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ABSTRACT

DE NOVO PROTEIN STRUCTURE MODELING AND ENERGY FUNCTION

DESIGN

Lin Chen 
Old Dominion University, 2015 

Director: Dr. Jing He

The two major challenges in protein structure prediction problems are (1) the lack 

o f an accurate energy function and (2) the lack o f an efficient search algorithm. A protein 

energy function accurately describing the interaction between residues is able to 

supervise the optimization o f a protein conformation, as well as select native or native

like structures from numerous possible conformations. An efficient search algorithm 

must be able to reduce a conformational space to a reasonable size without missing the 

native conformation. My PhD research studies focused on these two directions.

A protein energy function— the distance and orientation dependent energy 

function of amino acid key blocks (DOKB), containing a distance term, an orientation 

term, and a highly packed term—was proposed to evaluate the stability of proteins. In 

this energy function, key blocks o f each amino acids were used to represent each residue; 

a novel reference state was used to normalize block distributions. The dependent 

relationship between the orientation term and the distance term was revealed, 

representing the preference of different orientations at different distances between key 

blocks. Compared with four widely used energy functions using six general benchmark 

decoy sets, the DOKB appeared to perform very well in recognizing native 

conformations. Additionally, the highly packed term in the DOKB played its important



role in stabilizing protein structures containing highly packed residues. The cluster 

potential adjusted the reference state o f highly packed areas and significantly improved 

the recognition o f the native conformations in the igstructal data set. The DOKB is not 

only an alternative protein energy function for protein structure prediction, but it also 

provides a different view of the interaction between residues.

The top-k search algorithm was optimized to be used for proteins containing both 

a-helices and p-sheets. Secondary structure elements (SSEs) are visible in cryo-electron 

microscopy (cryo-EM) density maps. Combined with the SSEs predicted in a protein 

sequence, it is feasible to determine the topologies referring to the order and direction of 

the SSEs in the cryo-EM density map with respect to the SSEs in the protein sequence. 

Our group member Dr. A1 Nasr proposed the top-k search algorithm, searching the top-k 

possible topologies for a target protein. It was the most effective algorithm so far. 

However, this algorithm only works well for pure cr-helix proteins due to the complexity 

o f the topologies o f P-sheets. Based on the known protein structures in the Protein Data 

Bank (PDB), we noticed that some topologies in P-sheets had a high preference; on the 

contrary, some topologies never appeared. The preference of different topologies of P- 

sheets was introduced into the optimized top-k search algorithm to adjust the edge weight 

between nodes. Compared with the previous results, this optimization significantly 

improved the performance of the top-k algorithm in the proteins containing both a- 

helices and P-sheets.
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C H A PTER  1

INTRODUCTION

Proteins are involved in almost all functional processes within living organisms, 

including metabolic reaction catalyzing, molecule transportation, DNA replication, 

molecule storage, immune protection, etc. 13 ,4. Those functions depend on the 

interactions among proteins in which the differences are due to the composition o f the 

proteins in the sequence and their three-dimensional (3D) structures in space l5: l6; l7-l8; 19. 

For a given protein sequence, the corresponding structure has been determined by a 

common principle 20 21 between the amino acids. Revealing how protein sequences fold 

is an essential requirement in understanding classical biological phenomena and in 

providing useful information for drug design and other biotechnological applications.

A protein is a polymer consisting of a sequence of amino acids. As shown in 

Figure 1, there are 20 types of amino acids. Each amino acid has a chemical formula 

FhNCaHRCOOFl and a specific side-chain, denoted as R 22. These side-chains cause 

each amino acid to have a specific property 23. Based on the charge, the hydrophobicity, 

the size or the chemical characteristics o f their side-chain R, amino acids are classified as 

positive, neutral, negative, hydrophilic, hydrophobic, aliphatic, aromatic, or acidic 24. The 

classification reveals the role that each amino acid plays in protein folding and it provides 

a hint for predicting the protein’s structure.

Neighboring amino acids in the sequence combine to generate the protein chain. The 

carboxyl group (COOH) in one amino acid reacts with the amine group (NH2) in the next 

amino acid in the sequence 22. One water molecule is dehydrated and a peptide bond
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between the two amino acids occurs in this condensation reaction (Figure 2). The two 

ends o f the polypeptide chain are known as the amino terminus (N-terminus) and the 

carboxyl terminus (C-terminus). The monomer that an amino acid loss -O H  on one side 

and -H  on another side is called the residue. It has the following chemical formula:

—HNCaHRCO —. This dehydration procedure occurs between all amino acid pairs in the 

sequence. The backbone of a protein consists o f the Ca, the CO group, and the NH group 

25,26. The arrangement o f these backbone atoms represents the topology o f the proteins.

The composition of the amino acid residues in the protein sequence decides the 

3D structure o f a protein. A specific residue sequence will fold into a particular 3D 

protein structure. During this procedure, the protein structure has four distinct levels: a 

primary structure, a secondary structure, a tertiary structure, and a quaternary structure 25, 

as discussed below.

I. Primary structure refers to the linear residue sequence o f the protein chain from the 

N-terminus to the C-terminus. This is an unbranched chain of residues that can 

contain from tens to hundreds o f amino acids 27;28. Figure 3 A shows a part of the 

amino acid chain o f the protein cyclophilin A, indexed as 2X2A in the protein data 

bank (PD B )29.

Secondary structure refers to the local energetically favorite segments o f the protein 

structure. Major types of the secondary structure include: the a-helix 30, the P-sheet 

3i; 32:33  ̂antj t^e turn/loop 34 (Figure 3 B). The a-helix and the p-sheet have regular 

geometries with specific dihedral angle values 26, which are due to the hydrogen 

bonds among the residues in the peptide backbone. The turns/loops connect these 

regular sub-structures to form the tertiary structure.
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Figure 1. The 20 amino acids tha t m ake up proteins. The amine group (NH2), 

carbon alpha (Ca), and the carboxyl group (COOH) are fully shown without 

removing H and OH. The side-chains (R) are highlighted with rectangular-shaped 

frame composed o f dash lines (GLY has no side chain).
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a. a-helix: In this secondary structure, each NH group at residue i connects to the 

CO group at residue i+4 along the backbone with the hydrogen bond. This is a right- 

handed coiled or spiral conformation where each helix turn has 3.6 residues and 

translation along a-helix axis is 1.5 A. The height o f the a-helix turn is 5.4 A

(3.6* 1.5)35. The backbone dihedral angles (<p, ip) for the residues are shown in 

Figure 4; these are used to describe the protein conformation and the value o f the 

angles (<p,ip) is within -60° and -45°, respectively (Dickerson, 1969

b. #2713} for the a-helix. Side-chains for each residue are attached to the external 

surface o f this helical structure. However, the 20 residues have unequal propensities 

for forming an a-helix. Alanine, aspartic acid, glutamic acid, isoleucine, leucine, and 

methionine all have high helix-forming propensities, whereas glycine and proline 

have poor helix-forming propensities 36’37;38.

c. /?-sheet: In this type of secondary structure, two or more different segments along 

the primary structure, called /^-strands, form a twisted, pleated sheet31. This 

structure is stabilized with at least two or three backbone hydrogen bonds. 

Neighboring ^-strands can be either parallel or anti-parallel (Figure 5). For the 

parallel sheet, two strands have the same direction, which is defined as the direction 

from the N-terminus to the C-terminus for a protein chain, and which have backbone 

dihedral angles (<jp, xp) of -120° and 115°, respectively. For the anti-parallel sheet, 

the two strands have opposite directions and the dihedral angles are -140° and 135°

31. Both the parallel strand pairs and the anti-parallel strand pairs adopt the hydrogen 

bonds between the hydrogen of the amine (NH) group and the oxygen of the 

carboxyl (C=0) group. The diversity is that the residue i forms hydrogen bonds to
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the residues j-1 and j+1 if two atoms, C„ and C}a , are adjacent Car in two hydrogen- 

bonded /?-strands in the parallel ^-sheets; whereas, the residue i forms hydrogen 

bonds to residue j 39.

c — OH

ri--’ .........
: n h 2 :
L .. . J

> ............................► c:

Figure 2. Peptide bond formation. The COOH group in ARG (first amino acid) 

reacts with the NH2 group in ASP (second amino acid), and one water molecule is 

dehydrated. The polypeptide chain is displayed from the N-terminus to the C-terminus 

(highlighted as the rectangle-shaped dash lines).
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A

MVNPTVFFDIAVOGEPLORVSFEtFAOKVPKTAENFRAtST
GEKGFGVKGSCFHRIIPGFMCQGGOFTRHNGTGGKSIVG

P-shM

Figure 3. Four distinct protein structures for cyclophilin A (2X2A). (A) Primary 

structure: a linear residue sequence; (B) Tertiary structure: the turns/loops connect the 

secondary structure: a-helices (red) and /?-sheets (blue); (C) Quaternary structure: a 

set o f organized tertiary structures.
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Figure 4. Dihedral angles o f the backbone of the proteins, (p (phi) involves 

C-N-Ca-C atoms (red), ip (psi) involves N-Ca-C-N atoms (blue).

d. Turn/loop refers to a structural motif in which the C a  atoms of two residues in the 

structural motif are less than 7A 34. In the backbone, the dihedral angles o f the turns 

are not constant. This is in contrast to the a-helices and the /?-sheets.

2. Based on the separation between the two end residues o f the turns in the sequence, 

there can be several types of turns: a-tum  (i, i±4), /?-tum (i, i±3), y-tum (i, i±2), 5- 

tum (i, i±  1), and 7T-tum (i, i+5) 40.

3. Tertiary Structure refers to the 3D structure o f a single protein chain, as shown in 

Figure 3 B. Thus, tertiary structures are the arrangement of different secondary 

structures o f the same protein chain in 3D space 25. This structure is stabilized by 

intra-protein interactions, such as hydrogen bonds, disulfide bonds, electrostatic 

interactions and van der Waals forces 4, 42;43. The tertiary structure is likely 

determined by the primary structure. Predicting the tertiary structure from the
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primary structure is known generally as protein structure prediction 44.
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Figure 5. Parallel strands (A) and anti-parallel strands (B).

4. Quaternary Structure refers to the 3D structure o f a multi-chain protein. Proteins 

with two or more polypeptides are called multimers 25. These subunits are combined 

with non-covalent interactions and disulfide bonds as the tertiary structure. This 

level structure is not included in this current study.

Protein structures have been studied for more than fifty years since the first 

protein structure was reported by John Kendrew in 195 8 45 46 who was awarded the 1962 

Nobel Prize in Chemistry 47. In the 1960s, due to the rapid development of high-
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resolution structure determination techniques, molecular biology became a well-known 

field. In 1962, Aaron Klug developed crystallographic electron microscopy and applied it 

to solve nucleic acid-protein complexes 48. He received the 1982 Nobel Prize in 

Chemistry for his contribution to protein structure determination. Michael Rossmann 

proposed a replacement technique to predict unknown protein structures from existing 

structures 49; 50. In 1971, the Protein Data Bank (PDB) was established at Brookhaven 

National Laboratory to deposit 3D structures of proteins and nucleic acids 5I. Initially, 

PDB only contained seven structures, but now it has over 100, 000 structures. In 1976, 

Robert Langridge developed the first visualization program to visualize the protein 

structures, and he established a computer graphics lab at the University of California, San 

Francisco 52;53. In 1978, Kurt Wuthrich introduced Nuclear Magnetic Resonance (NMR) into 

the study of protein structure 54; Wuthrich received the 2002 Nobel Prize in Chemistry for 

his contribution to studying the structure o f biological macromolecules 47. In 1982, Jane 

Richardson developed ribbon diagrams to represent protein structure, and this has 

become the standard way of visualizing proteins 55. In 1983, Jacque Dubochet succeeded 

in producing biological specimens by freezing them in vitreous ice 56. This technique is 

the key to developing the cryoelectron microscopy (Cryo-EM) technique, which can 

determine protein structures in an aqueous environment 57. In 2000, the National Institute 

of General Medical Sciences (NIGMS) funded the Protein Structure Initiative (PSI) to 

support protein structure determination 58. Many automated tools have been developed to 

support high-throughput pipelines to solve complex structures, build computational 

models to predict 3D structure, and explore the function and potential medical impact o f 

different protein structures 59. In 1976, Johann Deisenhofer and Robert Huber, who



received the 1985 Nobel Prize in Chemistry, reported the first structure o f membrane 

proteins 60. In 1969, Martin Karplus developed a protein prediction program, known as 

Chemistry at HARvard Macromolecular Mechanics (CHARMM). He was awarded the 

2013 Nobel Prize in Chemistry for “the development of multiscale models for complex 

chemical systems” 47. In recent decades, due to the rapid increase in the gap between the 

number of known sequences (45 m) 61 and the number of determined structures (101,000) 

3l, highly effective computational structure prediction methods will play a key 

complementary role for protein structure determination 62. According to the principles of 

thermodynamic theory 63, solved protein structures can provide information that can be 

used to develop knowledge-based protein determination techniques 62. More protein 

structures determined from X-ray crystallography and nuclear magnetic resonance 

(NMR) leads to better templates and more accurate knowledge-based energy function for 

computational prediction methods.

The techniques for determing a protein 3D model are roughly classified into two 

types: experimental structure determination and protein structure prediction 62. The 

former uses experimental methods to collect the structural information for a specific 

protein and generate a 3D model from that infromation. The current experimental 

techniques contains X-ray crystallography, NMR, and Cryo-EM. The prediction 

techniques extract the structural information from the solved structures and build the 3D 

models according to the principles obtained from the information. The prediction 

techniques can be categorized into template-based modeling and free modeling. 

Template-based modeling searches templates related to the target sequence and then 

aligns the target sequence to the template structure to generate structures for the target.
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Depending on whether or not there are highly similar sequence templates in the PDB, 

template-based modeling is further classified into homology modeling and threading, 64.

9 .5%
0 .6%

89 .7%

I X-Ray 

I NMR 

EM

I Hybrid 

i O ther

Figure 6. The number of protein structures solved by multiple methods 6.

Free modeling contains either ‘ab initio’ or ‘de novo’ modeling, which generates 3D 

models without templates. An ab initio prediction, such as a molecular dynamic (MD) 

simulation, uses the sequence information and the fundamental physical principles to 

search for a structure with minimum global energy 65; 66>67’68. In addition to sequence 

information, de novo introduces Cryo-EM density maps to facilitate identification of the 

protein structure 69. In the current PDB 6, 89.7% of the known structures were determined 

by X-ray crystallography, 9.5% were determined by NMR, 0.6% were determined by 

Cryo-EM, and the rest of the known structures were generated by either prediction



12

methods or hybrid methods (Figure 6).

Experimental Techniques

1. X-Ray Crystallography

An X-ray is a type of electromagnetic radiation that has a wavelength between 

0.01 to 10 nanometers 70. It was classified as an unknown type o f radiation (X-ray) after 

Wilhelm Rontgen, who received the 1901 Nobel Prize in Physics, first discovered it in 

1895 71. X-ray crystallography is used to determine crystal structures since the 

wavelength of an X-ray is similar to the size o f atoms 72. A crystal structure is composed 

of repeated unit cells along three principal directions that may not be perpendicular 73. 

Using X-rays to strike the crystals, atoms through the electrons scatter the X-ray wave 

and generate the diffraction pattern of regular spots called reflections, which are two- 

dimensional (2D) images 70. William Lawrence Bragg, and his father William Henry 

Bragg, proposed Bragg’s law 74 in 1912, which provides the tool to convert those 

reflections into a 3D model o f the density o f electrons within the crystals. They shared 

the 1915 Nobel Prize in Physics for their contribution to crystallography 47. This 

technique has been widely used to determine the structure of molecules and minerals.

Crystal structure determination has been studied and applied to inorganic crystals 

and organic crystals. The first X-ray structure o f a protein, myoglobin, was reported by 

John Kendrew and Max Perutz in 1958 46, who shared the Nobel Prize in Chemistry in 

1962. To date, the PDB contains over 80,000 protein structures that are determined using 

this X-ray technique 6.
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Crystal Diffraction Electron Atomic
Pattern Density Map Model

Figure 7. Flow for solving the atomic structure of proteins with X-rays.

Four basic steps are involved in resolving the molecule structure with X-ray 

diffraction 74. The first step is to generate a single-crystal o f the molecules. This step is 

the most difficult step in this technique because it is almost impossible to predict and 

time-consuming to obtain the appropriate crystallization condition for a specific 

molecule. Many proteins, such as membrane-bound proteins, appear to be stubbornly 

resistant to crystallization due to their special characteristics and structures 75. In the 

second step, the single-crystal is subjected to an X-ray with a particular wavelength to 

obtain the regular pattern of reflections from various kinds o f orientations 76. This step 

usually generates thousands of 2D reflections. In the third step, these 2D reflections are 

converted into a 3D electron density map using Bragg’s law 11. This step is completed 

with the help of computational programs. Finally, a refined model o f the atomic 

arrangement, the crystal structure, is generated with information about the chemical 

structure obtained from the other techniques 78.

Protein structures from X-ray diffraction still need complementary techniques to
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overcome the drawback o f the X-ray method. It is very difficult to obtain a single-crystal 

and sometimes it is impossible to generate this type o f crystal for specific proteins 75. 

Moreover, the crystal protein structure is a structure with a perfect atomic arrangement so 

it cannot represent the dynamic structures o f a protein in a solvent 79. NMR has the 

advantage o f working in the solution.

2. NMR

Nuclear magnetic resonance (NMR) spectroscopy was proposed by lsidor Rabi in 

1938 l4;8°, who was awarded the Nobel Prize in Physics in 1944 81. The development o f 

NMR provided a powerful tool for understanding molecular structures. NMR not only 

generates the structural data but also provides more information on dynamics, 

conformational equilibrium, folding, and intra- and intermolecular interaction 80. It has 

been widely used in determining molecule structures, drug screening and design, 

chemical analysis, and material science 82. Kurt Wuthrich was awarded the Nobel Prize in 

Chemistry in 2002 for his study o f applying NMR to biomolecules in solution, in 

particular for the determination o f protein structures 54. Since NMR tries to identify the 

relationship between target atoms, the protein structures generated from NMR contains 

many target structures instead of a single structure, which suggests that the possible 

structures fluctuate around the global energy minimum. More than 10,000 protein 

structures measured with NMR have been deposited into the PDB 6.

The NMR technique is based on a magnetic field that absorbs and emits 

electromagnetic radiation 83. The orbits o f atoms are further represented by angular 

momentum and magnetic moment. The magnetic moment with the same angular 

momentum has a —A  spin and a 'A spin. These spins degenerate, which means that the
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spins switch between two identical energy states. Thus, all the nuclides with even 

numbers of protons and/or neutrons have a total spin o f zero, while all the nuclides with 

odd numbers o f protons have a non-zero spin. The isotopes with a non- zero spin, such as 

'H, l3C and l5N, can be used in NMR spectroscopy 84. The degenerate spin state can be 

split into two states with a different energy within an appropriate magnetic field. When 

the spin stays at th e—A  state it is called the ground state. This spin will absorb energy and 

jump to the excited state ('A state) when electromagnetic radiation of the correct 

frequency is applied to this spin state. This frequency satisfies AE =  h v Q, in which h is 

Planck’s constant and v0 is the radiation frequency. After a while, the spin then relaxes to 

the ground state by emitting magnetic radiation. All the same nuclei resonate at the same 

frequency if no other factors are involved. However, this frequency will be perturbed 

with the surrounding shells of electrons and cause a chemical sh ift85. Furthermore, the 

electrons on the neighboring bonded atom also inference this frequency and splits it into 

several peaks, which is called spin-spin coupling or J coupling. In organic synthesis, 

these chemical shifts and J couplings (correlation spectroscopy) are used to determine the 

molecular structure from the formula 83.

NMR cannot directly generate protein coordinates. J coupling represents the spin- 

spin coupling through the bond 83, which only represents the relationship between the 

connected atoms. The Nuclear Overhauser Effect (NOE) permits distance measurements 

between hydrogen nuclei through space 86. It is possible to observe nuclei interactions 

when the connecting pairs o f hydrogen atoms are separated by less than 5 A 87. All this 

information is used as the constraints to calculate the 3D protein structures with computer 

programs, such as the combined assignment and dynamics algorithm (CYANA)88 or
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XPLOR-NIH 89. Inter-atomic distances and torsion angles are used to find an ensemble of 

structures consistent with the NMR constraints 90. NMR structures are usually 

represented by a bundle of structures because the NMR constraints describe a range of 

possible values and many distances that have no exact value.

NMR is unable to deal with large proteins that are over 30 kDa 9I, although it has 

the advantage in working with protein solution. The constraint information obtained with 

NMR represents the dynamics structures of proteins in an aqueous solution. These 

structures are natural, native structures of proteins instead of the crystal structure 

obtained under non-physiological conditions from X-rays. However, a large protein 

results in fast relaxation and broader lines in the NMR spectrum 92. The corresponding 

spectrum has poor resolution and low sensitivity. Moreover, in a large protein, the more 

resonance lines from more NMR-active nuclei increase the spectral overlap 93.

3. Cryoelectron Microscopy
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Figure 8. Procedure that builds a 3D electron density map using Cryo-EM 3.
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Cryoelectron microscopy (Cryo-EM) provides an alternative technique for 

determining protein structures, especially with relatively large proteins (mass greater than 

200 IcDa) 94. Cryo-EM uses transmission electron microscopy (TEM) to detect the 

molecular structure. TEM was built by Max Knoll and Ernst Ruska in 1931 in order to 

obtain significantly higher resolution than is possible with light microscopes 9S, and the 

later was awarded the 1986 Nobel Prize in Physics 47. This high resolution is due to the 

small de Broglie wavelength o f electrons. The TEM image arises from the interactions of 

the electrons transmitted through the specimen. Direct images o f biological specimens 

with impressive contrast have been obtained from specimens in the frozen state %. This 

technique is particularly suitable for the study and characterization of polymers, metals, 

and ceramic materials. However, the vacuum environment o f TEM, which is used to 

avoid the scattering of electrons by gas molecules, is quite harsh to biomolecules. This 

environment can dehydrate proteins and destroy their structure. Cryo-EM has been used 

to make the sample tolerate the vacuum environment since Jacques Dubochet discovered 

that an aqueous solution of biological specimen can form a vitrified layer 97. Rapid 

cooling o f an aqueous protein solution in liquid ethane or liquid nitrogen temperature 

generates vitreous ice; in this condition, water would be immobilized before water 

molecules have time to crystallize and destroy cells. This technique preserves the natural 

state of proteins in the solution 98.

Three basic steps are needed to generate an electron density map using the Cryo- 

EM technique (Figure 8). The first step is to prepare the vitrified specimen 98. The 

aqueous solution of proteins is dropped into the holes of a supporting grid. The self

supported water film spans the holes. This file is thin enough to transmit electrons, which
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is, typically, less than 100 nm 99; ,0°. This specimen grid is quickly frozen at -180° in 

liquid nitrogen 98. In the second step, the structural information is generated using two 

approaches: single particle analysis (SPA) 101 and cryo-electron tomography (CryoET) 

l02. SPA aligns the two-dimensional images from the same orientations to reduce the 

random noise. Resolution in the range of 7-10 A needs about 300-100,000 images l03. The 

number o f protein molecules exposed under the electron beam limits the resolution. In 

contrast, rather than looking at a large number of projections, CryoET fixes one protein 

particle and collects the images by the controlled angles l02. The resolution depends on 

how much electron exposure the protein molecule is able to tolerate before its structure is 

degraded by the electron beam. The information extracted from a single particle, such as 

the conformational changes that occur during protein binding, is beneficial in dynamic 

study. This approach has a resolution in the range of 20-40 A " .  Finally, the 2D images 

that are obtained are merged into a 3D image, which is referred as the molecular electron 

density map.

Although the resolution of Cryo-EM is increasing steadily, there is still a long 

way to go before it is able to reach the atomic level for general specimens. In the past 30 

years, the resolution of Cryo-EM has improved from 35 A for the Semliki forest virus 104 

to atomic-level resolution ,05; ,06; l07; l08. However, the resolution of most density maps is 

still greater than 6 A 109. The Electron Microscopy Data Bank (EMDB) 110 contains a total 

o f 1897 map entries; o f those, 34% have a resolution less than 20 A, 35% have a 

resolution less than 10 A, and 22% have a resolution ranging from 5 A to 10 A, only 6%  

have atomic-level resolution (Figure 9). For protein structure or quaternary structure that 

can be observed in the 10-30 A range, for which the rigid-body fitting o f known
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structures is the primary method for modeling. The secondary structure can be extracted 

in the 8-10 A range; a-helices are resolvable in the 8-10 A range and P-sheets are 

resolvable in the 6-8 A range ,0°. In the 3-6 A range, the full atomic model can be built 

directly with the existing X-ray modeling techniques 58; 106’ 111; 1 n .

3% 6%

34%

■ 5-10

4 H 1
mm....

10-20
■ 20-60

35%

Figure 9. Resolution distribution of a density map in the Electron Microscopy
Data Bank tEMDB) 7.

CryoEM is becoming a complementary tool o f X-ray crystallography and NMR 

for analyzing large, uncrystallized structures. Although CryoEM currently lacks atomic- 

level resolution, it offers an opportunity to determine protein structures in their natural 

state. Rapid freezing prevents the rearrangement o f water molecules into ice crystals and 

the rearrangement of the target protein. Combining computational prediction techniques,
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it is possible to obtain the atomic structure from an intermediate-resolution density map.
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Figure 10. (A) The number of released protein sequences in UniProt5 over time; 
(B) The number of released protein structures in PDB 6 over time.
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Computational Prediction Techniques

Due to the rapidly increasing gap between the number of released sequences in 

UniProt 5 and the number of released structures in PDB 6, current molecular biology 

research is in urgent need of computational prediction tools that can help scientists 

identify protein structures from amino acid sequences. DNA is transcribed to RNA in the 

cell nucleus, which contains protein-coding region (“exons”) and non-coding regions 

(“introns”). The splicing process cuts the introns and only retains the exons. The spliced 

RNA containing only exons leaves the cytoplasm to produce proteins 113. The protein 

sequences were generated by the sliced RNA and they fold into a 3D model. The number 

of sequences in UniProt currently exceeds 45M 5 and increases by thousands of 

sequences each day. To understand the functions o f proteins, we need to know the 3D 

structure for each protein sequence. However, the experimental techniques used to 

determine a protein structure are tedious and expensive. It might take months or years to 

successfully determine the structure for a specific protein. There are about 110 K protein 

structures in PDB 6. Bridging this immense gap is almost an impossible task with 

experimental techniques. Thus, there is an urgency to develop highly effective 

computational techniques to predict 3D models from a 1D sequence.

In Critical Assessment of protein Structure Prediction (CASP), the protein 

structure prediction techniques were classified into template-based modeling and free 

modeling 64. Although the template-based method has gained popularity over the free 

modeling methods because it has had greater success in achieving high resolution models 

114, template-based modeling presents two major challenges: the selection o f appropriate 

templates and the alignment. It is still rare to achieve accuracy above 80% for the target
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proteins with a template that has less than 50% sequence identity by comparative 

modeling. These prediction errors indicate that the current known structures do not cover 

the complete information that is necessary for modeling. We checked the Cryo-EM 

density maps ranging between 6 A and 10 A 109 (-20%  of all of the density maps). About 

90% of the solved density maps are generated from the template with over 95% sequence 

similarity. Because it is difficult to further increase the model quality when using the 

template-based modeling method, the free modeling method could be a complementary 

strategy to obtain high quality models for the target protein.

1. Comparative Modeling

Comparative modeling, also known as homology modeling, constructs the atomic 

resolution model of the target protein from the protein templates o f the known structures. 

These template proteins have a relatively high sequence similarity (> 30%) on the 

alignment that maps the target protein sequence to the template protein sequence 115; 116. 

Based on biological observation, the proteins with similar amino acid sequences are 

usually evolutionarily related and have similar 3D structures 117. Given a protein 

sequence, homologous protein structures could be used as the templates. Depending on 

the degree o f similarity between the target and template sequences 115; 116, in recent years 

the predicted structure has been found to reach a 3.5 A resolution, sometimes even 1A " 8.

The homology modeling procedure includes four steps 119; 12°: template selection, 

target-template alignment, model construction, and model assessment. The protein 

sequences in which the proteins have over 30% similarity display a high similarity in the 

3D structure. Current multiple sequence alignment (PS1-BLAST) and Hidden Markov 

Models (HMMs) provide 80% accuracy for the sequence alignment. Usually several
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candidate template structures are identified in this step. Then, the target sequence is 

aligned to the template structure. In the modeling step, the coordinates o f the target 

protein can be generated using several methods: 1) single template refinem ent121; 2) 

fragment assembling and segment matching l22; l23; and 3) spatial restraints with NMR 

spectroscopy or the electron density map of Cryo-EM l24; 125 in which Cryo-EM fitting 

contains rigid-body fitting and flexible fitting, which searches for the best fit between the 

template and electron density map with a cross-correlation coefficient ,26. Finally, the 

homology models are assessed with energy functions, which include knowledge-based 

potentials and physics-based potentials.

2. Threading

The threading modeling is a more sophisticated method that is used when the 

level of sequence identity is less than 30%. When no high sequence similarity exits and 

the templates are found, the protein model is still able to be built from the supper 

secondary structures (folds). First, based on the protein classification databases, such as 

the Structural Classification o f Proteins (SCOP) 127 or the CATH Protein Structure 

Classification 128, a structure template database can be constructed that will remove all 

the protein structures with high sequence similarity. Second, a scoring function can be 

designed to measure the relationship between the sequence and the structure. Third, the 

target sequence can be aligned to the structure templates with a good score. Fourth, the 

most probable model with the best score will be selected as the predicted model. Since 

fewer and fewer new folds have been found in recent years l29, Zhang proposed that the 

target proteins in the current PDB that are less than 2.5 A with over 82% alignment 

coverage always have similar folds130’ 131.
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3. Ab initio Modeling

Ab initio modeling refers to an process that can predict the protein tertiary 

structure from its amino acid sequence based on the force field governing protein folding 

21. It is distinguished from template modeling, which uses known structures during the 

predication procedure. Ab initio modeling assumes that all the structure information is 

contained in the amino acid sequence; in other words, given a specific protein sequence, 

only one protein tertiary structure corresponds to it. This assumption was demonstrated in 

the 1950s by Christian Anfinsen ,4. Denatured ribonuclease A spontaneously refolded to 

its native tertiary structure and regained its function. Changing the psi and phi angles for 

each residue o f the protein sequence can generate numerous protein models. The native 

structure for this protein sequence must be contained in the search space.

However, enumerating all the models is an impossible task. For example, each 

residue has 10 different conformations; a sequence with 100 residues has 10lo° models 

,32. It would take years and years of computational time to traverse all of them. The 

current ab initio approaches consider hybrid approaches guided by knowledge-based and 

physics-based potentials. Pure physics-based protein folding with MD simulation is able 

to generate a native-like conformation for a 100-residue long protein sequence with 

approximately 1000 CPU years 64. ROSETTA built over 92 residues using 9-mers from 

other PDB proteins 133. Despite the fact that 1.8 A RMSD to the native structure was 

obtained, the computational cost was over 150 CPU days. I-TASSER, the current best 

modeling approach in CASP developed by Zhang, built protein models with various 

fragment sizes, improving the model size up to 155-residues long based on knowledge- 

based potential 64.
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Despite the expensive computational cost, the ab inito approach has attracted the 

attention of many researchers because it is an eventual solution to protein structure 

prediction. The purely physics-based ab initio simulation identified the pathway of 

protein folding. However, due to the expensive cost and lack of accurate potential 

function, the best current results come from the combination of knowledge-based and 

physics-based approaches.

4. De novo Modeling

De novo modeling refers to building protein models from an electron density map 

and a protein sequence. This method is used for protein modeling when there are no 

appropriate templates that have more than 30% similarity with the target. The density 

maps with resolution in the 10-30 A range are so-called low resolution density maps. No 

useful detailed structure information can be extracted from these density maps. The 

resolution in the 5-10 A range is the intermediate resolution. These intermediate 

resolution density maps are unable to provide atomic structural information. However, 

the secondary structure (SSE) can be extracted from the intermediate density maps, 

which provides complementary structural information that can be used to model the 

protein structures. The dense mass in SSE causes higher electron density in the density 

map, in which a-helices are detected as rods and in /3-sheets are detected as the plate 

areas l34- l35: ,36; l37- 138

Two major approaches can be used to generate the models for proteins using 

Cryo-EM density maps 132. One method is the fitting and refinement method l25' 139’ l40; 

h i .  142; 143; 144; 145; 146; 147; 148; 149  ̂ js  a template-based modeling approach, such as

ROSETTA l5°, MODELLER l24, S-FLEXFIT l51. The other method is the de novo



approach, which uses the secondary structure elements and the skeleton to build the 

models. Density maps are used to reveal a-helices at about the 8-10 A range and /5-sheets 

at about the 6-8 A range. Several programs provide the tools to identify these SSEs. 

HELIXHUNTER l52, EMATCH l38:153, and HELIXTRACER 137 have been successfully 

applied to identify the a-helices. SHEETMINER l36, SHEETTRACER 97, and 

SSEHUNTER 154 were developed to detect the /5-sheets. The skeletonization algorithm in 

SSEHUNTER 154 has been used to trace the backbone l55. Several programs, including 

PHDpsi l56, Jufo l57; l58, PS1PRED l59, and PORTER l6°, have predicted the SSEs in the 

sequence with up to 80% accuracy. Combining the SSE information in the sequence and 

in the structure, we expect that more medium resolution structures could be modeled.

Skeleton, a-helices 
and 6-sheets

{Determination 
of TopologySegmentation

Protein Structure

Density Map 10-Sequence

Figure 11. The flow chart for de novo modeling.
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There are three basic steps in de novo modeling (Figure 11). First, the SSEs are 

identified from the Cryo-EM density map. From the discussion about Cryo-EM, 

previously presented in the this paper, the a-helices and /?-sheets can both be recognized 

at the intermediate resolution. Second, the sequences that pass through the SSEs 

identified in the density map, known as the topologies, are traced or the SSEs in the 

sequence and in the structure corresponded. Due to the extremely large searching space, 

several algorithms have been developed to speed up the searching 69- l32; l6,; l62; l63; l64. 

Finally, based on the topologies, the backbone is placed into the density map, the side- 

chain is added and optimized, guided by the folding principles ,65.

Three major factors limit the application of the de novo method: 1) it lacks an 

accurate energy function locates the global minimum for the native protein structure; 2) it 

lacks an efficient search algorithm covers the conformational space without missing the 

native conformation; and 3) it is unable to select a native-like structure from the decoy 

structures. For a long protein sequence, enumerating the conformations is extremely 

expensive. The efficient search approaches must be able to reduce this huge search space 

to a reasonable size. The reduced search space must contain the native structure. 

Exploring the entire conformation space would generate plenty o f decoys for the target 

protein. An accurate energy function is needed to distinguish the native structure from the 

modeled conformations and guide the conformation optimization.

This work focused on generating an accurate protein energy function and 

reducing the topology searching space. The physical interactions between residues in a 

tertiary structure are described by energy functions. In other words, the protein energy
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function is a score function to evaluate the stability of the protein conformations. The 

native structure for a specific sequence has the highest stability and the lowest energy. An 

accurate energy function is the major obstruction for protein structure prediction. Chapter 

2 introduces how to generate an energy function using the statistic thermodynamics 

theories and the datasets from PDB in our work. By evaluating several widely used 

benchmarks, our energy function is able to surpass the most popular energy functions 

currently being used for protein structure prediction. Chapter 3 addresses how to improve 

the pruning algorithm developed by Dr. Kamal A1 Nasr. To reduce the search space when 

searching the correspondence between the SSEs in the sequence and in the structure, Dr. 

Kamal A1 Nasr designed an efficient algorithm to identify the top-K topologies for pure 

a-helices proteins. This present work extends his algorithm to search the top-K topologies 

for proteins that have both a-helices and P-sheets by considering the features of p-sheets 

that occur in nature.
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CHAPTER 2 

PROTEIN ENERGY FUNCTION DESIGN

One of the most challenging tasks in protein tertiary structure prediction is to 

distinguish the native conformation o f a protein among the decoys that have similar 

conformations. In thermodynamics, Gibbs free energy (G) is used to evaluate stability o f 

the protein structure, which is taken as an isolated thermodynamic system.

As shown in equation 1, U is the internal energy, which is a scalar of temperature 

l66. Higher internal energy causes atoms in the isolated system to move faster and to 

increase system temperature. P represents pressure, V stands for volume, and T is for 

temperature. In our research, since the residue number is constant for a specific protein 

sequence, we assume that P, V, and T are constant for all the protein conformations 

generated from this sequence. S represents the entropy 63, which is a measure o f disorder. 

A system consisting of well-arranged atoms has a low entropy. In contrast, a chaos 

system has a high entropy. The third law of thermodynamics states that the entropy of a 

perfect crystal equals zero l66. However, the disorder o f the system cannot be measured 

directly, and the entropy difference between two protein conformations cannot not be 

calculated directly.

G = U + P V - T S  (1)

The corresponding partial derivative equation is:

dG = dU + VdP +  PdV -  SdT -  TdS  (2)

In an isothermal, isobaric, and isochoric environment, the above equation equates to:
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dG = dU — TdS = dF  (3)

In equation 3, F represents Helmholtz free energy and is related to the partition function

Q:

F = —kBTlnQ = - k BT ln Z ie x  p ( - ^ )  (4)

Where E, is the energy at state i. Thus, the relative Gibbs free energy has the relationship

63 . 167.

dG = —k BT ln g (r )=  — k BT ln ^r  (5)

In equation 5, g(r) is the paired distribution function, pr is the density at distance r, and p 

is the density for the bulk system. With equation 5, we are able to design a known-based 

nergy function from the native protein structures in the Protein Data Bank (PD B )51.

There are two types of energy functions, in general. The physical-based functions, 

such as CHARMM 168 and AMBER l69, are built upon the principles o f physics. Those 

energy functions usually ignore the energy contribution from the entropy. In this case, dG 

= dU, as the internal energy was used to evaluate the stability of the protein system. The 

internal energy contains both the bonded energy and the non-bonded energy. The bonded 

energy contains both rotational and vibrational energy, but no transfer energy. The non

bonded energy contains the contributions from electrostatic force (Coulomb force) and 

non-electrostatic force (van der Waals force, dispersion force) l70. At room temperature 

(298K), TdS in (3) could be significant. Due to the missing o f entropy term in equation 

(3), the performance of the physical-based functions is very far from what is expected 

under room temperature. In contrast, the knowledge-based energy functions represent the 

statistics extracted from large number o f known structures 171 172 with equation (5).
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Knowledge-based energy functions, or so-called “statistical potentials” have been used in 

numerous applications, such as structure prediction l73, protein design 174 and docking l75. 

As shown in equation (5), knowledge-based energy is Gibbs free energy, which contains 

the contributions from both internal energy (U) and entropy (S). For this reason, the 

knowledge-based energy functions have much better performance than the physics-based 

energy functions. The only limits of accuracy for the knowledge-based energy functions 

are the number of protein structures in the PDB and an appropriate reference state (bulk 

density), which represents the environment for an interaction between residues.

In spite of the successful cases demonstrated by the statistical potentials, it is 

challenging to develop an energy function that approximates well in various physical 

environments. Some statistical energy functions use all-atom interactions, such as DFIRE 

176 and DOPE i77, while others use reduced representations for amino acids. Although the 

all-atom functions characterize the fine details o f a conformation, it is challenging to 

represent the dependencies among the atoms that are connected by one or more 

consecutive covalent bonds. Various reduced representations, or “coarse-grained 

models,” have been proposed. Some o f them use the C a atom l72,178 or the side chain 

center to represent each amino acid 179; l80; 181. OPUS-PSP breaks an amino acid into 

multiple blocks and uses nineteen blocks to represent twenty amino acids ,82. Random- 

Walk function uses twenty vector-pairs on the side chain to represent an amino acid l83.

In addition to the above mentioned pair-wise functions, three-body and four-body 

potentials have been investigated by various groups. It has been suggested that the pair

wise potentials are not sufficient to characterize the three-dimensional interactions due to 

the simple decomposition of such interactions to two-dimensional problems l84; i85.
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Krishnamoorthy and Tropsha use Delaunay Tessellation to derive a four-body function 

lg6. Feng, eta l. extended a two-body potential to a four-body potential l87. In spite of the 

theoretical advantages, multi-body potentials have yet to outperform pairwise functions 

in distinguishing the native from the decoys in large datasets.

One of the advantages for pairwise coarse-grained potentials is the simplicity in 

describing both the distance and relative orientation o f a pair. Earlier pairwise functions 

are primarily based on the distance between the pair 171; l72; 176; l88- l89; l9°. Recently, the 

relative orientation o f the pair has been incorporated l82; ,83; l9l; ,92:193. The block 

representation of OPUS-PSP groups the rigid portion of the chemical structure into a 

block, but still provides the flexibility in representing the side chain. In spite of the 

innovative block representation, OPUS-PSP is an orientation-dependent, but not a 

distance-dependent function. In principle, the joint distance and orientation function 

should be more sensitive in distinguishing the fine conformational differences. In 

practice, this is not feasible until sufficient representative data are available.

The CABS model incorporates both distance and orientation in the potential 

function, although the number of orientations is limited l94. In spite of the recent attempts 

l95; 196 it is still challenging to derive an effective function that is both distance- and 

orientation-dependent. In our study, we present a both distance- and orientation- 

dependent function, DOKB, that is based on the block representation. We illustrate the 

importance o f using both distance and orientation in characterizing the pairwise potential.

Side chain packing is one of the most important factors used to distinguish one 

conformation from another. In the block representation of OPUS-PSP, most side chains 

consist of multiple blocks. In principle, all blocks of an amino acid should be used in
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calculating the energy. However, backbone-backbone interaction is not specific in 

distinguishing the conformations. Although the interaction between backbone and side 

chains is more specific, it is challenging to accurately represent the dependency among 

multiple blocks. Previous studies have shown the dependency between the backbone and 

the side chain conformations l97.

A large number of known structures is required to derive statistically meaningful 

dependency among multiple blocks when relative distances and orientations are encoded. 

We hypothesize that some blocks in a side chain are more influential than others. In fact, 

representations that bias the functional group of the side chain were proposed for 9 of the 

20 amino acids l98. In this paper, we present the results o f a simple and effective approach 

that uses a key block to represent each side chain, except TYR and ILE, for which two 

are used. The minimum representation using key blocks can highlight the most 

characteristic portion of the side chain during packing.

Protein structures are known to present as a scale-free interaction network 199 20°- 

201,202 jn c iusters or “hot-spots” play critical roles in stability. The densely packed

clusters presumably have the most constraints in packing the side chains, and they are 

perhaps the regions to identify the difference between a native structure and a decoy.

One of the drawbacks of a pairwise potential is that it does not distinguish the 

local environment o f the pair. For instance, a pair with the relatively same geometry has 

the same potential, regardless of where it is located. Multi-body potentials aim to fix this 

drawback, although it is not clear if replacing the pairwise potential with multi-body 

potential for all regions is an effective approach. We characterized the residue pairs in the 

low-energy cluster within the highly packed clusters and translated the knowledge to an



34

energy term in an attempt to incorporate the energy difference between a highly packed 

environment and a loosely packed environment. The added cluster energy term appears to 

improve the performance in the ig-structal dataset.

2.1 Method

2.1.1 Definition of the Relative Geometry o f a Pair of Key Blocks

Based on our understanding o f protein energy, blocks in OPUS-PSP were used to 

represent the interaction between residues. The residue-level interaction uses Ca/CP or 

side-chain center to represent the position of residues. It is a concise description of the 

residue and simplifies the calculation. However, it not only ignores the conformation of 

the side-chain, but also takes a very rough approximation o f the distance between 

functional atoms. The atom-level model keeps all the interaction information of the non

bonded atoms in the residues, but it ignores all the connection information within the 

residue. We used the block-level model in an attempt to obtain a balance between the 

residue-level and the atom-level. It contains the necessary connection information of the 

bonded atoms without increasing calculation burden.

DOKB borrowed the definition o f blocks from OPUS-PSP l82. As shown in 

Figure 12, 20 residues are decomposed into 19 rigid-body blocks. The interaction 

between two residues is converted into the summation o f blocks interaction. This 

definition assumes that all heavy atoms are in the same plane, and blocks consist of the 

bonded heavy atoms. Each block only appears once in each residue. Based on the block 

shapes, all blocks are categorized into three classes: point blocks, linear blocks, and plane 

blocks.
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Figure 12. The definition of 19 rigid-body blocks in OPUS-PSP R and R’ 

are not parts of blocks.

The block representation in DOKB is based on OPUS-PSP 182 with some 

modifications (Table 1). Instead o f using multiple blocks to represent an amino acid, a 

key block at the distal end of the side chain was used, except for ILE and Tyr (Table 1).
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The backbone blocks are not included in DOKB, and the energy solely calibrates the 

packing of the key blocks in the side chains. Unlike in Lu ,82, the 22 key blocks are 

amino acid specific.

The local frame o f each block was defined according to Lu l82. If the central block 

i is plane block (class III), the relative geometrical relationship between block i and j  is 

represented by (r, 6 ,0 ) , in which r  is the center-to-center distance between i and j .  6 

and 0  characterize the orientation of j  block in f  s frame (Figure 13). In particular, 9 is 

the angle formed by AB  and z-axis, and 0  is the angle formed by x-axis and the 

projection o f AB on the x y  plane (Figure 13). A pair o f key blocks is considered in 

energy calculation if r  <  7 A, slightly larger than the popular contact cutoff of 6.5A 

between Ca atoms in order to consider more pairs. Since the number o f protein structures 

is limited, we partitioned the geometrical space of a pair of blocks into bins of 

(Ar, A9, A0), in which Ar =  0.5A, and A9 =  A0 =  30 If the central block i is linear 

block (class II), the geometrical relationship between block i and j is represented by 

(r, 6). There are 6 bins from 0° to 180°. If the central block i is point block (class I), 

there is no orientation energy and only distance energy is calculated.

2.1.2 The Energy Function

The statistical energy function was developed using a data set of 4,180 known 

protein structures that were extracted using PISCES 203. The data set contains those 

structures that were solved by X-ray crystallography and have (1) no more than 40% of 

sequence similarity; (2) at least 1.8 A resolution; (3) an R-factor of 0.25 or better and (4) 

at least 40 amino acids in the sequence.
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Table 1. Definition of key blocks 2
Residue Key block* Blockb Residue Key block Block

GLY N one N one THR 15 15

SER 2 2 PHE 16 16

ALA 3 3 HIS 17 17

C YS 8 8 TRP 18 18

MET 9 9 PRO 19 19

LYS 10 10 1LE 2 0 ,2 1 12,3

ASP 11 11 LEU 22 12

VAL 12 12 TYR 2 3 ,2 6 2, 16

ARG 13 13 GLU 24 11

A SN 14 14 GLN 25 14

a Key block index in DOKB. 
b B lock index in O PU S-PSP.

VAL (j)PHE (i)

Figure 13. The distance and orientation representation of a pair of key blocks 2.

The key blocks (cyan) of PHE and VAL are represented by the local frame centering 

at A and B respectively. The distance between A and B is r . 0 and 0  are the angles 

of B in A’s local frame.
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The energy of the entire protein ETotal contains the energy from all key block 

pairs using eq. (6). The energy between a pair of key blocks contains the distance energy 

Eldjs t(r)  and the orientation energy El̂ t (r, 9, (p), where i and j  are the block indexes in 

Table 1. Each residue is represented with its most distal block o f the side chain (Table 1) 

except for ILE and TYR that are represented by two blocks. Note that El,i may not be the 

same as E>’1 since the orientation energy E l̂ t (r, 0 ,0 )  depends on the orientation o f block 

j  in the local frame of block i.

Erotai = Edist + Eort = Z i Z j  E ^ i r . O , ^ )  = (r) + E ^ r ,  9 , 0)) (6)

The observed density p l’] (r ) (7) at distance r  was calculated by N l,)(r) /4 7 rr2Ar, 

in which N l,J\ r ) is the number o f the observed block pairs in bin f l o o r ( r /0.5). p i,7(r) 

was derived for 0 <  r  <  25A. The reference state, p 1J , uses the ideal gas state that is 

supposed to be the density at infinite distance. We observed that the density is 

approximately constant when 15A < r  <  20A. This character was similarly reported in 

,76. Due to the limit o f the protein size in the training data, density may not be realistic 

when r  >  20A . Therefore, we used an average density calculated from 15A <  r  <  20A 

as the expected density.

Edls t(r) = - k BT ln g (r ) =  - k BT ln E 0 ±  (7)

The orientation energy E‘,7t (r, 9 ,0 )  (8) was designed to adjust the distance 

energy £ ^ s t(r )  that represents the average energy at distance r. N l j (r, 9 ,0 )  is the 

number o f block pairs observed at distance r  with orientation ( 9 ,0 ) , and N l,>(r) is the 

average number of the block pairs ( i , j )  o f all the orientations with distance r. In
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particular, =  N lt ’Jtal(r)/4 tb in , where N '̂Jtal(r) is the total number o f block pairs

( i ,j)  at distance r.

(8)

The cluster energy is calculated at the residue level instead of the block level to 

ensure sufficient low-energy, highly packed cases are available for all pairs. A pair of

residues (m ,n ) is in a low-energy region if the energy at m is no more than -1 5/cbT. The 

energy at m is simply the summation o f the pairwise energy for all residues that are 

neighbors o f m . A residue n  is considered a neighbor o f residue m  if n has a block within

energy for the cluster center residue, it is not absolutely necessary. Pciuster(m >n ) ‘s the 

probability for (m,n) in the low-energy region to appear in a highly packed cluster 

(Figure 20). Paii(jn ,n ) is the probability for (m,n) in the low energy region to appear in 

the entire structure regardless of highly packed or loosely packed regions (Figure 21). In 

particular, NLowhig My  packed(m ,n )  is the number of (m, n) pairs in which m has no 

more than—15k BT kcal/mol and (m,n) is in a highly packed cluster.

Nhighly packed(.m >n) is the number o f (m,n) pairs in which (m,n) is in a highly packed 

cluster. NLow(m ,n ) is the number of (m,n) pairs in the low-energy regions, and 

Nau (m, n) is the number of (m, n) pairs in the entire structure regardless o f where it is 

located. Alternatively, the energy of a protein can be calculated using (12) if the cluster 

energy is a concern.

residues (m, n) is in the highly packed cluster if m  has at least 15 neighbors. A pair of

7 A to any block o f residue m . Although the highly packed clusters often have low

P c lu s te r iP l ’ r i )  —

NLow,highly pacfced(m'n) 

N h ig h ly  packed  (m'n)
(9)
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P a i i im .n ) =N _  NLoW(m.n) 
NaU(m.n) ( 10)

pm .n  _  
E cluster

P cluster (m.n) m  is h igh ly  packed  

m  is n o t h igh ly  packed
( 1 1 )

Erotai = T.iT.j(Edist ( r )  + E ^ r . B . c p ) )  + ZmZn fcE,•m,n
cluster ( 12)

2.1.3 Energy Function Generation

For convenience, we generated a web-based energy function table and posed it at: 

http://w w w .cs.odu.edu/-ihe/softw are/D O kB /B lock.htm . The webpage frame is shown in Figure

Each cell in the 20*20 array contains a link to the distance energy (eq. 7) and the 

orientation energy (eq. 8) for the specific residue pair. The 20*20 array contains all 400 

residue pairs. For cell (i, j), i represents the residue in the row and j represents the residue

sample to show the procedure of generating the distance energy and the orientation 

energy.

Click cell (ASP, ARG) on the energy table to display the “Information between 

ASP and ARG” page (Figure 14). This page consists o f the density distribution table 

(top) and the corresponding energy table (bottom).

In the density distribution table, the first column contains the links of the distance 

density distribution pages for the block pairs between ASP and ARG (marked with the 

red rectangle in Figure 14). Click any o f the links in the first column. There is a two- 

column distance distribution table (not shown in Figure 14). In this table, the numbers in 

the first column are the distance value between blocks from OA to 24.5A with interval 0.5

14.

in the column. Since the orientation defined in Figure 13 is not symmetric, mostly E l̂ t =£ 

E ^ t , the energy table is not symmetric either. We are using (ASP, ARG) pair as the

http://www.cs.odu.edu/-ihe/software/DOkB/Block.htm
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A, while the numbers in the second column are the density value at each distance. If 

block i in pair (i, j) is point block, the pair has only distance energy and no orientation 

distribution. If block i in block pair (i, j)  is a linear block or plane block, the links for the 

orientation distributions at each distance are attached after the distance density 

distribution (circled with red in Figure 14). The orientation distribution page contains a 

table (each bin has 30° range, 1 *6 array for linear block, 6* 12 array for plane block).

Each cell in the table contains the ratio value in eq. 8) and the pair number in

the whole dataset for this orientation and distance (r, 9, <p).

Similar to the density distribution table, the first column in the energy table 

contains the links of the distance energy pages for the block pairs between ASP and ARG 

(highlighted with the red rectangle in Figure 14). Each distance energy page contains a 

two-column table. The first column contains the distance value from 0A to 24.5A with 

interval 0.5A. The second column contains the energy value at each distance. Since there 

is no energy when the distance equals to zero, “nan” is used to fill the space. When two 

blocks are placed very close, the energy is increasing rapidly to infinite. A large number 

“21474” is used here to represent the infinite value. When calculating the energy of a 

protein, value 9 is used to represent the infinite value for easy plot purpose.

Step 1. Generate the density distribution function

According to eq. 7, the density for all 30 block pairs of (ASP, ARG) is plotted in 

Figure 15. ASP consists of block 1, 4, 5, 7, 11, and ASN consists of block 1, 4, 5, 6, 7,

13. There are total 5*6 block pairs. Each pair density distribution (i, j) represents the 

packing conformation o f block j  around block i. When the distance between two blocks 

are long enough, the interaction between these two blocks could be ignored. In other
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words, the energy between these two blocks is zero and the density value is constant after 

15 A l76. However, since the size o f the proteins is not infinite, the density value is not 

real constant and decreases rapidly after 20A. Based on the protein size in our dataset, we 

assume the density within 15A-20A is constant and pick this range as the constant range.

To convert the density distribution to the pair correlation function, we pick the 

reference density value from the constant range. p IJ Within the constant range, each 

density plot in Figure 15 has one average density value. 30 pairs have 30 different 

average densities. Even when all the block pair distributions are collected from a same 

residue pair, the average densities are slightly different. We picked the median value 

from these 30 average density values to be the reference density value. This reference 

value was used to generate the pair correlation function for each block pair next step.

This value (17.1) was also taken as the density distribution of (ASP, ARG) and written in 

the main webpage (left in Figure 14).

Step 2. Generate the pair correlation function

The pair correlation function was generated from the density distribution function 

by the reference value obtained in last step. We divided all 30 density distribution plots of 

(ASP, ARG) by the reference value. The resulting plots are called “pair correlation 

function,” which describes the packing conformation between rigid balls (Figure 16). The 

red line marks the value 1, which is the value for the reference state. For the plots, there 

most likely is more than one peak for each block pair. These show us that, for the central 

block i, the neighbor block j has two or three preferred distances. This observation is 

quite similar to the ideal gas packing o f single atoms.
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Figure 15. The density distributions for all 30 block pairs of ASP-ARG.

The range between 15A and 20A are constant value range. The red line 

marks the bulk density value for 30 block pairs.



0 5 10 15 20 25
Distance (A)

Figure 16. The pair correlation functions for all 30 block pairs of ASP- 

ARG. The red line represents the reference state, whose g(r) value is 1.



46

Step 3. Generate the distance energy function

With equation 5, the distance energy function was converted to the pair 

correlation function between blocks (Figure 17). The red line marks the zero energy. 

When two blocks are far enough away, there is no interaction, and the energy between 

them is zero. When two blocks are very close, they repulse or overlap each other, and the 

energy between them increases rapidly to infinity. Some block pairs have unfavorable 

positions, even though the distance is not close. In Figure 17, the plot o f block pair (11,

7) has a valley at 3.0A, which is the most favorable packing distance. However, at 4.5A, 

there is an energy peak o f 0.259, which represents a very unfavorable distance between 

these two blocks. After that, another valley appears around 6.0A. From the ideal gas 

packing model for block pair (i, j), we know that the first valley represents the first 

packing shell around block i and the second valley represents the second packing shell 

around block i. The unfavorable distance at 4.5A is a position between two shells. Block j 

could not be placed at this distance without increasing the system energy.

Step 4. Generate the orientation function

The orientation energy function was generated with equation 8. In step 3, we 

generated the distance energy function. From a statistical standpoint, the energy at each 

specific distance is the average energy o f all possible orientations. Some orientations are 

favorable (the interaction energy should be less than the distance energy) while others are 

unfavorable (the interaction energy should be larger than the distance energy). For block 

pair (i, j), if i is the linear or the planar block, the orientation energy was calculated.

At each distance, the orientation was represented with (0, <p) (Figure 13). 0 ranges 

from 0° to 180°. (p ranges from 0° to 360°. We divided the range into several bins, each
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- 2 -

S0 10 15 20

Distance A

Figure 17. The distance energy functions for all 30 block pairs. The red

line marks the zero energy; the energy value below zero means preferred

with a range o f 30°. Then, all possible orientations were simplified to a 6*12 table. The 

average pair number was obtained by dividing the total pair number at this distance with 

6*12 for planar block. Each cell contains the pair number in this specific distance and 

orientation and the ratio between the pair number and the average pair number. Then we 

used equation 8 to calculate the orientation with the ratio value. When the pair number is 

greater than the average number, the orientation is a favorite orientation. The orientation 

energy is a negative value. Otherwise, the orientation energy is positive value (Figure 

14).
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Step 5. Cluster Energy

The cluster energy was generated to fix the bias from the dense area of the 

proteins. The distance energy and the orientation energy in step 1 -4 were generated for all 

block pairs without distinguishing the dense area or the loose area. The function is an 

average value for all areas. However, the dense area obviously has a different entropy 

value. The messy area has higher entropy, while the highly organized area has lower 

entropy. To describe the energy contribution of the dense area, we introduced the cluster 

energy.

The cluster energy is necessary to distinguish the native structure from the highly similar 

decoys. We were using five decoy sets to evaluate the energy function, DecoyRus, 

MOULDER, hg, ig, and ITASSER. We used the definition for the high dense residue in 

2.1.2. The percentage o f highly dense residues for each decoy was calculated. Since each 

protein has many decoys, the mean value for each protein was posted in Table 2. The 

dense percentage in Decoy’R’us is from 4.74% to 26.34%, and only 4 of them are over 

20%. The high dense percentage in hg is from 9.17% to 18.52%, and in ig is from 25% to 

30.72%, in MOULDER is from 8.57% to 36.62%, and in ITASSER is from 2% to 19.5%. 

The energy with only the distance energy and the orientation energy performed very poor 

in decoy set ig. Without the cluster energy, the energy was not sensitive enough to 

distinguish the native from decoys. This is because the decoys in ig have very high 

similarities. They have almost the same backbone conformations and slightly different 

side-chain conformations. The distance energy and the orientation energy are very close. 

The entropy for the dense area cannot be ignored anymore.
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Table 2. The percentage o f high dense residues in decoy sets

)ecoyRus Mean
(%)

DecoyRus Mean
(%) hg

Mean
(%) hg

Mean
(%)

lc tf 18.19 1 dkt-A 26.34 lash 15.9 lmba 13.95

lr69 13.88 lfca 14.36 lbab-
B 13.35 Imbs 18.52

1sn3 20.57 Inkl lcol-
A 9.17 lmyg-

A 17.04

2cro Ipgb 9.26 lcpc-
A 10.39 lmyj-

A 16.51

3icb 18.53 1 trl-A 20.12 lecd 10.17 lmyt 15.77

4pti 15.81 4icb 26.72 lemy 17.32 2dhb-
A 14.28

4rxn lbOn-B 0.04 lflp 13.19 2dhb-
B 14.7

lfc2 2.19 lbba 0.07 lgdm 16.56 21hb 15.57

lhdd-C 0.35 lctf 10.79 lhbg 16.35 2pgh-
A 14.47

2cro 6.21 Idtk 5.8 lhbh-
A 14.48 2pgh-

B 13.42

4icb 0.53 lfc2 4.74 lhbh-
B 15.23 4sdh-

A 13.4

1bg8-A 6.41 ligd 11.59 lhda-
A 13.9

IblO 15.15 1 shf-A 10.89 lhda-
B 12.85

leh2 14.14 2cro 2.31 lhlb 14.1
ljwe 13.96 2ovo 9.47 lhlm 15.9
smd3 9.52 4pti 6.04 lhsy 18.08

lbeo 1 ith- 
A 13.57

lctf 22.36 llht 17.9
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Table 2. Continued

'g Mean (%) •g Mean (%) ig Mean (%) ig Mean (%)
lacy 28.5 lgaf 26.5 lmfa 26.1 2fbj 27.69
Ibaf 27.63 iggi 27.52 lmlb 28.43 2gfb 28.51
lbbd 28.12 1 gig 26.83 lmrd 27.22 3hfl 26.43
lbbj 27.1 lhil 29.27 lnbv 29.55 3hfm 25.98
ldbb 27.99 lhkl 27.11 lncb 27.99 6fab 30.72
ldfb 29.32 liai 28.64 Ingq 26.77 7fab 25.08
ldvf 28.3 libg 28.79 lnmb 29.44 8fab 27.16
leap 27.26 ligc 28.46 lnsn 25
lfai 29.76 ligf 27.74 lopg 29.056
lfbi 29.37 ligi 28.68 Ipig 27.57
lfgv 27.78 ligm 29.04 lrm f 28.51
1 fig 27.93 lik f 28.34 ltet 27.26
1 fir 27.07 lind 25.71 lucb 27.8
lfor 29.61 ljel 28.61 lvfa 27.68
lfpt 28.61 ljhl 29.35 lvge 30.16
lfrg 29.09 lkem 27.48 lyuh 26.51
lfvc 28.76 Imam 27.83 2cgr 28.74
lfvd 28.66 lmcp 28.99 2fb4 29.35
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Table .2 Continued

MOULDE
R

Mean
(%)

YangZhan
g

Mean
(%)

YangZhan
g

Mean
(%)

YangZhan
g

Mean
(%)

lbbh 16.97 labv 20 lglcA 9.3 lorgA 17.2
lc2r 18.57 laf7 12.618 IgjxA 10 lpgx 8.1
lcau 14.47 lah9 5.4 IgnuA 11.8 lr69 10.8
lcew 17.16 laoy 8.9 Igpt 13.7 lsfp 12.5
lcid 16 lb4bA 8.9 lgyvA 10.1 lshfA 8.4
ldxt 18.53 lb72A 7.4 IhbkA 12.5 lsro 5.3
leaf 20.34 lbm8 10.1 litpA 10.3 lten 11.9
lgky 17.79 lbq9A 8.4 ljnuA 12.6 ltfi 2
llga 32.16 lcewl 13.9 lkjs 10.3 lthx 21.2

lmdc 11.63 IcqkA 11.1 lkviA 8.6 Itif 9.9
lmup 20.92 lesp 6 lmkyA3 9.6 1 tig 9.9
lone 15.26 lcy5A 19.5 1 mla_2 13.9 lvcc 14.6
2afn 24.47 IdcjA 7.8 lmn8A 8.5 256hA 11.3
2cmd 29.66 ldi2A 9.1 1 nOuA4 16.2 2a0b 18.1
2fbj 19.54 IdtjA 8 lne3A 3.8 2cr7A 14.2
2mta 8.57 legxA 12.5 lno5A 13.4 2f3nA 8.4
2pna 16.96 lfadA 16.4 InpsA 17 2pcy 13.7
2sim 36.62 lfo5A 8.2 lo2fB 12.3 2reb_2 9
4sbv 27.51 lof9A 8.4
8i lb 32.33 logwA 10.3
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The cluster energy was calculated for residue pairs as described in 2.1.2. and posted in 

Figure 20. The ideal cluster energy should use the block pairs in equation 11 for each 

specific distance and each specific orientation. However, since the dataset is not large 

enough, the dense block pair number is too small at the specific distance and the specific 

orientation to represent the dense area. Thus, we use the residue pairs to replace the block 

pairs within a range.

2. 2 Results and Discussions

2.2.1 The Distance Energy Adjusted by the Orientation Energy

We have developed a statistical energy function that is based on the 

characterization of the distance and orientation for each pair o f key blocks. The main 

terms in the energy function include a distance term E^Jist(^r) and an orientation term 

E%t (r, d, 0 )  for each pair o f key blocks i and j .  The orientation term reflects the energy 

fluctuation o f those pairs with different orientations but at the same distance bin. We 

observed in this study, as many previous studies l80, that the distance energy is critical in 

distinguishing block conformations. Using the ideal gas as reference, we derived the 

distance energy (see Methods). Note that the distance energy is about zero at the range of 

15A-20 A, since the average density at this range was used as the reference (Figure 18 A 

and C). As an example, the lowest energy for block pair (16,16), of residue pair 

(PHE,PHE), is at the distance bin of 5.0-5.5A with distance energy of 6(5.0) = 

—2.02 KbT  kcal/mol. This lowest energy distance o f about 5A agrees well with that 

derived from the Multiwell function, in which the geometrical center o f the side chain 

atoms was used (Figure 18 A and B). The lowest distance energy for block pair (18,14), 

£^?£4(5.5) =  —0.53KBT  kcal/mol, is at a slightly longer distance of 5.5-6A, due to the
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larger block 18 o f TRP. The distance energy suggests that block 16, the distal end of the 

PHE, is more likely to interact with block 16 at the distance bin o f 5.0-5.5A (Figure 18 

A) than for block 18 o f TRP to interact with block 14 of ASN (Figure 18 C). This reflects 

the popular hydrophobic interaction between PHE and PHE in native proteins.

The orientation energy is an effective term to recognize the short-distance feasible 

geometry for a pair. To illustrate the nature o f the preferred orientations at each distance 

bin, we show the orientation energy Elgj.t (r, 6 ,0 )  for two pairs o f blocks (16,16) (Figure 

19 A, B, C) and (18,14) (Figure 19 D, E, F) at three consecutive distance bins. As 

expected, most o f the orientation bins have positive energy for block pair (16,16) to be at 

the short distance of 3.5-4.0A (Figure 19 A). In our energy function, there is no need to 

introduce the repulsion term as in OPUS-PSP [11], since the orientations causing 

collision have zero or extremely low occurrences (Figure 19 A). The orientation energy 

was assigned to an extremely high value 9 if there were no observed cases in the 

orientation bin. Note that the distance energy o f (16,16) is high and suggests it is 

unfavorable to have the pair in such short distance range compared to other distances (red 

bar in Figure 18 A and Figure 19 A). However, the orientation energy shows that if the 

pair is in such a distance bin, the orientations must be mostly restricted to three distinct 

peaks, roughly at 90°, -30° (red peak value), 90°, 0° (blue peak value), and 30°, -180° 

(green peak value) (Figure 19 A). The resulting energy of the pair at the red peak value 

(Figure 19 A) is E ^ t 6 (3.5) + E™‘t16(3.5,90, -3 0 ) = 0.47 -  2.99 = -2.52, an overall 

favorable energy. The orientation energy makes it possible to recognize the feasible 

geometry that would have been missed if a distance-only function was used.
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As the distance increases, before reaching the most favorite distance at about 5A, 

the distance energy becomes lower with £'^fjf6(4.5) =  —1.63 (green bar in Figure 18 A 

and Figure 19 C). There are more peaks in the orientation energy, but the height o f the 

peaks decreases. For example, there are ten orientation peaks with orientation energy 

lower than -1.0 in the distance bin of 4.5A-5A (Figure 19 C), but there are only six in the 

bin of 3.5-4A (Figure 19 A). The highest orientation peak in Figure 14 C has an overall 

energy E (4.5) +  E ^ 16(4 .5 ,9 0 ,-3 0 ) =  -1 .6 3  -  1.77 =  -3 .4 . The overall energy 

suggests that it is more popular for the pair (16,16) to adopt a relative geometry of 

(4.5,90, —30) than (3.5,90, —30). This is reasonable since there are more observed cases 

in the bin o f 4.5A-5A than in the bin o f 3.5-4 A (Figure 18 A).

Note that there is no need to introduce weight parameters for the two terms in our 

energy function, because the orientation energy was characterized for those pairs at the 

same distance, but with different orientations. The two terms are not derived 

independently. With both the distance energy term and the orientation energy term, there 

is no need to use a repulsion term as in OPUS-PSP l82, since the statistically derived 

distance term naturally shows the repulsion at the short distance. This simplifies the 

calculation o f the energy since there is no need to scan all the atoms for repulsions.

2.2.2 Transition of the Most Preferred Orientations at Different Distances for a Pair 

of Blocks

Numerous existing studies have suggested that each pair o f amino acid side chains 

have preferred geometrical positions 191■204’205. Lu, et al. characterized the preferred 

orientations for each pair o f blocks on the side chains l82. The nature of the multiple
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preferred orientations is also shown in our data. For example, block pair (16,16) has 

roughly three distinct preferred orientations at (0, <p) =  (90 ° —30 (30°, -180°), and

(90°, 150°) (Figure 19 A, B, C). These three preferred orientations appear to agree with 

the previous finding in Lu, et al. 182, in spite of different definitions of the orientation. 

However, OPUS-PSP energy function in Lu, et al. is not a distance dependent function. 

With the fine distance bins increments of 0.5A, we are able to see the same preferred 

orientations are preferred at different levels when they are at different distance bins. In 

particular, two of the three preferred orientations, 90°, -30° (red peak in Figure 19 A) and 

30°, -180° (green peak in Figure 19 A) are the two most distinct peaks in the distance bin 

of 3.5 A. However, in the distance bin of 4.5 A, the third preferred peak (90°, 150°) 

becomes the most favored (red peak in Figure 19 C) in this bin. Our energy function will 

distinguish two pairs with the same orientation, but at 1 A difference in distance. For 

example, the same orientation has different energy of £’1616(3.5,90, —30) =  —2.52 

verses £ 16,16(4.5,90, —30) =  —2.95 depending on the distance. We observed such 

transitions o f the preferred orientation peaks in different distance bins for many other 

pairs o f blocks. Figure 19 D, E, F shows another such example for block 18 o f TRP and 

Block 14 of ASN. Our energy function is both distance- and orientation-dependent, and 

can distinguish the level o f preferences for the orientations at different distances.

2.2.3 Performance in Five Decoy Sets

We downloaded five decoy sets: DecoysRus 206, MOULDER 207, hg structal, 

ig structal ( http://dd.compbio.W ashington.edu/3 and ITASSER

( http://zhanglab.ccm b.m ed.um ich.edu/decovs/). Each decoy set consists of a number o f proteins. 

For each protein, a number of decoys and the true structure were provided in the set. The

http://dd.compbio.Washington.edu/3
http://zhanglab.ccmb.med.umich.edu/decovs/
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decoys were ranked based on the energy. Four energy functions DOKB, Multiwell 18°, 

OPUS-PSP 182, and DFIRE-2.0 l76, were compared. OPUS-PSP and DFIRE-2.0 were 

downloaded from their websites respectively. The Multiwell function was previously 

developed in our group l80.

An energy function’s capability in recognizing native conformations was 

evaluated using three criteria:

1) The number of the native conformations that are ranked as the top 1 on the list

(Table 3 column 2)

2) The mean rank o f the native conformations in a decoy set (Table 3 column 3)

3) The number of proteins for which the native conformation is ranked closer to the

top when the energy function is compared with DOKB (Table 4).

As an example, both DOKB and OPUS-PSP were able to rank the native structure 

as the top 1 by the potential energy for 31 of 34 proteins in DecoysRus (Table 3). Both 

functions failed to rank the native structure as the 1st for three proteins. However, the 

mean rank o f the native structure among the 34 proteins is 26.3 for DOKB and 37 for 

OPUS-PSP. Table 10 lists the detailed ranking information for DecoysRus. DOKB ranks 

70th for lfc2 in fisa, which is much lower than 312th from OPUS-PSP. In lmds, the ranks 

of 1 bba and 1 fc2 o f DOKB are also slightly lower than the corresponding results from 

OPUS-PSP. The mean rank in Table 3 reflects the ranks o f the native conformations 

when they are not ranked as the top 1. DOKB ranked the native conformations closer to 

the top than OPUS-PSP for 3 proteins in the DecoyRus set (Table 4, row 2, column 2). It 

appears that DOKB performs slightly better than OPUS-PSP for two decoy sets 

(hg structal, and I-TASSER), the same for two sets (DecoysRus, and MOULDER), and
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significantly better in igstructal set, in terms of ranking the natives as the top 1 (Table

3). When criterion (2) and (3) are used, DOKB outperforms OPUS-PSP in all the five 

decoy sets (Table 3 column 3, Table 4 column 2). Both DOKB and OPUS-PSP use 

blocks to represent side chains, and both are orientation dependent l82. The results in the 

five decoy sets suggest that DOKB is more sensitive distinguishing the fine packing 

details than OPUS-PSP. It is possible that having both distance and orientation 

dependency contributed to the improved sensitivity even when less number o f blocks 

were included in the calculation of the energy.

Both DOKB and DFIRE-2.0 ranked the same number of native conformations as 

the top 1 in three of the five decoy sets (Table 3). DOKB performed better in the other 

two decoy sets, particularly in the ig structal set, in which DFIRE-2.0 failed to rank any 

native conformations as the top 1. When all the three criteria are considered (Table 3, 

Table 3 column 3), DOKB ranks the native conformations slightly better than DFIRE-2.0 

in four of the five decoy sets, and significantly better in the igstructal set. DFIRE-2.0 is 

an all-atom potential and DOKB is a coarse-grained potential, in which each amino acid 

is represented as a point except for TYR and ILE. The test using the five decoys suggests 

that it is possible for a coarse-grained potential to be comparable or even to outperform 

an all-atom potential in terms o f recognizing native conformations. The Multiwell 

potential function is a pair-specific, distance-dependent function. A side chain is 

represented by the geometrical center o f the side chain atoms in Multi well l8°. The 

comparison between DOKB and Multiwell shows that DOKB has an overall better 

performance of recognizing native structures, particularly in DecoysRus and I-TASSER 

decoy sets. This is not surprising since DOKB is both distance and orientation dependent
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and appears to distinguish fine conformation details. However, Multiwell performs the 

best among the four functions in hg structal decoy set. It is possible that the distance- 

only energy functions may perform just as well or even better in some cases, since 

distance is the most important character to represent a pair o f blocks or a pair o f residues.

2.2.4 Perform ance in CASP8 Decoys

DOKB was tested using a dataset containing thirty CASP8 targets. The targets 

were downloaded from

http://wYvw.predictioncenter.om/dovvnload area/CASP8/predictions trimmed to dom ains/. Only those 

target proteins whose majority decoys have sequence length similar to that of the native 

structure were included in the dataset for convenience of testing. CASP8 30 dataset 

contains all the decoys o f the 30 targets, and CASP8_30_r contains those decoys with 

less than 10A backbone RMSD from the native. Seven energy functions were evaluated 

using the CASP8 targets: DOKB, OPUS-PSP 182, DFIRE-2.0 l76, Multiwell l8°, Four- 

body 187, General-four-body 208 and Short-range 179. The Four-body, General-four-body 

and Short-range potentials are available at http://aor.bb.iastate.edu/potential/. The energy 

functions were primarily evaluated on two metrics. One is the capability to recognize the 

native conformation among the decoys. The other is the backbone RMSD of the top- 

ranked conformation sorted by the energy.

Table 5 summarizes the results of the seven energy functions using thirty CASP8 

targets. DFIRE-2.0, DOKB, and Multi well appear to perform the best and have 

comparable capability o f recognizing the native structures. They were able to rank the 

native conformation as the top 1 for 22, 21, and 22 proteins with a mean rank o f 9.4, 9.13, 

and 10.3 respectively. OPUS-PSP recognized 19 natives, slightly less than the previous

http://wYvw.predictioncenter.om/dovvnload
http://aor.bb.iastate.edu/potential/
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three methods. However, OPUS-PSP failed to rank the native among the top 100 for 8 

proteins, and therefore has a large mean rank value. The test using CASP8 decoys 

suggest that DOKB is more sensitive in distinguishing the native conformation than 

OPUS-PSP. Since CASP_30_r contains those decoys with less than 10A RMSD from the 

native, and our results suggest that DOKB is fairly sensitive in recognizing the native 

among the conformations that are not quite wrong. When those decoys with large RMSD 

from the native are incorporated in the test, all the four functions perform slightly worse, 

except DFIRE-2.0 (Table 6). This suggests that DFIRE-2.0 is more robust in handling 

very wrong conformations and those near native conformations.

In addition to the capability of recognizing the native conformations, we 

evaluated the capability to distinguish near-native conformations using the backbone 

RMSD of the top-ranked conformation when the native is not included in the decoy set. 

DFIRE-2.0 appears to have overall the smallest RMSD (4.0A), followed by the Four- 

body potential (4.19A), DOKB (4.22A) and OPUS-PSP (4.23A) (Table 4). Short-range 

potential appears to perform worse than Four-body and General-four-body, similarly 

reported in a previous paper 1%, in spite of the difference in the testing data sets.

Although not tested in this paper, the optimized Four-body potential has been shown to 

perform better than Four-body or General-Four-body functions l%. It combines the three 

functions (Four-body, General-four-body, and Short-range) and optimizes the 

combination. Table 9 summarizes the average RMSD o f the top-ranked decoy. RMSD of 

DOKB is only slightly higher than DEFIRE-2.0 and 4B G POT and lower than other four 

functions.
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Table 3. The performance of four potentials on five decoy 
sets2
E nergy F unction T op  l* /T ota l N ob M ean'

D ecoysR us

DOKB 31/34 26.3

M ultiwell 17/34 32.6

O PU S-PSP 31/34 37

DF1RE 2 .0 28/34 46.4

M O U L D E R

DOKB 19/20 1.4

M ultiwell 19/20 2.9

O PU S-PSP 19/20 4

DFIRE 2 .0 19/20 6.6

hg_structa l

DOKB 19/29 4.5

M ultiwell 24 /29 2.4

O PU S-PSP 18/29 6.8

DFIRE 2.0 19/29 7.2

ig structal

DOKB 15/6 l d-3 5 /6 1e 2 1 .2 f-6.3»

M ultiwell 22/61 8.9

O PUS-PSP 20/61 15.7

DFIRE 2 .0 0/61 47.5

IT A S S E R

DOKB 53/56 12.6

M ultiwell 16/56 94 .4

O PU S-PSP 45/56 30.6

DFIRE 2 .0 53/56 2.2

3 The number o f  native structures that were ranked 15t by the energy. 
b The total number o f  proteins in the decoy set. 
cThe average rank o f  the native structures in the decoys set. 
d The number o f  the native structures that were ranked 151 without 
e The number o f  the native structures that were ranked 1st with Ecimier- 
f The average rank o f  the native structures without Edmier. 
s The average rank o f  the native structures with t xlmlL'r.
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Table 4. The number of proteins with 
better/same/worse rank for the native 
conformations2
Decoys DOKB vs OPUS-PSP DOKB vs DFIRE 2.0
Decoy Rus 3a/31 b/0° 6/28/0
MOULDER 1/19/0 1/19/0
hg_structal 9/20/0 15/12/2
ig structal 34/17/10 59/0/2
I-TASSER 10/45/1 2/52/2
CASP8 10/16/4 5/18/7
a The number o f  proteins for which D OKB ranks the native closer 
to the top than the other potential.
b The number o f  proteins for which the native was ranked the sam e 
between D OKB and the other potential.
c The number o f  proteins for w hich D O K B ranks the native farther 
from the top than the other potential.______________________________
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Table 5. The pe rfo rm ance  o f seven  p o ten tia ls  fo r CASP8_30_r decoys
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SD

10388 164 213 42 91 73 2 5.29 125 3.44 l 2.9 l 2.9

T0389 134 376 48 5 94 1 3.47 357 3.47 l 3.15 l 3.53

T0392 82 336 275 287 25 93 131 7 1.65 7 1.58 l 1.57

T0395 235 16 1 2 6 1 8.25 1 8.25 1 8.25 1 8.25

T0396 102 374 241 37 85 1 1.92 1 2.45 2.41 1 1.72
T0397 82 9 1 2 1 1 9.72 1 9.72 1 11.9 1 9.72

T0401 127 361 70 17 1 1 4.4 1 4.28 1 4.29 1 4.64

T0406 147 279 52 110 7 1 7.45 273 3.06 1 3.06 1 3.51
T0407 231 210 2 3 58 1 4.41 185 4.26 1 4.26 5.7

T0411 118 393 159 58 3 1 6.21 1 3.2 1 4.11 1 3.7

T0412 165 327 1 244 172 1 3.31 1 3.35 1 3.29 1 5.69

T0414 127 82 22 30 28 1 9.8 1 9.8 1 9.8 1 9.8

T0415 107 289 136 36 14 1 2.81 1 2.78 2.61 1 2.61

T0421 221 98 16 26 4 1 4.51 1 8.86 1 4.51 4.51
T0425 179 336 48 249 219 3.72 1 3.24 1 3.15 1 3.49

T0426 257 295 85 163 116 1 0.55 255 0.8 0.94 18 0.9
T0427 218 362 23 25 4 1 3.72 1 3.07 1 3.07 1 3.37

T0428 229 334 1 163 201 1 0.87 324 1.19 13 1.3 0.87

T0430 138 53 16 15 3 1 7.42 1 9.05 1 9.05 1 6.96

T0432 130 276 78 131 128 11 3.38 258 7.72 1 1.8 1 3.38
T0433 199 256 1 1 42 1 3.83 1 3.65 1 2.05 1 3.89

T0436 405 226 1 2 71 1 8.7 1 6.39 1 6.39 8.7

T0448 207 278 1 2 43 1 5.04 1 3.43 1 4.13 1 4.35
T0449 296 307 1 16 23 1 4.87 1 4.87 1 4.87 1 4.87
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Table 5. C ontinued

Target
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T0451 127 378 42 74 292 7 2.84 1 3.24 1 4.26 1 4.26
T0453 86 325 297 291 143 1 2.16 2 2.07 1 2.07 5 2.38
T04S6 87 324 179 305 112 104 2.69 315 2.76 221 2.76 92 3.05
T0457 194 316 7 97 8 1 5.02 1 4.5 1 4.16 108 5.92
T0458 77 345 165 226 46 59 1.77 21 0.89 5 1.12 13 0.79
T0459 91 295 39 190 166 5 1.52 1 1.5 1 2.62 1 1.44
Avgd 68.3 96.6 72.9 10.3 4.37 71.4 4.23 9.4 4 9.1 4.22

Total' 8/30 1/30 2/30 22/30 19/30 23/30 21/30

a The Four-body potential o f the web server.
b The Four-body general potential of the web server.
c The short-range potential of the web server.
d The average rank of the native structures in the decoys set.
e  The number of the native structures that were ranked 1st by the energy.
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Table 6. The rank of the native conformation of CASP8_30 decoys 2

Target Length
VI
> >
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3
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DF
IR

E 
2.

0

D
O

K
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T0388-D1 164 235 2 126 1 2
T0389-D1 134 440 1 386 1 1
T0392-D1 82 359 96 7 1
T0395-D1 235 366 1 1 1 1

T0396-D1 102 436 1 1 1

T0397-D1 82 419 13 9 1 1

T0401-D1 127 475 3 1 1 1
T0406-D1 147 321 1 296 1 1
T0407-D1 231 320 1 266 1
T04U-D1 118 437 1 1 1 1
T0412-D1 165 357 1 1 1 1
T0414-D1 127 262 1 1 1 1

T0415-D1 107 409 1 1 1
T0421-D1 221 350 1 1 1

T0425-D1 179 413 6 1 1

T0426-D1 257 316 1 255 18
T0427-D1 218 415 1 1 1 1

T0428-D1 229 361 1 331 13
T0430-D1 138 270 1 1 1 1

T0432-D1 130 313 13 278 1 1
T0433-D1 199 282 1 1 1

T0436-DI 405 266 1 1 1 20
T0448-D1 207 292 1 1 1 1

T0449-D1 296 361 1 1 1 1

T0451-D1 127 422 10 1 1 1

T0453-D1 86 347 1 2 1

T0456-D1 87 344 104 319 221 92
T0457-D1 194 362 1 1 1 136
T0458-D1 77 369 61 21 13
T0459-D1 91 321 6 1 1 1

Avg rank* 11.13333 77.13333 9.4 10.7
TotaIb 20/30 17/30 23/30 18/30
d The average rank o f  the native structures in the decoys set.

e The number o f  the native structures that were ranked the 151 by the energy.
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2.2.5 Energy Difference at Highly packed Clusters for Residue Pairs at the Low- 

energy Region

Our energy function is derived using the block pairs from 4,180 protein structures 

regardless o f where the block pairs are located. The energy difference contributed by 

different environments can be included, in principle, using higher order terms 134 209 21 °- 

2 ii,2|2 however, there are different local environments and it is a challenging problem to 

determine if and how much the local environments affect the energy. For example, some 

o f the block pairs (14,14) o f (ASN,ASN) may reside at the highly packed region, while 

others are located in the loosely packed region. Some o f the pairs are at the regions in 

which the center residue is at a stable low energy environment, whereas others are in a 

less stable environment. This is possible because not all pairs are at a comfortable 

environment, although the protein is overall at a stable low energy environment. Since 

the highly packed clusters of a protein play significant roles in stabilizing the structure, it 

is important to represent the energy precisely at such clusters.

We investigated the distance energy for residue pairs at different environments. In 

particular, we collected the block pairs from the highly packed regions, the low-energy 

regions, the highly packed and low-energy regions, and all pairs regardless o f the 

environments.

Paii(pi,n) (Figure 20 A) represents the probability for residue pair (m, n) to be 

in the low energy region regardless of where the pair is located. It is not surprising that 

(CYS,CYS) pair has the highest probability to be in a low-energy region, since many 

(CYS.CYS) form disulfide bond. Figure 20 A suggests that the probability for 

(ASP,LEU) to be in a low-energy region regardless o f highly packed or loosely packed
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environment is 0.09. Pciuster(jn>ri) (Figure 20 B) represents the probability for(m, n) of 

a low-energy region to appear at the highly packed cluster. For example, the probability 

for (ASP,LEU) of a low-energy cluster when ASP has at least 15 neighbors is 0.045 

(Figure 20 B), slightly less than that of PaU(m ,n). This suggests that it is more likely for 

(ASP,LEU) to be at the loosely packed environment when the energy at ASP is low. On 

the other hand, there is not much difference in the two probabilities for many pairs such 

as (ILE,1LE), (ARG,GLU). The two plots (Figure 20 A and 20 B) have similar colors for 

most of the pairs except some of those pairs with small polar or charged residues as the 

center, such as (ASP,LEU), (ASP,LYS), (ASN,GLN), (ASN,LYS) and (GLU,PHE). We 

derived F o s te r  (Figure 20 C) to represent the ratio between the two plots and used it to 

adjust the differences between a pair in a highly packed cluster or a loosely packed 

environment. Note that the energy function in (1) assigns the same energy for pair (m ,n), 

as long as they have the same relative distance and orientation, regardless of the 

environment of m. However, Figure 20 suggests that it is less likely for (ASP,LEU) to 

have low-energy if ASP is in a highly packed cluster, even if ASP and LEU have the 

same relative geometry (as they do in the loosely packed environment).

2.2.6 Improved Ranking of the Native Structures for ig-structal with the Cluster 

Energy Term

DOKB performs well for four of the five datasets tested, except the ig-structal set 

when the cluster energy term was not used. This is a dataset o f immunoglobulins, each of 

which contains a high percentage o f p-sheets. We noticed that the proteins in this dataset 

were more densely packed than the other four data sets. On average, about 28% o f the 

overall residues in the native proteins were highly packed in the ig-structal set, but only
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11.2% were highly packed for DecoysRus set. Since the highly packed regions have the 

most constraints in packing the residues, it is likely to expect differences between the 

native and the decoy in the highly packed regions that are challenging to fold. We 

explored the use of the cluster energy term to adjust the slight environmental contribution 

at the highly packed clusters, as in formula (12). DOKB recognized the native 

conformation as the top 1 for 35 of the 61 proteins in the ig-structal set, a significant 

improvement from 15 when no cluster energy term is introduced. The mean rank of the 

native conformation also improved from 21.2, as in Table 1 to 5.8. Each protein decoy set 

in the ig-structal set contains a native structure and 60 high similar decoys. The 

backbones of these decoys are slightly different with the native structure, whereas the 

side-chains locate differently. Figure 22. shows the native structure of lacy (red) and one 

decoy generated according to lbaf (blue). As marked with a rectangle, the side-chains of 

LYS 158 on two structures are pointing to the opposite directions, although their 

backbone are very close in space.

Table 7 shows the details of the top 10 decoys of ldbb, based on the energy. It 

appears that both the native conformation (row 1 o f Table 4) and the other decoys contain 

over 20% of highly packed clusters (column 2 and 3 of Table 7). In particular, there is a 

big difference in the number o f highly packed clusters between the native (47 clusters) 

and other decoys (with 58-73 clusters). This might be reasonable since the native 

conformation is likely to be optimized to reduce the number o f  unnecessary clusters. As a 

result, there might be fewer highly packed clusters in the native than in the decoys. 

Without using the cluster term, native conformation is not
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Table 7. Improved recognition of the native conformation among the decoys of 
ldbb in the ig-structal s e t2

P rotein
D ecoy

# C lu ster  C enters  
(#T ota l R esidue 231 )a

P ercentage o f
H ighly
P acked(% )b

R M SD '
E nergy w ith
F  . d c  cluster

E nergy w ith ou t
F  ec cluster

0 47 20.3463 0 -5.407 -7.7

1 65 28.1385 1.64411 -2 .777 -7 .956

2 65 28.1385 2 .17777 -3.517 -7 .544

3 58 25.1082 1.75195 4.37 0.782

4 64 27.7056 1.94817 -3.394 -7 .544
5 66 28.5714 1.89583 -3.082 -7.821

6 65 28.1385 2 .40169 -3.761 -8 .073

7 63 27.2727 2 .58499 -3.085 -7 .788

8 73 31.6017 1.9614 -1.941 -8 .302

9 72 31.1688 2.13748 -1 .294 -7.663

10 60 25.974 1.9794 -4.013 -8 .069
aThe number o f  cluster centers with more than 15 neighbors. 

b The percentage o f  highly packed residues o f  the total number o f  residues. 

cThe R M SD  betw een the decoy and the native for all atom s except hydrogen atoms. 

dThe Energy including Edist, Eort and Ecluster.

'T h e  Energy including Edist and Eort.

distinguishable (column 6 Table 7) as top 1. However, the cluster energy term was able to 

adjust the overall energy in such a way that the native conformation is clearly 

distinguishable (column 5 Table 7, Figure 17 A). There might be two reasons for the 

effectiveness o f the cluster energy term in the ig-structal set. Firstly, the cluster energy 

matrix (Figure 16 C) might be effective to down-weight the less likely pairs in the highly 

packed clusters. Secondly, the native conformation is more likely to be optimized so that 

unfavorable clusters are minimized. The big difference in the number o f highly packed 

clusters between the native and the decoy might be a major reason for the improved
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ranking. Table 7 shows the rank o f the native conformation for each protein in the ig- 

structal. Apparently, the rank of the native structures improved for 41 o f the 61 proteins 

(Table 8), and the native was ranked the 1st either using or not using the cluster term for 9 

other proteins. For example, the native was ranked the 29th for Ihkl using energy formula 

(6), but was ranked 1st using formula (12) that includes the cluster energy term.

RMSD_all_atoms (A) RMSD_all_atoms (A)

Figure 21. The plot o f the energy for all decoys of ld b b  (A) and lnsn (B) 2.

Black empty circle: the energy of a decoy when the cluster energy term is used; 

red empty circle: the energy of a decoy when no cluster energy is involved; the 

energy of the native structure is highlighted with a circle. Snapshots on the right 

comer represent one clustered part o f the native structure and one of the decoys for 

1 dbb (A) and 1 nsn (B) respectively.
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2.3 CONCLUSIONS

The joint use o f  distance and orientation has proven to be an effective way to 

represent the geometrical relationships in many problems. We have developed a potential 

function that is both distance- and orientation-dependent, which is based on the coarse

grained model o f key blocks. Our results illustrate that both distance and orientation are 

necessary to represent the fine details in geometrical relationships between the side 

chains in order to recognize the native conformations. Having only the distance or only 

the orientation representation may not be accurate enough.

Although both DOKB and OPUS-PSP use the block models, DOKB introduced 

the distance dependency and the cluster energy term to distinguish the highly packed 

environment. DOKB appears to be more sensitive in recognizing the native 

conformations than OPUS-PSP in all the six decoy sets, one o f them involving CASP8 

data. DOKB also shows comparable with DFIRE-2.0, an all-atom energy function in 

recognizing the native structures.

The local environment has been known to influence the pairwise energy, and 

there are various local environments. Highly packed clusters play important roles in 

stabilizing the structure. The densely packed nature o f  the highly packed clusters poses 

potential challenges in side chain packing. Our investigation into the highly packed 

clusters at the residue level suggests that certain residue pairs in a low-energy cluster 

have a lower probability to appear in the highly packed clusters than in the entire protein. 

We translated this finding into a cluster energy term and showed that it improves the 

native recognition in the ig structal testing set.
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Figure 22. The native structure of lacy (red) and a decoy (blue) in decoy set ig- 

structal.
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Table 8. The rank of the native conformation with/without E ciuster energy for 
ig-Stmctal decoys 2

Protein3
Rank
With/Without
F  bcluster

Protein
Rank
With/Without
E cluster

Protein
Rank
With/Without
^c lu te r

lacy 8/1 lhil 1/1 lngq 12/2

lb a f '/2 lhkl 1/29 1 nmb 3/23

lbbd 1/5 lia i 1/35 1 nsn 1/57

lbbj 2/55 lib g 1/4 lop g 9/45

ldbb 1/44 lig c 12/42 'P ig 2/16

ldfb 7/20 l ig f 1/16 lrm f 1/54

Id v f */2 lig i 6 /30 Itet 1/7

leap 1/1 ligm 21/54 lucb 1/6

Ifai 2/17 lik f 1/1 1 vfa 1/1

lfb i 3/53 lind 5/3 lv g e 1/1

lfg v 1/1 ljel 1/5 lyuh 38/56

1 fig 6/58 Ijhl 1/25 2cgr 1/15

1 fir 15/48 Ikem 1/2 2fb4 2/1

1 for 1/53 Imam 2/8 2fbj 6/3

lfpt 1/17 lm cp 61/61 2gfb 1/1

lfrg 6/1 lm fa 1/1 3hfl 2/35

lfVc '/4 lm lb 1/40 3hfm 61/61

lfVd 1/3 Imrd 3/51 6 fab 14

Igaf 1/1 lnbv 12/54 7fab 5/1

Igg' 2/48 Incb 1/11 8 fab 3/1

1 gig 3/1

aThe protein name in ig  structal decoy set. 

b The rank o f  native structure in the decoys with/without Ecluster.
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Table 9. The average RMSD of the top-ranked conformations for 
CASP8 decoys 2

CASP8_30_r Decoys CASP8 Decoysb

H

Potential P-
O
a .

H
O
a .
U

M
ul

ti-
w

el
l a .

CB
a .i
EB
3

o
N
b d
at CO

* O
a .

M
H
o
a .
U

O
a .
H
a .©

CO CO at a . Urn O 03 03 at 30
V) O a Q -r tz> ■>»

Average
RMSD* 4.48 4.19 5.84 4.37 4.23 4.0 4.22 4.6 4.7 6.9 3.7

a The average RM SD  o f  the top ranked decoy. 
b The decoy set in [25]. 
c The four-body potential o f  the web server. 
d The general-four-body potential o f  the w eb server. 
e The short-range potential o f  the w eb server. 
f The four-body potential results in [25].
B The results o f  general-four-body potential in [25]. 
h The results o f  the short-range potential in [25].
' The four-body optim ized potential in [25].________



Table 10. The rank of the native conformation in DecoysRus s e t2

Decoys Multi well OPUS-PSP DFIRE 2.0 4BOPTPOT* DOKB
4state reduced
lc t f 1 1 1 2 1
lr69 1 1 1 2 1
lsn3 2 1 1 1 1
2cro 1 1 1 1 1
3icb 2 1 1 1
4pti 2 1 1 1 1
4rxn 2 1 1 1 1
f isa
lfc2 180 312 102 496 70
lhdd-C 12 1 1 3 1
2cro 1 1 62 1
4icb 1 1 1 1 1
fisa  casp3
1 bg8-A  
IblO

1
1

1
1

1
1

1
3

1
1

leh2 1 - 1
Ijwe I 1 1 1 1
smd3 1 1 1 - 1
lattice ssfit
lbeo 1 1 1 1 1
lc t f 1 1 1 1 1
Idkt-A 1 1 1 1 1
lfca 37 1 1 1 1
Ink) 1 1 1 1 1
Ipgb 1 1 1 1 1
ltrl-A 1 1 1 1 1
4icb 1 1 1 1 1
Imds
IbOn-B 16 1 441 441 1
Ibba 497 501 501 470 437
lc t f 1 1 1 501 1
ldtk 44 1 1 70 1
lfc2 395 409 501 99 357
ligd 1 1 1 3 1
1 shf-A 20 1 1 1 1
2cro 2 1 1 5 1
2ovo 2 1 1 119 1
4pti 24 1 1 157 1
Avg_rankb 32.6 37 46.4 76.6 26.3
Total0 17 31 28 15 31

a The four-body optim al potential result from [25].

b The average rank o f  the native conformation in the decoy set. 

c The number o f  the native conform ations that were ranked the 1st by the energy.



78

CHAPTER 3 

PROTEIN TOP-K TOPOLOGY PROBLEM

Cryo-electron microscopy (cryo-EM) is an important technique used to derive the 

three-dimensional structure o f large protein complexes 2I3; 214 215;2162'7. Using the 

current advances o f the cryo-EM technique, it is possible to produce volumetric images, 

called density maps, of a protein in the high-resolution range, such as 3-5-A resolution 

i°5; 106 t ^ j s  reso|ution, the secondary structure is mostly distinguishable, and backbone 

tracing becomes possible 218. Due to various experimental difficulties, many proteins 

have be resolved to the medium-resolution range (5-10 A) 110, comprising about 22% o f 

the density maps in EMDB. A number o f computational methods have been developed to 

detect a-helices and P-sheets for these medium-resolution density maps 97- l36; l52, l54:2l9; 

220; 22i sec0ndary structure elements identified by the detection tools in the density 

map (SSE-Ds) refer to the helix sticks and p-sticks detected from the three-dimensional 

image. Each detected helix is represented by the trace of the central axis of the helix; 

each detected P-sheet is represented by a curved surface that contains several p-strands. 

Each detected P-strand is also represented by the trace o f the central axis of the p-strand. 

Although P-strands are often invisible in the medium-resolution image, recent studies 

have shown significant potential in p-strand detection. In our study of the topology search 

algorithm, we assumed that some of the p-strands in the P-sheet would be detectable. 

However, the various X-ray crystallographic modeling building tools, such as O 222 and 

Coot 223, are unable to directly use these SSE-D anchor points due to the lack of the 

connection relationship between SSE-Ds. Our research focused on identifying these
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connections between SSE-Ds.

N-T»miA*l

Figure 23. Helix sticks and the topologies *. (A) The density map (gray) was 

simulated to 10-A resolution, using protein structure 1FLP (PDB ID) and EMAN 

software 6; 8. The seven helix sticks were detected from the density map, using 

SSETracer 9 and viewed by Chimera l0. (B) The helix segments in the protein 

sequence are marked as Hx to H7. (C) The helix sticks (red) were superimposed 

on the skeleton (green), generated using Gorgon 1 ’’l2. (D) The correct topology of 

the SSE-Ds (sticks). (E) A wrong topology.

The 1-d protein sequence is another source used to extract the secondary 

structures. The secondary structure elements in the sequence (SSE-Ss) refer to the a-
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helices and (3-strands in the 1-d protein sequence. A number of programs are available to 

predict SSE-Ss, including SSPro 224, JPred 22S, PsiPred 226 and Porter ,6°. These programs 

assign an SSE-S (a-helix, p-strand, loop) to each amino acid in the sequence. Due to 

prediction errors, a consensus alignment from multiple predictions can obtain better 

assignments than the results from a single program. The predictions from Porter can have 

over 80% accuracy.

The topology search problem is defined as determining the correspondence 

between the SSE-Ss and the SSE-Ds. Figure 23 demonstrates the topologies for the pure 

a-helix protein 1FLP. In Figure 23 A, 7 helix sticks (Di, D2, D3, D4, D5, D6, D 7) were 

detected from the simulated 10-A resolution density map of the protein 1FLP, using 

SSETracer 9. The real helix segments in the sequence are marked as Hi to H7 from the N- 

terminal to the C-terminal. The true topology is the correct assignment of SSE-Ss to SSE- 

Ds, in other words, the order of the SSE-Ds with respect to the SSE-Ss and the direction 

of each element. For example, the order o f the SSE-Ds in the true topology is (Di, D2, D3, 

D 4, Ds, D6, D 7) [Figure 23 D]. A wrong topology [Figure 23 E] may contain a wrong 

order o f the sticks, such as (Dlt D4, D3, D2, De, Ds, D7), and a wrong direction for 

certain sticks, such as Sx and S3 in this case. The optimal match should consider 

factors such as (1) matching the SSE-Ss for a-helices to the SSE-Ds for a-helices and 

matching the SSE-Ss for P-strands to the SSE-Ds for p-strands, (2) matching the long 

SSE-Ds in the density map to the long SSE-Ss in the protein sequence, and (3) 

matching two SSE-Ss connected by a short loop in the protein sequence to two close 

SSE-Ds in the density map.



The goal o f designing an effective topology search algorithm is to reduce the 

search space. The naive de novo protein modeling approach builds the protein models 

for all topologies, then chooses the native model by the geometrical and physical 

constraints. However, it is an impossible task due to the large search space. For 

example, in Figure 23, the topology determination for the protein 1 FLP is to assign 7 

SSE-Ss to 7 SSE-Ds. Based on the fact that there are 7! different orders for the 

assignment and two directions to assign for each helix, the total topology number is 

7!27 = 645120. Building the models for so many topologies is time-consuming and 

may take years for the larger proteins. Since most o f the topologies for a specific 

protein are invalid due to the geometrical constraints, it is possible to obtain a subset 

o f all topologies with an effective search algorithm using basic geometrical 

constraints, in which the true topology is included.

Three approaches have been attempted to derive the topology of the SSEs. The 

naive approach is to enumerate all possible topologies and to evaluate them one by 

one 161 -227. Due to the huge search space, this approach is limited to the proteins 

fewer than 9 SSEs. Another approach is to use the Monte Carlo simulation to sample 

the search space 69-132. Although this approach can work with a large search space, 

the stochastic nature of the Monte Carlo approach may miss the native topology. The 

third approach is to translate the topology problem into a graph problem by exploiting 

the constraints from a pair o f sticks. This approach is performed within Gorgon 11, in 

which the SSE correspondence results are shown as a ranked list from best to worst. It 

produces two graphs, one representing the connectivity among the SSE-Ds in the 

density map, and the other representing the linear relationship o f the SSE-Ss 228 229.
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The topology search problem is then translated into an inexact graph-matching 

problem. The A* search was used in matching the two graphs. The complexity o f the 

A* search depends on the heuristics used. However, this approach requires that the 

true link between the SSE-Ds be detected correctly. Due to the quality o f the skeleton 

[green in Figure 23 C] generated by Gorgon, the true link may be missed. It is also 

unclear if the A* search is effective for large proteins with such a complex skeleton.

V V Start

c  I I °
(a' d (A, 2) (A, 3) (A, 4)

1 I (B. 1) (EC 2) <B,3) (B, 4)

3 t H 4
<C,1) (C. 2) <C,3) (C, 4)

/ \ (0, 1) (0 , 2) (0 .3 ) (0‘ 4)
/ \

♦ ♦
End

1 I I 2

/ \ n
i i

Figure 24. Application of interpretation tree in finding a match of model 

features to image features. (A) The model features o f an object. (B) The 

features in the image. (C) The interpretation tree graph for the problem. (D) The 

match based on the best path in the graph.
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Al Nasr et al. proposed a dynamic algorithm to search the top-k topologies for 

the pure a-helix proteins l64. This algorithm borrowed the idea from the interpretation 

tree 230 to convert the topology search problem into a single graph. A common 

application of the interpretation tree is to identify an object from an image by 

mapping the model features [Figure 24 A] of the object to the image features [Figure 

24 B], The interpretation tree converts the matching problem into a graph [Figure 24 

C]. There are two types o f constraints. One is the unary constraint, which measures 

the matching between a model feature (A, B, C, or D) and an image feature (1, 2, 3, or 

4). In the graph [Figure 24 C], the unary constraint represents the similarity between 

the model feature and the image feature for a node. For instance, A fits 1 exactly; any 

path passing through node (A, 1) will get an extra weight. The other type is the binary 

constraint, which represents the relationship between two nodes in the graph. In 

Figure 24 A, both A and B are on top. In Figure 24 B, both 1 and 2 are on top. The 

weight between node (A, 1) and (B, 2) is high. The best mapping has the maximum 

path in the graph from the start node to the end node [Figure 24 C]. Several 

algorithms are available to search the maximum path o f the graph. The best paths [(A, 

1), (B, 2), (C, 3), (D, 4)] are marked out in Figure 24 C. Figure 24 D represents the 

best mapping based on the best path. In Al Nasr’s algorithm, the SSE-Ss and the SSE- 

Ds are taken as the model features and the image features in the interpretation tree, 

respectively. Let (Hi, H2, ..., Hm) be SSE-Ss in the protein sequence and (Si, S2 , .... 

Sn) be SSE-Ds in the density map, in which M >  N without losing generality. All 

topologies can be represented with an M*2N graph. In this graph, each node is an 

assignment of SSE-S to SSE-D with the direction d, (Hi, Si, d), in which d is the
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direction o f SSE-D. Since the protein sequence can enter the SSE-D from two sides, 

each SSE-S/SSE-D pair is represented by two nodes. When d is +1, the protein 

sequence enters SSE-D from one side; when d is -1, the protein sequence enters SSE- 

D from the other side. Regarding the unary constraint, for each node, if the lengths o f 

Hj and Si are significantly different, no edge is allowed to enter or exit this node. 

Concerning the binary constraint, for each node pair [(H,, Si, d), (Hj, Sj, d ')], the edge 

weight is equal to the difference between the loop lengths in the sequence and the 

density map, respectively. The loop length in the sequence is the length o f the loop 

between Hi and Hj. The loop length in the density map is the distance between the end 

point o f  Si and the start point o f Sj, which will be replaced with the skeleton trace 

length if a skeleton trace exists between Si and Sj [Figure 23 C]. Figure 25 shows a 

graph in the top-k topologies search algorithm for a pure a-helix protein. Each node 

(Hi, Si, d) represents a valid SSE-S/SSE-D pair by the unary constraint, and each 

edge represents a valid SSE-S/SSE-D pair by the binary constraint. Two special nodes 

are added as the start and end nodes. The edge weights between the nodes and these 

two special nodes are zero. Due to the features o f SSE-Ss and SSE-Ds, there are 

several potential constraints in the graph, as follows: (1) The protein sequence is 

linear; each edge points downward. If M = N, each edge must link consecutive rows.

If M > N, each edge is allowed to link nonconsecutive rows, and the maximum 

allowed gap is M - N. (2) The two nodes linked by an edge must represent two 

different SSE-Ds; each SSE-D is not allowed to be assigned to an SSE-S twice. (3) A 

valid topology starts from the start node and ends at the end node, without passing the 

same SSE-D twice. The red dashed lines in Figure 25 represent an invalid topology



since it passes S2 twice. The green solid lines represent a valid topology [(Hi, Si, -1), 

(H2, S2, -1), (H3, S3, -1)]. The total weight for a topology is the sum o f all edge 

weights in this topology. The best topology has the minimum weight among all the 

topologies. The topology search problem is converted into a shortest-path search 

problem. The algorithm reduces the complexity 0 (N !2 n) to 0 (N 22n). The top-k 

topologies can be generated based on the best one.

Al N asr’s algorithm solves the top-k topologies search problem for the pure a- 

helix proteins. However, this algorithm cannot be applied to the protein containing (3- 

sheets. The challenge in deriving the topology for the P-sheet is that the P-strands in 

the same P-sheet are fairly close, with about -4 .5-A  spacing [Figure 26 A]. The 

topology in Figure 26 B is the most common for the P-sheets o f the known protein 

structures in the Protein Data Bank (PDB), for which the loop connects two adjacent 

nodes. However, with the binary constraints in Al Nasr’s algorithm, the edge weight 

between these two nodes is greater than the weight between the two nodes 

representing two nonadjacent SSE-Ds. In other words, the true topology usually has 

the worst score. For instance, the topology in Figure 26 C has the best score; however, 

it is never observed in Dunbrack’s database 203. To solve this problem, several binary 

constraints 134 for p-strand nodes based on the statistical analysis have been added to 

the algorithm and has displayed the improvement for the proteins containing p-sheets.
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Figure 25. The graph of the pure a-helix proteins in the top-k topologies search 

algorithm. The red dashed lines represent an invalid topology; the green path is the 

true topology.
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Figure 26. A 4-stranded p -sheet'. (A) Density map in p-sheet area; four sticks 

(SSE-Ds) with the different colors represent the four strands in the sheet.

(B) General topology. (C) Rare topology.

The present work focuses on the top-k topologies search algorithm for p- 

sheets. More binary constraints for the P-sheet have been added to the algorithm 

instead of using only the basic length constraint for a-helices. We have translated the 

binary constraints for the p-sheet into the adjusted edge weight, using the probability 

information o f P-sheet topologies. The topologies with low-occurrence probabilities 

have low probabilities to be the native topology and will be screened from the 

candidate topologies. The details o f the algorithm are introduced in the method 

section. Several samples containing both a-helices and p-sheets have been used to 

evaluate the algorithm. The corresponding results are presented in the results section.
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3.1 Method

Build Graph

Update by Skeleton

Update by Beta- 
Sheet Constraints OutputsRead Inputs

Build Tables

Trace topK Topologies

Figure 27. The flow chart of the top-k topology search program.

Figure 27 shows the flow chart o f the top-k topology search program. Besides 

the input and output, the program includes the following five steps: (1) Build the 

graph, and calculate the edge weight between the valid node pairs by using the unary 

and binary constraints. (2) Update the edge weight if there are skeletons between two 

SSE-Ds. (3) Update the edge weight by the connection preference between two P- 

strands. (4) Build the node table that contains the information tracing the topology. 

(5) Trace the top-k topologies.
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3.1.1 Inputs

The input information for the algorithm contains the SSE-Ss, SSE-Ds, and the 

skeleton predicted from the density maps. The SSE-Ss can be predicted from the 

amino acid sequence with about 80% accuracy. For test purposes, we have used the 

real SSE-Ss from the PDB file instead of the predicted SSE-Ss to avoid the 

intervention from the wrong prediction. Figure 28 A displays a sample o f SSE-Ss'

B
H0(19, 24) 

S0(28, 32) 

S1(42, 47) 

S2(50, 54) 

H1(58, 75)

- 6 . 6 8 4 - 9 . 5 1 9 3 3 - 5 . 5 2 2 1 - 2 . 1 3 8 - 1 . 1 3 3 5 .  74 9
- 6 . 7 5 8 - 9 . 9 8 9 6 7 - 3 . 7 5 3 6 7 1 - 0 . 4 6 1 . 1 0 5 3 . 2 1
- 6 . 0 5 6 - 9 . 7 1 3 6 7 - 2  . 4 8 1 6 7 1 2 . 9 6 8 2 .2 3 5 4 . 3 3 2
- 6 . 2 0 8 - 8 . 5 1 8 6 7 - 1 . 0 0 1 3 3 1 4 . 6 6 8 5 . 1 1 4 2 . 5 8 4

8 . 3 9 7 4 . 7 9 8 2 . 1 6 3
- 0 . 7 8 6 1 . 2 0 2 - 9 . 9 7 1 6 7 2

- 1 . 8 9 2 6 7 0 . 8 6 7 - 8 . 5 0 9 3 3 2 8 . 0 0 7 3 . 9 7 8 - 2 . 5 1 6
- 2 . 5 9 0 6 7 1 . 5 5 5 3 3 - 7 . 1 9 4 6 7 2 4 . 4 0 1 3 . 0 1 2 - 1 . 9 0 2
- 4 . 1 2 0 3 3 2 . 3 2 8 6 7 - 6 . 9 0 7 6 7 2 4 . 5 7 4 - 0 . 4 0 6 - 0 . 3 3 7

- 5 . 5 7 9 1 . 8 7 8 6 7 - 6 . 4 2 1 3 3 2 1 .  52 6 - 2 . 4 2 1 0 . 6 5 5
- 6 . 5 8 9 1 . 6 9 6 6 7 - 5 . 0 0 6 6 7 2 1 . 2 2 3 - 4 . 0 3 7 4 . 0 4 8
- 7 . 8 3 7 2  . 1 7 9 3 3 - 3 . 9 2 0 6 7 2 - 0 . 6 2 1 - 7 . 3 3 2 4 . 0 0 4

- 9 . 3 4 1 . 8 5 7 3 3 - 3 . 6 6 9 6 7 2
- 1 0 . 0 7 2 7 0 . 5 6 9 - 2 . 6 8 1 6 7 2 3 . 8 3 4 - 9 . 5 3 8 4 .  552

- 1 0 . 5 9 7 0 . 3 6 0 6 6 7 - 1 . 0 0 5 6 7 2 4 . 7 3 1 - 6 . 2 8 1 2 . 8 2 2
- 1 1 . 9 6 3 0 . 4 6 2 6 6 7 0 . 0 9 5 6 6 6 7 2 5 . 3 1 7 - 5 . 7 4 5 - 0 . 8 9 3

- 1 3 . 0 9 6 3 - 0 . 5 7 3 3 3 3 0 . 5 0 3 2 7 . 1 9 2 - 2  .8 2 8 - 2 . 4 5 6
- 1 2 . 6 2 5 7 - 2  . 7 3 8 6 7 1 . 8 0 3 6 7 2 5 .  4 1 9 - 0 . 9 0 1 - 5 . 1 8 9

- 1 2 . 4 2 2 - 4 . 1 3 S 3 3 3 . 9 4 3 3 3 2
- 1 2 . 8 4 7 7 - 3 . 2 9 5 6 7 5 . 7 5 9 6 7 2

- 1 2  . 8 7 9 - 2 . 0 4 6 7 . 1 7 4 2

Figure 28. The input information of 2KUM for the top-K topology search 

algorithm. (A) The sequence information. (B) The stick points o f a  SSE-Ds. (C) 

The stick points for p SSE-Ds.

input, in which H/S represents the helix/strand followed by an index. The start index 

and the end index o f each SSE-S in the sequence are enclosed in parentheses. The
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SSE-D input for the helices [Figure 28 B] contains the axis sticks o f the helices. Each 

stick consists o f  many points on the axis. The first three columns in the SSE-D input 

for the helices list the coordinates o f the points. The last column is the helix index.

The SSE-D input for the P-strands [Figure 28 C] contains the axis sticks o f the strands 

in the P-sheets. The first three columns present the coordinates o f the strand axis. The 

fourth column lists the strand index in a specific p-sheet. The last column lists the 

index of each p-sheet. Each helix/strand is separated by an empty line. The SSE-D 

input files are from the outputs o f SSETracer 9. The skeleton o f the density map has 

been generated with a skeleton detection tool developed by Al Nasr l39. Although the 

skeletons from this tool have better quality than those from Gorgon, there are still 

many invalid traces. In other words, the skeletons from the intermediate resolution 

density maps cannot be used to trace the backbone directly. We have used the 

skeleton to obtain the more accurate edge weight between nodes.

3.1.2 Build the Graph

Let Ma and Mp be the number o f helices and P-strands in the protein sequence, 

respectively. Let Na and Np be the number o f helix sticks and p-sticks detected from 

the density map, respectively. Suppose that Ma > Na and Mp > Np. The total number

o f possible matches between SSE-Ss and SSE-Ds is Na\ 2Na Npl 2np. Each

possible match defines a possible topology. We have created the weighted directed 

graph GTop =  (V, E, w) to represent the topology problem. Let the sequence segments

o f the secondary structure be (Si, S2 Sm) and M  = Ma+Md. Let the sePDcondary

structure sticks detected from the density map be (Di, D2, D,\) and N  = Na+Np. For

convenience, we let Dt ,D2, — ,DNa be the helix sticks and DNa+1, DNa+2, — ,DNa+Np be
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the P-sticks. Let the set o f columns C be {1, 2, N}. Since a helix segment in the

sequence will only be assigned to a helix stick and not a p-stick, Lhas 2MaNa +

2MpNp regular nodes and two special nodes, START  and END. The indexes for the 

row and column o f the nodes are /' and j ,  respectively. The two ends o f a stick are 

marked by t = +1 to distinguish the two directions o f each assignment. A node (i ,j ,  t) 

represents an assignment o f  SSE-Si to SSE-Dj in t direction. The Gtop graph is defined 

in equation (1). The graph for 2KUM is shown in Figure 30.

Figure 29. The protein 2KUM (colorful band) and the corresponding

skeleton (gray).
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V =  U i . j . i )

1 <  i <  M, t  e  {0 ,1}

/  (1  <  /' <  Afc) /4A/Z) (SS; i s  a  h e l i x ) )  \

\ O R ( ( N a < j <  N ) A N D  ( SSt i s  a p -  s t r a n d ) J  ,

U {START,  END}

E

f , , , . 1 <  i <  M — 1, i <  i ' , s k i p a ( i , i ' )  < M a -  Na, s k i p p (i, f )  <  Mp -  Np,}

U  1 < j * j '  <  N, t, t' e  {0,1} J

U {(5r/ll?r, (t,y , O ) |s k ip „ (0 , i)  < Ma - N a , s k i p p ( 0 ,  i) < M p-A ^ , 1 < /  < N, t 6  {0 ,1 }) (1 3 )

U { ( 0 , 7 , 0 .  E N D ) | s k i p a ( i ,M  +  1 ) <  Ma - N a , sk i p p ( i ,  M  +  l )  <  Mp - N p t  e  { {0 ,1 }}

Use the unary constraints to screen the invalid nodes. For each node, compare 

the lengths of SSE-S and SSE-D. If their length difference is over 60%, this node has 

a high possibility to be invalid and is removed from the graph. For a node, if 

L*LE*0.4 > LS [Figure 31 B] or L*LE < LS*0.4 [Figure 31 C], the node is invalid, in 

which L is the number o f the amino acids of this SSE-S, LS is the length o f SSE-D, 

and LE is the length o f an amino acid in SSE, 1.5 for a-helix and 3.5 for P-strand. 

Figure 32 shows the graph after removing the invalid nodes, using the unary 

constraints.

Use the binary constraints to set up the weights for the edges. An edge from 

node ( i , j , t  ) to ( i' , j \  t ’) represents the assignment o f Sir to Dj, in direction t' right after 

the assignment o f St to Dj in direction t. Since a protein sequence has its direction, all 

the edges in the graph point downward with i' > i. When M =  N, i' = i +  1. When 

M > N,  skipping edges exist. The maximum number o f rows that an edge may skip 

should satisfy two rules, as follows: (1) The number o f skipped helices [referred to as 

skipa (i, t')] is no more than Ma—Na. (2) The number of skipped p-strands [referred to 

as skipp(i , i ' )]  is no more than Mp—Np. Since each stick in the volume map can only 

be assigned to one sequence segment, there is no edge between the nodes in the same
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column; similarly, there is no edge between the nodes in the same row. Special edges 

are drawn from the START  node to each node on the top rows and are similarly drawn 

from each node on the bottom rows to the END node, as long as the skipping edges 

satisfy the above-mentioned two rules. The weight is zero for the special edges and 

nonnegative for others. Depending on the situation of the edge, three types o f edge weights 

have been used, as follows: the oo, the skeleton trace, and the penalized Euclidian distance. 

We have assigned qo as the edge weight to the two consecutive assignments that are 

impossible. An impossible situation arises when the length of the sequence segment is 

different from the length of the stick by 60%. Another impossible situation happens when 

the length o f the loop is too short to make the connection of the two sticks. For example, 

the length o f the loop between Hx and H2 is one amino acid [Figure 23 E]. Given the 

approximately 3.8-A  distance between two consecutive amino acids, the maximum 

distance between the two ends of the two sticks is about 3.8*(1 + 1) =  7.6A . One extra amino 

acid has been added to estimate the length o f half the amino acid at each end of the helix. 

Most o f the edge weights in the graph have been assigned by tracing the skeleton. For any 

possible edge, the weight is calculated as follows: w (( i , j , t ' ) ( i ' , j ' , t ' ) )  = \l(i,i'') — 

d(j,  +  b , in which l ( i , i ')  is 3.8 multiplied by the number o f amino acids between

St and Si,, measured in the protein sequence, and d(j, t , j ' ,  t ')  is the distance estimated 

along the skeleton trace between S( and Sit when they are assigned to Dj at end t  and Dji 

at end t ',  respectively. The skeleton voxels between two SSE-Ds have been used to track 

the traces, using the component labeling cluster. Even if the loop connections between P- 

strands are unclear in the skeleton density map, the skeleton trace is used to optimize the 

edge weight between two P-strands. If there is a continuous path or a gapped path along
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START

a-Helix a-Helix P-Strand P-Strand 
Di D2 D3 D4

a-Helix Si +1 -1

f3-Strand S 2 

P-Strand S 3  

P-Strand S 4  

a-Helix S 6

END

Figure 30. The graph of 2KUM, built with SSE-Ss and SSE-Ds. The solid 

nodes mean valid ones; the gray nodes represent nonexistent ones.

P-Strand
Ds
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A B

s s e s

SSE-D o o o o o o o o

Jl/W'
0 0 O O O  0 0 0  o o o  o

Figure 31. Comparison of the lengths of SSE-S and SSE-D for a node. (A) A

valid SSE-S/SSE-D pair. (B) The length o f SSE-S is too long. (C) The length of 

SSE-D is too long.
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START

P-Strand 
D4

P-Strand S2 

P-Strand S3 

P-Strand S4 

a-Helix S5

a-Helix a-Helix P-Strand
Di D2 D3

a-Helix Si +1 -1

P-Strand

D5

END

Figure 32. The graph o f 2KUM with the unary constraints.
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the skeleton, b is set to zero. Otherwise, d ( J , t , j ' , t ')  is estimated, using the Euclidian 

distance between t and t ' .  In this case, the penalty term is set to b =  50 unless the distance 

between t  and t' is less than 7 A. Since there are often multiple paths along the skeleton 

between two sticks, the path whose length best fit l{i, V) is used for 

estimating d(j, t , j ' ,  t ') .

3.1.3 Update Edge Weight, Using p-sheet Constraints

We have designed the following constraints to be biased toward the popular 

topologies, such as antiparallel strands with short loops.

Short loops and strand spacing. This constraint reflects the fact that two consecutive P- 

strands in the protein sequence are more likely to be neighboring strands in the density 

map. When the loop connecting two p-strands has less than five amino acids, this 

constraint applies. We require that gapseq( i , j ) >  gapstick(k, I), in which gapseq(i,j') =

1i — j\ ,  1 <  i < j  < M, and ga p stick(k, V) = [(D(k , /) +  f)/4 .5J, 1 <  k  < I < Nf j . £ be 

a tolerance parameter, where D(k, I) is the measured shortest Euclidian distance between 

the two P-sticks Dk and Dt. As an example, the two consecutive p-strands are not likely 

to be assigned to strands 1 and 4 [Figure 33 B]. We set a penalty term of 50 * 

igapstick ~  9 aPseq) to the edge weight if two connected nodes have gapseq < gapstick. 

Tw o-stranded antiparalle! sheet. When two consecutive P-segments in the sequence are 

assigned to two p-sticks that are immediate neighbors, we create a bias toward antiparallel 

strands when the loop is not long enough to make a parallel relationship. When the loop is 

shorter than the length o f the second p-stick, we require DEE > DES (Figure 33). A penalty 

term of 150 is charged for the violation.
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Three strands. For most of the popular topologies, three consecutive strands form an 

antiparallel relationship. A penalty is imposed if DES < DEE and m o d (  gapseq, 2) =  0 or 

if Des > Dee and m o d(gapseq,2 ) =  1.

Neighboring strands. This constraint awards the assignment of two consecutive P* 

strands in the sequence toward two neighbors. When the loop between the P-strands is 

less than 5 amino acids, we set a reward of —3.8 * 3.

Long helix matching. If the length between a long helix in the sequence and that of the 

a-stick is less than 15% of the stick, a reward o f -5 is given.

(A) <C)

E

S

Figure 33. Popular topologies and p~sheet constraints 4. (A) A  popular

antiparallel P-sheet topology. (B) A rare topology. (C) The diagonal DEE is 

generally longer than the side o f a rectangular DES The start and end points are 

labeled for each strand in (A and C).
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START

Node Table

Set f Prev I
<<M, 6} 10.8 <S2,D „ +1) i
<0 , 8, 6} 19.9 (S2, D,, +1) 1

S4

END

Figure 34. The graph of 2KUM with some of the edge weights. A true 

topology (shortest path) is shown by the thick red line; a wrong topology is 

shown by the thick blue line. A record table for node (S3, D4, +1) is shown on 

the right side.
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Figure 34 shows the graph for 2KUM, using all constraints. Due to too many 

edge lines between the nodes, we only show some of the edges. The true topology is 

the shortest path in this sample, which is shown by the thick red lines. The edge 

weight (1.1) o f [(Si, Di, +1), (S2 , D3 , +1)] is much less than the edge weight (57.2) o f 

[(Si, Di, +1), (S2 , D3, -1)], which means that entering the same stick from a different 

direction can be distinguished easily.

3.1.4 Generate the Node Table and Search the Shortest Path

A valid topology is a valid path (thick red line in Figure 34) from START  to END 

and visits each column exactly once. The optimal path is one with the minimum cost, 

measured as the sum of the edge weights along the path. A1 Nasr previously gave a 

dynamic programming algorithm to find the constrained shortest path l64. We provide a 

dynamic programming algorithm in Algorithm 1 to find the shortest valid path in a 

general case when M > N.

Algorithm 1 

/* Notations:

❖ C = {1,2,3, = {U:U Q C and  m ax (l, i - (M -  N )) <  \U\ <

m in(i, N )}, 2 <  i < M and M > N > 2 .

❖ U the k th element o f 1 <  k  <

❖ Vy ty  the node at ith row, j th column with t  direction.

* /

i n p u t : G
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o u t p u t :  The cost of the shortest path m in cost

C <-{1,2,3 N}

/ ( * , [ / f )  0 , |I7 ® | =  l , l < t < M - / V  +  l , l < / c <

f ( * ’u k })  «" * l , 2 < i < M , l < Z k <  | t / (i)|

f o r  i <- 2 to M d o

f o r  k  <- 1 to | t / (t)| d o

f o r  each p E U ^ ,  | i / ^ |  >  1 and t  *- 0 to 1 d o

The idea of our method is to keep track of the columns visited along the path at 

each node, as well as the best score of all paths using these columns. A record table 

(Figur 34) is created for each node. Each record contains the set o f columns U', the 

minimum cost/ o f the path to reach the current node, and the previous node; U' 

represents all columns visited for a valid path. The value o f / can be calculated by 

equation (2); the previous node lies before the current node in the shortest path 

passing all columns in U 1. Figure 34 illustrates the dynamic programming process for 

2KUM at the node (S3, D4 , +1). The first record in the table represents the red line path, 

which passes (Di, +1), (D3, +1), and (D4, +1), or {0, 4, 6 represented by the SSE-D index.

V  4 -  l / « \ p

f o r  each q E U'and t '  *- 0 to 1 d o

f { » t ) = mm
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This set represents the 3! path. The minimum cost of this 3! path is saved as the value of 

To track the path with the minimum cost, start from the current node and trace back to 

the previous node in the record. At this previous node, search the record with the set U'/i, 

where i is the SSE-D index o f the current node. Repeat the trace step until the start node 

is reached. All the traced nodes consist of the shortest path from the start node to the node 

(S3, D4, +1).

r 0 v  = <  START >
w (<  START >,  v)  =  0 sk ipa (0 , i )  <  Ma —Na, s k ip p ( 0 , i )  <  Mp—Np ,U — {j}

miUjmu(j},t/e{0, i T ) .  U \  {/'}) +  t ' ) ,  ( i , j ,  t ) ) ]

=  (1 4 )
i £  [2,M ] , sk ip a ( i ’, i )  <  Ma- N a,

sk i pa ( i ' , i ) <  Mp—Np, j  e  U 
 ̂ 0 0  o th er w i se

2.2 and have the cost o f the paths in nondecreasing order. Many algorithms have been 

developed to find the /^-shortest paths without constraints. Yen {Yen, 1971 #217} 

proposed a classical deviation algorithm to find the A^-shortest loopless paths. Due to 

the topology constraints, we cannot directly apply the available A-shortest path 

algorithm. Instead, we combine the concept o f the “generalization o f Yen’s algorithm’’ 

with our dynamic programming method to find the constrained A-shortest paths.

The idea o f finding the next shortest path is that the (fc +  l ) th shortest path is 

not too different from the previous k  shortest paths. It is at least one edge different from 

each o f the previous k  shortest paths. At each cycle, new candidates for the (fc + l ) th 

shortest path are generated in an edge deletion process and deposited in X, a set of the 

candidate paths. The (fc + l ) th shortest path is to be selected as the shortest path from 

X  at iteration k  + 1.
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p 7 c « h p*(Cm2) p'tc-n p ’<C*2) p 2(Cm2) p 'fC -1 )  P>(C*2) p ’( 0 2 )  p ’(C * n  p “(C*2)

[r» \T> itai

ft, j.

Ti T7 Tj T4

(A) (B) (C) (D)

Figure 35. The reverse pseudo tree for the first four shortest paths 4. The

edges to be deleted to generate new candidates for p  are also marked in red 

[(W2(vc3) + edges numbered l , 2, and 3],

The edge deletion process generates new candidates for the next shortest path. 

A candidate for the second shortest path p 2 is generated by deleting one edge of p 1 at 

a time from the topology graph Grop, starting from the last edge e(v^,END).  Initially, 

we set the coinciding node of p 1 as <  END > and delete e iyh .END).  This assumes 

that it is possible for p 2 to be the shortest path from <  START > to the coinciding node 

without using e (vh ,END ) , which is the incoming edge to the coinciding node < 

END > .  Generally, to obtain the (k  +  1 ) ,h shortest path, each new candidate is 

generated by deleting the head edges in HTk i  (v£)  and an edge e(vjLt , v f )  of p k, where 

2 <  i < v k . HTk i ( v k) is the set o f edges whose head node is the coinciding node v k 

of p k in the reverse pseudo tree [Figure 35 C]. The reason for deleting the head



104

edges is to avoid generating a new candidate that is the same as a previous shortest 

path. After all candidate paths have been generated from path p k, the deleted edges are 

restored to the graph.

The k shortest path search algorithm uses our dynamic programming’s 

constrained shortest path algorithm as the starting point. After certain edges are deleted 

from GTop, a naive way to find a candidate path that satisfies the constraints is to scan 

all the nodes v  below the deleted edges to update f ( v ,  {/) that was stored at each node. 

We provide Algorithm 2 for the top-k topologies search.

Algorithm 2: Finding constrained K -shortest paths 

Notation:

❖ p k = < START  =  v k, v k, ..., vjv+1 =  END >: the k th shortest path.

❖ Tk : The reverse pseudo tree o f the k  shortest paths.

❖ X : A set contains candidate paths for the k  shortest paths.

❖ p kj : The path from node v k to node v k in the k th shortest path.

❖ U(pkj ): The subset of columns visited in path p k}.

❖ H?k(yy. The set o f edges in Tk whose head node is v.

i n p u t .  GTop, K.

o u t p u t :  The reverse-pseudo-tree of K  shortest paths, T K.

C ^ {  1 ,2 ,3 ........N )

k  «- 1

p k shor te s t  path  in GT0P //the path with min cost

Tk * - p k
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X -  {Pk}

While (X *  0 and k <  K) do 

X ^ X - { p k}

v k *- the coinciding node o f p k 

Remove edges Hjk ( v k) from GTop 

f o r  each v k G p kc

Remove edge ( v k_lt v k)

W  «- S\U(Px,n )

q «- the shortest path from START  to v k for the set o f columns in U’

IIThe path verifies m i n ( f ( v ' ,  U') + w ( v ' , v k))
v ' e v

q « -  q *  P x ,e n d

X

E n d  f o r

Restore removed edges to GTop 

k *- k  + 1

p k «- shortest path in X  

% 3k-1 +  Pk

End

return T  k
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3.2 Results and Discussion

The topology graph and the dynamic programming algorithm apply in principle to 

both a-proteins and a/p  proteins. In practice, it is more challenging to derive topologies 

for proteins with P-sheets due to the close spacing of about 4.5 A between two P-strands. 

We have applied additional constraints to be biased toward known popular topologies of 

P-sheets. We have used seven simulated density maps and two experimentally derived 

maps in the test. The P-strand locations were visually detected since there was no 

automatic tool to detect p-strands from a p-sheet when the work was performed. To 

evaluate the accuracy of the method, we have used the rank o f the native topology on the 

list sorted by the score.

It appears that the framework of the top-k topology algorithm generally applies to 

the proteins with both a-helices and p-sheets. It was able to rank the native topology among 

the top 25 for seven out of nine proteins when no p-constraints were added for p-sheets 

(column 6 of Table 11). The p-sheet constraints are effective in identifying the native 

topology. For example, the protein extracted from the density map with EMDB ID 1733 

has 5 a-sticks and 12 P-sticks. In this case, SSETracer has detected all five a-helices and 

three P-sheets. The native topology has not been found within the top 100 topologies 

without P-constraints, but it has been ranked 13th out of 7.5e + 15 total possible topologies 

after using the constraints. Although there are 5! 2512! 212 »  7.5e +  15 different 

topologies, those that satisfy the density requirement and the P-sheet constraints can be 

quite limited. The results presented in this paper further support our previous finding 231 

about the amazing properties o f SSE topologies—the native topology is near the top of the 

entire topological space.
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The results show improved accuracy and reduced memory and time in ranking the 

top 25 topologies. Although we have previously proven that the secondary structure 

topology problem is an NP-hard problem, with the computational approaches in this paper, 

we show that it is possible to use a generic desktop to derive the topology for a large protein 

with 5 helices and 20 p-strands. The results represent a major improvement in the ability 

to derive the secondary structure topology automatically for large and complicated density 

maps containing both a-helices and p-sheets.
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Table 11. The rank of the native topology in a-P proteins 4.

IDEMDB

=tt
SC
2*
o'«c/i

%
S?

Q -
c r

X/icr<T>n>
c
or>

%Ho
c.

paf£>3

nn

pa
fO

e-

5030 4/3 4/3 A 3.7e+04 1 i
1733 5/5 12/12 0,P,Q 7.5e+15 -/100 13
!OZ9 5/5 5/4 A 7.7e+05 25 7

2KUM 2/2 3/3 A 3.8e+02 5 1
2KZX 3/3 3/3 A 2.3e+03 10 10
2L6M 2/2 3/3 A 3.8e+02 6 6
1BJ7 5/1 9/9 A 1,9e+09 -/100 4
1ICX 6/3 7/7 A 6.2e+08 2 1
1JL1 4/4 5/5 A 1.5e+06 22 16

a. The number o f a-helices in the protein sequence / the number of a-sticks 
detected from the density map.

b. The number o f P-strands in the protein sequence / the number of p-strands 
visually detected.

c. P-sheet ID.
d. The total number of possible topologies.
e. The rank of the native topology without p-constraints; -/100: the native 

topology not found in top 100 topologies.
f. The rank of the native topology with p-constraints.
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