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GAUSS-TYPE QUADRATURES FOR WEAKLY SINGULAR INTEGRALS
AND THEIR APPLICATION TO FREDHOLM INTEGRAL EQUATIONS

OF THE SECOND KIND

HIDEAKI KANEKO AND YUESHENG XU

Abstract. In this paper we establish Gauss-type quadrature formulas for weak-

ly singular integrals. An application of the quadrature scheme is given to obtain

numerical solutions of the weakly singular Fredholm integral equation of the

second kind. We call this method a discrete product-integration method since

the weights involved in the standard product-integration method are computed

numerically.

1. Introduction

Let S be a subset of [0, 1 ] containing a finite number of points. Define a

function associated with S by

(1.1) tos(x) = inf{\x-t\:teS}.

For a > -1 and a nonnegative integer k , a real-valued function / is said to

be of Type(a, k, S) if

(1.2) \f{k)(x)\<C[tos(x)fa-kK       x^S&ndfeCk([0,l]\S).

The parameter a is called the index of singularity. For a > 0, this notation

was introduced by Rice in [12]. We remark that if k = 0 and -1 < a < 0,

(1.2) gives

\f(x)\<}—£-—   forx^S.
n~ [tos(x)]-a

In this case, / is not necessarily continuous. In fact, / is allowed to be

unbounded at a point in S. However, if a > 0 and / is continuous, then

it is easy to verify that / G Type(a, k, S) implies that / is an a-Hölder

continuous function; i.e., / satisfies the following condition [19]:

(1.3) \f(x)-f(t)\<C\x-t\a   forx, te [0,1].

The set of all a-Hölder continuous functions is denoted by Lip(a). For a >

-1, condition (1.2) implies / G Lx[0, 1], but / may have weak singularities at

some points in S. We list some typical functions that belong to Type(a, k, S) :

f(x) = Xa and f(x) = sin(xa) for a > -1 belong to Type(a, k, {0}) for any
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740 HIDEAKI KANEKO AND YUESHENG XU

integer k; f(x) = logx belongs to Type(0, k, {0}), whereas f(x) = xlogx
belongs to Type(l, k, {0}) for any integer k . One of the goals of this paper

is to develop Gauss-type numerical quadratures for the singular integrals

(1.4) 1(f) = f p(x)f(x)dx,
Jo

where / G Type(a, k, S) with a > -1 and p a weight function that is pos-

itive a.e. on (0, 1). Throughout this paper, we assume that the integral in

(1.4) exists. A classical observation concerning Gaussian quadrature is that the

integral (1.4) can be approximated by the sum

n

(1-5) $>//(*«),
;=1

where {x¡}"=l are the zeros of the orthogonal polynomial of degree n with

respect to the weight function p, and that the error of the approximation (1.5)

to (1.4) is given by

• i
(1.6)        l/l2",({)l

P") /Jo
p(x)(x - xxy ■ •• (x - x„) dx iffeC{2n)[0, 1].

A more detailed discussion of Gaussian quadrature can be found in [2]. For

/ G Type(a,2n,S), the error bound given in (1.6) need not hold, since the

(2«)th derivative of / may not be bounded. In §2, we establish Gauss-type
numerical quadrature schemes for integrals (1.4). In §3, we also derive Gauss-
Legendre-type quadratures for a weakly singular integral, with p = 1. These

results generalize the classical Gaussian quadrature scheme described in (1.5)
and (1.6). For numerical quadratures for other types of singular integrals, read-

ers are referred to [3, 9, 11, 16, 17], and the references cited within these papers.
In §4, we describe an application of the quadrature scheme obtained in §2 and

§3 for obtaining numerical solutions of a weakly singular Fredholm integral

equations of the second kind. The method described there can be viewed as

a discrete product-integration scheme, since the integrals involved in the stan-

dard product-integration scheme are computed numerically. Examples are given

throughout this paper to illustrate the points being made.

2.  GAUSS-TYPE QUADRATURE

In this section, we assume / G Type(a ,2k,S) and establish a Gauss-type

numerical quadrature for (1.4) by nonlinear spline approximations. First, we

consider the case / G Type(a, 2k, {0}) n C[0, 1] with a > 0 and p e
Lx[0, 1]. We define a partition of [0, 1], which depends upon the index of

singularity a, and a piecewise polynomial (or spline) associated with this index.

We let q—2^ and let %a be a partition given by

i0 = 0,

(2.1) h=n-",

tj = jqtx,        j = 2,3, ... ,n.

Clearly, t0 = 0, t„ = 1, and t0 < tx < ■■■ <tn. On [t¡, tí+x], 1 < i < n - 1,

let
ti < u(/] < 4° < ••• < 4° ^'«+1
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GAUSS-TYPE QUADRATURES FOR SINGULAR INTEGRALS 741

be the k zeros of the orthogonal polynomial gitk(x) of degree k with respect
to the weight function p in (1.4); i.e.,

(2.2) f'+i p(x)g,tk(x)XJdx = 0,        j = 0,l,...,k-l.
Jt,

Recall that p is positive a.e. on (0, 1). Hence, it is positive a.e. on [t¡, ti+x] for

each i = 0,..., n-1. Now, we define a piecewise polynomial Sk over [0,1]

with knots {t¡}"~xx by the following rule: Sk(x) is the linear interpolant of f

at the points to and tx for x e[t0, tx], and Sk(x) is the Lagrange interpolant

of degree k-1 to / at {uy)kj=l for x G [í,, ti+x] and for i = 1, 2,..., n-1.

Now we use 1(5*) to approximate 1(f). Let Ek(f) = 1(f) -l(Sk). In order to

obtain a bound for the error Ek(f), we establish an inequality which is needed

later in our investigation.

Lemma 2.1. For q > 1 and a positive integer m, the following inequality holds:

(m+ l)q -mq <q(m + l)q~x.

Proof. Define the function tp(x) = xq on [m, m+ 1]. Then tp is continuously

differentiable on [m, m + 1]. Applying the mean value theorem to tp , we have

(m + l)q - mq = q£q~x   for some Ç e (m, m + 1).

Since the function xq~x is nondecreasing on (m, m + 1) for q > 1, it follows

that Çq~x < (m + l)q~x. The proof is thus complete.   D

Theorem 2.2. Let p e LX[Q, 1] and p>0 a.e. in [0, 1]. Let

/GType(a,2rc,{0})nC[0, 1]

with a > 0. Then \Ek(f)\ = cf(n~2k+x).

Proof. We consider errors contributed from each subinterval. In order to do

this, let EkJ(f) = /¿+1 p(x)f(x)dx - J¡;+1 p(x)Sk(x)dx, for / = 0, 1, ... ,

n - 1. First we consider the case 1 = 0. Since 5*(in) = f(to), Sk(tx) —

f(tx), / G Lip(a), and Sk is linear on [to, tx], we have

\Ek,o(f)\<  [" P(x)\f(x)-Sk(x)\dx
Jt0

/"' p(x)\f(x) - f(0)\dx + /" p(x)\Sk(0) - Sk(x)\ dx
Jtç, Jto

<C fl p(x)xadx + \Sk(0)-Sk(tx)\ [' p(x)dx
Jt0 Jt0

< Ctax + 1/(0) - f(tx)\ f ' p(x) dx < Ctax = Cn
Jto

where C denotes a generic constant whose value changes from time to time,

and which does not depend on n .

For  i =  1, 2, ... , n - 1, since / G Type(a, 2k, {0}), we have / G

C2k[ti, ti+x]. By (1.6), there exists n, e[t¡, ti+x] such that

\Ekj(f)\ = l^p | jT' Pix){x - uf)2 ...(x- uf)2 dx

<

,-2k

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



742 HIDEAKI KANEK.O AND YUESHENG XU

Without loss of generality, we may assume a <2k . Thus the function xa~2k

is nonincreasing on [t¡, ti+x]. It follows from (1.2) that

\Ek,i(f)\ < c\mr2k(ti+x - t,fk < ctr2k(ti+x - ti)2k

= C(iqtx)a-2k[(i+i)q-iq]2kt2k.

By Lemma 2.1, we have (i + l)q - iq < q(i + l)q'x. Thus

(2.3) \Ek>i(f)\ < Cq2k[(i + l)2k(q-l)iQ(a-2k)]ta_

Note that q(a - 2k) = %(a - 2k) = 2k(l - q). We then have

(2.4)
(i 4. \\2k(q-l)¡q(a-2k) _ 1+1

2k(q-l)
< 22k(i-x\

Combining (2.3) and (2.4), we obtain

\Fk,i(f)\ < Cq2k22k(q-Xhax = Cn~2k.

Finally, it follows that

\Ek(f)\ =

n-\

YEkAf)
1=0

n-\

<Y\Ek,i(f)\<Cn 2/fc+l

i=0

This completes the proof.   D

For our second numerical quadrature, we consider the case where / G

Type(a, 2k, {0}) with a > -1 and p e L^O, 1]. Let q = ^, and let
na be a partition of [0, 1] defined by (2.1). Define a piecewise polynomial Sk

of degree k-1 by the rule that Sk(x) = 0, x e [to, tx), and Sk is the Lagrange

polynomial of degree k - 1 to / at u^ for x e[t¡, ti+x), i =1,2, ... , n-2,

and for x e [t„-X, tn], i = n — 1, where uy are the zeros of the orthogonal

polynomial of degree k in [i,, ti+x] with respect to the weight function p. As

in the first case, I(/) is to be approximated by l(Sk). The order of convergence

of this approximation is provided by the following theorem.

Theorem 2.3. Let p G Loo[0, 1] be positive a.e. in [0, 1], and let a > -1.

Assume that f e Type(a, 2k, {0}). Then \Ek(f)\ = cf(n~2k).

Proof. As in the proof of Theorem 2.1, let
y'í+i rti+i

EkJ(f)= p(x)f(x)dx-        p(x)Sk(x)dx,        i = 0, 1,...,«- 1.
Jt, Jt,

Then

|£*,o(/)l < llPlloo ftl\Ax)-Sk(x)\dx
Jto

C [ ' \f(x)\ dx<C / ' xadx< Ctax+X = Cn
Jto Jto

-2k-\

For i > 1, by using (1.6) and Lemma 2.1, we find

\EkJ(f)\<
\fi2k)(r,i)\

(2k)\

r'i+i

Jt,
p(x)(x - uf)1 ■ ■ ■ (x uffdx

< \r\i\a-2k(ti+x - ti)2k+x < Ctr2k(ti+l - ti)2k+x

= C(iqtx)a-2k[(i+l)q - ¡«p+1lf+l

< Cq2k+X(i+ \)(9-l)(2k+l)¿q(a-2k)ta+\_
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GAUSS-TYPE QUADRATURES FOR SINGULAR INTEGRALS 743

Since q(a-2k) = q(a+l)-q(2k+l) = (2k+l)-q(2k+l) = (l-q)(2k+l),
as proved in (2.4), we have the following estimate:

\Ek,i(f)\ < Cq2k+x2(q-x^2Mhay+x < Cn-2k~x.

Therefore,
n-\

YEk,i(f) <Cn~2k.
i=0

\Ek(f)\ =

This completes the proof.   D

The degree of approximation of the second of the above methods is of order

j¡ smaller than that of the first method, owing to more smoothness of the weight

function p(x). Before we describe generalizations of Theorems 2.2 and 2.3, it

is useful to recall the product-integration scheme of [10] and [16], which can be

used to approximate integrals of the form

(2.5) I(W_'p(x)f(x) dx

for certain classes of weight functions p. Here we take x„, (1 < i < n, n > 1)

to be the set of Chebyshev points, i.e., the zeros of the «th-degree Chebyshev

polynomial of the first kind. By L{(x) we denote the Lagrange polynomial of

degree less than n that interpolates / at x„,. The integral in (2.5) is now

approximated by

/l n
p(x)Lfn(x) dx = Y Wnif(Xni),

-X ,= 1

where w„i = j_lp(x)l„i(x)dx and /„, is the fundamental Lagrange polynomial

of degree n-1 suchthat /,
identity, we obtain

(2.7)

where

x„j) = ôij. With the aid of the Christoffel-Darbouxniy-A-nj

Wni =     -
1 ""'
tzOo + Y ak cos(^ cos   l X„i)

k=\

(2.8) ak= I   p(x)Tk(x)dx,

and Tk is the fcth-degree Chebyshev polynomial of the first kind. Piessens
and Branders [10] developed recursion formulas for a few choices of p(x) to

evaluate the number ak in (2.8). These values are subsequently used to compute

wni. The order of approximation of the product-integration scheme is given by

\\f{k)\\oc
(2.9) |I(/) -I„(/)| <(f)   wi(n-l)---(n-k+l)'

provided that / G C{k)[-1, 1] and n > k + 1.
Theorems 2.2 and 2.3 generalize the method of [10] and [16] in the following

sense. First, in order to obtain the order of the approximation given by (2.9), it
is necessary that / be sufficiently smooth as indicated in (2.9). Second, in the

product-integration method, the weights in (2.7) depend upon the function p.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



744 HIDEAKI KANEKO AND YUESHENG XU

Also, in many examples which are suited for the product-integration method of

(2.5), the weight functions can be included as a part of the function / in (1.4).

More specifically, in Example 3.2 below, we consider the integral

/Jo

VI 21
v dx,    with X = 1.
y/\X-x\

To apply the current method, we let p = 1 and f(x) = J\x - j\/^\X- x\ in

(1.4). Subsequently, we can use Gaussian quadrature, for which the weights

are already tabulated. Examples supporting these assertions will be given in the

next section.
Next, we extend the results obtained in the first part of this section to more

general cases, where S contains more than one point. Assume 5 = {0 = sx <

S2 < ■ ■ ■ < sm < sm+x = 1} . Let /G Type(a,2k, S). Set

X2i-\=Si,       i = \,2,...,m + l,

i
2t2i = \(Si + si+x),        i =1,2, ... ,m.

In each interval [t, , t,+i] , the function ßk^(x) has only one singularity. Name-

ly, a singularity is located at x, if i is odd and at t,+i if i is even. In the

ensuing discussion, we assume that /(¿) has a singularity at the left endpoint

t, . The case for which /(/c) has a singularity at the right endpoint t,+i can be

handled similarly. Let

t=   x~Ti
Ti+1 - T;

Then by change of variables, we obtain

/•Ti+i /•!

/        P(x)f(x) dx = (Tf+i - T;)  /    p(Zi + (T;+1 - Xi)t)f(li + (Tf+i - T,)í) dt.
Jt, Jo

Denote

p(t) = p(T, + (T/+i - Xi)t)   and   f(t) = /(t¿ + (t/+1 - x¡)t).

If a>0, peLx[0, 1] and / G Type(a, 2k, S) n C[0, l],then peLx[0, 1]

and / G Type(a, 2k, {0}) n C[0, 1]. Applying the first quadrature scheme of

Theorem 2.2 to

(2.10) \(f)= f p(x)f(x)dx,
Jo

we obtain an order of convergence cf(n~2k+x). If a > -1, p e L^O, 1], and

/ G Type(a, 2k, S), then p G LoJO, 1] and / G Type(a, 2k, {0}). Now
applying the second quadrature scheme of Theorem 2.3 to (2.10), we obtain an

order of convergence tf(n"2k). We summarize the above discussion in the next

theorem.

Theorem 2.4. (i) Let p e Li[0, 1], p > 0 a.e. in [0, 1], and feYype(a,2k,S)
n C[0, 1] with a > 0. Then the error of the first quadrature scheme described

above is given by \Ek(f)\ = cf(n~2k+x).

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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(ii) Let p G Loo[0, 1], p > 0 a.e. in [0, 1], and f e Type(a, 2k, S) with
a > -1. Then the error of the second scheme is given by \Ek(f)\ = cf(n~2k).

Remark. As indicated in Theorem 2.4, the orders of accuracy of the quadrature

schemes are independent of a. Thus, it is not necessary for / to have the

same degree of singularity at all the points in S. This is demonstrated in an
example given at the end of the next section.

3. Gauss-Legendre-type quadratures

In this section we shall develop a scheme which will be called Gauss-Legendre-

type quadrature. In practice, one of the most interesting cases of Theorem 2.3
is when the weight function p(x) = 1 on [0, 1]. In this case, our Gauss-type

quadrature scheme of Theorem 2.3 can be simplified. We consider the following

integral

(3.1) 1(f) = [ f(x)dx,
Jo

where / G Type(a, 2k, S) with a > -1.

Since p = 1, the zeros of the Legendre polynomial

(3.2) gk{x) = -L.JÍ.{x2_l)kí        XG[-1,1],

of degree k will be used as the interpolation points. As before, we assume

S1 = {0} without loss of generality. Let q = ^±p. Define a partition na of

[0, 1] as in §2, i.e.,

(3.3) na:to = 0,tx = n-q,tj = jqtx,       j = 2,3,...,n.

Now we use

(3.4) 1(f) = f f(x) dx = Y f+' Ax) dx
Jt, I=1 Jt,

to approximate I(/). In order to evaluate î(/), we introduce a mapping

(3.5) s=2x-(tM+ti)t
ti+l - t¡

which maps [t¡, ti+x] to [-1, 1]. Hence

(3.6) 1(f) = J_F(s)ds,

where

n-l

(3.7) F(s) = Y i(íi+i - ti)AWi+x - ti)s + \(ti+x + ti)).
/=i

Assume that u, (i = 1, 2, ... , k) are the zeros of Legendre polynomial of

degree k. Let Sk be the Lagrange interpolation polynomial of degree k - 1

which interpolates F at u,. Then

k

Sk(x) = YF(ut)li(x),
1=1

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



746 HIDEAKI KANEKO AND YUESHENG XU

/,.(*) = TT *-JÍ¿
11  Ui - Uj
7=1 J

where /, are the Lagrange fundamental polynomials of degree k - 1 defined by

k
X - Uj

Ui - Uj

j*i

In (3.6), we replace F(s) by Sk(s) to obtain

k -1

l(Sk) = Y\wiF(Ui),    where w,■= /   ¡¡(x)ds.
,=i J~x

By applying Theorem 2.3, we have the following theorem concerning the accu-

racy of our Gauss-Legendre-type quadrature scheme.

Theorem 3.1. Let f G Type(a, 2k, {0})  with a > -1.  Let Ek(f) = 1(f) -
l(Sk), where 1(f) and l(Sk) are defined by (3.1) and (3.4), respectively. Then

\Ek(f)\= of (n~2k).

Proof. Note that

!(51k)=   /  Sk(x)dx= Í  YF(Ui)U(x)dx
J-x J-\ i=l

/l    k   n-l
EEî^1 - 0)/(i(0+i - 0)"« + i(0+i + tj)Mx)dx

1 1=1 ;=1

w—1 fc      «i

= E i(0+i - 0) E /  /(e(0+i - 0)"« + è(0+i + 0))'«M ¿*-

Let

u\j) = \(tj+x - tj)u, + \(tj+x +tj),        i = 1, 2, ... , k, j = 1, 2, ... , n - 1.

Then

j=i ,=i J'j v    y+> - r;    /

= e/ em1) n ¡^V*-
j=x -"j   i=i        p=i, p^,- ",-    mp

Define a piecewise polynomial of degree k - 1 by S^M = 0, for x e [to, tx]

and
it ¿        _   y)

sk(x)=yf^(p) n xu)UpU) for *e &> íí+i),
i=i    p=i w,- mp

where i = 1,2,..., n — 2, and for x G [/„_i, /„] if i = n — 1. Thus, we can

rewrite l(Sk) as follows,

l(Sk)= f"sk(x)dx = l(Sk).
Jt,

Applying Theorem 2.3, we obtain \Ek(f)\ = |I(/) - l(Sk)\ = cf(n~2k).   D

The above quadrature formula and Theorem 3.1 can be extended to the gen-

eral case where S contains more than one point, as we have done in §2.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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Numerical examples.

Example 3.1. In this example, we compare our method of Theorem 3.1 with

the Gauss-Chebyshev integration rule of the first kind ([3, p. 98]),

j (l-x2)-x'2f(x)dx

(3.8) "'

where x, = cos^2'^1^) for i = 1, ... , n . Consider

J-\ \f\x\

Of course, we use f(x) = Vl - x2/^/\x~\ in (3.8). For our present method,
the linear (k = 2, q = 10) and the quadratic (k = 3, q = 14) polynomials
are tested. The following data list the respective quadrature errors and their

decay exponents (briefly, decay exp.). Each decay exponent is computed by

lWmJn) > where e„ denotes the error of the approximation for the value n.

Notice the inadequate performance of the Gauss-Chebyshev method in the case

of nonsmooth / in (3.8).

Data 1: present method

n     Errors (k = 2)    decay exp.     Errors (k = 3)     decay exp.

8 2.23£ - 1 9.22£ - 2

16 3.38£-2 2.72 6.64£ - 3 3.80

32 3.21£-3 3.40 2.87£ - 4 4.53

64 2.40£-4 3.74 6.11£-6 5.55

Data 2: Gauss-Chebyshev method

n Errors

8 7.47£ - 1

16 5.33£-l

32 3.78£-l

64 2.34£ - 1

There are numerous other quadratures of Gauss type in which an integral of

the form Jaw(x)f(x)dx is approximated by a sum of the form YJnk=\wkf(xk),

e.g., the Gauss-Chebyshev rule of the second kind ([3, p. 98]), the method of
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A. Young ([3, p. 176]), etc. Additional numerical experiments indicate that

none of these methods performs adequately in the case of nonsmooth function

/. The integral in the above example can also be dealt with by the method of

Stenger[18].

Example 3.2. In this example we compare the present method with the product-

integration method of [10] and [16]. We consider

Jo     y/l-X

We evaluate this integral by computing

Jo      y/l-X JX/2    vl-x Ji/aVI-X

where the integrands in the first two integrals belong to Type(j, 2k, {j}) and

the one in the third belongs to Type(-j ,2k, {!}) for each k . The integer n

represents the total number of knots taken over [0, 1]. The number of knots

are distributed proportionately to the lengths of intervals so that § were used
for the first integral and \ for the second and the third integrals. Piecewise

linear polynomials were used. The exact value is 1.051818151074224.

Data 1: present method

n Errors        Decay exp.

16 4.68£-3

32 4.45£-4 3.39

64 3.58£-5 3.63

128 2.54£-6 3.81

Data 2: product-integration method

n Errors        Decay exp.

16 5.30£-3

32 1.87£-3 1.50

64 6.64£-4 1.50

128 2.35£-4 1.50

Because of the recursion formula used to compute the weights, the product-

integration method required more CPU time to execute than the current method.

As with the Gauss-Chebyshev method of Example 1, the product-integration

method of (2.6) does not perform adequately in the case of nonsmooth /.
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4. Discrete product-integration scheme

In this section, we describe an application of the quadrature methods in §2

and §3 to obtaining numerical solutions of weakly singular Fredholm integral

equations of the second kind. The particular numerical method which we use

is product-integration. To familiarize the reader with the problem, we give a

brief introduction to the product-integration method. The equation in which

we are interested is given by

(4.1) tp(x)- /  ga(\x-y\)m(x,y)tp(y)dy = f(x),       0 < x < 1,
Jo

where ga, m , and / are known functions and tp is the function to be deter-

mined. Moreover, m represents the smooth part of the kernel, and we assume
that ga is of the following form:

,,. „ n     ¡\x-y\a, -l<a<0,
(4.2) ga(\x-y\) = \

I log\x-y\,       a = 0.

The equations of the form (4.1) with kernel (4.2) arise in many interesting

applications, e.g., [5] and [7]. Regularity properties of the solutions of equation

(4.1) were studied by Graham [4], Richter [13], and Schneider [14]. That the
result of Schneider can be extended to hold for weakly singular Hammerstein

equations was shown in [6]. Writing Ktp(x) = ¡0 ga(\x - y\)m(x, y)q>(y)dy,

equation (4.1) becomes

(4.3) tp-Ktp = f

Denote q = £? , where A: is a positive integer. We let

<^m- ««f.(4.4)
n

Xj, B = t      Xn—j t n , x s y S 1 i

and let xjt„ < sXJ < s2j < ■■■ < skJ < x/+i,„ be any k distinct points in
[Xjt„, Xj+ifH] for each j = 0, 1,..., n - 1. Approximate tp by tpn whose

restriction to [X/,R, X/+i,R] is the polynomial of degree k—1 interpolating

tp at {s,j}k=x. Upon replacing tp in (4.3) by tp„, we obtain an approximate

equation

(4.5) (pn(x)-YY(P"^Si'}H Sa(\x-y\)m(x,y)lij(y)dy = f(x),
j=0 1=1 Jxi."

where
k        _

M?) =  ] I   /   _^'7        for y&[Xj,n, Xj+i,n].

P4i

Equation (4.5) can be solved by letting x = sp,r for 0 < r < n - 1  and

1 <P < k■ Denote

rxj+i .i

(4.6) wijn(x)= ga(\x-y\)m(x,y)lij(y)dy,
Jxi  „
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and

n-\   k

(4.7) Kntp(x) = YYWiJn(x)Ç>(Si,j)-
7=0 i'=l

Equation (4.5) now becomes

(4.8) <pn-Kntpn = f.

A main characteristic of the product-integration scheme is that the weights (4.6)

are computed exactly. However, in practice, this may not be an easy task to

carry out, because of the complexity involved in the form of m. The dis-

crete product-integration scheme is the product-integration scheme in which

the weights (4.6) are computed numerically. The product-integration scheme

of Piessens and Branders, and that of Sloan, can be used to accomplish this.
But, a slight modification in the form of the kernel makes the recursion formu-

las developed in [10] inapplicable. Also, an application of a more direct and
efficient numerical quadrature scheme to evaluate (4.6) is less expensive compu-

tationally than applying the product-integration scheme as pointed out earlier.

In this paper, we apply the Gauss-Legendre-type quadrature of Theorem 3.1 to

compute (4.6).
A standard argument [8, p. 176] shows that {K,,}^ , with each K„ viewed

as a linear operator of C[0, 1] into itself, is a sequence of collectively compact

operators which converges pointwise to K in C[0, 1]. For the theory of col-

lectively compact operators, readers are referred to [1]. Moreover, Schneider

[15] showed that

(4.9) \\<p-<Pn\\oc=@(n-k).

We denote by w*jn(x) the numerically computed value of (4.6) using the Gauss-

Legendre-type quadrature. By virtue of Theorem 3.1, we find

(4.10) \wijn(x)-w*jn(x)\=cf(n-2k)

for each x e [0, 1], 1 < i < k , and 0 < j < n - 1. Let

n-\   k

(4.11) K*Mx) = YYwUn(x)<P(Si,j),
j=0 1=1

so that the discrete product-integration method can be written as

(4.12) tp*n-Kn<=f-

By evaluating both sides of equations (4.8) and (4.12) at {s¡j}, we obtain

respectively the corresponding matrix equations,

(4.13) <p-n-K„<i>n=f

and

(4.14) Tn-Kr„=f,
where

(4.15)     J=(J'i>jï
= (/(Jl,0), ••• ,f(sk,o),f(S\,l), ••• ,/(Sfc,l), ••• ,f(sk,n-l))T,
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(4.16)
<Pn = (<Pn(S\,o), ••• , <Pn(Sk,o), <Pn(S\,l), ••• , <Pn(Sk,l), ••• . <P(Sk ,n-\))T,

and

(4.17) Kn = (Wij„(Sptq))   for 1 < i, p < k and 0 < j, q < n- 1,

is a (kn) x (kn) matrix. Also, ^* and Kn are obtained similarly by replacing

tp„ in (4.16) and w¡jn in (4.17) by tp*n and w*jn , respectively. We are now in

a position to prove the main result in this section.

Theorem 4.1. Let tpn and tp* be the solutions of (4.8) and (4.12), respectively.

Then \\tp„ - tp*]^ = t?(n~2k+x).

Proof. Since {K„}™=x is a sequence of collectively compact operators converg-

ing pointwise to K in C[0, 1], an application of the Banach-Steinhaus theorem

[1] shows that

k   n-\

(4.18) SUPE E \w'Jn(s)\ < °°    f01* eacri ̂  G [0, 1].
"    i=l j=0

Let || • | |oo denote the matrix norm associated with the supremum norm on

Rkn . Then by the definitions of the matrices Kn and K*n , we have

k   n-\

(4.19) \\Kn-Tn\\00=    max    ^^|%(if,,)-w,yip,()|.
i<P<k , r,

0<q<n-\   '=' J=°

Denote

wn(x) = (wXOn(x), ... , wk0n(x),wXXn(x), ... ,wkXn(x), ... , wk{n_x)n(x))

and define w*n(x) similarly. We observe that

tpn(x) =Wn(x)(In -Kn)-Xf + f(x)

and
tp*(x) = w*n(x)(In-K*n)-xf + f(x),

where /„ denotes the (kn) x (kn) identity matrix. Hence,

tpn(x) - tp*n(x) = wn(x)[(In-Kn)-xl-(In-K*n)-xn

+ [w„(x)-w*n(x)](In-Tn)-xf

= wn(x)(In - Kn)-x(Kn - Tn)(In - Tn)-Xf

+ [w„(x)-w*n(x)W*„.

It follows from (4.18) that

k   n-\

(4.20) ||í9„ - Ç>*||oo < Ci \\K„ - Jë^Hoo + C2    SUP   Y J2 \WUn(x) - W*jn(x)\-
xWAxtiU

Since w,j„ and w*¡n are a-Hölder continuous on [0, 1 ], there exists an xo G

[0,1] suchthat

\Wijn(Xo) - W*jn(x0)\ =    SUP    \wijn(x) - W*jn(x)\.
xe[0,i]
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Combining (4.10), (4.18), (4.19), (4.20), and the above equation, we obtain

II*. - rtlL = Cn~2k+l,

where C is a constant independent of n . This completes the proof.   D

Corollary 4.2. Let tp and tp*n be the solutions of (A.3) and (4.12), respectively.

Then \\tp - tp*n\\00=cf(n-k).

Proof. Schneider [15] showed that \\tp - tpn\\oo — cf(n~k). Hence, using

||ç9 — ̂ >*Hoo < \\tp - tpn\\oo + \\<Pn - <Pn\\oo and Theorem 4.1, we obtain the desired

result.   D

If the points s¡j are selected as the zeros of the Legendre polynomials trans-

formed into [x/„ , Xj+Xt„], Theorem 3 of [15] yields the following supercon-

vergence result.

Corollary 4.3. Let tp and tp*n be the solutions of (4..3) and (4.12), respectively.

If in (4.4) we let q = "*ffi for ß g [q + 1, k + 1], or in the logarithmic case

q = aXß++X-e w'm 0 < e < |a|, then

/ cf(n~k+a) for -\<a<Q,

L <f(n K 'log« in the logarithmic case.

In the following example, a = -\ and ß = \ , so that a + ß + 1

Example 4.1. Consider

tp(x)- [  -^L=dy = f(x),        0<x<l,

where / is selected so that tp(x) = ^/x(l -x) is the solution. Piecewise

linear (k = 2) and quadratic (k = 3) polynomials are used. Select {x;,„}"=0

according to (4.4) with q described in Corollary 4.3, and let {stj}k=x be the
zeros of the Legendre polynomial of degree k transformed into [Xj > „, Xj+ x>n].

It is necessary to compute

/Jx, ^

dy   foxi<i<k, 0 <;'<«- 1.

These integrals are approximated by the quadrature scheme of Theorem 3.1

with a = -\ and S = {s¡j} . Table 1 lists max,;7 \tp(s¡j) - <pZ(s¡j)\ .

Table 1

n linear        decay exp.     quadratic     decay exp.

16 8.52£-3 1.98£-4

32 1.66£-3 2.36 2.00£ - 5 3.31

64 3.15£-4 2.40 1.89£-6 3.40

128 5J3E-5 2.46 1.72E-7 3.46
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