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ABSTRACT

Document Classification in Support of Automated Metadata Extraction from

Heterogeneous Collections

Paul K. Flynn 
Old Dominion University, 2014 
Co-Directors: Dr. Steven Zeil 

Dr. Kurt Maly

A number of federal agencies, universities, laboratories, and companies are 

placing their documents online and making them searchable via metadata fields such as 

author, title, and publishing organization. To enable this, every document in the 

collection must be catalogued using the metadata fields. Though time consuming, the task 

of identifying metadata fields by inspecting the document is easy for a human. The 

visual cues in the formatting of the document along with accumulated knowledge and 

intelligence make it easy for a human to identify various metadata fields. Even with the 

best possible automated procedures, numerous sources of error exist, including some that 

cannot be controlled, such as scanned documents with text obscured by smudges, 

signatures, or stamps. A commercially viable process for metadata extraction must 

remain robust in the presence of these external sources of error as well as in the face o f 

the uncertainty that accompanies any attempts to automate “intelligent” behavior. While 

extraction accuracy and completeness must be the primary goal of an extraction system, 

the ability to detect and report questionable results is equally important for a production 

quality system, since it promotes confidence in the system.



We have developed and demonstrated a novel system for extracting metadata. 

First, a document is examined in an attempt to recognize it as an instance of a known 

document layout. Then a template, a scripted description of how to associate blocks o f 

text in the layout with metadata fields, is applied to the document to extract the metadata. 

The extraction is validated after post-processing to evaluate the quality of the extraction 

and, if  necessary, to flag untrusted extractions for human recognition.

The success or failure of the template approach is directly tied to document 

classification, which is the ability to match the document to the proper template correctly 

and consistently. Document classification in our system is implemented as a module 

which applies every template available in the system to a document to find candidate 

templates that extract any data at all. The candidate templates are evaluated by a 

validation module to select the best performing template. This method is called “post 

hoc” classification. Post hoc classification is not only effective at selecting the correct 

class but it also excels at minimizing false positives. It is, however, very sensitive to 

changes in the template collection and to poorly written templates.

While this dissertation examines the evolution and all the major components o f an 

automated metadata extraction system, the primary focus is on the problem of document 

classification. The main thrust of my research has been investigating alternative methods 

of document classification to replace or supplement post hoc classification. I 

experimented with machine learning techniques as an additional input factor for the post 

hoc classification script or the final validation script.
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CHAPTER 1 

INTRODUCTION

1.1 Motivation

A number of federal agencies, universities, laboratories, and companies are 

placing their documents online and making them searchable via metadata fields such as 

author, title, and publishing organization. To enable this, every document in the 

collection must be catalogued using the metadata fields. A typical cataloguing process 

requires a human to view the document on the screen and identify the required metadata 

fields such as title, author, and publishing organization, and to enter these values in some 

online searchable database. Manually creating metadata for a large collection is an 

extremely time-consuming task. According to Crystal [1], it would take about 60 

employee-years to create metadata for 1 million documents. These enormous costs for 

manual metadata creation suggest a need for automated metadata extraction tools. The 

Library of Congress Cataloging Directorate recognized this problem [2] and sponsored a 

study, Automatic Metadata Generation Applications (AMeGA) [3], to identify challenges 

in automatic metadata creation.

Though time consuming, the task of identifying metadata fields by inspecting the 

document is easy for a human. The visual cues in the formatting o f the document along 

with accumulated knowledge and intelligence make it easy for a human to identify 

various metadata fields. Writing a computer program to automate this task is a research 

challenge. Researchers in the past have shown that it is possible to write programs to
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extract metadata automatically for a homogeneous collection (a collection consisting of 

documents with a common layout and structure). There are also commercial products 

capable of the same. Unfortunately a number of federal organizations such as Defense 

Technical Information Center (DTIC), U.S. Government Printing Office (GPO), and 

National Aeronautics and Space Administration (NASA) manage heterogeneous 

collections consisting of documents with diverse layout and structure, where these 

programs do not work well. Furthermore, even with the best possible automated 

procedures, numerous sources of error exist, including some that cannot be controlled, 

such as scanned documents with text obscured by smudges, signatures, or stamps. A 

commercially viable process for metadata extraction must remain robust in the presence 

of these external sources of error as well as in the face of the uncertainty that 

accompanies any attempts to automate “intelligent” behavior. While extraction accuracy 

and completeness must be the primary goal o f an extraction system, the ability to detect 

and report questionable results is equally important for a production quality system, since 

it promotes confidence in the system.

1.2 Problem Statements

Earlier research by the Old Dominion University Digital Library Group [4] 

explored the feasibility of using a template-based approach to extract metadata 

automatically from large heterogenous legacy collections. The success or failure of the 

template approach is directly tied to document classification which is the ability to match 

the document to the proper template correctly and consistently. While this dissertation 

examines the evolution and all the major components of an automated metadata 

extraction system, the primary focus will be on the problem o f document classification to
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support template-based automatic metadata extraction from large heterogenous legacy 

collections.

1.3 Approach

We have developed and demonstrated a novel system for extracting metadata. 

First, each document is subjected to extraction using each o f the defined document class 

templates, which is a scripted description of how to associate blocks o f text in the layout 

with metadata fields. For example, a template might state that the text set in the largest 

type font in the top-half of the first page is, in that layout, the document title. Then in the 

second part of the process, the best resulting extraction is chosen based on a scoring 

system which attempts to score the confidence in the quality of the individual fields. The 

extraction is then validated a second time to evaluate to quality of the extraction and 

possible flagging for human recognition.

We have tested our process and software against the DTIC collection, which 

contains more than one million documents and which adds tens of thousands of new 

documents each year. The documents are diverse, including scientific articles, slides 

from presentations, PhD theses, (entire) conference proceedings, promotional brochures, 

public laws, and acts of Congress. Contributions to DTIC come from a wide variety of 

organizations, each with their own in-house standards for layout and format, so, even 

among documents of similar kind, the layouts vary widely.

The template-based metadata extraction system is composed of commercial and 

public domain software in addition to components developed by our team and me. 

Documents are input into the system in the form of PDF files.
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In this dissertation I will use the term “image PDF” to refer to a document 

consisting of a series o f scanned page images and the term “text PD F’ to refer to a 

document where the text is actually encoded as PDF instructions. Some documents are a 

mixed format and contain both images of pages and textual content. This commonly 

arises from an image PDF document being passed through an OCR program. These 

documents are treated as text PDF during input processing.

Some documents may contain a Report Document Page (RDP), one o f several 

standardized forms that are inserted into the document when the document is added to the 

collection. For the DTIC collection, more than 50% of the documents contain RDPs 

offering more than 20 metadata fields.

Fig. 1 shows the complete process. The documents enter the input processing 

system where they are truncated and the pages are processed to extract textual content 

which is converted to a standardized XML format. Image PDF pages are processed by an 

Optical Character Recognition (OCR) program to extract the textual content. The first 

extraction step is to search for and recognize any RDP forms present. Any documents 

without recognized forms enter the non-form extraction process. The non-form 

extraction process generates a candidate extraction solution from the templates available. 

After extraction, the metadata from both form and non-form processing enter the output 

processor. The output processor is comprised of two components: a post-processing 

module and a validation module. The post-processing module handles cleanup and 

normalization of the metadata. The final automated step of the process is the validation 

module which, using an array o f deterministic and statistical tests, determines the
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acceptability o f the extracted metadata. Any document that fails to meet the validation 

criteria is flagged for human review and correction.

Input
D ocum ents

-PDF

XML mods) o( document

-Extracted Metadata—,

Unresolved Documents
P o s t

P ro ce ss in g
Ertratted Metadata-----

U ntrusted
M etadata
Outputs

Validation

Hum an
R eview &

Correction

Final 
M e tad a ta  

O utput

Nonform
P rocessing

Form  P rocessing

Input 
P ro cessin g  & 

OCR

Form Templates

au

Nonfbrm Tem plates

eagle

Fig. 1. Metadata Extraction Flow Diagram 

1.4 Objectives

Our metadata extraction methodology is dependent upon the quality of the 

templates used and upon document classification, the ability to match the proper template 

to a document. Through our research we have developed a robust scripting language for 

the templates, to address a wide variety o f layout complexities. The cost o f the ability to 

handle these layout complexities is an increased complexity in writing and validating
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templates. I helped to reduce this cost by developing a template creation program that 

provides the user with immediate feedback of about a proposed template.

In this thesis I will examine the evolution of the extraction system from a 

prototype thesis project to a fully capable application. I detail my contributions to the 

system in the areas of input processing, development of a document model and field 

normalization.

Document classification in our system is implemented as a module which applies 

every template available in the system to a document to find which templates will extract 

any data at all. These are called candidate templates. The candidate templates are 

evaluated by a validation module to select the best performing template. This method is 

called “post hoc” classification. The strength of post hoc classification is that the 

templates define the contextual meaning of blocks as well as the geometric relationship 

relative to other blocks as well as the page. In chapter 6 ,1 provide analysis of the 

performance of the post hoc classification and it shows that when the post hoc classifier 

makes a decision it is correct 83% o f the time. But just as significantly, the False 

Positive rate where it incorrectly assigns a classification to documents not represented in 

the template collection is only 8%. The main weakness of the system is that it is sensitive 

to templates with poorly defined or overly general rules. Researching methods to detect 

problem templates and reduce the sensitivity to changes in the template collection was a 

major focus area for my work.

The main area of my research has been into investigating alternative methods o f 

document classification to replace or supplement post hoc classification. I experimented
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with machine learning techniques as an additional input factor for the post hoc 

classification script or the final validation script.

In summary, I have the following objectives in this thesis:

• Detection of problem templates;

• Reducing sensitivity to template changes;

• Document classification to aid post hoc classification;

• Description of evolution of a large software system.

1.5 Organization of the Dissertation

The rest of the dissertation is organized as follows:

Chapter 2 -  Background: In chapter 2 ,1 will present the background and related 

works in the areas of document classification and metadata extraction

Chapter 3 -  Architecture and Framework: In chapter 3 ,1 will describe the major 

development phases of the extraction system as well as details of the architecture. I detail 

the major components looking at in turn: input processing, form processing, non-form 

processing, validation and finally field normalization or post-processing. The chapter 

ends with a description of a series o f experiments I conducted to locate cover pages or 

pages of interest (POINT) in a document.

Chapter 4 -  IDM: In chapter 4 ,1 present an in depth look at the Independent 

Document Model (IDM), a representation of the document suitable for reasoning by the 

rule engine of the extraction system.

Chapter 5 -  Non-form Templates: In chapter 5 ,1 will present the specifications 

and rules of the non-form template language. Following the description of the language
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and usage I detail techniques for reducing the sensitivity of the post hoc classification and 

minimizing the influence of overly general templates.

Chapter 6 -  Experimentation: In chapter 6 ,1 will describe the experiments I 

conducted into testing visual similarity measures for document classification and the 

effectiveness of various machine learning techniques based on these similarity measures.

Chapter 7 -  Conclusions and future work: Finally, in chapter 7 ,1 will summarize 

the contributions o f my research as well as the issues I addressed. In this chapter, I will 

also offer suggestions for future work.
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CHAPTER 2 

BACKGROUND

This chapter summarizes prior research in the areas o f extracting metadata from 

documents automatically and document classification techniques. I will review research 

into metadata extraction approaches in section 2.1 and document classification techniques 

in section 2.2.

2.1 Metadata Extraction Approaches

Existing automated metadata extraction approaches can be divided into two main 

categories: learning systems and rule-based systems.

Learning techniques including SVM [5],[6] and HMM [7] have been employed 

with promising results but to relatively homogeneous document sets. Experiments with 

these techniques [8] suggest a significant decline in effectiveness as the heterogeneity of 

the collection increases. A plausible explanation for this decline is that application of 

these learning systems to heterogeneous collections tends to dilute the internal 

probabilities that control their internal transitions. Evolution (changing characteristics of 

a document collection over time, such as acquiring a new source of documents in an 

unfamiliar format) poses a difficulty for these techniques as well, as they necessarily 

exhibit significant inertia resisting changes to the internally acquired “knowledge” until a 

significant number of examples of the new characteristics have been encountered.

Rule-based systems [9-11] use programmed instructions to specify how to extract 

the information from targeted documents. With sufficiently powerful rule languages, 

such techniques are, almost by definition, capable of extracting quality meta-data.
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Heterogeneity, however, can result in complex rule sets whose creation and testing can be 

very time-consuming [11], Analogies to typical software complexity metrics [12] 

suggest that complexity will grow much more than linearly in the number of rules, in 

which case even a well-trained team of rule-writers will be hard-pressed to cope with 

changes in an evolving heterogeneous collection and maintain a conflict-free rule set.

Our own approach [4, 8] can be seen as a variant of the rule-based approach, but we 

finesse the complexity induced by heterogeneity and evolution by first classifying 

documents by layout, then providing a template for each layout, so that templates are 

independent of one another and individually simple.

The use of machine learning to generate “wrappers” for automated extraction of 

data from web pages is well-documented in the literature [13-22], The head-left-right-tail 

algorithm [23] for inducing wrappers is a common strategy. Some systems provide user 

interfaces which allow the user to specify target elements by highlighting or selecting.

The Data Extraction By Example (DEByE) system described in [24] is one example o f a 

system for inducing wrappers of HTML pages by allowing a user to select and highlight. 

DEByE creates regular expression based building blocks for finding the appropriate data.

The WISDOM++ system [25-27] uses an inductive learning programming called 

Atre to classify documents and metadata extraction. WISDOM is trained using an 

interactive system that first segments and labels training documents. The user then 

corrects the segmentation and block labeling, with WISDOM recording the steps taken. 

Once an adequate number (5-15) of training documents are processed, the system 

attempts to create a set of rules using first order logic. A separate set o f rules is generated 

for classification and extraction. The authors reported classification results better than
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95% but only used three classes, so it is hard to estimate how well the system would 

scale.

Aumann et al. [28] created an information extraction system based on visual 

similarity of documents. They named their document model an “O-tree”, which is a 

hierarchical model built using a bottom-up approach. The O-tree is created iteratively 

from primitive blocks which are joined and expanded into higher level objects based on 

proximity and visual similarity (font size, style, etc). During training, the objects in the 

O-tree are labeled by the user to indicate targeted fields o f interest (i.e., metadata fields). 

Similarity for classification is done by exhaustively searching all training documents by 

attempting a block by block matching. Classification is based on the class with the 

highest average similarity with all the members o f the training documents of that class. 

While they do report accuracy levels of 90%, the feature extraction is fairly coarse, 

concentrating primarily on titles, authors and other easily recognized features.

2.2 Document Classification

As we have noted, accurate document classification is one of the keys to solving 

the heterogeneity problem. Document classification, also known as “document layout 

analysis” or “document image classification”, has been the target of numerous 

researchers in recent years. Mao [29] and Chen [30] noted 27 different systems in their 

surveys o f the literature. The systems used a wide variety o f features, models and 

algorithms in their classification methodologies. Additionally, there was a wide variety 

of the number of classes from very coarse classification schemes using few classes to fine 

grained classification using more than 500 classes. The need for some sort of document
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classification is common to many metadata extraction systems. Reis [31] uses a tree edit 

distance algorithm to classify against sample templates for web page extraction.

2.2.1 XY Cut approaches

A common approach to document classification is using XY cuts where page 

segmentation is accomplished using alternating horizontal and vertical cuts on whitespace 

until a threshold is reached. Laven [32] enhances the basic XY cuts by including 

information from the surrounding features when deciding to make a cut. They tested a 

number of statistical methods for logical labeling of the segmented regions. Baldi [33] 

introduces a modified version of the basic XY segmentation called MXY where they 

include cuts on lines in addition to whitespace. For classification they used a set o f tree- 

grammar rules to increase the coverage o f the training set and used the K Nearest 

Neighbors (KNN) method measuring the tree-edit distance [34, 35]. Maranai [36-38] 

created a technique for encoding the features of the MXY tree into fixed length vectors 

required for many machine learning systems. Maranai also experimented with using tree 

grammar rules for document retrieval [39]. Cesarini used a neural network perceptron for 

classifying from MXY trees created from both OCR output [40] and image inputs [41 ]. 

Nattee [42] tested an on-line induction learning program called Winnow for document 

layout analysis and classification.

Appiani [43, 44] created a classification system using decision tree based machine 

learning and using MXY trees as the document model. They reported success rates in 

excess of 90% when classifying invoice forms into 9 separate classes. One factor in their 

success is that because MXY trees include lines as cut points, they are particularly suited 

to analyzing forms. When combined with the consistent cut patterns o f an MXY
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segmentation of a form, a decision tree can be expected to do a good job of classifying. 

They demonstrated excellent results in their experiments with approximately 500 

documents and claim the system would scale appropriately in the area of form 

processing.

2.2.2 Visual layout approaches

Alternative methods using image analysis and semantic matching have also been 

explored in the literature. Hu [45-47] divided the page into a grid of M by N blocks. 

Each block is marked as text, whitespace or graphic depending on the content. They 

classified based on the edit distance between encodings. Van Beusekom [48] compared 

the similarity of documents based on measuring the Manhatten distance between all the 

blocks on the page. Le [49] used a combination o f geometry-based and content-based 

zone features. These features are encoded in strings and classification is done using a 

rule-based learning system. Shin [50] and Eglin [51] measured visual similarity by 

segmenting the page into blocks and recording features about each block. Pages were 

clustered using K-means measurements.

2.2.3 Multiple classifiers

The use of multiple classifiers for classification is common in the areas of 

handwriting analysis and pattern recognition [52-56], Duin [57] evaluated a number of 

fixed combination rules, Maximum, Median, Mean, Minium, Product and 

Majority(Voting) and found that selection of a combination scheme is dependent on the 

type of data and classifiers in use. They also found that the best results are obtained 

when the classifiers function on complementary features, an observation also noted by
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other investigators [54, 58, 59]. Wenzel [60] applied a voting mechanism to combine 

two disparate classifiers for document classification.
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CHAPTER 3 

ARCHITECTURE AND FRAMEWORK

We have created a template-based metadata extraction system to solve the 

problem of automating the metadata extraction from heterogenous legacy collections.

The templates contain a set o f rules for locating desired metadata in a specific type of 

document layout.

This chapter examines the evolution of our extraction system in section 3.1, from 

a prototype thesis project to a complete system capable of handling extraction from 

multiple heterogenous document collections. It examines the major development phases 

of the system as well as the details o f the architecture. After reviewing the evolution of 

the architecture, I detail in section 3.2, the major components looking at, in turn: input 

processing, form processing, non-form processing, validation and finally field 

normalization or post-processing. Following the architecture overview, I review the 

internal flow of information in the system, section 3.3, and the operation of the GUI, 

section 3.4. Finally in section 3 .5 ,1 detail a series o f experiments I conducted to 

investigate how to locate pages of interest (POINT) that may contain metadata along with 

various extraction engine and field normalization improvements.

3.1 Evolution of architecture over time

I joined the project just after the release of the Version 1 prototype system which 

was based on the PhD work of Tang [4] and was capable o f extracting from four types of 

RDP forms. Version 1 used OmniPage 14 as the input source to convert PDF documents 

into XML for processing. My earliest work with the project was to investigate methods
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for detecting Pages o f Interest also known as POINT pages — pages which have the 

potential to contain metadata suitable for extraction, e. g. cover pages or title pages. As 

we will see, this work served to validate our design decision to limit processing to only 

the first and last five pages of each document. I also developed our initial field 

normalization module to clean up “Distribution Statement” fields in the RDP form using 

an Authority File and fuzzy string matching. The next phase of development involved 

expanding the system to handle nonform documents. We investigated several methods 

for classifying documents into template classes including expanding on my earlier 

POINT page algorithms. None of these methods proved reliable enough for use. Unable 

to find a suitable existing classification methodology, we decided to leverage work done 

by our metadata validation group to produce and innovative method o f post hoc 

classification to select the best results from applying all the templates available in the 

system [61]. Post hoc classification will be discussed in detail later in this chapter. 

During these investigations we introduced the Independent Document Model (IDM), to 

be discussed in Chapter 4, which I developed in response to the introduction of a non

compatible XML schema in OmniPage 15. All o f these advances were released as 

Version 3.0. The release was followed by feasibility study for a new collection of 

documents from the GPO EPA. One of the requirements of the study was to extract the 

metadata into a standardized MARC XML format [62] which required an expansion of 

the field normalization modules. Version 3.x saw four different releases as we expanded 

the commands available to template writers in the template language as well as the 

validation and field normalization modules. Version 3.4 was marked by a complete re

engineering of the entire system into a series of data transformers joined by connectors.
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This allowed for robust testing of individual modules as well as flexibility to add or 

change features by connecting new transforms. I also introduced a separate template 

editor application that I created to assist the user in quickly designing and debugging new 

templates. Release 4.0 was the first release to offer native (text) PDF handling which 

allowed most documents to be processed without the need for OCR. This avoids a major 

source of error in typical document processing and also speeds up processing 

considerably. We will now examine the major components o f the architecture in detail.
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Fig. 2. Architecture of Extraction Process

3.2 Architecture overview

In the remainder of this chapter we will be referring to the final version of the 

architecture, as seen in Fig. 2, unless otherwise noted. In this section I will introduce the 

functions of the major components of the extraction system: input processing, form 

processing, non-form processing, validation, and field normalization.
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3.2.1 Input processing

The entry point into the extraction system is the input processing module which is 

responsible for reading source documents and transforming them into segmented IDM 

format documents for further processing by the extraction engines. This section 

describes the components of the input processing module: page selection method; 

processing of OCR and XML production; direct processing o f text PDF documents and 

final transformation into IDM format.

3.2.1.1 Page Selection

The source documents come into the system as PDF format files. These 

documents range from several pages to hundreds of pages in length. My POINT page 

selection work in section 3.5.1, has shown that the metadata we are interested in can 

typically be found in the first or last five pages o f a document. While looking for 

metadata in the first five pages makes intuitive sense including the last five was based on 

the observation that many documents contained an RDP form appended to the end of the 

document. The system originally used the programpdftk [63] to split the first and last 

five pages out of the document and into a new PDF document. This truncated PDF 

document was fed into a commercial optical character recognition (OCR) for conversion 

into an XML format.
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OCR

Fig. 3. Original Input Processing

3.2.1.2 OCR Processing XML Formats

As noted above, the first couple of versions were based on the Omnipage Pro 14 

XML format. When Omnipage upgraded to version 15, the XML schema used for output 

was incompatible with the previous version. Due to the extremely tight coupling between 

the extraction code and the Omnipage Pro 14 schema, converting to a new version would 

have entailed a large expenditure o f developer resources. The IDM schema detailed in 

chapter 4 is designed to eliminate the tight coupling with any specific program. The 

choice of moving to IDM was validated when DTIC subsequently moved to Luratech’s 

OCR program and it took me less than 40 hours to create an XSL stylesheet to convert 

Luratech to IDM.

3.2.1.3 Text PDF usage

The Version 4.x introduced faster and more accurate processing for Text PDF 

documents, which changed the flow shown in Fig. 3. As shown in Fig. 4, the page 

extraction (viapdftk) transform disappears. In its place is the Text PDF module which 

can extract the IDM directly from the file without need to scan into an OCR program.
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The Text PDF module was built using Apache PDFBox Java PDF library [64], The 

module also detects pages which may need OCR and sends just those pages to the OCR 

for recognition. The two outputs are merged into a single set of pages which are merged 

and segmented, organized into words, lines, paragraphs, regions, etc.

Backup
CMprriPDT

O CR

OCR-dnpanlert XML

OCR 10 DM

Fig. 4. Final Input Processing Dataflow

3.2.2 Form processing

Our experience with the DTIC collection has shown that roughly 50-60 percent of 

the documents contain an RDP form provided by the document submitter. The regular 

layout present in an RDP form makes it an attractive target for a template-based 

extraction process. In order to take advantage of the geometric relationships between 

fields in a form, we created an alternate version of our template language and extraction 

engine. The metadata fields are specified by a matching string and a set o f rules 

indicating a positional relationship to one or more other fields as seen in Fig. 5. The 

number and layout of the fields for each different form constitute a unique signature for
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that form class. If a template describing form A is applied to a document containing form 

B, the resultant metadata returned will contain few, if any, fields. We have leveraged this 

property in the design of our extraction process. Input processing finishes with IDM 

based documents exiting the input processor and entering the form processor. The 

processor is populated with a template developed for each version of RDP form found in 

the collection. We have found six different RDP forms within 9825 documents in the 

DTIC collection. The form processor runs the extraction process against the document 

using each of the templates and then selects the template, which returns the highest 

percentage of detected fields. If the form processor fails to match any template the 

document moves into the non-form extraction process described below. The extracted 

metadata is sent into the output processor.
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<field num="19"xlme>19. SECURITY CLASSIFICATION OF ABSTRACT 
<fline>

</fleld>
<field num="20"xline>20. LIMITATION OF ABSTRACT</line>
</fieId>
</f!xed>
<extracted>
<metadata name="">

<rule reIation="beIowof" field="l,,/>
<rule relation="leftoF' field="2"/>
<rule relation="aboveof * field="4|5"/>

</metadata>
<metadata name="ReportDate">

<rule relation="belowof" field="2,,/>
<rule reIation="rightoF' field=,,l ,,/>
<rule relation=,,leftoF' field="3"/>
<rule relation="aboveof' field="4|5"/>

</metadata>

Fig. 5. Form Based Template Fragment

3.2.3 Non-form processing

Any documents which do not contain a recognizable RDP form are passed on for 

further processing by the non-form engine, which is also a template-based extraction 

methodology. However in the case o f the non-form engine the templates are designed 

based on layouts of individual document classes. Each template contains a set o f rules 

designed to extract metadata from a single class of similar documents. Fig. 6 shows a 

template example. Each desired metadata item is described by a rule set designating the 

beginning and the end of the metadata. The first step in constructing a template is to 

identify a set of documents which share a structural or visual similarity. Once a class is
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selected, the template author determines the set o f rules for each metadata tag by 

identifying the appropriate function to select the beginning and the end of the tag. The 

non-form template language and structure are discussed in detail in Chapter 5.

The two main parts of the non-form process are the classification of a document 

by assigning it to the document layout class and the application of the template for the 

selected class to extract the metadata. We investigated multiple methods of 

implementing a document classification method as detailed below. None of the methods 

proved to be discriminating enough to be a reliable template selector. While I was 

investigating classification methods, our validation group completed initial development 

of the validation modules for evaluating the quality of extracted metadata. As noted 

previously in the evolution discussion, we replaced the a priori document classification 

methodology with post hoc classification.



24

<structdef pagenumber="l" templateID=”amaracM> 
<DescriptiveNote >

<begin inclusive="current,*>
<stringmatch case=,,no" loc="beginwith">

Award Number:
</stringmatch>

</begin>
<end>onesection</end>

</DescriptiveNote>
<UnclassifiedTitle require="yes" m in="l" max="l"  

fUter="(?i:TITLE):\s+(.*)">
<begin inclusive="current">

<stringmatch case^ ’no" loc="beginwith">TITLE: 
</stringmatch>

</begin>
<end inclusive^" before">

<stringmatch case="no" loc='*beginwith”> 
Principal Investigator:

</stringmatch>
</end>

</UnclassifiedTitle>

Fig. 6. Non-form Template Fragment

3.2.4 Validation

The function of the validation module is to reliably determine the acceptability o f 

extracted metadata. The metadata record extracted from a document will typically 

consist of many fields. Each field may be subject to several different validation tests. 

Which tests are most appropriate will vary from one field to another. [65]

The validation engine examines a set o f metadata produced by earlier stages of 

the program and attempts to produce a score indicating how much confidence may be
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placed in that result. These confidence values range from 0.0 (completely untrustworthy) 

to 1.0 (highly trusted).

The confidence values are used for two purposes. The final confidence for the 

output (the “validation score') is used to decide whether to call a human operator's 

attention to the output for review and possible correction. An intermediate “classification 

score” is computed earlier to help determine which template has done the best job for a 

given document and therefore which candidate set of extracted metadata to send along to 

the output module. This process is called “post hoc” classification. [61]

The validation engine provides a number o f different tests that can be applied to 

different data fields [66]. The data for these tests is constructed by analyzing large 

samples of metadata for the collection for data values for each field, which is used both to 

construct the dictionary and to estimate the statistical properties of the rate o f recurring 

entries that can be expected. For the DTIC collection we analyzed over 850,000 sets of 

historical metadata fields. The provided validation tests are:

• DateFormat: is the data formatted as a date.

• Dictionary : what percentage of the words in the data can be found in a 

dictionary? How does this number compare to a statistical mode of “typical” 

past data for this field?

o By default, an English-language dictionary is used, but alternate 

dictionaries, e.g., other languages, or dictionaries o f technical terms 

such as chemical names (used in conjunction with the GPO EPA 

collection) can be used.
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o For data fields that have specialized vocabularies, special-purpose 

dictionaries can be build. For example, a dictionary o f common first 

and last names is available for use in checking PersonalAuthor fields.

• (Not)Empty: Is the data field empty?

• Length : Does the number o f words in the data conform to a statistical mode of 

“typical” past data for this field?

• Regexp: Does the data match a particular pattern of characters (a “regular 

expression”)?

• Phrase (Dictionary): what percentage o f the K-word-long phrases in the data 

can be found in a dictionary of phrases? How does this number compare to a 

statistical mode of “typical” past data for this field?

• Stub: Returns a specific confidence value - mainly for testing purposes.

In addition, the validation engine provides a number o f functions that can be used 

to modify confidence values, to combine confidence values from several tests for the 

same field, and to combine confidence values from several fields into an overall score for 

the entire metadata record.

o Average: compute the mean average o f several confidence values. Can be 

weighted.

o Max: take the largest o f several confidence values.

o Min: take the smallest of several confidence values.

o Rescale: multiply a confidence value by a scaling factor (larger or smaller) 

and/or add/subtract constant values from it.

o Sum: compute the sum of several confidence values. Can be weighted.
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The choice of which tests to apply to which metadata fields and o f how to 

combine the results of those various tests is controlled by a “validation script”, which is 

executed by the validation engine. Separate scripts are used to compute the classification 

score and the final validation score, though these scripts are usually closely related. The 

script used for post hoc classification is different from the final validation script. The post 

hoc classification script uses a sum function at the outer level since we want to select the 

template which extracts the most metadata, while the final validation script uses a 

minimum function. The minimum function serves as a threshold below which the 

extracted metadata is suspect and requires human intervention.

Fig. 7 shows a fragment of the validation script for the DTIC collection. The 

fragment indicates that the overall classification score is the minimum (<val:min>) of the 

confidence scores for the individual fields.

The first field for which such a score is computed is UnclassifiedTitle (<val: field 

nam e-‘UnclassifiedTitle”>). The score for that field is the smaller (another <val:min>) 

of two tests: dictionary and length. Each o f these tests relies on our having previously 

collected statistics on titles from prior metadata records - specifically knowing what 

percentage of words in a typical title can be found in an English dictionary and what is 

the range of words found in typical titles with in the specific collection.

The next field shown is PersonalAuthor, and the score for an author is the 

minimum of the scores for three different tests. One is a test for length (number of 

words). The second is a fairly complicated pattern (regular expression) designed to check 

for a name in “last-name-first” format. The final test is a “phrase dictionary” check which
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looks to see how many of the words (phrases of length one) in an extracted name can be 

found in a phrase dictionary built from names occurring in older DTIC metadata records.

<?xml version=”1.0"?>
<val:validate collection^’dtic"
xmlns:val=" http://www.cs.odu.edu/extract/validation">
<val:min>

<val:field name="UnclassifiedTitle">
<val:min>
<val: dictionary/>
<vaI:Iength/>

</vaI:min>
</vahfield>

<val:f!eld name=,,PersonalAuthor">
<val:min>

<val:Iength/>
<val:regexp pattern="[-'A-Za-z]+(?: [-A-Za-zJ+){0,2}(?:

(?:Jr|Sr|II|III|IV|V|VI)[.]?)?,(?: (?:[A-Z] [.]?|(-A-Za-z]+)){l,2} "/> 
<val:max>

<val:phrases Iength=”l ,,/>
</val:max>

</val:min>
</val:f!e!d>

<val:field name="ReportDate">
<val: regexp pattern="(?:(?:\d\d?) 

)?(?:(?:JAN|FEB|MAR|APR|MAY|JUN|JUL|AUG|SEP|OCT|NOV|DE 
C) )?\d\d\d\d"/>

</vahfie!d>

<val:fleld name="DatesCovered">
<val:regexp pattern="(?:(?:\d\d?) 

)?(?:(?:JAN|FEB|MAR|APR|MAY|JUN|JUL|AUG|SEP|OCT|NOV|DE 
C) )?\d\d\d\d (—|-|to) (?:(?:\d\d?)
)?(?:(?:JAN|FEB|MAR|APR|MAY|JUN|JUL|AUG|SEP|OCT|NOV|DE 
C) )?\d\d\d\d"/>

</vaI:fleld>

Fig. 7. Validation Script Fragment for DTIC Collection

i

http://www.cs.odu.edu/extract/validation
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The tests that are currently used with the various DTIC fields are as follows:

• Abstract: length, dictionary (English)

• AbstractClassification: pattern

• AbstractLimitation: pattern

• ContractNumber: pattern

• DescriptiveNote: dictionary (English)

• DatesCovered: pattern

• Descriptor: pattern

• DescriptorClassification: pattern

• DistributionStatement: pattern

• PersonalAuthor: length, pattern, phrase dictionary (1)

• ReportClassification: pattern

•  ReportDate: pattern

• ReportType: dictionary

• SupplementaryNotes: dictionary (English)

• TitleClassification: pattern

• UnclassifiedTitle: length, dictionary (English)

The reference models for the DTIC collection used to collect the names phrase 

dictionary and to determine average and standard deviation o f field lengths and of the rate 

of word occurrence in dictionaries and phrase dictionaries are obtained by analysis of a 

samples of approximately 850,000 DTIC metadata records. The GPO Congressional and
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EPA collections used separate reference models tailored specifically for those collections. 

These models are reconstructed a part of the software build process.

3.2.5 Field Normalization

The original post processing module was a module I designed to use an authority 

file and fuzzy string matching to correct OCR errors found in the Distribution Statement 

fields of the form processor. In the process of designing the post hoc classification 

system, we recognized the need to standardize the extracted inputs for the validation 

script to remove extraneous text or separate fields into multiple entries as needed. Our 

personal names post processor eventually evolved from a simple regular expression rule 

set into a named entity extractor that can separate multiple authors or corporate authors 

from personal names. Field normalization modules are injected into the data flow in 

multiple locations, after extraction prior to classification, after classification prior to 

validation, and after validation to format the metadata into the final desired format. One 

of the requirements o f the GPO project was to deliver the final extractions encoded as 

MarcXML [62], We added a normalization module to the flow which is invoked after the 

final validation of the selected metadata. Fig. 8 shows an example of the metadata 

extracted from a GPO-EPA document and Fig. 9 shows the output transformed into the 

MARCXML schema.
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<metadata confldence="0.649" templateId="coverHeader-13b,,> 
<title_245a confidence="0.819">Air emissions from scrap tire 

combustion</title_245a>
<reportNumber_500 confidence3 " 1.0">EPA-600/R-97- 

115</reportNumber_500>
<date_500 confidence3 " 1.0 ">Oct. 1997</date_500> 
<personalAuthor_245c confidence="0.649">Joel I. 

Reisman</personalAuthor_245c>
<publisher_260b confidence3 "0.919">U.S. Environmental Protection 

Agency, Office of Research and Development</publisher_260b> 
<placeOfPubl_260a confidence="0.902">Wasi»ington D.C. 

20460</placeOfPubl_260a>
<dateOfPubl_260c confidence3 " 1.0">1997</dateOfPubl_260c> 
<note_500 confidence="0.0" warning="unvalidated">EPA Contract 

No. 68-D30035</note_500>
</metadata>

Fig. 8. Example GPO-EPA Metadata Extract
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<marc:collection xmlns:marc="http://www.loc.gov/MARC21/sliin" 
xsi:schemaLocation=”http://www.loc.gov/MARC21/slim 
http: //www.loc.go v/standards/marcxml/sch ema/MARC21 slim, xsd M > 
<marc:record>

<marc:leader>00441cmm a22001092a 4500</marc:leader>
<marc: controlfield tag="003">DGPO</marc: controlfield>
<marc: controlfield tag="005 ”>200948213228.8</mar c: controlfield> 
<marc:dataf!eldtag="035" indl=” ” ind2=" ">
<marc:subfield code="a">[vinotire_eng_9978369316002J</marc:subfield> 

</mar c: datafield>
<marc:datafield tag=”245” indl=" " ind2=" ”>
<marc:subfield code=”a">Air emissions from scrap tire 

combustion</marc:subfield>
<marc:subfield code="h">[electronic resourcej /</marc:subfield>
<marc:subfield code="c">Joel I. Reisman.</marc:subfield>

</marc: datafield>
<marc:datafield tag="260" indl=" ” ind2=” ">
<marc:subfield code="a">Washington D.C. 20460:</marc:subfield>
<marc:subfield code=”b">U.S. Environmental Protection Agency, Office of 

Research and Development,</marc:subfield>
<marc:subfield code=”c”>1997.</marc:subfield>

</marc:datafield>
<marc:datafield tag="300” indl=" " ind2=" ">
<marc:subfield code=”b">Digital, PDF file.</marc:subfield> 

</marc:datafield>
<marc:datafield tag="500” indl=" " ind2=" ">
<marc:subfield code=”a">"Oct. 1997."</marc:subfield>

</marc:datafield>
<marc:datafield tag="500" indl=" ” ind2=” ">

<marc:subfield code="a">”EPA Contract No. 68-D30035.”</marc:subfield> 
</mar c: datafield>
<marc:datafield tag="500" indl=" " ind2=" ">
<marc:subfield code=”a">"EPA-600/R-97-115."</marc:subfield>

</marc: datafield>
</marc:record>

</marc:collection>

Fig. 9. Resulting Output After MarcXML Transformation

We can see the effects of the field normalization process by following an example 

through the process. Fig. 10 shows the raw output from the application of the

http://www.loc.gov/MARC21/sliin
http://www.loc.gov/MARC21/slim
http://www.loc.go
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“rand_arroyo 1” template. At this step in the process, the Personal Author field includes 

3 authors and some extraneous text. A special field named “ template” is also present. 

The leading underscore in the name is a flag for future field normalization.

<candidate templateld=" rand_arroyo_l ">
<paper templateId="rand_arroyo_l ”>

<metadata>
<_template>This product is part of the RAND Corporation 

occasional paper series. RAND</_template> 
<UnclassifiedTitle>Oversight of the 

Liberian National Police</UnclassifiedTitle>
<PersonalAuthor>David C . Gompert, Robert C . Davis ,

Brooke Stearns Lawson
Prepared for the Office of the Secretary of Defense</PersonalAuthor> 

<DistributionStatement>Approved for public release; distribution 
unlimited</DistributionStatement>

<ReportDate>2009</ReportDate>
</metadata>

</paper>
</candidate>

Fig. 10. Result of Initial Non-form Processing

After the initial extraction, the extracted metadata is processed to put the data into 

the correct format for executing the post hoc classification script. Fig. 11 contains the 

output o f the classification script, the PersonalAuthor field has been normalized into three 

PersonalAuthor fields and the extraneous text is discarded. Note the confidence o f the 

“ template” field is 100.0, this is a special boosting value to help separate this template 

from similar templates.
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<selected>
<paper templateId="rand_arroyo_l ">

<metadata>
<_template confidence=" 100.0">This product is part of the RAND  

Corporation occasional paper series. RAND</_template>
<UnclassifledTitle confidence=" 0.851 ">Oversight of the Liberian 

National Police</UnclassifiedTitle>
<PersonalAuthor confidence=,,0.952,,>Gompert, David 

C</PersonalAuthor>
<PersonalAuthor confidence="0.952">Davis, Robert 

C</PersonalAuthor>
<PersonalAuthor confidence="0.952" >Lawson, Brooke 

S</PersonalAuthor>
<DistributionStatement confidence="1.0">Approved for public release; 

distribution is unlimited.</DistributionStatement>
<ReportDate confidence="1.0M>2009</ReportDate>

</metadata>
</paper>
</selected>

</classification>

Fig. 11. Sample Classification Script Output

The standardization step prepares the selected metadata for final validation 

scoring. Fig. 12 shows the output from the final validation step, we see that the 

“ template” field is no longer needed and the final confidence score has been applied. 

Note that the confidence score for the UnclassifiedTitle differs from the score used in the 

classification step. The reason for the difference is that the classification score is based 

on the average score of the dictionary and length tests, while the final validation score is 

the minimum of the dictionary and length tests.
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<?xml version=”1.0" encoding=”UTF-8”?>
<metadata confidence^'O^b" templateId=,'rand_arroyo_l,,> 

<DistributionStatement confidence="1.0"> Approved for public 
release; distribution is unlimited.</DistributionStatement> 
<PersonalAuthor confidence="0.952">Gompert, David 

C</PersonalAuthor>
<PersonalAuthor confidence="0.952">Davis, Robert 

C</PersonalAuthor>
<PersonalAuthor confidence="0.952">Lawson, Brooke 

S</PersonalAuthor>
<ReportDate confidence=,,1.0,,>2009</ReportDate> 
<UnclassifiedTitle confldence="0.846',>Oversight of the 

Liberian National PoIice</UnclassiffledTitle>
</metadata>

Fig. 12. Result from Validation Script

The final step in processing is to convert the extracted metadata into the “.cit” file 

and a “.txt” file for ingestion into the DTIC system. The .cit file is intended to carry the 

actual metadata and the .txt file contains auxiliary information, including any warning 

messages generated by the validator regarding untrusted output values that should be 

reviewed by a human operator.
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TABLE 1 
Cit Code Mapping

Cit Code Field Name
3 DescriptorClassification
6 UnclassifiedTitle
9 DescriptiveNote
10 PersonalAuthor
11 ReportDate
12 PaginationOrMediaCount
14 ReportNumber
15 ContractN umber
16 ProjectNumber
17 TaskNumber
18 Moni torAcronym
19 MonitorSeries
20 ReportClassification
21 SupplementaryN otes
22 DistributionStatement
25 Descriptor

25b WorkUnitNumber
25d ProgramElementNumber
27 Abstract
28 AbstractClassification
33 AbstractLimitation
34 ReportType

The mapping between .cit field numbers and the metadata field names used in the 

templates is shown in Table 1. Fig. 13 contains the final output of our example in .cit 

format.
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Field-11,2009 
Field-06, Oversight of the 
Liberian National Police 
Field-10, Gompert, David C 
Davis, Robert C 
Lawson, Brooke S
Field-22, Approved for public release; distribution is unlimited. 
Field-25c,

Fig. 13. Sample .cit File Text

3.3 Explanation of transform dataflows

Beginning with version 3.4, the system was re-engineered into a series o f data 

transformers joined by connectors. Each module/function is implemented as a 

transformer object which takes as input a dataflow object and emits a dataflow object as 

output after performing the transformation procedure. This plug-in type of design allows 

us to add new capabilities or test experimental capabilities simply by inserting a new 

transform into the processing chain. The state of each transform is retrievable by the 

system for instrumentation purposes like tracking in the GUI, as seen in Fig. 14 below. 

The operation of the GUI is explained in the next section.
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ODU M atadata  Extractor - (dt)c)
Fti# Archive Help

ADA494963 
AD A495104

[ PPfgfrWPH [ 
n e e d s  OCR

12:1
ADA49S137 12:19:3*
AD A4 00340.. 
ADA40788S..

1 2 :23C 43 
1 2 :2 4 :3 8

ADA497004..
AOA497942..
A O A 498325.Â498339..

1 2 :2 5 :4 5
12^25 :45  
1 2 :2 5 :4 5

*r nrr x  e M :

JB&S3L.

n e e d s  OCR

aaOCR88 001

c mr a ^ mKti it l,i—LM r - i ,"".1 mrr_rrj
5:49 

h  2 :25 :48

EP SHEET.extract. regression preparation *sl 417500 
2 2 *
DEBUG IDF Process): Startirg transform Saved on document ADA497942.NF.pgsei 417501 
EP_SHEET:eD£8UG |DF Process) S tartng  transform Saved on document ADA497942 KF.pgsel 41 7501 
EP SHEET:extract.regression.preparation »sl 417500
OEfeJG [DF Process): Startirg transform S~aved on document ADA497942 NFpgsei 417501
_ tC i

Fig. 14. Extraction GUI

3.4 Operation of software and implementation of GUI

The following description of the GUI operation is adapted from the Metadata 

Extraction Software, Operation manual [66]. As the software is running, the GUI allows 

the user to supply inputs to the program and to monitor progress being made on analyzing 

documents. The various columns shown in Fig. 14 for each document represent a 

specific step in the extraction of metadata from a document. As the document passes 

through the various steps, the columns reflect the status of each step (Fig. 14):

Green indicates a step that completed successfully.

Yellow is a step in progress.
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White is a process that started but was found to be unsuited to the document.

Grey indicates a step that has not started or that is not required for this document.

Dark red indicates a step that failed. Such failures should be reported to the 

support staff.

Pale red indicates a step that failed but for a document specific reason.

The meaning of the pale red is context sensitive to the processing phase. A pale 

red “no templates” entry under the Classification column indicates that the software could 

not find a matching template for that document. This could be because the document 

itself is in such poor condition that nothing much could be done with it, or because it is a 

new type of document and no template has yet been written for its layout.

A pale red “untrusted” entry in the Validation column indicates that metadata was 

extracted, but that the software itself judges the output as being suspicious and is 

requesting human inspection and, if  necessary, correction o f the output. Clicking on this 

entry will open up a metadata editor that will allow direct correction of the metadata. The 

failure can be handled in accordance with established procedures. The most common 

reason for this is that metadata was extracted for a document, but the validation step 

decided that one or more output fields looked suspicious and is recommending that they 

be reviewed or corrected by a human.

3.5 Issues

In the following sections, I detail the search for POINT pages and then examine 

some of the incremental improvements we created to support the GPO-EPA collection 

and finish with a look at post-processing improvements.
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3.5.1 POINT page experiments

One of our earliest research questions was to determine if it is possible to locate 

pages in a document that have a high probability o f containing extractable metadata. One 

of my lines of inquiry was to investigate if  I could identify a set of rules for identifying 

POINT pages based on various statistics about the composition of a page.

3.5.1.1 Experimental setup

I selected 108 documents from the DTIC collection and manually classified them 

into 12 classes based on the cover pages contained in each document. The documents 

were then processed into IDM format using the statistics option which produces both 

document and page level statistical information about the document. Fig. 15 shows an 

example of the IDM with statistics output. Table 2 contains the definitions of each o f the 

statistics used. Table 3 shows example documents for each o f the 12 classes along with 

statistic averages for the documents in each class.
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TABLE 2 
Document Statistics Field Names

Document Level 
Metric Definition
avgWordPage Average number of words per page
docAvgFontSize Average font size for document
docFontMode Font used by the greatest number of words in the document
docF ontModePct Perecent of document using the Mode Font value
docFontSizeMode Font size mode for the document
docStdevFontSize Standard deviation for the font size for document
docWords Total Words in document

stdevWordPage
Standard deviation for the number of words per page for 
document

Page Level 
Metric Definition
avgFontSize Average font size for words on page
avglinesize average font size per line
avgwordline Average number of word per line on page
block Number of regions on page
capline Number of lines in all Caps
digitend Number of lines ending in digits
digitline Number lines composed of only digits

fontMode Font used by greatest number of words on page

fontModePct Percent of words using Mode Font

fontSizeMode
Font size used by greatest number of words on 
page

letter number of letters on page
line Number of lines on page
shortline5 Number of Lines with less than 9 words
shortline7 Number of Lines with less than 9 words
shortline9 Number of Lines with less than 9 words
stdevFontSize Standard deviation for font size on page
word Number of words on page
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TABLE 3
POINT Page Class Sample Documents and Statistics

Cover
Class

Document Level 
Metric

Metric Averages for 
the cover 
page

Averages 
for the 
rest o f  
pages

Sample Image

1 docAvgF ontSize: 
1104.48

shortline9 12.2 20.18

avgWordPage:
277.83

word 67.83 283.13

docWords:
24808.11

avgwordline 4.71 8.63

docFontModePct:
0.89

avglinesize 1348.47 1091.46

docStdevFontSize: fontSizeMode 1240 1087.58
116.41
docFontSizeMode:
1 in s 71

block 2.77 4.19
1 1 UJ. / i
stdevWordPage:
143.87

letter 

short line7

305.89

10.94

1245.4

17.98
avgFontSize 1318.36 1094.13
shortlineS 7.86 15.89
digitline 2.69 16.93
capline 9.23 13.75
digitend 2.09 8.48
fontModePct 0.89 84.37
line 14.03 37.52

2 stdevWordPage: short line9 10.29 22.72
137.27
docAvgF ontSize:
1111.01
avgWordPage:
239.13
docWords: 27401.0 
docF ontModePct:

word

avgwordline

avglinesize
fontSizeMode

47.86

4.21

1758.15
1657.14

243.74

6.93

1079.23
1079.46

B  h i

WkWyort
1 ......................... .
1

0.85 B
S _________

docStdevFontSize: block 6.86 5.64
146.68 1
docF ontSizeMode: letter 259.86 1102.8
1128.57

shortline7 9.86 94.59
avgFontSize 1667.92 1082.56
shortlineS 7.43 18.89
digitline 2.71 17.69
capline 7.29 15.5
digitend 2.14 10.95
fontModePct 0.97 0.91
line 11.43 21.02
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TABLE 3 Continued

Cover Document Level 
Class Metric

Metric Averages for 
the cover 
page

Averages 
for the 
rest o f  
pages

Sample Image

stdevWordPage:
166.51
docAvgFontSize:
1097.89
avgWordPage:
230.4
docWords:
16693.62
docFontModePct:
0.8
docStdevFontSize
: 140.59
docFontSizeMode
: 1137.5

short line9 

word

avgwordline

avglinesize

fontSizeMode

block

letter

shortline7

12.5

55.62

4.24

1348.6

1262.5 

4

229.12

12.12

17.84

235.6

7.72

1039.34

1054.33

3.3

1060.96

16.21
avgFontSize
shortline5
digitline
capline
digitend
fontModePct
line

1333.48
10.5
2.5 
9.62 
2
0.83
13.12

1053.35
13.93
11.12
11.34
6.36
80.82
31.81

ID A

stdevWordPage:
127.71
docAvgF ontSize:
1171.14
avgWordPage:
355.81
docWords: 5235.6 
docFontModePct:
0.86
docStdevFontSize
: 155.84
docFontSizeMode
: 1220.0

short line9 

word

avgwordline

avglinesize
fontSizeMode

block

letter

avgFontSize
short line5
digitline
capline
digitend
fontModePct
line
short line7

14

278.6

8.51

1252.41
1200

2.2

1331

1216.25
9.4
9.8
9.8
4.2 
0.96
32.2
11.6

18.73

365.81

9.88

1115.4
1135.66

2.8

1714.85

1126.01
13.19
13.97
11.51
3.01
87.62
41.24
15.75

. s ..-s

m m m sm rn

m m m m
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TABLE 3 Continued

Cover Document Level 
Class Metric

Metric Averages for 
the cover 
page

Averages 
for the 
rest of 
pages

Sample Image

stdevWordPage:
137.52
docAvgFontSize:
1151.36
avgWordPage:
296.6
docWords:
26694.0
docFontModePct:
0.88
docStdevFontSize
: 142.37
docF ontSizeMode
: 1200.0

shortline9

word

avgwordline

avglinesize

fontSizeMode

block

letter

avgFontSize
shortline5
digitline
capline
digitend
fontModePct
line
short line7

9

3

1300

1300

3

58

1288.89
3
0
2
0
1
3
3

42.86

500.3

7.12

1026.56

1040.5

10.85

2212.13

1029.82
22.34
13.3 
14.98 
5.58 
91.59 
71.6 
30.54

R i k IQHM J j UMUt  t a i i c s

stdevWordPage:
91.71
docAvgFontSize:
1186.68
avgWordPage:
223.73
docWords:
17227.0
docFontModePct:
1.0
docStdevF ontSize
: 53.58
docF ontSizeMode
: 1200.0

shortline9

word

avgwordline

avglinesize

fontSizeMode

block

letter

avgFontSize
shortline5
digitline
capline
digitend
fontModePct
line
shortline7

4

24

4.8

1160

1200

4

114

1191.67
3 
0
4 
0 
1
5 
3

6.86

226.36

9.77

1176.72

1171.05

2.16

1057.41

1183.22
4.53
5.61
3.42
2.04
22.49
22.58
5.82

•sSS-gSSsF

—
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TABLE 3 Continued

Cover
Class

Document Level 
Metric

Metric Averages for 
the cover 
page

Averages 
for the 
rest of 
pages

Sample Image

7 stdevWordPage:
131.23
docAvgF ontSize:
1152.25
avgWordPage:
246.88
docWords:
31148.75
docFontModePct:
0.96
docStdevFontSize 
: 100.94
docF ontSizeMode
: 1183.33

short line9 

word

avgwordline

avglinesize

fontSizeMode

block

letter

avgFontSize
shortline5
digitline
capline
digitend
fontModePct
line
short line7

14

50.08 

3.48 

1399.91

1283.33

5.08

273.75

1326.75
10.75 
3
12.25
2.5
0.92
14.33
12.75

13.33

248.93

8.82

1127.94

1155.5

3.88

1092.21

1140.97
9.85 
10.61 
7.51 
4.08
59.85 
28.9 
11.83

s g g s s r
NAVA1. 

K K T G R A M 'A IT  
S t H O O t

THESIS

8 stdevWordPage: shortline9 12.75 14.64
137.93
docAvgF ontSize: word 44.75 154.16
1092.23
avgWordPage: avgwordline 3.69 6.43 c l  -20 s c M s m v r r v  R o u t e  r o b i n

150.24
docWords: avglinesize 1737.1 1031.34 ------------

5202.75
docFontModePct: fontSizeMode 1500 1052.55
0.91
docStdevFontSize block 6.5 5.14
: 181.74
docF ontSizeMode letter 247.25 675.18
: 1125.0

avgFontSize 1682.15 1041.42
shortline5 9 11.05
digitline 3.25 9.73
capline 8.5 8.41
digitend 2.25 4.54
fontModePct 0.78 98.23
line 12.75 22.98
shortline7 11.5 12.81



47

TABLE 3 Continued

Cover Document Level 
Class Metric

Metric Averages for 
the cover 
page

Averages 
for the 
rest o f  
pages

Sample Image

stdevWordPage:
137.79
docAvgFontSize:
1151.97
avgWordPage:
237.37
docWords:
13987.0
docF ontModePct:
0.75
docStdevFontSize
: 257.13
docF ontSizeMode
: 1220.0

shortline9

word

avgwordline

avglinesize

fontSizeMode

block

letter

avgFontSize
shortline5
digitline
capline
digitend
fontModePct
line
short line7

34.6

333.8

7.07

1068.66

1040

5

1574

1045.76
27
20.4
28.4 
6.2 
0.7
50.4
31.6

19.07 

230.02

7.59 

1192.9 

1207.01

5.59

941.46

1213.3
15.69
16.89
12.55
6.41
0.89
17.63
138.84

10 stdevWordPage:
200.63
docAvgF ontSize:
1005.98
avgWordPage:
549.3
docWords:
4113.33
docFontModePct:
0.97
docStdevFontSize
: 135.2
docF ontSizeMode
: 1033.33

short line9 

word

avgwordline

avglinesize

fontSizeMode

block

letter

avgFontSize
short line5
digitline
capline
digitend
fontModePct
line
shortline7

17

523.67 

10.47 

1086.37

1033.33

7.33

2339.67

1051.3
8
5
7
2.33 
0.98
51.67
11.67

18.91

446.99

9.09

1261.9 

1316.29 

4.51

2011.32

1255.52
12.18
11.91 
9.35
2.53 
0.98 
15.44
64.53

A  New PPB S P ro ccw  to  A dvance
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TABLE 3 Continued

Cover Document Level Metric Averages for Averages Sample Image
Class Metric the cover 

page
for the 
rest o f  
pages

11 stdevWordPage: shortline9 32.6 30.38
218.17
docAvgFontSize: word 570 391.66 M M t Rotoot PoeWonine ~

1051.09 t im o n  and T«lmfc|u»i

avgWordPage: avgwordline 9.3 8.69
435.74
docWords: 4766.5 avglinesize 1079.34 1040.58
docFontModePct: fontSizeMode 1080 1047.98 t t t  r . ~ r z  ■ .-rr.x-.i-jrr.: rrr.-j-.-r-.—

0.98
docStdevFontSize block 3.1 3.84 w‘~" - —

: 92.25
docF ontSizeMode letter 2504.1 1736.08
: 1080.0

avgFontSize
short line5
digitline
capline
digitend
fontModePct
line
shortiine7

1072.18
9.1 
12.7
7.8 
1.3 
0.95
64.8
17.1

1044.17
17.91
17.31
13.09
5.49
56.75
51.5
23.24

12 stdevWordPage: short line9 16 16.81
128.66
docAvgF ontSize: word 62.5 278.35 ■‘=̂ Hr=
1151.68
avgWordPage: avgwordline 3.81 9.18 u t r n m  n r  u n i t  ta t i n  wt i

272.09
docWords: avglinesize 1331.06 1140.5 ■ T
21812.75
docF ontModePct: fontSizeMode 1225 1160.79
0.95 i

1

docStdevFontSize block 4.75 3.62 ---------

: 124.24
docFontSizeMode

!
letter 316.5 1217.23

: 1175.0
avgFontSize
shortline5
digitline
capline
digitend
fontModePct
line
shortline7

1314.65
12.5
4.75
11.75
3.75 
0.87
16.5
14.5

1152.16
14.21
15.23
11.88
7.64
60.64 
33.99 
15.73
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3.5.1.2 Process

I developed a program to evaluate and optimize a set of rules utilizing the various

statistics to identify a POINT page class. I began by specifying a set o f simple rules and

then the program would find the optimum value for the individual test which would select 

the desired cover page but would also minimize false positive matches in other pages.

The initial set of rules included:

• Blocks GE 3 : Number of Blocks on page >= 3

• Lines GE 3 : Number of lines >= 3

• Lines LT 30 : Number o f line < 30

• Letter LT 700 : Number o f letters < 700

• Words LT 200 : Number of words < 200

• DigitLine LT 9 : Number o f digit only lines < 9

• Digit End LT 4 : Number of lines ending in digits < 4

• Avg Word per Line LT 10 : Average number of words per line < 10

• Avg Line Size GT 1000 : Average font size of lines > 1000

• Title GT Half : Number o f lines in title case > half the total lines

• Short line 7 LT Half: Number of lines shorter than 7 words < half the total lines

I ran the optimizer program against the documents in each class to determine the 

values for the test. Table 4 shows a compilation o f these results. Each row represents one 

of the rules listed above. Note that it also shows the inverse test, i.e. (Lines >= N) and 

the inverse (Lines < N). The columns are grouped first by a class identifier and then 

under each class it shows the optimized value for the test, the total number o f manually 

selected POINT pages matched by the rule value and finally the number of other pages
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matched by the same rule. Under each class, the best performing version o f the rule is 

highlighted in yellow. Notice that the class results can be grouped into 2 larger groups 

with fairly disjoint rule sets as noted by the color coding on the class labels. These 

groups correlate with the sparse type of traditional coverage and the dense scientific 

paper type.



TABLE 4 
POINT Page Selection Rule Results

c l c2 c3 c5 c6 c7 CS c!2
Value Mch FIs Value Mch Fk Value Mch FIs Value Mch FIs Value Mch FIs Value Mch FIs Value Mch Fk Value Mch FIs Value Mch Fk Value Mch Fk Value Mch FIs Value Mch Fk

frl fontModePct LT 1 43 30.4 1 43 304 1 43 30.4 1 43 30.4 1 43 30.4 1 43 30.4 1 43 30.4 1 43 30.4 0.9 29 11.7 1 43 30.4 1 43 30 1 43 30.4
fr2 stdevFontSize GT 0 95 694 79.7 72 174 171.9 52 5.2 0 95 694 333 83 39.7 40.8 82 34.6 163 56 5.6 406.5 15 0.6 248 86 466 96.7 68 12J 0 95 69 147.1 58 6.6
fr3 avgFontSize o r 790.9 95 683 1128 72 32.7 1108 75 344 1056 78 41.4 1289 41 1.3 1192 68 21J 1157 71 30.1 1235 57 1.8 8824 91 66 9425 89 625 9568 88 63 1122 75 33
r2 line GE 4 94 673 4 94 673 9 85 643 19 32 562 3 95 68 5 91 66.7 10 84 637 6 89 655 23 24 52 31 20 38 26 21 45 14 58 60.6
r3 line LT 18 60 14.3 16 52 12.7 16 52 12.7 40 81 483 3 0 3.4 5 4 4.7 17 58 13.5 14 37 10.8 50 87 605 47 86 58.1 85 90 € T 17 58 13,5
l4 letter LT 422 62 12.4 410 61 12.2 268 41 9.1 1707 81 553 58 I 3.8 114 5 5 344 54 10.8 218 29 7.9 1944 85 61A 2401 88 665 3084 92 70 330 52 104
r5 word LT 98 68 12.2 76 51 10.1 63 45 8.8 384 83 554 9 1 3.2 24 5 4.7 65 49 9 39 20 6.3 415 85 58.1 321 88 654 722 93 70 61 44 8.5
r6 digitline LT 5 62 23.9 5 62 23.9 4 54 194 13 87 494 0 0 0 0 0 0 7 76 323 5 62 235 34 94 663 6 71 283 13 87 50 6 71 28,5
r7 digitend LT 5 81 56 4 72 534 3 60 48.1 6 87 J74 0 0 0 0 0 0 6 87 57.6 4 72 53.4 10 93 622 3 60 48.1 2 44 37 5 81 56
[8 avgwordline LT 6 70 21.3 5.1 59 16 1 5.4 65 17.5 103 88 46.1 3 7 7.1 43 S3 143 4.5 49 13.3 3.9 28 10.7 85 85 392 113 92 543 11 90 52 4.2 36 11.9
i9 avglinesize o r 792.8 95 68.3 1141 75 29.7 1143 74 29.5 1189 68 20 1300 41 1.3 1160 70 273 1320 39 1.2 1255 52 1.6 80.6 91 653 1031 83 40.7 9915 90 62 1147.6 72 29
fr la fontModePct err 0.4 94 70 0:7 80 653 03 90 693 03 75 63.7 1 0 0 I 0 0 0.5 90 69.3 0 A 94 70 0.3 95 70.1 0.9 66 99.7 0.6 87 <8 0.5 90 69.3
fr2a stdevFontSize LT 312 72 69.4 307.7 71 69.3 4603 84 703 200 50 66.7 33.3 12 31 40.8 13 36.1 297 68 69.1 536.5 87 703 204.8 52 66.9 109.7 30 60.7 124 33 62 272.1 64 68.8
fr3a avgFontSize LT 1554 81 70.6 1667 86 70.7 1365 72 70.4 1300 57 70.2 1289 54 70.1 1192 27 49.6 1415 75 70.5 1931 90 71 1104.4 19 36.1 1023 16 28.3 1200.6 34 67 1436 77 70.5
r2a line L£ 17 60 14.3 15 52 12.7 15 52 12.7 39 81 483 3 1 4.1 5 6 55 16 58 13.5 13 37 108 49 87 605 46 86 51.1 84 90 67 16 58 13.5
r3a line o r 4 91 66.7 4 91 66.7 9 84 63.7 19 30 55.3 3 94 673 5 89 65.9 10 79 63.1 6 87 65.5 23 21 49.9 31 19 36.3 26 20 44 14 52 595
r4a letter err 40 94 683 101 90 66.7 132 85 66 516 27 57 SB 93 67.6 114 89 66.4 181 76 64.4 146 84 65.7 688 22 53.2 1589 15 188 1327 19 28 262 55 625
r5a word GT « 94 683 18 91 67.1 36 78 653 99 26 59 9 93 68.1 24 89 66.7 32 83 65.8 30 85 66.1 130 22 56.3 342 16 20.4 281 19 32 54 55 63.5
r6a digitline err 0 92 67.1 1 68 61.6 4 33 47.5 16 5 15.5 0 92 67.1 0 92 67.1 8 14 31.5 5 24 42.9 1 68 61.6 3 41 52 1 68 62 2 48 56.5
r7a digitend err 0 M 633 4 14 15.4 0 84 633 0 84 63.5 0 84 63.5 0 84 633 6 4 125 4 14 15.4 0 84 63.5 3 23 18 0 84 64 2 35 23.3
t8a avgwordline err 2 94 67.4 3.1 83 63.2 3.4 79 623 5.2 33 54.8 3 86 633 4.8 41 56.9 2.6 93 65.8 29 89 648 4.3 51 59.2 9 9 31.5 8 17 37 3.6 73 61.7
r9a avglinesize LT 1576 81 70.6 1701 85 703 1481 76 703 1301 54 70.1 1300 50 70 1160 24 439 1434 73 70.5 1941 89 71 1102.6 18 38.3 1036 15 31 1207.9 37 68 1440.6 74 70.5
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3.5.1.3 Analysis

TABLE 4 shows the results for matching against the following set of rules:

• rl-BlocksGE3

• r2-Lines GE 3

• r3-LInes LT 30

• r4-Letter LT 700

• r5-Words LT 200

• r6-DigitLine LT 9

• r7-Digit End LT 4

• r8-Avg Word per Line LT 10

• r9-Avg Line Size GT 20

For each rule, we try to match the manually selected cover page. We list the total 

number o f rules matched and also list the other pages in the document matching every 

rule. (False Positives) Table 5 lists all the rules. The large number o f false positives was 

an issue since the purpose of searching for POINT Pages was to limit the number of 

pages processed by the system. In this implementation, we are testing each page in the 

document, some of which may have several hundred pages. After evaluating the 

computational expense of running a POINT page detection algorithm, we realized we 

were not seeing any significant improvement over the default selection of processing the 

first and last five pages of a document. We confirmed this assessment by sampling 

another 100 documents and found only 1 in which a POINT page was found outside the
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first five pages. Note that the primary reason for including the last five pages is that RDP 

pages are frequently found appended to the end of a document.
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TABLE 5
Optimization Program Rules Matching Results

Class File

Manual
Cover
Page

Total
Rules

Matched

Pages 
Matching All 

Rulles
rl r2 r3 r4 r5 r6 r7 r8 r9

0 ADA426321 0 0 0 4 1 1 1 3 3 1 3

0 ADA429458 0 0 12 14 1 1 1 4 8 8 12

0 ADA425007 0 0 1 4 0 0 0 3 3 1 3

0 ADA428639 0 0 7 7 8 5 1 2 2 5 6 8

1 ADA427827 1 9 1 2 54 53 2 3 35 53 9 53
1 ADA426518 2 0 1 1 1 1 1 1 0 1 1

1 ADA391330 1 8 71 78 14 100 83 16 25 62 60 27 100

1 ADA391330 4 8 71 78 14 100 83 16 25 62 60 27 100

1 ADA397295 1 8 75 14 98 66 15 23 63 75 44 94

1 ADA424326 3 9 318 25 38 47 10 8 10 15 25 25 42

1 ADA428589 1 8 25 32 4 3 3 2 14 25 6

1 ADA399127 1 8 55 58 10 66 46 12 18 37 49 42 65

1 ADA428319 3 9
1 3 8 10 102 

155 206 77 239 48 13 23 ## 188 53 19

1 ADA428140 3 9

1 3 4 6 10 12 
13 23 31 39 41 
49 53 61 69 71 
79 80 84 92 94 

97 104 106 102 106 11 20 27 m 105 102 105

1 ADA423163 3 8 1 33 44 46 48 25 44 21 24 25 20 31 45 27

1 ADA398805 1 8 2 59 47 4 4 41 52 14 58

1 ADA427476 2 9 1 2 57 72 44 89 34 12 18 44 64 41 73

1 ADA426518 1 8 0 0 0 0 0 0 0 0 0

1 ADA428190 1 8 7 21 7 4 10 7 16 17 19

1 ADA423705 1 7 2 24 9 7 9 12 22 13 1

1 ADA423304 1 7 1 23 9 7 8 17 22 13 0

1 ADA407719 1 8 22 37 44 52 55 26 71 65 19 28 55 63 18 71

1 ADA428463 1 8 1 5 2 1 2 2 3 3 4

1 ADA428069 3 7 138 38 47 27 22 23 36 42 30 37

1 ADA391748 5 8 32 46 58 70 51 76 71 13 16 39 69 20 75
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TABLE 5 Continued

Class File

Manual
Cover
Page

Total
Rules

Matched

Pages 
Matching All 

Rulles r l r2 r3 r4 rS r6 r7 r8 r9

1 ADA425874 1 8 27 38 55 69 64 109 64 9 15 80 99 21 109

1 ADA394846 3 8 138 113 207 8 23 13 29 68 135 85
1 ADA424493 2 7 20 28 39 21 9 11 18 28 18 26

l ADA428260 3 8

1 112161 
64 65 67 69 
70 71 72 74 
76 77 79 80 
83 84 88 91 
92 93 101 

104 105 106 
107 111 112 
113114115 
116 122 131 
132 133 142 
143 146 190 

253 217 281 125 104 ## ## 171 261 161
l ADA429436 1 7 32 40 15 41 31 14 17 11 36 20 42

1 ADA424345 1 7 0 26 9 8 8 24 29 10 0

1 ADA427618 4 8 6 43 35 13 15 22 36 20 41

1 ADA394974 1 8 45 2 47 41 8 10 38 41 14 46

1 ADA428731 4 9

4 17 18 21 
31 40 43 86 
91 111 130 
141156 166 
171177 194 
201 211 220 
225 235 237 
247 252 264 
273 278 290 
294 303 308 
312 316 319 
321 329 332 
335 352 356 
371 425 462 272 455 137 122 ## ## 432 479 30

1 ADA428315 1 8
10 37 48 66 

73 80 29 78 70 18 27 63 74 31 76

l ADA421205 2 8
17 2123 31 

34 21 39 22 21 22 18 18 27 34

1 ADA427430 2 4
10 23 38 48 

106 56 121 34 25 29 46 88 65 33

1 ADA429162 1 7 9 7 8 3 1 3 2 3 7 5

1 ADA424083 1 7 2 21 10 7 10 10 17 15 0

1 ADA397297 1 8 1 42 35 11 11 20 40 14 42
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TABLE 5 Continued

Class File

Manual
Cover
Page

Total
Rules

Matched

Pages 
Matching All 

Rulles rl r2 r3 r4 r5 r6 r7 r8 r9

10 ADA422391 1 6 5 6 0 0 0 1 4 5 0

IQ ADA428024 0 0

10 1112 13 
14 15 16 17 
18 19 20 21 
22 23 24 25 
26 27 28 30 
31 32 33 34 
35 36 37 38 
39 40 41 42 

43 41 42 37 35 35 36 40 36 42

IQ ADA428261 1 5 9 10 5 1 2 6 9 2 5

IQ ADA423886 1 5 2 4 0 0 0 3 3 1 3

11 ADA421226 1 4 7 11 5 6 4 1 6 2 6

u ADA425692 1 6 1 25 1 1 1 5 22 4 19

11 ADA425313 1 5 3 19 3 1 1 9 15 3 13

11 ADA412482 1 3 3 4 0 0 1 2 3 4 1

11 ADA410242 1 6 1 2 0 0 1 1 2 2 1

11 ADA422844 1 5 14 23 1 0 0 4 18 15 20

11 ADA410854 1 5 3 4 0 0 1 1 1 4 2

11 ADA412480 1 4 1 3 0 0 1 1 1 3 1

11 ADA409431 1 3 2 5 2 2 3 4 5 1 2

11 ADA412126 1 5 2 4 1 1 2 2 4 3 1

12 ADA393943 1 8 4 4 18 5 2 4 12 15 7 17

12 ADA427800 1 8

19 32 63 66 
68 72 85 91 
106 112 117 
120 128 129 
131137 140 
148 159 163 
172 173 175 
178 179 184 
185 187 188 
190 192 204 
209 219 221 
226 234 235 

240 175 246 144 106 ## ## 173 178 206

12 ADA403968 1 9 140 42 72 48 6 7 34 59 13 68

12 ADA421488 2 9 217 19 19 27 10 7 11 3 14 18 24

2 ADA422180 1 8

3 28 33 102 
107 151171 
188 205 213 
218 219 223 226 222 84 29 38 83 162 103 127
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TABLE 5 Continued

Class File

Manual
Cover
Page

Total
Rules

Matched

Pages 
Matching All 

Rulles r l r2 r3 r4 r5 r6 r7 r8 r9

2 ADA389024 1 9 1 12 14 18 16 18 4 4 4 5 15 14 17

2 AOA388593 1 9
1 22 30 31 

33 7 30 19 15 19 26 30 28 29

2 ADA422180 3 9

3 28 33 102 
107 151171 
188 205 213 
218 219 223 226 222 84 29 38 83 161 103 127

2 ADA422074 1 8 46 57 76 55 80 23 39 50 16 25 73 79

2 ADA391608 1 9
1 6 8 12 15 

18 19 11 7 19 18 19 19 20 20 14

2 ADA393335 1 9 110 26 25 30 8 2 4 10 24 18 25

3 ADA425272 1 9 19 5 8 8 8 8 7 9 8 8

3 ADA428069 1 9 1 38 37 47 27 22 23 36 42 29 37

1 AOA423163 1 9
1 33 44 46 

48 24 44 21 24 25 20 31 45 27

2 ADA428179 3 9 1 2 3 28 41 16 51 27 20 26 36 41 33 47

2 ADA396993 1 9
1 7 10 14 17 

21 24 26 22 27 15 12 15 26 26 27 23

2 ADA426757 1 8 5 20 9 4 4 17 18 5 19

2 ADA428260 1 9

1112161  
64 65 67 69 
70 7172 74 
76 77 79 80 
83 84 88 91 
92 93 101 

104 105 106 
107 111 112 
113114115 
116 122 131 
132 133 142 
143 146 190 

253 216 281 125 104 ## ## 171 261 161

2 ADA428179 1 9 1 2 3 28 41 16 51 27 20 26 36 41 33 47

4 ADA428626 2 4 0 6 1 1 1 1 4 6 5

4 ADA427171 1 8 3 22 1 1 1 3 16 8 21

4 ADA424327 2 3 9 6 12 2 1 2 2 8 9 11

4 ADA428109 0 0 1 2 1 1 1 2 1 1 0

4 A0A425011 2 5 1 15 12 0 1 8 13 4 14

4 ADA429294 1 4 2 11 13 4 2 2 9 10 7 12

4 ADA413522 0 0 2 2 7 2 2 2 4 6 3 6
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TABLE 5 Continued

Class File

Manual
Cover
Page

Total
Rules

Matched

Pages 
Matching All 

Rulles r l r2 r3 r4 r5 r6 r7 r8 r9

5 ADA428731 0 0

4 17 18 21 
3140 43 86 
91 111 130 
141156 166 
171177 194 
201 211 220 
225 235 237 
247 252 264 
273 278 290 
294 303 308 
312 316 319 
321329 332 
335 352 356 
371 425 462 273 456 138 123 ## ## 433 480 31

5 ADA428140 0 0

13 4 6  1012 
13 23 31 39 
41 49 53 61 
69 71 79 80 
84 92 94 97 

104 106 103 107 12 21 28 ## 106 103 106

5 ADA427476 1 9 1 2 57 72 44 89 34 12 18 44 64 41 73

5 ADA425444 0 0
2 10 34 42 

46 50 67 79 98 100 5 4 8 52 86 95 73

£ ADA423430 0 0 136 40 43 1 1 1 15 30 42 10

£ ADA428904 1 9 124 62 9 76 69 16 20 62 67 27 72

7 ADA422366 1 9

1 36 41 59 
68 76 82 86 
89 90 105 

110111122 
125 127 130 
142 143 147 
148 150 154 

155 156 115 153 110 106 84 71 128 85 130

7 ADA426291 1 8 19 24 17 49 19 12 21 36 42 38 49

7 ADA401603 1 9 16 24 110 37 19 28 65 88 58 110

7 ADA401622 1 9
1 52 61 99 

105 34 107 61 25 28 ## 109 39 98

7 ADA401720 1 9
1 6 24 31 32 

47 50 51 20 45 43 32 36 36 51 21 47

7 ADA416272 1 8

16 21 31 46 
50 54 58 59 
114 123138 

165 214 87 211 102 75 92 ## 217 157 67
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TABLES Continued

File

Manual
Cover
Page

Total
Rules

Matched

Pages 
Matching All 

Rulles r l r2 r3 r4 r5 r6 r7 r8 r9

7 ADA429872 1 9

1 28 38 49 
50 83 96 100 
104 106 121 
126 143 145 
147 152 153 
154 155 157 

158 90 147 95 59 84 ## 134 121 140

7 ADA429849 1 9 126 76 85 106 28 17 20 28 91 46 113

7 ADA403150 1 9 1 21 70 37 23 26 56 72 38 64

7 ADA415118 1 9

1 5 35 45 46 
50 63 66 77 

85 92 96 110 39 110 104 28 40 98 103 38 104

7 ADA421001 1 8 39 46 34 45 19 14 6 8 23 23 40

S ADA421566 1 9 120 6 19 11 7 9 17 17 14 18

8 ADA415096 1 9

18 10 20 24 
26 31 34 35 
38 42 46 49 
52 56 60 64 

68 66 68 56 56 56 39 52 65 7

£ ADA425810 1 8
4 8 1113 15 

16 17 25 27 15 15 16 18 22 22 22

£ ADA395819 1 9
19 13 17 21 

25 26 8 23 22 22 26 27 29 9

9 ADA428043 1 5 3 5 2 1 1 2 2 4 2

9 ADA426275 2 4 10 15 5 5 5 1 7 10 9

9 ADA427800 2 7

19 32 63 66 
68 72 85 91 
106 112 117 
120 128 129 
131137 140 
148 159 163 
172 173 175 
178 179 184 
185 187 188 
190 192 204 
209 219 221 
226 234 235 

240 176 246 144 106 ## ## 172 178 207

2 ADA426484 1 4

6 9 11 12 13 
14 15 16 18 

22 23 24 19 23 19 18 20 17 19 19 22

9 ADA428076 1 3 2 12 34 27 7 7 3 23 12 31
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3.5.2 Incremental Engine Improvements

While much of the research conducted during this project was focused on the 

DTIC collection, we made significant progress on the system with experiments with two 

collections of documents from the Government Printing Office (GPO). The first 

collection was a collection of 1000 sample documents from the Environmental Protection 

Agency (EPA). The second collection consisted of 921 GPO Congressional documents 

which were used in a feasibility study to estimate the number of templates needed to 

cover the collection [67], While the largest class (epa-ord) representing EPA study 

reports covered more than 25% of the collection, the other documents were very diverse. 

The 108 templates developed cover 633/994 (64%) of EPA collection documents. 

Another 78 documents were covered by classes with fewer than 5 member documents, 

and the remaining 283 documents were singleton classes. We did not note any 

significant use of forms in the GPO collection, so our efforts concentrated on non-form 

template development. In addition to developing new templates and validation scripts, 

we also implemented improvements to the extraction engine and additional post

processing modules [68]:

• Add ability to process non-form documents on multiple-pages. The original 

DTIC engine was oriented towards extraction of data from a single page. The analysis of 

available metadata, particularly for the epa-ord class, noted several instances o f desired 

fields that are available on pages separate from the cover page where the bulk of the 

metadata can be located (e.g., Fig. 16 GPO Sample file metadata on multiple pages).

• Add text filter to metadata field descriptions to facilitate both removal of 

extraneous strings (e.g., "Title: ") and splitting of metadata fields occurring together on
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one line. Several instances were found of metadata values preceded by “boilerplate” 

strings that are useful as markers for locating metadata, but should not be included in the 

extracted values themselves. Other instances were found where two metadata fields 

occurred within a single line. Because the extraction engine processes and extracts entire 

lines at a time, some finer control is necessary in these cases.

• Allow templates to describe placement o f "marker" fields that do not actually 

generate metadata but can be used to indicate relative locations of actual metadata. It is 

intended that the development of templates describing metadata placement should be a 

task that could be performed by staff with technical expertise well short of full 

programming skills. This change would simplify the development o f templates for a wide 

variety o f experience levels.

• Allow templates to mark metadata fields as mandatory or optional. The epa-ord 

class contains many minor variants, particularly in the pages following the cover page. In 

the current template language, it would be necessary to create a separate template and 

document class for each variant. This change would allow a number o f these variants to 

be handled within a single template. It should also increase the robustness o f the process 

of recognizing which template is most suited to a given document.

• Allow some selection from geometric relationships. “ rightof(meta)” - Locates 

1st line to the right o f the begining of the tag. Being to the right means that the midline of 

the testing line is between the top or bottom of the 1 st block o f the previously extracted 

tag. “endrightof(meta)” - Locates 1st line not to the right o f the tag.

• Add enhanced vertical space selection rules. “verticalSpace(s)” searches for a 

line that is followed by whitespace of at least s*h, where h is the height of that line. (The
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height of the line is estimated as 1.15 * the bounding box height, “vertical Split(k,n)” that 

splits the current page into n blocks by locating the (n-1) largest inter-line spaces not at 

the very top or bottom of the page. The operator then selects the line beginning the &’th 

block, k starts at 0, so verticalSplit(0,n) always selects the first non-empty line on the 

page. As a special case, vertical Split(n,n) selects the last non-empty line on the page.

Constructed Wetlands Treatment 
Municipal Wastewaters

Fig. 16. GPO Sample File Metadata on Multiple Pages
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3.5.3 Field Normalization Improvements

In addition to incremental changes to the extraction engine we had to create 

several post-processing functions specific to the GPO-EPA collection. We found a 

relatively large number of documents which contained a group of metadata contained in 

three columns at the top of the first page. Extraction of these metadata items was 

complicated by the OCR ignoring the column and treating each of the lines as a single 

line. As seen in Fig. 17, the data from the lines marked 1, 2 and 3 is broken into separate 

metadata items. This post-processor takes a single template rule tag as input and will 

output up to 9 metadata fields, depending on those present.
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Fig. 17. GPO 3 Column Header

One of the requirements of the GPO project is to deliver the final extractions 

encoded as MarcXML [7]. We added a post-validation module to the flow which is 

invoked after the final validation of the selected metadata.

http://www.apa.gov
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CHAPTER 4 

IDM

As noted during the exploration o f the evolution of the system, the earliest 

versions of the software was tightly coupled to the OmniPage 14 XML schema. When 

OmniPage upgraded their software and dramatically change their XML schema, we were 

faced with the need to conduct a major refactoring of the system to support the new 

schema. This chapter discusses how we solved this problem.

In this Chapter I review in depth the development and usage of the Independent 

Document Model (IDM). We begin in section 4.1 by looking at the motivations and the 

need for developing the IDM schema followed by a review of the structural elements in 

section 4.2. We finish up in section 4.3 with a look at version 2 of the schema and the 

accompanying development of the TextPDF module which allowed us to bypass the OCR 

recognition phase and convert text PDF documents directly into the IDM format for 

processing. The final version of the IDM schema can be found in Appendix A.

4.1 Motivations for evolution

Many commercial OCR programs provide a method for saving the recognized 

text in some form of XML format. Unfortunately, the output schemas of the formats 

often vary, even among updated versions of the same program. We experienced this 

variation using different versions of the OmniPage OCR programs.

The IDM schema is a platform independent schema used to support extraction of 

metadata from XML documents. I created the IDM to allow us to control the 

specification upon which we build our processing engines, which effectively isolates the

!
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processes from input format variations and introduces standards for describing page 

segmentation. The extraction and classification engines originally operated on XML 

documents that were tightly coupled to the OmniPage 14 OCR XML schema. The 

release of OmniPage 15 introduced a dramatically different XML schema for its 

documents. Due to the tight coupling with the OmniPage 14 schema, transitioning to the 

15 schema would have required an inordinate amount of recoding o f the extraction 

engine. Fig. 18 shows a snippet from a document formatted using OmniPage 14 schema 

and Fig. 19 shows the same document formatted in OmniPage 15. Notice that the 

attribute names for font size and font face have been changed from “fs” to “fontsize” and 

“f f  ’ to “fontface” in addition to other structural changes. I proposed that a better 

approach would be to create a separate module to convert XML documents produced by 

OCR documents into a standard model for internal processing, the IDM.



<page width="12240" height="15840" x-res="300" y-res="300” bpp="l" orientation=”0" skew="0” 
filename="C:\Documents and Settings\navi\Desktop\sample file collection\errorl+2\20030093540.pdf" language="0" 
cregion reg-type="horizontal">
<rc l="10" t="14913'" r=" 12240" b="15384"/>
<paragraph para-type="text" align="left" left-indent="1368" right-indent="0" start-indent="0" line-spacing="312">
<ln baseline="15231" ff=’Times New Roman" fs="1400”>
cwd l="1445" t="15005" r="2851“ b="15312">September</wd>
<wd l=”2938" t="15014" r="3518" b="15235">2003</wd>
</ln>
</paragraph>
</region>
<region reg-type="horizontal“>
<rc !=“10" t="858" r="12240" b="1450“/>
<paragraph para-type="text" align='Teft" left-indent=”1368" right-indent=,,0" start-indent="0" line-spacing="312"> 
<ln baseline="1171" ff='Ttmes New Roman" fs=”1400">
<wd l=“1445" t=“950" r="4853" b=''1210">NASA/TM-2003-212395</wd>
</ln>
</paragraph>
<paragraph para-type="text" align="left" left-indent="9216" right-indent="0" start-indent="0" line-spacing="312"> 
<ln baseline="1166" ff= "Times New Roman" fs="1400">
<wd l="9331" t="950" r="11626" b="1176">AIAA-2003-0903</wd>
</ln>
</paragraph>
</region>
<region reg-type=“graphic">
<rc l=“10" t="1450" r=" 12240“ b=”26457>
</region>
<region reg-type="horizontal">
<rc l="10" t="2645" r="12240" b="4426”/>
<paragraph para-type="text" align=“left" left-indent="1296" right-indent=“0” start-indent="0" line-spacing="576"> 
<ln baseline="3312" ff="Times New Roman" fs="2300">
<wd l="1445" t="2957" r=”4195" b="3317">Mixed-Phase</wd>
<wd l="4334" t="2971” r="5386" b="3446">lcing</wd>
<wd l="5515" t=“2957" r=”7829" b="3317‘ >Simulation</wd>
<wd l="7963" t="2957" r="8746" b="3317">and</wd>
<wd l="8890" t="2971" r="10406" b="3446">Testing</wd>
</ln>
</paragraph>
<paragraph para-type="text” align="left" left-indent="1296" right-indent="0" start-indent="0" line-spacing="528"> 
<ln baseline="3888" ff="Times New Roman" fs="2300">
<wd l="1454" t="3581" r="1834" b="3893">at</wd>
<wd l="1968" t="3533" r="2606" b="3893">the</wd>
<wd l="2750" t="3542“ r="3586" b="3893">Cox</wd>
<wd l=“3720" t="3547" r="4771" b="4022">lcing</wd>
<wd l="4891" t="3533" r="6043" b="3893">Wind</wd>
<wd l="6182" t="3533" r="7642" b="3893">Tunnel</wd>
</ln>
</paragraph>
</region>

Fig. 18. Sample OmniPage 14 Formatted Page Snippet
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<page ocr-vers="OmniPage Pro I5">
<descriptionxsource file="C:\Documents and Settings\nratkal\Desktop\monupdate\dump\nasa2fonn\20030093540.pdf' 
dpix="300" dpiy="300” sizex="2550" sizey="3300"/xtheoreticalPage size="Letter" marginLefl="1446" 
marginTop="951" marginRight="503" marginBottom="523" offsetX_"-472" width="12240" height="I5840"/> 
<languagc>cn</languagcx/dcscnption>
<styleTabIe>

<style stylelD^"paraStyle l 3 31" alignment="left" lsp="exactly" lspExact="300" underlined=’’none" 
fontSize="l 100'' fontFace=" Bookman Old Style" fontFamily="roman" fontPitch="variable">
</style> ...
</styleT able-- 
<body>
<dd 1="10" t=’’950" r=" 12240" b="1214">
<para l="1353” t="950" r="l 1695" b="1214" alignment="left" li="1296" lsp="exactly" lspExact"262" language="en" 
styleRe(="paraStyle_l_3_32“><tabs position="1353"/>

<ln 1="I445" t="950" r=" 11621" b="l2IO” underlined="none" subsuperscript="none" fontSize="1400" 
fontFace=”Bookman Old Style" fontFamily=“roman" fontPitch="variable" spacing="0" scale=" 1000">
<wd 1="I445" t="950" r="2338" b="l 181“>N A SA </w dxSpace/>
<wd I="1445" t="950" i="2501" b="1210“> /< /w d x Space/>
<wd l="1445" t="950" i-"9331" b~" 1210“>TM-2003-212395</wd><tab position-"4853'V>
<wd 1="1445" t="950" r="l 1621" b="1210“>AIAA-2003-0903</wd>

</ln></parax/'dd>
<section 1-" 1308" t="1214" r="10548" b-"8839“x co lu m n  1="I308" t="1214" r=” 10548" b="8839">
<picture l=” 1512" (="1445” n="2899" b="2650" alignment="left" li="144" ri="7649" spaceBefore="216" 
spaceAfter=" 144“></picture>
<para 1="I308” t="28I3” r="10526" b="3411" alignment="centered" spaceBefore="72" lsp="exactly" lspExact="596" 
language="en" styleRef="paraStyle_ 1 3 3 2">
<ln 1=" 1445" t= "2957" r=" 10406" b="3446" underlined="none" subsuperscript="none" fontSize="2100" 
fontFace-'Bookman Old Style" fontFamily="roman" fontPitch="variable" spacing="-l5" scale=" 1102">
<wd 1="1445" t="2957" i="4334" b="3317“>Mixed-Phase</wd><space/>
<wd l=" 1445" t_ "2957" r^"5515" b="3446“>Icing</wdxspace/>
<wd 1="1445" t="2957" r=”7963" b="3446">Simulation</wdxspace/>
<wd N"1445" t="2957" r="8890" b-"3446“>and</wd><space/>
<wd N"1445" t="2957" r - " 10406” b_"3446">Testing</wd>
</In><7para>
<para 1="I308" t="3567" r="7762" b="4140" lsp="exactly" lspExact="571" language="en" 
styleRef="paraStyle I 3 3 1 ">
<ln I-" 1454" t-"3533" r="7642" b="4022" underlined="none" subsuperscript="none" fontSize-"2100" 
fontFace-'Bookman Old Style" fontFamily=”roman" fontPitch="variable" spacing="0" scale="l 102">
<wd 1=" 1454" t="3538" r=" 1968" b="3893“>at</wd><space/>
<wd 1-'1454" t="3533" r="2750” b=“3893“>the</wd><space/>
<wd 1="1454" t="3533" r="3720" b="3893“>Cox</wd><space/>
<wd l="1454" t="3533" r="489l" b="4022">Icing</wdxSpace/>
<wd 1="I454" t="3533" r="6182" b="4022“>Wind</wd><space/>
<wd 1="I454” t="3533" r="7642" b="4022“>Tunnel</wd>
<An></para>

Fig. 19. Sample OmniPage IS Formatted Page Snippet
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The initial structure o f the IDM schema was similar to that of OmniPage 14. This 

structure was, to a large degree, reflective of the visual structure of a page. Maintaining 

the same structural elements helped to minimize the re-coding cost to convert the 

extraction engine to be able to handle IDM as an input schema. Fig. 20 shows the 

resulting IDM version of the same sample document shown in OmniPage 14 format in 

Fig. 18 and OmniPage 15 format in Fig. 19.



<page width=" 12240" height="15840" x-res="300" y-res="300" orientation="0" pgno="3 
<region left="10" top="858" right="12240" bo ttom ="1450n>

<vert-w hite-space t="858" b="950" pct="0.581" loc="top" unit="px’7>
<para t="950" l="1445" r="4853“ b="1210" li="1368" ri="0" align="left" 

line-spacing="312">
<line l="1445" t="950" r="4853" b="1210" ff="Times New Roman" fs="1400">

<wd l="1445" t="950" r="4853" b="1210">NASA/TM—2003-212395</wd> 
</line>

</para>
<para t="950" l=”9331" r="11626" b="1176" li="9216" ri="0" align=”leftH 

line-spacing="312">
<line l="9331" t="950" r="11626" b="1176" ff="Times New Roman" fs="1400,,> 

<wd l="9331" t="950" r="11626" b=”1176">AIAA-2003-0903</wd>
</line>

</para>
<vert-w hite-space b=,,1450" t="1176" loc="bottom " unit="px" pct="1.730,7> 

</region>
<region left="10" top="1450" right=" 12240" bo ttom = ,,2645">

<image l="10" t="1450'' r=H12240” b=,,2645'7>
</region>
<region left="10" top="2645" right=" 12240" bottom ="4426">

<vert-w hite-space t="2645" b=”2957" pct=”1.970" loc="top" unit="px'7>
<para t="2957" l="1445" r="10406" b="3446" li=,,1296" ri="0" align="left" 

line-spacing=',576">
<line l="1445" t="2957" r^ '1 0 4 0 6 " b=,,3446" ff="Times New Roman" fs="2300"> 

<wd l="1445" t="2957" r="4195" b="3317">M ixed-Phase</wd>
<wd l="4334" t="2971" r="5386" b="3446">lcing</wd>
<wd l="5515" t="2957" r="7829" b=”3317">Sim ulation</wd>
<wd l="7963" t="2957" r="8746" b=”3317">and</wd>
<wd l="8890" t="2971" r="10406" b="3446">Testing</wd>

</line>
</para>
<para t="3533" l="14S4" r="7642" b="4022" li=”1296" ri="0" align="left" 

line-spacing="528">
<line l="1454" t="3533" r="7642" b="4022" ff="Times New Roman" fs="2300"> 

<wd l="1454" t="3581" r="1834" b=”3893">at</w d>
<wd l="1968" t="3533" r="2606" b=”3893">the</w d>
<wd l="2750" t="3542" r="3586" b="3893">Cox</wd>
<wd l="3720" t="3547" r="4771" b=”4022">lcing</wd>
<wd l="4891" t="3533" r=”6043" b="3893">W ind</wd>
<wd l="6182" t="3533” r="7642" b="3893">Tunnel</wd>

</line>
</para>
<vert-w hite-space b="4426" t="4022" loc="bottom " unit="px” pct="2.551'7> 

</region>

Fig. 20. IDM Formatted Page Snippet from OmniPage 14 Input
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4.2 IDM generation

IDM documents were originally created by means of XSL 2.0 stylesheets. As 

discussed later, the TextPDF module was designed to output IDM directly. A different 

style-sheet is used for each type of OCR XML source document. I created stylesheets to 

support creation of IDM documents from either OmniPage 14 or 15 documents or 

Luratech ABBY 6 documents. I chose to use XSL 2.0 because of the many 

improvements over the XSL 1.0 version XSLT engines found in common usage in web 

browsers and distributed in most operating systems. Among the critical improvements 

are an expanded XPATH function library, expansion of XPATH expressions to include 

if-then-else tests and for-do loops, improved handling o f temporary sub-trees and node 

sequences. One of the more challenging aspects of the XSL programming of the 

conversion stylesheets was the need to propagate style information both up and down the 

node tree. OCR programs do not always provide consistent information about fonts and 

font sizes in use on a page, since detection of this style information is very dependent 

upon the quality of the scanned page. The extraction program and template language are 

designed to detect style information at the line level. This style information may not be 

explicitly defined in the OCR XML “line” element. Rather, the style is at times defined 

at the paragraph or block levels and implicitly propagated to the subordinate structures. 

Or alternatively, the style information may be only defined at the word level. Either way, 

the stylesheet needs to propagate this style information to the line elements. Fig. 21 

shows a snippet of the Luratech to IDM stylesheet. This function outputs a line element 

and accepts style information as parameters. Note that the font size is scaled into a
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standardized size using the “meters per page” attribute. Appendix B shows the final 

version of the Luratech to IDM conversion stylesheet.

<xsl:template match=”line">
<xsl:param nam e-'fT  as=”xs:string"/>
<xsl:param name="fs" as="xs:string"/>
<xsl:param name-'style'7>
<xsl:param name="meter"/>

<xsl:element name="line">
<!-- set up attribute for line —>

<xsl:attribute name="l” select=" @l"/>
<xslattribute name="t" select=" @t"f>
<xsl:attribute name="r" select=" @r"/>
<xsl:attribute name="b" select=" @b"/>
<xsl:attribute name="base" select=" @baseline"/>
<xsl:if test="exists($fi) and string-Iength(SfT) gt 0">
<xsl:attribute name="fF' select="$fP7>

</xsl:if>
<xsl:if test=''exists($fs) and string-length(Sfs) gt 0">
<xsl:variable name="currfs" select="

(if (contains(Sfs,'.')) then substring-before($fs,’.') else $fs)
”7>

<!-- scale font point sizes to the page size -->
<xsl:attribute name="fs" select="my:scaleFS($currfs,$meter)"/>

</xsl:if>
<xsl:if test="exists($style) and string-length(Sstyle) gt 0">
<xsl:attribute name="style" select="Sstyle'7>
</xsl:if>

<xsl:apply-templates select="formatting" mode="split">
<xsl:with-param name="face” select="$fF7>
<xsl:with-param name="fontsize" select="$fs’7>
<xsl:with-param name="style" select="$style’7>
<xsl:with-param name="l” select="@r7>
<xsl:with-param name="t" select="@t'7>
<xsl:with-param name="r" select=”@r"/>
<xsl:with-param name="b" select=”@b'7>
<xsl:with-param name="meter" select="$meter'7>

</xsl: apply-templates>
</xsl:element>

</xsl:template>

Fig. 21. Line Function from IDM Conversion Stylesheet



73

4.3 Structural elements

The main high level structural elements used by the extraction engine of a 

document are pages, regions, paragraphs, whitespace, images and tables as shown in Fig. 

22. The geometric boundaries o f each of the structural elements are included as 

attributes. The “doclnfo”, “pagelnfo”, “regionlnfo”, “paralnfo” and “linelnfo” elements 

were originally included in the design to hold summary statistics about font and word 

usage for each of the corresponding elements. These statistics were used during 

experiments with document classification. We deprecated the use of these elements 

during IDM generation, since they can easily be calculated, if  needed, from the input 

IDM and their generation dramatically slowed down the IDM XSL transformation and 

increased resource consumption.
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Fig. 22. IDM Version 1 Schema Structure

Style information such as font face, font size and font style, is recorded at the line 

and word levels. Alignment and line spacing are recorded at paragraph elements. Fig. 23 

shows the structure of the paragraph, line and word elements. Explicit whitespace 

contained in the incoming document is encoded as a vert-white-space element. Tables
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are composed of a sequence of cells that represent a virtual row-column table with each 

cell encoded with the upper-left coordinate and the row and column spans o f the cell. 

While the stylesheets used for IDM generation faithfully replicate the table structures 

defined in the incoming documents, we found that due, to OCR uncertainties; we could 

not rely on using the table structures defined by the OCR for extraction. Often lines 

defining the tables are not correctly recognized resulting in table structures which do not 

match the original. Instead, the form extraction engine, which relies heavily on 

recognizing the table-like structure of a form uses the bounding box o f the cell contents 

for processing.
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4.4 Version 2

Not all documents require processing through an OCR program. A large portion 

of more recent documents are generated in text PDF format as opposed to scanned 

images of pages. As we started development of the TextPDF module to handle these text 

PDF incoming documents, we noted several areas in need o f improvement in the IDM 

structure. The main issue faced was not having a consistent system of measuring 

geometry on a page. This affected both geometric positioning and font size values. 

OmniPage and Luratech employed different systems of specifying their font size which, 

in turn, caused some older templates to fail. The failures were caused by rule tests for 

specific font sizes. We addressed the geometry issue by introducing an attribute at the 

page level called “meter”, defined as the number of measurement units contained in 1 

meter. As an example, OmniPage output uses measurement units o f 1/300 in, so a page 

from OmniPage OCR would be marked as <page meter=“ 11811” ... >. TextPDF uses a 

much finer resolution so a typical meter value would be <page meter="56693" ... >. A 

common calculation is converting from measurement units to points when describing 

fonts, which would be computed as:

@fs * 2835 /  (page@meter)

where @fs is in “measurement units”, 2835 = the number o f pts in a meter, and the 

new attribute page@meter is in measurement units/meter. Fig. 24 shows the structure 

of the document page and region elements of version 2 of the schema.

Another significant difference in version 2 is the ability to nest regions inside 

regions. This nesting of regions simplified processing for TextPDF and allows control of
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the reading order for complicated column and row structures. Version 2 also deprecated 

the vert-white-space element, since such areas can be calculated from the bounding boxes 

of regions on a page. Fig. 25 shows the paragraph line and word structure.
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| doc
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Fig. 24. IDM Version 2 Schema, doc, page and region Structure
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4.5 TextPDF generation

As noted earlier in Chapter 3, we replaced the OCR scanning process with a 

TextPDF module based on the Apache PDFBox library which loads the PDF document, 

attempts to extract formatted text from the desired pages (still defaulting to first and last 

five) and checks to see if the pages do indeed appear to be text PDF (a k.a. “bom digital” 

rather than scanned from paper copies). Text PDF pages are rendered into an IDM-like 

format called “raw IDM”. Any o f the desired pages that appear likely to be image PDF 

(i.e., scanned images of pages) are written into a new PDF file containing only those 

specific pages. That PDF file is passed on for OCR and conversion from the OCR- 

engine-specific format into raw IDM. It’s quite likely that many documents will have all 

of their pages handled as text PDF, that a somewhat smaller number will have all of their 

pages treated as image PDF, and that some documents will be found to be a mixture of 

the two. In particular, someone could insert a text PDF version of an RDP form into a 

scanned document, or might scan an RDP form and insert that into a text PDF document. 

The raw IDM versions of the text PDF pages and the image PDF pages are merged and 

segmented, organized into words, lines, paragraphs, regions, etc.

Raw IDM is a superset o f IDM -  every IDM document is also a raw IDM 

document, but many raw IDM documents would not qualify as IDM. Raw IDM differs 

from the true IDM format in two ways:

-the text may be grouped into phrases containing multiple words and/or parts of

words.

-all organizational structure required by IDM below the page level is optional.

The only requirement is that each page contains at least one region.
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The decision to pursue the IDM model was validated when DTIC changed their 

preferred OCR engine to the Luratech ABBY OCR program. It took me less than 20 

hours to create an XSL stylesheet to convert Luratech to IDM. IDM also provided a 

standard page layout format for us to target during development of the TextPDF module.
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CHAPTER 5 

NON-FORM TEMPLATES

The processing of non-form templates is the heart o f the system. The creation of 

a new template begins with identifying a group o f documents which appear to the 

template author to be members of the same class. From there the author must 

systematically step through a sample document to generate the correct sequence o f rules 

to extract the desired metadata. In most cases, there is no single “correct” sequence but 

rather a variety of sequences are possible depending on the experience of the author and 

the specific rules chosen to navigate the layout. There are two key goals that a template 

author must keep in mind: template must extract the correct metadata and template 

should not interfere with other templates already in the system. The first goal can be met 

by using the TemplateMaker program to assign in the template design, but the second 

goal is more difficult to meet without thorough testing to avoid greedy templates.

This chapter details the specifications and the rules o f the template language in 

section 5.1 and section 5.2. The TemplateMaker program which enables rapid template 

development is described in section 5.3. The chapter finishes with a detailed review of 

the issue of greedy templates, section5.4.

5.1 Template language

The template language is derived from the PhD thesis by J. Tang [4] and retains 

the overall structure defined there, though many additions and modifications were made 

to refine the semantics resulting in the redesign of many elements.
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5.1.1 Applying Templates to Documents

At the time of extraction, documents have been converted to IDM with the 

document divided into pages, pages divided into regions, regions into smaller regions and 

paragraphs, and paragraphs into lines o f words. Each line is marked with certain 

“features” describing the primary font employed within that line. These features are: 

weight (bold or medium), slant (italic or normal), font size, allCaps (true or false), 

titleCase (true or false), and start o f paragraph (i.e., is there one or more empty line 

preceding this one?) The non-form engine attempts to interpret the instructions encoded 

in a template in order to select lines that represent meaningful metadata. Templates are 

based on a line-by-line view of the document called a scroll. The scroll is a linear list o f 

the lines that make up the pages o f the document.

The essential structure o f the template language is as follows: A template 

contains a set of rules designed to extract metadata from a document in a single class o f 

similar documents. Each template has a unique name, called the template ID; a list of 

one or more page numbers indicating what portion of a document that template will 

examine; and an arbitrary number o f rules. A rule describes how to locate and extract a 

block of text from the document. A rule consists of two main parts, the begin and end 

selectors, which describe how to locate the beginning and the ending of the desired block 

of text, respectively. The label o f the rule gives a name to the block of text that it will 

extract, in most cases; it is the name of a metadata field (e.g., UnclassifiedTitle, 

PersonalAuthor).

When a template is applied to an IDM document, the template engine tries to 

apply the rules within the template, one after another, in the order they appear in the
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template. As noted above, each rule has a begin and end selector. The engine first 

applies the begin selector. If that succeeds in finding the beginning of a block o f text, 

then the engine applies the end selector. If that selector succeeds in locating the ending 

of a block of text, the lines of text are saved under the name given in the rule.

The template engine has a notion of a current line location within the document. 

When execution starts, the current line is the first line in the document. After any 

successful application of a rule, the current line is set to the first line just after the text 

extracted by that rule, begin selectors will normally search from the current line up to the 

end of the document. (More exactly, to the end o f the set of pages designated for this 

template.) end selectors will normally search from the line matched by the begin selector 

to the end of the document. These search ranges can be modified by supplying a “scope” 

value on the begin or end selector. A scope denotes an alternative portion of the 

document that will be searched.

A scope of “document” in a begin selector resets the current line to the first line of 

the document and starts searching from there. The search continues to the end of the 

document. A scope of “document” in an end selector means that it should search from 

the line matched by the begin selector to the end o f the document, since this is how end 

selectors normally work anyway, “document” scope are not usually found on an end 

selector.

A scope of “page” in a begin selector resets the current line to the first line of the 

current page and starts searching from there. The search continues to the end of that 

page. A scope of “page” in an end selector means that it should search from the line 

matched by the begin selector to the end of the current page.
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A scope may also give the name of any previously extracted block of text. In a 

begin selector this resets the current line to the first line o f that block o f text and starts 

searching from there. The search continues to the end o f that block o f text. In an end 

selector, such a scope means that it should search from the line matched by the begin 

selector to the end of that block o f text.

If no block of text has been successfully extracted with the given name (i.e., there 

is no prior rule with that name or the rule with that name failed to locate a block of text), 

and the rule is marked as required, then execution o f the template is halted with no 

output. The mechanism for marking a rule as required is covered in the next section.

5.2 Rule Definition

The options for each rule are indicated by the attributes as defined in Table 6.

Each o f the rules in a template can be marked as ignored, meaning that the block of text 

located by the rule will not be included in the final metadata. Ignored rules are used as 

intermediate steps in aiding later rules to locate “real” metadata.
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TABLE 6 
Rule Modifier Attributes

Attribute Required Possible
values Default Meaning

Min no
Non-neg
number 1

The minimum number of repetitions of this field that 
should be expected in the document.

Max no
Non-neg
number 1

The maximum number of repetitions o f this field that 
should be expected in the document.

Ignore no
“yes” or 
“no” no

If “yes”, this field is used merely as a convenience to 
identify a position within the document. No metadata 
value will actually be extracted into the output.

Require no
“yes” or 
“no” no

If “yes”, then failure to successfully locate and extract 
this field indicates that something is wrong (e.g., this 
template describes a different document layout than is 
actually present in this document). In such a case, 
execution of the template is halted with no output 
generated for any metadata fields.

Filter no
Regular
expression *

Used to select a portion of the raw text in the indicated 
lines. If the regular expression contains no parentheses, 
then the portion of the text matching the entire regular 
expression is extracted. If the regular expression 
contains parentheses, then the portion of the text 
matching the parenthesized sub-expressions is 
extracted.

A rule can be marked as “required”, meaning that if  the rule cannot locate a block 

of text, then we assume that this document is not actually in the class that this template is 

trying to describe, and the attempt to apply the template halts with no output. For 

example, if documents in a class always have a date immediately after the title, then we 

would mark the rule to extract that date as “required”, because if there is no date after the 

title, the document we are looking at must not be in that class. On the other hand, if the 

date is present in some documents of the class but not in others, we would mark the rule 

as not required, so that the date is extracted when present but execution of the template 

continues whether the date is there or not.
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A rule may also have a filter, which can select a portion o f the located block of 

text to be extracted. Filters are defined using regular expressions. For example, if  a 

document contains a line “Report Date: 01/21/2009”, we might apply a filter to extract 

only the date “01/21/2009” and not the words “Report Date:” that precede the desired 

value.

5.2.1 Line selectors

The begin and end selectors of a rule each contains a line selector expression 

which are described in Table 7. Each line selector offers a distinct way to search for a 

line o f text that represents the beginning (or ending) of a block of text. Examples include 

searching for specific strings in the document, searching for the end o f a paragraph, or 

searching for lines followed by large blank vertical spaces. Selector expressions are 

modified by an “inclusive” value, which indicates whether the desired beginning/ending 

location is supposed to be the line that actually matches the selector expression or the line 

just before the matching line, or the line just after the matching line.
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TABLE 7 
Line Selector Descriptions

Selector Meaning
Mf Names a previously extracted metadata field. (It is possible to extract 

multiple field values with the same field name, in which case this 
refers to the most recently extracted value with this name.) In a 
<begin> rule, selects the line chosen by the <end> rule of that 
metadata field. In an <end> rule, selects the line chosen by the 
<begin> rule of that metadata field.

beforeFieldfn, mf) Selects the line n number of (non-blank) lines prior to an existing 
metadata field mf.

beforeTagfw, mf) Deprecated in favor of'beforeField' - selects the line n number of 
(non-blank) lines prior to an existing metadata field mf.

Begin The first line o f the document.
Beginwithmonth Find a line begins with a month such as “March ” , “January”, etc.
Boldchange Deprecated - Find a line that differs from the current line in that one is 

in bold and the other is not (same as changeWeight).
changeWeight Find a line that differs from the current line in that one is in bold and 

the other is not (same as boldchange).
changeSizeOrWeight Find a line that differs from the current line in that one of the 

following is true:
- Font size is different
- One is bold and the other is not bold.

changeSizeOrWeightOr Al ICaps Find a line whose features are different from those o f the current line. 
A typography change occurs when any of the following are true:
- Font size is different
- One is bold and the other is not bold
- One is Allupcase and the other is not.

changeSizeOrWeightOrCaps Find a line whose features are different from those of the current line. 
A feature change occurs when any of the following are true:
- Font size is different
- One is bold and the other is not bold
- One is Allupcase and the other not
- One is leadingcase and the other is not.

cityState For recognizing strings containing City, State or City, State Zip 
patterns.

chooseFieldBegin(w/^/, mf_2, 
mf n)

The selector attempts to locate the listed meta fields left to right and 
selects the first which has a successful extraction. Depending on 
selector we then match the begining o f that field.

chooseFieldEnd(m/ /, mf 2, ... 
mf_n)

The selector attempts to locate the listed meta fields left to right and 
selects the first which has a successful extraction. Depending on 
selector we then match the end of that field.

containsName Find a line that appears to contain a personal name. Names may be 
last name first or first name first. [Replaces former unused 
nameformat selector]

containsOnlyName Find a line that appears to contain only a personal name. Names may 
be last name first or first name first. [Checks if line has 4 or more 
words, it must have a comma,period,colon,semi, paren, bracket, 
square bracket, or the word 'and']
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TABLE 7 Continued

Selector Meaning
Current Matches the current line (see above).
Dateformat(formats) Find a line that has a date with specified format. Formats is a ” |’ -separated list of 

date formats, with each format being any pattern that would be accepted by Java's 
SimpleDateFormat class. Example: dateformat(MMMM dd, yyyy|MM/dd/yyyy) 
would accept lines such as “January 23, 2001” or “01/23/2001” .

Dateformat Find a line that has a date with format “dd month yyyy” “month dd, yyyy” or 
“month yyyy”, where “month” means a month string such as “Jan ”, 
“September”, etc.

End The last line of the document.
endleftofi?ag/ Locates 1 st line not to the left of the beginning of the tag (see 'leftof, below).

endrightof/tag) Locates 1 st line not to the right o f  the beginning of the tag (see 'rightof, below)).

Featurechange Deprecated - old name for changeSizeOrWeightOrCaps.
Firstpart Deprecated: matches the current line (same as “current” or “onesection” in an 

<end> rule)
Largersize Find a line whose size is larger than current line (Lines with string length less 

than 10 are ignored.)
largeststrsize (vl,v2) Searches for the largest font size among lines between positions vl and v2 that 

meet the following criteria:
- Its length is larger than 11
- It has more than 1 words
- Average word length is between 4 and 13
- More than 70% of the characters are alphabetic.

looseLargeststrsize
(vl,v2)

Searches for the largest font size among lines between positions vl and v2 that 
meets the following criteria:
- More than 70% of the characters are alphabetic.

Lastpart Line of the previous field’s end.
Layoutchange Deprecated - old name for changeSizeOrWeight.
\eftof(tag) Locates 1st line to the left of and overlapping vertically with the block of 

statements extracted as the metadata field tag.
Onesection Generally used only in an <end> rule. Selects the same line as the <begin> rule. 

This is functionally equivalent to “current”.
pageChange Finds the first line in the next page, [Note that only pages whose page numbers 

are given the template will be available.]
paraEnd Finds a line preceding a line that was indicated as the start of a paragraph (by 

OCR).
ParaEnd Deprecated (in favor of “paraEnd”): Finds a line preceding a line that was 

indicated as the start of a paragraph (by OCR).
regexps(re) Find a line matching a regular expression re.
rightof(7ag) Locates 1st line to the right o f and overlapping vertically with the block of 

statements extracted as the metadata field tag.
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TABLE 7 Continued

Selector Meaning
size (s l,s2 ) Return true if a line’s font size is between s i  and s2.
sizechange (x) Find a line whose font size is different from that of the current line. To overcome 

OCR errors, a change with difference less than x is ignored.
sizepctchange(x) Find a line whose font size is different from that of the current line by more than 

the x percent.
Smallersize Find a line whose size is smaller than current line (lines with string length less 

than 10 are ignored.)
Stringmatch Match a special string -  see below.
titleCaseOrAHCaps(k) Find a line that is in all caps or in title case (according to the usual English rules 

for capitalizing titles, which allows articles, propositions, etc., to remain 
unapitalized) and that has k or more words. If the parameter is omitted, k==4 as a 
default.

typoGraphychange Deprecated - old name for changeSizeOrWeightOrAllCaps.
vertiealSpace Find a line preceded by an empty line.
verticalSpace(.s) Searches for any line that is followed by a vertical space greater than or equal to 

scale (s) * lineheight, where lineheight is multiplier times the height of the 
bounding box and multiplier ranges from 1. 0.. 1.2.

verticalSplit(Ar,«) Searches the current page for the k-1 largest internal vertical white spaces 
(ignoring the top and bottom margins), thereby splitting the page into k vertical 
blocks. Returns the line number beginning the («)_st such block. By definition, if 
n == 0, returns the first nonempty line on the page. If n==k, returns the last 
nonempty line on the page.

The stringmatch selector is a special case in that it is formed as an XML element 

rather than a simple test within a begin or end rule. The XML structure is needed to 

support the set of options available as shown in Table 8. The text to be matched is inside 

the stringmatch element. The “fuzzy” attribute is primarily used to compensate for OCR 

recognition errors.
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TABLE 8 
Options for stringmatch Selector

Attribute Required Possible
values

Default Meaning

case no “yes” or
44___55no

yes Yes: upper/lower case is significant No: 
upper/lowercase differences are ignored

loc yes “beginwith”,
“onsection”,
“contain”,
“endwith”

Modifies how much of the text in a line must match 
the provided text:
- beginwith: the line must begin with the provided 

text
- endwith: the line must end with the provided text
- onesection: the entire line must match the 

provided text
- contain: the provided text must occur somewhere 

within the line
fuzzy no Non

negative
integer

0 Match succeeds even if the line differs from the 
provided text by this number of single-character 
changes (Levenshtein edit distance)

Even though a template writer has 45 line selectors available, usage analysis o f 

128 templates developed for the DTIC collection shows that the most common line 

selectors for the begin rule are the “stringmatch” and the “previous” metadata field 

selectors as shown in Table 9. The most common selectors for the end rule are the 

“onesection” and “stringmatch” selectors. These usage statistics are consistent with our 

experience in developing templates where a common pattern is to use a “stringmatch” to 

find the first metadata field on a page and then additional metadata fields follow 

sequentially after the first. The end selector usage is also consistent with the observation 

that in most cases, a field is contained on a single line.
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TABLE 9
Line Selector Usage for DTIC Collection

begin command Times Used end command Times Used
string 330 Onesection 437
Metadata field 263 String 160
dateformat 69 verticalSpace 58
begin 62 Regexps 40
regexps 47 changeSizeOrWeightOrCaps 40
lastpart 45 Dateformat 37
largest strsize 35 changeSizeOrWeight 36
pageChange 17 End 19
titleCaseOrAHCaps 9 typoGraphychange 12
containsName 7 pageChange 11
containsOnlyName 5 paraEnd 7
leftof 3 changeSizeOrWeightOrAllCaps 7
verticalSplit 3 Featurechange 7
firstpart 2 Layoutchange 5
rightof 2 containsOnlyName 4
beginwithmonth 2 ParaEnd 4
largersize 1 beginwithmonth 3
chooseFieldBegin 1 Largersize 2

Sizepctchange 2
paraChange 2
containsName 2
titleCaseOrAHCaps 2
chooseFieldEnd 1
verticalSplit 1
cityState 1

Sizechange 1

5.3 TemplateMaker program

Developing templates using the native XML structure proved to be extremely 

difficult even for our most experienced developers. Once we were able to modularize the 

architecture and separate out the non-form extraction engine, I developed the 

TemplateMaker tool. The TemplateMaker, shown in Fig. 26, is a GUI tool to help in the
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template creation process. It allows a template author to edit templates, adding and 

modifying rules, and to quickly apply the modified template to a set o f  documents to see 

the effects o f each rule. TemplateMaker can be used by authors who have no 

understanding of XML or who simply wish to avoid dealing with the finicky details o f 

writing valid XML. During on-site training of the system, a variety o f DTIC personnel 

ranging from clerical staff to managers demonstrated an ability to use the TemplateMaker 

to craft at least one template after a half-day training session. One of the most valuable 

features of the TemplateMaker is the ability to show the user the actual “scroll” or list of 

lines resulting from the segmentation of the document. This is important because on 

multi-columnar type documents it may not be obvious how the lines will be ordered by 

the engine.
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Fig. 26. TemplateMaker GUI
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5.4 Greedy templates

One of the most persistent issues faced by template creators is the concept of a 

greedy template or a template that contains rules that are too general and that match 

unintended text on a page. This section addresses the problem in detail, offers methods 

for alleviating the issues and shows a case study demonstrating the problem.

5.4.1 Explanation and samples

The post hoc classification applies every template in the collection to each 

document and the expectation is that the template selected will be the one designed 

specifically for that document set. The most significant recurring issue for post hoc 

classification is that a new template developed for a new set of documents in a collection 

will match other documents and possibly erroneously outscore existing templates. This 

phenomenon is called the greedy template. When a greedy template is included among 

the template collection, it can result in numerous false positives, i.e., the template 

matching documents outside its class. This can be a problem when the greedy template 

fields match random text that does not represent the correct metadata. These erroneous 

fields are scored by the validator and may in fact receive reasonable scores. For example, 

the UnclassifiedTitle and Abstract validation may score high on a random sentence in a 

document.

Fig. 27 shows an example of a greedy template we encountered during our work 

with the GPO EPA collection. I detected this template while evaluating classification 

performance during template development. At the time we were attempting rapid 

expansion of the template set for the GPO EPA collection and had five different template 

authors with various levels of experience writing templates. During analysis of one run
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of the document set, I found that the template shown in Fig. 27 selected 56 documents 

with no correct extractions and that another template that I was investigating, “title2col”, 

was not matching any of the correct documents it previously matched. Once this greedy 

template was removed from the template set, the extractions cleaned up and the 

“title2col” template picked up the expected documents.

It is not intuitively obvious to even the experienced template writer that this is a 

bad template. It is too general since it will match virtually any document with the string 

“EPA” in it. Once the “EPA” is found, the “notes_500” and “series_490a” fields are 

designed to simply take the next two lines, regardless of the content. “series_490a” is a 

validated field so the template gets points for the irrelevant data.

The most reliable method for detecting greedy templates is to continually run 

regression tests during the template creation process. The creation of regression tests is 

one of our recommended best practices for operation of the extraction software. As 

templates are created, a sample document and resulting metadata are saved into the 

regression cache. As new templates are added, the collection of regression documents is 

rerun and the extractions are confirmed. The detection o f any changes to the expected 

metadata is cause for investigation and adjustment.



96

<?xml vers ion="1.0" encoding=MUTF-8"?>
<structdef pagenumber=,fr ’ templateID="title2col-noPlace">

<publisher_260b min="l" m ax="l" require=,,yes">
<begin incIusive="current,’>regexps((?i)EPA|environmental 

♦protection +agency)</begm>
<end inclusive=H current">onesection</end>

</publisher_260b>

<notes_500 min="l" m ax="l" require="yes">
<begin inclusive="after,,>publisher_260b</begin>
<end inclusive=" current">onesection</end>

</notes_500>

<series_490a min="l" max="l" require="yes">
<begin mclusive="after">notes_500</begin>
<end incluslve="current”>onesection</end>

</series_490a>

<title_245a min="l" m ax="l" require=,,no,,>
<begin inclusive=" after " >series_490a</begin>
<end

inclusive="before">regexps((\w*[,]\s\s*)|(Jaii|Feb|Mar|Apr|May|Juii|Jul| 
Aug|Sep|Oct|Nov|Dec)[.a-z]+ +\d\d\d\d)</end>

</title_245a>

<dateOfPubl_260c min=”l"  max="l" require="no" 
filter=".*?(Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)([.a-zl+ 
+\d\d\d\d)">

<begin
inclusive="current">regexps(.*?(Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep 
|Oct|N ov|Dec) [.a-z] + +\d\d\d\d)</begin>

<end inclusive="currentM>onesection</end>
</dateOfPubl_260c>

</structdef>

Fig. 27. Sample Greedy Template from GPO EPA Collection
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5.4.2 Techniques for avoiding greed

There is no guaranteed method for preventing greedy templates. We devised two 

methods to at least reduce the greedy behavior o f some templates.

We added the “require” attribute to the metadata rule selector to help eliminate 

documents which do not contain key identifying content in the class. The effectiveness 

of the “require” is dependent on the uniqueness o f the selected content. Note that in Fig. 

27, the “require” on the publisher is a good start but putting the “require” on the 

notes_500 and series_490a is not useful since the selectors merely pick up a single line.

An additional method is to add a classification “boost” rule. The classification 

scoring system is designed to add a large value (+100) to any metadata field which begins 

with an “underscore”. If the document class contains unique content, e.g. a corporate 

author name, then the template can be written to select that content with a boost rule to 

ensure that this template will be selected.

5.4.3 Greedy template case study

In order to test the impact of adding greedy templates to a template collection set,

I added two templates which should be greedy. The first template “grabby 1”, Fig. 28, is 

a template which was removed from the DTIC collection because it was too greedy. The 

second template “grabby 2”, Fig. 29, was constructed using a set of basic rules to select 

the largest size string from the top half of the first page as the “title” and the largest size 

string from the bottom half of the page as the “abstract”. These templates were added to 

our DTIC testbed of 1625 documents and run through the process. This run resulted in 

325 documents being assigned to “grabby 1” and 213 documents assigned to “grabby2”. 

Of those 538 documents, 183 had “acceptable” validation scores with “acceptable” being
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defined as greater than 0.64 (see section 7.10 ) only 106 of the “acceptable” documents 

had good title extractions and none had correct abstracts.

<structdef pagenumber="l" tempIateID="grabbyr’> 
<UnclassifiedTitle>
<begin incIusive=,,current,,>largeststrsize(0,0.4)</begin>
<end incIusive=”before,,>layoutchange</end>

</UnclassifiedTitle>
<PersonalAuthor>

<begin incl«sive= " after”>UnclassifiedTitle</begin>
<end inclusive="current,,>onesection</end>

</PersonalAuthor>
<CorporateAuthor>

<begin inclusive=”after”>PersonaIAuthor</begin>
<end inclusive=Mbefore”xstringm atch case=,,no,, 

loc=,,beginwith”>ABSTRACT|Abstract|RESUM|Summary|INTRO|Int 
ro | SUMMARY| Resu | RE S</ strlngmatchx/en d>
</CorporateAuthor>
<Abstract>

<begin inclusive=”after,,xstringm atch case=,,no" 
loc=,,beginwith”>ABSTRACT|Abstract|Summary|SUMMARY</string 
match></begin>

<end inclusive=,,before">layoutchange</end>
</Abstract>

</structdef>

Fig. 28. Greedy Template Example "grabby 1"
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<structdef pagenumber=M 1 " templateID="grabby2"> 
<Unclassif!edTitle min=”l M max=”l H>

<begin inclusive="currentM>Iargeststrsize(0, 0.5)</begin> 
<end inclusive="before">layoutchange</end> 

</Unclassif!edTitle>

<Abstract min=’’l"  max=”l M>
<begin inclusive^'currentM>largeststrsize(0.5, 0.9)</begin> 
<end inclusive=,,before,’>layoutchange</end>

</Abstract>
</structdef>

Fig. 29. Greedy Template Example "grabby2"
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CHAPTER 6 

DOCUMENT SIMILARITY EXPERIMENTS

This chapter details experiments conducted in document classification using 

similarity measures. Early in the project we were looking for a reliable method for 

document classification for selecting the correct template for extraction, where we define 

“reliable” as having a precision and recall measurement better than 80%. My initial 

efforts focused on investigating various document similarity measures as an extension of 

the POINT page search work detailed in Chapter 3. I designed these experiments to use a 

relatively small training set, on the order of 5-6 documents as opposed to a large training 

set typically found in machine learning systems. This is also a manageable number for a 

template writer to examine to develop a template.

6.1 Experimental Setup

The test collection was based on a randomly selected set of 2000 documents from 

the DTIC collection. 522 of those documents were found to be non-form documents. I 

conducted a visual classification procedure on these non-form documents and was able to 

divide 407 documents into 38 classes of two or more examples. The remaining 115 

documents appeared to be unique (or singleton) files.

For these similarity experiments, I selected 5-6 training set documents for each 

class randomly from the test collection. Classes with fewer them 5 members were 

excluded resulting in 21 different classes from the original 38. Each experiment was run 

against the entire set of the 522 selected nonform documents. I used a k-nearest 

neighbors (k-NN) method with K equal to 5. The top 5 most similar training documents
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are examined and if 4 o f the 5 are the same class, that is the selected class, otherwise 

there is no selection.

6.2 Similarity testing experiments

The following sections detail the experimental results of testing six different 

methods for classifying documents based on similarity. From the test collection 

described above, we used the 21 different classes which had at least five member 

documents. Appendix D contains sample images o f each of the classes used in this series 

of experiments.

6.2.1 Layout Distance

I investigated the distance measure algorithms laid out in [48]. The method that I 

tested attempts to minimize the Manhattan distance between comer points o f paragraph 

blocks as the distance together with the percentage of block overlap. The blocks are 

matched using the minimum distances using the Hungarian algorithm [69] with the 

specific JAVA implementation found at [70]. Table 10 shows the results of the block 

layout distance. The “Correct” column is the total of correctly identified documents 

belonging to this class. The “Incorrect” column is the number of documents in this class 

which were not correctly identified. The “New” column is the number o f documents 

from some other class that has been mis-identified. The “Precision” column is calculated 

as:

Precision= Correct /  (Correct + Incorrect)

The “Recall” column is calculated as:

Recall = Correct /  (Correct + New)
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TABLE 10
Layout Distance Similarity Results

Class Correct Incorrect New Precision Recall
AU 85 1 0 99% 100%

EAGLE-IMAGE 32 0 3 100% 91%
RAND-ARROY 02 4 24 0 14% 100%

LOGI 4 23 0 15% 100%
ERDC 18 8 1 69% 95%

RAND-BRIEF2 12 8 0 60% 100%
RANDTECH 8 8 3 50% 73%
RAND-NOTE 8 6 0 57% 100%
EAGLE-TEXT 13 0 0 100% 100%

RAND-ARROYO 6 6 1 50% 86%
SIGNATUR o 10 0 0% 0%
ran&-arc 0 . 9 . 0 0% ' .PA

0 . 9 0 0% 0%
0 9 0 0% m

BOTTOM-BLOOC . .jtl *  7 ■ ‘ 0 L ffekMMl ' & ... 7 m : .

CPRC 0 6 a 0% M
RAND-BRIEFI • : 4 ■ 0 3J% 100%

. R A i^ ijifT 6 ■■ ° 0% 0%
HOR1Z \V4:::y I 0 80% 100%

WARCOLLEGE •. o L':- 3 0 0% 0%

Table 10 shows the results o f the Layout Similarity test. 14 out o f 21 of the 

document classes had precision under 50% and only 3 o f 21 had a precision of 90% or 

higher. This table and the tables in the following sections highlight the 11 classes with 

10 or fewer instance documents. The performance of those classes may not be indicative 

of the performance of the similarity measure since there are so few sample documents 

available and the training set is included in the test set. The one conclusion we can draw 

is that any class which does not match at least 5 documents is not suited for this measure.
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6.2.2 MxN Overlap

This similarity measure uses a variant of the MxN bin method proposed by [45]. 

In this method, a page is cut into 100*200 bins in equal size. Each bin is marked as a 

graphic bin, a text bin, or a white space bin. A bin is a graphic if any part of the bin is 

overlapped by a graphic block and no part is overlapped by a text block. Any bin 

overlapped by any part of a text block is classified as text. The similarity is the 

percentage of bins on each page that match markings. Table 11 shows the results of the 

MxN Overlap results.

TABLE 11 
MxN Overlap Similarity Results

Class Correct Incorrect New Precision Recall

AU 83 3 0 97% 100%
EAGLE-IMAGE 32 0 0 100% 100%

RAND-ARRO Y 02 19 9 5 68% 79%
LOGI 2 25 0 7% 100%
ERDC 24 2 0 92% 100%

RAND-BRIEF2 18 2 0 90% 100%
RANDTECH 2 14 1 13% 67%
RAND-NOTE 11 3 0 79% 100%
EAGLE-TEXT 9 4 0 69% 100%

RAND-ARROYO 6 6 0 50% 100%
0
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o : .
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11 out o f 21 of the document classes had precision under 50% and only 4 of 21 

had a precision of 90% or higher.

6.2.3 Common Vocabulary

This method is based on the intuition that documents in the same class may come 

from the same source and may therefore have similar publisher information or codes.

The method gathers the words common to each document in the training set for the class 

and attempts to find the best match with a floor o f 75% matching. I ran two different 

experiments. The first used words from just the 1 st page and the other used the common 

words of the 1st five pages. The complete list of word can be found in Appendix D.

TABLE 12 
Vocab Matching Similarity Results

Vocabulary 1 page Vocabulary 5 page
Class Correct Incorrect New Precision Recall Correct Incorrect New Precision Recall

AU 83 3 0 97% 100% 78 8 0 91% 100%
EAGLE-IMAGE 0 32 0 0% 0% 25 7 2 78% 93%

RAND-ARROY 02 20 8 5 71% 80% 21 7 6 75% 78%
LOGI 26 1 11 96% 70% 7 20 0 26% 100%
ERDC 14 12 1 54% 93% 17 9 4 65% 81%

RAND-BRIEF2 9 11 0 45% 100% 16 4 0 80% 100%
RANDTECH 0 16 0 0% 0% 13 3 10 81% 57%
RAND-NOTE 14 0 0 100% 100% 12 2 0 86% 100%
EAGLE-TEXT 13 0 0 100% 100% 7 6 0 54% 100%

RAND-ARROYO 0 12 0 0% 0% 9 3 2 75% 82%
10. 0 0 to im 100% 10 0 1 100% 91%

'f: 0 9 0 0% 5 4 \  i : 56% 83%
ifeSBARCh /■'. 6 3 3 6794 67% 8 ... 9 89% 47%

5 4 . 0 56% 100% - 5 .  ■ . ' 4 0 56% 100%
BOTIOM-BLOCK 0 8 0 0% 0% 4 , . 4 '"  , 1 50% 80%

a t o m .............. ..... 0 ■ i -  0 094 0% 7 0 . 0 10094 100%
€WtC 0 0 0 094 0% 5 1 6 83% 45%

RAND-BRlEFl ■ . 4 2 0 67% 100% 6 0
'

100% 100%
RAND-LEFT ■ rr * 4 22 33% 8% 5 1 0 83% 100%

HORE 0 5 0 0% 0% 5 0 28 100% 15%
WARCOLLEGE 5 0 8 100% 38% 5 0 2 100% 71%



105

For 1 page, 10 out o f 21 of the document classes had precision under 50% and 

only 6 of 21 had a precision o f 90% or higher. For 5 page, 2 out o f 21 of the document 

classes had precision under 50% and only 6 of 21 had a precision o f 90% or higher.

6.2.4 MXY Tree

This method is an implementation o f the MXY Tree [4] with the tree being built 

by alternating horizontal and vertical cuts along whitespace between blocks. The MXY 

Tree structure is encoded in a string by concatenating a “V” or an “H” for each horizontal 

cut in sequence, and finally at the last block in each branch, assigning a “g” for a graphic 

block and a “t” for a text block. The similarity is measured by calculating the edit 

distance between encodings.
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TABLE 13
MXY Tree Similarity Results

Class Correct Incorrect New Precision Recall
AU 84 2 0 98% 100%

EAGLE-IMAGE 16 16 1 50% 94%
RAND-ARRO Y 02 0 28 0 0% 0%

LOGI 3 24 2 11% 60%
ERDC 5 21 0 19% 100%

RAND-BRIEF2 10 10 1 50% 91%
RANDTECH 0 16 0 0% 0%
RAND-NOTE 0 14 0 0% 0%
EAGLE-TEXT 13 0 1 100% 93%

RAND-ARROYO 0 12 0 0% 0%
0 . 1ft 0 :...... . M . : ; : ft%
0 9 1(Q ., ri- .

0 .... $ ......ri ft
. 0 1 r- ftt- ' j* f l , , , ftW

, ft 8 , - n f  ;
1 ■ 'IL

K v ^ . f t1' 1 . ’Tr ‘ ' ofl ,r
15. 0 ' . ft ft  r,

..........2 ....... ’ . 4 ‘ . ' 0 100%
' ' . . .  f t : ; .

.r -  , V;
, 0  ”

i L J l S ^ r V # J- :r'i5 $ c
0 5"" ' 0 &k rH' ftp.

19 out o f 21 of the document classes had precision under 50% and only 2 o f 21 

had a precision of 90% or higher.

6.2.5 MXY Tree Plus MxN

This method calculates the similarity by adding values found by the MXY Tree 

and the MxN methods described above.
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TABLE 14
MXY Tree Plus MxN Similarity Results

Class Correct Incorrect New Precision Recall
AU 85 1 0 99% 100%

EAGLE-IMAGE 30 2 0 94% 100%
RAND-ARRO Y 0 2 0 28 0 0% 0%

LOGI 3 24 1 11% 75%
ERDC 12 14 0 46% 100%

RAND-BRIEF2 12 8 2 60% 86%
RANDTECH 0 16 0 0% 0%
RAND-NOTE 0 14 0 0% 0%
EAGLE-TEXT 13 0 1 100% 93%

RAND-ARROYO 0 12 0 0% 0%
s Ig h At u r 0 10 ,0 o%’ 0%

v i - 9 ; , . v # . r 100%
{• > ' /■ 0  . ■?X , ' d k : 0%

G 9 G • '  0% 0%
■v *id . 0% A ft/

I'Wm.:' > 0 ; llJ7V  ■ r9.; 0% , 0%
■* ; ;  • ’*-'0 *" ( 6 0% “0%

1 ' 2  ̂  ̂ 4 33% 100%
. • ftAttifcuBFT 4 o ' ' V ' 0 • 0% .m -  ■

4 1 0
Wa!r C O £ & B 0 5 I 0% 0%

16 out of 21 of the document classes had precision under 50% and only 3 of 21 

had a precision of 90% or higher.
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6.3 Analysis

Examining the precision results in the preceding five sections, none of the 

methods by itself exceeds 80% precision for every class. The vocabulary five page 

(Vocab 5) method performs best with 15 o f 21 classes exceeding 80%. The Vocab 5 is 

suited to these classes since the classes represent report type documents which have a lot 

of common content on pages two and three. This implementation of the MXY tree did 

the horizontal and vertical cuts based on the blocks generated in the OCR process. The 

MXY tree appears to be very susceptible to OCR segmentation differences. It performs 

nearly perfectly for the “au” and “eagle-texf ’ classes which are distinguished by evenly 

dispersed blocks of centered text. However, it failed completely for the “rand-arroyo2” 

class, which is distinguished by a set of tightly spaced blocks in the middle of the page 

along with a header and footer block. The spacing and left-right positioning of the blocks 

varies between documents. This also explains the poor performance of the “Layout” and 

MxN classifiers. The Manhattan distance and MxN work well with documents 

possessing images and logos. An additional complication for our usage is that we have 

found a number of classes which do not select metadata from page one of the document.
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CHAPTER 7 

MACHINE LEARNING EXPERIMENTS

This chapter details experiments conducted is document classification using 

machine learning. Early in the project we were looking for a reliable method for 

document classification for selecting the correct template for extraction, where we 

defined reliability as having a precision and recall measurement better than 80%. My 

later experiments in machine learning were looking at classification as an additional 

factor to supplement the validation process in determining extraction quality. This 

application is more tolerant of inaccuracy since the primary mechanism is the post hoc 

classification process.

This section examines a series o f experiments I conducted to investigate the use 

of machine learning techniques to conduct document classification. I used the WEKA 

machine learning package version 3.7.2 to conduct these experiments.

7.1 WEKA usage

The Machine Learning Group at the University of Waikato developed a machine 

learning toolset called Waikato Environment for Knowledge Analysis (WEKA) [71], 

WEKA provides access to multiple standard machine learning techniques in an integrated 

environment that allow the user to quickly test a variety o f techniques against any dataset. 

WEKA also provides advanced functionality for performing attribute selection and 

dimensionality reduction of data as well as the ability to chain or combine classifiers or 

make comparison between classifiers. It also provides a few methods for defining
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training and test sets. I primarily relied on using the 10-fold cross validation method for 

evaluating performance [72],

=== Stratified cross-validation === 
===== summary ===

Correctly Classified Instances 
Incorrectly Classified Instances 
Kappa statistic 
Mean absolute error 
Root mean squared error 
Relative absolute error 
Root relative squared error 
Coverage of cases (0.95 level)
Mean rel. region size (0.95 level) 
Total Number of Instances 
Ignored Class Unknown Instances

=== Detailed Accuracy By Class ===

1 Rate 
0.938

FP Rate 
0.009

Precision
0.901

Recall 
n QOQ-

F-Measure
----- 0.010 '

iC oC Area
..0.QGG ....

Class 
— MDg

0. 733 0.039 636 0.733 0. 681 0.8 68 HEAD-ABSTR-1
0
0.6

0.005
0.003

0
0. 429 0.6 0.5 0.798 walker

0. 922 0.007 0. 912 0.922 0.917 0.955 AMARAC
0. 667 0.004 0. 444 0. 667 0.533 0.831 DM DC
0 0.001 0 0 0 0.479 HEL03
0. 533 0.008 0. 64 0.533 0. 582 0.759 AFRL

789
430

0.6322 
0.0079 
0.0797 

39.521 % 
79.6348 
70.6317 
1.7347 

1219
287

Fig. 30. Sample WEKA Output Showing Cross-validation
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Fig. 30 shows sample output from the WEKA cross-validation. Using the 10-fold 

cross-validation, in some experiments I compared the “Correctly Classified Instances” 

percentage reported by the cross validation, see call out 1. Alternatively, I looked at the 

per class performance, call out 2. For each class I looked at Precision and Recall. Where 

the Recall is defined as the proportion of examples which were classified as class X, 

among all examples which truly have class X, and the Precision is defined as the 

proportion o f the examples which truly have class X among all those which were 

classified as class X. In comparing the overall performance between classifiers, I used 

the F-Measure which is defined as:

F-Measure= 2 *Precision *Recall/(Precision^ Recall)

7.2 Baseline Document Collection for Experiments

I conducted each of the WEKA machine learning exeriments using the same 

baseline document collection. This section first describes the methodology for selecting 

and filtering the collection and then the process and results o f the manual classification. 

Finally, I provide a detailed analysis o f the results of the post hoc classification for the 

baseline collection.

7.2.1 Selecting baseline documents

I selected a set o f documents to use for baseline comparisons for document 

classification methods. I downloaded two sets of documents from DTIC to select 

representative baseline documents. The first set was a random sample of 2000 

documents from the 10825 documents available from DTIC during the period of 

February to June of 2009. The second set was a random sample of 2000 documents from
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the 43468 documents available from DTIC during the period of February 2008 to 

February 2009. I eliminated poor quality documents consisting of older scanned 

documents and documents with excessive stamps or other image noise. These documents 

were removed because I was testing classification and not performance of the extraction 

engine. That left with 1675 documents most of which contained RDP forms. I manually 

removed the form pages from the PDF documents using pdftk.

7.2.2 Manual classification

I conducted a manual classification processing on the 1675 documents which 

resulted in 99 total classes with 310 documents remaining unclassified. Two of the 

classes can also be considered special cases; the “glossy” class which consists of 54 

documents that are magazine type documents that can vary greatly in layout and are 

distinguished by large images on the first page; and the “horiz” class which consists of 44 

documents that are exclusively pages which are oriented in landscape format. The 

“glossy” and “horiz” documents are considered unclassified for our purposes, resulting in 

a total of 1267 classified documents. This manual classification was used as the training 

data for the machine learning experiments.

The manual classification was also the starting point for developing templates as I 

targeted the largest classes as the first priority for template development. An integral part 

of the template development process is to identify minor variations within a specific class 

which would require development of a different template. These variations were detected 

by checking the extraction results of a template and then adjusting for extraction errors.

A class and its variants can be grouped into a family of similar templates. The variations 

between some templates in a group may depend on the beginning or ending conditions o f
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a single field or multiple fields. As an example 13 out 25 templates in the “head- 

abstract” group begin with the same “UnclassifiedTitle” and “PersonalAuthor” criteria. 

Fig. 31 shows examples o f classes in the “head-abstract” group.

IlMli * l m l <l t— d «lnturt<2 h— H  «br>nrt c4

Fig. 31. Samples of "bead-abstract" Class Group

7.2.3 Evaluation of Post Hoc classification

The next step was to evaluate extraction results to determine the accuracy in 

selecting the appropriate template. The documents were processed through the extraction 

system, which was configured with 152 non-form templates. The extraction resulted in
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finding 1112 documents with metadata, 4 documents failed extraction, and 563 generated 

no metadata. I examined each extraction result on 5 common fields, title, abstract, 

authors, report date and report number and compared these to metadata retrieved from the 

DTIC online database. The template used for extraction was rated as correct, incorrect or 

variant. A correct rating indicates that the fields which were attempted by the template 

were taken from the appropriate place. Note that because I was evaluating the 

correctness of the selection of the template the fields may contain various typographic or 

OCR errors and still be marked as correct. A template variant is characterized by the 

majority of the fields being correct but at least one has a boundary condition error. The 

most common variant was where the abstract was extracted but included the words 

“Introduction” or “Abstract” indicating that the begin rule would need adjustment.

TABLE 15 
Extraction Classification Results

Resulted in extraction 1112
Manually classified 1267

Correct template 873 69%

Variant of template 70 6%

Incorrect template 93 7%

Unclassfied 408

Found a good template 42 10%

Found a variant template 8 2%

Incorrect template 26 6%

No extraction 563
Manually classified 325 26%

Unclassified 234 57%

Failed during processing 4

Table 15 shows the results of this evaluation, 915 /1112 (83%) were judged to be 

correct and 78 /1112 (7%) were variants. O f the manually classified documents,
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873/1267 (69%) resulted in correct classifications. The system also found 42 good 

classifications from the previously unclassified documents. I conducted a detailed 

review, Table 16, of the candidate template extractions o f the 119/1112(11%) incorrect 

template selections to determine if the system selected the incorrect template in 

preference to a correct template. There is only minimal evidence (2.5%) that the system 

is selecting the wrong template in preference o f the correct one. 20 o f the documents had 

problems correctly recognizing the personal author names. The template correctly 

identified the personal author block but the names were not extracted correctly. 

Improvements in the name recognition system would provide minor improvement in the 

overall performance. There was a large group of documents with more than 5 candidate 

templates which were part of the “head -abstract” type documents.

TABLE 16
Overview of Incorrect Template Characteristics

Single candidates 46 35.3%
Correct candidate not selected 3 2.5%
More than 5 candidates 46 35.3%
Name recognition problem 20 16.8%

Table 17 shows the breakdown of the incorrectly selected templates. 78/115 

(67%) of the incorrect templates were from the “head-abstract” group of templates, 

“head-abstract-cl” and “head-abstract-c2” count for a large number o f documents 

primarily because when multiple templates score the same, the first template in 

alphabetic order is selected. The “head-abstract-typewritten” class scores poorly because 

the documents contain many typographic errors.
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TABLE 17
Breakdown of Incorrect Template Selections

Class Documents Avg O f Confidence
Acgsc 1 0
afrl4 4 0.49
annualReport 2 0* '

arl_2 1 0
crs_7 1 i 1
Disam 1 1
erdc2 2 0.80
erdc4 1 0.815
finalReport_3 10 ; 0 0255
Gao 3

■ °-42
head-abstract 8 1 052
head-abstract-lb 7 0.29-j. . . .  .

head-abstract-AFRL 1 i  0
head-abstract-cl 11 | 0.38
head-abstract-c2 14 : 037
head-abstract-objective 1 : 0.04
head-abstract-physicsJoumal 1 ; °-42
head-abstract-pttiMeeting 4 031
head-abstract-season 2 0.66
head-abstract-typewritten 15 ; 0.26
head-NOabstract 13 . °-20
head-NOabstract-received 1 0.58
inspectorGeneral 2 ; 035
nps_proc 1 0.71
nps_report 1 ; 0
nps_thesis3 2 0.50
NSWCCD 1 0.71
rand_arroyo_l 4 0.24
status_change_l 1 1
technicalReport_3 1 0
Usaec 2 0.5

A review of the manual classification for the 563 documents with no results

showed that 89 documents in 34 classes were in classes that had templates developed.
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These represent probable variants of current templates. There were also 22 classes (98 

documents) for which no templates were developed.

7.3 Feature Set Construction

I used a variety of different feature sets during these experiments, the basic 

feature set types are described below.

7.3.1 Block Layout Signature

This method entails measuring the page similarity with a selected set of 

documents called the signature set. The features o f the feature set are defined as the 

similarity distance measure(s) from each document in the signature set to the instance 

document. Thus, total number of features is equal to the number o f documents in the 

signature set times the number of similarity measures used. I used two similarity 

measures for each signature document, one was the block layout distance and the other 

was the MxN block similarity (100x200 block grid).

I conducted a series of tests to determine the best way to select the signature 

documents. I initially attempted to define “orthogonal” documents to attempt to 

maximize separation between the signature set documents. The “orthogonal” signature 

set was built by iteratively adding a document from collection which has the highest 

average distance from the signature set. Fig. 32 shows the process for constructing the 

“orthogonal” set. We start with a single seed document and then find the document in the 

collection which has the greatest distance (or dissimilarity) from the original document. 

The new document is added to the signature set. We repeat the process (N -l) times until 

we have N documents in the signature set at each step we add the document which has
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the greatest average distance from the current signature set. Fig. 33 shows a visual 

depiction of the blocks in a signature set size 50. Note that the set is composed of 

documents that have either a large number o f small blocks or a small number o f blocks. 

This demonstrates a limitation with this method of selecting the signature. As the set is 

built, the document added during the addition phase will oscillate between groups of 

sparse and dense documents (e.g. the fourth document added in Fig. 32 is sparse after 

adding 3 dense documents.) The essential problem with this method was that it was 

measuring the extremes.

Original Seed Document 

X Adding new docum ents, find  m ost d iss im ila rto  existing s ig n a tu re  se t

Signature Set

Fig. 32. Process for Building "orthogonal" Signature Set
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Further experimentation showed that a better method of selecting the signature is 

to randomly select a large number (100-500) of signature documents and use 

dimensionality reduction to reduce the total number used.
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Fig. 33. Example Orthogonal Signature Set Size( N=50)

7.3.2 Document Statistics Feature Set

This feature set used the following statistical features extracted from the first page 

and the reduced (first 5 and last 5 pages) document. (avgFontSize, fontModePct, 

fontSizeMode, block, line, letter, word, digitline, digitend, avgwordline, avglinesize, 

capline, shortline5, shortline7, shortline9) This feature set was influenced by the



120

dramatic difference in fontsizes reported in textPDF pages and OCR’ed pages. The 

textPdf module typically reports fontsizes in the 200-400 range while OCR is 20-45. 

Document level measurements are influenced by the truncation of the number o f pages of 

the original document.

7.3.3 Contextual Blocks

In order to mirror more of the features a template writer uses to produce an 

extraction template, I tried to define contextual blocks. Each block reports the set of 

features listed below:

lines: number of lines

fontsize: point value of font size reported at the box level

fontmode: most common font point size reported at the word level

modepct: percent of total words using mode size

short5: number o f lines with less than 5 words

short7: number of line with less than 7 words

short9: number of lines with less than 9 words

linecase: overall case of the block ( Upper, Title, Mix, Normal)

style: overall style of the block (Bold, Italic, Normal, Mix)

block position : scaled to percent of page dimensions

block area: calculated using scaled dimensions

Note: A value of “Mix” on linecase and style indicates that there are multiple 

lines and they do not all use the same scheme.

I conducted a series of experiments to evaluate the best mixture o f blocks to use, 

varying the number of blocks (3, 5, 7, and 10) and combination of both beginning and
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ending blocks. I also tested adding syntax features and checked the blocks for the 

presence of the following:

Date: found a possible date 

Email: found a possible email address 

Phone: found a possible phone number 

Zip: found a possible zip code

7.3.4 Common Vocab

In order to generate the feature set, for each class, I found the list o f common 

words found on page 1 of each instance document. These would represent the signature 

words for that particular class. I then combined all o f the class level word lists into a 

single list and eliminated duplicates. The resulting list consisted of 1211 words shown in 

Appendix C. The dataset was created by checking each instance document for the 

presence of each word in the feature set.

7.4 Experiment: Comparing Classifiers

This experiment attempted to test as many of the classifiers available in the 

WEKA system against the same feature set.

7.4.1 Setup and definition

The feature set was a contextual block feature set called “fullsetl” that uses the 

following statistical features extracted from the first page and the reduced (first 5 and last 

5 pages) document: avgFontSize, fontModePct, fontSizeMode, block, line, letter, word, 

digitline, digitend, avgwordline, avglinesize, capline, shortline5, shortline7, and 

shortline9.
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TABLE 18
Results Comparing Classifiers Against Single Feature Set

Classifier %correct Precision Recall F-Measure
wekaxlassifiers.bayes.BayesNet 73.58 0.71 0.74 0.71
weka.classifiers.lazy .KStar 73.50 0.72 0.74 0.72
weka.classifiers.meta.MultiBoostAB/J48 71.12 0.68 0.71 0.69
weka.classifiers.lazy.IB 1 68.17 0.67 0.68 0.67
weka.classifiers.lazy.IBk 68.17 0.67 0.68 0.67
weka.classifiers.functions.MultilayerPerceptron 68.09 0.67 0.68 0.67
weka.classifiers.bayes.NaiveBayes 67.92 0.69 0.68 0.67
weka.classifiers.meta.Bagging/REPTree 67.84 0.62 0.68 0.64
weka.classifiers.trees.FT 67.84 0.67 0.68 0.67
weka.classifiers.rules.FURIA 65.63 0.60 0.66 0.62
weka.classifiers.trees.J48 64.73 0.63 0.65 0.64
weka.classifiers.rules.JRip 63.33 0.63 0.63 0.61
weka.classifiers.trees.LADTree 56.93 0.48 0.57 0.51
weka.classifiers.functions.SMO 49.30 0.34 0.49 0.38
weka.classifiers.lazy.LWL 22.89 0.12 0.23 0.11

7.4.2 Results

As shown in the results listed in Table 18, the BayesNet neural net classifier 

performed best against this particular feature set. The KStar instance-based classifier and 

the Boosted J48 tree-based classifier performed nearly as well as BayesNet.

7.5 Experiment: Block distance signatures

In these experiments, I investigated the block distance signature methods and the 

use of dimensionality reduction to improve performance.

7.5.1 Setup and definition

Data Generation: For this experiment I used four slightly different feature sets 

generated using the block layout signature methods. All feature sets represent the block
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distances from a selected set of signature documents, the block distance measurement and 

the MN block similarity. The “orthogonal” feature sets are constructed using the process 

described in section 7.3.1. The four feature sets are:

Ortho40-noname -  orthogonal feature set. The signature set has 40 documents.

Ortho50-noname -  orthogonal feature set. The signature set has 50 documents.

Rand-dist-l-noname -  random feature set. The signature set contains 250 

randomly selected documents and the blocks used for layout are based on paragraph 

blocks.

Rand-dist2-l-noname -  random feature set. The signature set contains 50 

randomly selected documents and the blocks are based on IDM regions containing only 

paragraphs, paragraphs and image blocks.

Algorithm: I used the J48 and the Bayesnet classifiers in native mode as well as 

using an Attribute Reduction filter. The results o f each filter and dataset are compared 

using the WEKA Paired Corrected Tester.

7.5,2 Results

Fig. 34 shows the results o f this experiment. The “V” mark next to a column 

result indicates that the result is a statistically significant improvement over the result in 

column one, conversely an asterisk indicates degraded performance. The best result is 

found for the Bayesnet classifier using 250 random documents with attribute selection. 

This is a reasonable result since having 250 sample documents provides a greater range 

of values to use for the dimensionality reduction.
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Tester:
Analysing: 
Datasets:
Resultsets: 
Confidence: 
Sorted by: 
Date:

weka.experiment. PairedCorrectedTTester
Percent_correct
4
4
0.05 (two tailed)

11/9/10 10:42 PM

Dataset (1) trees.J4 I (2) bayes (3) seta. (4) meta.

oxtho40-nonasie (100) 54.16 I 53.21 53.64 55.85
ortho50-noname (100) 53.88 | 53.27 53.83 56.74
rand-dist-l-noname (100) 59.16 I 60.76 62.28 v 65.00
rand-dist2-1-noname (100) 58.67 | 55.25 * 58.72 60.49

(▼/ /*) I (0/3/1) (1/3/0) (2/2/0)

Key:
(1) trees. J48 '-C 0.25 -M  2' -2.17733168393644448E17
(2) bayes.BayesNet ' -D -Q bayes. net. search. local. K2 —  -P 1 -S BAYES -E 
bayes.net .estimate.SisgjleEstimator A 0.5' 7 . 4603744325877594E17
(3) meta.FilteredClassifier ’-F \supervised.attribute.Attributes®lection -E
\\\"CfsSubsetEval \\\" -S \\\"BestFirst -D 1 -N 5\\V’\" -H trees.J48 C 0.25 -M 2' -
4.5234506185387172E18
(4) meta.FilteredClassifier ' -F \"supervised.attribute.AttributeSelection -E 
\\\"CfsSubsetEval \\\" -S \\\"BestFirst -D 1 -N 5\\\"\" -W bayes.BayesNet —  -D -Q
bayes.net.search.local.K2 —  -P 1 -S BAYES -E bayes.net.estimate.SimpleEstimator —  -A 0.5' 
-4.5234506185387172E18

Fig. 34. WEKA Results Comparing Block Layout Distance Measures

7.6 Experiment: Testing multiple pages

The experiment described in section 7.2 investigated using different classifiers for 

a context block feature set. This experiment tests the effect o f using context blocks over 

multiple pages.

7.6.1 Setup and definition:

Four datasets were generated using the context block feature set. The datasets 

represent the number of pages from 1 to 4. Each block reports the set o f features listed 

below:
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-lines: number of lines

-fontsize: point value of font size reported at the box level

-fontmode: most common font point size reported at the word level

-modepct: percent of total words using mode size

-short5: number o f lines with less than 5 words

-short7: number of line with less than 7 words

-short9: number of lines with less than 9 words

-linecase: overall case of the block (Upper, Title, Mix, Normal)

-style: overall style of the block (Bold, Italic, Normal, Mix)

-block position: x and y values

Note: “Mix” on linecase and style indicates that there are multiple lines in the 

block and they do not all use the same scheme.

For these experiments, the first 5 paragraphs on each of the first 4 pages are the 

blocks used.
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T a s t a r :  w a k a .a x p a r iM n t .F a l r a d C o r r a e ta d T T a s t a r
A n a ly s in g :  P a r o * n t_ o o r r e a t
D a t* * * ta :  4
R a t a l t a a t a :  •
C ee fl<kae« : 0 .0 5  ( t i r e  t a i l e d )
S o r te d  b y :
D a te : 2 /1 8 /1 4  8 :3 9  M

D a ta a a t (1) b a y * a . Ba | (2 ) M t « . (3 ) t r e e # (4) a a t a . (5 ) l a a y . (6 ) a a t a . (7 ) r u l e * (8 ) a a t a .

a u l t i p a g a l (100) 7 4 .3 0  I 7 5 .2 8 8 4 .5 8  * 6 6 .3 6  * 7 3 .4 4 7 3 .4 0 4 3 .5 1  * 6 3 .2 4  *
■ u l t i i w g t J (100) 7 5 .0 2  | 7 9 .8 9  v 8 4 .0 8  * 6 6 .1 3  * 6 3 .8 5  * 7 4 .1 6 6 3 .1 0  * 6 5 .7 4  *
m u l t lp a g a l (100) 7 4 .8 9  | 8 0 .9 4  v 6 4 .3 0  • 6 5 .9 3  • 3 5 .8 4  * 7 4 .2 6 6 3 .3 9  * 6 5 .1 6  *
a u l t ip a g * 4 (100) 7 5 .1 8  | 8 1 .2 5  v 6 3 .4 7  • 6 6 .4 8  * 1 8 .6 6  • 7 3 .5 7 6 2 .4 9  * 6 4 .1 1  *

( v /  /*> 1 ( 3 /1 /0 ) ( 0 /0 / 4 ) ( 0 /0 /4 ) ( 0 /1 / 3 ) ( 0 /4 / 0 ) ( 0 /0 /4 ) ( 0 /0 / 4 )

Key:
(1 )b ay * a .8 a y * « M * t ' -D b a y e s  . n e t .  s e a r c h ,  lo c a l .K 2  — - f  1 - 5  U Y S S  *E b a y a a .  n a t . a s t i a a t * .  S i a p l a l s t l a a t o r  

 A 0 . 5 '  7 .4 6 0 3 7 4 4 32S 877594I17
(2) a a t a . A t t r i b u t a S a l a c t a d C l a a s i f i a r  * -1  \ - C f a S u b a a t l v a l  - 8  \ " B * a t r ± * » t  -D 1 -II S \ a -W b a y a a .B a y a a B a t  

. . .  - o  - q  b a y e s . n e t . s e a r c h  . l o c a l . K2 - -  -t 1 -S  BAE1S - I  b a y e s  . n e t .  e s t i a a t e .  S i a p l e K a t l a a t o r
— -A  0 . 5 '  >5 .0518054534879478118

(3) t r e e s . J 4 8  *>C 0 .2 5  -M 2 ’ > 2 .17733168393644449117
(4) e e t a . A t t c l b u t e 8 e l e e t e d C l a s s i £ i e r  ' -E  \ - C f s S u b s e t l v a l  \ -  - 8  S " B e s t r i x s t  -D 1 -1  S \«  -B  t r e e s .  J 4 8

— -C  0 .2 5  -41 2* > 5 .9518054534879478118
(5) l a a y .K S t a r  *-B 20 ~M a '  3 .3 2 4 5 83308004791117
(8) m a t * .A t t r i b u t e S a l a c t a d C l a a a l f l a r  '-1 \ ”C £ s S u b s e t lv a l  \" - S  \ " B * * t l i x * t  >D 1 -■ S\* -8 l a s y . I S t a r  

»  >B 20 >M a '  -5 .9518054 5 3 4 8 7 9 4 7 8 1 1 8
(7) r u l e s . J R i p  • - 1  3 -V 2 .0  -O 2 >8 1 '  -4 .5 8 9 3 1 2 9 9 8 8 3 2 1 4 7 5 1 1 8
(8) a e t a . A t t r i b u t e S e l e c t e d C l a s s i f l e r  ’ >1 \ BC f s S u b s e t l v a l  >S \ " B e s t r i r s t  >D 1 -B S \ ” -B  r u l e s . J R i p  

— - »  3 -B 2 .0  -O 2 >S 1 ‘ > 5 .9518054334879478118

Fig. 35. Results of Adding Multiple Pages to Feature Set

7.6.2 Results

Fig. 35 shows the results of adding the additional pages to the feature set. I 

compared a total of eight different classifiers against the BayesNet classifier. The best 

performing is the BayesNet with attribute selection having 4 pages. Under the normal 

BayesNet, the addition of extra data pages does not improve performance. Selecting the 

best attributes using attribute selection results in a statistically significant improvement in 

performance. The BayesNet classifier with attribute selection is the only one tested that 

shows improvement with the addition of extra pages. The 81% correct identification rate 

is comparable to the performance found in post hoc classification.
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7.7 Experiment: Adding syntax features

The purpose of this experiment was to test the effect of adding syntax features to 

the feature set by checking the blocks for the presence o f Dates, Emails, Phones or Zip 

Codes. I compared the performance against two o f the multi-page feature sets used in the 

experiment detailed in section 7.6

7.7.1 Setup and definition

Four feature sets were generated using the context feature blocks. Additional 

features are added to various sets as noted in the dataset description. Each block reports 

the set o f features listed below:

-lines: number of lines

-fontsize: point value of font size reported at the box level

-fontmode: most common font point size reported at the word level

-modepct: percent of total words using mode size

-short5: number of lines with less than 5 words

-short7 : number o f line with less than 7 words

-short9: number of lines with less than 9 words

-linecase: overall case o f the block (Upper, Title, Mix, Normal)

-style: overall style of the block (Bold, Italic, Normal, Mix)

-block position: x and y values

For these experiments I used Paragraphs for the block level. The blocks selected 

are the first 5 blocks on a page.
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7.7.2 Feature sets

multipagel - extracts the above features on only page 1 

multipage4 - extracts the above features from the first 4 pages 

singlepage - extracts the above feature on only page 1 and for each block adds the 

value for the area of the block.

Smglepage_pluslines - extracts the above feature on only page 1 and for each 

block adds the value for the area o f the block and the syntax features.

Tester: weJta. experiment. PairedCorrectedTTes ter
Analysing: Percent_correct
Datasets: 4
Resultsets: 2
Confidence: 0.05 (two tailed)

Dataset (l)Bayesnet I (2) Meta-Bayesnet
multipagel 74.33 | 75.01
multipage4 75.17 | 81.21 v
singlepage 73.19 | 75.48 v
singlepage pluslines 71.10 | 75.48 v
Key
bayes.BayesNet ' -D -Q bayes . net. search, local .K2 —  -P 1 -S BAYES

-E bayes . net. estimate. SimpleEstimator
—  -A 0.5' 7.4603744325877594E17

meta. AttributeSelectedClassifier '-E \"CfsSubsetEval -S V'BestFirst
-D  1 -N 5\" -W bayes.BayesNet
-- -D -Q bayes.net.search.local.K2 -- -P 1 -S BAYES
-E bayes . net. estimate. SimpleEstimator
—  -A 0.5' -5.9518054534879478E18

Fig. 36. Results for Testing Adding Syntax Features to the Feature Set

7.7.3 Results

Fig. 36 shows the results of adding syntax features to the feature set. The best 

performance is found in the multiple page features set using an Attribute Selected
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Bayesnet classifier. Note that the syntax features are dropped during the attribute 

selection and so the performance o f the two singlepage feature sets becomes identical.

7.8 Experiment: Comparing performance of different feature sets

The purpose of this experiment was to compare results of different feature sets 

used thus far using the same classification algorithm (Bayesnet w/Attribute filtering).

7.8.1 Setup and definition

For this experiment I generated 16 separate feature sets using the four basic 

methods details in section 7.3 I then ran the Bayesnet Classifier with the attribute 

selection filter.

classif_manual_101ines - Based on context blocks for the first and last five 

blocks on the page.

firstlast5nblocks - Based on context blocks for the first and last five blocks on 

the page plus the total number o f blocks on the first five pages.

fullsetl - Based on document statistics feature set plus the statistics for the first

page.

multipagel - Based on context blocks for the first five blocks on the first page. 

multipage2 - Based on context blocks for the first five blocks on the first two

pages.

multipage3 - Based on context blocks for the first five blocks on the first three

pages.

multipage4 - Based on context blocks for the first five blocks on the first four

pages.
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ortho05 - Based on block layout distance without MxN blocks. The signature set 

includes 5 documents

ortho50 - Based on block layout distance without MxN blocks. The signature set 

includes 50 documents

orthodist50 - Based on block layout distance without MxN blocks. The signature 

set includes 50 documents using a different first seed document.

rand-dist-0 - Based on block layout distance with MxN blocks. The signature set 

contains 250 randomly selected documents. The blocks used for layout are based on 

paragraph blocks, includes MxN blocks.

rand-dist-2 - Based on block layout distance with MxN blocks. The signature set 

contains 250 randomly selected documents. The blocks used for layout are based on 

paragraph blocks, includes MxN blocks.

rand-dist2-4 - Based on block layout distance with MxN blocks. The signature 

set contains 250 randomly selected documents. The blocks used for layout are based on 

paragraph blocks, includes MxN blocks.

rand-dist-400 - Based on block layout distance with MxN blocks. The signature 

set contains 400 randomly selected documents. The blocks used for layout are based on 

paragraph blocks, includes MxN blocks..

random-mn20b - Based on block layout distance with MxN blocks. The 

signature set contains 20 randomly selected documents. The blocks used for layout are 

based on paragraph blocks, includes MxN blocks.

vocab-common - Based on the vocabulary features described above.
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TABLE 19
Feature Set Comparisons Using BayesNet with Attribute Selection

Type Feature set %Correct
C multipage4 81.3
C multipage3 81.0
C firstlast5nblocks 80.7
C classif manual lOlines 80.4
C multipage2 79.9
C multipagel 74.8
C fullsetl 73.6
D rand-dist-400 66.9
D rand-dist-0 66.1
D rand-dist-2 66.0
V vocab-common 65.4
D rand-dist2-4 59.5
D random-mn20b 58.9
D orthodist50 57.9
D ortho50 57.1
D ortho05 43.8

7.8.2 Results

Table 19 shows the results o f comparing the feature sets using the same classifier. 

The context blocks (labeled Type C) provide the best results and when there is more data 

available to the filter the classifiers function better. The block layout signatures (labeled 

Type D) do not perform particularly well with the Bayesnet classifier. Fig. 37 shows a 

comparison with multiple classifiers against the same datasets. Each of the classifiers 

was defined using attribute selection. With the exception of SVM, the context blocks 

perform better than the geometric based blocks.
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Tes ter: weka. experiment. PairedCorrectedTTes ter 
Analysing: Parc«nt_correct 
Datasets; 17 
Resultsets: 7
Confidence: 0.05 (two tailed)

Decision |
Dataset LibSVM >748 NaiveBayes Jrip Table Kstar | BayesNet

(1) (2) (3) <4) (5) (6) I (7)

Kulti.page4 12.2 66.5 67.9 64.1 54.8 73.6 | 81.3
multipage3 15.2 65.9 68.5 65.2 54. 9 74.3 | 80.9
c la a a if jm n u a l lO lines 24.8 68.0 70.8 68.1 57.3 76.1 | 80.1
multipage2 16.8 66.1 68.2 65.7 54.8 74.2 I 79.7
multipagel 19.7 66.4 65.2 63.2 54.8 73.4 | 75.3
f u l l s e t l 9.4 65.3 68.0 61.8 52.9 73.5 I 73.7
rand-cb.Bt-400 52.1 62.1 47.0 58.7 47.9 70.1 | 65.9
rand -d ist-0 51. 6 60. 4 49.7 59.8 47.7 68.6 I 65.3
vocab-ccnmon 57.2 62.1 66.1 56.4 52.8 65.1 | 65.2
rand-d ist-2 38.2 60.9 48.3 57.7 49.7 69.3 | 65.2
ran d -d ia t2 -t 56.3 58.4 38.6 54.1 45.7 66.3 I 59.0
random-BBi20b 54.4 52.3 51.5 50.9 41.8 63.5 | 58.5
orthodist50 53.6 54.6 41.0 51.3 44.0 61.4 | 56.8
orthoSO 53.4 53.8 35.6 49.8 43.5 60.7 | 56.7
ortho05 46.4 46.9 27.0 42.8 41.8 50.7 I 44.3
   , -
Classifier Definitions:
-1 aeta.rilteredclassifier '-F \"supervised.attribute.AttributeSelection -E WV'Cf sSubsetSval \\\"

-S W \ ”BestFirst -D 1 -H 8\\\"\" -W functions.LibSVM S 0 -K 2 -D 3 -S 0.0 -R 0.0 -W 0.5
-M 40.0 -C  1.0 -E 0.0010 -F 0.1 -model D:\\l±bs\\weka-64\\ffeka-3-7' -4.5234506185387172E18 

-2 meta.FilteredClassifier '-T V'supervised.attribute.AttributeSelection -E W V ’Cf sSubsetSval \\\"
-S \W-BestFirst -D 1 -K 5\\\"\" -W trees. J 4 8  C 0.25 -M 2* -4.5234506185387172E18

-3 meta.FilteredClassifier '-F V'supervised.attribute.AttributeSelection -E WV'CfsSubsetEval \\\"
-S WVBestFlrst -D 1 -N 5\\\"\" -vr bayes .KaiveBayes — ' -4.5234506185387172E18 

- 4  meta.FilteredClassifier ’ -F \ "supervised, attribute .AttributeSelection -E WV*Cf sSubsetSval W
-S WVBestFirst -D 1 -W 5\\\"\" -W rules. JRip F 3 -K 2.0 -0 2-8 1' -4.5234506185387172E18

-5 meta.FilteredClassifier ’-F V'supervised.attribute.AttributeSelection -E \\\"CfsSubsetSval \\\"
-S WVBestFlrst -D 1 -N 5\\\"V -W rules.DecisionTable —  -X 1 -S \"BestFirst -D 1 -K 5\» ’
-4.5234506185387172E18

-6 meta.FilteredClassifier '-F \"supervised.attribute.AttributeSelection -E WV'CfsSubsetEval \\\"
-S WVBestFirst -D 1 -W 5 W V V  -W lazy.KStar B 20 -11 a' -4. S234506185387172E18

-7 meta.FilteredClassifier ’-F \"supervised.attribute.AttributeSelection -E \\\"cfsSubsetSval \\\"
-S WVBestFlrst -D 1 -N 5\\\"V -W bayes.BayesNet —  -D -Q bayes.net.search.local.K2 —  -P 1 
-S BAXES -E bayes.net.estimate. SimpleEstimator —  -A 0.5’ -4 .5234506185387172E18

Fig. 37. Results from Comparing Multiple Feature Sets with Multiple Classifiers

7.9 Experiment: Per class performance

The results from the previous experiments can be used to attempt to identify the

best performing classifier and feature set combination. In this experiment, I attempted to

evaluate the performance for each of the classes. The ideal result would be to see

equivalent performance across all of the classes.
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7.9.1 Setup and definition:

The dataset used is the multipage4 context block dataset identified in previous 

experiments. The classifier used is the Bayesnet with attribute selection. Since I wanted 

to try and identify the per class performance, I used 1000-fold cross-validation instead of 

the usual 10-fold with the goal that small classes will appear in at least two folds.

Scheme: w e k a .classifiers.meta.AttributeSelectedClassifier -E
w e k a .attributeSelection.CfsSubsetEva1 -S 
w e k a .attributeSelection.BestFirst -D 1 -N 5 -W 
w e k a .classifiers.b a y e s .BayesNet -- -D -Q 
w e k a .classifiers.b a y e s .n e t .search.local.K2 
—  -P 1 -S BAYES -E 

weka.classifiers.bayes.net.estimate.SimpleEstimator
-- -A 0.5

Relation: multipage4-weka.filters.unsupervised.attribute.Remove-R1
Instances: 1588
Attributes: 261

[list of attributes omitted] 
Test mode: 1000-fold cross-validation

=== Stratified cross-validation == 
=== Summary ===
Correctly Classified Instances 
Incorrectly Classified Instances 
Kappa statistic 
Mean absolute error 
Root mean squared error 
Relative absolute error 
Root relative squared error 
Coverage of cases (0.95 level)
Mean rel. region size (0.95 level) 
Total Number of Instances 
Ignored Class Unknown Instances

1055
250

1305
283

19.8487 % 
59.7666 % 
83.6782 % 
1.1572 %

80.8429 % 
19.1571 % 
0. 7999
0.0039 
0.0592

Fig. 38. Results for Bayesnet 1000-fold Cross-validation
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TABLE 20 
Detailed Accuracy by Class

Count TP Rate FP Rate Precision Recall F-Measure Class
116 0.81 0.04 65% 81% 0.72 HEAD-ABSTR-1 COL
111 0.97 0.00 100% 97% 0.99 NPS
103 1.00 0.00 98% 100% 0.99 AMARAC
80 0.87 0.02 74% 87% 0.80 HBAD-2COL
77 0.73 0.00 95% 73% 0.82 CRS
64 0.98 0.00 100% 98% 0.99 AFIT
57 0.66 0.02 65% 66% 0.66 head abstr+lcol top margin
52 0.65 0.02 62% 65% 0.64 glossy
48 0.96 0.00 100% 96% 0.98 AWC
43 0.86 0.01 74% 86% 0.80 horiz
38 1.00 0.02 67% 100% 0.80 CRS 7
35 0.89 0.01 78% 89% 0.83 AFRL
32 1.00 0.00 100% 100% 1.00 MSMR
30 1.00 0.00 97% 100% 0.98 ARL
27 0.74 0.01 71% 74% 0.73 PAGE1-FORM
22 0.96 0.00 96% 96% 0.96 RAND
21 0.91 0.00 100% 91% 0.95 GAO
19 0.25 0.01 27% 25% 0.26 bead abstr cntr 2col
19 0.33 0.01 36% 33% 035 head_abstr cntr 2col top margin
16 1.00 0.00 100% 100% 1.00 INSPECTORGENERAL
14 0.64 0.01 43% 64% 0.51 diasam
14 0.93 0.00 100% 93% 0.96 ESTSC

13 1.00 0.00 100% 100% 1.00 ACGSC

13 0.77 0.00 91% 77% 0.83 COAJ
12 0.67 0.00 80% 67% 0.73 RTO
11 1.00 0.00 100% 100% 1.00 nhrc
10 1.00 0.00 100% 100% 1.00 EAGLE
10 1.00 0.01 59% 100% 0.74 nwc
10 0.40 0.00 50% 40% 0.44 RDECOM
9 1.00 0.00 90% 100% 0.95 ERDCCERL
9 0.89 0.00 67% 89% 0.76 ews
9 0.43 0.00 60% 43% 0.50 head 2col top margin
7 1.00 0.00 88% 100% 0.93 FAA
7 0.71 0.00 100% 71% 0.83 jsom
7 0.14 0.00 33% 14% 0.20 MORSS 1
6 1.00 0.00 100% 100% 1.00 DMDC
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TABLE 20 Continued

Count TP Rate FP Rate Precision Recall F-Measure Class
6 1.00 0.00 86% 100% 0.92 ESTCP
5 0.60 0.00 75% 60% 0.67 coaj2
5 0.80 0.00 100% 80% 0.89 dsto
5 1.00 0.00 71% 100% 0.83 ecpc
5 0.25 0.00 50% 25% 0.33 HEAD-ABSTR-3COL
5 0.00 0.00 0% 0% 0.00 HEL03
5 1.00 0.00 83% 100% 0.91 jsou
5 1.00 0.00 63% 100% 0.77 NRL
5 1.00 0.00 83% 100% 0.91 PARAMETERS
5 1.00 0.00 100% 100% 1.00 TRAUMA
5 0.80 0.00 100% 80% 0.89 walker

Weight 
ed Avg 0.81 0.01 79% 81% 0.79
Classes with less than 5 instances: AFRL1, AFRL2, AFRL3 1,AFRL3 2, AFRL4, AFRL 1, ARTICLE, 
CARDERICKDIV, CRM, CROSSTALK, CRS 1,CRS IB , CRS 1C, CSIREPORT1,
DEPT DEFENCE, DRDC, ENDPROJECTNUMBER, HELL03 3, LETTERREPORT1, 
NAVLWARCOLLEGE, NOMETADATA, NPSRT, NSWCCD, PATENT, R-NSF, SCIENCEDIRECT, 
STATUSFORM, TECHREPORTNO l , USARIEM, USARMYJOURNAL, apss, arq, au, awc-thesis, 
casos, checo, civileng, cp3e, defensesci, ida, ima, imast, longtermgoal, marshall, mcu, nps arp, 
nswccd 2, nwcnp, sdfi, signature, whoi

7.9.2 Results

Fig. 38 shows the overall results for the cross-validation. Table 20 shows the 

results for the per class performance for classes with more than 5 instance documents. As 

expected, the performance of the individual classes varies with the best performance 

being found in classes which are visually distinctive. Of particular note is the poor 

performance of the head-abstract report type of documents, which are highlighted in the 

table. Given the large variance in per class performance, I would not recommend using
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this method as the primary document classification but rather as a supporting method for 

the post hoc classification.

7.10 Experiment: Detecting success

I originally attempted to design this experiment to examine conditions during the 

validation phase which would indicate the need to develop template variants. While that 

effort was not successful I was able to determine that the average o f the validation fields 

will give a strong indication on the likelihood that the extracted metadata is valid.

7.10.1 Setup and definition

I added additional instrumentation code to the extraction system to monitor 

several new factors during the classification and validation phases of the extraction 

process. From the classification phase, I captured the number of candidate classes and 

the respective confidence scores. From the validation phase, I altered the validation 

script to capture the average score of fields (avg), the sum of all fields (sum), and the sum 

of all fields except for the average score o f personal authors (avgsum).

I joined these instrumentation fields with the Baseline evaluation values (good, 

bad, variant) for each file to generate the following features as a machine learning dataset 

for Weka. The features used were:

min : original validation value 

avg : average score o f fields 

sum : sum of all fields

avgsum : sum of all fields plus average of personal author 

countOfClass : number o f classification candidate classes
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avgOfConf: average o f classification candidate classes scores 

eval: baseline eval, good, bad, variant 

The instances were labeled as “aa” for correct evals, “b” for variants, and “zz” for 

incorrect evals.



Run information = =
Schama: waka.clasaifiars.traas.J48 -C 0.25 -M2
Ralation: laarn2 -waka. f iltars. unsupervised. attribute. Rezu>va-R7
Instances: 1129
Attributes: 7

■sin 
avg 
sum
avgsum 
CountOfclass 
AvgOfconf 
aval

rest mode: 10-fold cross-validation

= Classifier model (full training set) = =

J48 pruned tree

avg < - 0.64
avgsum <= 1.757: zz (60.0/15.0) 
avgsum > 1.757 

min <~ 0.102 
I CountOfclass <= 1 
I | avg <» 0.595: aa (5.0/1.0)
I I avg > 0.595: xz (4.0)
I CountOfclass > 1 
I | avg <= 0.445: zz (2.0)
I I avg > 0.445: aa (18.0/6.0)
min > 0.102
I min <= 0.391: b (6.0)
I min >0.391: aa (2.0)

avg > 0.64: aa (1032.0/125.0)

Humber of Leaves 
3ize of the tree

8
15

Time taken to build model: 0.03 seconds 
= Stratified cross-validation =
= Summary sas

Oorrectly Classified Instances 945
Incorrectly Classified Instances 184
Kappa statistic 0.3293
Mean absolute error 0.1534
Root mean squared error 0.3061
Relative absolute error 75.7645 %
Root relative squared error 96.3856 %
Coverage of cases (0.95 level) 93.6227 %
Mean rel. region size (0.95 level) 64.2161 %
Total Number of Instances 1129

= Detailed Accuracy By Class ===

83.7024 % 
16.2976 %

TP Rate FP Rate Precision Recall F-Maasure ROC Area Class
0.361 0.035 0.551 0 .361 0.437 0.728 zz
0.958 0.66 0.873 0 .958 0.914 0.749 aa
0.115 0.018 0.321 0.115 0.17 0. 661 b
Avg.
0.837 0.55 0.801 0.837 0.812 0.74

Fig. 39. Examination of Validation and Classification Factors
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7.10.2 Results

Fig. 39 shows the machine learning results for WEKA using a tree based learner 

(J48). The first branch in the tree is the average validation value of greater than or equal 

to 0.64. This particular feature is very effective at indicating that the extraction will be 

good. As shown in the model diagram in Fig. 39, the average attribute has more 

influence on the success of the output than the minimum attribute. The minimum is 

dominated by a single low scoring field, (which may in fact be a good extraction but not 

meet the validation rules), so the minimum attributes can lose information about the other 

fields.

This result warranted further investigation. Table 21 shows the class evaluation 

using the 0.64 validation average as a separation point between acceptable and 

unacceptable classifications. The Correct Assessment Rate is a measurement o f the True 

Positive or Tme Negative assessment. The comparisons are made against the baseline 

evaluations for good, bad and variant classifications. The low average is also good at 

predicting the failures, 76% true negative rate. This would be expected since a low 

average is most likely by matched by a validation failure caused by the minimum being 

less than 0.5.

TABLE 21
Examining Effects o f Using 0.64 Validation Average

Correct Incorrect Correct Assessment Rate

Avg Validation > 0.64 907 126 0.88
Avg Validation < 0.64 71 23 0.76
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7.11 Conclusions from experiments

I found that the BayesNet classifier combined with attribute selection provides 

good document classification performance using contextual features which can be simply 

generated from the IDM document model. As noted in the per class experimental results, 

the performance is not homogenous across the collection. Document classes which are 

visually distinctive are well suited to this method with most o f the precision and recall 

rates in excess of 90%. However, the problems noted in the head-abstract type of 

document are a concern when looking at the machine learning as a replacement 

classification method. The head abstract type of documents often possess only minor 

differences between classes, such as the order o f metadata fields or the presence of a 

keyword like “Introduction” or “Abstract”. The feature set used for the BayesNet 

classifier does not provide features which would allow the classifier to discern those 

types of differences. While the post hoc classifier does much better at this type of 

problem, it also has difficulty with the head abstract group as shown in the analysis o f the 

incorrect classification.

I also discovered that by adding a minor additional factor to the final validation 

script to calculate the average o f the field confidences, we can provide the system with 

additional information to information the user of the need for human interaction. 

Specifcally, an average confidence o f less than 0.64 would indicate the need for human 

confirmation even if no individual confidence generated a warning.
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CHAPTER 8 

CONTRIBUTIONS AND FUTURE WORK

8.1 Conclusions

Earlier research by the Old Dominion University Digital Library Group [4] 

explored the feasibility of using a template-based approach to extract metadata 

automatically from large heterogenous legacy collections. Each template is a script that 

describes a set of rules for locating desired metadata from a group o f documents or class 

that share a similar structure. The success or failure of the template approach is directly 

tied to document classification which is the ability to match the document to the proper 

template correctly and consistently. This dissertation examined the evolution and all the 

major components of an automated metadata extraction system. It described the 

development and structure of the IDM schema, which de-couples the input from the 

internal representation of a document. Through our research we have developed a robust 

scripting language for the templates, to address a wide variety of layout complexities.

The cost of the ability to handle these layout complexities is an increased complexity in 

writing and validating templates. I helped to reduce this cost by developing a template 

creation program that provides the user with immediate feedback o f about a proposed 

template.

The primary focus of this thesis was document classification. I examined the post 

hoc classification methodology in detail. The strength of post hoc classification is that the 

templates define the contextual meaning of blocks as well as the geometric relationship 

relative to other blocks as well as the page. In chapter 7 ,1 provided analysis o f the
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performance o f the post hoc classification and it showed that when the post hoc classifier 

makes a decision it is correct 83% of the time. But just as significantly, the False 

Positive rate where it incorrectly assigns a classification to documents not represented in 

the template collection is only 8%. I identified the main weakness o f the system is that it 

is sensitive to templates with poorly defined or overly general rules.

As described in Chapter 1 the objectives o f this thesis were:

• Detection of problem templates;

• Reducing sensitivity to template changes;

• Document classification to aid post hoc classification;

• Description of evolution of a large software system.

This research has met these objectives. As noted above, I described evolution o f 

our system in Chapters 3 and 4, including the major components like input processing, 

the IDM and field normalization. The techniques examined for handling greedy 

templates address not only the detection of problem templates but also methods for 

reducing the sensitivity to template changes. Specifically, the use o f the required 

attribute and boosted rules are effective in reducing sensitivity.

I conducted extensive experimentation in using machine learning algorithms to 

conduct or supplement document classification in our system. I found that, although 

using the BayesNet classifier on a context block feature set drawn from multiple pages of 

a document provides document classification performance in excess o f 80% correct, the 

performance can vary dramatically among different classes.
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8.2 Future Work

The incorporation of machine learning to supplement post hoc classification 

would require more research into how it can best integrate into the system. One area not 

addressed directly in this thesis is the use of trained machine learning classifiers in a 

clustering role which could be used to identify new potential classes from unclassified 

documents or new incoming documents.
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APPENDIX A 

IDM VERSION 2 SCHEMA

<?xml version="l.0" encoding="UTF-8" standalone="yes"?>
<xs:schema xmlns:xs="http://www.w3.org/2 001/XMLSchema" 
elementFormDefault="qualified">
<  ! —

This is the schema for the Independent Document Model (IDM) used by our 
metadata extraction process.

OCR raw XML documents are converted to this schema by use of an XSLT 
2.0 stylesheet 
— >
< !  —

The root element is <doc> it ooptionally contains statistcis about the 
enitre document under the <docInfo> element these statistics are 
caclulated during the XSL transformation 
- - >

<xs:element name="doc">
<xs:complexType>

<xs:sequence>
<xs:element name="doclnfo" minOccurs="0">

<xs:complexType>
<xs:sequence>

<xs:element name="data" type="dataType" 
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="page" type="pageType" maxOccurs="unbounded"/> 

</xs:sequence>
</xs:complexType>

</xs:element>
< !  —

Documents are composed of page elements 

Attributes:
width - measurement of the page width 
height - measurement of the page height 
x-res - number of pixels per inch 
y-res - number of pixels per inch 
orientation - page orientation 0,90,180,270 
pgno - page number
pagelnfo element contains the statisticaldata for the page 
—  >

<xs:complexType name="pageType">
<xs:sequence>

<xs:element name="pageInfo" type="pagelnfoType" minOccurs="0"/>

http://www.w3.org/2


<xs:element name="region" type="regionType" minOccurs="0" 
maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="width" type="xs:int" use="required"/>
<xs:attribute name="height" type="xs:int" use="required"/>
<xs:attribute name="x-res" type="xs:int" use="required"/>
<xs:attribute name="y-res" type="xs:int" use="required"/>
<xs:attribute name="orientation" type="xs:string" use="optional"/> 
<xs:attribute name="pgno" type="xs:int" use="required"/>

</xs:complexType>

<xs:complexType name="pageInfoType">
<xs:sequence>

<xs:element name="fontinfo" type="fontinfoType" minOccurs="0"/> 
<xs:element name="parametrics" type="parametricsType" 

minOccurs="0"/>
</xs:sequence>

</xs:complexType>
< !  —
Page is composed of region elements

Attributes - left, top, right, bottom - bounding box of the region 
region composed of vet-white-sapce, para, rowcol-table, image 
— >
<xs:complexType name="regionType">

<xs:sequence>
<xs:element name="regInfo" minOccurs="0">

<xs:complexType>
<xs:sequence>

<xs:element name="data" type="dataType" 
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:choice maxOccurs="unbounded">

<xs:element name="vert-white-space" type="vert-white-spaceType" 
<xs:element name=”para" type="paraType"/>
<xs:element name="rowcol-table" type="rowcol-tableType"/>
<xs:element name="image">

<xs:complexType>
<xs:attribute name="l" type="xs:int"/>
<xs:attribute name="t" type="xs:int"/>
<xs:attribute name="r" type="xs:int"/>
<xs:attribute name="b" type="xs:int"/>

</xs:complexType>
</xs:element>

</xs:choice>
</xs:sequence>
<xs:attribute name="left" type="xs:int"/>
<xs:attribute name="top" type="xs:int"/>
<xs:attribute name="right" type="xs:int"/>
<xs:attribute name="bottom" type="xs:int"/>

</xs:complexType>
< !  - -
para elements contain individual lines
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Attributes:
align - alignment of the entire paragraph 
line-spacing - space between lines 
li - left indent 
ri - right indent 
lsp - linespaicing measurement 
1 , t, b, r, -Bounding rectangle positions 

— >

<xs:complexType name="paraType">
<xs:seguence>

<xs:element name="paraInfo" minOccurs="0">
<xs:complexType>

<xs:sequence>
<xs:element name="data" type="dataType" 

maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="line" type="lineType" minOccurs="0" 

maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="align" use="required">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="centered"/>
<xs:enumeration value="justified"/>
<xs:enumeration value="left"/>
<xs:enumeration value="right"/>
<xs:enumeration value="decimal"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="line-spacing" type="xs:int" use="optional"/> 
<!--left indent -->
<xs:attribute name="li" type="xs:int" use="optional"/>
<!--right indent — >
<xs:attribute name="ri" type="xs:int" use="optional"/>
<xs:attribute name="lsp" use="optional">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="single"/>
<xs:enumeration value="oneAndHalf"/>
<xs:enumeration value="double"/>
<xs:enumeration value="exactly"/>
<xs:enumeration value="atLeast"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<!-- Bounding rectangle positions — >
<xs:attribute name="l" type="xs:int"/>
<xs:attribute name="t" type="xs:int"/>
<xs:attribute name="r" type="xs:int"/>
<xs:attribute name="b" type="xs:int"/>

</xs:complexType>
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< ! —

Statistics about font types and sizes used on a page and the document —  >
<xs:complexType name="fontinfoType">

<xs:sequence>
<xs:element name="fontsz" type="fontszType" minOccurs="0" 

maxOccurs="unbounded"/>
<xs:element name="fontnm" type="fontnmType" minOccurs="0" 

maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
< !  —
This is the table type composed of cells. cells contain positioning to 
reconstruct the table

Attributes:
rows - number of rows to place cells into 
columns - number of columns to place cells into 
1 , t, b, r, -Bounding rectangle positions 

— >

<xs:complexType name="rowcol-tableType">
<xs:sequence>

<xs:element name="cell" type="cellType" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="rows" type="xs:int" use="required"/>
<xs:attribute name="cols" type="xs:int" use="required"/>
<!-- Bounding rectangle positions — >
<xs:attribute name="l" type="xs:int"/>
<xs:attribute name="t" type="xs:int"/>
<xs:attribute name="r" type="xs:int"/>
<xs:attribute name="b" type="xs:int"/>

</xs:complexType>
<! —

This is any individual cell in a table, it can span multiple rows and 
columns
A cells can contain zero or more para elements or vert-white-space 
elements

Attributes:
x- left position of cell 
y - top poisiotn of cell 
rowspan - number of rows this cell covers 

colspan - number of cols this cell covers 
1 , t, b, r, -Bounding rectangle positions 

— >

<xs:complexType name="cellType">
<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element name="para" type="paraType"/>
<xs:element name="vert-white-space" type="vert-white-spaceType"/> 

</xs:choice>
<xs:attribute name="x" type="xs:int" use="required"/>
<xs:attribute name="y" type="xs:int" use="required"/>
<xs:attribute name="colspan" type="xs:int" use="required"/>
<xs:attribute name="rowspan" type="xs:int" use="required"/>
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<!-- Bounding rectangle positions — >
<xs:attribute name="l" type="xs:int" use="optional"/>
<xs:attribute name="t" type="xs:int" use="optional"/>
<xs:attribute name="r" type="xs:int" use="optional"/>
<xs:attribute name="b" type="xs:int" use="optional"/>

</xs: complexType>
<  ! —

Count of the number of words under a specified font name 
— >
<xs:complexType name="fontnmType">

<xs:attribute name="name" type="xs:string" use="required"/> 
<xs:attribute name="wds" type="xs:int" use="required"/>

</xs:complexType>
< !  —

Count of the number of words under a specified font size 
— >

<xs:complexType name="fontszType">
<xs:attribute name="name" type="xs:string" use="required"/> 
<xs:attribute name="wds" type="xs:int" use="required"/>

</xs:complexType>
<  ! —

Statistics data entry 
— >

<xs:complexType name="dataType">
<xs:attribute name="id" type="xs:string" use="required"/>
<xs:attribute name="value" type="xs:string" use="required"/> 

</xs:complexType>
< !  —

line type a single line of text

Attirbutes:
ff - font face name
fs - font size in pixel measurement
style - bold, italic, non-bold etc.
1 , t, b, r, -Bounding rectangle positions 

— >

<xs:complexType name="lineType">
<xs:sequence minOccurs="0">

<xs:element name="lineInfo" minOccurs="0">
<xs:complexType>

<xs:sequence>
<xs:element name="data" type="dataType" 

maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:choice min0ccurs="0" maxOccurs="unbounded">

<xs:element name="wd" type="wdType"/>
</xs:choice>

</xs:sequence>
<!-- 1 , t, b, r, -Bounding rectangle positions -->
<xs:attribute name="l" type="xs:int"/>
<xs:attribute name="t" type="xs:int"/>
<xs:attribute name="r" type="xs:int"/>
<xs:attribute name="b" type="xs:int"/>
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<xs:attribute name="ff" type="xs:string" use="optional"/>
<xs:attribute name="fs" type="xs:string" use="optional"/>
<xs:attribute name="style" type="xs:string" use="optional"/>

</xs:complexType>
<! —
Statistics data entry element 
— >
<xs:complexType name="parametricsType">

<xs:sequence>
<xs:element name="data" type="dataType" maxOccurs = "unbounded"/> 

</xs:sequence>
</xs:complexType>
<  ! —

Empty whitespace inside of a region

Attributes- 
t - top position 
b- bottom position
pet - amount of whitespace based on percent of page measurement 
loc- top or bottom of region 
unit - line count or px count 
v- measurenemt of size 
— >
<xs:complexType name="vert-white-spaceType">

<xs:attribute name="t" type="xs:int"/>
<xs:attribute name="b" type="xs:int"/>
<xs:attribute name="pct" type="xs:double"/>
<xs:attribute name="loc">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="bottom"/>
<xs:enumeration value="top"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="unit" use="required">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="line"/>
<xs:enumeration value="px"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="v" type="xs:int"/>

</xs:complexType>
<! —
wd - a single word , includes trailing punctuation

Attributes:
ff - font face name
fs - font size in pixel measurement 
style - bold, italic, non-bold etc.
1 , t, b, r, -Bounding rectangle positions 

—  >
<xs:complexType name="wdType" mixed="true">
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<!-- Bounding rectangle positions — >
<xs:attribute name="l" type="xs:int" use="optional"/>
<xs:attribute name="t" type="xs:int" use="optional"/>
<xs:attribute name="r" type="xs:int" use="optional"/>
<xs:attribute name="b" type="xs:int" use="optional"/>
<xs:attribute name="ff" type="xs:string" use="optional"/>
<xs:attribute name="fs" type="xs:string" use="optional"/>
<xs:attribute name="style" type="xs:string" use="optional"/> 

</xs:complexType>
</xs:schema>



156

APPENDIX B 

IDM XSLT STYLESHEET

XSLT stylesheet for converting Luratech ABBY format into IDM

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fn="http://www.w3.org/2004/07/xpath-functions"
xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:my="paul.com"
xmlns:lura="java:edu.odu.cs.extract.utils.LuratechTableUtil" exclude-
result-prefixes="fn my xs lura" xpath-default-
namespace="http://www.abbyy.com/FineReader_xml/FineReader6-schema - 
vl.xml" xmlns:tns="http://www.abbyy.com/FineReader_xml/FineReader6- 
schema-vl.xml">

< !  —
Supports version 2 of style sheet which requires calculation of 
geometry into a normalized measurement 
— >

<xsl:output method="xml" omit-xml-declaration="no" indent="yes"/>
<xsl:strip-space elements="doc page region para line"/>
<!-- luratech uses dots per inch as measurement so inches per meter -

- >
<xsl:param name="dpi-meter" select="39.3700787"></xsl:param>

<xsl:variable name="points-meter" select="2835" ></xsl:variable>
<  ! —  — >

<xsl:template match="/">
<doc>

<xsl:apply-templates select="//page"/>
</doc>

</xsl:template>
<!-- This function will be replaced with an external java function to 

calculate the column number 
- - >

<xsl:function name="my:getNextColNumb">
<xsl:param name="luraObj"/>
<xsl:param name="therow"/>
<xsl:param name="thecol"/>
<xsl:param name="therowspan"/>
<xsl:param name="thecolspan"/>
<xsl:variable name="rtn" select="$thecol+$thecolspan " 

xmlns:lura="j ava:edu.odu.cs.extract.utils.LuratechTableUtil" use- 
when="not(function-available(’lura:isAvail',0))"/>

<xsl:variable name="rtn" select="0" 
xmlns:lura="j ava:edu.odu.cs.extract.utils.LuratechTableUtil" use- 
when="function-available('lura:isAvail',0)"/>

<xsl:value-of select="$rtn"/>
</xsl:function>

< !  —

x is dots
meter-conv is dots per meter 
—  >

<xsl:function name="my:scaleFS">

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/2004/07/xpath-functions
http://www.w3.org/2001/XMLSchema
http://www.abbyy.com/FineReader_xml/FineReader6-schema
http://www.abbyy.com/FineReader_xml/FineReader6-
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<xsl:param name="x" ></xsl:param>
<xsl:param name="meter-conv" ></xsl:param>
<xsl:value-of select="floor((number($x) ‘number($meter-conv) div 
$points-meter))"></xsl:value-of>
</xsl:function>

< ! —  — >
<xsl:template match="page">
<!-- meter is dots per meter -->
<xsl:variable name="meter" select=" floor(©resolution * $dpi-meter) 

"></xsl:variable>
<xsl:element name="page">

<xsl:copy-of select="0width"/>
<xsl:copy-of select="@height"/>
<xsl:attribute name="x-res" select="0resolution"/>
<xsl:attribute name="y-res" select="0resolution"/>
<xsl: attribute name="meter" select="$meter"x/xsl: attribute> 
<xsl:attribute name="pgno"><xsl:number 

count="page"/x/xsl: attribute>
<xsl:apply-templates select=".//block">
<xsl:with-param name="meter" select="$meter"x/xsl:with-param> 

<xsl:sort select="0t" order="ascending" data-type="number"/> 
<xsl:sort select="01" data-type="number"/>

</xsl:apply-templates>
</xsl:element>

</xsl:template>
<  ! —  — >

<xsl:template match="block">
<xsl: param name="meter "x/xsl: param>

<xsl:element name="region">
<xsl:attribute name="l" select=" 01"/>
<xsl:attribute name="t" select=" 0t"/>
<xsl:attribute name="r" select=" 0r"/>
<xsl:attribute name="b" select=" 0b"/>
<xsl:if test="0blockType='Picture'">

<image>
<xsl:attribute name="l" select=" 01"/>
<xsl:attribute name="t" select=" 0t"/>
<xsl:attribute name="r" select=" 0r"/>
<xsl:attribute name="b" select=" 0b"/>

</image>
</xsl:if>
<xsl:if test="@blockType='Table' or exists(row)">

<xsl:call-template name="rowcol">
<xsl: with-param name="meter" select="$meter"x/xsl: with-

param>
<xsl:with-param name="reg" select="."/>

</xsl:call-template>
</xsl:if>
<xsl:if test="0blockType='Text'">

<xsl:apply-templates select="text">
<xsl: with-param name="meter" select="$meter"X/xsl: with-

param>
</xsl:apply-templates>

</xsl:if>
</xsl:element>
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</xsl:template>
< 1 —  - - >

<xsl:template name="rowcol">
<xsl:param name="reg"/>

<xsl: par am name="meter"x/xsl: param>
<rowcol-table rows="{count($reg/row) }" cols="{my:maxCols($reg)}"> 

<xsl:attribute name="l" select=" $reg/@l"/>
<xsl:attribute name="t" select=" $reg/@t"/>
<xsl:attribute name="r" select=" $reg/@r"/>
<xsl:attribute name="b" select=" $reg/@b"/>
<xsl:variable name="luraObj" select="'text'"/>
<xsl:for-each select="$reg/row">

<xsl:call-template name="doRow">
<xsl:with-param name="theluraObj" select="$luraObj"/>
<xsl:with-param name="therow" select="."/>
<xsl:with-param name="rownumb" select="position()-l"/>
<xsl: with-param name="meter" select="$meter"x/xsl: with-

param>
</xsl:call-template>

</xsl:for-each>
</rowcol-table>

</xsl:template>
< ! —  — >
<xsl:function name="my:countCols">

<xsl:param name=”arow"/>
<xsl:value-of select="sum(for $x in $arow/cell return if 

(exists($x/§colSpan)) then $x/colSpan else 1)"/>
</xsl:function>
< i —  — >

<xsl:function name="my:maxCols">
<xsl:param name="atable"/>
<xsl:value-of select="max(for $x in $atable/row return 

my:countCols($x))"/>
</xsl:function>
<  ! —  — >

<xsl:template name="doRow">
<xsl:param name="theluraObj"/>
<xsl:param name="therow"/>
<xsl:param name="rownumb"/>
<xsl:param name="meter"></xsl:param>
<xsl:variable name="firstcol" select="0"/>
<xsl:call-template name="doCells">

<xsl:with-param name="theluraObj" select="$theluraObj"/>
<xsl:with-param name="thecells" select="$therow/cell"/>
<xsl:with-param name="rownumb" select="$rownumb"/>
<xsl:with-param name="colnumb" select="$firstcol"/>
<xsl:with-param name="meter" select = "$meter"x/xsl:with-param> 

</xsl:call-template>
</xsl:template>
< ! —  - - >
<xsl:template name="doCells">

<xsl:param name="theluraObj"/>
<xsl:param name="thecells"/>
<xsl:param name="rownumb"/>
<xsl:param name="colnumb"/>
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<xsl :param name="meter"x/xsl: param>
<xsl:if test="exists($thecells)">

<xsl:variable name="colspan" select="if( 
exists($thecells[1]/@colSpan)) then $thecells[1]/@colSpan else 1 "/> 

<xsl:variable name="rowspan" select="if( 
exists($thecells[1]/SrowSpan)) then $thecells[1]/0rowSpan else 1 "/> 

<xsl:variable name="nextcol" select="0"/>
<xsl:call-template name="doOneCell">

<xsl:with-param name="cell" select="$thecells[1]"/>
<xsl:with-param name="rownumb" select="$rownumb"/>
<xsl:with-param name="colnumb" select="$colnumb"/>
<xsl:with-param name="meter" select="$meter"x/xsl:with-param> 

</xsl:call-template>
<xsl:call-template name="doCells">

<xsl:with-param name="theluraObj" select="$theluraObj"/>
<xsl:with-param name="thecells" 

select="subsequence($thecells, 2 ) "/>
<xsl:with-param name="rownumb" select="$rownumb"/>
<xsl:with-param name="colnumb" select="$nextcol"/>
<xsl:with-param name="meter" select="$meter"x/xsl:with-param> 

</xsl:call-template>
</xsl:if>

</xsl:template>
< !—  — >
<xsl:template name="doOneCell">

<xsl:param name="cell"/>
<xsl:param name="rownumb"/>
<xsl:param name="colnurab"/>
<xsl: par am name="meter"x/xsl: param>
<xsl:element name="cell">

<xsl:attribute name="x" select="$colnumb"/>
<xsl:attribute name="y" select="$rownumb"/>
<xsl:attribute name="colspan" select="if( exists($cell/0colSpan)) 

then $cell/0colSpan else 1 "/>
<xsl:attribute name="rowspan" select="if( exists($cell/0rowSpan)) 

then $cell/0rowSpan else 1 "/>
<xsl:if test="exists(.//line)">

<xsl:attribute name="l" select=" min(.//line/01) "/>
<xsl:attribute name="t" select=" min(.//line/0t)"/>
<xsl:attribute name="r" select=" max(.//line/0r)"/>
<xsl:attribute name="b" select=" max(.//line/0b)"/>

</xsl:if>
<xsl:apply-templates select="$cell/text">
<xsl:with-param name="meter" select="$meter"X/xsl:with-param> 

</xsl:apply-templates>
</xsl:element>

</xsl:template>
< ! - -  — >

<xsl:template match="text">
<xsl: par am name="meter"X/xsl: param>

<xsl:apply-templates select="par">
<xsl: with-param name="meter" select = "$meter"x/xsl: with-param>

</xsl:apply-templates>
</xsl:template>
< ! —  — >
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<xsl:template match="par">
<xsl: param name=''meter"X/xsl: param>
<xsl:choose>
<xsl:when test="exists(./node())">
<para>

<xsl:attribute name="t" select=" min(*/@t)"/>
<xsl:attribute name="l" select=" min(*/@l)"/>
<xsl:attribute name="r" select=" max(*/0r)"/>
<xsl:attribute name="b" select=" max(*/0b)"/>
<xsl:if test="exists(@leftIndent)">

<xsl:attribute name="li" select=" 01eftIndent"/>
</xsl:if>
<xsl:if test="exists(@rightIndent) ">

<xsl:attribute name="ri" select=" 0rightIndent"/>
</xsl:if>
<xsl:choose>

<xsl:when test="exists(@align)">
<xsl:attribute name="align" select="my:alignLookup(@align)"/> 

</xsl:when>
<xsl:otherwise>

<xsl:attribute name="align" select="'left'"/>
</xsl:otherwise>

</xsl:choose>
<xsl:if test="exists(01ineSpacing)">

<xsl:attribute name="line-spacing" select="01ineSpacing"/>
</xsl:if>
<xsl:call-template name="doLines2">

<xsl:with-param name="lines" select="line"/>
<xsl:with-param name="meter" select="$meter''x/xsl:with-param> 

</xsl:call-template>
</para>
</xsl:when>
<xsl: otherwiseXxsl: element 

name="emptyblock"X/xsl: elementX/xsl: otherwise>
</xsl:choose>

</xsl:template>
<  ! —  — >

<xsl:function name="my:alignLookup">
<xsl:param name="a"/>
<xsl:value-of select=" if{$a='Center ') then 'centered' else 

if($a='Left') then 'left' else if($a='Right') then 'right' else 
if($a='Justified') then 'justified' else 'left' "/>

</xsl:function>
< i —  — >

<xsl:template name="doLines2">
<xsl:param name="lines"/>

<xsl: param name="meter "x/xsl: param>
<xsl:choose>

<xsl:when test="exists($lines)">
<xsl:variable name="openface" select="if 

(empty($lines[1]/formatting[1]/0ff) ) then () else
$lines[1]/formatting[1]/0ff "/>

<xsl:variable name="openfs" select="if 
(empty($lines[1]/formatting[1]/0fs) ) then () else
$lines[1]/formatting[1]/0fs "/>
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<xsl:variable name="pos" as="xs:integer">
<xsl:call-template name="findLineMatch">

<xsl:with-param name="lines" 
select="subsequence($lines, 2)"/>

<xsl:with-param name="face" select="$openface"/>
<xsl:with-param name="fontsize" select="$openfs"/>
<xsl:with-param name="pos" select="l"/>
<xsl:with-param name="meter" select=" $meter "X/xsl: with-

param>
</xsl:call-template>

</xsl:variable>
<xsl:call-template name="doStyleLines">

<xsl:with-param name="lines" select="$lines[position() le
$pos]"/>

<xsl:with-param name="ff" select="$openface"/>
<xsl:with-param name="fs" select="$openfs"/>
<xsl:with-param name="meter" select="$meter"></xsl:with-

param>
</xsl:call-template>
<xsl:call-template name="doLines2">

<xsl:with-param name="lines" 
select="subsequence($lines, $pos + l ) " / >

<xsl:with-param name="meter" select="$meter"></xsl:with-
param>

</xsl:call-template>
</xsl:when>
<xsl:otherwise>
</xsl:otherwise>

</xsl:choose>
</xsl:template>
< ! —  — >

<xsl:template name="doStyleLines">
<xsl:param name="lines"/>
<xsl:param name="ff"/>
<xsl:param name="fs"/>
<xsl: param name="meter"X/xsl: param>
<xsl:choose>

<xsl:when test="exists($lines)">
<xsl:variable name="openstyle" 

select="my:style($lines[1]/formatting) "/>
<xsl:variable name="pos" as="xs:integer">

<xsl:call-template name="findStyleMatch">
<xsl:with-param name="lines" 

select="subsequence($lines,2)"/>
<xsl:with-param name="attr" select="$openstyle"/>
<xsl:with-param name="pos" select="l"/>
<xsl: with-param name="meter" select="$meter"X/xsl: with-

param>
</xsl:call-template>

</xsl:variable>
<xsl:choose>

<xsl:when test="exists($openstyle)">
<xsl:apply-templates select="$lines[position() le $pos]"> 

<xsl:with-param name="ff" select="$ff"/>
<xsl:with-param name="fs" select="$fs"/>
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<xsl:with-param name="meter" select="$meter"></xsl:with

param>
</xsl:apply-templates>

</xsl:when>
<xsl:otherwise>

<xsl:message>style2=<xsl:value-of select="$openstyle"> 
</xsl:value-of>

</xsl:message>
<xsl:apply-templates select="$lines[position() le $pos]"> 

<xsl:with-param name="ff" select="$ff"/>
<xsl:with-param name="fs" select="$fs"/>
<xsl:with-param name="meter" select="$meter"></xsl:with

param>
</xsl:apply-templates>

</xsl:otherwise>
</xsl:choose>
<xsl:call-template name="doStyleLines">

<xsl:with-param name="lines" 
select="subsequence($lines,$pos+l)"/>

<xsl:with-param name="ff" select="$ff"/>
<xsl:with-param name="fs" select="$fs"/>
<xsl:with-param name="meter" select="$meter"></xsl:with-

param>
</xsl:call-template>

</xsl:when>
<xsl:otherwise>
</xsl:otherwise>

</xsl:choose>
</xsl:template>
< i— —>
<xsl:template name="findLineMatch">

<xsl:param name="lines"/>
<xsl:param name="face"/>
<xsl:param name="fontsize"/>
<xsl:param name="pos"/>
<xsl:param name="meter"></xsl:param>
<!-- find first matching fonts and size -->
<xsl:choose>

<xsl:when test="exists($lines)">
<xsl:choose>

<xsl:when test="($lines[1]/formatting/0ff = $face) and 
($lines[1]/formatting/@fs = $fontsize) ">

<xsl:call-template name="findLineMatch">
<xsl:with-param name="lines" 

select="subsequence($lines,2)"/>
<xsl:with-param name="face" select="$face"/>
<xsl:with-param name="fontsize" select="$fontsize"/> 
<xsl:with-param name="pos" select="$pos +l"/>
<xsl:with-param name="meter" select="$meter"></xsl:with

param>
</xsl:call-tempiate>

</xsl:when>
<xsl:otherwise>

<xsl:value-of select="$pos"/>
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</xsl:otherwise>
</xsl:choose>

</xsl:when>
<xsl:otherwise>

<xsl:value-of select="Spos"/>
</xsl:otherwise>

</xsl:choose>
</xsl:template>
<  ! —  — >

<xsl:template name="findStyleMatch">
<xsl:param name="lines"/>
<xsl:param name="attr"/>
<xsl:param name="pos"/>
<xsl: param name="meter"X/xsl: param>
<!-- find first matching style -->
<xsl:choose>

<xsl:when test="exists($lines)">
<xsl:choose>

<xsl:when test="(my:style($lines[1]/formatting) = $attr) "> 
<xsl:call-template name="findStyleMatch">

<xsl:with-param name="lines" 
select="subsequence($lines, 2)"/>

<xsl:with-param name="attr" select="$attr"/>
<xsl:with-param name="pos" select="$pos +l"/>
<xsl: with-param name="meter" select="$meter"x/xsl: with-

param>
</xsl:call-template>

</xsl:when>
<xsl:otherwise>

<xsl:value-of select="$pos"/>
</xsl:otherwise>

</xsl:choose>
</xsl:when>
<xsl:otherwise>

<xsl:value-of select="$pos"/>
</xsl:otherwise>

</xsl:choose>
</xsl:template>
< ! —  — >
<xsl:template match="line">

<xsl:param name="ff" as="xs:string"/>
<xsl:param name="fs" as="xs:string"/>
<xsl:param name="style"/>
<xsl:param name="meter"></xsl:param>
<xsl:element name="line">

<xsl:attribute name="l" select=" @l"/>
<xsl:attribute name="t" select=" @t"/>
<xsl:attribute name="r" select=" @r"/>
<xsl:attribute name="b" select=" @b"/>
<xsl:attribute name="base" select=" @baseline"/>
<xsl:if test="exists($ff) and string-length($ff) gt 0">

<xsl:attribute name="ff" select="$ff"/>
</xsl:if>
<xsl:if test="exists($fs) and string-length($fs) gt 0">
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<xsl:variable name="currfs" select="(if (contains($fs, then
substring-before($fs,) else $fs)"></xsl:variable>

<!-- truncate font point sizes -->
<xsl:attribute name="fs" select="my:scaleFS($currfs,$meter)"/> 

</xsl:if>
<xsl:if test="exists($style) and string-length($style) gt 0">

<xsl:attribute name="style" select="$style"/>
</xsl:if>
<xsl:apply-templates select="formatting" mode="split">

<xsl:with-param name="face" select="$ff"/>
<xsl:with-param name="fontsize" select="$fs"/>
<xsl:with-param name="style" select="$style"/>

<xsl:with-param name="l" select="@l"/>
<xsl:with-param name="t" select="@t"/>
<xsl:with-param name="r" select="@r"/>
<xsl:with-param name="b" select="@b"/>
<xsl:with-param name="meter" select = "$meter "X/xsl: with-

param>
</xsl:apply-templates>

</xsl:element>
</xsl:template>

<xsl:template match="formatting" mode="split">
<xsl:param name="face"/>
<xsl:param name="fontsize"/>
<xsl:param name="style"/>
<xsl:param name="l"/>
<xsl:param name="t"/>
<xsl:param name="r"/>
<xsl:param name="b"/>
<xsl: param name="meter"x/xsl: param>
<xsl:choose>

<xsl:when test="exists(charParams)">
<xsl:call-template name="assembleWd">

<xsl:with-param name="charSeq" 
select="subsequence(charParams, 2 ) "/>

<xsl:with-param name="wd" select="charParams[1]"/>
<xsl:with-param name="l" select="charParams[1]/@1"/>
<xsl:with-param name="t" select="charParams[1]/@t"/>
<xsl:with-param name="r" select="charParams[1]/0r"/>
<xsl:with-param name="b" select="charParams[1]/0b"/>
<xsl: with-param name="meter" select="$meter"x/xsl: with-

param>
</xsl:call-template>

</xsl:when>
<xsl:otherwise>
<xsl:for-each select="tokenize(., '\s')">

<wd X x s l :value-of select="normalize-space(.)"/>
</wd>
</xsl:for-each>

</xsl:otherwise>
</xsl:choose>

</xsl:template>
< ! —  — >

<xsl:template name="assembleWd">
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<xsl:param name="charSeq"/>
<xsl:param name="wd"/>
<xsl:param name="l"/>
<xsl:param name="t"/>
<xsl:param name="r"/>
<xsl:param name="b"/>
<xsl: param name="meter"x/xsl: param>
<xsl:choose>

<xsl:when test="exists($charSeq)">
<xsl:choose>

<xsl:when test="$charSeq[1]/@wordStart='true' ">
<wd t="{$t}" 1 = r=" { $r} " b=" {$b} "Xxsl: value-of

select="normalize-space($wd)"/>
</wd>
<xsl:call-template name="assembleWd">

<xsl:with-param name="charSeq" 
select="subsequence($charSeq,2)"/>

<xsl:with-param name="wd" select="$charSeq[1]"/>
<xsl:with-param name="l" select="$charSeq[1]/@l"/>
<xsl:with-param name="t" select="$charSeq[1]/@t"/>
<xsl:with-param name="r" select="$charSeq[1]/0r"/>
<xsl:with-param name="b" select="$charSeq[1]/@b"/>
<xsl: with-param name="meter" select="$meter"x/xsl: with-

param>
</xsl:call-template>

</xsl:when>
<xsl:otherwise>

<xsl:call-template name="assembleWd">
<xsl:with-param name="charSeq" 

select="subsequence($charSeq, 2)"/>
<xsl:with-param name="wd" select="concat($wd,

$charSeq[l])"/>
<xsl:with-param name = "l" select="min(($1,

$charSeq[1]/@1))"/>
<xsl:with-param name="t" select="min(($t,

$charSeq[l]/@t))"/>
<xsl:with-param name="r" select="max(($r,

$charSeq[1]/@r))"/>
<xsl:with-param name="b" select="max(($b,

$charSeq[1]/@b))"/>
<xsl: with-param name="meter" select = "$meter"x/xsl: with-

param>
</xsl:call-template>

</xsl:otherwise>
</xsl:choose>

</xsl:when>
<xsl:otherwise>

<wd t="{ $t}" 1 = "{ $1}" r=" { $r} " b=" { $b} "Xxsl: value-of 
select="normalize-space($wd)"/>

</wd>
</xsl:otherwise>

</xsl:choose>
</xsl:template?
<  ! —  — >

<xsl:function name="my:style"?
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<xsl:param name="format"/>
<xsl:variable name="temp">

<xsl:if test="$format/0bold ">
<xsl:value-of select=" ' bold'"/>

</xsl:if>
<xsl:if test="$format/@italic">

<xsl:value-of select="' italic'"/>
</xsl:if>

<xsl:if test="$format/0subscript"Xxsl: value-of select=" ' 
subscript' "></xsl:value-ofx/xsl:if>
<xsl:if test = "$format/@superscript"Xxsl: value-of select=" ' 
superscript' "X/xsl: value-ofx/xsl: if>
<xsl:if test="$format/@smallcaps"Xxsl: value-of select=" ' 
small caps 1 " X/xsl :value-ofx/xsl:if>
<xsl:if test = "$format/0underline"Xxsl: value-of select = " ' 
underline' "></xsl:value-ofx/xsl:if>
<xsl:if test = "$format/0strikeout"Xxsl: value-of select=" ' 
strikeout' "x/xsl: value-of X / x s l : if >

</xsl:variable>
<xsl:value-of select="if (string-length(my:trim($temp))=0) then () 

else my:trim($temp) "/>
</xsl:function>
< i— —>
<xsl:function name="my:capline">

<xsl:param name="line"/>
</xsl:function>
<  ! —  — >

<xsl:function name="my:trim">
<xsl:param name="str"/>
<xsl:variable name="s" select="my:ltrim($str)"/>
<xsl:sequence select="my:rtrim($s)"/>

</xsl:function>
<  ! —  — >

<xsl:function name="my:ltrim">
<xsl:param name="str"/>
<xsl:value-of select="replace($str, '̂ \s+ ', '')"/>

</xsl:function>
<  ! —  — >

<xsl:function name="my:rtrim">
<xsl:param name="str"/>
<xsl:value-of select="replace($str, '\s+$' , '')"/>

</xsl:function>
<  ! —  — >

<xsl:function name="my:stddev">
<xsl:param name="nodes"/>
<xsl:choose>

<xsl:when test="empty($nodes)">
<xsl:value-of select="0"/>

</xsl:when>
<xsl:otherwise>

<xsl:variable name="mean" select="avg($nodes)"/>
<xsl:variable name="meandif2" select="for $x in $nodes return 

($mean - $x)*($mean - $x) "/>
<xsl:variable name="summeandif" select="sum($meandif2)"/>
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<xsl:value-of select="my:sqrt(($summeandif div (count($nodes) -
1 )))"/>

</xsl:otherwise>
</xsl:choose>

</xsl:function>
<  ! —  — >

<xsl:function name="my:sqrt">
<!-- The number you want to find the square root of -->
<xsl:param name="numb"/>
<xsl:variable name="number" select="if (empty($numb) or $numb le 0) 

then 0 else $numb "/>
<!—  The current 'try'. This is used internally. -->
<xsl:variable name="try" select="number($number &lt; 100) +

number($number >= 100 and $number &lt; 1000) * 10 +
number($number >= 1000 and $number &lt; 10000) * 31

+
number($number >= 10000) * 100"/>

<!-- The current iteration, checked against maxiter to limit loop 
count -->

<xsl:variable name="iter" select="l"/>
<!-- Set this up to ensure against infinite loops -->
<xsl:variable name="maxiter" select="10"/>
<!-- This template was written by Nate Austin using Sir Isaac 

Newton's
method of finding roots -->

<xsl:value-of select="my:sqrt2(Snumber, $try, $iter, $maxiter)"/> 
</xsl:function>
<  ! —  — >

<xsl:function name="my: sqrt2">
<!-- The number you want to find the square root of -->
<xsl:param name="number"/>
<!-- The current 'try'. This is used internally. -->
<xsl:param name="try"/>
<!-- The current iteration, checked against maxiter to limit loop 

count -->
<xsl:param name="iter"/>
<!-- Set this up to ensure against infinite loops -->
<xsl:param name="maxiter"/>
<!—  This template was written by Nate Austin using Sir Isaac 

Newton's
method of finding roots -->

<xsl:choose>
<xsl:when test="$try * $try = $number or $iter > $maxiter">

<xsl:value-of select="$try"/>
</xsl:when>
<xsl:otherwise>

<xsl:value-of select="my:sqrt2($number,
$try - (($try * $try - $number) div (2 * $try)),
$iter + 1,
$maxiter)"/>

</xsl:otherwise>
</xsl:choose>

</xsl:function>
</xsl:stylesheet>
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