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ABSTRACT
DE NOVO PROTEIN STRUCTURE MODELING AND ENERGY FUNCTION
DESIGN
Lin Chen

Old Dominion University, 2015
Director: Dr. Jing He

The two major challenges in protein structure prediction problems are (1) the lack
of an accurate energy function and (2) the lack of an efficient search algorithm. A protein
energy function accurately describing the interaction between residues is able to
supervise the optimization of a protein conformation, as well as select native or native-
like structures from numerous possible conformations. An efficient search algorithm
must be able to reduce a conformational space to a reasonable size without missing the
native conformation. My PhD research studies focused on these two directions.

A protein energy function—the distance and orientation dependent energy
function of amino acid key blocks (DOKB), containing a distance term, an orientation
term, and a highly packed term—was proposed to evaluate the stability of proteins. In
this energy function, key blocks of each amino acids were used to represent each residue;
a novel reference state was used to normalize block distributions. The dependent
relationship between the orientation term and the distance term was revealed,
representing the preference of different orientations at different distances between key
blocks. Compared with four widely used energy functions using six general benchmark
decoy sets, the DOKB appeared to perform very well in recognizing native

conformations. Additionally, the highly packed term in the DOKB played its important



role in stabilizing protein structures containing highly packed residues. The cluster
potential adjusted the reference state of highly packed areas and significantly improved
the recognition of the native conformations in the ig_structal data set. The DOKB is not
only an alternative protein energy function for protein structure prediction, but it also
provides a different view of the interaction between residues.

The top-k search algorithm was optimized to be used for proteins containing both
a-helices and B-sheets. Secondary structure elements (SSEs) are visible in cryo-electron
microscopy (cryo-EM) density maps. Combined with the SSEs predicted in a protein
sequence, it is feasible to determine the topologies referring to the order and direction of
the SSEs in the cryo-EM density map with respect to the SSEs in the protein sequence.
Our group member Dr. Al Nasr proposed the top-k search algorithm, searching the top-k
possible topologies for a target protein. It was the most effective algorithm so far.
However, this algorithm only works well for pure a-helix proteins due to the complexity
of the topologies of -sheets. Based on the known protein structures in the Protein Data
Bank (PDB), we noticed that some topologies in B-sheets had a high preference; on the
contrary, some topologies never appeared. The preference of different topologies of -
sheets was introduced into the optimized top-k search algorithm to adjust the edge weight
between nodes. Compared with the previous results, this optimization significantly
improved the performance of the top-k algorithm in the proteins containing both a-

helices and B-sheets.



Copyright, 2015, by Lin Chen, All Rights Reserved.



ACKNOWLEDGMENTS

I would like to express my gratitude to several persons. Without them, | would not
be able to complete this dissertation.

Firstly, I would like to express my deepest appreciation to my advisor, Dr. Jing
He whose patient guidance and endless encouragement helped me in all the time of
research and writing of this dissertation.

I also wish to extend many, many thanks to my committee members, Dr.
DeshRanjan, Dr. Lesley H. Greene, Dr. Mohammad Zubair and Dr. Yaohang Lifor their
valuable time and their precious advice to this dissertation.

I want to thank the Computer Science Department of Old Dominion University
for the financial support.

At last, I would like to give my special thanks to my mother, my wife and my

daughter for their support and encouragement in the past five years.



Vi

TABLE OF CONTENTS

Page

LIST OF TABLES ...ttt ettt s esas srssess e s aasesa s vii

LIST OF FIGURES ...ttt ettt ettt viii
Chapter

1. INTRODUCGTION Lttt et st et sssrssss e seste s aess s e ae e s e 1

2. PROTEIN ENERGY FUNCTION DESIGN..c...oinviiiiiiiiiiiiiicceinrcnncin e 29

20 METHOD ettt s b e s oo s aa st shn s 34

2.2 RESULTS AND DISCUSSION ....ociviiiiiiintiniiniiminecnnnnr et 52

2.3 CONCLUSIONS ...ttt eeeee e et e et s ssassaa e ies s snan s srnes 73

3. PROTEIN TOP-K TOPOLOGY PROBLEM ......ccccciiiiiiiiiiinieineccreentccin e 78

BUUMETHOD ..ttt sab s sae b n 88

3.2 RESULTS AND DISCUSSION ....ooiiiiiiiirciicitneeiccnenntssenae v 106

REFERENCGES ...ttt st s st sbs s sre e 109



Table

10.

11.

vii

LIST OF TABLES
Page
Definition 0f Key BIOCKS....c.ccuieciiiiiiieiinetecteeie st ceeesreessrassiee st s st s ne s eaesaas 37
The percentage of high dense residues in decoy Sets.......cocveverveeneneecrneeccrnenne. 49
The performance of four potentials on five decoy sets......cccccvvviieiiriniiecnnnennnnen. 62

The number of proteins with better/same/worse rank for the native conformations

................................................................................................ 63
The performance of seven potentials for CASP8_30_r decoys....cc.ccceeverueucnnene. 64
The rank of the native conformation of CASP8 30 decoys .....c.ccceeeverevrinvverenncn. 66

Improved recognition of the native conformation among the decoys of 1dbb.....71

The rank of the native conformation for ig_structal decoys....c..cccccevecirnicrrnenne. 75
The average RMSD of the top-ranked conformations for CASP8 decoys.......... 76
The rank of the native conformation in DecoysRus set..........ccocccecenniennennnnncene 77

The rank of the native topology in a-f proteins ... 108



Figure

10.
11.
12.
13.
14.
15.
16.
17.
18.

19.
(18,14)

20.

viii

LIST OF FIGURES

Page
The 20 amino acids that make up proteins.........ccocvvveiiiiiiiiiiiininieeeceennen. 3
Peptide bond formation.......c..ccceriiiiniiiiniininee e 5
Four distinct protein structures for cyclophilin A ... 6
Dihedral angles of the backbone of the proteins.........cccocooviviniiiiiiiiciienne. 7
Parallel strands and anti-parallel strands..........c.cccccooiiniiiinnnee 8
The number of protein structures solved by multiple methods...........ccccoeeeeenne 11
Flow for solving the atomic structure of proteins with X-rays......ccccceeveeenennn. 13
Procedure that builds a 3D electron density map using Cryo-EM........................ 16
Resolution distribution of a density map inthe EMDB.........cccccoiinnnn. 19
The number of released protein sequences and Structures..........ccoeeeeeeiecieieninnians 20
The flow chart for de novo modeling ........ccccooceiiiciiiiiiiininiinniiiiie e 26
The definition of 19 rigid-body blocks in OPUS-PSP.........cccoivinviininin. 35
The distance and orientation representation of a pair of key blocks..................... 37
Web-based energy function ........ccccecccecoveciiiniiiiininnnnieec et 43
The density distributions for all 30 block pairs of ASP-ARG..........c..ccoeiiis 44
The pair correlation functions for all 30 block pairs of ASP-ARG....................... 45
The distance energy functions for all 30 block pairs........cccovvvevvivieinenneiecnnn. 47
Examples of the diStance energy..........cocoviviciiiiniiicniinininineceeeecieeceee 55

The distribution of orientation energy for block pair (16,16) of (PHE,PHE) and
OF (TRPLASN) ..ottt sttt st bt e s snt s b sa s s sas st s et s nens 56

Probability difference for low-energy residue pairs in highly packed clusters ....70



21.  The plot of the energy for all decoys of 1dbb and Insn.........ccevivvuinnninncnncn 72
22. The native structure of lacy and a decoy in decoy set ig-structal ........................ 74
23.  Helix sticks and the topologies .......cccciviviiiiiiniiiiniiiiieciiirccrtce s 79
24. Application of interpretation tree in finding a match of model features to image
FEATUTES ..ttt et e e s a e s e st b e a e b s s s aa e e 82
25.  The graph of the pure a-helix proteins in the top-k topologies search algoritl;;m

et eteeteiaee et ettt et e e st sttt s et e b s b e s et sae s b RS a e b et eResas s sa et sasaaaen 6
26. A 4-stranded B-Sheet..........oooi i 87
27.  The flow chart of the top-k topology search program ..........cccoeivivieninnnirnnen. 88
28.  The input information of 2KUM for the top-K topology search algorithm.......... 89
29. The protein 2KUM and the corresponding skeleton..........cccccevvviviiivnicincenen. 91
30.  The graph of 2KUM, built with SSE-Ss and SSE-Ds........ccccoooviinininnnn. 94
31.  Comparison of the lengths of SSE-S and SSE-D foranode .........ccccooviiininiiss 95
32. The graph of 2KUM with the unary constraints ........coccoecveeneeneenseniennieninecnnnaee 96
33. Popular topologies and B-sheet.........cooccviiiiiiiviiieiinccce e 98
34.  The graph of 2KUM with some of the edge weights..........ccccoocviniinniinnnnn, 99
35. The reverse pseudo tree for the first four shortest paths ......................... .. 103



CHAPTER 1

INTRODUCTION

Proteins are involved in almost all functional processes within living organisms,
including metabolic reaction catalyzing, molecule transportation, DNA replication,
molecule storage, immune protection, etc. '3 '*. Those functions depend on the
interactions among proteins in which the differences are due to the composition of the
proteins in the sequence and their three-dimensional (3D) structures in space '> 16-17:18:19,
For a given protein sequence, the corresponding structure has been determined by a
common principle 2%-2' between the amino acids. Revealing how protein sequences fold
is an essential requirement in understanding classical biological phenomena and in
providing useful information for drug design and other biotechnological applications.

A protein is a polymer consisting of a sequence of amino acids. As shown in
Figure 1, there are 20 types of amino acids. Each amino acid has a chemical formula
H2NCaHRCOOH and a specific side-chain, denoted as R 22, These side-chains cause
each amino acid to have a specific property 3. Based on the charge, the hydrophobicity,
the size or the chemical characteristics of their side-chain R, amino acids are classified as
positive, neutral, negative, hydrophilic, hydrophobic, aliphatic, aromatic, or acidic 2%. The
classification reveals the role that each amino acid plays in protein folding and it provides
a hint for predicting the protein’s structure.
Neighboring amino acids in the sequence combine to generate the protein chain. The

carboxyl group (COOH) in one amino acid reacts with the amine group (NH2) in the next

amino acid in the sequence 2°. One water molecule is dehydrated and a peptide bond



between the two amino acids occurs in this condensation reaction (Figure 2). The two

ends of the polypeptide chain are known as the amino terminus (N-terminus) and the

carboxyl terminus (C-terminus). The monomer that an amino acid loss “OH on one side
and —H on another side is called the residue. It has the following chemical formula:

—HNCaHRCO ~. This dehydration procedure occurs between all amino acid pairs in the

sequence. The backbone of a protein consists of the Ca, the CO group, and the NH group

25:2%_ The arrangement of these backbone atoms represents the topology of the proteins.

The composition of the amino acid residues in the protein sequence decides the
3D structure of a protein. A specific residue sequence will fold into a particular 3D

protein structure. During this procedure, the protein structure has four distinct levels: a

primary structure, a secondary structure, a tertiary structure, and a quaternary structure 2>,

as discussed below.

. Primary structure refers to the linear residue sequence of the protein chain from the
N-terminus to the C-terminus. This is an unbranched chain of residues that can
contain from tens to hundreds of amino acids 27-28. Figure 3A shows a part of the
amino acid chain of the protein cyclophilin A, indexed as 2X2A in the protein data
bank (PDB) *°.

Secondary structure refers to the local energetically favorite segments of the protein

structure. Major types of the secondary structure include: the a-helix 3, the B-sheet

313233 "and the turn/loop * (Figure 3 B). The a-helix and the B-sheet have regular
geometries with specific dihedral angle values ?°, which are due to the hydrogen
bonds among the residues in the peptide backbone. The turns/loops connect these

regular sub-structures to form the tertiary structure.
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Figure 1. The 20 amino acids that make up proteins. The amine group (NH3),
carbon alpha (Ca), and the carboxyl group (COOH) are fully shown without
removing H and OH. The side-chains (R) are highlighted with rectangular-shaped

frame composed of dash lines (GLY has no side chain).



a. a-helix: In this secondary structure, each NH group at residue i connects to the
CO group at residue i+4 along the backbone with the hydrogen bond. This is a right-
handed coiled or spiral conformation where each helix turn has 3.6 residues and
translation along a-helix axis is 1.5 A. The height of the a-helix turn is 5.4 A
(3.6*1.5) ¥3. The backbone dihedral angles (¢, ) for the residues are shown in
Figure 4; these are used to describe the protein conformation and the value of the
angles (¢, ) is within -60° and -45°, respectively { Dickerson, 1969

b. #2713} for the a-helix. Side-chains for each residue are attached to the external
surface of this helical structure. However, the 20 residues have unequal propensities
for forming an a-helix. Alanine, aspartic acid, glutamic acid, isoleucine, leucine, and
methionine all have high helix-forming propensities, whereas glycine and proline
have poor helix-forming propensities 3% 37-38,

c. f-sheet: In this type of secondary structure, two or more different segments along
the primary structure, called S-strands, form a twisted, pleated sheet *'. This
structure is stabilized with at least two or three backbone hydrogen bonds.
Neighboring f-strands can be either parallel or anti-parallel (Figure S). For the
parallel sheet, two strands have the same direction, which is defined as the direction
from the N-terminus to the C-terminus for a protein chain, and which have backbone
dihedral angies (¢, ) of -120° and 115°, respectively. For the anti-parallel sheet,
the two strands have opposite directions and the dihedral angles are -140° and 135°
3!, Both the parallel strand pairs and the anti-parallel strand pairs adopt the hydrogen
bonds between the hydrogen of the amine (NH) group and the oxygen of the

carboxyl (C=0) group. The diversity is that the residue i forms hydrogen bonds to



the residues j-1 and j+1 if two atoms, C}, and Cé , are adjacent Ca in two hydrogen-
bonded fB-strands in the parallel §-sheets; whereas, the residue i forms hydrogen

bonds to residue j °.
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Figure 2. Peptide bond formation. The COOH group in ARG (first amino acid)
reacts with the NHz group in ASP (second amino acid), and one water molecule is
dehydrated. The polypeptide chain is displayed from the N-terminus to the C-terminus

(highlighted as the rectangle-shaped dash lines).
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Figure 3. Four distinct protein structures for cyclophilin A (2X2A). (A) Primary
structure: a linear residue sequence; (B) Tertiary structure: the turns/loops connect the
secondary structure: a-helices (red) and f-sheets (blue); (C) Quaternary structure: a

set of organized tertiary structures.
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d. Turn/loop refers to a structural motif in which the Ca atoms of two residues in the
structural motif are less than 7A 3. In the backbone, the dihedral angles of the turns
are not constant. This is in contrast to the a-helices and the f-sheets.

Based on the separation between the two end residues of the turns in the sequence,
there can be several types of turns: a-turn (i, i+4), B-turn (i, i+3), y-turn (i, i£2), §-
turn (i, i£1), and m-turn (i, i+5) *°.

Tertiary Structure refers to the 3D structure of a single protein chain, as shown in
Figure 3 B. Thus, tertiary structures are the arrangement of different secondary
structures of the same protein chain in 3D space . This structure is stabilized by
intra-protein interactions, such as hydrogen bonds, disulfide bonds, electrostatic
interactions and van der Waals forces *'*4%43, The tertiary structure is likely

determined by the primary structure. Predicting the tertiary structure from the



primary structure is known generally as protein structure prediction *4.

Figure 5. Parallel strands (A) and anti-parallel strands (B).

4. Quaternary Structure refers to the 3D structure of a multi-chain protein. Proteins
with two or more polypeptides are called multimers 2°. These subunits are combined
with non-covalent interactions and disulfide bonds as the tertiary structure. This

level structure is not included in this current study.

Protein structures have been studied for more than fifty years since the first
protein structure was reported by John Kendrew in 1958 #5 46 who was awarded the 1962

Nobel Prize in Chemistry *’. In the 1960s, due to the rapid development of high-



resolution structure determination techniques, molecular biology became a well-known
field. In 1962, Aaron Klug developed crystallographic electron microscopy and applied it
to solve nucleic acid-protein complexes *3. He received the 1982 Nobel Prize in
Chemistry for his contribution to protein structure determination. Michael Rossmann
proposed a replacement technique to predict unknown protein structures from existing
structures *°>°, In 1971, the Protein Data Bank (PDB) was established at Brookhaven
National Laboratory to deposit 3D structures of proteins and nucleic acids °'. Initially,
PDB only contained seven structures, but now it has over 100, 000 structures. In 1976,
Robert Langridge developed the first visualization program to visualize the protein
structures, and he established a computer graphics lab at the University of California, San

Francisco >33, In 1978, Kurt Wiithrich introduced Nuclear Magnetic Resonance (NMR) into

the study of protein structure >*; Wiithrich received the 2002 Nobel Prize in Chemistry for
his contribution to studying the structure of biological macromolecules ’. In 1982, Jane
Richardson developed ribbon diagrams to represent protein structure, and this has
become the standard way of visualizing proteins . In 1983, Jacque Dubochet succeeded
in producing biological specimens by freezing them in vitreous ice *®. This technique is
the key to developing the cryoelectron microscopy (Cryo-EM) technique, which can
determine protein structures in an aqueous environment >7_In 2000, the National Institute
of General Medical Sciences (NIGMS) funded the Protein Structure Initiative (PSI) to
support protein structure determination 8. Many automated tools have been developed to
support high-throughput pipelines to solve complex structures, build computational
models to predict 3D structure, and explore the function and potential medical impact of

different protein structures *°. In 1976, Johann Deisenhofer and Robert Huber, who
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received the 1985 Nobel Prize in Chemistry, reported the first structure of membrane
proteins °°. In 1969, Martin Karplus developed a protein prediction program, known as
Chemistry at HARvard Macromolecular Mechanics (CHARMM). He was awarded the
2013 Nobel Prize in Chemistry for “the development of multiscale models for complex
chemical systems™ *’. In recent decades, due to the rapid increase in the gap between the
number of known sequences (45 m) ®' and the number of determined structures (101,000)
3!, highly effective computational structure prediction methods will play a key
complementary role for protein structure determination . According to the principles of
thermodynamic theory %, solved protein structures can provide information that can be
used to develop knowledge-based protein determination techniques %2. More protein
structures determined from X-ray crystallography and nuclear magnetic resonance
(NMR) leads to better templates and more accurate knowledge-based energy function for
computational prediction methods.

The techniques for determing a protein 3D model are roughly classified into two
types: experimental structure determination and protein structure prediction 2. The
former uses experimental methods to collect the structural information for a specific
protein and generate a 3D model from that infromation. The current experimental
techniques contains X-ray crystallography, NMR, and Cryo-EM. The prediction
techniques extract the structural information from the solved structures and build the 3D
models according to the principles obtained from the information. The prediction
techniques can be categorized into template-based modeling and free modeling.
Template-based modeling searches templates related to the target sequence and then

aligns the target sequence to the template structure to generate structures for the target.
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Depending on whether or not there are highly similar sequence templates in the PDB,

template-based modeling is further classified into homology modeling and threading, %*.

9.5%
| X-Ray
89.7% mNMR
- EM
A Hybrid
% Other

Figure 6. The number of protein structures solved by multiple methods °.

Free modeling contains either ‘ab initio’ or *de novo’ modeling, which generates 3D
models without templates. An ab initio prediction, such as a molecular dynamic (MD)
simulation, uses the sequence information and the fundamental physical principles to
search for a structure with minimum global energy - 6:67-68_In addition to sequence
information, de novo introduces Cryo-EM density maps to facilitate identification of the
protein structure . In the current PDB ©, 89.7% of the known structures were determined
by X-ray crystallography, 9.5% were determined by NMR, 0.6% were determined by

Cryo-EM, and the rest of the known structures were generated by either prediction



12

methods or hybrid methods (Figure 6).
Experimental Techniques
1. X-Ray Crystallography

An X-ray is a type of electromagnetic radiation that has a wavelength between
0.01 to 10 nanometers ™. It was classified as an unknown type of radiation (X-ray) after
Wilhelm Roéntgen, who received the 1901 Nobel Prize in Physics, first discovered it in
1895 7', X-ray crystallography is used to determine crystal structures since the
wavelength of an X-ray is similar to the size of atoms 72. A crystal structure is composed
of repeated unit cells along three principal directions that may not be perpendicular 7.
Using X-rays to strike the crystals, atoms through the electrons scatter the X-ray wave
and generate the diffraction pattern of regular spots called reflections, which are two-
dimensional (2D) images "°. William Lawrence Bragg, and his father William Henry
Bragg, proposed Bragg’s law 7* in 1912, which provides the tool to convert those
reflections into a 3D model of the density of electrons within the crystals. They shared
the 1915 Nobel Prize in Physics for their contribution to crystallography *’. This
technique has been widely used to determine the structure of molecules and minerals.

Crystal structure determination has been studied and applied to inorganic crystals
and organic crystals. The first X-ray structure of a protein, myoglobin, was reported by
John Kendrew and Max Perutz in 1958 *6, who shared the Nobel Prize in Chemistry in
1962. To date, the PDB contains over 80,000 protein structures that are determined using

this X-ray technique ©.
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Atomic
Pattern Density Map Model

CTYS“' Diffraction

Figure 7. Flow for solving the atomic structure of proteins with X-rays.

Four basic steps are involved in resolving the molecule structure with X-ray
diffraction 7*. The first step is to generate a single-crystal of the molecules. This step is
the most difficult step in this technique because it is almost impossible to predict and
time-consuming to obtain the appropriate crystallization condition for a specific
molecule. Many proteins, such as membrane-bound proteins, appear to be stubbornly
resistant to crystallization due to their special characteristics and structures 7. In the
second step, the single-crystal is subjected to an X-ray with a particular wavelength to
obtain the regular pattern of reflections from various kinds of orientations 7. This step
usually generates thousands of 2D reflections. In the third step, these 2D reflections are
converted into a 3D electron density map using Bragg’s law 7’. This step is completed
with the help of computational programs. Finally, a refined model of the atomic
arrangement, the crystal structure, is generated with information about the chemical

8

structure obtained from the other techniques 7%,

Protein structures from X-ray diffraction still need complementary techniques to
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overcome the drawback of the X-ray method. It is very difficult to obtain a single-crystal
and sometimes it is impossible to generate this type of crystal for specific proteins 7>,
Moreover, the crystal protein structure is a structure with a perfect atomic arrangement so
it cannot represent the dynamic structures of a protein in a solvent 7. NMR has the
advantage of working in the solution.
2. NMR

Nuclear magnetic resonance (NMR) spectroscopy was proposed by Isidor Rabi in
1938 %% who was awarded the Nobel Prize in Physics in 1944 8'. The development of
NMR provided a powerful tool for understanding molecular structures. NMR not only
generates the structural data but also provides more information on dynamics,
conformational equilibrium, folding, and intra- and intermolecular interaction . It has
been widely used in determining molecule structures, drug screening and design,
chemical analysis, and material science 32, Kurt Wiithrich was awarded the Nobel Prize in
Chemistry in 2002 for his study of applying NMR to biomolecules in solution, in
particular for the determination of protein structures **. Since NMR tries to identify the
relationship between target atoms, the protein structures generated from NMR contains
many target structures instead of a single structure, which suggests that the possible
structures fluctuate around the global energy minimum. More than 10,000 protein
structures measured with NMR have been deposited into the PDB .

The NMR technique is based on a magnetic field that absorbs and emits
electromagnetic radiation ®*. The orbits of atoms are further represented by angular
momentum and magnetic moment. The magnetic moment with the same angular

momentum has a —'2 spin and a !4 spin. These spins degenerate, which means that the
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spins switch between two identical energy states. Thus, all the nuclides with even
numbers of protons and/or neutrons have a total spin of zero, while all the nuclides with
odd numbers of protons have a non-zero spin. The isotopes with a non- zero spin, such as
'H, *C and >N, can be used in NMR spectroscopy ®*. The degenerate spin state can be
split into two states with a different energy within an appropriate magnetic field. When
the spin stays at the —' state it is called the ground state. This spin will absorb energy and
jump to the excited state (% state) when electromagnetic radiation of the correct
frequency is applied to this spin state. This frequency satisfies AE = hv,, in which h is
Planck’s constant and v, is the radiation frequency. After a while, the spin then relaxes to
the ground state by emitting magnetic radiation. All the same nuclei resonate at the same
frequency if no other factors are involved. However, this frequency will be perturbed
with the surrounding shells of electrons and cause a chemical shift #°. Furthermore, the
electrons on the neighboring bonded atom also inference this frequency and splits it into
several peaks, which is called spin-spin coupling or J coupling. In organic synthesis,
these chemical shifts and J couplings (correlation spectroscopy) are used to determine the
molecular structure from the formula 83

NMR cannot directly generate protein coordinates. J coupling represents the spin-
spin coupling through the bond 83, which only represents the relationship between the
connected atoms. The Nuclear Overhauser Effect (NOE) permits distance measurements
between hydrogen nuclei through space #. It is possible to observe nuclei interactions
when the connecting pairs of hydrogen atoms are separated by less than 5 A ¥7. All this
information is used as the constraints to calculate the 3D protein structures with computer

programs, such as the combined assignment and dynamics algorithm (CYANA) # or
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XPLOR-NIH % Inter-atomic distances and torsion angles are used to find an ensemble of

structures consistent with the NMR constraints %

. NMR structures are usually
represented by a bundle of structures because the NMR constraints describe a range of
possible values and many distances that have no exact value.

NMR is unable to deal with large proteins that are over 30 kDa °', although it has
the advantage in working with protein solution. The constraint information obtained with
NMR represents the dynamics structures of proteins in an aqueous solution. These
structures are natural, native structures of proteins instead of the crystal structure
obtained under non-physiological conditions from X-rays. However, a large protein
results in fast relaxation and broader lines in the NMR spectrum °2. The corresponding
spectrum has poor resolution and low sensitivity. Moreover, in a large protein, the more

resonance lines from more NMR-active nuclei increase the spectral overlap .

3. Cryoelectron Microscopy
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Figure 8. Procedure that builds a 3D electron density map using Cryo-EM 3.
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Cryoelectron microscopy (Cryo-EM) provides an alternative technique for
determining protein structures, especially with relatively large proteins (mass greater than
200 kDa) **. Cryo-EM uses transmission electron microscopy (TEM) to detect the
molecular structure. TEM was built by Max Knoll and Ernst Ruska in 1931 in order to
obtain significantly higher resolution than is possible with light microscopes %°, and the
later was awarded the 1986 Nobel Prize in Physics 7. This high resolution is due to the
small de Broglie wavelength of electrons. The TEM image arises from the interactions of
the electrons transmitted through the specimen. Direct images of biological specimens
with impressive contrast have been obtained from specimens in the frozen state °®. This
technique is particularly suitable for the study and characterization of polymers, metals,
and ceramic materials. However, the vacuum environment of TEM, which is used to
avoid the scattering of electrons by gas molecules, is quite harsh to biomolecules. This
environment can dehydrate proteins and destroy their structure. Cryo-EM has been used
to make the sample tolerate the vacuum environment since Jacques Dubochet discovered
that an aqueous solution of biological specimen can form a vitrified layer *’. Rapid
cooling of an aqueous protein solution in liquid ethane or liquid nitrogen temperature
generates vitreous ice; in this condition, water would be immobilized before water
molecules have time to crystallize and destroy cells. This technique preserves the natural
state of proteins in the solution %8,

Three basic steps are needed to generate an electron density map using the Cryo-
EM technique (Figure 8). The first step is to prepare the vitrified specimen *¢. The
aqueous solution of proteins is dropped into the holes of a supporting grid. The self-

supported water film spans the holes. This file is thin enough to transmit electrons, which
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is, typically, less than 100 nm °%-'%_ This specimen grid is quickly frozen at -180° in
liquid nitrogen °8. In the second step, the structural information is generated using two
approaches: single particle analysis (SPA) '°' and cryo-electron tomography (CryoET)
12 SPA aligns the two-dimensional images from the same orientations to reduce the
random noise. Resolution in the range of 7-10 A needs about 300-100,000 images '*. The
number of protein molecules exposed under the electron beam limits the resolution. In
contrast, rather than looking at a large number of projections, CryoET fixes one protein
particle and collects the images by the controlled angles '%2. The resolution depends on
how much electron exposure the protein molecule is able to tolerate before its structure is
degraded by the electron beam. The information extracted from a single particle, such as
the conformational changes that occur during protein binding, is beneficial in dynamic
study. This approach has a resolution in the range of 20-40 A %°. Finally, the 2D images
that are obtained are merged into a 3D image, which is referred as the molecular electron
density map.

Although the resolution of Cryo-EM is increasing steadily, there is still a long
way to go before it is able to reach the atomic level for general specimens. In the past 30
years, the resolution of Cryo-EM has improved from 35 A for the Semliki forest virus '
to atomic-level resolution '%% 1% 197108 ‘However, the resolution of most density maps is
still greater than 6 A '%°. The Electron Microscopy Data Bank (EMDB) ''° contains a total
of 1897 map entries; of those, 34% havé a resolution less than 20 A, 35% have a
resolution less than 10 A, and 22% have a resolution ranging from 5 A to 10 A, only 6%

have atomic-level resolution (Figure 9). For protein structure or quaternary structure that

can be observed in the 10-30 A range, for which the rigid-body fitting of known



19

structures is the primary method for modeling. The secondary structure can be extracted
in the 8-10 A range; a-helices are resolvable in the 8-10 A range and p-sheets are

resolvable in the 6-8 A range '®. In the 3-6 A range, the full atomic model can be built

directly with the existing X-ray modeling techniques 3% 06 11: 112,
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Figure 9. Resolution distribution of a density map in the Electron Microscopy
Data Bank (EMDB) .

CryoEM is becoming a complementary tool of X-ray crystallography and NMR
for analyzing large, uncrystallized structures. Although CryoEM currently lacks atomic-
level resolution, it offers an opportunity to determine protein structures in their natural
state. Rapid freezing prevents the rearrangement of water molecules into ice crystals and

the rearrangement of the target protein. Combining computational prediction techniques,
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it is possible to obtain the atomic structure from an intermediate-resolution density map.
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Figure 10. (A) The number of released protein sequences in UniProt ° over time;
(B) The number of released protein structures in PDB ¢ over time.
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Computational Prediction Techniques

Due to the rapidly increasing gap between the number of released sequences in
UniProt > and the number of released structures in PDB ®, current molecular biology
research is in urgent need of computational prediction tools that can help scientists
identify protein structures from amino acid sequences. DNA is transcribed to RNA in the
cell nucleus, which contains protein-coding region (“exons”) and non-coding regions
(“introns”). The splicing process cuts the introns and only retains the exons. The spliced
RNA containing only exons leaves the cytoplasm to produce proteins ''*. The protein
sequences were generated by the sliced RNA and they fold into a 3D model. The number
of sequences in UniProt currently exceeds 45M > and increases by thousands of
sequences each day. To understand the functions of proteins, we need to know the 3D
structure for each protein sequence. However, the experimental techniques used to
determine a protein structure are tedious and expensive. It might take months or years to
successfully determine the structure for a specific protein. There are about 110 K protein
structures in PDB °. Bridging this immense gap is almost an impossible task with
experimental techniques. Thus, there is an urgency to develop highly effective
computational techniques to predict 3D models from a 1D sequence.

In Critical Assessment of protein Structure Prediction (CASP), the protein
structure prediction techniques were classified into template-based modeling and free
modeling %. Although the template-based method has gained popularity over the free
modeling methods because it has had greater success in achieving high resolution models
114 template-based modeling presents two major challenges: the selection of appropriate

templates and the alignment. It is still rare to achieve accuracy above 80% for the target
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proteins with a template that has less than 50% sequence identity by comparative
modeling. These prediction errors indicate that the current known structures do not cover
the complete information that is necessary for modeling. We checked the Cryo-EM
density maps ranging between 6 A and 10 A '® (~20% of all of the density maps). About
90% of the solved density maps are generated from the template with over 95% sequence
similarity. Because it is difficult to further increase the model quality when using the
template-based modeling method, the free modeling method could be a complementary
strategy to obtain high quality models for the target protein.
1. Comparative Modeling

Comparative modeling, also known as homology modeling, constructs the atomic
resolution model of the target protein from the protein templates of the known structures.
These template proteins have a relatively high sequence similarity (> 30%) on the
alignment that maps the target protein sequence to the template protein sequence ''> 16,
Based on biological observation, the proteins with similar amino acid sequences are
usually evolutionarily related and have similar 3D structures ''’. Given a protein
sequence, homologous protein structures could be used as the templates. Depending on

the degree of similarity between the target and template sequences ''> !¢

, in recent years
the predicted structure has been found to reach a 3.5 A resolution, sometimes even 14 "%,
The homology modeling procedure includes four steps ''%- '%°: template selection,
target-template alignment, model construction, and model assessment. The protein
sequences in which the proteins have over 30% similarity display a high similarity in the

3D structure. Current multiple sequence alignment (PSI-BLAST) and Hidden Markov

Models (HMMs) provide 80% accuracy for the sequence alignment. Usually several
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candidate template structures are identified in this step. Then, the target sequence is
aligned to the template structure. In the modeling step, the coordinates of the target
protein can be generated using several methods: 1) single template refinement '?'; 2)
fragment assembling and segment matching '?%*'23; and 3) spatial restraints with NMR
spectroscopy or the electron density map of Cryo-EM 24125 in which Cryo-EM fitting
contains rigid-body fitting and flexible fitting, which searches for the best fit between the
template and electron density map with a cross-correlation coefficient '?. Finally, the
homology models are assessed with energy functions, which include knowledge-based
potentials and physics-based potentials.
2. Threading

The threading modeling is a more sophisticated method that is used when the
level of sequence identity is less than 30%. When no high sequence similarity exits and
the templates are found, the protein model is still able to be built from the supper
secondary structures (folds). First, based on the protein classification databases, such as
the Structural Classification of Proteins (SCOP) '?7 or the CATH Protein Structure
Classification '?8, a structure template database can be constructed that will remove all
the protein structures with high sequence similarity. Second, a scoring function can be
designed to measure the relationship between the sequence and the structure. Third, the
target sequence can be aligned to the structure templates with a good score. Fourth, the
most probable model with the best score will be selected as the predicted model. Since
fewer and fewer new folds have been found in recent years '2°, Zhang proposed that the
target proteins in the current PDB that are less than 2.5 A with over 82% alignment

coverage always have similar folds'3% 13!,
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3. Ab initio Modeling

Ab initio modeling refers to an process that can predict the protein tertiary
structure from its amino acid sequence based on the force field governing protein folding
2! 1t is distinguished from template modeling, which uses known structures during the
predication procedure. Ab initio modeling assumes that all the structure information is
contained in the amino acid sequence; in other words, given a specific protein sequence,
only one protein tertiary structure corresponds to it. This assumption was demonstrated in
the 1950s by Christian Anfinsen '*. Denatured ribonuclease A spontaneously refolded to
its native tertiary structure and regained its function. Changing the psi and phi angles for
each residue of the protein sequence can generate numerous protein models. The native
structure for this protein sequence must be contained in the search space.

However, enumerating all the models is an impossible task. For example, each
residue has 10 different conformations; a sequence with 100 residues has 10'® models
132 It would take years and years of computational time to traverse all of them. The
current ab initio approaches consider hybrid approaches guided by knowledge-based and
physics-based potentials. Pure physics-based protein folding with MD simulation is able
to generate a native-like conformation for a 100-residue long protein sequence with
approximately 1000 CPU years **. ROSETTA built over 92 residues using 9-mers from
other PDB proteins '33. Despite the fact that 1.8 A RMSD to the native structure was
obtained, the computational cost was over 150 CPU days. I-TASSER, the current best
modeling approach in CASP developed by Zhang, built protein models with various
fragment sizes, improving the model size up to 155-residues long based on knowledge-

based potential *.



25

Despite the expensive computational cost, the ab inito approach has attracted the
attention of many researchers because it is an eventual solution to protein structure
prediction. The purely physics-based ab initio simulation identified the pathway of
protein folding. However, due to the expensive cost and lack of accurate potential
function, the best current results come from the combination of knowledge-based and
physics-based approaches.

4. De novo Modeling

De novo modeling refers to building protein models from an electron density map
and a protein sequence. This method is used for protein modeling when there are no
appropriate templates that have more than 30% similarity with the target. The density
maps with resolution in the 10-30 A range are so-called low resolution density maps. No
useful detailed structure information can be extracted from these density maps. The
resolution in the 5-10 A range is the intermediate resolution. These intermediate
resolution density maps are unable to provide atomic structural information. However,
the secondary structure (SSE) can be extracted from the intermediate density maps,
which provides complementary structural information that can be used to model the
protein structures. The dense mass in SSE causes higher electron density in the density
map, in which a-helices are detected as rods and in S-sheets are detected as the plate
areas 34 135:136:137:138

Two major approaches can be used to generate the models for proteins using
Cryo-EM density maps '32. One method is the fitting and refinement method '2% 13% 140:
141, 142; 143; 144: 145, 146; 147, 148; 149

, which is a template-based modeling approach, such as

ROSETTA ', MODELLER ', S-FLEXFIT '*'. The other method is the de novo
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approach, which uses the secondary structure elements and the skeleton to build the
models. Density maps are used to reveal a-helices at about the 8-10 A range and f-sheets
at about the 6-8 A range. Several programs provide the tools to identify these SSEs.
HELIXHUNTER "2, EMATCH 3% 153 and HELIXTRACER '*7 have been successfully
applied to identify the a-helices. SHEETMINER "%, SHEETTRACER ?7, and
SSEHUNTER '>* were developed to detect the B-sheets. The skeletonization algorithm in
SSEHUNTER ' has been used to trace the backbone '*. Several programs, including
PHDpsi '%, Jufo 37- 158 PSIPRED '*°, and PORTER '®, have predicted the SSEs in the
sequence with up to 80% accuracy. Combining the SSE information in the sequence and

in the structure, we expect that more medium resolution structures could be modeled.

” ~,
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Figure 11. The flow chart for de novo modeling.
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There are three basic steps in de novo modeling (Figure 11). First, the SSEs are
identified from the Cryo-EM density map. From the discussion about Cryo-EM,
previously presented in the this paper, the a-helices and -sheets can both be recognized
at the intermediate resolution. Second, the sequences that pass through the SSEs
identified in the density map, known as the topologies, are traced or the SSEs in the
sequence and in the structure corresponded. Due to the extremely large searching space,
several algorithms have been developed to speed up the searching 6% 3% 161: 162, 163. 164,
Finally, based on the topologies, the backbone is placed into the density map, the side-
chain is added and optimized, guided by the folding principles '®°.

Three major factors limit the application of the de novo method: 1) it lacks an
accurate energy function locates the global minimum for the native protein structure; 2) it
lacks an efficient search algorithm covers the conformational space without missing the
native conformation; and 3) it is unable to select a native-like structure from the decoy
structures. For a long protein sequence, enumerating the conformations is extremely
expensive. The efficient search approaches must be able to reduce this huge search space
to a reasonable size. The reduced search space must contain the native structure.
Exploring the entire conformation space would generate plenty of decoys for the target

protein. An accurate energy function is needed to distinguish the native structure from the

modeled conformations and guide the conformation optimization.

This work focused on generating an accurate protein energy function and
reducing the topology searching space. The physical interactions between residues in a

tertiary structure are described by energy functions. In other words, the protein energy
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function is a score function to evaluate the stability of the protein conformations. The
native structure for a specific sequence has the highest stability and the lowest energy. An
accurate energy function is the major obstruction for protein structure prediction. Chapter
2 introduces how to generate an energy function using the statistic thermodynamics
theories and the datasets from PDB in our work. By evaluating several widely used
benchmarks, our energy function is able to surpass the most popular energy functions
currently being used for protein structure prediction. Chapter 3 addresses how to improve
the pruning algorithm developed by Dr. Kamal Al Nasr. To reduce the search space when
searching the correspondence between the SSEs in the sequence and in the structure, Dr.
Kamal Al Nasr designed an efficient algorithm to identify the top-K topologies for pure
a-helices proteins. This present work extends his algorithm to search the top-K topologies
for proteins that have both a-helices and B-sheets by considering the features of B-sheets

that occur in nature.
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CHAPTER 2

PROTEIN ENERGY FUNCTION DESIGN

One of the most challenging tasks in protein tertiary structure prediction is to
distinguish the native conformation of a protein among the decoys that have similar
conformations. In thermodynamics, Gibbs free energy (G) is used to evaluate stability of

the protein structure, which is taken as an isolated thermodynamic system.

As shown in equation 1, U is the internal energy, which is a scalar of temperature
166 Higher internal energy causes atoms in the isolated system to move faster and to
increase system temperature. P represents pressure, V stands for volume, and T is for
temperature. In our research, since the residue number is constant for a specific protein
sequence, we assume that P, V, and T are constant for all the protein conformations
generated from this sequence. S represents the entropy 3, which is a measure of disorder.
A system consisting of well-arranged atoms has a low entropy. In contrast, a chaos
system has a high entropy. The third law of thermodynamics states that the entropy of a
perfect crystal equals zero '%. However, the disorder of the system cannot be measured
directly, and the entropy difference between two protein conformations cannot not be

calculated directly.
G=U+PV-~TS (N
The corresponding partial derivative equation is:
dG = dU + VdP + PdV — SdT — TdS (2)

In an isothermal, isobaric, and isochoric environment, the above equation equates to:
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dG = dU — TdS = dF (3)

In equation 3, F represents Helmholtz free energy and is related to the partition function

Q:
F= —kpTlnQ = —ksTinTiexp(— =) (4

Where E; is the energy at state i. Thus, the relative Gibbs free energy has the relationship

63. 167:
dG = —kgTing(r) = — kBTln%’- (5)

In equation 5, g(r) is the paired distribution function, p, is the density at distance r, and p
is the density for the bulk system. With equation 5, we are able to design a known-based

nergy function from the native protein structures in the Protein Data Bank (PDB) °'.

There are two types of energy functions, in general. The physical-based functions,
such as CHARMM '%8 and AMBER '%| are built upon the principles of physics. Those
energy functions usually ignore the energy contribution from the entropy. In this case, dG
= dU, as the internal energy was used to evaluate the stability of the protein system. The
internal energy contains both the bonded energy and the non-bonded energy. The bonded
energy contains both rotational and vibrational energy, but no transfer energy. The non-
bonded energy contains the contributions from electrostatic force (Coulomb force) and
non-electrostatic force (van der Waals force, dispersion force) '"°. At room temperature
(298K), 7dS in (3) could be significant. Due to the missing of entropy term in equation
(3), the performance of the physical-based functions is very far from what is expected
under room temperature. In contrast, the knowledge-based energy functions represent the

171172

statistics extracted from large number of known structures with equation (5).
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Knowiledge-based energy functions, or so-called “statistical potentials™ have been used in
numerous applications, such as structure prediction '3, protein design '™ and docking '">.
As shown in equation (5), knowledge-based energy is Gibbs free energy, which contains
the contributions from both internal energy (U) and entropy (S). For this reason, the
knowledge-based energy functions have much better performance than the physics-based
energy functions. The only limits of accuracy for the knowledge-based energy functions
are the number of protein structures in the PDB and an appropriate reference state (bulk

density), which represents the environment for an interaction between residues.

In spite of the successful cases demonstrated by the statistical potentials, it is
challenging to develop an energy function that approximates well in various physical
environments. Some statistical energy functions use all-atom interactions, such as DFIRE
'76 and DOPE '”7, while others use reduced representations for amino acids. Although the
all-atom functions characterize the fine details of a conformation, it is challenging to
represent the dependencies among the atoms that are connected by one or more
consecutive covalent bonds. Various reduced representations, or “coarse-grained

172,178

models,” have been proposed. Some of them use the Ca atom or the side chain

center to represent each amino acid '7% %% 181 OPUS-PSP breaks an amino acid into

182

multiple blocks and uses nineteen blocks to represent twenty amino acids '°. Random-

Walk function uses twenty vector-pairs on the side chain to represent an amino acid '8,

In addition to the above mentioned pair-wise functions, three-body and four-body
potentials have been investigated by various groups. It has been suggested that the pair-
wise potentials are not sufficient to characterize the three-dimensional interactions due to

the simple decomposition of such interactions to two-dimensional problems '8+ 185,
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Krishnamoorthy and Tropsha use Delaunay Tessellation to derive a four-body function
186 Feng, et al. extended a two-body potential to a four-body potential '*". In spite of the
theoretical advantages, multi-body potentials have yet to outperform pairwise functions

in distinguishing the native from the decoys in large datasets.

One of the advantages for pairwise coarse-grained potentials is the simplicity in
describing both the distance and relative orientation of a pair. Earlier pairwise functions
are primarily based on the distance between the pair '7!: 172 176 188. 189190 Recently, the
relative orientation of the pair has been incorporated 82183 191:192: 193 'The block
representation of OPUS-PSP groups the rigid portion of the chemical structure into a
block, but still provides the flexibility in representing the side chain. In spite of the
innovative block representation, OPUS-PSP is an orientation-dependent, but not a
distance-dependent function. In principle, the joint distance and orientation function
should be more sensitive in distinguishing the fine conformational differences. In

practice, this is not feasible until sufficient representative data are available.

The CABS model incorporates both distance and orientation in the potential
function, although the number of orientations is limited '*. In spite of the recent attempts
195:19% it is still challenging to derive an effective function that is both distance- and
orientation-dependent. In our study, we present a both distance- and orientation-

dependent function, DOKB, that is based on the block representation. We illustrate the

importance of using both distance and orientation in characterizing the pairwise potential.

Side chain packing is one of the most important factors used to distinguish one
conformation from another. In the block representation of OPUS-PSP, most side chains

consist of multiple blocks. In principle, all blocks of an amino acid should be used in
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calculating the energy. However, backbone-backbone interaction is not specific in
distinguishing the conformations. Although the interaction between backbone and side
chains is more specific, it is challenging to accurately represent the dependency among
multiple blocks. Previous studies have shown the dependency between the backbone and

the side chain conformations '’

A large number of known structures is required to derive statistically meaningful
dependency among multiple blocks when relative distances and orientations are encoded.
We hypothesize that some blocks in a side chain are more influential than others. In fact,
representations that bias the functional group of the side chain were proposed for 9 of the
20 amino acids '8, In this paper, we present the results of a simple and effective approach
that uses a key block to represent each side chain, except TYR and ILE, for which two
are used. The minimum representation using key blocks can highlight the most
characteristic portion of the side chain during packing.

Protein structures are known to present as a scale-free interaction network '9%-20%
201.202 iy which clusters or “hot-spots™ play critical roles in stability. The densely packed

clusters presumably have the most constraints in packing the side chains, and they are

perhaps the regions to identify the difference between a native structure and a decoy.

One of the drawbacks of a pairwise potential is that it does not distinguish the
local environment of the pair. For instance, a pair with the relatively same geometry has
the same potential, regardless of where it is located. Multi-body potentials aim to fix this
drawback, although it is not clear if replacing the pairwise potential with multi-body
potential for all regions is an effective approach. We characterized the residue pairs in the

low-energy cluster within the highly packed clusters and translated the knowledge to an
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energy term in an attempt to incorporate the energy difference between a highly packed
environment and a loosely packed environment. The added cluster energy term appears to

improve the performance in the ig-structal dataset.

2.1 Method

2.1.1 Definition of the Relative Geometry of a Pair of Key Blocks

Based on our understanding of protein energy, blocks in OPUS-PSP were used to
represent the interaction between residues. The residue-level interaction uses Ca/Cp or
side-chain center to represent the position of residues. It is a concise description of the
residue and simplifies the calculation. However, it not only ignores the conformation of
the side-chain, but also takes a very rough approximation of the distance between
functional atoms. The atom-level model keeps all the interaction information of the non-
bonded atoms in the residues, but it ignores all the connection information within the
residue. We used the block-level model in an attempt to obtain a balance between the
residue-level and the atom-level. It contains the necessary connection information of the
bonded atoms without increasing calculation burden.

DOKB borrowed the definition of blocks from OPUS-PSP '82. As shown in
Figure 12, 20 residues are decomposed into 19 rigid-body blocks. The interaction
between two residues is converted into the summation of blocks interaction. This
definition assumes that all heavy atoms are in the same plane, and blocks consist of the
bonded heavy atoms. Each block only appears once in each residue. Based on the block
shapes, all blocks are categorized into three classes: point blocks, linear blocks, and plane

blocks.
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Figure 12. The definition of 19 rigid-body blocks in OPUS-PSP 2. R and R’

are not parts of blocks.

The block representation in DOKB is based on OPUS-PSP '#2 with some
modifications (Table 1). Instead of using multiple blocks to represent an amino acid, a

key block at the distal end of the side chain was used, except for ILE and Tyr (Table 1).
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The backbone blocks are not included in DOKB, and the energy solely calibrates the
packing of the key blocks in the side chains. Unlike in Lu '3, the 22 key blocks are

amino acid specific.

The local frame of each block was defined according to Lu '®2. If the central block
i is plane block (class IIl), the relative geometrical relationship between block i and j is
represented by (r, 8, ¢), in which r is the center-to-center distance between iand j. 8
and ¢ characterize the orientation of j block in i’s frame (Figure 13). In particular, 6 is
the angle formed by AB and z-axis, and ¢ is the angle formed by x-axis and the
projection of AB on the xy plane (Figure 13). A pair of key blocks is considered in
energy calculation if r < 7A, slightly larger than the popular contact cutoff of 6.5A
between Cq atoms in order to consider more pairs. Since the number of protein structures
is limited, we partitioned the geometrical space of a pair of blocks into bins of
(Ar,A8,A¢), in which Ar = 0.5A, and A8 = AQ = 30° Ifthe central block i is linear
block (class I1), the geometrical relationship between block i and j is represented by
(7, 0). There are 6 bins from 0° to 180°. If the central block i is point block (class I),

there is no orientation energy and only distance energy is calculated.

2.1.2 The Energy Function

The statistical energy function was developed using a data set of 4,180 known
protein structures that were extracted using PISCES 2%, The data set contains those
structures that were solved by X-ray crystallography and have (1) no more than 40% of
sequence similarity; (2) at least 1.8 A resolution; (3) an R-factor of 0.25 or better and (4)

at least 40 amino acids in the sequence.
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Table 1. Definition of key blocks 2
Residue  Key block® Block® Residue  Key block Block

GLY None None  THR 15 15
SER 2 2 PHE 16 16
ALA 3 3 HIS 17 17
CYS 8 8 TRP 18 18
MET 9 9 PRO 19 19
LYS 10 10 ILE 20,21 12,3
ASP i1 11 LEU 22 12
VAL 12 12 TYR 23,26 2,16
ARG 13 13 GLU 24 i1
ASN 14 14 GLN 25 14

2Key block index in DOKB.
b Block index in OPUS-PSP.

PHE ()

VAL (j)
C

B¢
/”':
", '
r.-- @
.3
-
X

Figure 13. The distance and orientation representation of a pair of key blocks 2.
The key blocks (cyan) of PHE and VAL are represented by the local frame centering
at A and B respectively. The distance between A and B is r. 6 and ¢ are the angles

of B in A’s local frame.
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The energy of the entire protein Ey,,;q contains the energy from all key block
pairs using eq. (6). The energy between a pair of key blocks contains the distance energy
dlst (r) and the orientation energy E, rt(r 8, ¢), where i and j are the block indexes in
Table 1. Each residue is represented with its most distal block of the side chain (Table 1)
except for ILE and TYR that are represented by two blocks. Note that E*/ may not be the
same as E’*! since the orientation energy E, rt(r 8, ¢) depends on the orientation of block

J in the local frame of block i.
Erotar = Egist + Eore = 21 L, EY(r,6,0) = ZiZ;(E:u]s, )+ E:,,{t(r, 6,¢)) (6)
The observed density p%/ (r) (7) at distance r was calculated by N%/ (r)/4nr?Ar
in which N5/ (r) is the number of the observed block pairs in bin floor(r/0.5). p(r)
was derived for 0 < r < 25A. The reference state, 5%/ , uses the ideal gas state that is
supposed to be the density at infinite distance. We observed that the density is
approximately constant when 15A < r < 20A. This character was similarly reported in
176, Due to the limit of the protein size in the training data, density may not be realistic
when r > 20A. Therefore, we used an average density calculated from 154 < r < 20A

as the expected density.

iJ
dlst(r) = —kpTing(r) = —kgTin 22 @)

=y
The orientation energy EY ort (r 6, ¢) (8) was designed to adjust the distance

energy EY t(r) that represents the average energy at distance . N%/(r, 8, ¢) is the

dis

number of block pairs observed at distance r with orientation (8, ¢), and N*/(r) is the

average number of the block pairs (i, j) of all the orientations with distance r. In
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particular, N/(r) = NJJ,_ (r)/#bin, where Nti(')jta, (r) is the total number of block pairs
(i,j) at distance r.

i,j NYi (1.0,
Egte(r,8,) = —kgTIn 722 ®

The cluster energy is calculated at the residue level instead of the block level to
ensure sufficient low-energy, highly packed cases are available for all pairs. A pair of
residues (m, n) is in the highly packed cluster if m has at least 15 neighbors. A pair of
residues (m, n) is in a low-energy region if the energy at m is no more than -15ks7. The
energy at m is simply the summation of the pairwise energy for all residues that are
neighbors of m. A residue n is considered a neighbor of residue m if n has a block within
7 A to any block of residue m. Although the highly packed clusters often have low
energy for the cluster center residue, it is not absolutely necessary. Py, ¢0r (M, 1) is the
probability for (i, n) in the low-energy region to appear in a highly packed cluster
(Figure 20). P,;;(m, n) is the probability for (m, n) in the low energy region to appear in
the entire structure regardless of highly packed or loosely packed regions (Figure 21). In
particular, Ny, nighty packea (M, 1) is the number of (m, n) pairs in which m has no
more than—15kzT kcal/mol and (m, n) is in a highly packed cluster.

Nhighty packed (T, ) is the number of (m, n) pairs in which (m,n) is in a highly packed
cluster. Ny ,,,(m, n) is the number of (m, n) pairs in the low-energy regions, and

Ny, (m, n) is the number of (i, n) pairs in the entire structure regardless of where it is
located. Alternatively, the energy of a protein can be calculated using (12) if the cluster

energy is a concern.

Low,highly packed (1) 9)

N
P, (m,n) =
cluster ’ Nhighly packed (m.n)
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N ow »
Pau(m, n) = Sloen) o
_ Pcruster(m.n) . .
:Ilt,:;ter = kgTin Pau(mn) m is highly packed (1)
0, m is not highly packed
Erorat = Li Zj(Eglsy (1) + Egy(7,6,0)) + Zom T bE erer (12)

2.1.3 Energy Function Generation

For convenience, we generated a web-based energy function table and posed it at:

bttp.//www.cs.odu.edu/~jhe/software/DOK B/Block.htm. The webpage frame is shown in Figure
14.

Each cell in the 20*20 array contains a link to the distance energy (eq. 7) and the
orientation energy (eq. 8) for the specific residue pair. The 20*20 array contains all 400

residue pairs. For cell (i, j), i represents the residue in the row and j represents the residue
in the column. Since the orientation defined in Figure 13 is not symmetric, mostly E;’rjt *

Ji
Eores

the energy table is not symmetric either. We are using (ASP, ARG) pair as the
sample to show the procedure of generating the distance energy and the orientation
energy.

Click cell (ASP, ARG) on the energy table to display the “Information between
ASP and ARG” page (Figure 14). This page consists of the density distribution table
(top) and the corresponding energy table (bottom).

In the density distribution table, the first column contains the links of the distance
density distribution pages for the block pairs between ASP and ARG (marked with the
red rectangle in Figure 14). Click any of the links in the first column. There is a two-
column distance distribution table (not shown in Figure 14). In this table, the numbers in

the first column are the distance value between blocks from 0A to 24.5A with interval 0.5


http://www.cs.odu.edu/-ihe/software/DOkB/Block.htm
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A, while the numbers in the second column are the density value at each distance. If
block i in pair (i, j) is point block, the pair has only distance energy and no orientation
distribution. If block i in block pair (i, j) is a linear block or plane block, the links for the
orientation distributions at each distance are attached after the distance density
distribution (circled with red in Figure 14). The orientation distribution page contains a
table (each bin has 30° range, 1*6 array for linear block, 6*12 array for plane block).

ij .
Each cell in the table contains the ratio value (LV—N’:—E%iﬂ in eq. 8) and the pair number in

the whole dataset for this orientation and distance (7, 8, ¢).

Similar to the density distribution table, the first column in the energy table
contains the links of the distance energy pages for the block pairs between ASP and ARG
(highlighted with the red rectangle in Figure 14). Each distance energy page contains a
two-column table. The first column contains the distance value from 0A to 24.5A with
interval 0.5A. The second column contains the energy value at each distance. Since there
is no energy when the distance equals to zero, “nan” is used to fill the space. When two
blocks are placed very close, the energy is increasing rapidly to infinite. A large number
“21474” is used here to represent the infinite value. When calculating the energy of a
protein, value 9 is used to represent the infinite value for easy plot purpose.

Step 1. Generate the density distribution function

According to eq. 7, the density for all 30 block pairs of (ASP, ARG) is plotted in
Figure 15. ASP consists of block 1,4, 5, 7, 11, and ASN consists of block 1,4, 5,6, 7,
13. There are total 5*6 block pairs. Each pair density distribution (i, j) represents the
packing conformation of block j around block i. When the distance between two blocks

are long enough, the interaction between these two blocks could be ignored. In other
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words, the energy between these two blocks is zero and the density value is constant after
I15A ' However, since the size of the proteins is not infinite, the density value is not
real constant and decreases rapidly after 20A. Based on the protein size in our dataset, we
assume the density within 15A-20A is constant and pick this range as the constant range.

To convert the density distribution to the pair correlation function, we pick the
reference density value from the constant range. p*/ Within the constant range, each
density plot in Figure 15 has one average density value. 30 pairs have 30 different
average densities. Even when all the block pair distributions are collected from a same
residue pair, the average densities are slightly different. We picked the median value
from these 30 average density values to be the reference density value. This reference
value was used to generate the pair correlation function for each block pair next step.
This value (17.1) was also taken as the density distribution of (ASP, ARG) and written in
the main webpage (left in Figure 14).
Step 2. Generate the pair correlation function

The pair correlation function was generated from the density distribution function
by the reference value obtained in last step. We divided all 30 density distribution plots of
(ASP, ARG) by the reference value. The resulting plots are called “pair correlation
function,” which describes the packing conformation between rigid balls (Figure 16). The
red line marks the value 1, which is the value for the reference state. For the plots, there
most likely is more than one peak for each block pair. These show us that, for the central
block i, the neighbor block j has two or three preferred distances. This observation is

quite similar to the ideal gas packing of single atoms.
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Figure 15. The density distributions for all 30 block pairs of ASP-ARG.

The range between 15A and 20A are constant value range. The red line

marks the bulk density value for 30 block pairs.
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glr)

Distance (A)
Figure 16. The pair correlation functions for all 30 block pairs of ASP-

ARG. The red line represents the reference state, whose g(r) value is 1.
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Step 3. Generate the distance energy function

With equation 5, the distance energy function was converted to the pair
correlation function between blocks (Figure 17). The red line marks the zero energy.
When two blocks are far enough away, there is no interaction, and the energy between
them is zero. When two blocks are very close, they repulse or overlap each other, and the
energy between them increases rapidly to infinity. Some block pairs have unfavorable
positions, even though the distance is not close. In Figure 17, the plot of block pair (11,
7) has a valley at 3.0A, which is the most favorable packing distance. However, at 4.5A,
there is an energy peak of 0.259, which represents a very unfavorable distance between
these two blocks. After that, another valley appears around 6.0A. From the ideal gas
packing model for block pair (i, j), we know that the first valley represents the first
packing shell around block i and the second valley represents the second packing shell
around block i. The unfavorable distance at 4.5A is a position between two shells. Block j
could not be placed at this distance without increasing the system energy.
Step 4. Generate the orientation function

The orientation energy function was generated with equation 8. In step 3, we
generated the distance energy function. From a statistical standpoint, the energy at each
specific distance is the average energy of all possible orientations. Some orientations are
favorable (the interaction energy should be less than the distance energy) while others are
unfavorable (the interaction energy should be larger than the distance energy). For block
pair (i, j), if i is the linear or the planar block, the orientation energy was calculated.

At each distance, the orientation was represented with (0, ¢) (Figure 13). 0 ranges

from 0° to 180°. ¢ ranges from 0° to 360°. We divided the range into several bins, each
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Energy (kcal/mol)

Figure 17. The distance energy functions for all 30 block pairs. The red

line marks the zero energy; the energy value below zero means preferred

with a range of 30°. Then, all possible orientations were simplified to a 6*12 table. The
average pair number was obtained by dividing the total pair number at this distance with
6*12 for planar block. Each cell contains the pair number in this specific distance and
orientation and the ratio between the pair number and the average pair number. Then we
used equation 8 to calculate the orientation with the ratio value. When the pair number is
greater than the average number, the orientation is a favorite orientation. The orientation
energy is a negative value. Otherwise, the orientation energy is positive value (Figure

14).
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Step 5. Cluster Energy

The cluster energy was generated to fix the bias from the dense area of the
proteins. The distance energy and the orientation energy in step 1-4 were generated for all
block pairs without distinguishing the dense area or the loose area. The function is an
average value for all areas. However, the dense area obviously has a different entropy
value. The messy area has higher entropy, while the highly organized area has lower
entropy. To describe the energy contribution of the dense area, we introduced the cluster
energy.
The cluster energy is necessary to distinguish the native structure from the highly similar
decoys. We were using five decoy sets to evaluate the energy function, DecoyRus,
MOULDER, hg, ig, and ITASSER. We used the definition for the high dense residue in
2.1.2. The percentage of highly dense residues for each decoy was calculated. Since each
protein has many decoys, the mean value for each protein was posted in Table 2. The
dense percentage in Decoy’R’us is from 4.74% to 26.34%, and only 4 of them are over
20%. The high dense percentage in hg is from 9.17% to 18.52%, and in ig is from 25% to
30.72%, in MOULDER is from 8.57% to 36.62%, and in ITASSER is from 2% to 19.5%.
The energy with only the distance energy and the orientation energy performed very poor
in decoy set ig. Without the cluster energy, the energy was not sensitive enough to
distinguish the native from decoys. This is because the decoys in ig have very high
similarities. They have almost the same backbone conformations and slightly different
side-chain conformations. The distance energy and the orientation energy are very close.

The entropy for the dense area cannot be ignored anymore.



Table 2. The percentage of high dense residues in decoy sets

Mean Mean Mean Mean

DecoyRus (%) DecoyRus (%) hg (%) hg (%)

Tetf 18.19 1dkt-A 2634  lash 159  Imba  13.95

1169 13.88 1fca 14.36 'bgb' 1335  lmbs  18.52

1sn3 20.57 1nkl feol- g7 Imygs 504

A A

2cro 1pgb 926 ! CXC' 10.39 ‘"XJ’ 16.51

3ich 18.53 1tri-A 2012 leed 1017  Imyt  15.77

dpti 15.81 dicb 2672  lemy  17.32 2":"' 14.28

2 -

4rxn 160n-B 0.04 flp  13.19 “dgb 14.7

1fc2 2.19 1bba 007 lgdm 1656  2hb  15.57

1hdd-C 0.35 letf 10.79  lhbg 1635 2"[%“' 14.47

2cro 6.21 1dtk 5.8 'hAbh' 14.48 2p§h' 13.42

4ich 0.53 1fe2 474 'hgh' 15.23 45/‘:“' 13.4
1bg8-A 6.41 ligd 11.59 'hga' 13.9
1b10 15.15 1shf-A 10.89 'hga' 12.85
leh2 14.14 2¢ro 2.31 1hib 14.1
ljwe 13.96 2ovo 9.47 1him 15.9
smd3 9.52 4pti 6.04 thsy 18.08
Ibeo I ';h' 13.57

lctf 22.36 11ht 17.9




Table 2. Continued

ig Mean (%) ig Mean (%) ig Mean (%) ig Mean (%)
tacy 28.5 l1gaf 26.5 Imfa 26.1 2fbj 27.69
1baf 27.63 lggi 27.52 Imlb 28.43 2gfb 28.51
1bbd 28.12 lgig 26.83 Imrd 27.22 3hfl 26.43
1bbj 27.1 Thil 29.27 Inbv 29.55 3hfm 25.98
1dbb 27.99 thkl 27.11 Incb 27.99 6fab 30.72
1dfb 29.32 liai 28.64 Ingq 26.77 7fab 25.08
1dvf 28.3 libg 28.79 Inmb 29.44 8fab 27.16
leap 27.26 lige 28.46 Insn 25

1fai 29.76 ligf 27.74 lopg 29.056
1fbi 29.37 ligi 28.68 Iplg 27.57
Ifgy 27.78 ligm 29.04 Irmf 28.51
Ifig 27.93 likf 28.34 Itet 27.26

Hfir 27.07 lind 25.71 lucb 27.8
1for 29.61 ljel 28.61 Ivfa 27.68
1fpt 28.61 1jhl 29.35 lvge 30.16
1frg 29.09 lkem 27.48 tyuh 26.51
1fve 28.76 Imam 27.83 2cgr 28.74
Ifvd 28.66 Imcp 28.99 2fb4 29.35

50



Table .2 Continued
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MOULDE Mean  YangZhan Mean  YangZhan Mean  YangZhan  Mean
R (%) g (%) g (%) g (%)
1bbh 16.97 labv 20 lgicA 93 lorgA 17.2
Ic2r 18.57 1af7 12.618 1gjxA 10 Ipgx 8.1
lIcau 14.47 1ah9 5.4 TgnuA 11.8 1169 10.8
lcew 17.16 laoy 8.9 1gpt 13.7 1sfp 12.5
Tcid 16 1b4bA 8.9 fgyvA 10.1 IshfA 8.4
1dxt 18.53 1b72A 7.4 thbkA 12.5 Isro 53
leaf 20.34 1bm8 10.1 litpA 10.3 lten 11.9
1gky 17.79 1bg9A 84 1jnuA 12.6 1tfi 2
liga 32.16 lcewl 13.9 Tkjs 10.3 1thx 21.2
Imdc 11.63 lcgkA 1.1 TkviA 8.6 1tif 99
Imup 20.92 lesp 6 ImkyA3 9.6 1tig 9.9
lonc 15.26 TcySA 19.5 Imla_2 13.9 lvee 14.6
2afn 24.47 1dcjA 7.8 Imn8A 8.5 256hA 11.3
2emd 29.66 1di2A 9.1 InOuA4 16.2 2a0b 18.1
2fbj 19.54 1dtjA 8 Ine3A 3.8 2cr7A 14.2
2mta 8.57 legxA 12.5 Ino5A 13.4 2f3nA 84
2pna 16.96 1fadA 16.4 InpsA 17 2pcy 13.7
2sim 36.62 1foSA 8.2 102fB 12.3 2reb_2 9
4sbv 27.51 1of9A 84
8ilb 32.33 logwA 10.3
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The cluster energy was calculated for residue pairs as described in 2.1.2. and posted in
Figure 20. The ideal cluster energy should use the block pairs in equation 11 for each
specific distance and each specific orientation. However, since the dataset is not large
enough, the dense block pair number is too small at the specific distance and the specific
orientation to represent the dense area. Thus, we use the residue pairs to replace the block

pairs within a range.

2. 2 Results and Discussions

2.2.1 The Distance Energy Adjusted by the Orientation Energy
We have developed a statistical energy function that is based on the

characterization of the distance and orientation for each pair of key blocks. The main
terms in the energy function include a distance term E fi‘ijst(r) and an orientation term

E(';’rjt(r, 0, ¢) for each pair of key blocks i and j. The orientation term reflects the energy
fluctuation of those pairs with different orientations but at the same distance bin. We

observed in this study, as many previous studies '®

, that the distance energy is critical in
distinguishing block conformations. Using the ideal gas as reference, we derived the
distance energy (see Methods). Note that the distance energy is about zero at the range of
15A-20 A, since the average density at this range was used as the reference (Figure 18 A
and C). As an example, the lowest energy for block pair (16,16), of residue pair
(PHE,PHE), is at the distance bin of 5.0-5.5A with distance energy of E;fs':G(S.O) =
~2.02KgT kcal/mol. This lowest energy distance of about 5A agrees well with that

derived from the Multiwell function, in which the geometrical center of the side chain

atoms was used (Figure 18 A and B). The lowest distance energy for block pair (18,14),

E;?;:“(S.S) = —0.53K5T kcal/mol, is at a slightly longer distance of 5.5-6A, due to the
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larger block 18 of TRP. The distance energy suggests that block 16, the distal end of the
PHE, is more likely to interact with block 16 at the distance bin of 5.0-5.5A (Figure 18
A) than for block 18 of TRP to interact with block 14 of ASN (Figure 18 C). This reflects
the popular hydrophobic interaction between PHE and PHE in native proteins.

The orientation energy is an effective term to recognize the short-distance feasible

geometry for a pair. To illustrate the nature of the preferred orientations at each distance

bin, we show the orientation energy E f,fr (r, 8, ¢) for two pairs of blocks (16,16) (Figure
19 A, B, C) and (18,14) (Figure 19 D, E, F) at three consecutive distance bins. As
expected, most of the orientation bins have positive energy for block pair (16,16) to be at
the short distance of 3.5-4.0A (Figure 19 A). In our energy function, there is no need to
introduce the repulsion term as in OPUS-PSP [11], since the orientations causing
collision have zero or extremely low occurrences (Figure 19 A). The orientation energy
was assigned to an extremely high value 9 if there were no observed cases in the
orientation bin. Note that the distance energy of (16,16) is high and suggests it is
unfavorable to have the pair in such short distance range compared to other distances (red
bar in Figure 18 A and Figure 19 A). However, the orientation energy shows that if the
pair is in such a distance bin, the orientations must be mostly restricted to three distinct
peaks, roughly at 90°, -30° (red peak value), 90°, 0° (blue peak value), and 30°, -180°

(green peak value) (Figure 19 A). The resulting energy of the pair at the red peak value

(Figure 19 A) is E;2:1° (3.5) + E28'%(3.5,90,—30) = 0.47 — 2.99 = —2.52, an overall

favorable energy. The orientation energy makes it possible to recognize the feasible

geometry that would have been missed if a distance-only function was used.
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As the distance increases, before reaching the most favorite distance at about SA,
the distance energy becomes lower with E;?S':(’M.S) = —1.63 (green bar in Figure 18 A
and Figure 19 C). There are more peaks in the orientation energy, but the height of the
peaks decreases. For example, there are ten orientation peaks with orientation energy
lower than -1.0 in the distance bin of 4.5A-5A (Figure 19 C), but there are only six in the
bin of 3.5-4A (Figure 19 A). The highest orientation peak in Figure 14 C has an overall
energy E, o7° (4.5) + E1%°(4.5,90,—30) = —1.63 — 1.77 = —3.4. The overall energy
suggests that it is more popular for the pair (16,16) to adopt a relative geometry of
(4.5,90,—30) than (3.5,90, —30). This is reasonable since there are more observed cases
in the bin of 4.5A-5A than in the bin of 3.5-4 A (Figure 18 A).

Note that there is no need to introduce weight parameters for the two terms in our
energy function, because the orientation energy was characterized for those pairs at the
same distance. but with different orientations. The two terms are not derived
independently. With both the distance energy term and the orientation energy term, there
is no need to use a repulsion term as in OPUS-PSP 82, since the statistically derived
distance term naturally shows the repulsion at the short distance. This simplifies the
calculation of the energy since there is no need to scan all the atoms for repulsions.

2.2.2 Transition of the Most Preferred Orientations at Different Distances for a Pair
of Blocks

Numerous existing studies have suggested that each pair of amino acid side chains
have preferred geometrical positions '*! 294295 Ly, et al. characterized the preferred

orientations for each pair of blocks on the side chains '32. The nature of the multiple
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preferred orientations is also shown in our data. For example, block pair (16,16) has
roughly three distinct preferred orientations at (8, ¢p) = (90 -309), (30°, -180°), and
(90°, 150°) (Figure 19 A, B, C). These three preferred orientations appear to agree with

the previous finding in Lu, et al. '*

, in spite of different definitions of the orientation.
However, OPUS-PSP energy function in Lu, ef al. is not a distance dependent function.
With the fine distance bins increments of 0.5A, we are able to see the same preferred
orientations are preferred at different levels when they are at different distance bins. In
particular, two of the three preferred orientations, 90°, -30° (red peak in Figure 19 A) and

30°, -180° (green peak in Figure 19 A) are the two most distinct peaks in the distance bin

of 3.5 A. However, in the distance bin of 4.5 A, the third preferred peak (90°, 150°)
becomes the most favored (red peak in Figure 19 C) in this bin. Our energy function will
distinguish two pairs with the same orientation, but at 1 A difference in distance. For
example, the same orientation has different energy of E1¢16(3.5,90, —30) = —2.52
verses E1616(4.5,90, —30) = —2.95 depending on the distance. We observed such
transitions of the preferred orientation peaks in different distance bins for many other
pairs of blocks. Figure 19 D, E, F shows another such example for block 18 of TRP and
Block 14 of ASN. Our energy function is both distance- and orientation-dependent, and
can distinguish the level of preferences for the orientations at different distances.
2.2.3 Performance in Five Decoy Sets

We downloaded five decoy sets: DecoysRus 2%, MOULDER 27, hg_structal,

ig_structal (hutp://dd.compbio.washington.eduw/) and ITASSER

(http:/zhanglab.ccmb.med.umich.edu/decoys’). Each decoy set consists of a number of proteins.

For each protein, a number of decoys and the true structure were provided in the set. The


http://dd.compbio.Washington.edu/3
http://zhanglab.ccmb.med.umich.edu/decovs/
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decoys were ranked based on the energy. Four energy functions DOKB, Multiwell '%,
OPUS-PSP 82, and DFIRE-2.0 '", were compared. OPUS-PSP and DFIRE-2.0 were
downloaded from their websites respectively. The Multiwell function was previously
developed in our group '8°.

An energy function’s capability in recognizing native conformations was
evaluated using three criteria:

1) The number of the native conformations that are ranked as the top 1 on the list
(Table 3 column 2)

2) The mean rank of the native conformations in a decoy set (Table 3 column 3)

3) The number of proteins for which the native conformation is ranked closer to the
top when the energy function is compared with DOKB (Table 4).

As an example, both DOKB and OPUS-PSP were able to rank the native structure
as the top 1 by the potential energy for 31 of 34 proteins in DecoysRus (Table 3). Both
functions failed to rank the native structure as the 1* for three proteins. However, the
mean rank of the native structure among the 34 proteins is 26.3 for DOKB and 37 for
OPUS-PSP. Table 10 lists the detailed ranking information for DecoysRus. DOKB ranks
70™ for 1fc2 in fisa, which is much lower than 312" from OPUS-PSP. In Imds, the ranks
of 1bba and 1fc2 of DOKB are also slightly lower than the corresponding results from
OPUS-PSP. The mean rank in Table 3 reflects the ranks of the native conformations
when they are not ranked as the top 1. DOKB ranked the native conformations closer to
the top than OPUS-PSP for 3 proteins in the DecoyRus set (Table 4, row 2, column 2). It
appears that DOKB performs slightly better than OPUS-PSP for two decoy sets

(hg_structal, and I-TASSER), the same for two sets (DecoysRus, and MOULDER), and
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significantly better in ig_structal set, in terms of ranking the natives as the top 1 (Table
3). When criterion (2) and (3) are used, DOKB outperforms OPUS-PSP in all the five
decoy sets (Table 3 column 3, Table 4 column 2). Both DOKB and OPUS-PSP use
blocks to represent side chains, and both are orientation dependent '*2. The results in the
five decoy sets suggest that DOKB is more sensitive distinguishing the fine packing
details than OPUS-PSP. 1t is possible that having both distance and orientation
dependency contributed to the improved sensitivity even when less number of blocks
were included in the calculation of the energy.

Both DOKB and DFIRE-2.0 ranked the same number of native conformations as
the top 1 in three of the five decoy sets (Table 3). DOKB performed better in the other
two decoy sets, particularly in the ig_structal set, in which DFIRE-2.0 failed to rank any
native conformations as the top 1. When all the three criteria are considered (Table 3,
Table 3 column 3), DOKB ranks the native conformations slightly better than DFIRE-2.0
in four of the five decoy sets, and significantly better in the ig_structal set. DFIRE-2.0 is
an all-atom potential and DOKB is a coarse-grained potential, in which each amino acid
is represented as a point except for TYR and ILE. The test using the five decoys suggests
that it is possible for a coarse-grained potential to be comparable or even to outperform
an all-atom potential in terms of recognizing native conformations. The Multiwell
potential function is a pair-specific, distance-dependent function. A side chain is
represented by the geometrical center of the side chain atoms in Multiwell '*. The
comparison between DOKB and Multiwell shows that DOKB has an overall better
performance of recognizing native structures, particularly in DecoysRus and I-TASSER

decoy sets. This is not surprising since DOKB is both distance and orientation dependent
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and appears to distinguish fine conformation details. However, Multiwell performs the
best among the four functions in hg_structal decoy set. It is possible that the distance-
only energy functions may perform just as well or even better in some cases, since
distance is the most important character to represent a pair of blocks or a pair of residues.
2.2.4 Performance in CASP8 Decoys

DOKB was tested using a dataset containing thirty CASPS8 targets. The targets
were downloaded from

http://www.predictioncenter.org/download _area/CASP8/predictions_trimmed_to_domains/. Only those

target proteins whose majority decoys have sequence length similar to that of the native
structure were included in the dataset for convenience of testing. CASP8 30 dataset
contains all the decoys of the 30 targets, and CASP8 30 r contains those decoys with
less than 10A backbone RMSD from the native. Seven energy functions were evaluated
using the CASPS8 targets: DOKB, OPUS-PSP '82 DFIRE-2.0 ', Multiwell '¥, Four-
body '¥", General-four-body 2°% and Short-range '”°. The Four-body, General-four-body

and Short-range potentials are available at http:/gor.bb.iastate.edwpotential/. The energy

functions were primarily evaluated on two metrics. One is the capability to recognize the
native conformation among the decoys. The other is the backbone RMSD of the top-
ranked conformation sorted by the energy.

Table 5 summarizes the results of the seven energy functions using thirty CASP8
targets. DFIRE-2.0, DOKB, and Multiwell appear to perform the best and have
comparable capability of recognizing the native structures. They were able to rank the
native conformation as the top | for 22, 21, and 22 proteins with a mean rank 0f 9.4, 9.13,

and 10.3 respectively. OPUS-PSP recognized 19 natives, slightly less than the previous


http://wYvw.predictioncenter.om/dovvnload
http://aor.bb.iastate.edu/potential/
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three methods. However, OPUS-PSP failed to rank the native among the top 100 for 8§
proteins, and therefore has a large mean rank value. The test using CASP8 decoys
suggest that DOKB is more sensitive in distinguishing the native conformation than
OPUS-PSP. Since CASP_30_r contains those decoys with less than 10A RMSD from the
native, and our results suggest that DOKB is fairly sensitive in recognizing the native
among the conformations that are not quite wrong. When those decoys with large RMSD
from the native are incorporated in the test, all the four functions perform slightly worse,
except DFIRE-2.0 (Table 6). This suggests that DFIRE-2.0 is more robust in handling
very wrong conformations and those near native conformations.

In addition to the capability of recognizing the native conformations, we
evaluated the capability to distinguish near-native conformations using the backbone
RMSD of the top-ranked conformation when the native is not included in the decoy set.
DFIRE-2.0 appears to have overall the smallest RMSD (4.04), followed by the Four-
body potential (4.194), DOKB (4.22A) and OPUS-PSP (4.23A) (Table 4). Short-range
potential appears to perform worse than Four-body and General-four-body, similarly
reported in a previous paper '%, in spite of the difference in the testing data sets.
Although not tested in this paper, the optimized Four-body potential has been shown to

19 1t combines the three

perform better than Four-body or General-Four-body functions
functions (Four-body, General-four-body, and Short-range) and optimizes the

combination. Table 9 summarizes the average RMSD of the top-ranked decoy. RMSD of
DOKB is only slightly higher than DEFIRE-2.0 and 4B G POT and lower than other four

functions.



Table 3. The performance of four potentials on five decoy
sets 2

Energy Function Top 1*/Total No® Mean®
DecoysRus

DOKB 31/34 26.3
Multiwell 17/34 32.6
OPUS-PSP 31/34 37
DFIRE 2.0 28/34 46.4
MOULDER

DOKB 19/20 14
Multiwell 19/20 29
OPUS-PSP 19/20 4
DFIRE 2.0 19/20 6.6
hg_structal

DOKB 19/29 4.5
Multiwell 24/29 2.4
OPUS-PSP 18/29 6.8
DFIRE 2.0 19/29 7.2
ig_structal

DOKB 15/619-35/61¢ 21.2%-6.3¢
Multiwell 22/61 8.9
OPUS-PSP 20/61 15.7
DFIRE 2.0 0/61 475
I-TASSER

DOKB 53/56 12.6
Multiwell 16/56 94.4
OPUS-PSP 45/56 30.6
DFIRE 2.0 53/56 2.2

2The number of native structures that were ranked 1 by the energy.

® The total number of proteins in the decoy set.

¢ The average rank of the native structures in the decoys set.

¢ The number of the native structures that were ranked 1% without Ejsr.
* The number of the native structures that were ranked 1% with Enger.

f The average rank of the native structures without E.msser.

¢ The average rank of the native structures with F%",
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Table 4. The number of proteins with
better/same/worse rank for the native
conformations 2

Decoys DOKB vs OPUS-PSP | DOKB vs DFIRE 2.0
DecoyRus 32/31%/0° 6/28/0

MOULDER | 1/19/0 1/19/0

hg_structal | 9/20/0 15/12/2

ig_structal | 34/17/10 59/0/2

I-TASSER | 10/45/1 2/52/2

CASPS 10/16/4 5/18/7

2 The number of proteins for which DOKB ranks the native closer

to the top than the other potential.

® The number of proteins for which the native was ranked the same
between DOKB and the other potential.
¢ The number of proteins for which DOKB ranks the native farther

from the top than the other potential.

63



Table 5. The performance of seven potentials for CASP8_30_r decoys

= % ] z < Q
S5 g| £ 4 2 £
Bl 5|lalQ|” E = z =
Target £ g - e b lo) a
- | =
22252128 | 5|8 5|8 %8
s|ala|&|z|8|2|8|=2|8|¢z2
T0388 | 164 | 213 | 42 | 91 | 713 ] 2 | 529 | 125|344 | 1 29 1 2.9
T0389 | 134 | 376 | 48 s |94 ] 1 | 347|357 347 1 | 305 1 | 353
T0392 | 82 {336 | 275 | 287 | 25 | 93 |13t | 7 Jwes| 7 | 158 | 1 | 157
T0395 | 235 | 16 1 2 6 1 | 825} 1 | 825 1 | 825 ] 1 | 825
T0396 § 102 1374 | 241 | 37 | 85 1 1921 1 245F 6 | 241 1 | 172
T0397 | 82 9 1 2 1 1 19721 1 9.72 | 1 119] 1 1972
T0401 | 127 ) 361 | 70 17 1 1 4.4 1 428 | 1 429 | 1 | 4.64
TO0406 | 147 | 279 | 52 {110} 7 1 |745]127313.06| 1 3.06 1 1351
T0407 } 231 1210 2 3 58 I |441]1185j426| 1 426 | § 5.7
TO411 | 118 | 393 | 159 | S8 3 1 16.21 1 3.2 1 4.11 1 3.7
TO412 § 16513271 1 244 1172 | 1 1331 1 335 1 3.29 1 }5.69
T0414 | 127 | 82 | 22 | 30 | 28 1 9.8 | 9.8 1 9.8 1 9.8
TO415 | 107 1289 | 136} 36 | 14 1 §2.81 1 2781 2 | 2.61 1 | 2.61
TO0421 | 221 | 98 16 1 26 4 1 | 4.51 1 {886} 1 4.51 2 | 4.51
TO425 179 1336 48 | 249 (219] S5 372 1 [324] 1 3.15 1 ]3.49
T0426 | 2571295 85 | 163 116 1 | 0.55]255] 0.8 5]094]18 | 09
TO427 | 218 ] 362} 23 | 25 4 1 1372F 1 307} 1 3.07 1 |3.37
T0428 | 229§ 334 ] 1 1631201 | 1 0871324 1.19] 13 1.3 4 |0.87
T0430 | 138 § S3 16 | 15 3 1 1742 1 9.05| 1 905 | 1 | 6.96
T0432 | 130276 ] 78 | 131 | 128 | 11 {3.38| 258} 7.72] 1 1.8 1 ]3.38
T0433 | 199} 256 ] 1 42 1 {3831 1 j365] 1 2.05 1 |3.89
TO0436 | 405 | 226 | 1 71 1 8.7 1 639 1 639 ]| 6 8.7
TO0448 | 207 | 278 ] 1 43 1 |504) 1 343 1 4.13 1 1435
T0449 | 296 | 307 ] 1 16 | 23 1 1487} 1 487 1 487 | 1 | 4.87
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Table 5. Continued
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o | 21 & z 5 = 2
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Target | = g - Q b s ‘S
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= | 2|2 =8| 2128|222 2|2
] < ] ] = é b < b ] >
-4 [- 4 o o & & [-*4 o (- I~
TO451 | 127 | 378 1 42 74 | 292 7 2.84 1 3.24 1 4.26 1 4.26
TO453 | 86 | 325 297 | 291 | 143 1 2.16 2 2.07 1 2.07 5 2.38
TO456 | 87 | 324 | 179 | 305 | 112 104 | 2.69] 315 | 276 | 221 | 2.76 92 3.05
T0457 | 194 | 316 7 97 8 1 5.02 1 4.5 4.16 ] 108 | 5.92
TO0458 | 77 | 345 ] 165 | 226 | 46 59 1.77 21 0.89 5 1.12 13 0.79
TO459 | 91 | 2951 39 190 | 166 s 1.52 1 1.5 1 2.62 1 1.44
Avg! 6831966729} 103 | 437 | 71.4 | 423 94 4 9.1 4.22
Total* 8/30 | 1/30 | 2/30 | 22/30 19/30 23/30 21/30

a The Four-body potential of the web server.
b The Four-body general potential of the web server.
¢ The short-range potential of the web server.
d The average rank of the native structures in the decoys set.
e The number of the native structures that were ranked 1st by the energy.




Table 6. The rank of the native conformation of CASP8_30 decoys ?

= & =

v £ 4 e~
Target Length | & o) b ) &2

o - - o <

2 S B [ =

P> =i a =

T0388-D1 164 235 |2 126 1 2
T0389-D1 134 440 | 1 386 1 1
T0392-D1 82 359 | 96 7 7 1
T0395-D1 235 366 | 1 1 1 1
T0396-D1 102 436 | 1 1 6 i
T0397-Di 82 419 1 13 9 1 1
T0401-D1 127 475 13 1 { 1
T0406-D1 147 32111 296 1 1
T0407-D1 231 3201 1 266 1 6
T0411-D1 118 437 11 i I 1
T0412-D1 165 357 11 1 1 1
T0414-D1 127 262 | 1 i 1 |
T0415-D1 107 409 | 1 1 2 i
T0421-D1 221 350 1 1 1 1 2
T0425-D1 179 413 1 6 1 i 2
T0426-D1 257 316 | 1 255 5 18
T0427-D1 218 415 |1 i 1 1
T0428-D1 229 361 | 1 331 13 4
T0430-D1 138 270 | | 1 1 1
T0432-D1 130 313 1 13 278 1 1
T0433-D1 199 282 | 1 I 1 3
T0436-Di 405 266 | 1 1 1 20
T0448-D1 207 292 | 1 1 1 !
T0449-D1 296 361 |1 1 1 1
T0451-D1 127 422110 1 1 1
T0453-D1 86 347 11 2 1 5
T0456-D1 87 344 | 104 319 221 92
T0457-D1 194 362 | 1 1 i 136
T0458-D1 77 369 | 61 21 5 13
T0459-D1 91 321 1 6 1 1 1
Avg rank* 11.13333 77.13333 9.4 10.7
Total® 20/30 17/30 23/30 18/30

d The average rank of the native structures in the decoys set.

¢ The number of the native structures that were ranked the 1 by the energy.

66



67

2.2.5 Energy Difference at Highly packed Clusters for Residue Pairs at the Low-
energy Region

Our energy function is derived using the block pairs from 4,180 protein structures
regardless of where the block pairs are located. The energy difference contributed by
different environments can be included, in principle, using higher order terms '34-20%:210.
211.212 However, there are different local environments and it is a challenging problem to
determine if and how much the local environments affect the energy. For example, some
of the block pairs (14,14) of (ASN,ASN) may reside at the highly packed region, while
others are located in the loosely packed region. Some of the pairs are at the regions in
which the center residue is at a stable low energy environment, whereas others are in a
less stable environment. This is possible because not all pairs are at a comfortable
environment, although the protein is overall at a stable low energy environment. Since
the highly packed clusters of a protein play significant roles in stabilizing the structure, it
is important to represent the energy precisely at such clusters.

We investigated the distance energy for residue pairs at different environments. In
particular, we collected the block pairs from the highly packed regions, the low-energy
regions, the highly packed and low-energy regions, and all pairs regardless of the
environments.

Pg;;(m,n) (Figure 20 A) represents the probability for residue pair (m, n) to be
in the low energy region regardless of where the pair is located. It is not surprising that
(CYS.CYS) pair has the highest probability to be in a low-energy region, since many

(CYS.CYS) form disulfide bond. Figure 20 A suggests that the probability for

(ASP.,LEU) to be in a low-energy region regardless of highly packed or loosely packed
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environment is 0.09. Py, srer (M, n) (Figure 20 B) represents the probability for(m, n) of
a low-energy region to appear at the highly packed cluster. For example, the probability
for (ASP,LEU) of a low-energy cluster when ASP has at least 15 neighbors is 0.045
(Figure 20 B), slightly less than that of P,,;(m,n). This suggests that it is more likely for
(ASP,LEU) to be at the loosely packed environment when the energy at ASP is low. On
the other hand, there is not much difference in the two probabilities for many pairs such
as (ILE,ILE), (ARG,GLU). The two plots (Figure 20 A and 20 B) have similar colors for
most of the pairs except some of those pairs with small polar or charged residues as the
center, such as (ASP,LEU), (ASP,LYS), (ASN,GLN), (ASN,LYS) and (GLU,PHE). We
derived EZ;.,., (Figure 20 C) to represent the ratio between the two plots and used it to
adjust the differences between a pair in a highly packed cluster or a loosely packed
environment. Note that the energy function in (1) assigns the same energy for pair (m, n),
as long as they have the same relative distance and orientation, regardless of the
environment of m. However, Figure 20 suggests that it is less likely for (ASP,LEU) to
have low-energy if ASP is in a highly packed cluster, even if ASP and LEU have the
same relative geometry (as they do in the loosely packed environment).
2.2.6 Improved Ranking of the Native Structures for ig-structal with the Cluster
Energy Term

DOKB performs well for four of the five datasets tested, except the ig-structal set
when the cluster energy term was not used. This is a dataset of immunoglobulins, each of
which contains a high percentage of B-sheets. We noticed that the proteins in this dataset

were more densely packed than the other four data sets. On average, about 28% of the

overall residues in the native proteins were highly packed in the ig-structal set, but only
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11.2% were highly packed for DecoysRus set. Since the highly packed regions have the
most constraints in packing the residues, it is likely to expect differences between the
native and the decoy in the highly packed regions that are challenging to fold. We
explored the use of the cluster energy term to adjust the slight environmental contribution
at the highly packed clusters, as in formula (12). DOKB recognized the native
conformation as the top 1 for 35 of the 61 proteins in the ig-structal set, a significant
improvement from 15 when no cluster energy term is introduced. The mean rank of the
native conformation also improved from 21.2, as in Table | to 5.8. Each protein decoy set
in the ig-structal set contains a native structure and 60 high similar decoys. The
backbones of these decoys are slightly different with the native structure, whereas the
side-chains locate differently. Figure 22. shows the native structure of lacy (red) and one
decoy generated according to 1baf (blue). As marked with a rectangle, the side-chains of
LYS 158 on two structures are pointing to the opposite directions, although their
backbone are very close in space.

Table 7 shows the details of the top 10 decoys of 1dbb, based on the energy. It
appears that both the native conformation (row 1 of Table 4) and the other decoys contain
over 20% of highly packed clusters (column 2 and 3 of Table 7). In particular, there is a
big difference in the number of highly packed clusters between the native (47 clusters)
and other decoys (with 58-73 clusters). This might be reasonable since the native
conformation is likely to be optimized to reduce the number of unnecessary clusters. As a
result, there might be fewer highly packed clusters in the native than in the decoys.

Without using the cluster term, native conformation is not
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Table 7. Improved recognition of the native conformation among the decoys of

1dbb in the ig-structal set 2

Percentage of

otei . wi ith
D" o oy My Ry frerm e e i
0 47 20.3463 0 -5.407 -7.7

1 65 28.1385 1.64411 -2.777 -7.956

2 65 28.1385 217777 -3.517 -7.544

3 58 25.1082 1.75195 437 0.782

4 64 27.7056 1.94817 -3.394 -7.544

S 66 28.5714 1.89583 -3.082 -7.821

6 65 28.1385 240169 -3.761 -8.073

7 63 27.2727 2.58499 -3.085 -7.788

8 73 31.6017 1.9614  -1.941 -8.302

9 72 31.1688 213748 -1.294 -7.663

10 60 25.974 1.9794 -4.013 -8.069

2The number of cluster centers with more than 15 neighbors.

> The percentage of highly packed residues of the total number of residues.

¢ The RMSD between the decoy and the native for all atoms except hydrogen atoms.

4The Energy including Egig, Eore and Egyseer-

¢The Energy including Ey;s. and E,,;.

distinguishable (column 6 Table 7) as top 1. However, the cluster energy term was able to

adjust the overall energy in such a way that the native conformation is clearly

distinguishable (column 5 Table 7, Figure 17 A). There might be two reasons for the

effectiveness of the cluster energy term in the ig-structal set. Firstly, the cluster energy

matrix (Figure 16 C) might be effective to down-weight the less likely pairs in the highly

packed clusters. Secondly, the native conformation is more likely to be optimized so that

unfavorable clusters are minimized. The big difference in the number of highly packed

clusters between the native and the decoy might be a major reason for the improved
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ranking. Table 7 shows the rank of the native conformation for each protein in the ig-
structal. Apparently, the rank of the native structures improved for 41 of the 61 proteins
(Table 8), and the native was ranked the 1* either using or not using the cluster term for 9
other proteins. For example, the native was ranked the 29% for 1hkl using energy formula

(6), but was ranked 1* using formula (12) that includes the cluster energy term.
g

Energy
Energy

o)

RMSD_all_atoms (A) RMSD_all_atoms (A)

Figure 21. The plot of the energy for all decoys of 1dbb (A) and 1nsn (B) 2.
Black empty circle: the energy of a decoy when the cluster energy term is used;
red empty circle: the energy of a decoy when no cluster energy is involved; the
energy of the native structure is highlighted with a circle. Snapshots on the right

corner represent one clustered part of the native structure and one of the decoys for

1dbb (A) and Insn (B) respectively.
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2.3 CONCLUSIONS

The joint use of distance and orientation has proven to be an effective way to
represent the geometrical relationships in many problems. We have developed a potential
function that is both distance- and orientation-dependent, which is based on the coarse-
grained model of key blocks. Our results illustrate that both distance and orientation are
necessary to represent the fine details in geometrical relationships between the side
chains in order to recognize the native conformations. Having only the distance or only
the orientation representation may not be accurate enough.

Although both DOKB and OPUS-PSP use the block models, DOKB introduced
the distance dependency and the cluster energy term to distinguish the highly packed
environment. DOKB appears to be more sensitive in recognizing the native
conformations than OPUS-PSP in all the six decoy sets, one of them involving CASP8
data. DOKB also shows comparable with DFIRE-2.0, an all-atom energy function in
recognizing the native structures.

The local environment has been known to influence the pairwise energy, and
there are various local environments. Highly packed clusters play important roles in
stabilizing the structure. The densely packed nature of the highly packed clusters poses
potential challenges in side chain packing. Our investigation into the highly packed
clusters at the residue level suggests that certain residue pairs in a low-energy cluster
have a lower probability to appear in the highly packed clusters than in the entire protein.
We translated this finding into a cluster energy term and showed that it improves the

native recognition in the ig_structal testing set.



Figure 22. The native structure of lacy (red) and a decoy (blue) in decoy set ig-

structal.
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Table 8. The rank of the native conformation with/without E ., energy for
ig_structal decoys 2

Rank Rank Rank
Protein* With/Without Protein With/Without Protein With/Without

E clusterb E cluster E cluter
lacy 8/1 Thil 11 Ingq 1272
1baf Y 1hkl 1/29 Inmb 3/23
1bbd 1/5 liai 1/35 Insn 1/57
1bbj 2/55 libg 1/4 lopg 9/45
1dbb 1/44 lige 12/42 1plg 2/16
1dfb 7/20 ligf 1/16 Irmf 1/54
1dvf Y ligi 6/30 ltet 1/7
leap 11 ligm 21/54 Tuch 1/6
1fai 2/17 likf 1/1 1vfa 11
1fbi 3/53 lind 5/3 lvge 11
1fgv V1 ljel 1/5 1yuh 38/56
Ifig 6/58 Ijhi 125 2cgr 1/15
1flr 15/48 lkem 12 2fb4 2/1
1for 1/53 Imam 2/8 21bj 6/3
11pt 1/17 Imcp 61/61 2gfb 1/1
1frg 6/1 Imfa 1/1 3hfl 2/35
1fve Ya Imlb 1/40 3hfm 61/61
1fvd 1/3 Imrd 3/51 6fab Y2
1gaf /1 Inbv 12/54 7fab 5/1
Iggi 2/48 Incb 1/11 8fab 3N
lgig n

*The protein name in ig_structal decoy set.

® The rank of native structure in the decoys

with/without Eyser-




Table 9. The average RMSD of the top-ranked conformations for

CASPS8 decoys ?
CASP8_30_r Decoys CASPS Decoys®
= N . 5
oy = 7] < -
. L - (-9
Potential E‘é o 3 ; o " is e e
-4 &) . = 2 E é -9 4] 2 o
2121 8|5 | c|la|la|8 |8 | &%
Average
RMSD* 448 | 4.19 | 584 | 437 | 423 | 4.0 22 1 4.6 47 (169 |37

2 The average RMSD of the top ranked decoy.

b The decoy set in [25].

¢ The four-body potential of the web server.

4 The general-four-body potential of the web server.
¢ The short-range potential of the web server.

f The four-body potential results in [25].

¢ The results of general-four-body potential in [25].
" The results of the short-range potential in [25].

' The four-body optimized potential in [25].
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Table 10. The rank of the native conformation in DecoysRus set 2

Decoys

Multi well

OPUS-PSP

DFIRE 2.0

4BOPTPOT*

DOKB

dstate reduced

letf
1r69
Isn3
2cro
3icb
4pti

4rxn

19— —

[SS I NS T S

Mk b —

- .

Sfisa

1fc2
1hdd-C
2cro
4icb

312

102

fisa_casp3

1bg8-A
1bl0
leh2
Ijwe
smd3

——— — —

—— ) e —

— —— p—— — —

lattice_ssfit

Ibeo
Ictf
1dkt-A
Ifca
Inkl
Ipgb
Itrl-A
4icb

—— — — — — o

g e

Imds

1b0n-B
1bba
Tetf
1dtk
He2
ligd
Ishf-A
2¢cro
20vo
4pti

16
497
1
44
395
1
20
2

2
24

— o P e (N
<
o

e

441
501
1
1
501
1

1
1
1
1

441
470
501
70
99

119
157

Avg_rank®
Total®

32.6
17

37
31

46.4
28

76.6
15

w0 b e o ) o —

2 The four-body optimal potential result from [25].

® The average rank of the native conformation in the decoy set.

¢ The number of the native conformations that were ranked the 1% by the energy.
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CHAPTER 3

PROTEIN TOP-K TOPOLOGY PROBLEM

Cryo-electron microscopy (cryo-EM) is an important technique used to derive the
three-dimensional structure of large protein complexes 2'3214:215:216:217 jsing the
current advances of the cryo-EM technique, it is possible to produce volumetric images,
called density maps, of a protein in the high-resolution range, such as 3—5-A resolution
105.106 " At this resolution, the secondary structure is mostly distinguishable, and backbone
tracing becomes possible 2'%. Due to various experimental difficulties, many proteins

)HO

have be resolved to the medium-resolution range (5-10 A) ''°, comprising about 22% of

the density maps in EMDB. A number of computational methods have been developed to
detect a-helices and B-sheets for these medium-resolution density maps °7: 136- 152 154:219.
220,221 The secondary structure elements identified by the detection tools in the density
map (SSE-Ds) refer to the helix sticks and B-sticks detected from the three-dimensional
image. Each detected helix is represented by the trace of the central axis of the helix;
each detected B-sheet is represented by a curved surface that contains several p-strands.
Each detected -strand is also represented by the trace of the central axis of the f-strand.
Although B-strands are often invisible in the medium-resolution image, recent studies
have shown significant potential in B-strand detection. In our study of the topology search
algorithm, we assumed that some of the B-strands in the B-sheet would be detectable.
However, the various X-ray crystallographic modeling building tools, such as O ?*? and

Coot 223, are unable to directly use these SSE-D anchor points due to the lack of the

connection relationship between SSE-Ds. Our research focused on identifying these



connections between SSE-Ds.

Figure 23. Helix sticks and the topologies *. (A) The density map (gray) was
simulated to 10-A resolution, using protein structure 1FLP (PDB ID) and EMAN
software % ®. The seven helix sticks were detected from the density map, using
SSETracer ° and viewed by Chimera '°. (B) The helix segments in the protein
sequence are marked as H; to H;. (C) The helix sticks (red) were superimposed
on the skeleton (green), generated using Gorgon '!-'?. (D) The correct topology of

the SSE-Ds (sticks). (E) A wrong topology.

The 1-d protein sequence is another source used to extract the secondary

structures. The secondary structure elements in the sequence (SSE-Ss) refer to the a-
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helices and B-strands in the 1-d protein sequence. A number of programs are available to
predict SSE-Ss, including SSPro 224, JPred 2%, PsiPred *?® and Porter '®. These programs
assign an SSE-S (a-helix, B-strand, lo;)p) to each amino acid in the sequence. Due to
prediction errors, a consensus alignment from multiple predictions can obtain better
assignments than the results from a single program. The predictions from Porter can have
over 80% accuracy.

The topology search problem is defined as determining the correspondence
between the SSE-Ss and the SSE-Ds. Figure 23 demonstrates the topologies for the pure
a-helix protein 1FLP. In Figure 23 A, 7 helix sticks (D1, D2, D3, D4, Ds, D¢, D7) were
detected from the simulated 10-A resolution density map of the protein 1FLP, using
SSETracer °. The real helix segments in the sequence are marked as H; to H7 from the N-
terminal to the C-terminal. The true topology is the correct assignment of SSE-Ss to SSE-
Ds, in other words, the order of the SSE-Ds with respect to the SSE-Ss and the direction
of each element. For example, the order of the SSE-Ds in the true topology is (D1, D2, D3,
D4, Ds, Ds, D7) [Figure 23 D]. A wrong topology [Figure 23 E] may contain a wrong
order of the sticks, such as (D4, D4, D3, D;, Dg, Ds, D7), and a wrong direction for
certain sticks, such as S; and S3 in this case. The optimal match should consider
factors such as (1) matching the SSE-Ss for a-helices to the SSE-Ds for a-helices and
matching the SSE-Ss for B-strands to the SSE-Ds for B-strands, (2) matching the long
SSE-Ds in the density map to the long SSE-Ss in the protein sequence, and (3)
matching two SSE-Ss connected by a short loop in the protein sequence to two close

SSE-Ds in the density map.
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The goal of designing an effective topology search algorithm is to reduce the
search space. The naive de novo protein modeling approach builds the protein models
for all topologies, then chooses the native model by the geometrical and physical
constraints. However, it is an impossible task due to the large search space. For
example, in Figure 23, the topology determination for the protein 1FLP is to assign 7
SSE-Ss to 7 SSE-Ds. Based on the fact that there are 7! different orders for the
assignment and two directions to assign for each helix, the total topology number is
7127 = 645120. Building the models for so many topologies is time-consuming and
may take years for the larger proteins. Since most of the topologies for a specific
protein are invalid due to the geometrical constraints, it is possible to obtain a subset
of all topologies with an effective search algorithm using basic geometrical
constraints, in which the true topology is included.

Three approaches have been attempted to derive the topology of the SSEs. The
naive approach is to enumerate all possible topologies and to evaluate them one by
one '%'-227_ Due to the huge search space, this approach is limited to the proteins
fewer than 9 SSEs. Another approach is to use the Monte Carlo simulation to sample
the search space - 32, Although this approach can work with a large search space,
the stochastic nature of the Monte Carlo approach may miss the native topology. The
third approach is to translate the topology problem into a graph problem by exploiting
the constraints from a pair of sticks. This approach is performed within Gorgon '', in
which the SSE correspondence results are shown as a ranked list from best to worst. It
produces two graphs, one representing the connectivity among the SSE-Ds in the

density map, and the other representing the linear relationship of the SSE-Ss 228229,
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The topology search problem is then translated into an inexact graph-matching

problem. The A* search was used in matching the two graphs. The complexity of the

A* search depends on the heuristics used. However, this approach requires that the

true link between the SSE-Ds be detected correctly. Due to the quality of the skeleton

[green in Figure 23 C] generated by Gorgon, the true link may be missed. It is also

unclear if the A* search is effective for large proteins with such a complex skeleton.
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Figure 24. Application of interpretation tree in finding a match of model

features to image features. (A) The model features of an object. (B) The

features in the image. (C) The interpretation tree graph for the problem. (D) The

match based on the best path in the graph.
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Al Nasr et al. proposed a dynamic algorithm to search the top-k topologies for
the pure a-helix proteins '%*. This algorithm borrowed the idea from the interpretation
tree 23° to convert the topology search problem into a single graph. A common
application of the interpretation tree is to identify an object from an image by
mapping the model features [ Figure 24 A] of the object to the image features [Figure
24 B]. The interpretation tree converts the matching problem into a graph [Figure 24
C]. There are two types of constraints. One is the unary constraint, which measures
the matching between a model feature (A, B, C, or D) and an image feature (1, 2, 3, or
4). In the graph [Figure 24 C], the unary constraint represents the similarity between
the model feature and the image feature for a node. For instance, A fits 1 exactly; any
path passing through node (A, 1) will get an extra weight. The other type is the binary
constraint, which represents the relationship between two nodes in the graph. In
Figure 24 A, both A and B are on top. In Figure 24 B, both 1 and 2 are on top. The
weight between node (A, 1) and (B, 2) is high. The best mapping has the maximum
path in the graph from the start node to the end node [Figure 24 C]. Several
algorithms are available to search the maximum path of the graph. The best paths [(A,
1). (B, 2), (C, 3), (D, 4)] are marked out in Figure 24 C. Figure 24 D represents the
best mapping based on the best path. In Al Nasr’s algorithm, the SSE-Ss and the SSE-
Ds are taken as the model features and the image features in the interpretation tree,
respectively. Let (Hi, Ha. ..., Hm) be SSE-Ss in the protein sequence and (S, Sa. ...,
Sn) be SSE-Ds in the density map, in which M = N without losing generality. All
topologies can be represented with an M*2N graph. In this graph, each node is an

assignment of SSE-S to SSE-D with the direction d, (Hi, Si, d), in which d is the
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direction of SSE-D. Since the protein sequence can enter the SSE-D from two sides,
each SSE-S/SSE-D pair is represented by two nodes. When d is +1, the protein
sequence enters SSE-D from one side; when d is -1, the protein sequence enters SSE-
D from the other side. Regarding the unary constraint, for each node, if the lengths of
Hi and S; are significantly different, no edge is allowed to enter or exit this node.
Concerning the binary constraint, for each node pair [(Hi, Si, d), (Hj, S;j. d*)]. the edge
weight is equal to the difference between the loop lengths in the sequence and the
density map, respectively. The loop length in the sequence is the length of the loop
between Hi and H;. The loop {ength in the density map is the distance between the end
point of S; and the start point of S;, which will be replaced with the skeleton trace
length if a skeleton trace exists between S and S; [Figure 23 C]. Figure 25 shows a
graph in the top-k topologies search algorithm for a pure a-helix protein. Each node
(Hi, Si, d) represents a valid SSE-S/SSE-D pair by the unary constraint, and each
edge represents a valid SSE-S/SSE-D pair by the binary constraint. Two special nodes
are added as the start and end nodes. The edge weights between the nodes and these
two special nodes are zero. Due to the features of SSE-Ss and SSE-Ds, there are
several potential constraints in the graph, as follows: (1) The protein sequence is
linear; each edge points downward. If M = N, each edge must link consecutive rows.
If M > N, each edge is allowed to link nonconsecutive rows, and the maximum
allowed gap is M - N. (2) The two nodes linked by an edge must represent two
different SSE-Ds; each SSE-D is not allowed to be assigned to an SSE-S twice. (3) A
valid topology starts from the start node and ends at the end node, without passing the

same SSE-D twice. The red dashed lines in Figure 25 represent an invalid topology
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since it passes Sz twice. The green solid lines represent a valid topology [(H), S, -1),
(Hz2, S2, -1), (Hs, S3, -1)]. The total weight for a topology is the sum of all edge
weights in this topology. The best topology has the minimum weight among all the
topologies. The topology search problem is converted into a shortest-path search
problem. The algorithm reduces the complexity O(N!2N) to O(N22N). The top-k
topologies can be generated based on the best one.

Al Nasr’s algorithm solves the top-k topologies search problem for the pure a-
helix proteins. However, this algorithm cannot be applied to the protein containing -
sheets. The challenge in deriving the topology for the B-sheet is that the B-strands in
the same B-sheet are fairly close, with about ~4.5-A spacing [Figure 26 A]. The
topology in Figure 26 B is the most common for the f-sheets of the known protein
structures in the Protein Data Bank (PDB), for which the loop connects two adjacent
nodes. However, with the binary constraints in Al Nasr’s algorithm, the edge weight
between these two nodes is greater than the weight between the two nodes
representing two nonadjacent SSE-Ds. In other words, the true topology usually has
the worst score. For instance, the topology in Figure 26 C has the best score; however,
it is never observed in Dunbrack’s database 2%, To solve this problem, several binary
constraints '3 for B-strand nodes based on the statistical analysis have been added to

the algorithm and has displayed the improvement for the proteins containing f3-sheets.
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Figure 25. The graph of the pure a-helix proteins in the top-k topologies search

algorithm. The red dashed lines represent an invalid topology; the green path is the

true topology.



87

B " Cc

i 1‘ ; : " '
..é;: %:. P o
s
P Lo :
D Py -
[ C
. C N .

Figure 26. A 4-stranded B-sheet '. (A) Density map in 3-sheet area; four sticks

(SSE-Ds) with the different colors represent the four strands in the sheet.

(B) General topology. (C) Rare topology.

The present work focuses on the top-k topologies search algorithm for B-
sheets. More binary constraints for the B-sheet have been added to the algorithm
instead of using only the basic length constraint for a-helices. We have translated the
binary constraints for the B-sheet into the adjusted edge weight, using the probability
information of B-sheet topologies. The topologies with low-occurrence probabilities
have low probabilities to be the native topology and will be screened from the
candidate topologies. The details of the algorithm are introduced in the method
section. Several samples containing both a-helices and B-sheets have been used to

evaluate the algorithm. The corresponding results are presented in the results section.
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3.1 Method

Build Graph
Update by Skeleton

Update by Beta-

Read Inputs Sheet Constraints

it

Build Tables

Trace topK Topologies%

Figure 27. The flow chart of the top-k topology search program.

Figure 27 shows the flow chart of the top-k topology search program. Besides
the input and output, the program includes the following five steps: (1) Build the
graph, and calculate the edge weight between the valid node pairs by using the unary
and binary constraints. (2) Update the edge weight if there are skeletons between two
SSE-Ds. (3) Update the edge weight by the connection preference between two f3-
strands. (4) Build the node table that contains the information tracing the topology.

(5) Trace the top-k topologies.



3.1.1 Inputs

89

The input information for the algorithm contains the SSE-Ss, SSE-Ds, and the

skeleton predicted from the density maps. The SSE-Ss can be predicted from the

amino acid sequence with about 80% accuracy. For test purposes, we have used the

real SSE-Ss from the PDB file instead of the predicted SSE-Ss to avoid the

intervention from the wrong prediction. Figure 28 A displays a sample of SSE-Ss’

HO(19, 24)
S0(28, 32)
S1(42, 47)
$2(50, 54)

H1(58, 75)

Figure 28. The input information of 2KUM for the top-K topology search
algorithm. (A) The sequence information. (B) The stick points of a SSE-Ds. (C)

The stick points for § SSE-Ds.
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input, in which H/S represents the helix/strand followed by an index. The start index

and the end index of each SSE-S in the sequence are enclosed in parentheses. The
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SSE-D input for the helices [Figure 28 B] contains the axis sticks of the helices. Each
stick consists of many points on the axis. The first three columns in the SSE-D input
for the helices list the coordinates of the points. The last column is the helix index.
The SSE-D input for the p-strands [Figure 28 C] contains the axis sticks of the strands
in the B-sheets. The first three columns present the coordinates of the strand axis. The
fourth column lists the strand index in a specific f-sheet. The last column lists the
index of each B-sheet. Each helix/strand is separated by an empty line. The SSE-D
input files are from the outputs of SSETracer °. The skeleton of the density map has
been generated with a skeleton detection tool developed by Al Nasr 13°. Although the
skeletons from this tool have better quality than those from Gorgon, there are still
many invalid traces. In other words, the skeletons from the intermediate resolution
density maps cannot be used to trace the backbone directly. We have used the
skeleton to obtain the more accurate edge weight between nodes.
3.1.2 Build the Graph

Let M, and Mg be the number of helices and B-strands in the protein sequence,
respectively. Let N, and Nj be the number of helix sticks and B-sticks detected from

the density map, respectively. Suppose that M, = N, and Mg = Ng. The total number
of possible matches between SSE-Ss and SSE-Ds is (},‘V"’) N, 2N (xﬁ) Ng! 2Ns5, Each

possible match defines a possible topology. We have created the weighted directed
graph Gr,, = (V,E,w) to represent the topology problem. Let the sequence segments
of the secondary structure be (S;, Sz, ..., Sm) and M = Mg+M,. Let the sePDcondary
structure sticks detected from the density map be (D;, D;, ..., Dv) and N = Ny+Npg. For

convenience, we let Dy, D, ..., Dy, be the helix sticks and Dy,+1, Dyy+2 s Dngngg be
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the B-sticks. Let the set of columns C be {1, 2, ..., N}. Since a helix segment in the
sequence will only be assigned to a helix stick and not a B-stick, V has 2MuN, +
2MpgNg regular nodes and two special nodes, START and END. The indexes for the
row and column of the nodes are i and j, respectively. The two ends of a stick are
marked by ¢t = +1 to distinguish the two directions of each assignment. A node (i, j, 1)
represents an assignment of SSE-S; to SSE-D; in ¢ direction. The Grop graph is defined

in equation (1). The graph for 2KUM is shown in Figure 30.

Figure 29. The protein 2KUM (colorful band) and the corresponding

skeleton (gray).
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1<isM tef{o1}
V=<0t (1 <j < N,) AND (5S; is a helix)) U{START, END}
(0R((Na <j < N)AND (SSjisa B — strand))
E
1<iSM=—1,i<i',skipe(i,i") € My — N, skipg(i,i') < Mg — Nﬁ,}

- ‘, .'t , ~I' -I’ tl
{((z} ), (' )) 1<j#j"<N,t t' €{0,1}

U {(START, @i, ), t))lskipa(O, i) < My—N,, skipg(0,i) < Mg—Np,1<j<N, t€ {0,1}} (13)

U {((i,j, t), END)|skip,(i, M + 1) < My—N,, skipg(i, M + 1) < Mg—Ng t € {{0,1}}

Use the unary constraints to screen the invalid nodes. For each node, compare
the lengths of SSE-S and SSE-D. If their length difference is over 60%, this node has
a high possibility to be invalid and is removed from the graph. For a node, if
L*LE*0.4 > LS [Figure 31 B] or L*XLE < LLS*0.4 [Figure 31 C], the node is invalid, in
which L is the number of the amino acids of this SSE-S, LS is the length of SSE-D,
and LE is the length of an amino acid in SSE, 1.5 for a-helix and 3.5 for B-strand.
Figure 32 shows the graph after removing the invalid nodes, using the unary
constraints.

Use the binary constraints to set up the weights for the edges. An edge from
node (i,j,t) to (i’,j',t") represents the assignment of S;, to Dj, in direction t’ right after
the assignment of S; to D; in direction t. Since a protein sequence has its direction, all
the edges in the graph point downward with i’ > i. When M = N,i’ =i+ 1. When
M > N, skipping edges exist. The maximum number of rows that an edge may skip
should satisfy two rules, as follows: (1) The number of skipped helices [referred to as
skip,(i,i")}] is no more than M,—N,. (2) The number of skipped B-strands [referred to
as skipg(i,i")] is no more than Mg—Npg. Since each stick in the volume map can only

be assigned to one sequence segment, there is no edge between the nodes in the same
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column; similarly, there is no edge between the nodes in the same row. Special edges
are drawn from the START node to each node on the top rows and are similarly drawn
from each node on the bottom rows to the END node, as long as the skipping edges
satisfy the above-mentioned two rules. The weight is zero for the special edges and
nonnegative for others. Depending on the situation of the edge, three types of edge weights
have been used, as follows: the o, the skeleton trace, and the penalized Euclidian distance.
We have assigned o as the edge weight to the two consecutive assignments that are
impossible. An impossible situation arises when the length of the sequence segment is
different from the length of the stick by 60%. Another impossible situation happens when
the length of the loop is too short to make the connection of the two sticks. For example,
the length of the loop between H; and H, is one amino acid [Figure 23 E]. Given the
approximately 3.8-A distance between two consecutive amino acids, the maximum
distance between the two ends of the two sticks is about 3.8*(1+1) = 7.6A. One extra amino
acid has been added to estimate the length of half the amino acid at each end of the helix.
Most of the edge weights in the graph have been assigned by tracing the skeleton. For any
possible edge, the weight is calculated as follows: w((i,j, ', j', t’)) = |I(i,i") —
d(,t,j',t")| + b, in which I(i,i") is 3.8 multiplied by the number of amino acids between
S; and S;,, measured in the protein sequence, and d(j, t, ', t") is the distance estimated

along the skeleton trace between S; and §;, when they are assigned to D; at end t and D

at end t', respectively. The skeleton voxels between two SSE-Ds have been used to track
the traces, using the component labeling cluster. Even if the loop connections between f3-
strands are unclear in the skeleton density map, the skeleton trace is used to optimize the

edge weight between two B-strands. If there is a continuous path or a gapped path along
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Figure 30. The graph of 2KUM, built with SSE-Ss and SSE-Ds. The solid

nodes mean valid ones; the gray nodes represent nonexistent ones.
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Figure 31. Comparison of the lengths of SSE-S and SSE-D for a node. (A) A
valid SSE-S/SSE-D pair. (B) The length of SSE-S is too long. (C) The length of

SSE-D is too long.
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the skeleton, b is set to zero. Otherwise, d(j, t,j’,t") is estimated, using the Euclidian
distance between t and t'. In this case, the penalty term is set to b = 50 unless the distance
between t and t’ is less than 7 A. Since there are often multiple paths along the skeleton
between two sticks, the path whose Ilength best fit [(i,i") is used for
estimating d(j, t,j’, t').
3.1.3 Update Edge Weight, Using B-sheet Constraints

We have designed the following constraints to be biased toward the popular
topologies, such as antiparallel strands with short loops.
Short loops and strand spacing. This constraint reflects the fact that two consecutive 3-
strands in the protein sequence are more likely to be neighboring strands in the density
map. When the loop connecting two B-strands has less than five amino acids, this
constraint applies. We require that gapgeq(i,j) = gapgtick (k, 1), in which gapseq(i,j) =
[i—jl,1<i<j<M, and gapsici (k, 1) = |(D(k, 1) +€)/45),1 <k <I<Ny.£be
a tolerance parameter, where D (k, l) is the measured shortest Euclidian distance between
the two {3-sticks D,, and D,. As an example, the two consecutive B-strands are not likely
to be assigned to strands 1 and 4 [Figure 33 B]. We set a penalty term of 50 *
(9apstick — 9APseq) 10 the edge weight if two connected nodes have gaps., < gapsrick-
Two-stranded antiparallel sheet. When two consecutive 3-segments in the sequence are
assigned to two B-sticks that are immediate neighbors, we create a bias toward antiparallel
strands when the loop is not long enough to make a parallel relationship. When the loop is
shorter than the length of the second B-stick, we require Dgg > Dgg (Figure 33). A penalty

term of 150 is charged for the violation.
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Three strands. For most of the popular topologies, three consecutive strands form an
antiparallel relationship. A penalty is imposed if Dgs < Dgg and mod( gapseq,2) = 0 or
if Dgs > Dgg and mod(gapseq,2) = 1.

Neighboring strands. This constraint awards the assignment of two consecutive 3-
strands in the sequence toward two neighbors. When the loop between the (3-strands is
less than 5 amino acids, we set a reward of —3.8 * 3.

Long helix matching, If the length between a long helix in the sequence and that of the

a-stick is less than 15% of the stick, a reward of -5 is given.

Figure 33. Popular topologies and B-sheet constraints . (A) A popular
antiparallel B-sheet topology. (B) A rare topology. (C) The diagonal Dy is
generally longer than the side of a rectangular D¢ The start and end points are

labeled for each strand in (A and C).
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Node Table
Set f Prev
{0, 4,6} 10.8 (Sz, Dy, +1)
{0, 8,6} 19.9 (Sz, Ds, +1)

R S L P P R v

Figure 34. The graph of 2KUM with some of the edge weights. A true

topology (shortest path) is shown by the thick red line; a wrong topology is

shown by the thick blue line. A record table for node (S3, D4, +1) is shown on

the right side.
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Figure 34 shows the graph for 2KUM, using all constraints. Due to too many
edge lines between the nodes, we only show some of the edges. The true topology is
the shortest path in this sample, which is shown by the thick red lines. The edge
weight (1.1) of [(S1, Dy, +1), (S2, D3, +1)] is much less than the edge weight (57.2) of
[(S1, D1, +1), (S2, D3, -1)], which means that entering the same stick from a different
direction can be distinguished easily.

3.1.4 Generate the Node Table and Search the Shortest Path

A valid topology is a valid path (thick red line in Figure 34) from START to END
and visits each column exactly once. The optimal path is one with the minimum cost,
measured as the sum of the edge weights along the path. Al Nasr previously gave a
dynamic programming algorithm to find the constrained shortest path '®*, We provide a
dynamic programming algorithm in Algorithm 1 to find the shortest valid path in a
general case when M = N.

Algorithm 1
/* Notations:
¢ C ={123,..,N} U®D ={U:U c Candmax(1,i— (M- N)) <|U| <
min(i, N)},2<i<MandM =N = 2.
oo U,Ei): the k" elementof UV, 1 < k < IU(i)I.

©,

% v(;p: the node at i™ row, j*" column with t direction.
“ f ((i'j' t), U,S‘)) o FWi 0 UD).

*/

input: G
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output: The cost of the shortest path min ,s;

C «{1,2,3,..,N}
F(nU®) 0P =11 iSM-N+11<k<|UO)
(U)o UPI#1,25isM 1<k < |UO|
fori«2toMdo
fork «1to|U®|do
foreachp € U,ﬁi),lU,Ei)l >landt < 0toldo
U= U\

foreachq € U'andt’ « 0to1do
i @Oy _ . i’ '
f (v(l’»f)‘uk ) - max(l,i—(w—“ﬁ})—l)si’d {f (v(q’t,),U )

+w (V&,t’)' ”ép.t)) f (”ént)' U,E”)}

The idea of our method is to keep track of the columns visited along the path at
each node, as well as the best score of all paths using these columns. A record table
(Figur 34) is created for each node. Each record contains the set of columns U, the
minimum cost f of the path to reach the current node, and the previous node; U'
represents all columns visited for a valid path. The value of fcan be calculated by
equation (2); the previous node lies before the current node in the shortest path
passing all columns in U'. Figure 34 illustrates the dynamic programming process for
2KUM at the node (S3, D4, +1). The first record in the table represents the red line path,

which passes (D1, +1), (D3, +1), and (D4, +1), or {0, 4, 6 represented by the SSE-D index.
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This set represents the 3! path. The minimum cost of this 3! path is saved as the value of
- To track the path with the minimum cost, start from the current node and trace back to
the previous node in the record. At this previous node, search the record with the set Ui,
where i is the SSE-D index of the current node. Repeat the trace step until the start node
is reached. All the traced nodes consist of the shortest path from the start node to the node

(S3, D4, +1).

(G 0U)=f(v,U)

( 0 v =< START >
w(< START >,v) =0 skip,(0,i) < M,—N,, skipﬁ(O, < MB—Np U= {1
mmj,eu(j),ue(o,x}[f((i’.j'; t), U\ {l}) + W((i’.j'. t, (0, Jj, t))]

i €2, M],skip,(i’,i) < M,—N,,

skip,(i',i) £ Mg—Ng,jEU
\ oo otherwise

2.2 and have the cost of the paths in nondecreasing order. Many algorithms have been
developed to find the K-shortest paths without constraints. Yen {Yen, 1971 #217}
proposed a classical deviation algorithm to find the K-shortest loopless paths. Due to
the topology constraints, we cannot directly apply the available K-shortest path
algorithm. Instead, we combine the concept of the “generalization of Yen’s algorithm™
with our dynamic programming method to find the constrained K-shortest paths.

The idea of finding the next shortest path is that the (k + 1) shortest path is
not too different from the previous k shortest paths. It is at least one edge different from
each of the previous k shortest paths. At each cycle, new candidates for the (k + 1)*
shortest path are generated in an edge deletion process and deposited in X, a set of the
candidate paths. The (k + 1)"" shortest path is to be selected as the shortest path from

X at iteration k + 1.
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pC=2) p'(Cx1) P(C=2) pP(C=2) p'(Ce1) PUCy  pYCed) pC=n)  plC=2

T1 Tz Tg TJ
(A) (B) (€) (D)

Figure 35. The reverse pseudo tree for the first four shortest paths *. The

. 4 .
edges to be deleted to generate new candidates for p° are also marked in red

[(Hp(v3) + edges numbered 1, 2. and 3].

The edge deletion process generates new candidates for the next shortest path.
A candidate for the second shortest path p? is generated by deleting one edge of p! at
a time from the topology graph Gr,,,, starting from the last edge e(vy, END). Initially,
we set the coinciding node of p! as < END > and delete e(v},END). This assumes
that it is possible for p? to be the shortest path from < START > to the coinciding node
without using e(vy, END), which is the incoming edge to the coinciding node <
END >. Generally, to obtain the (k + 1)™ shortest path, each new candidate is
generated by deleting the head edges in Hy,__ (v¥) and an edge e(v{_ 1, v{) of p*, where
2 < i< vk Hr,_ (v¥)is the set of edges whose head node is the coinciding node v¥

of p* in the reverse pseudo tree Ty, [Figure 35 C]. The reason for deleting the head



104

edges is to avoid generating a new candidate that is the same as a previous shortest
path. After all candidate paths have been generated from path p*, the deleted edges are
restored to the graph.

The k shortest path search algorithm uses our dynamic programming’s
constrained shortest path algorithm as the starting point. After certain edges are deleted
from Gr,p. a naive way to find a candidate path that satisfies the constraints is to scan
all the nodes v below the deleted edges to update f(w, U) that was stored at each node.
We provide Algorithm 2 for the top-k topologies search.

Algorithm 2: Finding constrained K-shortest paths
Notation:
% p* = < START = v, vf, ..., vk, = END >: the k*" shortest path.

» T: The reverse pseudo tree of the k shortest paths.

L)

¢ X : A set contains candidate paths for the k shortest paths.

®,
e

p{;: The path from node v/ to node v in the k™ shortest path.

o
%

U(p¥;): The subset of columns visited in path pf;.

0
%*

Hy, (v): The set of edges in 7, whose head node is v.

input: Gryp, K.

output: The reverse-pseudo-tree of K shortest paths, 7.
C «{1,2,3,..,N}

k1

p* « shortest path in Grop //the path with min cost

Ty < p*
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X « {9
While (X + @ and k < K) do
X« X—{p"}
v¥ « the coinciding node of p¥
Remove edges Hy, (vk¥) from Grop
for eachv¥ € pk%,
Remove edge (v¥_,,v¥)
U' « S\U(pin)
q « the shortest path from START to v¥ for the set of columns in U’

//The path verifies rr,lé'g(f(v’, U +w(',vk))
v

qeqe pJ’cc,END
X «XU{q}
End for
Restore removed edges to Gr,p,
ke k+1
p¥ « shortest path in X
T & Ti—1 + D"
End

return Ty,
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3.2 Results and Discussion

The topology graph and the dynamic programming algorithm apply in principle to
both a-proteins and a/f proteins. In practice, it is more challenging to derive topologies

for proteins with B-sheets due to the close spacing of about 4.5 A between two B-strands.
We have applied additional constraints to be biased toward known popular topologies of
B-sheets. We have used seven simulated density maps and two experimentally derived
maps in the test. The B-strand locations were visually detected since there was no
automatic tool to detect B-strands from a pB-sheet when the work was performed. To
evaluate the accuracy of the method, we have used the rank of the native topology on the
list sorted by the score.

It appears that the framework of the top-k topology algorithm generally applies to
the proteins with both a-helices and B-sheets. It was able to rank the native topology among
the top 25 for seven out of nine proteins when no B-constraints were added for p-sheets
(column 6 of Table 11). The B-sheet constraints are effective in identifying the native
topology. For example, the protein extracted from the density map with EMDB ID 1733
has 5 a-sticks and 12 B-sticks. In this case, SSETracer has detected all five a-helices and
three PB-sheets. The native topology has not been found within the top 100 topologies
without B-constraints, but it has been ranked 13" out of 7.5¢ + 15 total possible topologies
after using the constraints. Although there are 5!2512!212 =~ 7.5e + 15 different
topologies, those that satisfy the density requirement and the B-sheet constraints can be
quite limited. The results presented in this paper further support our previous finding %'
about the amazing properties of SSE topologies—the native topology is near the top of the

entire topological space.
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The results show improved accuracy and reduced memory and time in ranking the
top 25 topologies. Although we have previously proven that the secondary structure
topology problem is an NP-hard problem, with the computational approaches in this paper,
we show that it is possible to use a generic desktop to derive the topology for a large protein
with 5 helices and 20 B-strands. The results represent a major improvement in the ability
to derive the secondary structure topology automatically for large and complicated density

maps containing both a-helices and f-sheets.
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Table 11. The rank of the native topology in a-B proteins 4.

H* v =

= & 3 3 5 z

IDEMDB = 5 2 9 ¢ d
& 2 g = 5 =

5030 4/3 4/3 A 3.7e+04 1 I
1733 5/5 12/12 0,P,Q 7.5e+15 -/100 13
10Z9 5/5 5/4 A 7.7e+05 25 7
2KUM 272 3/3 A 3.8e+02 5 1
2KZX 3/3 3/3 A 2.3e+03 10 10
2L6M 22 3/3 A 3.8e+02 6 6
1BJ7 5/1 9/9 A 1.9¢+09 -/100 4
1HCX 6/3 7/ A 6.2e+08 2 1
1JL1 4/4 5/5 A 1.5e+06 22 16

a. The number of a-helices in the protein sequence / the number of a-sticks
detected from the density map.

b. The number of B-strands in the protein sequence / the number of B-strands
visually detected.

c. B-sheet ID.

d. The total number of possible topologies.

e. The rank of the native topology without f3-constraints; -/100: the native
topology not found in top 100 topologies.

f. The rank of the native topology with B-constraints.
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