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Abstract. A two dimensional system of autonomous
nonlinear ordinary differential equations models glacier
growth and temperature changes on an idealized planet.
We apply standard perturbative techniques from dy-
namical systems theory to study small amplitude pe-
riodic orbits about a constant equilibrium. The equa-
tions are put in cononical form and the local phase space
topology is examined. Maximum and minimum periods
of oscillation are obtained and related to the radius of
the orbit. An adjacent equilibrium is shown to have sad-
dle character and the inflowing and outflowing manifolds
of this saddle are studied using numerical integration.
The inflowing manifolds show the region of attraction
for the periodic orbit. As the frequency gets small, the
adjacent (saddle) equilibrium approaches the radius of
the periodic orbit. The bifurcation of the periodic orbit
to a stable homoclinic orbit is observed when an inflow-
ing manifold and an outflowing manifold of the adjacent
equilibrium cross.

1 Introduction

Since the pioneering work of Lorenz in the early 1960’s
toy models have played an important role in both geo-
physics and dynamical systems. The idea behind toy
models is appealing. By considering an idealized planet
~ with a restricted number of physical processes, insight
may be gained into how the processes interact. Toy cli-
mate models, for example, have been used as “sanity
checks” for the results from primitive equation based
climate simulations.

Mathematically the model takes the form of a two di-
mensional nonlinear ordinary differential equation relat-
ing the annual average radiation temperature of a planet
to the fraction of the planet’s surface that is glaciated.
Introduced in Posmentier (1990), this model has numeri-
cally demonstrated periodic, period doubling, quasiperi-
odic, chaotic and catastrophic solutions. The more com-
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plicated solutions were obtained by perturbing the lin-
ear part of the autonomous equations with periodic time
dependence. '

In this paper, we simplify the model by considering
an autonomous formulation and examine the types of
invariant manifolds that are produced. The idea be-
hind this approach is to study the long time behavior
of solutions initially in various neighborhoods of phase
space. Analytic approximations may be used to deter-
mine some of these manifolds, so parameter interplay
may be related to phase dynamics.

The model is introduced in Sect. 2. A constant equi-
librium temperature/glaciation is chosen in Sect. 3 and
other equilibria are discussed. In Sect. 4, Poincare-
Andronov-Hopf bifurcation is used to obtain a periodic
orbit encircling the chosen equilibrium. An adjacent
constant equilibrium is determined in Sect. 5 and shown
to have saddle character. Minimum and maximum fre-
quencies of the periodic orbit and deviations from the
chosen equilibrium are discussed in Sect. 6. Numerical
solutions demonstrating the bifurcation of the periodic
orbit to a homoclinic orbit are given in Sect. 7.

2 Formulation

The following equations represent the model:

G RG(1-G)— AG-BT+C
T = LG-KT*+F(1-G). (1)

Here G is the percent of the planet surface covered by
glaciation and T is the average radiation temperature
of the planet. Although the model does not account
for geographic variability or the presence of an ocean it
does account for a number of physical processes that are
believed to be important in climate fluctuations.

The first term in the function for G accounts for the
portion of the total planetary evaporation that falls on
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the glacier, thus contributing to its growth. The pa-
rameter R is proportional to the evaporation rate. The
term AG accounts for enhanced melting when the glacier
grows and advances towards the equator. Next, BT ac-
counts for the balance between enhanced melting and
increased precipitation when the temperature rises. For
B > 0 the melting dominates and B < 0 the precipita-
tion dominates. The constant C is used as a planetary
constant and will be determined by choosing an equi-
librium temperature. The parameters A, B, C will be
considered soft and used to tune the model.

In the equation for T', the first term LG accounts for
warming associated with latent heat released by growth
of the glacier. The parameter L is proportional to the
latent heat of evaporation. The long-wave black body
radiation leaving the planet is accounted for by KT*
with K being proportional to the black-body emissivity.
Absorption of short-wave radiation by the non-glaciated
portion of the planet is represented by F (1 — G) with
F being proportional to the albedo of the bare planet
surface.

3 Equilibrium solutions

The simplest solutions of (1) are values of G and T where
G = T = 0. While physically rather uninteresting, equi-
librium solutions provide a mathematical template of
phase flow. Locating such points and determining the
stability of each provides neighborhoods in phase space
where solutions have predictable behavior. In this sec-
tion we choose an equilibrium with the soft parameter
Cin (1).

To locate constant equilibrium solutions we observe
that (1) may be written as

ERIEE

[RG(I—G)—AG—BT+C]

_KT*+F(1-G) )

One root of the right hand side of (2) may be chosen
using the constant C as follows. First substitute

G=1-xT* (3)
where we have written

K =kF (4)
for convience. Then we solve

~ Rk*T® 4+ (Ak + Rk) T* ~ BT+ C - A=0. (5)

We may choose an equilibrium temperature T, by set-
ting

C=Re*T — (Rk + Ak) T+ BT. + A (6)
With this choice of C, we factor (5) to obtain

(T - T.) {~R&k?*T" — T.Rk*T® — T2 Rk*T®
—T2Rk*T* + &k (R— Re T+ A) T®
+Tex (R— Re T} + A) T?
+T2k (R— ReTE+ A)T
—Re*T] + T2 Ak + T2Rx — B} = 0. N

Other equilibria must be roots to the above seventh
order polynomial which depends, among other parame-
ters, on the chosen equilibrium T,. Notice that a second
distinct equilibrium must exist provided the chosen T,
is not a double root of (5). We will return to (7) in
section 5 to locate the other root and see what happens
when T is a double root after the parameters A and B
have been related to physically meaningful quantities.

The k (2 < k < 8) equilibrium solutions of (1) may
be indexed as

Gi | _ 1-kT8
2] ] ©)
where T; is a solution of (7) for i = 1,2,...,kand T} =
Te.

4 The chosen equilibrium

To study the dynamics near the equilibrium ¢ = 1 in (8)
we follow a standard perturbation method which can be
found in Hale and Kogak (1991). We begin by translat-
ing this equilibrium to the origin. Let

Gd = (lj1-|-1—K‘rT¢;1 (9)
T = Y2 + T.. . (10)
Equations (1) with C given by (6) then become
y=Ay+1£(y) (11)
~ | U
where y = [ Vs ],
A=
2RkT!~R—-A -~B (12)
2LRkT¢~LR—LA—-F —LB-~4xkFT3
and
f(y)=
Ry% (13)
LRy + k Fyt + 4k FRT, + 6 6 Fy2T2 |°

4.1 Periodic orbits

In (11) the linearized flow (f = 0) is topologically gov-
erned by the eigenvalues of the coeficient matrix A. If
the eigenvalues are of the form a+1w, then for w # 0, all
solutions will spiral toward zero for o < 0, spiral away
from zero for @ > 0, or form a periodic orbit about zero



for & = 0 with a rotation period of 27/w. Clearly, how-
ever, the periodic orbits of the linear system are struc-
turally unstable.

The nonlinear flow of (11) is much more interest-
ing since structurally stable periodic orbits can exist
for & > 0 through Poincare-Andronov-Hopf bifurcation.
While the period of these orbits is near 27 /w, the shape
and size depends upon detailed analysis of the nonlinear
term f.

The eigenvalues of A are (tr(A) + 4/ disc(A)) /2 where
disc(A) = tr(A)? — 4det(A) is the discriminant, tr(A)
is the trace, and det(A) is the determinant of the two di-
mensional matrix A. To obtain eigenvalues of the form
o+ 1w we write the soft parameters A and B in terms
of & and w. Specifically, if we set tr(A) = 2« and
det(A) = a? + w? then we have the following system

QRkTi— R~ A—-LB-4KkFT8 =20

4Rk FT2 — 8 RK*TF + 4 Ak FT3 — BF
=o? +w? (14)

which may be solved to obtain

_16K*FT) + 8k FTRa + o® +w?

B = F(L+4xT3L)

1
T F(1+4xT3L)

{2RkTF + 8 Rk FL — RF —4RFxT3L
~4Kk F*T8 —2Fo+ L(a? + w?)}. (15)

It should be noted that in (15) since all parameters
are real, we are choosing A and B to provide complex
conjugate eigenvalues of the matrix A. Since our goal
is analyzing periodic orbits, this region in (4, B) space
is advantageous.

Examining the equation for B in (15) we see for « > 0
that B < 0. Since the periodic orbits require @ > 0,
this provides an interpretation of the balance between
enhanced melting and increased precipitation when the
temperature rises, as described in Sect. 2. Thus for pe-
riodic orbits to exist, the increased precipitation must
dominate the enhanced melting. The case where B > 0,
requiring o < 0, gives the uninteresting result of a spi-
ral.

When (15) is put into (12) the system (11) will behave
as desired. When this is done, we get

1
F(14+4LkT3)
4k F2T2 16 k2F2TS
{ [ —F? -4k F2T3 ]
2F 8kFT3
2LF 8LkFT?

+ @) [ 5] (16)

Note that f(y) defined in (13) remains unchanged since
A and B are coefficients of exclusively linear terms.

A

- A(e,w)

+ af
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4.2 Stability and bifurcation

Putting (11) in a form amenable to analysis, we seek a
transformation of the form

y = Pu

(17

where P is a nonsingular matrix such that

(18)

To calculate the transformation matrix P we deter-
mine the eigenvectors of the matrix A. Recall that if a
matrix has eigenvalues @+ 1w, then the eigenvectors are
of the form & + 1&;. Then we form the transformation
matrix by setting P = [& [Ei]. Having done this, we
see that

P‘IAPz[ @ “’].
—W 473

4K F2TS 0
= [T G
N ALKFTS—F 0
—2LF 0
. w[g —F(1+04/chL)]

(19)

To study the stability of the Poincare-Andronov-Hopf
bifurcation we let @ = Aw and consider [A| < 1. Trans-
forming time to 7 = wt the system (11) with (17) be-
comes

+ (a2+w2)[£’2 8]

u'=[_01 é]u+g(u) (20)

where ()' = £ and

g)=Ju+ —P-lf(Pu). (21)
Now we make the coordinate transformation

u=r [ —f:isneﬁ ] . (22)

rl

6/
can be shown that 5% > 0 in a neighborhood of » = 0.
Consequently 7 may be eliminated to obtain the one
dimensional equation

dr
do
The “Big O” notation is slightly abused in that the co-
efficients of the higher order terms are 2 7 periodic de-
pendent on 6.

The coordinate transformation to eliminate the # de-
pendence in the first few terms of (23) is of the form

r=p+ba(),8) p* + b3(), 8) p° (24)

From the form of [ ] when (22) is used in (20), it

=Ar+c(X,0)ri+c3(2,0)r® + O@r?). (23)
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where b3(X,0) and bs(A,8) are chosen to be 27 peri-
odic in §. When this transformation is put in (23) the
resulting differential equation for p is

dp dbsy
E = )\p+ (Cz-—%—)\b >
db db

+ (63 + 2b; d; —dj} ~ 2X(bs + bzz)) o’

+ 00, (25)
By requiring

db2

('\ ) = ca()0)-2())

db3 dbz(A )

(/\ 0) = cs()\ 9) + 2b2(/\ 9) - 53(/\)

(26)

where the constants Z3(A) and €3()) represent the “av-
erage” of the coefficients c3(A, ) and cs(A, 6) by

2mr
& () =§.1; /0 ca(), ) ds
E3(A) =

%AZW (ca(,\,s) + 2530, 6) dbzt(i; 9))

2r

1
=3/ cs(A, s)ds 27

we obtain the desired transformation.

From the symmetry in forming (23) from a two di-
mensional equation, é; = 0. With the transformation
(24) and the defintion (26) we obtain

3—;’ =Ap+ (E+O(N) p° + O(p*). (28)

We analytically determine &3 to be

G = < kT, ) (L2w2 + F2>
1+4LkT3 208

{ 3L* (10Lk FT? + T.R+ F) w*

+ (48 L?F2kTIR — 72 L*F3x*TS
+8 LFk T R? — 12 LF*k TER
+30 LF3k T2 + 2 FT2R? + 3 F®) w?

+ 8Kk*TPF3(2T.R-3F)(8LRkT!
+2T.R+3F) }+O0(A). (29)

The stability of (28) is determined by the sign of &s.
Parameter ranges such that ¢z < 0 will give rise to a
stable nontrivial periodic orbit about the origin. Let-
ting a represent the radius of the periodic orbit in u
coordinates, we have the approximate bifurcation curve

Ma) = —23a’+ 0(a®) , a — 0. (30)

5 The second equilibrium

Since the polynomial (5) is of even order and we chose
one real root using (6), there must exist a second real
root. In this section, we find an asymptotic approxi-
mation for this second equilibrium. With an analytic
approximation for the second equilibrium we may ana-
lyze the topological character of the dynamics near this
equilibrium. Also, the proximity of this equilibrium with
respect to the chosen equilibrium is of interest.

5.1 Approximation

In choosing an expansion parameter, we notice that set-
ting @ = w = 0 in (15) and putting this in (7) causes T,
to be a double root. This can be seen by factoring the
resulting polynomial to obtain

(T — T.)* { — Rk*T® — 2 Re*T, T® — 3 R?T2T*
o33 T2(12LRkT2+3 RT.+4 F‘)n
-4 Re*T,T° — TF4RT3L
_2T{(4LReT}+RT.+4 F)n
1+4rT3L
_TJ(12F+RT.+4 LRxT¢)x?
1+4xT3L }

=0. (31)

Clearly with the choice of & = w = 0 the Jacobi ma-
trix evaluated at the first equilibrium is singular. How-
ever, this does provide us with convienent expansion
parameters. We will use the approximate radius of the
orbit about the first equilibrium, a, as an expansion pa-
rameter instead of o so we can relate the expansions to
the phase dynamics. The coefficients of a in the expan-
sion are then approximated for small w.

To obtain an expansion in a for T in (8), we substi-
tute (15) in (7) using (30). Recalling that & = Aw and
C3 is given from (29), we let

T2=I‘0+I‘1a.+1"2a2+0(a3) (32)

and see that I'y is the root of the seventh order polyno-
mial

—Rk?*T" — Rk*T,T¢ — R*T2T® — Rx2T3T*
n(RnT P44 Re*T!FL+Luw? —4nF’T3)
F(I+4xT3L)
xTo(Rx T2F+4 Re*TIFL+Lw? 4k F’TS)
+ F(1+4rT3L)
. T2(Rx T‘F+;R~’T7FIS,+Lw ~4x F2TY) T
(1+4xT3L)
12k F3T8 4w+ k> FTIR+4 k* FTI° LR4w3k T3L _
+ F(1+4xT3L) =0. (33)
Assumming now that
To=y+nw+mnw’+0w (34)
we obtain
Iy = T4 (1+4xT3L) o

8FT5r? (2RI, + SLRK T2+ 3F)
+ OwY). (35)



Now using (35) in (32) the terms I’y and T3 can be
found from (7) with (15), (30), and (29). With the re-
sultant approximation of T, G is found using (8), and
we obtain the approximation for the second equilibrium

as
- G2 1_K'Te4
vea=| Z]- '
__ (1+4nTir) TTF |
= QGRI.¥8LExTi+3F) 1 w

8FTEk3
38F*(2 RT.-3F) -k T2
+ I RT. 78RR TI45F [ & ° ]“2
O(w*) + O(w?a?)
+ [ O(w4) +O(w2a2) : (36)

5.2 Saddle character

We may now use the approximation (36) to evaluate
properties of the linearization of (1) about the second
equilibrium. Instead of re-translating to the origin as
in (9), we take advantage of the form of (36) and use
the coordinates y already in use. This should avoid
confusion about which origin is being discussed, as y =
0 will still be the chosen equilibrium.
The Jacobi matrix of (11) is

J(y) =A
—2Ry1 0
t| 2LRy, —4k Py} — 12 Fy2T, — 12k Fy, T2
(37)

where the matrix A is defined in (16).

Using (36), we approximate the discriminant of J to
determine the nature of the eigenvalues using the lowest
order terms in a and w. Specifically, we see that

dise (T (Yeq2)) = 4w?
~ (8 @RT. - 3 F)’ F°T2) a?

+0(w?) + O(w?a?). (38)

So we will expect two real eigenvalues for fixed w as
a — 0. Forming the rest of the eigenvalues, we have

1+4xT2L)(2 RT.-3 F)
pr = Ew+ ﬁm;mwwz
+O(W*) + 0(%). (39)
Clearly this equilibrium has a saddle character as one

eigenvalue is positive and one is negative. With an equi-
librium of this type, the natural structure of the one

dimensional invariant manifold provides borders for the

phase flow. These inflowing and outflowing (stable and
unstable) manifolds may intersect to form a homoclinic
orbit.

5.3 Stability

Homoclinic orbits for conservative or Hamiltonian sys-
tems may be written down exactly when they exist.

35

However this luxury is not available for general systems
and numerical integration becomes the basis for deter-
mining the existence of such an orbit. In seeking such
an orbit, it is helpful to know the stability properties.
From Chow and Hale (1982) it is shown that if the trace
of the matrix J in (37) is negative, then the homoclinic
orbit, if it exists, is asymptotically stable. Analyzing
the trace of (37) evaluated at (36) we see that

3
tr (1 (Verd)) = o rTe AT TE e
8T k*F(2RT.—3F)(2RT.+8 LR T+3F) 43
- 1+4xT3L w?
+0(w*) + O(a?). (40)
Noting that all parameters are positive, it follows that
the trace is negative for small w as a — 0 if T, < %—fi

6 Parameter analysis

Qualitative model behavior may be obtained by analyz-
ing the results of the previous sections in terms of the
soft parameters. It is stressed, however, that this quali-
tative behavior may easily be related to any of the other
parameters. This is a benefit of analytic approximation.

The three soft parameters governing physical quanti-
ties are w for the period, T, for the equilibrium temper-
ature, and a for the deviation from equilibrium. The
original formulation provides an interpretation of w and
T.. Since a is radius of the orbit in u coordinates, the
deviations of T and G from their equilibrium values on
the periodic orbit requires a transformation to y coor-
dinates.

The results of this section are only approximate and
should be used in conjunction with a physical interpre-
tation of parameters. Although the assumption that
a — 0 in the derivations places an inherent restriction on
the radius of the periodic orbit, this “near equilibrium”
analysis is useful in determining parameter interplay.

For the remaining parameters, we will use the values
given by Posmentier (1990)

L = 20°K
1
_ =10
K = 107 % 10 Kyr
°
F o= 43305 %
yr
R = 8x10-° L. (41)
yr

Since the units of A and C' are 1/yr and the units of
B are 1/(°K yr), we see that & and w are in 1/yr. Both
components of the vector u and the radius a are in units
of yr?/°K.

6.1 Minimum period

Treating ¢3 in (29) as a function of w we may determine
an approximate maximum w value for stability. From
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1100 -
1050 -
1000 -
950 -
900 -
850 -
800 -

750 L I I 1 ] 1 ] I i 1 J4
230 235 240 245 250 255 260 265 270 275 280
Te

Pmin

Fig. 1. Minimum stable period Ppnin (YT) plotted verses equilib-
rium temperature Te (°K).

(29), we see that ¢ = 0 only at the roots of the quadratic
in w?
3L% (10Lk FTS + T.R + F) w*
(48 L*F?k*TTR — 72 L*F3kTS + 8 LFk TS R*—
12LF*cT¢R+30LF3 T2 + 2 FTZR? + 3 F3) w?
+8K*TeF3 (2T, R~3F)(8LRxT: +2T.R+3F)
= 0. (42)

The maximum value of w that produces a stable periodic
orbit is then

Whas = RFISTSFELTRTFLF {3 F°
—48 L2k2TTRF? 472 L*2F3TS — 8 LR*k T5F
+12 LRk TAF? — 30 Lk F°T® — 2 R2FT?

+F (1+4xT3L) ( 816 L*k*F2R?T?
—1008 L2k2RF3T] — 324 L?*k*F4TS
+48 LR3x FTS — 72 Lk F2R*T?S
+72 LRk F3T# — 4 R*T? — 108 Lk F*T3
—12 R2F2T2 — 9 F4 )% }, (43)
Plotting Ppin = 27 /wpmqq verses T, in Fig. 1 we ob-
tain minimum stable periods as a function of the chosen

" equilibrium temperature. Notice that this minimum pe-
riod is independent of the radius a.

6.2 Maximum period

If the periodic orbit intersects the second equilibrium
we expect a bifurcation to occur. So we may obtain a
minimum frequency wm;yn of the periodic orbit in terms
of a by using u coordinates, since the orbit in this coor-
dinate system is a circle. This intersection is determined

115000 - -
110000 -
105000 -
100000 -
95000 -
90000 -

Pmax

85000 -
80000 -

75000 L { ! [} 1 [} 1 [} [} ] 4
230 235 240 245 250 255 260 265 270 275 280
Te

Fig. 2. Maximum period Pmqz (yr) plotted verses equilibrium
temperature T, (°K) with a = 0.1yr2?/°K.
by solving the equation

o= [t o, w

where (|ulju = 1/4? + 42 is the Euclidean norm in u co-
ordinates. When this is done, we get the approximation

2 8F°T3k ’(2RT,+8LRK.T‘+3F)
Wnin = 1+4xT3L
+0(a?) + O(w?). (45)

In Fig‘. 2 we set a = 0.1yr?/°K and plot Ppes =
27 [Wmin as a function of equilibrium temperature Ts.
Notice that this period is governed in magnitude by a

factor of 1/+/a.
6.3 Deviation from equilibrium

We have determined the approximate A(a) giving a peri-
odic orbit of radius a in u coordinates by (30). However,
to relate this to physically meaningful coordinates, we
need to determine how this orbit maps to y coordinates.
Using y = Pu and r = a in (22) we see that

—4 K F2T3 4+ Luw?
Yperiodic = L2w? + F? acos(&)
3 3
+[ Fw+416"wcheL ] asin(8) + [ 3§“s§ ] (46)

where § = 6(t). The approximate maximum dev1at10n
from equilibrium temperature is then

Tmae = (Lw? + F?)a (47)

and the approximate maximum deviation from glacia-
tion equilibrium is

16 kK2 F2TS + w?
Gmaz = Tmas \/"W (48)
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Fig. 3. Maximum temperature deviation from equilibrium
Tmaez (°K) plotted from Ppmin (¥r) to Praz (yr) with T =
246°K and o = 0.1yr?/°K.

In Fig. 3 and Fig. 4 we set a = 0.1yr?/°K and T, =
246 °K (equilibrium glaciation Gy = 1 — kT2 = 0.0970)
to plot these deviations from Ppip t0 Prag.

7 Numerical solutions

We now demonstrate the bifurcation of the periodic or-
bit to a homoclinic orbit by examining the behavior of
the invariant sets of the system, namely the periodic
orbit about the chosen equilibrium and the saddle man-
ifolds of the second equilibrium. These solutions gov-
ern the topology of the phase space. A mean radiation
equilibrium temperature of T, = 246 °K is used as in
Posmentier (1990).

The radius of the periodic orbit in u coordinates is
set to @ = 0.1yr?/°K and we integrate the inflowing
and outflowing manifolds of the second equilibrium for
various w values. As w approaches wpin, the radius
of the periodic orbit approaches the second equilibrium
with saddle character and we expect a bifurcation. For
the parameters chosen, we have wmi, = 27/102, 681yr.

Integrations were done (in y coordinates) with the

LSODA routine of the public domain software ODE-

PACK using initial conditions from Maple. Initial condi-

. tions for the periodic orbits were obtained by (46). The

saddle manifolds of the second equilibrium were deter-
mined by first locating the equilibrium numerically and
then calculating the eigenvalues and eigenvectors of the
matrix (37) at the determined equilibrium. Then the
outflowing manifolds were integrated in positive time
using small (10~5 to 10~°) displacements from the sec-
ond equilibrium in the direction of the eigenvectors cor-
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Fig. 4, Maximum glaciation deviation from equilibrium Gmqz
plotted from Ppnip, (¥r) to Pmaz (yr) with T, = 246 °K and o =
0.1yr?/°K.

responding to the positive eigenvalue. The inflowing
manifolds were integrated in negative time along the
eigenvectors corresponding to the negative eigenvalue.
Trajectories integrated in positive time are solid lines,
while dashed lines correspond to trajectories integrated
in negative time. Arrows indicate the direction of the
flow for positive time.

In Fig. 5 the periodic orbit is shown in y coordinates
for w = 27/20,000yr. The same orbit in u coordinates
in shown in Fig. 6. The stable and unstable manifolds
of the second equilibrium with this choice of w is then
shown in Fig. 7.

In Fig. 8 we decrease w to 27/50,000yr and see the
periodic orbit approach the saddle manifolds. When
w = 27/120,000yr the inflowing and outflowing mani-
folds cross each other, as seen in Fig. 9. Since the man-
ifolds depend continuously upon w, we conclude they
must intersect for some value between 2 7 /50, 000yr and
27/120,000yr to form a homoclinic orbit.

Finding the exact value of w via computer experi-
ments is not, in general, possible. We may get very
close by observing the crossing of the inflowing and out-
flowing manifolds and adjusting w appropriately, a bi-
section technique of sorts. It should be clear that even
if such a value of w were determined to arbitrary preci-
sion, computer roundoff will not allow a simulation of a
true homoclinic orbit. For the parameters selected, the
inflowing and outflowing manifolds intersect between
w=2m7/89,276yr and w = 2 7/89, 277yr. Fig. 10 shows
the approximate homoclinic orbit.

When w = 27/89,276yr, the local phase space topol-
ogy is that of Fig. 7 and Fig. 8 where the periodic orbit
attracts in positive time and the attracting region for



38

002 r . . . SN 2r ' ‘ ' o
0015 - - 13-
001 - - I
0.005 - - 5=
8 0 3 0
-0.005 - - 05- 4
001 - - 1
0,015 - - 13-
L 1 | 1 | J -2 - I I ) : y
-0'?3.0003 0.0002 -0.0001 01 00001 0.0002 0.0003 o0 u11 23
y

Fig. 7. Inflowing and outflowing manifolds of the second equi-
librium in u (yr?/°K) coordinates for w = 27/20,000yr. The
attracting region for the periodic orbit is bounded by the two
inflowing manifolds.

Fig. 5. Periodic orbit in y coordinates y; (°K) vs y; (unitless)
for w = 2 7 /20,000yr.
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Fig. 6. Periodic orbit in u (yr2 /°K) coordinates for w = Fig. 8. Inflowing and 6utﬂowing manifolds of the second equi-
27/20,000yr. librium and the periodic orbit about the first equilibrium in

u (yr2/°K) coordinates for w = 27/50,000yr.
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Fig. 9. Crossing of the inﬂowinf and outflowing manifolds
of the second equilibriumn in u(yr4/°K) coordinates for w =
27/120,000yr.
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Fig. 10. Inflowing and outflowing manifolds in u (yr2 /°K) coor-
dinates at the approximate intersection value of w = 2 7/89277yr.
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Fig. 11. The time series y; (°K) vs 7 (unitless) of the saddle
manifolds for w = 27/89277yr. The periodic orbit bifurcating
from the homoclinic orbit attracts in negative time.

this periodic orbit is bounded between the two inflow-
ing manifolds. The time series for all four of the saddle
manifolds with this w value are shown in Fig. 12.

When w = 2 7/89,277yr, the local phase space topol-
ogy is that of Fig. 9 where the periodic orbit attracts in
negative time and solutions leave this orbit in positive
time through the region bounded by the two outflow-
ing manifolds. The time series for all four of the saddle
manifolds with this w value are shown in Fig. 11.

Details of the types of structures that bifurcate from
the intersection of inflowing and outflowing manifolds
can be found in Chow and Hale (1982).

8 Conclusions

Inroducing periodic orbits about a constant equilibrium
as in Sect. 4 is an established procedure. The resulting
local phase topology, however, gives a more complete
picture of the dynamics. The existance and proximity of
the adjacent equilibrium with saddle character in Sect. §
is interesting.

The location of this second equilibrium provides a
bound on the radius of the periodic orbit. The behavior
of the saddle manifolds of this second equilibrium gives
a region of attraction to the periodic orbit. Notice how
the size of the region of attraction shrinks as the period
becomes large.

The homoclinic orbit, as seen when the saddle man-
ifolds intersect, could be the cause of the chaotic dy-
namics seen by Posmentier (1990). It is known that
two dimensional homoclinic orbits under time depen-
dent perturbations can produce chaotic dynamics, as in
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Fig. 12. The time series y; (°K) vs 7 (unitless) of the saddle
manifolds for w = 2x/89276yr. The periodic orbit bifurcating
from the homoclinic orbit attracts in positive time.

the forced Duffing equation.
Although the physics described here is extremely sim-
ple we are able to determine parameter ranges that pro-

duce very different model behavior. The analytic results
of Sect. 6 provide for general trends of the model and are
used to gain insight into parameter relationships. Future
work could consist of determining ranges of the other pa-
rameters via higher dimensional bifurcation manifolds.

A more realistic model could incorporate the param-
eters as variables and build upon this simple model. Is-
sues such as the onset of chaos, the predictability of tran-
sients, and the climate response to perodic and stochas-
tic forcing could be addressed in this formulation.
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