg edges,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

(d) Mg-alternating path: choose Mg edges,
(e} Mrp-alternating path: choose Mr edges, and

(f) Mg N Mr: choose Mg or My edges.

Qm

J\

~O
{a) Cycle {b) Ms- {c) Mr- {d) Ms - (e} My -
augmenting augmenting slternating alternating

FIGURE 20. The symmetric difference of two matchings Ms @ Mr. Dashed lines represent edges in Ms
and Solid lines represent edges in Mr. (a) A cycle; (b)-(e) Augmenting or alternating paths.

An implementation of the Mendelsohn-Dulmage technique is illustrated in Algo-
rithm 10. The algorithm has three stages. In Stage 1, Lines 8-17, we will pick the relevant
Mg edges shown as Cases (c¢) and (d) in Figure 20. These edges can be detected by looking
for S vertices that are matched by Mg and unmatched by M7. In Stage 2, Lines 19-29,
we pick the relevant M7 edges shown as Cases (b) and (e) in Figure 20). These can be
detected by looking for T' vertices that are matched by My and unmatched by Mg. In
Stage 3, Lines 30-36, we will pick the edges that will be matched by both Mg and M7, as

well as the cycles.

IIT1.2 FOUNDATIONS

We will now discuss two theorems that provide necessary and sufficient conditions to prove
the optimality of an MVM. An important observation is the fact that any maximum vertex-
weight matching is also a maximum cardinality matching. This provides the necessary

condition and is stated by Theorem III.2.1.

Theorem II1.2.1. Given a graph G = (V, E) and weight function w: V — R*, a maxzi-

mum vertez-weight matching M in G is also a mazimum cardinality matching.

Proof. Let M be a maximum vertex-weight matching that is not of maximum cardinality.

Since M is not of maximum cardinality, there is at least one augmenting path P with respect

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

Algorithm 10 Input: A bipartite graph G and matchings Mg and Mp. Output: a

matching M.

Effect: using Mendelsohn-Dulmage technique, computes a matching M

that matches all the S vertices matched by Mg and all the T vertices matched by Mry.

1: procedure MENDELSOHNDULMAGE(G = (S, T, E), M, My, M)

2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:

for all s € S do
M[s] « ¢;
end for
for allt €T do
M[t] — ¢;
end for
for all s € S do
if M,[s] # ¢ and M;[s] = ¢ then
s « s
repeat
t — Mg[s'];
M[s'] —t;
M[t'] — s';
s — Mrlt');
until s = ¢ or Mg[s']| = ¢
end if
end for
for allt € T do
if M,[t] # ¢ and M;[t] = ¢ then
t—t
repeat
s «— Myp[t];
M[s] —t;
M[t] —s’;
t — Msls'];
until ¢ = ¢ or M7t = ¢
end if
end for
for all s € S do
if M[s] # ¢ and M[s] = ¢ then
t « Mgls];
Mls] < t;
Mlt] « s;
end if
end for

37: end procedure

> Initialize M

> Pick Mg edges (Cases (c) and (d))

> Pick Mz edges (Cases (b) and (e))

> Pick Mg edges (Cases (a) and (f))

Reproduced with permission of the copyright owner.

Further reproduction prohibited without permission.

41

to M. The symmetric difference M @ P will increase the cardinality of M by one edge
and matches two new vertices while retaining all the vertices that were already matched by
M. Since positive weights are associated with the vertices, the total weight of M increases
when its cardinality is increased. Therefore a maximum vertex-weight matching is also a

maximum cardinality matching. O

If a graph has a perfect matching, then all the vertices will be matched by any maximum
cardinality matching in this graph. Therefore any maximum cardinality matching will also
be a maximum vertex-weight matching for this graph. However, when a maximum cardi-
nality matching in a graph is not a perfect matching, computing a maximum vertex-weight
matching will be conceptually harder than computing a maximum cardinality matching.
Since only a subset of vertices need to be matched, we will have to explicitly consider the
weights associated with the vertices. An important concept in vertex-weighted matching
is the lexicographical ordering of vertex sets.

We will need the definition of a lexicographical order to differentiate vertices with
duplicate weights. For a graph G = (V, E) with weight function w : V — R, let each
vertex be assigned a distinct integer label between 1 and |V|. A relationship between two
vertices, and sets of vertices, can be established by using both the weights and the labels
associated with the vertices. A precedence operator < can be defined as follows: given two
vertices v1 and vy, v1 < v2 if and only if w(vy) < w(vs), or w(v1) = w(ve) and l(v1) < I(v2),
where [(v1) and I(v2), the labels of vertices v; and v are considered as integers. Conversely,
v9 succeeds v1, denoted as vy > v1.

The precedence relationship can be used to compare two matchings. Given two match-
ings M, and M, in a graph G = (V, E), let Vi = V(M;) and Vo = V(M3) denote the
set of vertices matched by M; and M, respectively. Assuming that the cardinality of the
two matchings is the same |Vi| = |V»|, we will say that Vi is lezicographically smaller than
Vs, denoted as V(M;) < V(Ms), if the first difference between the two sets, v; € V; and
v9 € Va, is such that vy < vo. Conversely, V5 succeeds Vi, denoted as Vo > Vi. Given a
set of maximum cardinality matchings in a graph {Vi, Va,... Vi }, a lezicographically largest
matching V; is a matching such that it succeeds all other matchings, V; > V; for any ¢ in
1<i<kandis#j.

We have seen that any MVM is a maximum cardinality matching. The lexicographical
order of a vertex set can be used to prove that some maximum cardinality matching is also

a maximum vertex-weight matching in a graph and is given by Theorem II1.2.2:

Theorem II1.2.2 (Mulmuley, Vazirani, Vazirani). Given a graph G = (V, E) and weight
function w : V — RY, a lexicographically largest matching of mazimum cardinality is also

a mazimum vertex-weight matching in G.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

Proof. Let M, represent a lexicographically largest matching and M, represent a maximum
vertex-weight matching. Also, let M, and M, be different, with respect to matched vertices,
from each other. From Theorem II1.2.1, M, is a maximum cardinality matching in G, and
M, is also a maximum cardinality matching by choice.

Consider the matched vertices in My and M, in decreasing order of weights. Let
v; € V be the first vertex where the two matched sets differ. The symmetric difference
My @ M, will result in an alternating path P starting at v;, matched only by My and
ending with vg € V, matched only by M,. Since v; is the first vertex in the decreasing
order that is different, it is larger than vy (w(v1) > w(vz)). The matching obtained by the
symmetric difference P & M, will have a weight larger than M,, and therefore, contradicts
the assumption that M, is a maximum vertex-weight matching.

If w(v1) = w(vz), then by performing M, «— P® M, we have brought the two matchings
M;, and M, closer to each other. Continue considering the vertices in the decreasing order
of weights until they are different. When such a vertex is found, it will contradict the
assumption. If no such vertex is found, then both M and M, will have the same weights.
Thus, w(Mr) = w(M,). O

The lexicographic order of matched vertices is an important observation that assisted
in the design of the first proposed algorithm, which sorts the vertices in decreasing order
of their weights and process them in that order. The algorithm proposed by Spencer and
Mayr [69] also uses a sorting-based approach to compute an MVM. Their divide and conguer
strategy is successful because the choice of the heaviest vertices that should be matched
can be determined independently from the choice of the lightest vertices that should be
matched. Given a graph G = (V, E) with weight function w : V' — R, there can be
at most O(logyn) divisions, where n is the number of vertices. Computing a maximum
cardinality matching at each step will dominate the run time. Since any given problem
can be reduced to computing an MVM in a bipartite graph, a maximum cardinality can be
computed in O(y/nm) time complexity [37], thus providing an overall time complexity of
O(y/nmlogn) to compute an MVM in a graph. In their algorithm Tabatabaee, Georgiadis
and Tassiulas, first compute a maximum cardinality matching and then sort the unmatched
vertices in decreasing order of weights. From each unmatched vertex processed in that
order, an attempt to increase the weight of the matching is made. A maximum cardinality
matching, as well as the subsequent computation can be bounded by O(nm). Related work

is summarized in Table 5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

| Year | Author(s) | Complexity |
1984 | Spencer and Mayr O(y/nmlogn)
1987 | Mulmuley, Vazirani and Vazirani Theoretical
2001 | Tabatabaee, Georgiadis and Tassiulas | O(nm)

TABLE 5

43

A survey of algorithms for mazimum vertez-weight matching. For a given graph G = (V, E), n = |V|

represents the number of vertices, and m = |E| the number of edges.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

II1.3 NEW ALGORITHMS FOR MAXIMUM VERTEX-WEIGHT MATCH-
ING

In this section we provide three algorithms to compute maximum vertex-weight matchings
(MVM). We will build on the work of Spencer and Mayr [69], and Mulmuley, Vazirani
and Vazirani [55] for the exact algorithms. We also propose three algorithms for %—approx
matchings and a %-approx algorithm. The approximation algorithms are discussed Chapter

4. The proposed algorithms are summarized in Table 6.

TABLE 6
A summary of algorithms proposed for vertex weighted matchings. Bipartite and general graphs are
represented with B and G respectively. For a bipartite graph G = (S, T, E), n = (|S| + |T|) represents the
number of vertices, m = |E| the number the edges, and di is a generalization of the verter degree that
denotes the average number of distinct alternating paths of length at most k edges starting at a vertex in G.

| Name [Type | Description | Complexity]
Exact Algorithms
GLOBALOPTIMAL B Sort-based O(nlogn + nm)
LoCALOPTIMAL B Search-based O(nm)
HYBRIDOPTIMAL G Sort and search-based O(nlogn + nm)
Approximation Algorithms
GLOBALHALF B %-approx; Sort-based O(nlogn +m)
LOCALHALF B 3-approx; Search-based O(m)
HyYBRIDHALF G %—approx; Sort and search-based | O(nlogn + m)
GLOBALTWOTHIRD | B %-approx; Sort-based O(nlogn + nds)

The fundamental technique to compute an MVM is to find an augmenting path and
augment the matching via symmetric difference of the augmenting path and the current
matching. The algorithms for MVM are conceptually similar to algorithms for computing a
maximum cardinality matching. The proposed algorithms use the single-source single-path
approach (discussed in Chapter 2). In a single-source single-path approach, the search for
an augmenting path starts from an unmatched vertex, and if found, augmentation can be
performed along only one such path. For the proposed algorithms we will not be able to
use the multiple-path approach proposed by Hopcroft and Karp [37], as discussed later in
this chapter.

For the bipartite graph algorithms, we propose two basic approaches - global and local.
The two approaches differ in the way the vertices are selected for processing. While GLOB-
ALOPTIMAL uses a global-order in selecting the vertices as sources for augmenting paths,
LoCALOPTIMAL selects the sources arbitrarily (but, considers all the potential augmenting
paths from this source in an order). From the perspective of computational complexity,
both the techniques have similar worst-case bounds. However, there can be significant dif-

ferences in performance. The primary motivation for developing two different approaches is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

to provide an algorithm for computing maximum vertex-weight matchings in nonbipartite
graphs. This is achieved in the hybrid approach, HYBRIDOPTIMAL, where the source-
vertices are processed in a global-order, as well as, ordering all the potential augmenting

paths like the local approach. We will now discuss the three proposed algorithms in detail.

II1.3.1 Algorithm GlobalOptimal

The first proposed algorithm, shown in Algorithm 11, is based on processing the vertices
according to a global order. We first decompose the given bipartite graph G = (5,7, E),
with weights associated with both S and T vertices, into two subgraphs, the restricted
bipartite graphs, by ignoring the weights on the T vertices and then on the § vertices.
Construction of the restricted bipartite graphs is represented in Algorithm 11 by Lines 5
and 6 for S vertices, and Lines 15 and 16 for T vertices.

For the first matching subproblem, we will compute the matching Mg by finding shortest
augmenting paths starting from unmatched S vertices, considered in decreasing order of
weights. Lines 7 — 14 represent the computation of Mg. A similar approach is used
to compute the matching M7 where weights are associated only with the T' vertices is
represented by Lines 17 — 24 in GLOBALOPTIMAL. The final matching will be obtained by
merging the two matchings Mg and M7 using Mendelsohn-Dulmage technique. Execution
of GLOBALOPTIMAL on a simple bipartite graph with weights associated with S vertices
is shown in Figure 21. For this discussion, we will only consider positive weights. We will

later show how to compute an MVM in bipartite graphs with negative weights.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

Algorithm 11 Input: a bipartite graph G. Output: a matching M. Associated Data
Structures: sets S and T are stored as stack data structures. The elements in the stack
follow a precedence order <, with the top of the stack being the heaviest element at any
given time. Effect: computes a maximum vertex-weight matching M in G

1: procedure GLOBALOPTIMAL(G = (S,T,E),ws: S — R*, wr: T - R*, M)

2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

M « ¢;
Ms — ¢;
M7 «— ¢;
S« Sin increasing order of weights wg;
T — T with weights set wr to zero;
while S # ¢ do _ > Compute Mg
s «top of S ;
S 5S\s;
Find a shortest augmenting path P starting at s;
if P found then
Mg «— Mg @ P;
end if
end while
T« T in increasing order of weights wr;
S « S with weights wg set to zero ;)
while T # ¢ do > Compute Mp
t «—top of f;
T T \ ¢
Find a shortest augmenting path P starting at ¢;
if P found then
MT — MT &) P;
end if
end while
M «MENDELSOHNDULMAGE(Mg, M1, M); > Compute M

26: end procedure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

FIGURE 21. Ezecution of Algorithm GLOBALOPTIMAL. (a) The input graph G = (S,T,E) before
ezecution, weights are associated only with the S vertices. (b)-(e) The intermediate states of ezecution.
Bold lines represent matched edges, and matched vertices are colored black. The shaded edges highlight the
shortest augmenting path from a given S verter. Vertices colored Violet represent the vertex processed at a
given step, and the end-point of an augmenting path if one exists. The arrows indicate the S vertex that is
being processed at a given step.

I11.3.2 Algorithm LocalOptimal

For the second algorithm we adopt a strategy based on search within a restricted neigh-
borhood of the graph, and is shown in Algorithm 12. The vertices are arbitrarily chosen
as sources for augmenting paths, but the paths themselves are chosen for augmentation in
an order. We again decompose the bipartite graph G = (S5, T, E), with weights associated
with both S and T vertices, into two restricted bipartite graphs (Lines 5 and 14).

In the first matching subproblem a matching Mg is computed as follows: arbitrarily
start from an unmatched S vertex s; and enumerate all possible augmenting paths P; with
respect to the current matching M;. Then choose the best augmenting path from s; to
augment the current matching. A best augmenting path is a path that maximizes the
weight of M; @ P;, in other words the path ending with the heaviest vertex. Repeat the
process until all the S vertices have been processed. Lines 6 — 13 represent the computation
of Mg. A similar procedure can be used to compute the matching Mt on the second
restricted bipartite graph. This is represented by Lines 17 — 24 in LOCALOPTIMAL. The
final matching will be obtained by merging the two matchings Mg and Mt using the
Mendelsohn-Dulmage technique. Execution of LOCALOPTIMAL on a simple bipartite graph

with weights associated with S vertices is shown in Figure 22.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

Algorithm 12 Input: a bipartite graph G. Output: a matching M. Effect: computes
a maximum vertex-weight matching M in G.

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

procedure LOCALOPTIMAL(G = (S, T, E),ws: S > R", wp : T —» R*, M)

M — ¢;
Mg « ¢;
M7 « ¢;
T « T with weights wr set to zero ;
while T # ¢ do _ > Compute Mg
t «— any element of T,
T T \ t;
Find all augmenting paths Pi.,s = {P1, P%, ..} starting at ¢;
if P.,s # ¢ then
Mg «— Mg @ Ppest; D Phest 18 the path with largest s that will be matched
end if
end while
S « S with weights wg set to zero ;
while S # ¢ do ~ > Compute My
s « any element of S;
S« S\s;
Find all augmenting paths Ps.; = {P1, P, ..} starting at s;
if Ps;..; # ¢ then
Mp «— Mp @ Ppess; D Phest is the path with largest ¢ that will be matched
end if
end while
M —MENDELSOHNDULMAGE(Mg, M7, M); > Compute M

24: end procedure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

FIGURE 22. Ezecution of Algorithm LOCALOPTIMAL. (a) The input graph G = (S, T, E) before execu-
tion, weights are associated only with the S vertices. (b)-(d) The intermediate states of execution, (e) the
final state. Bold lines represent matched edges, and matched vertices are colored black. The shaded edges
highlight all the augmenting paths that ezist from a given T vertex. The arrows indicate the T vertex that
is being processed at a given step.

111.3.3 Algorithm HybridOptimal

While GLOBALOPTIMAL and LOCALOPTIMAL computed matchings in bipartite graphs,
Algorithm 13 combines the two strategies to compute maximum vertex-weight matchings
in general graphs. The given set of vertices are sorted in an increasing order of their weights
and stored in a stack data structure, such that the top element is the current heaviest vertex.
The vertices are then retrieved from the stack one at a time. All possible augmenting paths
starting from this vertex are discovered and ordered based on the weight of the last vertex,
which is also the only unmatched vertex in the path. The current matching is augmented
with the path with the heaviest weight of the last vertex. The algorithm processes each
vertex only once and terminates when it processes every vertex in the graph. Note that
the implementation of this algorithm should be capable of processing cycles of odd length

(Blossoms).

I11.3.4 Negative Weights

Spencer and Mayr provide a method to handle negative weights. Given a graph G = (V, E)
and weight function w : V — R, for each vertex v; € V' that has a negative weight, add

a new vertex v; and an edge e(v;,v;). Also set w(v;) = 0 and w(v;) = abs(w(v;)), the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

Algorithm 13 Input: a graph G. Output: a matching M. Associated Data Struc-
tures: set V is a stack data structure. The elements in the stack follow a precedence
order <, with the top of the stack being the heaviest element at any given time. Effect:
computes a maximum vertex-weight matching M in G.

1: procedure HYBRIDOPTIMAL(G = (V, E),w : V — R™")

2 Mg

3 V « V in increasing order of weights;

4 while V # ¢ do > Compute M

5: v < top of 17;
6: V—V\u
7
8
9

Find all augmenting paths P,.., = {P1, P, ..} starting at v;
if Py, # ¢ then
: M — M @ Pyess; > Ppes: is the path with largest w that will be matched
10: ‘7 — ‘7 \ w;
11: end if
12: end while
13: end procedure

absolute value of the original weight. This will result in a new graph G'(V/7 El) and weight
function w :— (R* U {0}). An MVM M in G will also be an MVM in G. While M will
also be a maximum cardinality matching in G, the same is not necessarily true in G.

For the proposed algorithms GLOBALOPTIMAL and LOCALOPTIMAL, we can adopt a
similar technique. Given a bipartite graph G = (S, T, E) and weight functions wg : S — R,
wr : T — R, for each s; € S that has a negative weight, add a new T" vertex t; and an edge
e(si,t;). Also set ws(s;) = 0 and wr(t;) = abs(wg(s;)). Perform similar transformations
for all the T vertices with negative weights. This will result in a new graph G'(S',T,E")
with weight functions wg : S — (Rt U {0}), wr : T — (R" U {0}). The transformation is
illustrated in Figure 23. Both the algorithm GLOBALOPTIMAL and LOCALOPTIMAL will

compute an MVM in the new graph G .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

s T S T
@ +a@----@ +5
+a @K
\:: - abs(e)Q----: 0
B @
C@w 0@

"D abs(p)
(a) (b)

FIGURE 23. Transformation of graphs with negative weights. (a) The input graph G = (S, T, E) with
some negative weights associated with the vertices, (b) the new graph GI(SI,T ,EI) with zero or positive
weights. The new vertices are filled with Black color.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

III.4 PROOF OF CORRECTNESS

In this section we provide the proof of correctness for the proposed algorithms. We will first
discuss the proof for the two bipartite graph algorithms and then extend it to the algorithm
for the general graph. In Section III.2 we provided the necessary and sufficient condition to
prove the optimality of an MVM in a graph. In this section, we will provide an alternative
method to prove the correctness of the proposed algorithms. The bipartite algorithms de-
compose the given problem into two matching problems on the restricted bipartite graphs.
We will prove the correctness for an MVM computed in the first restricted bipartite graph,
which can then be trivially extended to the second subgraph. The correctness of an MVM
in the original graph can be proved subsequently using the Mendelsohn-Dulmage technique
as stated in Theorem II1.1.1. However, there is no such decomposition in the case of general
graphs.

We will adapt the definitions of the lexicographical sets for the restricted bipartite
cases. We will generally consider the first restricted bipartite case: a bipartite graph
G = (S,T, E) and weight function w : S — R™ (we would have specifically set the weights
on the T vertices to zero). In all lexicographic comparisons, we will consider only the S
vertices. Recall that Mg is a matching in this restricted bipartite graph that has weights
only on the S vertices. The S vertices matched by Mg, the S-vertex set of Mg, will be
represented as S(Mg).

The proof for the correctness for GLOBALOPTIMAL is straight-forward, however, the
proof for the correctness of Algorithm LOCALOPTIMAL is nontrivial. In order to provide a
uniform method of proof for both these algorithms, we introduce the concept of reachability

property, which can be defined as:

Definition IT1.4.1 (Reachability Property). Consider a graph G = (V, E) with weight
function w : V — R™*, and any matching M in G. The matching M satisfies the reacha-
bility property if for any M -unmatched vertez v, and any M-matched verter v’ reachable

by an M -alternating path from v, the condition that v < v holds.

As illustrated in Figure 25, the alternating path for a reachability test starts with an
unmatched vertex and ends with a matched vertex. This path is always of even length with
an equal number of matched and unmatched edges, and has only one unmatched vertex.
We use the concept of reachability to prove of correctness of all the proposed algorithms.
Existence of the reachability property is a sufficient condition for optimality, this is stated
in Theorem I11.4.1.

Theorem I11.4.1. Consider a graph G = (V, E) with weight function w : V — R™*, and a
mazximum cardinality matching M in G. If M satisfies the reachability property, then it is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

s’
EAE A

!
P,:

' @/ \I

e !
Sz

1
!
;
i P2
{

FIGURE 24. Illustration of the reachability property. Bold lines represent the matched edges and matched
vertices are colored black.

also a mazimum vertez-weight matching in G.

Proof. Let Mj represent a lexicographically largest matching of maximum cardinality in
G, and therefore, a maximum vertex-weight matching (MVM) as follows from Theorem
I11.2.2. In order to prove that M is an MVM in G, we only need to prove that w(V(M)) =
w(V(Mp)). Assume, by contradiction, that w(V(M)) < w(V(ML)).

We will make an argument similar to the one provided in the proof of Theorem III1.2.2.
Consider the matched vertices in My, and M in decreasing order of weights. Let v; € V
be the first vertex where the two matched sets differ. The symmetric difference My & M
will result in an alternating path P starting at v;, matched only by M. The alternating
path P must contain the same number of edges from (M \ M) and (M \ My), if not, we
would have an augmenting path for one of the matchings (which, we know is not true).
Hence the path P ends with some vertex v;, matched only by M. Note that the vertex v;
is matched by M, but not by My, due to it being the last vertex on the alternating path
P. Since v; is the first vertex in the decreasing order that is different, its weight is larger
than the weight of v;, w(v;) > w(v;). However, from the reachability property for M, the
weight v; cannot be smaller than the weight of v; and this contradicts the assumption that
w(V(M)) < w(V(My)).

If w(v;) = w(v;), then replace M by M @ P. This will not affect the weight of matching
M. Continue considering the vertices in the decreasing order of weights until the next
differing vertex is found. We can repeat the above argument for such a vertex. When there
are no more vertices to be considered, then both M; and M have the same weights. Thus
w(V(M)) = w(V(Mg)). -

The reachability property provides a sufficient condition to prove the optimality of

a maximum vertex-weight matching in a graph. We will now prove that the proposed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

algorithms will satisfy the reachability property, and thus compute optimal vertex-weight
matchings. These are stated in Theorems I11.4.2, I11.4.3 and II1.4.4.

Theorem I11.4.2. Consider a graph G = (S, T, E) with weight functionw : S —» R*, and
a matching MSG computed by algorithm GLOBALOPTIMAL. The matching M 5@ satisfies the

reachability property.

Proof. We will prove the theorem by using mathematical induction. We will consider
those steps when Algorithm GLOBALOPTIMAL augments the current matching, called the
augmenting steps. Let M} correspond to a matching at some intermediate step in the al-
gorithm. We will prove that the theorem holds true at each augmenting step, and therefore
at the end of the execution of GLOBALOPTIMAL.

Base case: Let s1 € S be the first matched vertex. Since GLOBALOPTIMAL considers
the S vertices for augmentation in the decreasing order of weights, s; will precede all other
S vertices from which s; is reachable through an Mg alternating path. Thus the base case
holds true. For simplicity, assume that there are no isolated vertices in G.

Step k: Assume that the reachability property holds true after the k-th augmentation.

Step (k+1): Let the (k + 1)-th augmentation be performed along the M%-augmenting
path Py, 1 from sgr1 € S to tg41 € T. In order to prove the theorem, we need to show
that for any Mg-unmatched vertex s;, and any Mg-matched vertex s; reachable through
an M}-alternating path, the condition that s; < s; holds after the (k+ 1)-th augmentation.
Note that the vertices s; and sx,q can be the same.

When the (k + 1)-th augmenting path Pyx.; and any Mé—alternating path between s;
and s; are vertex disjoint, the (k + 1)-th augmentation has no affect on the reachability
of s; from s;. However, if s; becomes reachable after the (k + 1)-th augmentation, then
the alternating path between s; and 5;, and the augmenting path P, have at least one
vertex (and one edge) in common. This is illustrated in Figure 25. Now, there are only
two alternatives: (i) the two vertices s; and sg41 are the same. In such a case, there was
at least one augmenting path from s; to tx.1, but sgy; was preferred, and the condition
8; < s; holds; or (%) the two vertices s; and s are different. In which case we know that

all the matched s € S vertices succeed sg+1, and the condition s; < s; holds. O

Theorem II1.4.3. Given a graph G = (S, T, E) with weight function w : S — R*, and
a matching M 5@ computed by algorithm LOCALOPTIMAL. The matching M 5’:“ satisfies the

reachability property.

Proof. Similar to the proof of Theorem II1.4.3, we will induct on the M é augmenting
steps. We will show that at the end of any given iteration of the algorithm, M g will satisfy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

FIGURE 25. Illustrates that reachability property holds for Algorithm GLOBALOPTIMAL. Bold lines
represent the matched edges and matched vertices are colored black. (a) State before (k+1)-th augmentation,
(b) state after (k + 1)-th augmentation.

the reachability property such that for any M g—matched vertex s € S reachable via an
M g—alternating path P originating at any M b@—unmatched vertex s€ S, s < 5.

Base case: LOCALOPTIMAL will arbitrarily start from a T vertex, say t;, and process
all S vertices adjacent to t1, S1 = adj(t1). It will then select the largest s € Sy, say s;.
After matching s; to t;, s; will be reachable via an M SL. alternating path only from the
vertices in S \ {s1}. Since s; is heaviest vertex in S, the reachability property will hold
true for the base case.

Step k: Assume that the reachability property holds true after the k-th augmentation.

Step (k+1): Given that the reachability property holds true at step &, we will prove that
it also holds true for step (k+ 1). Let the two vertices matched at step (k+ 1) be ty41 € T
and sy 1 € S. LOCALOPTIMAL will consider all the unmatched S vertices reachable via
an M é—augmenting path from £, 1, let this set be Si.1 C S. Vertex sxi1 is selected by
Algorithm LOCALOPTIMAL because it is the largest among all the vertices in the set Skyj.

Again, in order to have an impact any M. é“—matched vertex s € S reachable via an M 3"—
alternating path P, after the (k + 1)-th augmentation, originating at any M SL—unmatched
vertex s € S, should contain tj; in the path (Figure 25). The two possibilities are: ()
s & Sky1, in which case nothing changes with respect to s from the augmentation at step
(k + 1). Therefore, from the assumption at step k, s < s'; or (ii) s € Sg41 \ {sk+1}: for
these S vertices there are two possibilities - an M SL—matched vertex s reachable via an
alternating path was reachable either before the (k + 1)-th augmentation, and therefore
s < s , or becomes reachable after the (k+ 1)-th augmentation. In the latter case, we know

that LOCALOPTIMAL will select the largest vertex, and therefore, s < s;, ;. From step k,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

we also know that sgyq < s (since sg41 will also be available for matching until step & + 1
for all s* vertices reachable via sp.1). Thus, s < s, and the property holds true for step
(k+1). O

We will now prove that the reachability property holds true for a matching computed
by HYyBRIDOPTIMAL in Theorem II1.4.4.

Theorem II1.4.4. Given a graph G = (V, E) with weight function w : V — R™¥, and
a matching M computed by algorithm HYBRIDOPTIMAL. The matching M satisfies the

reachability property.

Proof. Similar to two earlier proofs, we will again induct on the M-augmenting steps.

Base case: HYBRIDOPTIMAL will start from the heaviest vertex, say v, and process all
vertices adjacent to vy, V1 = adj(v1). It will then select the largest vertex in Vi, say wy, for
matching. After matching the edge v; to wi, there are two possibilities: (7) vertex vy will
be reachable via an M-alternating path from vertices in V,, € adj(w;). But, we already
know that v; is the heaviest vertex, and therefore, reachability property holds; and (i%)
vertex wy will be reachable via an M-alternating path from vertices in V,, € adj(v;). But,
HYBRIDOPTIMAL has already processed all vertices in V,, and, w; is the heaviest vertex in
this set. Thus, the reachability property holds for the base case.

Step k: Assume that the reachability property holds true after the k-th augmentation.

Step (k+1): Let the two vertices matched at step (k+1) be vy and wi+1. HYBRIDOP-
TIMAL will start with the current heaviest vertex vgyi, and process all vertices reachable
via an M'-augmenting path from it, let this set be Py, 1 C V. Vertex wg,1 is selected by
because it is the heaviest among all the vertices in Py, ;.

Again, we are only concerned with the vertices that become reachable via vertices
Vg1 and wgy1. (Figure 25). However, we are not worried about vertex vg.; becoming
reachable to any unmatched vertex after (k + 1)-th augmentation because we know that
it is the current heaviest vertex. Therefore, we are only concerned about the vertex w1,
and other matched vertices becoming reachable through it. Let v represent the unmatched
vertices and v represent the matched vertices that are reachable via an M’ alternating
path from v.

The two possibilities are: (i) v ¢ Pgy1, in which case nothing changes with respect
to v from the augmentation at step (k + 1). Therefore, from the assumption at step
k, v < v'; or (ii) v € Prq \ {wrs1}: for these vertices there are two possibilities - a
matched vertex v’ reachable via an M'-alternating path was reachable either before the
(k + 1)-th augmentation, and therefore, v < v, or becomes reachable after the (k 4 1)-th

augmentation. In the latter case, we know that HYBRIDOPTIMAL will select the largest

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

vertex, and therefore, v < wg41. From step k, we also know that wgy; < v (since w1
will also be available for matching before step k + 1 for all v' vertices reachable via wy41).

Thus, v < v', and the property holds true for step (k +1). O

From Theorems I111.4.1, I11.4.2, 111.4.3 and II1.4.4, the optimality of GLOBALOPTIMAL,
LocALOPTIMAL and HYBRIDOPTIMAL immediately follows, and is stated in Corollary
I11.4.1.

Corollary II1.4.1. Given a graph G = (S,T,E) with weight function w : S — RT,
Algorithms GLOBALOPTIMAL and LOCALOPTIMAL will compute mazrimum vertex-weight

matchings Mg in G.

II1.5 A REACHABILITY-BASED ALGORITHM

A conceptually similar algorithm to compute maximum vertex weighted matching was
proposed by Tabatabaee, Georgiadis and Tassiulas [71]. The authors use the reachability
property not only to provide a proof of correctness, but also to design their algorithm. Our
goal of this discussion is to demonstrate the power of expressing optimality of a matching
using the existence of reachability property in the graph with respect to a matching. The

algorithm is sketched in Algorithm 14.

Algorithm 14 Input: a graph G. Output: a matching M. Effect: computes a max-
imum vertex-weight matching M in G. Associated Data Structures: set U is a stack
data structure. The elements in the stack follow a precedence order <, with the top of the
stack being the heaviest element at any given time.

1: procedure REACHABILITYBASEDALG(G = (V, E),w : V —» RY)

2: M « M,, a maximum (cardinality) matching;

3 U « V \ V(M) in decreasing order of weights;

4 while U # ¢ do

5: u <« top element of U;
6: U« U\{u};
7.
8
9

Find an alternating path P,.., starting at u, such that w < v;
if P,y # ¢ then
: M — M & Pyosy;
10: U—UuU{w}

11: end if
12: end while

13: end procedure

The first step is to compute a maximum (cardinality) matching by ignoring all the
weights on the vertices. Let U « V' \ V(M) represent the unmatched vertices in decreasing
order of weights. Consider the current heaviest vertex v € U. If there exist an alternating

path P between v and any vertex w such that w < v, then switch (M «— M @® P)the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

matched edges of this path to match vertex v instead of w. Note that since M is a maximum
matching there cannot exist any augmenting paths in G with respect to M. Add w to the
set U, and repeat. If no such path is found, then remove vertex v from U and continue
with the next heaviest vertex in U. The algorithm terminates when set U becomes empty.
Note that for every unmatched vertex the algorithm attempts to satisfy the reachability
property with respect to the current matching. The computational cost for satisfying the
reachability property for a vertex can be bounded by O(|E|) (a breadth-first search can
be used). The number of unmatched vertices can be bounded by O(|V]), and therefore,
the complexity of Algorithm 14 is O(|V||E|). It can be noted that the reachability-based
algorithm is a less sophisticated than the algorithm proposed by Spencer and Mayr [69)].
The proof of correctness can be easily shown by demonstrating that Algorithm 14
computes a matching that satisfies the reachability property, and therefore, computes a

maximum vertex-weight matching as provided by Theorem III.4.1.

II1.6 CHAPTER SUMMARY

In this chapter we introduced three new algorithms, GLOBALOPTIMAL, LOCALOPTIMAL
and HYBRIDOPTIMAL for computing maximum vertex-weight matchings. Proof of cor-
rectness for the proposed algorithms were also discussed. We developed the concept of
reachability property as a necessary condition to establish optimality of an MVM.

The proposed algorithms are easy to understand and simple to implement. However,
there are limitations to the proposed algorithms, in that we can neither perform greedy
initializations nor grow multiple paths. Although the greedy initializations do not have
a bound on the approximation ratio, for practical purposes greedy initialization is very
important. In some of our preliminary experiments on matrices from applications down-
loaded from the University of Florida Sparse Matrix Collection, greedy initializations tend
to match a substantial percentage of edges. Therefore, we consider that inability to perform
greedy initializations for vertex-weighted matching algorithms is a limitation. In Figure
26, we show why greedy initialization fails. A vertex once matched cannot be unmatched
in an augmentation-based algorithm. For example, vertex T3 gets matched in the greedy
initialization phase, but should not be matched in a maximum vertex-weight matching.
Note that this does not apply to Algorithm REACHABILITYBASEDALG.

The multiple-path approach discussed in Chapter 2 has the best time complexity for
maximum cardinality matching. However, for the proposed algorithms we will not be able
to implement the multiple-path approach. We will encounter the same problem illustrated

in Figure 26.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

]

T
@20 @ 2 (G 20
@30 >

30 020 30

310 10 O 10
(a) {b) (c)

FIGURE 26. Greedy initialization. Bold lines represent matched edges, and matched vertices are colored
black. (a) The input graph G = (S, T, E), weights are associated only with the T wvertices, (b) a greedy
initialization that picks best augmenting paths of length one, and (c) an optimal matching.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

CHAPTER IV

APPROXIMATION ALGORITHMS

“Although this may seem a paradoz, all exact science is dominated by the idea

of approzximation.” - Bertrand Russell [3]

IV.l1 INTRODUCTION

Approximation algorithms are generally developed for computationally intractable prob-
lems [35]. For some applications such as the multi-level algorithm for graph partitioning,
matchings are computed a large number of times within the algorithm [40]. For other ap-
plications such as algorithms used in the design of VLSI devices, matchings are computed
on very large-scale graphs [74]. The need for fast approximation matching algorithms arise
from both types of applications, especially when the need for speed overrides the need for
accuracy. Some of these applications are discussed in [24, 64]. We provided an introduction
to approximation algorithms for edge-weighted matching problem in Chapter II. In this
chapter we propose new algorithms that guarantee approximation ratios of % and % for
the maximum vertex-weight matching (MVM) problem. The %—approx algorithms have
linear runtimes with respect to the number of edges in the graphs and log-linear in terms
of the number of vertices. The log term arising due to sorting for the global approximation
algorithm. The %-approx algorithm is log-linear with respect to the number of vertices for
degree-bounded graphs. The proposed approximation algorithms are conceptually similar
to the exact algorithms discussed in Chapter III, and can be classified into global and local
approaches for computing the matchings. We refer the reader to Chapter III for a basic
introduction on the vertex-weighted matching problem. Table 6 has been reproduced here
for the ease of reading.

We begin the discussion with the %-approx algorithms, and proceed to the %—approx
algorithm. The general structure of the approximation algorithms is similar to the exact

algorithms discussed earlier.

IV.2 NEW %-APPROX ALGORITHMS

We propose three new algorithms for computing %—approx to the MVM problem.

The first proposed algorithm, GLOBALHALF, is based on processing the vertices in a
global order of decreasing weights. Given a bipartite graph G = (5,7, E) with weights
associated with the § and T vertices, we will decompose it into two restricted bipartite

graphs by first ignoring the weights on T vertices, and then on S vertices. The problem

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

TABLE 7
A summary of algorithms proposed for vertex weighted matchings. Bipartite and general graphs are
represented with B and G respectively. For a bipartite graph G = (S,T,E), n = (|S| + |T|) represents the
number of vertices, m = |E| the number the edges, and dy is a generalization of the vertex degree that
denotes the average number of distinct alternating paths of length at most k edges starting at a vertez in G.

Name | Type | Description | Complexity |
’ Exact Algorithms

GLOBALOPTIMAL B Sort-based O(nlogn + nm)

LoCcALOPTIMAL B Search-based O(nm)

HYBRIDOPTIMAL G Sort and search-based O(nlogn + nm)

Approximation Algorithms

GLOBALHALF B %—approx; Sort-based Ofnlogn + m)

LocALHALF B %—approx; Search-based O(m)

HYBRIDHALF G 2-approx; Sort and search-based | O(nlogn + m)

GLOBALTWOTHIRD | B £.approx; Sort-based O(nlogn + nds)

decomposition is represented in Algorithm 15 by Lines 5 and 6 for the S vertices, and by
Lines 15 and 16 for the T vertices.

Consider the first restricted bipartite graph with weights on only S vertices. Algo-
rithm 15 processes the S vertices in a succeeding order (s; > s2 > s3...). From a given
vertex s; € S, search for any unmatched vertex t; € T adjacent to s;. If such a vertex
is found, then add it to the current matching and proceed with the next unmatched §
vertex in succeeding order. Computation of Mg in Algorithm 15 is represented by Lines
7 —14. A similar approach to compute the matching Mt for the second restricted graph is
represented by Lines 17 — 24 in Algorithm 15. The final matching is obtained by merging
the two matchings Mg and My using the Mendelsohn-Dulmage technique. Execution of
Algorithm GLOBALHALF on a simple bipartite graph with weights associated only to the
S vertices is shown in Figure 27.

For the second %—approx algorithm, LOCALHALF, we adopt a strategy based on search-
ing for an unmatched edge from the unweighted vertices in arbitrary order; however, we will
need to find an edge that leads to the heaviest vertex on the weighted side. This approach
does not depend on a global order but, on a local search. The input graph is divided into
two restricted bipartite graphs by first ignoring the weights on the T vertices and then on
the S vertices. The decomposition is represented in Algorithm 16 by Lines 5 and 14.

For the first restricted bipartite graph, a matching Mg is computed as follows: arbi-
trarily start from an unmatched vertex ¢; € T, and enumerate all the unmatched edges
incident on the vertex t;. If such edges exist, then choose the best edge from this set and
augment the current matching. We define the best edge as the edge that leads to a heaviest

weighted vertex. Repeat the process until all the 7" vertices have been processed. Lines

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

Algorithm 15 Input: A bipartite graph G. Output: a matching M. Associated Data
Structures: sets S and T are stored as stack data structures. The elements in the stack
follow a precedence order <, with the top of the stack being the heaviest element at any
given time. Effect: computes a %-approx to maximum vertex-weight matching.

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

23:
24:
25:

procedure GLOBALHALF(G = (S,T,E),ws : S — R*, wp: T - R*, M)

M «— ¢; > Initialization
Ms — ¢;
Mr — ¢;
S« Sin descending order of weights wg;
T « T with weights wp set to zero ;
while S # ¢ do > Compute Mg
s «top of S ;
S—S\s;
Find an unmatched edge e;; incident on s;
if ey exists then
Mg — Mg U {est};
end if
end while
T« Tin descending order of weights wr;
S « S with weights wg set to zero ;
while T # ¢ do > Compute Mt
t «—top of T
T —T \ ¢
Find an unmatched edge e;s incident on t;
if e;s exists then
My — My U {es};
end if
end while
M «MENDELSOHNDULMAGE(Mg, Mp, M); > Compute M

26: end procedure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

Algorithm 16 Input: a bipartite graph G. Output: a matching M. Associated Data
Structures: sets S and T are stored as stack data structures. The elements in the stack
can be in any arbitrary order. Effect: computes a %—approx MVM.

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

21:
22:

23:

procedure LOCALHALF(G = (S, T, E),ws : S - R*, wr: T — R*, M)

M «— ¢; > Initialization
Mg — ¢;
My — ¢;
T — T with weights wr set to zero ;
while T # ¢ do > Compute Mg
¢t «—top of j:;
T — T\t
Find all unmatched edges e incident on ¢;
if unmatched edges erist then
Mrp — My U {epest }; D> ehest 1S €15 With largest w(s)
end if
end while
S « S with weights wg set to zero ;
while S # ¢ do > Compute Mt
s «top of S ;
S« S\s;
Find all unmatched edges e incident on s;
if unmatched edges exist then

Mg — Mg U {epest }; > epest 1S €5t With the largest w(t)
end if
end while
M «—Mendelsohn-Dulmage(Mg, M, M); > Compute M

24: end procedure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

Ao »
. @5,@ 2 @
(d)

(e)

FIGURE 27. Ezecution of Algorithm GLOBALHALF. (a) The input graph G = (S, T, E) with weights
associated only with the S vertices, (b)-(e) the intermediate states of execution. Bold lines represent matched
edges, and matched vertices are colored black. The shaded edges mark the augmenting paths of length one
(an unmatched edge) from a given S vertez, (f) the final state.

6 — 13 in Algorithm 16 represent the computation of Mg. A similar procedure can be used
to compute the matching Mr for the second restricted bipartite graph. This is represented
by Lines 15 — 22 in Algorithm 16. The final matching will be obtained by merging the
two matchings Mg and M7 using the Mendelsohn-Dulmage technique. The execution of
Algorithm LOCALHALF on a simple bipartite graph with weights associated with S vertices
is shown in Figure 28.

The third %—approx algorithm, HYBRIDHALF, is designed to compute matchings in
general graphs where the problem cannot be decomposed into two subgraphs. We combine
the global and local strategies to form a hybrid approach, where the vertices are processed
in a global order of decreasing weight. The search for an unmatched edge incident on the
current heaviest vertex is made by processing all the adjacent edges, but picking the edge
with the heaviest vertex incident on it. Algorithm 17 sketches the hybrid approach.

A %—approx matching M is computed as follows: consider vertices in decreasing order
of weights. Enumerate all the unmatched edges incident on the current heaviest vertex
v; € V. If such edges exist, then choose the best edge from this set and augment the current
matching. We define the best edge as the edge that leads to the heaviest neighboring vertex.
Repeat the process until all the vertices have been processed.

We now discuss the correctness of the proposed %-approx algorithms.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

®

FIGURE 28. Erecution of Algorithm LOCALHALF. (a) The input graph G = (S,T,E) with weights

associated only with the S wvertices, (b)-(d) the intermediate states of execution, (e) the final state. Bold
lines represent matched edges, and matched vertices are colored black. The shaded edges mark all the
augmenting paths of length one (unmatched edges) that exist from a given T vertez.

Algorithm 17 Input: a graph G. Output: a matching M. Associated Data Struc-
tures: set V is a stack data structure. The elements in the stack follow a precedence
order <, with the top of the stack being the heaviest element at any given time. Effect:
computes a %—approx MVM.

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:

procedure HYBRIDHALF(G = (V, E),w : V — R*)

M — ¢;
Ve—Vin increasing order of weights;
while V # ¢ do > Compute M
v < top of V;
VeV \ v;
Find all unmatched edges e, incident on v;
if unmatched edges exist then
M — M U {epest }; D Epest 18 €yy With largest w(z)
V—V\uw;
end if
end while

13: end procedure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

IV.3 PROOF OF CORRECTNESS

The proofs of correctness of the %-approx algorithms are fairly straightforward. The main
idea is to establish a relationship between the matched and the unmatched vertices that
reveal the correctness of the approximation ratio. In order to establish this relationship,
we will introduce the concept of failed vertices. Consider a graph G = (5,7, F) with
weight function w : § — R*, a matching M, computed by Algorithm GLOBALOPTIMAL,
and a matching My computed by Algorithm GLOBALHALF A failed S-vertex is a vertex
that is matched in M,, but not in M. The same definition is extended to the T' vertices
for the second restricted bipartite graph, can also be extended similarly for Algorithms
LocALOPTIMAL and LocALHALF, HYBRIDOPTIMAL and HYBRIDHALF). No distinction
between S and T vertices is made for general graphs.

The intuition for the proof of correctness comes from the fact that for every failed
vertex, there will be at least one distinct vertex, at least as large as the failed vertex, that
will be matched by the %—approx algorithm. Thus, resulting in half approximation to the
optimal matching. This relationship is characterized by the restricted reachability property,

which can be defined as follows.

Definition IV.3.1 (Restricted Reachability Property). Consider a graph G = (V, E) with
weight function w : V — R, and any matching M in G. The matching M satisfies
the restricted reachability property if for any M -unmatched verter v, and any M -matched
verter v’ reachable from v by an M -alternating path of length two edges, the condition

v <v holds.

We show that if a given maximal matching satisfies the restricted reachability property,

then it is also a %~approx to the optimal matching. This is stated in Lemma IV.3.1.

Lemma IV.3.1. Consider a graph G = (V, E) with weight function w : V — R™, and a
mazimal matching My in G. If My satisfies the restricted reachability property, then My is

a %-approzimation to a mazimum vertex-weight matching in G.

Remark: The reader should note the requirement for a maximal matching in this

Lemma.

Proof. Let M, represent a maximum vertex-weight matching, and M; represent any max-
imal matching in G with the restricted reachability property. Consider the symmetric
difference M, & M,. This will result in a collection of paths and cycles. All possibilities
for bipartite graphs are enumerated in Figure 20. Note that even for general graphs, there
cannot be cycles of odd length, and therefore, Figure 20 also holds true for general graphs
(without the distinction of S and T vertex sets). The edges that are matched in both the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

algorithms will not be represented in the symmetric difference, and these edges will not
have a negative impact on the approximation ratio. The vertices in a cycle will be matched
by both the matchings, and therefore, will not affect the approximation ratio. For this
lemma, we only need to consider the paths, augmenting or alternating.

Consider the paths that start at failed vertices (matched in M,, but not in Ms). Given
that M, is a maximal matching, paths of length one in M, @ M5 cannot exist. Consider
an alternating path of length two, of form [v,w, v'], in M, ® Ms. Since, M> satisfies the
restricted reachability property, v < v'. Such an alternating path would contradict the
optimality of a maximum vertex-weight matching, and therefore, cannot exist.

Now let us consider paths of length greater than two in M. @ M2. Consider an Mo-
augmenting path of length three, of form [v;, vs, v3,v4], where v; and v4 are matched only
in M,. From the restricted reachability property in Ms, v; < v3 and vy < v2. The same
arugment will hold for all augmenting paths of length five or more. Consider an M-
alternating path of length four, of form [vq, v2, v3,v4, vs], where vy is matched only in M,
and vs is matched only in Ms. From the restricted reachability property in Ma, v1 < vs
and all other vertices are matched in Ms. Thus, for alternating paths of any even-length P;,
except the very first vertex, M matches all other vertices in P;, irrespective of the length
of P;. Let V(M) represent the vertices matched in M. From the restricted reachability
property, on the path P;, for a vertex v; at a distance two edges from wv;, the following

relation holds v; < v;. Summing over all the failed vertices (IV), we obtain:

N

> wv) <) w(). (4)

i=1 i=1

The weight of the maximum vertex-weight matching can be represented as follows.

Yoowwy= > wE)+ D, w(v). (5)

vEV (M,) v; €V (M. \M2) v; EV(M.NM3)

The set V(M, \ Ms) represents the set of failed vertices. Therefore, we can rewrite the first

term on the right-hand-side of Equation 5 with respect to the failed vertices as

N
o w) =) we)+ D wly) (6)
=1

veV(M.) v EV(M.NM2)

Substituting from Equation 4 we get

N
Soow@) <> w)+ Y wy). (7)
=1

veV(M.) v;EV(MaNMy)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

Each of two sets on the right-hand-side of the equation above are subsets of the matched

vertices in My, and thus we have

Yoow@w) < Y ww)+ D w(wy). (8)

veEV (M) v;EV(Ma2) v; €V (Mz2)

Rewriting the equation above, we have

Yo w25 D w(o). (9)

vEV(Ma) veV(My)

B =

0

With the result from Lemma IV.3.1, we only need to show that a given %—approx algo-
rithm satisfies the restricted reachability property. We will use mathematical induction and
show that Algorithms GLOBALHALF, LOCALHALF and HYBRIDHALF satisfy the restricted
reachability property. This is stated in Theorems IV.3.1, IV.3.2 and IV.3.3 respectively.

Theorem IV.3.1. Consider a graph G = (S, T, E) with weight function w : S — R*. A
mazimal matching My in G computed by Algorithm GLOBALHALF satisfies the restricted

reachability property.

Proof. A necessary condition for the theorem is that the matching M, be a maximal match-
ing. We will first prove that GLOBALHALF will compute a maximal matching. Consider
step k during the execution of GLOBALHALF when vertex s € S is processed. If at step k
no augmenting path of length one, starting at sy exists, then it means that all the adjacent
vertices t; € adj(sg) have already been matched before step k. In order to create a new
augmenting path of length one from si at a future step, one of the adjacent T" vertices must
be unmatched. However, we also know that a vertex (ad edge) once matched will always
remain matched during the course of this algorithm. Thus, if none exist at a given step, no
new augmenting path of length one can become available at a future step. GLOBALHALF
searches all the S vertices for augmenting paths of length one. Thus, GLOBALHALF will
compute a mazimal matching in G.

Let Mrf represent a matching computed by GLOBALHALF at the end of step k. We
will induct on the steps when M, matches a new S vertex, and show that the theorem
holds true at each augmenting step, and therefore, at the end of execution of Algorithm
GLOBALHALF.

Base case: Let s; € S be the first matched vertex. Since Algorithm GLOBALHALF will
consider the S vertices for augmentation in decreasing order of weights, s; will succeed all
other S vertices from which s; is reachable through an Mj-alternating path. Thus, the

base case holds true.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

Step k: Assume that the restricted reachability property holds true after the k-th
augmentation.

Step (k+1): Let GLOBALHALF process vertex sig1 € S at step (k+ 1), and let sg1 be
matched to t; 1 € T. Consider an Mé““-unmatched vertex s € S, and an Mé““—matched
vertex s € S reachable via an Mé““—a.lternating path of length two edges from s. The
two possibilities are: (i) s was reachable from s before the (k + 1)-th augmentation, in
which case, s < s from step k, or (#i) s becomes reachable from s after the (k + 1)-th
augmentation, which means that s and s,,; represent the same vertex. Also, s is one
of the unmatched S vertices adjacent to txy1. However, we know that sgpi1 succeeds all

the unmatched S vertices adjacent to tx11. By the structure of GLOBALHALF, s < sg41.
Thus, the theorem holds true.]

Theorem 1V.3.2. Consider a graph G = (S,T, E) with weight function w : S — R*T.
A mazimal matching My in G computed by Algorithm LOCALHALF satisfies the restricted

reachability property.

Proof. This proof is similar to the proof of restricted reachability property for GLOBAL-
HALF as discussed in Theorem IV.3.1.

A necessary condition for the theorem is that the matching My is a maximal matching.
We will first prove that LOCALHALF will compute a maximal matching. Consider step
k during the execution of LOCALHALF when vertex t; € T is processed. If at step & no
augmenting path of length one starting at vertex t; exists, then all the adjacent vertices
s; € adj(ty) have already been matched before this step. In order to create a new aug-
menting path of length one from ¢; at a future step, one of the adjacent S vertices must
be unmatched. However, we also know that a vertex (and edge) once matched will always
remain matched during the course of this algorithm. Thus, no new augmenting path of
length one can become available at a future step, if none exists at a given step. LOCAL-
HALF searches all the T vertices for augmenting paths of length one. Thus, LOCALHALF
will compute a mazimal matching in G.

Let Mzk represent a matching computed by LOCALHALF at the end of step k. We will
induct on the steps when Ms matches a new S vertex, and show that the theorem holds true
at each augmenting step, and therefore, at the end of execution of Algorithm LOCALHALF.

Base case: Let the first edge matched by LOCALHALF be (t1,s1) € E. We know that
LocALHALF will consider all the s; € S adjacent to ¢, before matching it to s;. Therefore,
the restricted reachability property holds true for the base case.

Step k: Assume that the restricted reachability property holds true after the k-th

augmentation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

Step (k+1): Let (tk+1,Sk+1) € E be the edge matched by Algorithm LOCALHALF
at step (k + 1). Consider an Mé““-unmatched vertex s € 5, and an M§+1—matched
vertex s € S reachable via an Mé“'l-alternating path of length two edges from s. The
two possibilities are: (i) s was reachable from s before the (k + 1)-th augmentation, in
which case, s < s from step k, or (ii) s becomes reachable from s after the (k + 1)-th
augmentation, which means that both s and Sg+1 represent the same vertex. Also, s will
have to be one of the unmatched S vertices adjacent to txy1. Since LOCALHALF processes
all the unmatched S vertices adjacent to tx.; we have s < sg+1. Thus, the theorem

holds. 0O

Theorem IV.3.3. Consider a graph G = (V, E) with weight function w : V — R™. A
mazimal matching My in G computed by Algorithm HYBRIDHALF satisfies the restricted

reachability property.

Proof. This proof is similar to the proofs of restricted reachability property for the bipartite
graphs.

Again, a necessary condition for the theorem is that the matching M, is a maximal
matching. From the earlier proofs that argue that no new augmenting paths of length one
can become available at a future step, if none exists at a given step, it can be easily shown
that HYBRIDHALF will compute a maximal matching.

Let Mé“ represent a matching computed by HYBRIDHALF at the end of step k. Again,
we will induct on the steps when M matches a new vertex and show that the theorem
holds true at each augmenting step, and therefore, at the end of execution.

Base case: Let the first edge matched by HYBRIDHALF be (v,w;) € F, while pro-
cessing vertex v1. For the restricted reachability property to hold, we need to show that
all the vi-adjacent vertices (reachable to w;), and all the wi-adjacent vertices (reachable
to v1) will satisfy the required property. We already know that vy is the heaviest vertex,
and HYBRIDHALF will consider all the w; € V adjacent to v;, before matching it to w;.
Therefore, the restricted reachability property holds true for the base case.

Step k: Assume that the restricted reachability property holds true after the k-th
augmentation.

Step (k+1): Let (vky1, wky1) € E be the edge matched by HYBRIDHALF at step (k+1),
while processing vertex vgyi.

Consider an M§+1-unmatched vertex v, and an Mé”l—matched vertex v reachable via
an M§+1—alternating path of length two edges from v. The two possibilities are: (7) v
was reachable from v before the (k + 1)-th augmentation, in which case, v < v from the

assumption at induction-step k, or (i) v becomes reachable from v after the (k + 1)-th

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

augmentation. This means that both v’ can either be Uk+1 OF Wi41. Therefore, we only
need to consider the vertices adjacent to vertices vg41 Or wg1.

We know that vgy; is the heaviest vertex among all the unmatched vertices at this
stage, and therefore, all the unmatched wy,1-adjacent vertices will be lighter that it. We
also know that HYBRIDHALF considered all the unmatched w; € V' adjacent to vg.1, and

wy1 was the heaviest of all. Thus, the theorem holds. O

For the bipartite graphs where the final matching M is computed by merging the
matchings Mg and Mt using the Mendelschn-Dulmage technique (Theorem III.1.1). It is
not guaranteed that M be mazimal. However, the matching Mg is already %—approx with
respect to the S vertices and this approximation ratio also holds for S-vertices matched in
M. It can similarly be extended to the T vertices.

From Lemma IV.3.1, and Theorems IV.3.1, IV.3.2 and IV.3.3, the optimality of Al-
gorithms GLOBALHALF and LOCALHALF immediately follows, and is stated in Corollary
IvV.3.1.

Corollary IV.3.1. Given a graph G = (V, E) with weight functionw : V — R, Algorithm
HyBRIDHALF will compute %-approx to a mazimum vertex-weight matching in G. Given
a bipartite graph G = (S, T, E) with weight function w : S,T — R™, Algorithms GLOBAL-
HALF and LOCALHALF will compute %—approz to a mazimum vertex-weight matching in
G.

The time complexities for the %—approx algorithms are stated in Theorems IV.3.4 and
IvV.3.5.

Theorem IV.3.4. Given a graph G = (S, T, E) with weight functions ws : S — R and
wr: T — RT, let n = (|S| + |T|) represent the number of vertices and m = |E| represent
the number of edges. A %——appro:c matching My in G can be computed in O(nlogn + m)
time by Algorithm GLOBALHALF and in O(m) time by Algorithm LOCALHALF.

Proof. Algorithm GLOBALHALF processes the vertices in a global order. The given set of
vertices can be sorted in decreasing order of vertex weights in time O(nlogn). From each
set of vertices S and T, GLOBALHALF will consider the adjacent edges and will therefore
compute a matching Mg and M7 bounded by O(m), resulting in a total time complexity
of O(nlogn + m). The two matchings, Ms and Mt can be merged using the Mendelsohn-
Dulmage technique in linear time, O(m). Since Algorithm LOCALHALF does not need to

process the vertices in a global order, it is bounded by O(m). O

Theorem IV.3.5. Given a graph G = (V,E) with weight functions w : V — R™T let

n = (|V|) represent the number of vertices and m = |E| represent the number of edges.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

A %-appmz matching My in G can be computed in O(nlogn + m) time by Algorithm

HyYBRIDHALF.

Proof. HYBRIDHALF processes the vertices in a global order. The given set of vertices
can be sorted in decreasing order of vertex weights in time O(nlogn). For each vertex,
HyBRIDHALF will process all the adjacent edges and will therefore incur a cost of by
O(m) = > ,cy 6(v), where §(v) is the degree of vertex v. Thus, the total complexity is
O(nlogn + m). O

We will now proceed to the %—approx algorithms.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

IVv.4a GLOBAL %—APPROX ALGORITHM

The first proposed algorithm for %-approx GLOBALTWOTHIRD is similar to the half-
approximation Algorithm GLOBALHALF. The main idea is to process the vertices ac-
cording to a global order of weights associated with the vertices. For Algorithm GLOB-
ALTWOTHIRD, we first decompose the given bipartite graph G = (S,T, E), with weights
associated with both S and T vertices, into two restricted bipartite graphs by first ignoring
the weights on T' vertices and then on S vertices. This process is represented in Algorithm

18 by Lines 5 and 6 for the S vertices, and by Lines 15 and 16 for the 7" vertices.

Algorithm 18 Input: A bipartite graph G. Output: a matching M. Associated Data
Structures: sets S and T are stored as stack data structures. The elements in the stack
follow a precedence order <, with the top of the stack being the heaviest element at any
given time. Effect: computes a %—approx to a maximum vertex-weight matching.

procedure GLOBALTWOTHIRD(G = (5,7, E),ws: S » Rt wpr: T - R, M)

1:
2 M « ¢; > Initialization
3 Mg « ¢;
4 Mr «— ¢
5: S « S in descending order of weights wg;
6 T « T with weights wr set to zero ;
7 while S # ¢ do > Compute Mg
8 s «top of S ;
9: S —S\s;
10: Find a shortest augmenting path P of length < 3 starting at s;
11: if P found then
12: Mg «— Mg @ P;
13: end if
14: end while
15: T—Tin descending order of weights wr;
16: S « S with weights wg set to zero ;
17: while T # ¢ (Elvo > Compute Mp
18: t «—top of T
19: T — T\t
20: Find a shortest augmenting path P of length < 3 starting at ¢;
21: if P found then
22: Mr «— M7 & P,
23: end if
24: end while
25: M «—MENDELSOHNDULMAGE(Mg, M7, M); > Compute M

26: end procedure

Consider the first restricted bipartite graph G = (S, T, E) with weight function w : S —
R*. A %—approx matching Mg is computed by considering the S vertices in succeeding

order. From a given S vertex s;, find a shortest augmenting path P of length < 3. If

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

such an augmenting path is found, then augment the current matching with the symmetric
difference Mg@® P and continue with the next S vertex in succeeding order. Computation of
Mg is represented by Lines 7 — 14. A similar approach to compute the matching My, when
weights are associated only with the T vertices, is the second subproblem and is represented
by Lines 17 — 24 in GLOBALTWOTHIRD. The final matching will be obtained by merging
the two matchings Mg and M7 using the Mendelsohn-Dulmage technique. Execution of
Algorithm GLOBALTWOTHIRD on a simple bipartite graph with weights associated with

the S vertices is shown in Figure 29.

-2 @5(;)’

FIGURE 29. Ezecution of Algorithm GLOBALTWOTHIRD. (a) The input graph G = (S, T, E) before the
ezecution, weights are associated only with S vertices, (b)-(e) the intermediate states of execution. Bold lines
represent matched edges, and matched vertices are colored black. The shaded edges highlight the shortest
augmenting path from a given S vertez, and (f) the final state.

IV.4.1 Proof of Correctness

While the proof of correctness for the %—approx algorithms is straightforward, the proof of
correctness for the %-approx algorithms is nontrivial. The concept of reachability that was
used to build the proofs for exact and %-approx algorithms will not be sufficient for the cur-
rent task. We will now show why the previous arguments fail for the %—approx algorithms.
Consider the symmetric difference of the matchings computed by Algorithms GLOBALOP-
TIMAL and GLOBALTWOTHIRD, M, ® M3. The result will be a set a distinct paths and
cycles. Note that the paths will always start and end with vertices that are matched only

by one of the algorithms, however, all the intermediate vertices will be matched by both.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

Let us consider those paths that start with an .S vertex matched only by Algorithm GLOB-
ALOPTIMAL; we call such vertices as the failed vertices, since the approximation algorithm
failed to match them. While it can be shown that the failed vertex is lighter than the
Ms-matched S vertex at a distance of two edges from it, such a relationship between the
failed vertex and the Msz-matched S vertex at a distance of four edges from it cannot be

established. This failure is illustrated with a simple example in Figure 30.

S T S T S T
O---® o0

A A

3 o\)0

X X
O\ @ N\

3y W
- o
(a) (b) M. (c) M,

S T S T S
(d) M-® M,

FIGURE 30. Symmetric difference. (a) Input graph, weights are associated only with the S wvertices
such that sy > s2 > s3 > s4; (b) an optimal matching M. computed by Algorithm GLOBALOPTIMAL. Bold
lines represent matched edges. At step one, edge e(s1,t3) is matched; at step two, edge e(s2,t2) is matched;
at step three, the matching is augmented via path [ss,t2, 2,3, 51,t1]; no path exists at step four; (c) a %-
approzx matching Ms computed by Algorithm GLOBALTWOTHIRD, Wavy lines represent matched edges; At
step one, edge e(s1,t3) is matched; at step two, edge e(s2,t2) is matched; at step three, no augmenting path
of length three exists; at step four, the matching is augmented via path [ss,ts, s1,t1]; and (d) the symmetric
difference M. @ M3. The bold lines denote edges matched in M., and wavy lines denote edges matched in
Ms;.

Albeit this shortfall, the intuition for the proof is still to show that for each failed
vertex there are at least two vertices, as heavy as the failed vertex, that will be matched
by Algorithm GLOBALTWOTHIRD. This association will immediately result in the %-
approximation. Figure 31 captures this association.

With this intuition, we will now build the proof. We will discuss the proof for the
first restricted bipartite graph where the weights are associated only with the S vertices.
The same proof can be trivially extended to the second restricted bipartite graph with
weights associated with the T vertices. Consider the concurrent execution of Algorithms
GLOBALOPTIMAL and GLOBALTWOTHIRD on the restricted bipartite graph G = (S, T, E)
with weight function w : § — R*. Both the algorithms will consider the S vertices
in succeeding order of weights. While Algorithm GLOBALOPTIMAL searches for a shortest
augmenting path without any restrictions on the length of the path, the search in Algorithm
GLOBALTWOTHIRD is restricted to augmenting paths of at most three edges. However, at

any step k, both the algorithms will consider the same vertex sx € S for matching.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

(OY - @ mmmm o)
S1 S1a S$1b
O--+-1 -@------ ®
S2 S2a S2b
O-o--{--@------ ®

KSn/ \Sna Snbj

FIGURE 31. Intuition for proof of %-appm:c algorithm GLOBALTWOTHIRD. For each failed S vertez,
Algorithm GLOBALTWOTHIRD will match two S vertices that are at least as heavy as the failed vertez. Note
that the association of maiched vertices with failed vertices is dynamic. The figure is representative of a
state at a particular step of execution.

A failed vertex is a vertex that is matched in the optimal matching, but not in the
approximation matching. For the current discussion, we will consider only the failed S
vertices, since the weights are associated only with them. The time step of execution is
an important parameter for the proof. Therefore, to accommodate the time step, we will
introduce a new notation. The failed vertex at step k is represented as s** € S. The
other failed vertices in S at this step are represented as s**, for 1 < i < k. Our objective
is to associate two unique Ms-matched S vertices with each failed vertex s®. We will use
subscripts to represent such vertices, sé’k and si’k. The rationale to use two indices (i, k)
to represent the past and current steps is due to the fact that the association of vertices
could change during the execution. Let M¥ and M:f represent the matchings at step & as
computed by Algorithms GLOBALOPTIMAL and GLOBALTWOTHIRD.

We will now proceed further. First, we will show that we need to process a vertex only

once. This is stated in Lemma IV.4.1.

Lemma IV.4.1. Consider the execution of Algorithm GLOBALTWOTHIRD on a restricted
bipartite graph G = (S, T, E) with weight function w : S — RY. If at any step k, there
exists no augmenting path of length < 3 starting at a vertex s* € S, then there will be no

augmenting path of length < 3 from s* at a later stage of execution.

Proof. Consider the execution of Algorithm GLOBALTWOTHIRD at the beginning of step
k, let the S vertex currently being processed be s*. We will denote the T vertices at a
distance of one edge from s* as til’k, and those at a distance of three edges from s* as t;k
Since we are considering a bipartite graph, the S vertices will be at an even distance from
each other. Let the S vertices at a distance of two edges from s* be denoted as sé’k, and

that at a distance of four edges be si’k.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

Let us first consider the augmenting paths of length one edge. If there exists no aug-
menting path of length one from vertex s®, then all the adjacent T vertices, tt1 , have
already been matched. In order for a new augmenting path of length one to become avail-
able from s* at a later stage of execution, one of these T vertices should get unmatched.
However, we know that during the execution of Algorithm GLOBALTWOTHIRD, once a
vertex is matched it will always remain matched. Therefore, the lemma holds true for
augmenting paths of length one.

Now we consider paths from the vertex s*. Since there is no augmenting path of length
three from the vertex s*, these paths can be of two different kinds The ﬁrst kind of path
has the form [s*, t1 ,32 ,t3 ,34 -], where ti’ is matched to 32 , and t is matched to
s4* and so on. The second kind of path has the form [s*, 5% s7¥, 12%], where the first two
vertices are the same as the first two vertices from the path of the first kind, and the last
two vertices, s} * and t * are unmatched. These two kinds of paths are illustrated in Figure
32 as P; and P» respectively.

An augmenting path of length three beginning at s* can exist at a later step because
either (i) tfgk becomes unmatched, or (ii) s5* becomes matched to t2*. The first case cannot
occur since a vertex once matched is always matched in a matching algorithm based on
augmentations. In the second case, sé’k becomes matched in a previous augmentation step
(but after the k-th step) involving the augmenting path [32 ,tl , S ;k,té k] where the last

vertex is an unmatched vertex. But such an augmentmg path would imply an augmenting
i,k L0k

path at the k-th step from s* consisting of [s tl ,89 ,tg . This contradiction completes
the proof. O
P,
———————————— ..—‘_.—:’
Sty 82 & Sq
7 H_--
/ 7 \ -
7 /s N
s C-0
SN T)
T i >

FIGURE 32. New augmenting paths. Bold lines represent the matched edges and matched vertices are
colored black. The two kinds of paths in Lemma IV.4.1 are shown as P, and Ps.

We will now argue for the correctness of the claimed approximation ratio of % Consider
the concurrent execution of Algorithms GLOBALOPTIMAL and GLOBALTWOTHIRD on the
first restricted bipartite graph with weights on the S vertices. We will consider the steps
when a vertex s € S gets matched by Algorithm GLOBALOPTIMAL, but not by Algo-
rithm GLOBALTWOTHIRD. We define these vertices as the failed vertices. An important

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

relationship between the failed and the matched vertices is stated in Lemma IV .4.2.

Lemma IV.4.2. Consider the restricted bipartite graph G = (S, T, E) with weight function
w: S — R*. Let MF represent the matching computed by Algorithm GLOBALOPTIMAL at
the end of step k, and let Mg“ represent the matching computed by Algorithm GLOBALT-
WOTHIRD at the end of step k. (i) For each failed vertex that exists at the end of step k,
s9% 1 < i <k, there are two distinct vertices si® and si’k that are matched in ME¥. (ii) At

the end of step k, the following relation holds: s** < ss'k and sF* < sf’k.

Proof. We consider the proof of (i). Consider the symmetric difference M* @ M¥. Each
failed vertex s“* is matched in the first, but not in the second of these matchings, and hence
begins an alternating path in the symmetric difference. This alternating path cannot have
length two, of the form s, ¢%% sb* If this is true, then only one of the vertices s** and
sf{k can be matched to ti’k. If sk < sf;k, then the optimal algorithm made a wrong choice,
and therefore, contradicts. If otherwise, then the approximate algorithm made a wrong
choice and contradicts again.

If the alternating path is of length three, then it is an M:f—augmenting path of length
three and the approximation algorithm would have matched along this path. Therefore,
the alternating path must be of length at least four. If the alternating path has even length
(greater than or equal to four), then it ends with a terminal S-vertex that is matched in
MZE but not in M¥. Hence this terminal vertex cannot be another failed S-vertex. If the
alternating path is of odd length, then it terminates with a T-vertex. From these two cases,
we conclude that every failed vertex begins a vertex-disjoint alternating path of length four
i,k, ti,k ik]

ik ik
or more, and has the form [s%% 77, 55", 5", 5,7, - --

Part (7i) follows from three observations:

1. Both the exact and approximation matching algorithms consider S-vertices in a suc-
ceeding order for matching;
2. s®F is the last failed vertex (which happens at step k); and

3. the vertices sg‘k and sf’k have been matched in earlier steps.

O

We provided a conclusive relationship between the failed and the matched vertices in
for a given step in Lemma IV.4.2. However, in order to provide an overall approximation

ratio of %, we will induct on the failed steps. Theorem IV.4.1 provides this argument.

Theorem IV.4.1 (Counting Technique). Consider a bipartite graph G = (S, T, E) with
weight function w : S — (R)T, a matching M, computed by Algorithm GLOBALOPTIMAL,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

and a matching M3 computed by Algorithm GLOBALTWOTHIRD. For every failed vertex
s' € S, there are two distinct vertices sb and s} that are matched by M3, such that s* < s,

and st < s};.

Proof. The proof is based on induction. Consider the failed S vertices during the concurrent
execution of Algorithms GLOBALOPTIMAL and GLOBALTwWOTHIRD. We will reuse the
notation from proof of Lemma IV .4.2.

Base case: Consider the step when the first failed vertex s'! € § is encountered. We

know from Lemma IV.4.2 that at the end of this step, there are two vertices sel and s;’l,

matched in M3, such that sb! < sy and sb! < sy Let sp = sa! and s = sll)’l.
Step k: Assume true for the first & failures, 1 <: < k.
Step k+1: At the end of the step when the (k+ 1)-th failed vertex is encountered, from

Lemma IV.4.2 we know that there are at least two distinct vertices matched in Mé““ such
k+1,k+1 k+1,k+1
tha.t Sk‘+1,k}+1 < Sa,+ + a-nd Sk+1,k+1 < Sb+ .

A potential conflict arises when the Mé““-matched vertices 3§+1’k+1 and sf“’kﬂ had

already been associated with a failed vertex s*, i < k, in a previous step. They are now
being reused at step (k + 1). We will show how to address such a case.

From the inductive assumption at step k, we know that for every failed vertex s,
1 < i < k, there are two vertices si and s, such that the relations s* < s¢ and s* < s¢ hold.
Now consider two sets S; = U {sb**! s7%1} and Sy = UK {si,si}. The cardinalities
are given by |S1| > 2(j + 1) and |S2| > 2(j). This follows from Lemma IV.4.2. Thus,
|S1\ S2| > 2. Therefore, there are at least two distinct vertices in {S7 \ Sz} that can be

k+1,k+1 k+1,k+1 .
BHL gg ghtl = ghPLATL gpg ghtl ghtlhkt k1 g

as sg . Since we know that s

associated with s
the most current vertex processed, all the matched S vertices will be at least as large as

this vertex. Thus the theorem holds.]

From Theorem 1V.4.1, the approximation follows immediately, and is stated in Corollary

Iv.4.1.

Corollary IV.4.1. Given a bipartite graph G = (S, T, E),w : S — R™, algorithm GLOB-

ALTWOTHIRD computes a %-approzcimation to mazximum vertex-weight matching.

Proof. Let M, denote the optimal matching, and M3 denote the matching computed by
Algorithm GLOBALTWOTHIRD. We will consider the first restricted bipartite graph with
weights associated only to S vertices. Let S(M) denote the S vertices matched in M, and
N the number of failed vertices with respect to Ms. From Theorem IV.4.1, it immediately

follows that for every failed vertex s* GLOBALTWOTHIRD matches at least two heavier

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

vertices, s4 and si. Therefore,

I . .
w(s') < 5D wsy) +w(sh). (10)

i=1 i=1
The weight of the optimal matching M, can be represented as
Yo ows)= >0 wls)+ D w(sy). (11)
s€S(M.) $;€S(Mi\M3) s;E8(M.NM3)
We know that the set S(M, \ Ms) represents the set of failed vertices. We can rewrite the
first term of right-hand-side in Equation 11 as

N
Soows) <> wsh+ Y w(sy) (12)
=1

seES(M,) s;ES(M.NM3)

Using the results from Equation 10, we have

> w(s) <

SES(M*) =

. Zw(sfl) +w(st) + Z w(s;). (13)

S}'ES(M*PIM;;)

N | =
—

We can simplify the first term of R.H.S., in Equation 13 that results in

Soows) <o D wls)+ Y, w(sg) (14)

$€S(My) $1€S(M3) 5;€S(M.NM3)

N |

The set S(M,NMs) in the second term of R.H.S., can be simply replaced with a set S(M3).

Therefore, we have

1
> w(s) < 3. doowls)+ Y w(sy). (15)
seS(M.) $;€S(M3) SjES(Mg)
Therefore,
3
> w(s) < 5 > w(s). (16)
s€S(M.) 5;€S(M3)

Rewriting the equation above, we have
2
> — .
S owez: Y ul)
s€S(M3) se€S(M.)
O

The time complexity for Algorithm GLOBALTWOTHIRD is stated in Theorem IV.4.2.

Theorem IV.4.2. Given a graph G = (S, T, E) with weight functions wg : S — R™ and
wr : T — RT, let n = (|S| + |T|) represent the number of vertices and m = |E| represent
the number of edges. Algorithm GLOBALTWOTHIRD computes a matching M3 in G in
O(nlogn + nds), where ds is the vertex degree that denotes the average number of distinct

alternating paths of length at most three edges starting at a vertez in G.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

Proof. Algorithm GLOBALTWOTHIRD processes the vertices in a global order. The given
set of vertices can be sorted in decreasing order of vertex weights in time O(nlogn). From
each set of vertices S and 7', GLOBALTWOTHIRD will search for shortest augmenting
paths of length at most three. In order to find augmenting paths of length one edge, we
only need to process all the edges incident on the given vertex and is therefore bounded
by O(m). An augmenting path of length three edges is of the form [s1,1, s2,t5], where
vertices t; and so are matched by an edge (¢1,s2). In order to search augmenting paths
of length up to three edges, Algorithm GLOBALTWOTHIRD will incur a cost of at most
(deg(s1)-deg(sz2)). Due to the matched edge, vertex ss can be directly reached from vertex
t;. Let us represent this search operation as ds, where d3 is the vertex degree that denotes
the average number of distinct paths of length at most three edges starting at a vertex.
Thus, the run time of Algorithm GLOBALTWOTHIRD can be bounded by O(nlogn +nds).
The two matchings, Mg and M7 can be merged using the Mendelsohn-Dulmage technique

in linear time O(m). O

We will now proceed to the describe a potential local-approach to compute a %—approx

VWM in a bipartite graph.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

IV.5 POTENTIAL LOCAL %—APPROX ALGORITHM

For the second potential algorithm for computing a %-approx matching we adopt a strat-
egy based on restricting the search to a limited length of augmenting path from a given
vertex. Therefore, we name it as LOCALTWOTHIRD!. The vertices are chosen for match-
ing based on a local order. We first decompose the given bipartite graph G = (S, T, F),
with weights associated with both S and T vertices, into two restricted bipartite graphs
by ignoring the weights on the S vertices and then on the T vertices. This is represented

in LOCALTWOTHIRD by Lines 5 and 14.

Algorithm 19 Input: a bipartite graph G. Output: a matching M. Effect: computes
a %—approx to maximum vertex-weight matching.

1: procedure LOCALTWOTHIRD(G = (S,T,E),ws: S - R, wr: T — R, M)

2: M «— ¢;

3 Ms — ¢&;

4: Mrp «— ¢;

5: S « S with weights wg set to zero ;

6 while S # ¢ do > Compute Mg
7 s «top of S;

8 S—S\s;

9: Find all augmenting paths Ps..; = (P, Ps,..) of length < 3 starting at s;

10: if P found then
11: Mg «— Mg @ Ppest; > Ppest is the path with largest ¢ that will be matched
12: end if

13: end while

14: T « T with weights wr set to zero ;

15: while T # ¢ do > Compute Mr
16: t «—top of T;

17: T — T\ ¢;

18: Find all augmenting paths P;.s = (P, Ps,..) of length < 3 starting at t;

19: if P found then
20: My — M7 @ Ppest; > Ppest is the path with largest s that will be matched
21: end if
22: end while
23: M «Mendelsohn-Dulmage(Mg, Mt, M); > Compute M

24: end procedure

In the first matching subproblem a matching Mg is computed as follows: arbitrarily
start from an unmatched S vertex s; and enumerate all alternating paths P;, of length at
most three, with respect to the current matching M;. Pick the best augmenting path from
s; and augment the current matching. A best augmenting path is a path that maximizes

M; @ P;. Repeat the process until all the S vertices have been processed. Lines 6 — 13

!The proof of correctness for Algorithm LOCALTWOTHIRD has not been completed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

represent the computation of Mg. Similarly a matching My can be computed when weights
are associated only with the S vertices. This is the second subproblem and is represented
by Lines 15 — 22 in LOCALTWOTHIRD. The final matching will be obtained by merging
the two matchings Mg and Mrp using the Mendelsohn-Dulmage technique. Execution of
LocALTWOTHIRD on a simple bipartite graph with weights associated with S vertices is

shown in Figure 33.

4
7 -
s T 8 @&/ ®
6 (D s
~ 2 -
yS @
g4
8 @,,{/ S T
PO, 8
: @ o>
@) /7
@
2 -
)

FIGURE 33. Ezxecution of Algorithm LOCALTWOTHIRD. (a) The input graph G = (S, T, E) before the
ezecution, weights are associated only with S vertices, (b)-(d) the intermediate states of exzecution, and (e)
the final state. Bold lines represent matched edges, and matched vertices are colored black. The shaded edges
highlight all the augmenting paths that exist from a given T vertez.

IV.5.1 Correctness of Algorithm LocalTwoThird

We have not been successful to prove the the correctness of LOCALTWOTHIRD. A critical
part of the proof for GLOBALTWOTHIRD was Theorem IV.4.1, where for the induction step
(k+1) we could safely state that all the matched vertices at that step were heavier than the
(k + 1)-th failed vertex. We could state such a fact because the vertices were considered in
a decreasing order of weight. However, we will not be able to state the same for a matching
computed by LOCALTWOTHIRD where vertices are processed in an arbitrary order. We

will therefore leave the proof of LOCALTWOTHIRD as an open problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

IV.6 EXPERIMENTAL RESULTS

In this section we present experimental results from our implementation of matching algo-
rithms in a toolkit called MATCHBOX. The two types of experiments done are serial and
parallel. The goals for serial experiments are to demonstrate the efficiency of approximation
algorithms in terms of execution time, cardinality and weight of matching as compared to
those of the exact algorithms. The experiments are conducted on a system equipped with
four 2.4 GHz Intel quad core processors and 32 GB RAM at Old Dominion University.

The graphs used for experiments are representations of regular sparse matrices down-
loaded from the University of Florida Sparse Matrix Collection. A matrix is stored as a
bipartite graph, where rows and columns of the matrix represent vertices, and the nonzero
elements represent edges. The absolute value of a nonzero element in the matrix is con-
sidered as the weight of the edge that connects the vertices representing the row and the
column of the nonzero element. In the following experiments, the degrees of vertices are
used as the weights of the vertices. A similar model is used to represent symmetric ma-.
trices. Since the files downloaded from the University of Florida Sparse Matrix Collection
store only the lower triangle of the matrix, we explicitly add edges to represent both the
upper and lower triangles of the matrix. The matrices used in the experiments are listed
in Table 8.

TABLE 8
Matriz Instances. Downloaded from the University of Florida Matriz Collection and listed in an in-
creasing order of the number of edges.

| Name | #S-Vertices | #T-Vertices | #Edges |
nemsemm 3,945 75,352 1,053,986
dbicl 43,200 226,317 1,081,843
pds-100 156,243 514,577 1,096,002
dbir2 18,906 45,877 1,158,159
lp-osa-60 10,280 243,246 1,408,073
lp-nug 52,260 379,350 1,567,800
karted 46,502 133,115 1,770,349
watson-2 352,013 677,224 | 1,846,391
stat96v2 29,089 957,432 | 2,852,184
stat96v3 33,841 1,113,780 3,317,736
stormG2 528,185 1,377,306 | 3,459,881
contll 1,468,599 1,961,394 5,382,999
rail2586 2,586 923,269 8,011,362
degme 185,501 659,415 8,127,528
raild284 4284 1,006,894 | 11,284,032
tp-6 142,752 1,014,301 | 11,537,419
spal-004 10,203 321,696 | 46,168,124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

The performance of global algorithms is presented in Table 9. It can be noted that
the %-approx algorithms are very fast and the %—approx algorithms are relatively fast. As
mentioned earlier, the degree of the vertices are used as weights for both the S and T vertex
sets for a given graph. The two matchings, Mg and My are computed separately and the
final matching is obtained by merging the two matchings using the Mendelsohn-Dulmage
technique.

TABLE 9
Performance of Global-based Algorithms. The numbers represent compute time in seconds.

| Name Exact %-approx %-approx
nemsemm1 0.05 0.02 0.07
dbicl 0.04 0.04 0.05
pds-100 0.82 0.12 0.29
dbir2 0.07 0.01 0.09
lp-osa-60 0.01 0.01 0.02
lp-nug30 25.48 0.03 0.26
karted 3.31 0.04 0.18
watson-2 0.62 0.26 0.66
stat96v2 0.33 0.12 04
stat96v3 0.37 0.15 0.45
stormG2-1000 1.34 0.64 1.44
contl1-1 24.52 0.83 1.5
rail2586 0.04 0.05 0.05
degme 10.17 0.27 0.92
rail4284 0.06 0.06 0.07
tp-6 6.49 0.3 1.39
spal-004 733.36 0.14 26.69

Comparision between the Global and Local-based algorithms is presented in Table 10.
For the %-approx algorithms, it can be noted that Algorithm LOCALHALF is faster than the
Algorithm GLOBALHALF in many cases, except for largest graph in the collection. However,
for %—approx algorithms, the Global-based algorithm almost always beats the Local-based
algorithm. Note that we did not prove the correctness of Algorithm LOCALTWOTHIRD,
and the data is provided here for comparision. The Local-based algorithms are forced to
enumerate all possible paths of certain length and are therefore inefficient. For the same
reason, we do not provide results for Algorithm LOCALOPTIMAL, which we believe is not
a practical algorithm.

The quality of a matching can be measured in terms of the cardinality (the number
of edges in the matching) and the weight (sum of weights of the matched edges) of the
matching. We present the cardinality of the matchings computed by the different algorithms
in Figure 34, and the weight of the matchings in Figure 35. The exact algorithm used in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

TABLE 10
Relative Performance of Global and Local-based Algorithms. The numbers represent compute time in
seconds.
| Name | GLoBaL; | LocAL; | GLOBALZ | LOCALZ |
nemsemm1 0.02 0.01 0.07 0.07
dbicl 0.04 0.01 0.05 0.16
pds-100 0.12 0.03 0.29 0.28
dbir2 0.01 0.01 0.09 0.41
Ip-0sa-60 0.01 0.01 0.02 0.1
Ip-nug30 0.03 0.02 0.26 1.32
karted 0.04 0.02 0.18 3.03
watson-2 0.26 0.03 0.66 0.69
stat96v2 0.12 0.02 0.4 0.91
stat96v3 0.15 0.03 0.45 1.08
stormG2-1000 0.64 0.06 1.44 23.1
cont11-1 0.83 0.07 1.5 1.5
rail2586 0.05 0.07 0.05 0.76
degme 0.27 0.09 0.92 7.94
rail4284 0.06 0.11 0.07 1.14
tp-6 0.3 0.12 1.39 9.81
spal-004 0.14 0.29 26.69 | 1495.95

these comparision is Algorithm GLOBALOPTIMAL. It can be noted that the approximation
algorithms compute matchings of high quality in terms of both cardinality and weight of

the matchings.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

100

o o ™~ e

=

% 995

g \

2099

2 |

-9

g 98

2 \ll

N 97.5 '

£ |

ERK

T \ I ~-GlobalHalf
96.5

% V =L ocalHalf

£ 9 i ~~GlobalTwoThird

2 -LocalTwoThird
95'5 1 i i 1. 1 H i 1 i 3 i 1 1 d. i 1 3

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17

Test Instances

FIGURE 34. Performance of Approzimation Algorithms. Ca
algorithms as a ratio of the cardinality of the exact algorithm.

rdinality of matchings of the approximation

100

99.5

Nl
o

N
o
9

o
-]

O
~
n

B I B

=]

~

Ratio of Weights

O
(=)

(W(Mapprox)/W(Mexact))*100
n

o
[=

—-GlobalHalf

-& ocalHalf
-2~GlobalTwotThird .

95.5

i $ t 1 1 L 1 L 1

~¢LocalTwoThird

| 3 3 : 1 1 J

95
1 2 3 4 5 6 7 8 9

Test Instances

FIGURE 35. Performance of Approzimation Algorithms.
algorithms as a ratio of the weight of the exact algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohib

10 11 12 13 14 15 16 17

Weight of matchings of the approzimation

ited without permission.

88

IV.7 CHAPTER SUMMARY

In this chapter we introduced three new %~appr0x algorithms and two new %-approx algo-
rithms to MVM problem. Proof of correctness for all the proposed %—approx and one of
the %-approx algorithms were also discussed. We introduced the concept of the restricted
reachability property to provide the correctness of %—approx Algorithms GLOBALHALF,
LocALHALF and HYBRIDHALF. We also introduced the concept of a counting technique
in order to provide the correctness of %—approx Algorithm GLOBALTWOTHIRD. While we
did not succeed to prove the correctness of LOCALTWOTHIRD algorithm, this approach, if
proved correct, will also provide us an algorithm to compute %—approx matchings in gen-
eral graphs. We concluded the chapter by providing experimental results highlighting the
effectiveness of the approximation algorithms, both in execution time and the quality of
the matchings.

There are a few limitations to our current approach. The proposed techniques, global
and local, fail to generalize for a (k—f_—l)—approx, for £k > 3. As illustrated in Figure 36,
an augmenting path of length five starting at a vertex s; € S could appear at a later
stage, while none existed when s; was processed the first time. Therefore with the current
approaches, we cannot guarantee an approximation ratio better than (%) However, we
cannot say anything conclusively about a %—approx ratio for the proposed algorithms, and

will study this in the follow-up work.

Sy OO—QO—. Tx

e — e —

S0 Py(5)

v
H

0
(a) Step k

$:0-0-0,0-0~-0-0-0 T«

viy

(b) Step k+1

FIGURE 36. New augmenting paths. (a) No augmenting path of length less than or equal to five exist
starting at vertex s1 in graph G at step k; (b) an augmenting path of length five is available from s, at a
step after k.

Similar to the exact algorithms discussed in Chapter III, the proposed approximation
algorithms also suffer from the same limitations: (i) absence of greedy initializations, and

(#t) inability to grow multiple paths, both for % and %—approx algorithms.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

CHAPTER V

PARALLEL APPROXIMATE ALGORITHMS

“While petascale architectures certainly will be held as magnificent feats of
engineering skill, the community anticipates an even harder challenge in
scaling up algorithms and applications for these leadership-class

supercomputing systems.” - David Bader [6]

V.1 INTRODUCTION

Parallelizing the augmentation-based algorithms for matching is nontrivial. While paral-
lelizing the exact algorithms is hard, the approximation algorithms also pose a challenge.
For example, consider a simple algorithm for computing half approximation to the maxi-
mum weighted matching problem. The algorithm proceeds by first sorting the edges based
on their weights, and then matching them in a decreasing order of these weights. The
edges are processed in a certain order, and therefore, the algorithm is serial in nature.
In this chapter we will provide a parallel %—approx algorithm for edge-weighted match-
ing, due to Hoepman [36], and Manne and Bisseling [50]. We will discuss implementation
details and experimental analysis of this algorithm. Our contributions include a detailed
description, efficient implementation for distributed memory architectures, and a thorough
experimental analysis of the algorithm.

Existing literature on distributed algorithms for matching is predominantly based on the
PRAM (Parallel Random Access Machine [44]) model. We refer the reader to a monograph
on parallel algorithms for matching for a detailed discussion on the subject [39]. Some of the
recent work has focussed on alternative models such as BSP (Bulk Synchronous Parallel
(15, 17]) and CGM (Coarse Grained Multicomputer [20]), for example, [16, 50]. These
approaches are different from the fine-grain approaches in the PRAM model [70], and are
more suited for modern architectures with a cluster of computers with fast interconnects.
Approximation algorithms have also been proposed [27, 38, 47, 68, 72]. Auction-based
algorithms for computing matchings in bipartite graphs have been parallelized [7, 12, 13,
14, 18, 61, 75]. Parallel approximate algorithms have also been proposed in the context of
application in high-speed network switches [30, 51, 56].

In the following discussions we will assume data structures for graph representations
that store vertex-adjacency sets, and that the graphs are distributed among the processors
via vertex partitioning. We will start the discussion by presenting a modified version of

Preis’s algorithm [64] that builds an intuition for the parallel algorithm. A distributed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

scheme of Preis’s algorithm was developed by Hoepman. Manne and Bisseling show that
this is a variant of Luby’s parallel algorithm for computing maximal independent sets in a
- graph [49].

We introduced Preis’s algorithm, Algorithm LAM, in Chapter II and refer the reader
to [64] for details. The algorithm computes a half-approx matching by finding locally
dominant edges and adding them to the set of matched edges. However, the search for
locally dominant edges involves traversing through the graph. Thus, this algorithm is
sequential in nature. Alternatively, the same matching can be computed by using a pointer-
based technique that was proposed by Manne [50]. The pointer-based technique works as
follows. Let each vertex set a pointer to the vertex that is the end point of a heaviest
edge incident on it. If two vertices point to each other, then the edge connecting them is a
locally dominant edge. Therefore, add this edge to the set of matched edges. Remove all
edges that are incident on the matched vertices. Reset the pointers of those vertices that
are affected by the changes and match the dominating edges. Repeat the process until all
edges have been removed.

A basic step in the pointer-based algorithm is to set a pointer for a given vertex. A
simple way of doing this is to traverse through the adjacency set S(v) of a given vertex that
contains unmatched neighboring vertices, find a heaviest neighbor and set the pointer to
point this vertex. This is described in Algorithm 20. In case of ties, the indices of vertices
are used to break ties (Line 5). The lowest numbered heaviest end-point of the edge incident
on vertex v is chosen. Note that since each vertex sets its pointer independent of other
vertices, breaking the ties in a consistent manner is an important task. In the absence
of a deterministic scheme to break ties, the algorithm may not function correctly when
cycles of equal edge-weights exit. Also, note that the running time for this procedure can
be improved by maintaining a sorted list of adjacent vertices so that the current heaviest
vertex can be determined in constant time.

Once the pointer for a vertex v, represented by candidateMate(v), has been set, the
next step is to check if the vertex being pointed to by v also points back to v. If so, we
have successfully identified a locally dominant edge, and this edge can be added to the set
of matched edges. This process is shown in Algorithm 21. Once an edge is matched, all
the edges incident on the matched vertices are removed. This is done by modifying the
adjacency sets, S(v), of vertices as shown in Line 6 of the algorithm. However, only those
vertices that are pointing to the matched vertices need to reset their pointers. Therefore,
the matched vertices are added to set Q s, a set of matched vertices, for further processing
(Line 8).

The complete pointer-based algorithm is shown in Algorithm 22. It can be observed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

Algorithm 20 Compute Candidate Mate. Input: A vertex v and its adjacency set.
Output: The end point, vertex, of the heaviest edge incident on v. Associated data
structures: A set S(v) of unmatched vertices adjacent to vertex v. Effect: Find a
candidate-mate for the given vertex v.
1: procedure COMPUTECANDIDATEMATE(v)
2: w «— 0;
maxWt «— —oc;
for 2z € S(v) do > The weight of an edge (z,y) is denoted by w(ezy)-
if (mazWt < w(e,,)) or (mazWt = w(e,,) and w < z) then
w— z;
max Wt «— w(ey,);
end if
end for
10: return w;
11: end procedure

Algorithm 21 Process Exposed Vertex. Input: A vertex v and its adjacency set. As-
sociated data structures: A set S(v) of unmatched vertices adjacent to vertex v, a set
Qnr of matched vertices, a vector candidateMate of pointers, and set M of matched edges.
Effect: Processes an exposed vertex - find candidate-mate and match if possible.
1: procedure PROCESSEXPOSEDVERTEX(v)
2: candidateMate(v) < COMPUTECANDIDATEMATE(v);
¢ « candidateMate(v);
if ¢ # 0 and candidateMate(c) = v then
M — M U{(v,0)};
S(v) < S(v) \ {c}
S(e) < S(e) \ {v};
Qm — Qum U {v,ch
9: end if
10: end procedure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

that Algorithm 22 can be divided into three distinct phases: (%) initialization, (4¢) pro-
cessing all vertices independent of current matching, and (¢i¢) processing specific ver-
tices based on the current matched edge(s). Initialization of data structures is shown
in Lines 2 through 7. The pointer for each vertex is set (Line 9) by a call to the function
PROCESSEXPOSEDVERTEX, which also tests if a dominant edge has been found that could
be matched. Processing all the exposed vertices will result in at least one edge (the heaviest
edge) being matched. All the matched vertices from this phase are added to the set Q.
Only those vertices that were pointing to the matched vertices will be processed. This is
done in the while loop over set @Qps (Line 11 through Line 21). If a vertex is pointing to
a matched vertex then the pointer for this vertex needs to be reset. This is done by a call
to the function PROCESSEXPOSEDVERTEX. The loop exits when all the matched vertices
are processed. At this stage, no other edges can be matched, and therefore, the algorithm
terminates. We will follow a similar three phase distinction to simplify the description and
analysis of the parallel approximation algorithm. We refer the reader to [50] for a proof of

correctness of the pointer-based algorithm.

Algorithm 22 Pointer-based Matching Algorithm. Input: A graph G(V, E) with weights
associated with the edges. Output: A %—approx matching M in G. Associated data
structures: A set S(v) of unmatched vertices adjacent to vertex v, a set Qas of matched
vertices, a vector candidateMate of pointers, and a set M of matched edges.

1: procedure POINTERBASEDMATCHING(G = (V, E), M)

2: forveV do

3: candidateMate(v) — 0;

4: S(w) « adj(v);

5: end for

6: M «—§;

7: QM — @;

8: for ve V do

9: PROCESSEXPOSEDVERTEX(v);

10: end for

11: while Qs 74 0 do

12: u +— pick from Qy;

13: Qm — Qum \ {u};

14: for v € S(u) do

15: S(v) < S() \ {u};

16: if candidateMate(v) = u then
17: PROCESSEXPOSEDVERTEX(v);
18: end if

19: end for

20: S(u) « 0;

21: end while

22: return M;

23: end procedure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

Execution of Algorithm 22 on a simple graph is shown in Figure 37. It can be observed
that in Step (c¢) of the figure, two edges,(1,3) and (2, 5), concurrently become eligible for
matching. This provides an intuition for the potential of parallelism in the pointer-based

approach for computing approximate matchings.

(d)

FIGURE 37. Ezecution of Algorithm 22. (a) The input graph G = (V, E) with weights associated with
the edges; (b) an intermediate step of ezecution where the pointers are set for each vertex in the graph;
(c) an intermediate step where vertices that are pointing to each other are matched. Bold lines represent
matched edges. Dashed lines represent the edges removed from the graph; (d) reset pointers for vertices 4
and 6; (e) edge (4,5) is matched; (d) the final state. Matched vertices are colored black.

V.1.1 Complexity Analysis

We will use the following notation for this analysis. Let the degree of a vertex v be denoted
by d(v), which represents the number of edges incident on a vertex v. The maximum degree
of a graph G is represented by A(G), or simply A, which is the maximum number of edges
incident on any vertex in G.

The complexity of Algorithm 22 is essentially determined by the complexity of finding
a candidate-mate described in Algorithm 20, and the number of times this function will be
called for a vertex. In a simple implementation, a linear search is performed to find the
heaviest edge incident on a vertex v, and therefore, the compute time is given by ©(d(v)).
The procedure to find a candidate-mate of a vertex v can be invoked at most the number
of edges incident on v. The total time can be obtained by the summation of work done
for each vertex, O(}, oy d(v)?). Since |E| = Y, o d(v), complexity can be expressed as
O(|E|A).

The running time of Algorithm 22 can be improved by maintaining the adjacency set

of each vertex in a decreasing order of weights. The status of a vertex, matched or not,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

can also maintained in constant time. With a sorted adjacency set, candidate-mate of a
vertex can be computed in constant time. However, building the sorted adjacency set for
a vertex v will cost O(d(v)logd(v)). The total time can be obtained by the summation of

work done for each vertex, O(3_, oy d(v)logd(v)), which can be expressed as
O(|E|log A). (17)

Note that if a vertex v is matched, only those vertices that are at a distance two from v
and pointing to it need to reset their pointers. Therefore, a tighter bound can be expressed
by O(|V|dz2), where di(G) is a generalization of the vertex degree that denotes the average
number of distinct paths of length at most & edges starting at a vertex in graph G. For
example, consider the graph in Figure 38. It can be observed that there are eight distinct
paths from vertex 9, for example, paths {(9,1)}, {(9,1),(1,5)}, etc. Therefore, d2(9) = 8.
It can also be observed that for the internal vertices (1,2,3,4), do(v) = 5; and for external
vertices (5,6,7,8), do(v) = 2. Thus, do(G) = (8 + 20+ 8)/9 = 4.

FIGURE 38. Complezity analysis. A sample graph G with weights associated with the edges such that
(w(er) > wlez) > --- > w(es)).

When the edge-weights are distributed uniformly randomly, the probability for any edge
being removed from the adjacency set of a vertex is uniform. With this assumption, Manne
and Bisseling show that the expected time can be bounded by O(|E|). We refer the reader
to [50] for details.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

V.2 DISTRIBUTED ALGORITHM OF HOEPMAN

The intuition for parallelism using pointers was provided in the previous section. In this
section we will discuss how this scheme can be implemented in a distributed manner.
Hoepman [36] provides a distributed algorithm that assigns one vertex per processor. A
processor is capable of computing as well as communicating with other processors, and has
independent memory that is not accessible by other other processors. Hoepman'’s algorithm
provides the necessary understanding for the parallel algorithm that we have implemented
where each processor is assigned a set of vertices for processing.

Hoepman’s algorithm is described in Algorithm 23. The algorithm starts by assigning
each processor a unique vertex and its adjacency set. In order to simplify, we will assign
the same index to both the processor and the vertex. Thus, from the adjacency set, each
processor will also know the identities of its neighboring processors. Each processor will
maintain a set S that is initialized with the adjacency set of the vertex it owns. Every time
a processor receives a message from its neighbors, it removes the identity of that neighbor
from set S. Similarly, each processor also maintains a set Qg to store the requests received
from its neighbors. We will reuse Algorithm 20, introduced in Section 1, to compute the
candidate-mate of a vertex.

The algorithm loops until set S becomes empty (Lines 9 through 28). There are two
possibilities for this to happen: (7) either a processor receives a message from all its neigh-
bors, or (i¢) it finds a mate. We will use two types of messages - REQUEST and UNAVAILABLE.
A REQUEST message is sent when a processor wants to match with one of its neighboring
processors. When a REQUEST message is matched with a corresponding REQUEST message,
it means that a locally dominant edge has been identified (similar to two vertices pointing
to each other). This will result in an edge being matched. An UNAVAILABLE message is
sent when a processor successfully matches its vertex and is not interested in the matching
process anymore (Lines 23 through 25). Execution of Algorithm 23 on a simple graph with

three vertices is shown in Figure 39.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

Algorithm 23 Distributed Algorithm of Hoepman. Input: A graph G(V, E) with weights
associated with the edges. Output: A %—approx matching M. Data distribution:
Processor P; owns vertex v; and stores edges incident on v;, adj(v;). Associated data
structures: A set S of processor identities that share an edge with P;, a set Q) g of requests
received on P;, a scalar ¢ that identifies the mate.

1: procedure DISTRIBUTEDMATCHINGALGORITHM(G = (V, E), M)

2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

loop on each processor P;,i € I = {1,...,|V|} > One vertex per processor.
S — adj(vi);
Qr < 0;
¢ +— COMPUTECANDIDATEMATE(v;);
if ¢ # null then

send REQUEST to c;

end if
while S # 0 do

receive message from u € S;
if message = REQUEST then

Qr «— QrU {u};
else if message = UNAVAILABLE then
S — S\ {u}; > Processor P, has found a mate elsewhere
if ¢ = u then
¢ «— COoMPUTECANDIDATEMATE(v;); > Reset the pointer.

if ¢ # 0 then
send REQUEST to ¢;
end if
end if
end if
if ¢ # null and ¢ € Qp then
for all w € S\ {c} do
send UNAVAILABLE to w;
end for
S — 0
end if

end while

return c;
end loop
Compute M based on the c values received from all processors;
return M;

33: end procedure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

o

FIGURE 39. Ezecution of Hoepman’s Algorithm. (a) The input graph G = (V, E) with weights associated
with the edges, vertices {1,2,3} are assigned to processors {P1, P2, P3} respectively; (b) an intermediate
step of execution when REQUEST messages are sent by each processor to their neighbors of choice; (¢) an
intermediate step when edge (2,3) is matched. (d) A possible intermediate step when processors P, and P;
send UNAVAILABLE messages to Py in that order, (d’) an alternative situation when Py gets an UNAVAILABLE
message from Ps, and sends a REQUEST to P>. Fventually, P, will also receive an UNAVAILABLE message
from Py. (e) The final state. Matched vertices are colored black.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

V.2.1 Complexity Analysis

The number of messages a processor P; sends is ©(d(v;)), where d(v;) is the degree of a
vertex v; that P; owns. Let us define one time step as the time it takes for a processor
to compute a candidate-mate and send a REQUEST message to the processor that owns the
candidate-mate. If each processor can independently perform this task, then the compu-
tational time of Hoepman’s algorithm will be determined by the number of time steps it
takes before every vertex either has a candidate-mate of its choice or has processed all the
edges incident on the vertex it owns.

Similar to Algorithm 22 the complexity of finding a candidate-mate, as described in
Algorithm 20, is given by ©(|S(v)|) using a linear search for the heaviest edge, where S(v)
represents the set of unmatched vertices adjacent to vertex v. This can be bounded by
O(A), where A is the maximum degree of any vertex in the graph.

In each step a processor either sends a REQUEST message to a particular processor or
UNAVAILABLE messages to one or more processors. The number of messages sent by any
given processor is the number of edges incident on the vertex it owns, ©(|S(v)|). This can
again be bounded by O(A).

Algorithm 23 has (2|E|) messages communicated before completion. Manne and Bis-
seling [50] show that Hoepman’s algorithm can complete in O(log |E|) rounds when the
weights of edges are random. Thus, the expected time for Hoepman’s algorithm with |V|

processors can be expressed as

O(Alog |E)). (18)

We will now present a parallel %—approx algorithm where each processor gets a set of
vertices and the associated edges. The main idea is to combine Algorithms 22 and 23 to

develop an efficient algorithm for the given problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

V.3 PARALLEL %—APPROX ALGORITHM

We now present a parallel %-approx algorithm for computing matchings in graphs. The
main idea is to adapt the serial pointer-based algorithm into a distributed algorithm by
using communication techniques from Hoepman’s algorithm to match edges whose end-
points are not owned by the same processor. We call these edges as cross-edges or cut-edges,
and edgecut represents the number of cross-edges.

Note that the data structures for graph representation store vertex adjacencies and the
graph is distributed via vertex partitioning. Given a graph G(V, E) and p processors, the
vertex set V is partitioned into p subsets Vi,..., V. Processor P; owns the vertex subset
V;. In addition to the vertices that the processor owns, it also stores some of the vertices
that are owned by other processors. We will represent the subgraph on processor P; as
G,(V;,E;). The vertex set V, = V; UV, where the set V,© represents the vertices in G;
that are not owned by P; - the ghost vertices. The edge set E; = FE; U Ef , where E;
represents the edges between two vertices in V; (the internal edges), and Ef represents
the edges with one end-point in V; and the other in V¢ (the cross-edges). This is shown
in Figure 40. The ghost vertices are colored purple and the cross-edges are shown with
dashed lines. Note that a processor P; will not store edges connecting two vertices in ViG.
Processor P; will also store the identities of processors that own the ghost vertices. It can
be observed that storing the ghost vertices will have implications on the memory usage and
is suitable for sparse graphs that have partitions with a small number of edges cut.

We now present a framework for computing approximate weighted-matching in paral-
lel. The framework is sketched in Algorithm 24. This framework can be easily extended to
compute approximation matchings with different objectives such as maximizing the cardi-
nality or vertex-weight of a matching. The parallel algorithm has three distinct phases - ()
initialization, (i) independent computation, and (4:2) shared computation. The algorithm
follows the SPMD (Single Program Multiple Data) model targeted for implementation
using MPI standards for distributed memory architectures.

The given graph is partitioned and distributed among p processors as described earlier.
The associated data structures used in the algorithm are as follows. A set Q¢, initialized
with ghost vertices ViG, represents the set of ghost vertices that still need to be processed
in some manner. A set (Qps, which is initially empty, stores the matched vertices as the
algorithm proceeds. A vector counter, initialized with the number of edges in EZ' incident
on each ghost vertex, represents the number of messages that need to be sent (and received)
with respect to a ghost vertex. A vector candidateMate stores the desired mate (pointer)
for each vertex in Vi,. The sets S;(v) and Sg(v), initialized with the adjacency sets for local

and ghost vertices respectively, represent the unmatched adjacent vertices of vertex v in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

Py

O P

M5 /7 25
N\ /I
¥ (2
/7 N\
2 20

SO

(c)

FIGURE 40. Data distribution among processors. (a) The input graph G = (V, E) with weights associated
with the edges; (b) The vertex set V is partitioned among two processors Py and Py. Processor P owns
vertices {0,3,4} and Processor P, owns vertices {1,2,6}. (c) Data storage on the processors. Along with
internal edges, each processor will also store the endpoints of the edges that get cut (cross-edges). These
vertices are called the ghost vertices and are colored purple in the figure.

Vi/. All these data structures are initialized in the initialization phase represented by Lines
4 through 15 in Algorithm 24.

In Phase-1, each processor attempts to match as many edges as possible without having
to depend on information from the neighboring processors. Therefore, we call this phase
independent computation. The computation in Phase-1 is similar to the serial pointer-
based algorithm. The two main tasks in Phase-1 are to process all the (unmatched or
exposed) vertices once, and process the vertices that get matched in the first task. Calls to
functions PROCESSEXPOSEDVERTEXPARALLEL and PROCESSMATCHEDVERTICESPARAL-
LEL are made to complete these tasks. We will describe these functions soon. The calls to
these two functions will initiate some communication among processors. There are three
types of messages - REQUEST, UNAVAILABLE and FAILURE, descriptions of which will soon
follow. All the REQUEST and UNAVAILABLE messages originating in this phase can be queued
(bundled or aggregated), and sent at the end of this phase. There cannot be any FAILURE
messages originating in this phase.

In Phase 2, computation can only proceed based on the information received from the
neighboring processors, and therefore, the name - shared computation. The basic tasks in
this phase can be grouped as communication-based and computation-based. The compu-

tation begins when a message from a neighboring processor is received. Communication

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

Algorithm 24 Framework for parallel approximate matching. Input: A graph G(V, E)
with weights associated with the edges. Output: A %-approx matching M. Data distri-
bution: Given p processors, vertex set V' is partitioned into p subsets V1, ..., V,. Processor
P; owns V;; stores a set of ghost vertices V.C and the edges incident on these two vertex
subsets. Associated data structures: Set Q)¢ represents the ghost vertices that need to
be processed in some manner, a set Qs of matched vertices, a vector counter represents
the number of messages that need to be sent with respect to each ghost vertex, a vector
candidateMate represents the desired mate for each vertex, sets S;(v) and Sy(v) represent
the unmatched local and global vertices adjacent to v resp., and a set of matched edges

M;.
1: procedure PARALLELMATCHINGFRAMEWORK(G = (V, E), M)
2: loop on each processor Pj,i € I = {1, ..., p}
3: *** INITIALIZATION ***
4: for v € V; UV,® do
5: candidate Mate(v) « 0;
6: end for
7: Qo +— ViG; > Set of ghost vertices.
8: M; — @;
9: for v € V; do
10: Si(v) «— adj(v) NV; > Set of adjacent local vertices.
11: Sy(v) « adj(v) NVE; > Set of adjacent ghost vertices.
12: end for
13: for v € V¢ do
14: counter(v) « |adj(v) NV;|; > Local degree of a ghost vertex
15: end for
16: *** Phase 1: INDEPENDENT COMPUTATION ***
17: Qum — 6
18: for v € V; do
19: PROCESSEXPOSEDVERTEXPARALLEL(v);
20: end for
21: PROCESSMATCHED VERTICESPARALLEL();
22: *** Phase 2: SHARED COMPUTATION ***
23: while Q¢ # 0 do
24: PROCESSMESSAGE();
25: PROCESSMATCHED VERTICESPARALLEL();
26: end while
27: return M;;
28: end loop
29: Compute M based on M; from all processors;

30: return M;
31: end procedure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

is handled in function PROCESSMESSAGE, which is called within a while loop (Line 24).
Appropriate action, based on the type of message, is taken within this function. If the
message results in edges being matched, then a call to function PROCESSMATCHEDVER-
TICESPARALLEL is made (Line 25). Detailed descriptions of these two functions will soon
follow. The tasks are looped until the set Q¢ becomes empty. As will be described soon,
a ghost vertex g is removed from Q¢ only when its counter(g) becomes zero. This implies
that all computations related to this vertex are complete. Matchings on each processor,
M;, can be gathered on the master process, or consumed locally, depending on the needs
of the applications. We will now present the details of different functions that are used in
Algorithm 24.

All the communication involved in the algorithm is handled by three types of messages
- REQUEST, UNAVAILABLE and FAILURE. Messages are asynchronous point-to-point messages
sent by one processor to another. Each message contains identities of two vertices that
represent a cross-edge. The meaning of a message is determined by the type of the message,
as follows. A REQUEST message conveys a positive intent of matching a cross-edge sent by
the owner-processor of one endpoint to the owner-processor of the other endpoint. An
UNAVAILABLE message sent by a processor means that the local vertex identified in the
message has already been matched, and therefore, a request to match this vertex by a
neighboring processor cannot be satisfied. A FAILURE message sent by a processor means
that the local vertex identified in the message could not be matched and that its owner-
processor has finished all computation related to this vertex. Note the minor difference
between the UNAVAILABLE and FAILURE types - the local vertex identified in the message is
matched in the former and unmatched in the latter; although, both types imply a negative
response to match a cross-edge as identified in the message.

We mentioned that computation in Phase-1 is similar to the serial pointer-based algo-
rithm. We will now present the modified versions of the algorithms that we discussed for
the serial pointer-based algorithm in Section 1. Algorithm COMPUTECANDIDATEMATE(v)
will remain the same except for a small modification on Line 4 to reflect the local and
ghost vertex sets on a processor. This is shown in Algorithm 25. Again, ties from duplicate
weights are resolved based on the vertex indices.

The other function used in the serial algorithm is Algorithm PROCESSEXPOSEDVER-
TEX. A similar function for the parallel algorithm is described in Algorithm 26. Since the
parallel algorithm needs the capability to process cross-edges, it should also be capable of
communicating with its neighbors. Algorithm 26 shows the processing of an unmatched
vertex. The first step in processing an unmatched vertex is to find the candidate-mate. If

the candidate-mate is a ghost vertex, then a REQUEST message is sent to the owner of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

Algorithm 25 Compute candidate-mate in parallel. Input: A vertex v and its adjacency
set. Output: The candidate-mate for a given vertex v. Associated data structures:
Sets S;(v) and Sg(v) represent the unmatched local and global vertices adjacent to v resp.

1: procedure COMPUTECANDIDATEMATEPARALLEL(v)

2: w «— 0

3 maz Wt «— —oo;

4: for z € {S;(v) U Sy(v)} do > Weight of an edge (z,y) is denoted by w(egy).
5: if (mazWt < w(e,;)) or (mazWt = w(e,,) and w < z) then

6: w — z;

7: max Wt — w(eyy);

8: end if

9: end for

10: return w;

11: end procedure

ghost vertex. If the candidate-mate also points back to the exposed vertex, then a locally
dominating edge has been discovered and can be matched. Note that the candidate Mate(g)
of a ghost vertex will be set based on the REQUEST message from its owner. Once an edge
is matched (Line 9), the endpoints are added to the set Qs for further processing (Line
16). If an exposed vertex cannot be matched, FAILURE messages are sent to all the owner
processors of cross-edges incident on this vertex (Lines 19 to 21). The adjacency sets S
and S, also need to modified. There are also additional computations that are done by a
call to the function PROCESSCROSSEDGE (Line 14) that will be described next.

We observe that there is a shortcoming in Hoepman’s algorithm described in Algo-
rithm 23. A processor P; will ignore all messages that it receives as soon as it successfully
finds a mate and sends UNAVAILABLE messages to its remaining active neighbors. Once the
UNAVAILABLE messages are received by these neighbors they will not send any message to
P;,. However, there can be a situation when a processor P, sends a REQUEST message to
F; before it receives an UNAVAILABLE message, but after P; has found a mate. This case
is illustrated in Figure 39 in step (d’). Thus, the REQUEST message from P;, will be lost,
or not acknowledged, by Processor P; (Processor P; in Figure 39). The message passing
interface MPI standard stipulates that every send be matched with a corresponding re-
ceive. Therefore, techniques that prevent message losses in the algorithm will facilitate
implementation, especially using the MPI standards for distributed memory systems. We
address this unacknowledged-message problem by providing two data structures to keep
track of messages - (¢) a set Q¢ of ghost vertices that need to be processed in some manner,
and (i) a vector counter that stores a number for each ghost vertex. The value for a ghost

vertex in counter is initialized with the number of cross-edges incident on it (the local

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

Algorithm 26 Process an exposed vertex in parallel. Input: A vertex v and its adjacency
set. Associated data structures: A set (Jys of matched vertices, a vector candidate M ate
represents the desired mate for each vertex, set 5;(v) represents the unmatched local vertices
adjacent to v, and a set of matched edges M;. Effect: Processes an exposed vertex - find
candidate-mate, match if possible, update message counters and send messages if needed.
1: procedure PROCESSEXPOSEDVERTEXPARALLEL(v)
2: candidateMate(v) «— COMPUTECANDIDATEMATEPARALLEL(v);

3: ¢ « candidateMate(v);

4: if ¢ # 0 then

5: if ce ViG then > ¢ is a ghost vertex.
6: send REQUEST(v, c¢);

7 end if

8: if candidateMate(c) = v then > Both vertices point to each other.
9: M; — M; U {(’U, C)};

10: if c € V; then

11: Si(v) « Si(v) \ {c};

12: Si(e) « Si(e) \ {v};

13: else

14: PROCESSCROSSEDGE(v, ¢); > ¢ is a ghost vertex.
15: end if

16: Qum — Qum U{y, c};

17: end if

18: else

19: for w € adj(v) NVE do > w is a ghost vertex.
20: send FAILURE(v, w);

21: end for

22: end if
23: end procedure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

degree). The counting of messages can now be done by keeping track of each cross-edge
and modifying the counters each time a communication happens. When all the cross-edges
incident on a given ghost vertex g are processed in some manner its counter(g) becomes

zero, it can then be removed from the set Q. This is shown in Algorithm 27.

Algorithm 27 Process a cross-edge. Input: Two vertices that represent a cross-edge.
Associated data structures: Set QQ¢ represents the ghost vertices that need to be
processed in some manner, a vector counter represents the number of messages that need
to be sent with respect to each ghost vertex, and sets Sy(v) represents the unmatched ghost
vertices adjacent to v. Effect: Modifies the adjacency set of a ghost vertex, decrements
its counter and modifies the set Q¢ if needed.

1: procedure PROCESSCROSSEDGE(!, g) > g is ghost, and [is a local vertex.
Sg(l) — Sg() \ {g};
3 counter(g) «— counter(g) — 1;
4 if counter(g) = 0 then
5: Qc — Qc \ {9}; > All computation for vertex g is complete.
6
7:

e

end if
end procedure

The call to function PROCESSEXPOSEDVERTEXPARALLEL will result in some edges (at
least the heaviest edge) getting matched. The vertices that point to matched vertices
should reset their pointers to point to other potential mates. This is done in function
PROCESSMATCHED VERTICESPARALLEL, described by Algorithm 28. This is similar to
the processing in Algorithm 22 done in Lines 11 through 21. Again, the function loops
through the matched vertices in set QQps. If the vertex being processed is a ghost vertex,
then it can simply be ignored (Lines 5 through 7). Adding ghost vertices to @as can be
avoided, but is shown here for simplicity. Note that only those vertices that were pointing
to the matched vertices need to be processed, since these vertices must find new candidate-
mates (Lines 8 through 13). Ghost vertices that are pointing to the matched vertices (via
REQUEST messages) will be set to null (Line 17) and an UNAVAILABLE message is sent to
the owners of these ghost vertices (Line 19). Accordingly, those owners will have to find
new candidate-mates.

Computation in Phase-2 can start only when a message is received. This is done
by calling function PROCESSMESSAGE until the set Q)¢ becomes empty. Function PRO-
CESSMESSAGE is described in Algorithm 29. Since there are only three types of messages
exchanged between processors, the actions that need to performed upon receiving messages
can be organized based on the type of messages received.

When a REQUEST(g,l) message is received on Processor P;, it means that
candidateMate(g) for the ghost vertex g can be set to the local vertex I. If the

candidateMate(l) equals g, then a locally dominant edge has been found and can be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

Algorithm 28 Process matched vertices in parallel. Input:

A set of matched vertices.

Associated data structures: A set QQps of matched vertices, a vector candidateM ate
represents the desired mate for each vertex, set S;(v) represents the unmatched local vertices
adjacent to v, and a set of matched edges M;. Effect: Resets the pointers of the vertices
pointing to matched vertices. Modifies the adjacency sets, and sends messages if needed.

1: procedure PROCESSMATCHEDVERTICESPARALLEL
2: while Qu # 0 do

3: u «— pick from Qpy;

4: Qm — Qum \ {u};

5: ifue ViG then > Ignore ghost vertices.

6: continue;

7 end if

8: for v € Sl() do > Unmatched local vertices.

9: Si(v) « Si(v) \ {u};

10: if candidateMate(v) = u then

11: PROCESSEXPOSEDVERTEXPARALLEL(v);

12: end if

13: end for

14: () — (0

15: for v € (adj(u) \ V(M;)) N VE do > Ghost vertices pointing to v; V(M;)
represents matched vertlces.

16: if candidateMate(v) = u then

17: candidateMate(v) — 0; > Reset the pointer to null.

18: end if

19: send UNAVAILABLE(u, v); > v is a ghost vertex.

20: end for

21: end while

22: end procedure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

matched (Line 9). If matched, the adjacency sets and counters are modified (Line 10),
and the matched vertices are added to the set Qps.

An UNAVAILABLE(g,!) message conveys that the owner of the ghost vertex does not in-
tend to match this cross-edge. Thus, a new candidate-mate for [, if not already matched, has
to be found (Line 19). If the local vertex has already been matched, then an UNAVAILABLE
message would have already been sent (Algorithm 28, Line 19), and therefore, no further
action needs to be taken and the function terminates (Line 16).

A FAILURE(g,!) message means that all computation related to this cross-edge is com-
plete (the ghost vertex could not be matched). The counters are modified accordingly (Line
22). Note that a FAILURE message can be received only in response to an UNAVAILABLE
message, and never as a response to a REQUEST message. Thus, nothing has to be done
with respect to setting pointers for the local vertex [.

In Algorithm 29, messages are processed one at a time. However, messages can be
aggregated for better performance. If a bundled message is received, we can simply loop
through the bundle, processing one message at a time.

In the given scheme, there are limited possibilities of message exchanges for a cross-
edge. These are illustrated in Figure 41. Note that a REQUEST message will never be
responded to with a FAILURE message (a request means that there is at least one eligible
edge for matching). Also, a processor will send a FAILURE message only when it has received

UNAVAILABLE messages from all its neighbors.

Time! R——pp R———pp U ——pp
I R ——————»
: <t—U «<—U <+—F (or)
: «+—R U —»» F—vov <—
i
v Po Py Pg Py Ps Py Py Py
(2 {b) (c) (d)

FIGURE 41. Possible communication patterns. Message types are denoted by R for REQUEST, U
for UNAVAILABLE, and F for FAILURE. (a) When two requests match, it results in a matched edge. An
UNAVAILABLE message from P, to Py can be responded by an UNAVAILABLE message (b), or a FAILURE mes-
sage (c) from Py to Py. (d) An UNAVAILABLE message from Py can either be responded with an UNAVAILABLE
or a FAILURE message by P;.

This completes the description of all the functions that are used in the parallel approx-

imation algorithm. Execution of Algorithm 24 on a simple graph is shown in Figure 42.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

Algorithm 29 Process a message.

Input: A message that contains identities of two

vertices. Associated data structures: A set Qs of matched vertices, a vector
candidate M ate represents the desired mate for each vertex, and a set of matched edges
M;. Effect: Processes a message and act accordingly.

1: procedure PROCESSMESSAGE

2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

3
4
5
6:
7
8
9

receive message; > ¢ is a ghost, and [is a local vertex.
if message = REQUEST(g, [) then > CASE 1.
if | € V(M;) then > V(M;) is a set of matched vertices on P;.
return;
end if

candidateMate(g) « I;
if candidateMate(l) = g then
M; — M; U {(lv g)};
ProcEssCrOSSEDGE(, g);
Qu — Qu U{L, g};
end if
else if message = UNAVAILABLE(g,) then
PROCESSCROSSEDGE(!, g);
if I € V(M;) then
return;
end if
if candidateMate(l) = g then
PROCESSEXPOSEDVERTEXPARALLEL(!);
end if
else if message = FAILURE(g, /) then
PRrROCESSCROSSEDGE(!, g);
end if

24: end procedure

> Add an edge to the matching.

> CASE 2.

> CASE 3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

(a)

(b}

()

(d)

FIGURE 42. Ezecution of parallel approzimation algorithm. (a) The input graph G = (V, E) with weights
associated with the edges, vertices {0, 3,4} are assigned to processor { Py}, and vertices {1,2,6} are assigned
to processor {P1}. (b) an intermediate step of ezecution when local computations are done. REQUEST(4,1)
message is sent from Py to Py; (c) Processor Py matches edge (0,3) and sends messages: UNAVAILABLE(O, 6)
and REQUEST(4,6) to P,. Processor P1 matches edge (1,2) and sends messages: UNAVAILABLE(1,4) and
REQUEST(6,4) to Py. (d) Processor Py matches edge (4,6) and sends message UNAVAILABLE(4,1) to Pp.
Processor Py matches edge (6,4) and sends message UNAVAILABLE(6,0) to Py.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

V.3.1 Complexity Analysis

Given a graph G(V, E) with weight function w : E — R™, and p processors, let n = |V
and m = |E| be the number of vertices and edges respectively. Recall that G is distributed
on p processors as follows. The vertex set V is partitioned into p subsets Vi,...,V}, and
Processor P; owns the vertex subset V;. Let m = | Ecut| represent the total edgecut, and
m},i represent the number of cross-edges incident on the vertices owned by Processor P;.
Let A represent the maximum degree of any vertex in G, and d(v) represent the degree of
a vertex v.

We make the following assumptions in this analysis:

e The adjacency list of a vertex is maintained in a sorted order (we note that this does

not increase the complexity of the algorithm);

e The weights of the edges are distributed uniformly randomly. Therefore, the expected

number of rounds for completion is O(log m) [49, 50]; and

e The input graph has good separators resulting in well balanced partitions. Let a
represent the load imbalance in the (interior) edges incident on the vertices owned by
the same processor (ratio of the maximum number of interior-edges to the average
number of interior-edges over all processors), 3 represent a similar imbalance factor
in the edges incident on the boundary vertices, and « represent the imbalance factor

in the cut-edges. The imbalance factors are illustrated in Figure 43.

FIGURE 43. lllustration of different imbalance factors on Processor P;.

The compute time for Phase-1 on Processor P; is given by O(3_ ¢y, d(v)logd(v)),
where the log factor comes from sorting the adjacency sets. This can be relaxed to
O((log A) 3¢y, d(v)). This can be generalized to any processor as

amlog A
T)- (19)

The total communication cost, including that at the end of Phase-1 and during Phase-2,

o(

. / . -
on Processor P is at most (3|mp, |). This can be generalized to any processor as

0(%» (20)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

111

The computation in Phase-2 is communication dependent. A cross-edge can only be
matched after receiving a matching intent from the owner-processor of the other end-point
of the cross-edge. Once a cross-edge is matched, or removed as a potential for matching, it
can have a ripple effect on the interior edges or other cross-edges. However, the assumption
of random edge-weights is critical in limiting the ripple effect and analyzing the expected
complexity for Phase-2.

The computation in Phase-2 on Processor P; is given by O(ZUGV(m’Pi) d(v) log d(v)),
where V(m'PZ_) represents the vertices in the set of cross-edges on P;. The log factor arises
from sorting the adjacency sets of vertices. The imbalances in the number of cross-edges
(7), as well as, imbalances in the internal edges incident on the boundary vertices (3) will
affect the generalization of the computation cost in Phase-2. Thus, the computational

complexity for Phase-2 for any processor is given by

vBm’ log A

o=

). (21)

Thus, the total complexity for parallel %-approx algorithm is given by

amlog A L ym' 4 yBm’ logA).

O(
p P p

(22)

The complexity analysis provides us an insight for expected speedup on a parallel
architecture. Recall that the complexity for the serial algorithm is O(mlog A). Under the
stated assumptions of random edge-weights and good separators, the speedup obtained can

be expressed as:

b (23)

4

F(a, af(7s), G(1))
Where G is a function on the communication cost depending the underlying architecture
and F is an overall function depending the graph structure, imbalance factors and the
architecture of the parallel system. While the load balance factors (a, 8,7) are important,
also important is the edgecut, which directly influences the amount of communication
that needs to be performed. On modern architectures such as compute clusters with fast
processors and relatively slow communication, edgecut is the most influential factor in
determining performance. We also make an important assumption about the random
distribution of edge-weights that directly influences the number of rounds of execution
O(logm) instead of O(m). We will now present experimental results on the parallel %-

approx algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

V.4 EXPERIMENTAL RESULTS

In this section we present experimental results from our implementation of matching algo-
rithms in a toolkit called MATCHBOX-P. The two types of experiments done are serial and
parallel. The goals for serial experiments are to demonstrate the efficiency of approxima-
tion algorithms in terms of execution time, cardinality and weight of matching as compared
to those of exact algorithms. We will also demonstrate the efficiency of the pointer-based
algorithm as compared to other approximation algorithms. For the parallel experiments
we will try to identify classes of graphs for which the proposed algorithm, in its current
implementation, is effective, and in the process expose the shortcomings and suggest im-
provements. The parallel experiments are conducted on a Cray XT4 system, Franklin, at
NERSC with 9,660 compute nodes. Each compute node has a 2.3 GHz AMD Opteron quad
core processor with 8 GB RAM. The nodes are interconnected using SeaStar2 router with
a 3D torus topology. The details can be obtained from www.nersc.gov. The serial exper-
iments are conducted on a system equipped with four 2.4 GHz Intel quad core processors
and 32 GB RAM at Old Dominion University.

V.4.1 Data Set for Experiments

The graphs used for experiments can be broadly classified into two types: (i) graph rep-
resentations of regular sparse matrices downloaded from the University of Florida Sparse
Matrix Collection, and (i) synthetic and model graphs. A matrix is stored as a general
graph, where rows and columns of the matrix represent vertices, and the nonzero elements
represent edges. The absolute value of a nonzero element in the matrix is considered as
the weight of the edge that connects the vertices representing the row and the column of
the nonzero element. A similar model is used to represent symmetric matrices. Since the
files downloaded from the University of Florida Sparse Matrix Collection store only the
lower triangle of the matrix, we explicitly add edges to represent both the upper and lower
triangles of the matrix. Two types of synthetic graphs are used - random geometric graphs
and scalable synthetic compact application (SSCA#2) graphs. Generation of random geo-
metric graphs is implemented in MATCHBOX-P, and SSCA#2 graphs are generated with
GT-Graph generator [5]. In order to eliminate self-loops, the SSCA#2 graphs are stored
as bipartite graphs. Two-dimensional five-point and nine-point grid graphs are used as the
model graph problems. The matrices used in the experiments are listed in Table 11, and
the associated structures are illustrated in Figure 44.

A d-dimensional random geometric graph (RGG), represented as G(n,r(n)), is a graph
generated by randomly placing n vertices in a d-dimensional space and connecting pairs

of vertices whose Euclidean distance is less than or equal to r(n). In our experiments we

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

TABLE 11
Matriz Instances downloaded from University of Florida Matriz Collection. Unsymm represents un-
symmetric matrices and Symm represents symmetric matrices.

| Name | #Vertices | #Edges I Type | Detalils

ASIC-680 1,365,424 1,693,767 | Unsymm | Circuit simulation matrix
Hamrle3 2,894,720 5,514,242 | Unsymm | Circuit simulation matrix
Rajat31 9,380,004 | 20,316,253 | Unsymm | Circuit simulation matrix
Cageld 3,011,570 | 27,130,349 | Unsymm | DNA electrophoresis
Ldoor 1,904,406 | 84,035,431 | Symm INDEED Test Matrix
Audikw-1 1,887,390 | 154,359,999 | Symm Crankshaft model

(a)ASIC_680 (b)Audikw_1 (c)Cageld (d)Hamrle3 (e)Ldoor (f) Rajat31

FIGURE 44. Visualization of matriz structures.

only consider two-dimensional RGGs contained in a unit square, [0, 1]?, and the Euclidean
distance between two vertices is used as the weight of the edge connecting them. Our
primary objective is to generate RGGs that have good separators. Therefore, we generate
RGGs that are as sparse as possible, but without generating too many isolated vertices or
too many disconnected components. Connectivity, a monotonic property of RGG, in 2d
unit-square RGGs has a sharp threshold at r. = \/% [21]. The connectivity threshold is
also the longest edge length of the minimum spanning tree in G [58]. The thermodynamic
limit when a giant component appears with high probability is given by r, = \/% [21, 32].
Empirically, the value of A is given by 2.0736 for 2d unit-square RGGs. The particular
value of 7(n) that we have used in the experiments is 7oy = (7. + 7¢)/2. We refer the reader
to [21, 23, 22, 32, 58] for details. A 2d RGG with 1,000 vertices visualized with Pajek [10]
is shown in Figure 45. Note that along with a few isolated vertices, there are also a few
disconnected components. The details of RGGs used in the experiments are provided in
Table 12.

The SSCA#2 graphs were generated with the GTgraph generator [5]. For convenience,
we eliminate self-loops by considering the original graph as a bipartite graph by simply

representing every vertex in the original graph with two vertices (one in each set) in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

FIGURE 45. Random geometric graph. A random geometric graph with 1,000 vertices as visualized with
Pajek.

bipartite graph. We generated SSCA#2 graphs with the following properties. For a partic-
ular value of), the graph has 2* vertices; the maximum size of random-sized cliques is 2%;
initial probability of interclique edges is set to 0.5; and the weights of edges are uniformly
randomly assigned with a maximum value of 2*. We refer the reader to [5] for details.
Visualization of an SSCA#2 graph of 1,024 vertices with Pajek is shown in Figure 46. The
details of SSCA#2 graphs used in the experiments are provided in Table 12.

Model graphs used in the experiments are five-point and nine-point grid graphs. The
grid graphs are generated within MatchBox-P and the edge weights are assigned uniformly
randomly in the range 0 through RAND_MAX. Visualization of sample five-point and nine-
point graphs with Pajek are provided in Figures 47 and 48, and the details of the grid

graphs used in the experiments are provided in Table 12.

V.4.2 Performance of Serial Matching Algorithms

In this section we show experimental results from serial implementation of the matching al-
gorithms. The goal for these experiments is to highlight the performance of approximation
algorithms not only in the execution time but also for computing matching of good quality.
We present the quality as a ratio of cardinality and weight of approximation matchings to

those of exact matchings. Our implementation of exact matching algorithm is based on the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115

FIGURE 46. SSCA#2 graph. An SSCA#2 graph with 1,024 vertices as visualized with Pajek.

TABLE 12
Synthetic and Model Graphs. SSCA#2 graphs are generated using GT-Graph generator. The number of
vertices in the original graph are doubled to convert it into a bipartite graph to eliminate self-loops; duplicate
edges, if any, are also eliminated. RGGs and grid graphs are generated with MatchBox-P and have random
edge weights.

| Name | #Vertices | #Edges |
RGG-1 320,000 | 63,148,387
RGG-2 8,388,608 | 404, 249, 646
SSCA#2-1 2,097,152 | 63,148,387
SSCA+#2-2 8,388,608 | 404,249, 646
FivePtGrid4k | 16,000,000 | 31,992,000

FIGURE 47. Five-point grid graph. A 10 X 10 five-point grid graph visualized with Pajek.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116

FIGURE 48. Nine-point grid graph. A 10 X 10 nine-point grid graph visualized with Pajek.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

primal-dual algorithm [57] using array data structures. For large graphs, we also observe
empirically that the performance of binary-heap-based implementation is only incremen-
tally better than the array-based implementation of the exact algorithm. The results are
summarized in Table 13. It can be observed that the approximation algorithms generate

matchings of high quality with huge gains in compute time.

TABLE 13
Performance of serial approx algorithm. The second column represents the ratio of weights of ap-
prozimate and ezxact matchings. Similarly, the third column represents the ratio of cardinality of the two
matchings. Fourth and fifth columns show the time in seconds to compute approximate and exact matchings
respectively.

| Instance | Wgt-Ratio | Card-Ratio | Time-Approx(s) | Time-Exact(s) |

ASIC-680 1.00 0.99 0.13 46,639
Hamrle3 0.99 0.81 0.28 170,059
Rajat31 1.00 1.00 0.58 1,361,146
Cagel4 1.00 1.00 0.55 409, 250
Ldoor 1.00 1.00 0.46 178,004
Audikwl 1.00 1.00 0.72 242, 591

We will now present the relative performance of different half approximation algorithms.
The two main categories of approximation algorithms are the sorting-based algorithms of
Avis [4] and Preis [64], and path growing algorithms of Vinkemeier and Hougardy [24, 74].
The path growing algorithm finds simple paths of heaviest weight in a graph, alternatively
adding edges to two sets of potential matchings. While in PG-1 the two sets of potential
matching are compared at the very end, the two potential sets are compared for each
distinct path in PG-2, and therefore, PG-2 is a better algorithm. PG-3 merges the two
potential matching sets using Dynamic Programming techniques, and thus, has the best
results, with respect to the weight of the matching, as compared to PG-1 and PG-2. Since
the pointer-based algorithm is a version of Preis’s algorithm, which in turn is a version of
Avis’s algorithm, we will only present the results for the pointer-based algorithm. Weight
and cardinality of the approximation matchings are shown in Figures 49 and 50 as a ratio to

those of exact algorithm. The execution time for different algorithms is shown in Figure 51.
From the experimental results it can be observed that the pointer-based algorithm

computes matchings of high quality at high speed. We will now present the performance

results for the parallel half-approximation algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

0.9
203
:g oPGl1
2 ® PG2
3 BPG3
0.7
2 B Ptr-Based
=
&

0.6

0.5

ASIC-680 Hamrle3 Rajat31 Cagel4 Ldoor Audikwl

FIGURE 49. Performance of Serial Approximation Algorithms: Weight. The path growing algorithms
are represented by PG1, PG2, and PG3.

3,

S oPG1

2 8PG2

I

2 OPG3

& E Ptr-Based

ASIC-680 Hamrle3 Rajat31 Cagel4 Ldoor Audikwl

FIGURE 50. Performance of Serial Approzimation Algorithms: Cardinality.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119

B =) ¢] R
4 oOPG2
- o f e o BPGF - ———

w
[
|

_..DPonter-Based

w

N

—
w

Compute time in seconds
N
W
|
| :

—

e
n
|

<
i
i
oy
|
\
| {
|
|

s I

ASIC_ 680k Hamrle3 Rajat31 Cagel4 Ldoor Audikw 1

FIGURE 51. Performance of Serial Approzimation Algorithms: Compute Time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

V.4.3 Performance of Parallel Matching Algorithm:

The parallel half-approximation algorithm has been implemented in C++ and uses Message
Passing Interface (MPI) libraries for communication between processors. The implemen-
tation also uses the Standard Template Library (STL) data structures such as Vectors
and Maps. We use multi-level K-way partitioning algorithm in Metis [41] for distributing
input data among participating processors. As described in Algorithm PARALLELMATCH-

INGFRAMEWORK, the implementation has three distinct phases:

e Initialization: The actions performed in this phase are initialization of associated
data structures such as the adjacency structures for the ghost vertices, mapping of
ghost vertex indices to zero-based indices, allocation of memory for communication

(based on the edgecut), etc.

e Phase-1: In this phase, candidate mates are set for all local vertices, and an attempt
to match is performed. At the end of Phase-1, all the resulting communication is
sent. Individual messages to a processor are aggregated and sent as one packet of

information using MPI constructs for immediate messages (MPI_Isend()) [67].

e Phase-2: Computation in Phase-2 is communication dependent, and can only start
once a message is received. It can be broadly classified into two super-steps - com-
putation and communication. In our current implementation, we do not aggregate
individual messages, but send (non-blocking) them immediately as needed. Given
the fact that we have a bound on the number of messages that will be communi-
cated, we have implemented asynchronous messaging using the MPI constructs for
buffered messages (MPI_Bsend()) [67]. We note that the current implementation can
be improved by performing message aggregation in Phase-2, while acknowledging that
there will be a certain amount of overhead for message aggregation and potentially

longer idle times as processors wait for messages.

We will now present details from parallel experiments for synthetic and model graphs

for up to 8,192 processors on Franklin.

Five-Point Grid Graph of 4k x 4k Size

The graph representing the 4k x 4k grid has 16,000,000 vertices and 31,992,000 edges.
Since the amount of communication is directly dependent on the edgecut, existence of
good separators is important to obtain good performance for the parallel algorithm. For
the following experiments we used multi-level K-way partitioning algorithm in Metis [41].

In Figure 52, we plot the edgecut as a function of number of vertices. An ideal partitioning

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

of a square grid (2D block distribution) will be proportional to (21/]V[(v/P — 1)), where
|[V'| is the number of vertices and P is the number of partitions. We observe a similar
pattern in the partitions that were obtained from Metis giving us an expectation for good

performance.

1.02E+06

5.12E+05 /?%ﬁ
.

2.56E+05

s

6.40E+04

3.20E+04

1.60E+04

8.00E+03 —-Actual EdgeCut

-=-2(Sqrt(P)-1)*Sqrt(N)

4.00E+03
L S T R T R I S e
AR N R
of partitions
FIGURE 52. 4k grid graph: Edgecut as a function of number of vertices. Actual edgecut for different

number of partitions using multi-level K-way partitioning algorithm in Metis, and ideal edgecut given by
(2/[VI(VP — 1)), where V is the number of vertices and P is the number of partitions.

The maximum time is the longest time taken by any given processor in the group of
processors used to compute a matching. Alternatively, it is the time taken by the slowest
processor. The difference in the compute time of different processors can be due to various
reasons including load imbalance, heterogeneous capacities, graph structure, and unusual
behavior of different processors that is time dependent. This become an important factor
when the number of processors used for a given job is very large. Therefore, we also provide
the average (mean) compute time for computing the matching. Ideally, the experiments
should be repeated for a large number of times, but given limited resources we have not
repeated similar experiments, especially for experiments with large number of processors.
Maximum and average execution times for the 4k grid graph are shown in Figures 53 and
54 respectively. For each type, the execution time of different phases of the computation
are shown separately. The speedup obtained is shown in Figure 55.

It can be observed that while the execution time for Initialization and Phase-1 scale
with the number of processors, the execution time for Phase-2 does not scale well, and

drastically increases for 4,096 and 8, 192 processors. It should be noted that the messages

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

122

4.00E+00
2.00E+00 -

I\\l i i 3 1 1 4 1 1 1 i |
1LOOE+00 PR+ttt ——+—
5.00E-01 \\
£ 250601 AN .
1.25E-01 N
6.25E-02 k\ S
3.13E-02
1.56E-02
7.81E-03 // <
3.91E-03 +— R —<Total
1.95E-03 AN
9.77E-04
4.88E-04 \’\\,
2.44E-04

seconds

74

=+Initztn.

A /
k\[\ // -#-Phase-1
~

{/ -+ Phase-2

A1/

Compute Time (Maximum

RO AR G0 AU R S
B ¢ & S

of processors

FIGURE 53. 4k grid graph: Compute time (mazimum). Mazimum time is the time in seconds of the
slowest processor in the group of processors used to solve the problem.

2.00E+00
1.00E+00
5.00E-01 %’\
2.50E-01

1.25E-01 N
s 12 ANENT

6.25E-02 ‘\ <
3.13E-02 ; 5 \\ .
LS6E-02 i \\ \ —+Initztn.
. p

5\ \ -=-Phase-1

7.81E-03 / N +Phace?

391E-03 17 X — eTotal

N |
1.95E-03 o
<

seconds

Compute time (Average

9.77E-04 <
4.88E-04
2.44E-04

RN A O U A S LR L
B F TS

of processors

FIGURE 54. 4k grid graph: Compute time (average). Average time is the sum of compute time on each
processor in the group divided by the number of processors in that group.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123

. A

0\
” A
. /

Time-2-procs / Time-N-procs

Speedup
RN

l | | } 1 Il i i i { | 1 {
T T H I T H H ¥ T T T 1

A S R A SR P U P St
AU SNSRI S

of processors

FIGURE 55. Speedup for 4k x Ak grid graph.

are aggregated only in Phase-1 of our current implementation. It should also be noted
that for larger number of processors the amount of work done per processor is very small.
In order to explore further, we plot the cardinality of the matching at the end of Phase-1
in Figure 56. It can be observed that close to 100 per cent cardinality is obtained at the
end of Phase-1 in most cases. As the number of partitions are increased, the cardinality
of matching at the end of Phase-1 also decreases resulting in more work during Phase-2.
The edgecut as a function of the number of edges is also plotted in Figure 56. It can be

observed that a very small fraction of edges get cut.

Weak Scaling for Five Point Grid Graphs

We now present weak scaling studies on the five-point grid graphs. The largest graph is
the graph with 16 million vertices, and we solve it on 2,048 and 1,024 processors as two
separate series. For each subsequent data point, we will reduce the number of vertices and
the number of processors by half. The test set is summarized in Table 14.

If the total compute time remains fairly constant for different graph size and number of
processor combinations, then we demonstrate the weak scalability of the parallel %—approx
algorithm. We plot the execution times for the two series in Figures 57 and 58. It can
be observed that the total execution time remains fairly constant. In particular, initializa-

tion and Phase-1 show good scalability. However, Phase-2 does not scale proportionally,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100
90

80

|/{M] * 100

70

60

Edgecut/ |E| * 100

50

M_Phase-1

40

30

20

(1) % Card-P1
(2) % Edges cut

10

i)

A B G s N i
N 5\9m?b‘h?%}

FiGURE 56. 4k grid graph: Cardinality after Phase-1.

of processors

TABLE 14

124

--%EdgeCut
-+%Card-P1

Grid graphs for weak scalability studies. Columns three and four represent the number of processors
used to solve the grid graphs of a given size.

| # Vertices] Grid Dimension | #P-Seriesl | #P-Series2 |

16,000,000 4000 X 4000 2048 1024
8,000,000 2828 X 2828 1024 512
4,000,000 2000 X 2000 512 256
2,000,000 1414 X 1414 256 128
1,000,000 1000 X 1000 128 64

500,000 707 X 707 64 32
250,000 500 X 500 32 16
125,000 354 X 354 16 8
62,500 250 X 250 8 4
31,250 177 X 177 4 2
15,625 125 X 125 2 NA-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

125

especially for smaller graph sizes. We plot edgecut and number of messages sent for each
grid-size and number of processor combinations in Figure 59. The two curves are edgecut
divided by the number of processors and messages sent divided by the number of proces-
sors. From this figure we can observe that the edgecut increases, and therefore, the total

time for Phase-2 also increases accordingly.

PR
-E 3.91E-03
=3
—
§ /a/ |
=
= 1.95E-03 e
g “,__-n/4 /
g P
E 9.77E-04 5 I —— === —Initztn.
- — -=-Phase-1
E 4.88E-04 -+Phase-2
2 // =«Total
=3
E- .
2.44E-04
S 14

1.22E-04
RO U SR, 50\@?‘ P

[a

of processors (different graph problems)

FIGURE 57. Weak scaling for grid graphs: Series-1 uses the graph size and processor combinations as
shown in Table 14.

Random Geometric Graph With 320k Vertices

The 2d unit-square random geometric graph used for this experiment was generated with
320,000 vertices and an r(n) value of 0.003. The resulting graph has 1,490, 855 edges with
an average degree of 9.32, maximum degree of 24, and 28 isolated vertices. The graph
was partitioned using the K-way partitioning algorithm in Metis. In Figure 60 we plot
the edgecut as a function of the number of vertices. We observe that as the number of
partitions increase the edgecut also increases, thus our expectation of good performance
decreases for large number of partitions. Note that the given graph is rather small for
large number of partitions. For example, with 8,192 processors, each processor will be
responsible for only about 40 vertices. We restricted the size of the graph in order to
preserve the computational time used on Franklin.

Maximum and average execution times for the 320k RGG are shown in Figures 61 and

62 respectively. For each type, the execution time of different phases of the computation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126

7.81E-03

—
3.91E-03 — — m%
1.95E-03 /

— —e=Initztn.
9.77E-04 7 -%Phase-1

—+Phase-2
-+Total

4.88E-04

2.44E-04 2(/

1.22E-04

Compute time (maximum) in seconds

2 4 8 16 32 64 128 256 512 1,024

of processors (different graph problems)

FIGURE 58. Weak scaling for grid graphs: Series-2 uses the graph size and processor combinations as
shown in Table 14.

550

500 _— —
450

400 /

350

300 /

250 //
:

200
150 e

| / ~-EdgeCut/P

100 T = Msg/P

Edgecut / # procs

Messages / # procs

(1) Edgecut/P

(2) Msg/P

50
2 4 8 16 32 64 128 256 512 1,024 2,048

of processors

FIGURE 59. Edgecut and number of messages for different grid graphs: The graph size and processor
combinations are shown in Table 14.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127

2.0E+05 /
1.8E+05 /
1.6E+05 /

1.4E+05

1.2E+05 /
1.0E+05 /
8.0E+04 /
6.0E+04

4.0E+04 /

2.0E+04 /

0.0E+00 f T 1 t t t t t t t t } i
A N A G0 MU R St
NS
of partitions

FIGURE 60. 320k RGG: Edgecut as a function of number of vertices. Actual edgecut for different
number of partitions using multi-level K-way partitioning algorithm in Metis.

2.50E-01 f — — ——— ——— i

1.25E-01 A

6.25E-02 \
3.13E-02 n
1.56E-02 N \\\ /

| ANANN /
7.81E-03 / ——Initztn.
/ -#Phase-1
//) -+Phase-2

1.95E-03 / .\ <] 7 ~<Total
9.77E-08 1

4.88E-04 \
\\ >
2.44E-04 v/
RO BN B G N R A 1
VAN IS

3.91E-03 \

Compute Time (Maximum) in seconds

of processors

FIGURE 61. 320k RGG: Compute time (mazimum). Mazimum time is the time in seconds of the
slowest processor in the group of processors used to solve the problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128

2.50E-01 -
1.25E-01

LN
6.25E-02 \\
3.13E-02

o | X
1.56E-02 1IN
7.81E-03 N)

\\ \
N
e

N ~Initztn.

-#Phase-1
-e-Phase-2
A aeTotal

3.91E-03
1.95E-03 /
9.77E-04 /
4.88E-04 /

2.44E-04 I
1.22E-04

N

1/
e,
/v

Compute Time (Average) in seconds

RO R A R I N I
D4 Y & s

of processors

FIGURE 62. 320k RGG: Compute time (average). Average time is the sum of compute time on each
processor in the group divided by the number of processors in that group.

64

32

16

Time-2-procs / Time-P-procs

%)

Speedup

i 3 | { | H
T T T T T 1

L I O ST Ay S \9'»"‘ $° 9

™
of processors

)
X
N
A

FIGURE 63. 320k RGG: Speedup.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

are shown separately. The speedup obtained is shown in Figure 63.

It can be observed that while the execution time for initialization and Phase-1 scale
with the numbers of processors, the execution time for Phase-2 does not scale well, and
drastically increases for processors greater that 1,024. It should be noted that the messages
are aggregated only in Phase-1 of our current implementation, and the amount of work done
per processor becomes very small for larger number of processors. The cardinality of the
matching at the end of Phase-1 is plotted in Figure 64. It can be observed that close to
100 per cent cardinality is obtained at the end of Phase-1 for up to 32 processors. As
the number of partitions are increased, the cardinality of matching at the end of Phase-1
also decreases resulting in more work during Phase-2. The edgecut as a function of the
number of edges is also plotted in Figure 64. It can be observed that the fraction of edges
cut increase as the number of partitions increase indicating that amount of communication

will grow at large number of partitions.

100

90 ~<
\\
80 AN
AN
70 N

60 \

50

(M_p1|/M))*100

—%Card-P1
+%EdgeCut

40

30

20

(2) %EdgeCut = (Edgecut /[E[)*100

(1) %Card-P1

10

0 Llu—u
AR BN U G S N R G
P & & S

of processors

FIGURE 64. 320k RGG: Cardinality after Phase-1.

SSCA#2 Graph With 524k Vertices

The SSCA#2 graph used for this experiment is generated with with a A value of 19, and
therefore, has 21° = 524,288 vertices. The number of edges is 10,008,022. The graph is
partitioned using the multi-level K-way partitioning algorithm in Metis. In Figure 65 we
plot edgecut as a function of number of partitions. It can be observed that the edgecut

drastically increases as the number of partitions increases, and therefore, good performance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130

cannot be expected for larger number of partitions.

2.6E+06
6.6E+05 /
1.6E+05 /
4.1E+04 gﬁ/

1.0E+04 /

2.6E+03 //

6.4E+02 a
/™

1.6E+02
/

Edgecut (log scale)

4.0E+01

{ i i i
1 T

T T 1

1.0E+01 i t } 1 } t
A N L Gl N e R I . 1
AR A RN

of partitions

FIGURE 65. 524k SSCA#2: Edgecut as a function of number of vertices. Actual edgecut for different
number of partitions using K-way partitioning algorithm in Metis.

Maximum and average execution times for the 524k SSCA#2 graph are shown in Fig-
ures 66 and 67 respectively. For each type, the execution time of different phases of the
computation are shown separately. The speedup obtained is shown in Figure 68.

The cardinality of the matching at the end of Phase-1 is plotted in Figure 69. It can
be observed that close to 100 per cent cardinality is obtained at the end of Phase-1 for up
to 512 processors, but it drastically decreases for partitions greater than 512, especially,
for 8,192 partitions. The edgecut as a function of the number of edges is also plotted in
Figure 69. It can be observed that the fraction of edges cut increase drastically for 4,096

and 8,192 partitions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131

1.00E+00 | }
5.00E-01 \;\
2.50E-01 &
1.25E-01 \
NN

6.25E-02 ‘\\ | /Q'Q _
\

3.13E-02 !
1.56E-02 3\ N ~~Initztn.
/ ,,,—«/ \ -#Phase-1

N

7.81E-03 -+Phase-2
3.91E-03 % ‘\ ~<Total
1.95E-03 \\ 7-
9.77E-04 \\[.

4.88E-04

Compute time (Maximum) in seconds

R R U P I RSl
AR A

of processors

FIGURE 66. 524k SSCA#2: Compute time (mazimum). Mazimum time is the time in seconds of the
slowest processor in the group of processors used to solve the problem.

1.00E+00 f

5.00E-01 »
\\

2.50E-01 \

1.25E-01 - N
6.25E-02 \\ <
\

_ AN
3.13E-02 \\ ,\:
N

—+=Initztn.

\ ~
&‘\ﬁ \ -#-Phase-1
A\

N

1.56E-02
7.81E-03
3.91E-03 AR\ NNy —+Phase-2
- \\ =<Total

A
1.95E-03
N
9.77E-04 \ e
. \ '/{

4.88E-04
\ _

2.44E-04

Compute Time (Average) in seconds

R IR A G N i
VP TS S

of processors

FIGURE 67. 524k SSCA#2: Compute time (average). Average time is the sum of compute time on
each processor in the group divided by the number of processors in that group.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

132

64

2 N\

1 § i { i il 3 i | 4 | H i
¥ T i T T T T 1

LR N T I A R AN S .
No Ly ™ C%)
of processors
FIGURE 68. 524k SSCA#2: Speedup.
100 —

s 90

=]
R
=80
=}
2~ 17
i3 \
=
= EI 50 \.
*Ié 40 4 —+%EdgeCut
a = -+%Card-P1
= 30
23 /
ax 2
T8 0 E | ; /

AR R N AR
NS by by -

of processors

FIGURE 69. 524k SSCA#2: Cardinality after Phase-1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

133

V.4.4 Performance of Parallel Matching on Graphs from Applications

We will now provide experimental results of the parallel approximation algorithm for the
graphs representing matrices selected randomly from the University of Florida Matrix Col-
lection. Communication in Algorithm PARALLELMATCHINGFRAMEWORK is directly de-
pendent on the edge-cut for a given number of partitions. Therefore, in order to predict
the performance of the algorithm, we will present the edgecut, for different numbers of
partitions, as a percentage of the total number of edges for a graph in Figure 70. It can be
observed that edgecut for Rajat31 and Hamrle3 are under ten per cent, but are relatively
high for ASIC-680k, Audikwl and Cagel4.

60
= 50
[—]
y—t
£
? 40 = =2~
- ,4"
g e / -+ ASIC-680k
8 e
3 30 ~—a—Audikwl
et} 4
l ,' ——Cagel4
(oY) /
8 20 =>~Hamrle3
=
payan
>
&~ 10 — ,/‘i y —e—Rajat31

-

MRS

of partitions

FIGURE 70. Edgecut for graphs from applications. Percentage of edges cut is a ratio of edgecut to the
number of edges in the graph.

We will now present the execution time on Franklin for up to 4,096 processors (Fig-
ures 71 and 72). There are a few missing data points in the plots when a particular problem
could not be solved for a particular number of processors. For example, Cagel4 could not
be solved for 512 processors. A major cause of failure has the restriction on the number of
messages that a processor can send. Another cause of failure has been the limitation on

memory usage, usually during the graph partitioning phase.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Compute time in seconds (log2 scale)

Compute time in seconds (log2 scale)

2.50E-01
1.25E-01
6.25E-02
3.13E-02
1.56E-02
7.81E-03
3.91E-03
1.95E-03

2.00E+00

1.00E+00

5.00E-01

2.50E-01

1.25E-01

6.25E-02

3.13E-02

(a) ASIC-680k

N
AN —Max(s)
—AvE(S)

N /

'\\/;-—"

N——

Ve s\'\'@"?@b

of processors

(c) Cageld

No
XN

AN

e Max(s) \

—Avg(s) N

v % L0

A S R P]
Y SO
V.o &

of processors

Compute time in seconds (log2 scale)

Compute time in seconds (log2 scale)

1.00E+00

5.00E-01

2.50E-01

1.25E-01

6.25E-02

3.13E-02

5.00E-01
2.50E-01
1.25E-01
6.25E-02
3.13E-02
1.56E-02
7.81E-03
3.91E-03
1.95E-03

134

(b) Audikwl

T ¥ T T v T T \ ¥

N
AN

N

NIRRT R 5{»\@&@@ &

of processors

(d) Hamrle3

™ <+ 00 W o v~
—_ o B =
NN

128

<
0

1024
2048
4096

of processors

FIGURE 71. Graphs from Applications: Compute time for different matrices with different number of
processors. Compute time in seconds (log, scale) is plotted on the Y-azis, and the number of processors is
plotted on the X-axis. Max is the mazimum time on any given processor in the set, and Auvg is the average
time for a given set of processors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.00E+00
1.00E+00
5.00E-01
2.50E-01
1.25E-01
6.25E-02
3.13E-02
1.56E-02
7.81E-03

Compute time in seconds (log2 sctae)

1.00E+00
5.00E-01
2.50E-01
1.25E-01
6.25E-02
3.13E-02
1.56E-02
7.81E-03
3.91E-03

Compute time in seconds (log2 scale)

(a) Ldoor

I R I L
KEERE RN
of processors

(c) SSCA#2-1

—Max(s)
\ —Avgls)
\QN
N\ ~~
N N
~ N
S~

Yo B b A S \,\"b ’{)b ‘)\’»\6\'&'\‘& bqu

of processors

Compute time in seconds (log2 scale)

Compute time in seconds {log2 scale)

{b) Rajat31

2.00E+00
1.00E+00 ‘\5 —
5.00E-01
2.50E-01 N =Max(s)
1.25E-01 N\ ——Avg(s) .
6.25E-02 AN
3.13E-02 N
1.56E-02 Ny /
7.81E-03 AN /
391E-03 \N
1.95E-03

VRS R &

of processors
(d) SSCA#2-2
1.60E+01
8.00E+00 ——Max(s)
4.00E+00 1—\ —Aves)
2.00E+00 \\
1.00E+00 + + \5 + R A S See
5.00E-01
2.50E-01 \ =
1.25E-01 | Y
6.25E-02 t
\\

3.13E-02 ~_
1.56E-02

B b S o x & o
v AN L AR

of processors

135

FIGURE 72. Graphs from Applications: Compute time for different matrices with different number of
processors. Compute time in seconds (logarithmic scale with base two) is plotted on the Y-azis, and the
number of processors is plotted on the X-axis. Max is the mazimum time on any given processor in the set,
and Avg is the average time for a given number of processors. The Figure also has results for two instances
of SSCA#2 graphs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

136

V.4.5 Analysis of Communication

In this section we will present details about the communication involved in computing the
approximation matchings. The total number of messages is bounded between twice and

thrice the edgecut. This is plotted in Figures 73 and 74.

(a) ASIC-680k (b) Audikw1
5.00E+05 1.00E+08
4 S0E+05 ~—— Msg Sent 0 00E+07 ~&8— Msg Sent X
4 00E+05 =41 =2 X EdgeCut)(8 00E+07 =2 =2 X EdgeCut /
3.50E+05 ¥~3 X Edgecut 1/ 7.00E+07 >3 X Edgecut //
3.00E+05 7 7 6.00E+07 X /ﬂ
2.50E+05 ~~ A 5.00E+07 -
2.00E+05 7 5 4.00E+07 7
1.50E+05 /‘E/u 3.00E+07 /45/4_4
1.00E+05 7 2.00E+07 e
5.00E+04 " 100E+07 %
0.00E+00 0.00E+00
X % b C Y x o
" IR G "{»\@, o 16 32 64 128 256 512 1024 2048 4096
(c) Cageld (d) Hamrle3
3.00E+07 1.20E+06
Msg Sent /(~fi-Msg Sent)(

2.50E+07 |-—4 =2 X EdgeCut 1.00E406 |~ Fagect

=é=73 X Edgecut /))//
2.00E+07 / /5 8.00E+05 |3 X Edgecut /
1.50E+07 / /{ 6.00E+0S ‘/%
1.00E+07 - 4.00E+05 /
5.00E+06 % 2.00E+05
0.00E+00 0.00E+00

2 4 8 16 32 64 256 1024 409 R IR G R R

A AR

FIGURE 73. Communication. Total number of messages sent are bounded between twice and thrice the
edge cut.

Message Bundling

Message bundling greatly influences performance. Here we show the performance of the
message bundling that we have implemented only for Phase 1 of the algorithm. It can be
observed that the number of messages that can be bundled in Phase 1, Mg can be given by
the relation (|Edgecut| < Mp < 2|Edgecut|). We also know that a lower bound on the total
number of messages sent is given by (2|EdgeCut|). Thus, in a best possible scenario all the
messages can be bundled resulting in at most O(P?) messages, where P is the number of
processors. The worst case results from a situation when every processor sends messages
to every other processor. However, for graphs with good partitions the communication can
be limited to a few processors resulting in a O(P) bound on the number of messages. In

Figures 75 and 76, we show the percentage of messages that could be bundled, and the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.00E+07
2.50E+07
2.00E+07
1.50E+07
1.00E+07
5.00E+06

0.00E+00

2.50E+06
2.00E+06
1.50E+06
1.00E+06
5.00E+05

0.00E+00

FIGURE
edge cut.

{a) Ldoor
—{@— Msg Sent)(
=2 =7 X EdgeCut /
=33 X Edgecut

AL NG ‘)\w\&h@%@b

(c) SSCA#2-1

—~ Msg Sent i
= =2 X EdgeCut

=33 X Edgecut /
4]

Vi

/4

M

LB I R ‘,\'\.\&h@‘,‘% b?qb

1.40E+06

1.20E+06

1.00E+06

8.00E+05

6.00E+05

4.00E+05

2.00E+05

0.00E+00

9.00E+06
8.00E+06
7.00E+06
6.00E+06
5.00E+06
4.00E+06
3.00E+06
2.00E+06
1.00E+H06
0.00E+00

(b) Rajat31

—&—Msg Sent

=77 =2 X EdgeCut
=»=3 X Edgecut

N |

e 5

BRI R ‘)\x\&u’»&% @b

(d) SSCA#2-2

~§— Msg Sent

-4 -2 X BdgeCut

s
=3 X Edgecut /

> % .o o> o > B o
v LR R

137

74. Communication. Total number of messages sent are bounded between twice and thrice the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

138

actual number of messages sent (bundled, as well as unbundled) as a percentage of total
messages that would have been sent if no bundling was performed. It should be noted
that the communication time for bundled messages will be proportional to the number of
messages bundled. Thus, bundled messages are sensitive to both latency and bandwidth
of the underlying communication system. In the implementation, bundled messages are
sent using the MPI construct MPI_Isend(), and unbundled messages are sent using MPI

construct MPI_Bsend ().

(a) ASIC-680k (b) Audikw1

100 —0—0—0¢——0——0¢—0—0—0— 100 - - -+ _

90 90 ~ M .
%0 =—%Bundled 80

70 «i~-%Sent 7 —4—%Bundled

60 60 —8-%Sent

50 50

40 40

30 30

20 20

10 10

0 -I—H—-‘ﬁ 0

v " B \b .\)'\: > \r{} r\bb ‘)\’\»\61} b.“qb 16 32 64 128 256 512 1024 2048 4096
(c) Cageld (d) Hamrle3
100 < A o ™~ 90
e e
90 80 o g —t> o
80 70 .4
~—%Bundled =—%Bundled

70 e vsent 60 " %Sent

60 50

50 40

o - M
30 20
20

10
0
0

2 4 8 16 32 64 256 1024 4096

RN JECRE T 5{»\@&'\‘@@5

FIGURE 75. Message Bundling. Percentage bundled represents the number of messages that could be
bundled in Phase 1, higher the better. Percentage sent represents the actual number of messages that get
sent due to bundling, lower the better.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

139

(a) Ldoor . (b) Rajat31
120 - 120
100 |-o——tb—lp—b——¢ o 100 Ottt O G ety
80 80
=o—%Bundled —o—%Bundled
60 60
~-%Sent ~-%Sent
40 40
20 20
0 La———————a———n [————— = T __ B
b % o % o NS VN B bR R R R S Y
v SRR P AL R R R
(¢) SSCA#2-1 (d) SSCA#2-2
100 120
%0 .—YA
\ 100

80 \ M—\
70 20
60
50 / ¥ ~ 60
40

40
30
20 / viBdicd 20 -4—%Bundled
o - | $=%Bundle .’.__J ~-%Sent

—~%Sent

o $°

X 9 b S o
i \"’Wx'"t’s'&,»

b
&

® % b S o X B o
v AN R K

FIGURE 76. Message Bundling. Percentage bundled represents the number of messages that could be
bundled in Phase 1, higher the better. Percentage sent represents the actual number of messages that get
sent due to bundling, lower the better.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

140

V.5 CHAPTER SUMMARY

In this chapter we presented a parallel %-approx algorithm and discussed the experimental
analysis on a distributed memory system. The proposed algorithm has several limitations.
The limitations that directly affect performance are the structure of the graph and the
edgecut resulting from partitioning the graph between multiple processors. A worst case
for the number of rounds of execution can be illustrated by executing the pointer-based
algorithm on a graph whose edges can be arranged on a straight line with edge-weights in a
sorted order as shown in Figure 77. The number of rounds in this case is O(|E|). However,
with the assumption of random edge-weights, the expected number of rounds is O(log | E|),

where F represents the set of edges in a graph.

@15®25@3S@
(@)

15 . 25 _ 35
W@‘?’@
(b)

o 15 a 25 B 35 a
{d)
FIGURE 77. Limitations of the pointer-based approach. (a) The input graph G = (V, E) with weights
associated with the edges; (b) an intermediate step of execution where the pointers are set for each vertex
in the graph; (c) an intermediate step where vertices that are pointing to each other are matched. Bold

lines represent matched edges. Dashed lines represent the edges removed from the graph; (d) the final state.
Matched vertices are colored black.

There are numerous challenges in implementing and executing the algorithm on current
and future supercomputers with hundreds of thousands of processors. One specific challenge
is the edgecut that dictates the execution time for Phase-2. Speculative algorithms can help
minimize communication and we will explore this in our future work. We will also explore
the benefits of alternative platforms with fast interconnects and slow processors. Better
algorithms for unweighted and vertex-weighted matching problems will also be explored in

future work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

141

CHAPTER VI

CONCLUSIONS AND FUTURE WORK

“Art is never finished, only abandoned.” - Leonardo da Vinci

The work completed in this thesis lays the groundwork for future research. The goals for
this research were broadly organized into theory, implementation and applications. We
were able to accomplish many of the goals we set for ourselves. The following list provides

a summary of the contributions from this work:

1. Theory:

e New framework for developing proof of correctness for vertex weighted match-

ings;
e New %-approx algorithms for vertex weighted matchings;
e New %—approx algorithm for bipartite vertex weighted matchings;
2. Experiments:
¢ Open-source library of C++ routines to compute various kinds of matchings;

e Open-source library of C++ and MPI routines to compute approximate match-

ings in parallel.

e Extensive experimental study of various (serial) matching algorithms, and scal-

ability study of %—approx parallel algorithm with up to 8,192 processors.
3. Applications:

o Study of applicability of vertex weighted matchings in solving the sparsest basis

problem.

e Study of approximation algorithms in sparse matrix computations.

Constrained by time and priorities we have also left many questions unanswered. Some

of the important open problems that will be addressed in the future work include

e How to provide a proof of correctness for %—approx algorithm LOCALTWOTHIRD?
o Isa %-approx algorithm possible for vertex weighted matching in general graphs?

e Isa %-approx algorithm possible for vertex weighted matching in bipartite and/or

general graphs?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

142

V1.1 FUTURE WORK

Preliminary work on a parallel approximate matching was completed as part of this re-
search. The need for efficient parallel implementations has never been greater than now.
As part of our future work we plan to continue to improve the current implementation,
develop new algorithms - exact as well as approximate, and conduct scalability studies on

different parallel architectures. Some specific goals for immediate future include:

e Conduct scalability studies on IBM Bluegene/P system at Argonne Leadership Com-
puting Facility (ALCF), at the Argonne National Laboratory.

e Conduct scalability studies on SiCortex 5832 system Green at Rosen Center for Ad-

vanced Computing, Purdue University.

e Study impact on performance from different partitioning schemes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

143

BIBLIOGRAPHY

(1] RAVINDRA K. AHuJA, THOMAS L. MAGNANTI, AND JAMES B. ORLIN, Network
Flows: Theory, Algorithms, and Applications, Prentice Hall, 1993.

[2] RAVINDRA K. AHUJA AND JAMES B. ORLIN, A faster algorithm for the inverse
spanning tree problem, J. Algorithms, 34 (2000), pp. 177-193.

[3] W. H. AUDEN AND Louis KRONENBERGER, The Viking Book of Aphorisms, A Per-

sonal Selection, Dorset Press, 1981.

[4] D Avis, A survey of heuristics for the weighted matching problem, Network, 13 (1983),
pp. 475-493.

[5] D.A. BADER AND K. MADDURI, Design and implementation of the hpcs graph anal-
ysis benchmark on symmetric multiprocessors, in Lecture Notes in Computer Science,

vol. 3769, 2005, pp. 465-476.

[6] DAvis A. BADER, Petascale Computing: Algorithms and Applications, Chapman and
Hall/CRC, New York, NY, USA, 2007.

[7] N. BAGHERZADEH AND K. HAWK, Parallel implementation of the auction algorithm
on the intel hypercube, Parallel Processing Symposium, 1992. Proceedings., Sixth In-
ternational, (1992), pp. 443-447.

[8] M.O. BAaLL, T.L. MAGNANTI, C.L. MONMA, AND G.L. NEMHAUSER, Network Mod-
els, Handbooks in Operations Research and Management Science, vol. 7, North Holland
Press, Amsterdam, 1995, ch. Matching, pp. 135-224.

[9] ——, Network Models, Handbooks in Operations Research and Management Science,
vol. 7, North Holland Press, Amsterdam, 1995, ch. Applications of Network Optimiza-

tion.

[10] VLADIMIR BATAGELJ AND ANDREJ MRVAR, Pajek - program for large network anal-
ysis, Connections, 21 (1998), pp. 47-57.

[11] CoLin E. BELL, Weighted matching with wvertex weights: An application to
scheduling training sessions in mnasa space shuttle cockpit simulators, Euro-
pean Journal of Operational Research, 73 (1994), pp. 443-449. available at
http://ideas.repec.org/a/eee/ejores/v73y1994i3p443-449.html.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

144

[12] DiMITRI P. BERTSEKAS AND DAVID A. CASTANON, Parallel synchronous and asyn-
chronous implementations of the auction algorithm, Parallel Computing, 17 (1991),

pp. 707-732.

[13] DimITRI P. BERTSEKAS AND NON DAVID A. CASTA}, A generic auction algorithm
for the minimum cost network flow problem, CoMPUT. OPTIM. APPL., 2 (1993),
PP. 229-260.

[14] ——, Parallel primal-dual methods for the minimum cost flow problem, CoOMPUT.
OpPTIM. APPL., 2 (1993), pp. 317-336.

[15] RoB H. BISSELING, Parallel Scientific Computation: A Structured Approach Using
BSP and MPI, OXFORD UNIVERSITY PRESS, 2004.

[16] ALBERT CHAN, FRANK DEHNE, PROSENJIT BOSE, AND MARKUS LATZEL, Coarse
grained parallel algorithms for graph matching, PARALLEL COMPUT., 34 (2008),
PP. 47-62.

[17] T. CHEATHAM, A. Faumy, D. C. STEFANESCU, AND L. G. VALIANT, Bulk syn-
chronous parallel computing-a paradigm for transportable software, IN HICSS ’95:
PROCEEDINGS OF THE 28TH HAWAIl INTERNATIONAL CONFERENCE ON SYSTEM
SciEncEs (HICSS’95), WAsHINGTON, DC, USA, 1995, IEEE COMPUTER SOCI-

ETY, P. 268.

[18] NATALYA COHEN AND JACK BRASSIL, A parallel pruning technique for highly asym-
metric assignment problems, IEEE TRANS. PARALLEL DISTRIB. SyST., 11 (2000),
PP. 550-558.

THoMAS H. CORMEN, CHARLES E. LEISERSON, RoNALD L. RIVEST, AND CLIF-
FORD STEIN, Introduction to Algorithms, THE MIT PRESs, 2ND ED., 2001.

19

—

[20] FRANK DEHNE, ANDREAS FABRI, AND ANDREW RAU-CHAPLIN, Scalable parallel
geometric algorithms for coarse grained multicomputers, IN SCG ’93: PROCEEDINGS
OF THE NINTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY, NEW YORK,
NY, USA, 1993, ACM, pp. 298-307.

[21] Josep DfAz, DIETER MITSCHE, AND XAVIER PEREZ-GIMENEZ, On the connectivity
of dynamic random geometric graphs, IN SODA ’08: PROCEEDINGS OF THE NINE-
TEENTH ANNUAL ACM-SIAM sSYMPOSIUM ON DISCRETE ALGORITHMS, PHILADEL-
PHIA, PA, USA, 2008, SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS,
PP. 601-610.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

145

[22] JoseEp DiAaz, MATHEW D. PENROSE, JORDI PETIT, AND MARIA SERNA, Conver-
gence theorems for some layout measures on random lattice and random geometric

graphs, CoMB. PrROBAB. COMPUT., 9 (2000), Pp. 489-511.

[23] JosEPH DiAz, MATHEW D. PENROSE, JORDI PETIT, AND MARIA SERNA, Approz-
imating layout problems on random geometric graphs, J. ALGORITHMS, 39 (2001),
PP. 78-116.

[24] DORATHA E. DRAKE AND STEFAN HOUGARDY, A simple approzimation algorithm
for the weighted matching problem, INF. PROCESS. LETT., 85 (2003), pp. 211-213.

[25] 1. S. DUFF AND J. KOSTER, On algorithms for permuting large entries to the diagonal
of a sparse matriz, SIAM J. MATRIX ANAL. APPL., 22 (2000), PP. 973-996.

[26] IAIN S. DUFF AND STEPHANE PRALET, Strategies for scaling and pivoting for sparse
symmetric indefinite problems, STAM J. MATRIX ANAL. APPL., 27 (2005), pp. 313—
340.

[27] TED FISCHER, ANDREW V. GOLDBERG, DAVID J. HAGLIN, AND SERGE PLOTKIN,
Approzimating matchings in parallel, INF. PROCESS. LETT., 46 (1993), pp. 115-118.

[28] HAROLD N. GABow, An efficient implementation of edmonds’ algorithm for mazi-
mum matching on graphs, J. ACM, 23 (1976), pp. 221-234.

[29] Zvi GALIL, Efficient algorithms for finding mazimum matching in graphs, ACM
CompuT. SURv., 18 (1986), PP. 23—38.

[30] PAOLO GIACCONE, DEVAVRAT SHAH, AND BALAJI PRABHAKAR, An implementable
parallel scheduler for input-queued switches, IN HOTI ’01: PROCEEDINGS OF THE
THE NINTH SYMPOSIUM ON HIGH PERFORMANCE INTERCONNECTS (HOTI ’01),
WAaSHINGTON, DC, USA, 2001, IEEE COMPUTER SOCIETY, P. 9.

[31] FRED GLOVER AND M. LAGUNA, Tabu search, IN MODERN HEURISTIC TECH-
NIQUES FOR COMBINATORIAL PROBLEMS, C. REEVES, ED., OXFORD, ENGLAND,
1993, BLACKWELL SCIENTIFIC PUBLISHING.

[32] AsHISH GOEL, SANATAN RAI, AND BHASKAR KRISHNAMACHARI, Sharp thresholds
for monotone properties in random geometric graphs, IN STOC ’04: PROCEEDINGS
OF THE THIRTY-SIXTH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, NEW
York, NY, USA, 2004, ACM, pp. 580-586.

[33] BRUCE HENDRICKSON, Combinatorial scientific computing: The role of discrete al-

gorithms in computational science and engineering, 2003.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

146

[34] BRUCE HENDRICKSON AND ALEX POTHEN, Combinatorial scientific computing: The
enabling power of discrete algorithms in computational science, IN PROCEEDINGS
OF THE 7TH INTERNATIONAL MEETING ON HIGH PERFORMANCE COMPUTING FOR
COMPUTATIONAL SCIENCE (VECPAR’06), SPRINGER-VERLAG, 2006.

[35] DORIT S. HOCHBAUM, ED., Approzimation algorithms for NP-hard problems, PWS
PusLisHING Co., BosToN, MA, USA, 1997.

[36] JaaP-HENK HOEPMAN, Simple distributed weighted matchings, CoORR,
cs.DC/0410047 (2004).

[37] J.E. HopcrROFT AND R.M. KARP, A ns algorithm for mazrimum matchings in bi-
partite graphs, SIAM J. CoMmpPUT., 2 (1973), pPP. 225-231.

[38] STEFAN HOUGARDY AND DORATHA E. VINKEMEIER, Approzimating weighted match-
ings in parallel, INF. PROCESS. LETT., 99 (2006), pp. 119-123.

[39] MAREK KARPINSKI AND WOJCIECH RYTTER, Fast parallel algorithms for graph
matching problems, OXFORD UNIVERSITY PRESS, INC., NEwW YORK, NY, USA,
1998.

[40] GEORGE KARYPIS AND VIPIN KUMAR, Analysis of multilevel graph partitioning, IN
SUPERCOMPUTING ’95: PROCEEDINGS OF THE 1995 ACM/IEEE CONFERENCE ON
SuPERCOMPUTING (CDROM), NEw YORK, NY, USA, 1995, ACM, P. 29.

[41) ——, A fast and high quality multilevel scheme for partitioning irregular graphs,
SIAM J. Sc1. CompuT., 20 (1998), pP. 359-392.

[42] DaviD KEYES, A science-based case for large-scale simulation, the scales report, 2003.
(HTTP://WWW.PNL.GOV/SCALES/).

[43] H. W. KuHN, The Hungarian method for the assignment problem, NAVAL RESEARCH
LoGisTIC QUARTERLY, 2 (1955), pp. 83-97.

[44] VIPIN KUMAR, ANANTH GRAMA, ANSHUL GUPTA, AND GEORGE KARYPIS, In-
troduction to parallel computing: design and analysis of algorithms, BENJAMIN-
CuMMINGS PUBLISHING Co., INC., REDWoOOD CiTy, CA, USA, 1994.

[45] EUGENE LAWLER, Combinatorial Optimization: Networks and Matroids, DOVER
PuBLICATIONS, MINEOLA, NEW YORK, 1976.

[46] X1AOYE S. L1 AND JAMES W. DEMMEL, Making sparse gaussian elimination scal-

able by static pivoting, IN SUPERCOMPUTING ’98: PROCEEDINGS OF THE 1998

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

147

ACM/IEEE CONFERENCE ON SUPERCOMPUTING (CDROM), WASHINGTON, DC,
USA, 1998, IEEE COMPUTER SOCIETY, PP. 1-17.

[47] Zvi LOTKER, BoAz PATT-SHAMIR, AND ADI ROSEN, Distributed approzimate
matching, IN PODC ’07: PROCEEDINGS OF THE TWENTY-SIXTH ANNUAL ACM
SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING, NEW YORK, NY, USA,
2007, ACM, pp. 167-174.

[48] L. Lovasz, Matching Theory (North-Holland mathematics studies), ELSEVIER SCI-
ENCE LTD, 1986.

[49] M LuBy, A simple parallel algorithm for the mazimal independent set problem, IN
STOC ’85: PROCEEDINGS OF THE SEVENTEENTH ANNUAL ACM SYMPOSIUM ON
THEORY OF COMPUTING, NEW YORK, NY, USA, 1985, ACM, pp. 1-10.

[50] FREDRIK MANNE AND ROB H. BISSELING, A parallel approzimation algorithm for the
weighted mazimum matching problem, IN THE SEVENTH INTERNATIONAL CONFER-

ENCE ON PARALLEL PROCESSING AND APPLIED MATHEMATICS, 2007, PP. 708-717.

[51] Nick MCKEOWN, The islip scheduling algorithm for input-queued switches,
IEEE/ACM TRANs. NETW., 7 (1999), pp. 188-201.

[52] Nick MCKEOWN, VENKAT ANANTHARAM, AND JEAN C. WALRAND, Achieving
100% throughput in an input-queued switch, IN INFOCOM, 1996, PpP. 296—302.

[53] ARANYAK MEHTA, AMIN SABERI, UMESH VAZIRANI, AND VIJAY VAZIRANI, Ad-
words and generalized online matching, J. ACM, 54 (2007), p. 22.

[54] BURKHARD MONIEN, ROBERT PREIS, AND RALPH DIEKMANN, Quality matching and
local improvement for multilevel graph-partitioning, PARALLEL COMPUT., 26 (2000),
PP. 1609-1634.

[55] KETAN MULMULEY, UMESH V. VAZIRANI, AND VIJAY V. VAZIRANI, Matching is
as easy as matriz inversion, IN STOC ’87: PROCEEDINGS OF THE NINETEENTH
ANNUAL ACM CONFERENCE ON THEORY OF COMPUTING, NEW YORK, NY, USA,
1987, ACM, ppP. 345-354.

[56] GE NoNG, JOGESH K. MUPPALA, AND MOUNIR HAMDI, Performance analysis of
input queueing atm switches with parallel iterative matching scheduling, IN PROCEED-
INGS OF THE IFIP TC6 WG6.3/WG6.4 FIFTH INTERNATIONAL WORKSHOP ON
PERFORMANCE MODELLING AND EVALUATION OF ATM NETWORKS, DEVENTER,
THE NETHERLANDS, THE NETHERLANDS, 2000, KLUWER, B.V., pP. 189-207.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

148

[57] CHRISTOS H. PAPADIMITRIOU AND KENNETH STEIGLITZ, Combinatorial optimiza-
tion: algorithms and complezity, PRENTICE-HALL, INC., UPPER SADDLE RIVER, NJ,
USA, 1982.

[58] MATHEW PENROSE, Random Geometric Graphs, OXFORD UNIVERSITY PRESS,
2003.

[59] SETH PETTIE AND PETER SANDERS, A simpler linear time % — € approzimation for
mazimum weight matching, INF. PROCESS. LETT., 91 (2004), pp. 271-276.

[60] A. PINAR, E. CHOW, AND A. POTHEN, Combinatorial algorithms for computing
column space bases that have sparse inverses, ELECTRONIC TRANSACTIONS ON NU-
MERICAL ANALYSIS, 22 (2006), pp. 122-145.

[(61] L. C. POLYMENAKOS AND D. P. BERTSEKAS, Parallel shortest path auction algo-
rithms, PARALLEL COMPUT., 20 (1994), pp. 1221-1247.

[62] ALEX POTHEN, Sparse null bases and marriage theorems, PHD THESIS, CORNELL
UNIVERSITY, ITHACA, NY, USA, 1984.

[63] ALEX POTHEN AND CHIN-JU FAN, Computing the block triangular form of a sparse
matriz, ACM TRANS. MATH. SOFTW., 16 (1990), pP. 303—-324.

[64] ROBERT PREIS, Linear time %-appma:imation algorithm for mazimum weighted
matching in general graphs, IN 16TH ANN. SYMP. ON THEORETICAL ASPECTS OF
COMPUTER SCIENCE (STACS), 1999, pp. 259-269.

[65] OLAF SCHENK, ANDREAS WACHTER, AND MICHAEL HAGEMANN, Matching-based
preprocessing algorithms to the solution of saddle-point problems in large-scale noncon-

vex interior-point optimization, COMPUT. OPTIM. APPL., 36 (2007), pp. 321-341.

[66] ALEXANDER SCHRIJVER, Combinatorial Optimization - Polyhedra and Efficiency,
SPRINGER, 2003.

[67] MARC SNIR AND STEVE OTTO, MPI-The Complete Reference: The MPI Core, MIT
PrEss, CAMBRIDGE, MA, USA, 1998.

[68] T.H. SPENCER, Parallel approzimate matching, SYSTEM SCIENCES, 1993, PRO-
CEEDING OF THE TWENTY-SIXTH HAWAII INTERNATIONAL CONFERENCE ON, II
(1993), pp. 293-297 VOL.2.

[69] THOMAS H. SPENCER AND ERNST W. MAYR, Node weighted matching, IN PROCEED-
INGS OF THE 11TH COLLOQUIUM ON AUTOMATA, LANGUAGES AND PROGRAMMING,
LonDoN, UK, 1984, SPRINGER-VERLAG, PP. 454-464.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

149

[70] S. STOROY AND T. SOREVIK, Massively parallel augmenting path algorithms for the
assignment problem, COMPUTING, 59 (1997), pp. 1-16.

[71] VAHID TABATABAEE, LEONIDAS GEORGIADIS, AND LEANDROS TASSIULAS, Qos pro-
visioning and tracking fluid policies in input queueing switches, IEEE/ACM TRANS.
NETwW., 9 (2001), pPP. 605-617.

[72] RyUHEI UEHARA AND ZHI-ZHONG CHEN, Parallel approzimation algorithms for maz-
imum weighted matching in general graphs, INF. PROCESS. LETT., 76 (2000), pP. 13—
17.

[73] VIJAY V. VAZIRANI, A theory of alternating paths and blossoms for proving correct-
ness of the 0(\/76) general graph matching algorithm, TECH. REPORT, ITHACA, NY,
USA, 1989.

[74] DORATHA E. DRAKE VINKEMEIER AND STEFAN HOUGARDY, A linear-time approz-
imation algorithm for weighted matchings in graphs, ACM TRANS. ALGORITHMS, 1
(2005), pp. 107-122.

[75] J.M. WEIN AND S. ZENIOS, Massively parallel auction algorithms for the assignment
problem, FRONTIERS OF MASSIVELY PARALLEL COMPUTATION, 1990. PROCEED-

INGS., 3RD SYMPOSIUM ON THE, (1990), PpP. 90-99.

[76] L. WoOLSEY, Integer Programming, WILEY-INTERSCIENCE PUBLICATION, JOHN WI-

LEY AND SONSs, 1998.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Old Dominion University
	ODU Digital Commons
	Spring 2009

	Algorithms for Vertex-Weighted Matching in Graphs
	Mahantesh Halappanavar
	Recommended Citation

	tmp.1550497870.pdf._kzrn

