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Abstract-A mathematical model is used to discuss the effects of cycle-specific chemotherapy. 
The model includes a constraint equation which describes the effects of the drugs on sensitive nor- 
mal tissue such as bone marrow. This model investigates both pulsed and piecewisscontinuous 
chemotherapeutic effects and calculates the parameter regions of acceptable dose and period. It also 
identifies the optimal period needed for maximal tumor reduction. Examples are included concerning 
the use of growth factors and how they can enhance the cell kill of the chemotherapeutic drugs. 

Keywords-Periodic differential equation, Cancer, Chemotherapy, Cell-cycle, Quiescence. 

1. INTRODUCTION 

Many chemotherapeutic drugs are cycle-specific: they only destroy cells in specific phases of their 

cycle. Some examples of these types of drugs are Cytosine Arabinoside (AraX!), 5fluorouracil 

and Prednisone which work in the G1 and S phase of the cell-cycle and Vincristine and Bleomycin 

which work in the M phase of the cell-cycle. Most of the clinically-used methods of delivering 

chemotherapy have been developed empirically, and as stated by Birkhead et al. [l], “In the ab- 

sence of more effective new drugs there is an increasing need to define better treatment strategies 

with existing agents.” The object of the model in this paper is to give some qualitative ideas on 

how to better administer cycle-specific chemotherapy. This model is not meant to dictate to the 

clinician which regimens of therapy are appropriate, for each individual patient is different and 

requires quantitatively different treatments. In fact, in most cases even approximate ranges for 

parameters and drug effects are not known (R. Perry, private communication). But, it is hoped 

that this model will give some qualitative ideas on how to better implement cycle-specific ther- 

apy. 
Some of the more recent work done with mathematical models of cycle-specific chemotherapy 

is by Webb [2,3]. He develops both linear and nonlinear models of cycle-specific chemotherapy. 

In the case of the linear model, the advantages of periods of dose with shorter duration are 

investigated. Another work of interest is by Birkhead et al. [l] in which a four-compartment 

linear system is developed to model the cycling, resistant, and resting cells. Their results are 

limited to a few numerical calculations on four specific types of treatments. Swan [4] also examines 

cycle-specific chemotherapy in his review article. In particular, he concentrates on age-structured 
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models which take into account the age of the cells in each compartment of the cell cycle. He 

also studies an age-structured chemotherapeutic model of acute myeloid leukemia (AML). Eisen 

and Schiller [S] study a two-compartment model of tumor growth with nonconstant growth rate. 

In addition, Kuzma et al. [6] examine a model with exponential growth for the tumor and both 

immediate and delayed effects of drugs. In their model, they study a variety of results including 

the number of doses needed for a specific tumor reduction, the minimum initial dose needed for 

tumor reduction, and some toxicity effects. The issue not discussed in any of these articles is the 

effects of the drugs on normal tissue. An interesting approach to the problem of toxicity to bone 

marrow and other sensitive tissues has been investigated by Agur et al. [7] and Cojocaru and 

Agur [8] (this adds age structure to the previous). They develop criteria to maximize the tumor 

cell kill while minimizing bone marrow damage. They accomplish this by examining the relation 

between the period in which the drugs are delivered and the cell-cycle time for the tumor and 

bone marrow cells. The idea is to administer the chemotherapeutic drug when the cancer cells 

are in a more vulnerable phase (S) and the bone marrow is in a less vulnerable stage. These two 

articles also differ from the other above articles in the fact that they only consider cells in the 

growth phase of the cell cycle, i.e., they do not consider the resting stage (Go). 

The model in this paper will extend the linear models described in [1,2,5] by adding both 

pulsed and piecewise-continuous chemotherapy along with the constraint to the chemotherapeutic 

regimen obtained by examining the effects of the cycle-specific drug on the normal tissue. The 

tissues that will concern us in particular are the fast proliferating tissues such as bone marrow or 

those comprising the gastrointestinal tract. From this model, we will identify parameter ranges, 

in terms of dose and period, needed to prevent further growth of the tumor. 

One chemotherapeutic regimen used, as stated by Birkhead et al. [l], is “the maximally- 

tolerated dose is given as frequently as the rate of bone marrow recovery permits.” Using the 

model developed in this paper, we will investigate this chemotherapeutic regimen. The model 

will show for a given dose what the optimal period is to have maximal tumor cell kill. We will 

show that in some cases the model confirms Birkhead’s regimen and in others this is not the 

“best” way to deliver the chemotherapeutic drugs. 

Another method of increasing the ability of cycle-specific drugs to destroy the tumor (while 

not overly destroying normal tissue) is to provide growth factors to the tumor and/or normal 

tissue. One such type of growth factor used is exogenous estrogen which is used in treating 

breast cancer. This increases the tumor cell proliferation to make the tumor more susceptible to 

the chemotherapeutic drugs. Another class of growth factors used are the hemopoietic growth 

factors (HGF) such as granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage 

colony-stimulating factor (GM-CSF), and interleukin-3 (IL-3). These growth factors are used 

in (AML) to increase the percentage of cells in the S phase (the phase which many chemothera- 

peutic drugs are most active) and in breast cancer to increase the levels of circulating leukocytes 

(white blood cells). Bhalla et al. [9] state that (G-CSF), (GM-CSF), and (IL-3) increase about 

two to four times the number of (AML) blasts in the S phase while Demetri [lo] states that 

these (HGF’s) allow larger doses of chemotherapy to be safely given because of the increased 

circulating leukocytes. This model will take into account these growth factors by varying appro- 

priate parameters such as cell growth rates and show how they increase the effectiveness of the 

cycle-specific chemotherapeutic agents. 

2. MODEL 

A two-dimensional linear differential equation with periodically pulsed and periodically piece- 

wise-continuous chemotherapy is used to describe the effects of chemotherapy on a tumor. The 

basic model is similar to those described by Eisen and Schiller [5] who describe a two-compartment 

model, and Birkhead et al. [l] who include resistant compartments for both the cycling and 

noncycling cells, thus increasing the dimension of their model to four. Both examine similar 
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models to describe basic tumor growth. However, the model in this paper not only identifies the 

chemotherapeutic effects more explicitly, but more importantly it models the effects of the drugs 

on the normal tissue. 

Some basic assumptions are made here to keep the model tractable. First, we only study a linear 

system (first-order kinetics) to describe tumor growth. This limits the model to either exponential 

growth or decay without any intermediate equilibrium. Nevertheless, this is an acceptable first 

approach since a successful chemotherapeutic regimen will prevent the tumor from growing near 

its carrying capacity, so that the nonlinear effects of logistic or Gompertz growth will be minimal, 

allowing us to use the simpler model. Birkhead et al. [l,ll] and Kuzma et al. [6] also utilize 

exponential growth between doses. Second, the parameters will be constant (except for the case 

of growth factors). In their model, Eisen and Schiller [5] incorporate nonconstant growth, but 

we will avoid this and focus more on the chemotherapeutic aspects of the model. Third, we do 

not take into account spatial or age effects. That is, the resources and chemotherapeutic drugs 

are assumed to reach all cells equally, and cells of all ages are affected uniformly (note though 

that this model does take into account natural cell decay). Fourth, Swan [4] (along with many 

others) states that the cycling compartment has four subcompartments or phases including the 

gap period (Gi), the synthetic period (S), the second gap period (Gz), and mitosis (M) (see 

Figure 1). To eliminate undue complications, we will combine the four subcompartments of the 

cycling phase into one to yield a two-compartment model with both a cycling and a resting 

compartment. Finally, even with cycle-specific drugs there are actually no absolutely safe cells 

(both resting and proliferating cells are affected to some extent) though the faster proliferating 

cells will definitely be affected more by the drug. In the present model, we will nonetheless assume 

that the resting cells (Go) are not effected by the drugs. It is important to note that making the 

system more complex does not necessarily make it more useful. The simpler system allows us to 

view many interesting features of cycle-specific chemotherapy without the undue complexity of 

the detailed mathematics. Even with these assumptions, the model still shows many interesting 

dynamics and can address some of the major questions of chemotherapy such as: will the tumor 

grow or decay, how will the major parameters (dose and period) affect the outcome, and what is 

the optimal regimen to deliver the drugs. 

Figure 1. Cell-cycle. 

2.1. Two-Compartment Model 

The form of the two-compartment model as described in Figure 2 is 

( % i ( ff-P-V P Xl 

$y= P -P-r >( > x2 ( 
(1) 

where the parameters are all constant, positive, and defined as follows: a, cycling cells growth 

rate; p, rate which cycling cells become noncycling; 71, natural decay of cycling cells; /3, rate which 
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noncycling cells become cycling; y, natural decay of noncycling cells (optional). The elements 

of the vector (zi, ~2)~ E 3 represents the cycling and noncycling tumor cell msss, respectively. 

We will assume that CY > 7) (positive net growth rate), i.e., in the absence of chemotherapy, the 

tumor will grow without bound. We will also assume that a - p- r~ < 0, i.e., a large number 

of cells move to the noncycling or quiescent compartment. Birkhead et al. [l] suggest that only 

about 20% of the tumor cells are cycling. To simplify the form, let a = a - /J- r) and 7 E 0. 

Thus, the generalized linear system is 

where a,P,p >_ 0. Birkhead et al. [l] give one set of parameter values from breast 

that fit the above conditions, namely, a = 0.5, p = 0.218, q = 0.477, ,LI = 0.05. 

r , r 

CI L 
Cycling Cells &?8tin4f Cell.8 

a 
Xl x2 

P 

\ / . 

rl Y 

(2) 

cancer data 

Figure 2. Two-compartment diagram. 

Now we examine the periodic chemotherapeutic conditions. Since this model describes cycle- 

specific chemotherapy, the drugs will only affect the cycling cells, 21. We will examine two types 

of chemotherapeutic effects. The first is similar to that used in [12], i.e., a pulsing condition. 

This describes a constant instantaneous cell kill at each period of dose. The pulsing periodic 

condition is 

G,+ = (fy) y)&-, (3) 

where 0 < f(D) < 1 is the survival fraction (which is a decreasing function of dose D), and 

r is the period between doses. T+ refers to the instant after the drug is given and T- refers to 

the instant prior to the dose of the drug. Specific forms of f (II) can be found in [12). Also, 

Birkhead et al. (1) examine 0.05 2 f(D) 2 0.4. 

For the piecewise continuous case, model (2) will be modified as 

The function g(t) is a piecewise continuous function describing the chemotherapeutic effects on 

the tumor. Webb uses a similar model in his study [2], where he uses a step function to model 

the chemotherapeutic e;fects. We will investigate the model using the exponential decay function 

(Figure 3) 

g(t) = he-7(‘-“T), n?- I t < (n + 1)7, (5) 

where h is the cell kill parameter and y is the decay of the drug. However as seen in Webb, 

g(t) may take on many other forms as considered appropriate. In this paper, we will compare 

the results of this more realistic model of chemotherapy with the more mathematically tractable 

pulsed-therapy model. 
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I 

nz (n+l) z 

Figure 3. Exponential decay function. 

2.2. Normal Cells 

One of the major drawbacks of chemotherapy is that it also affects normal cell tissue. In the 

case of cycle-specific chemotherapy, tissue like bone marrow which proliferates rapidly will be 

strongly affected by the drug and this will have to be taken into account when developing a 

chemotherapeutic regimen, There are a variety of ways to approach this problem. Panetta [12] 
examines the interaction between normal and tumor tissue and the effects of cycle-nonspecific 

drugs on them. In many cases such as with bone marrow, there is most likely no interaction 

with the tumor, but the drugs still affect it. This is the case that we will examine in the present 

model. If we assume that the normal tissue has limited growth between pulses of the drug, then 

a suitable constraint equation for pulsed therapy is 

D = w - Y>, 72T 5 t < (n + l)T, (6) 

where T(D) is the survival fraction for the normal tissue and y(D) > f(D). This means that, 

the drug affects the tumor cells more than the normal cells. Also in the above equation, 6 is the 

growth rate of the normal tissue. For the piecewise case, the limited growth equation for normal 

tissue is 
jr = S(K - y) - &-Y(t-d, 127 5 t < (n + 1)T. (7) 

Note that the above equations are still linear. Logistic growth can also be used to model the 

growth of the normal tissue though, in this case, the equation is nonlinear. The form of the 

logistic constraint equation for pulsed therapy is 

jl = SY (1 - 8) 9 Ynr+ = mYn,- 7 727 5 t < (n + 1)~. (8) 

The logistic equation with pulsing is solved in [12] and the solution to the linear limited growth 

equation is similar and is solved in the following section. Finally, the logistic form for the piecewise 

case is 
e = by (I - 5) - /&vtt-flt)y, nr 5 f < (n + 1)~. (9) 

3. PULSED CASE 

The first step in analyzing model (2) with pulsing condition (3) and constraint equation (8) is 

to develop solutions for (2) and (8) over one period nT 2 t < (n + 1)~. Once this is accomplished, 

we can then apply the pulsing condition to arrive at a linear system of difference equations 
(sometimes referred to as the first return map or Poincare map, see [13]) that will describe the 

growth of the tumor at each pulse. 
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First, consider the linear case of limited normal tissue growth. 

difference equation 

Solving equation (6) yields the 

Y(n+~)T = f(D) {K + (ynr - K) e+} . 
This has only one equilibrium: 

y* = K.RD) (1 - emJ7) 
s 

1 - T((D)em6’ * 

(10) 

(11) 

Denoting 0 < w < 1 as the acceptable fractional kill of the carrying capacity K, the constraint 

for limited growth on the chemotherapeutic regimen in terms of dose and period is 

w < 7(D) (1 - e-6T) 
- 1 - T((D)e-+ ’ 

02) 

Now, in a similar manner, the logistic constraint is also solved. Solving equation (8) yields the 

difference equation 

Y(n+l)7 = f(D) 
~nrK 

ynr + (K - ynlnr ) e-67 . 

As shown in [12], this has two equilibrium points: 

Thus, the constraint on the chemotherapeutic regimen in terms of dose and period is 

w < F(D) - e-6r 
- 1_e-6~ . 

(13) 

(15) 

In both cases, the cycle-specific chemotherapeutic drugs have less effect on these tissues, 

primarily since a much higher percentage of normal tissue is in the resting phase. Therefore, 

f(D) > f(D) since more normal than cancerous tissue survives each dose. 

3.2. Effects on Tumor 

First, examine equation (2). Hale and Kocak [13, Chapter 81 provide a good account of 

the general solutions to linear systems such as this. The form of the solution given by many 

elementary ordinary differential equation texts is Z(t) = cr<rex1(t-n7) + c&eX2(t-n7), where the 

Xi’s are the eigenvalues, and 6’s are the corresponding eigenvectors to the right-hand side matrix 

of (2). This solution is defined on the interval nr < t < (n + 1)~. By the choices of signs of 

the parameters on the right hand side matrix of equation (2), one eigenvalue must be positive, 

(e.g., Xi), with eigenvector 6 in the first quadrant. Thus, the tumor will grow in the absence of 

chemotherapy. The other eigenvalue will always be negative. It will be more convenient for us to 

write the solution in the form 

c?(t) = P ( 
+(t-nf) 0 

o 
eX2(t-nT) 

> 

P-l&~, 127 5 t < (n + 1)7, 

where 

P=(E;16) 

(16) 

(17) 

is referred to as the transformation matrix and h, is the tumor mass at the beginning of the 
nth period. 
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Now, adding pulsing condition (3), the following difference equation describes the tumor mass 

just after each pulse of drug: 

ql.+l), = p(“^d’ e,+-y~~ ;)ik. 
To determine whether the system is growing or decaying, the eigenvalues or characteristic mul- 

tipliers of the characteristic matrix 

of equation (18), need to be investigated. We will define the eigenvalues of matrix (19) as &, 

which can be found in terms of f(o) and r. If 

then the chemotherapeutic regimen will destroy the tumor; otherwise the tumor will grow. There- 

fore, we are interested in finding the bifurcation from growth to decay, i.e., 

(20) 

in terms of the survival fraction f(o) (or dose) and period 7. 

Also, in the above region, there are some regimens that are more effective than others. The 

most effective chemotherapeutic regimen is therefore defined as 

(21) 

for each fixed f(D). This does not take into account the effect of the drugs on the normal tissue. 

We must investigate this expression along with inequalities (12) or (15) when developing effective 

chemotherapeutic regimens. This is carried out in the next section. 

Define 6 E (&,<Q)~. It can be observed that &I, [lz > 0 and &I, 522 have opposite signs 
(this is true because of the signs of a,,@, and p). We can write matrix (19) as 

-t&2 (exzT - exzT) 1 (J11t22ex17 - &2t21ex27) f(D) 

det(P) J21J22 (exlT - f+) f(o) (511J22ex2T - E12521+) 

Call matrix (22) CM. The eigenvalues of CA4 are 

(22) 

wq, r) = 
trace(CM) f d(trace(CM))2 - det(CM) 

2 (23) 

Calculating the trace(CM) and det(CM), we get 

det(CM) 3 f(D)e(X1+X2)’ > 0 (24) 

and 
trace(CM) 3 (gf(o) - h)eXIT - (hf(D) - g)e’2T > 0, (25) 

where 
51162 

’ E det(P)’ 
and h+& 

It can be seen that both trace(CM) and det(CM) are positive because of the signs of the elements 

of the eigenvectors. Therefore, maxi (I%(f(D), T)/) = x,(f(B),~). By the correct choice of the 
dose and period, we are able to force xl (f(o), 7) < 1, thus eliminating the tumor. 
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Figure 4. Bifurcation diagram: f(D) = Zf(D). 
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Figure 5. Bifurcation diagram: f(D) = 4f(D). 

3.3. Results for Pulsed Therapy 

First, we will examine the bifurcation diagram of the model with respect to survival frac- 

tion f(D) and period r, that is, investigate the graph of the bifurcation equation (20) with i = 1 
and the constraint equation (12) or (15). Using the parameters listed in Section 2.1, w = 0.5, 

and 6 = 0.1 along with the logistic constraint equation (15), we obtain Figu_re 4 for y(D) = 2f(D) 

(normal tissue survives twice as well as tumor tissue) and Figure 5 for f(D) = 4f(D) (normal 
tissue survives four times as well as tumor tissue). The tumor condition curve represents the 

bifurcation from tumor reduction to tumor growth and the normal condition curve represents 
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the bifurcation from overdestruction of normal tissue to acceptable normal cell loss. From these 
we can see the area, in parameter space, of acceptable dose and period that will eliminate the 
cancer cells while maintaining the normal cells at a level of at least half their carrying capacity. 

As can be seen, this region is not small, so, given that we have a prescribed dose to administer, 
what is the optimal period to deliver that dose ? To answer this question, we will minimize 

xi(f(D), T) with respect to T. One might assume that for a given survival fraction, the optimal 
frequency to administer the drug, (without considering normal tissue) would be continuously. But, 
investigating equation (21), it can be seen that the optimal period is actually greater than 7 NN 0 
(continuously delivering drugs). This is because by allowing some time between each dose, more 
resting cells are permitted to move to the cycling compartment, and so there are more cycling cells 
to be killed when the next dose is given. Also, it should be noted that giving the drugs at a very 
rapid rate will destroy the normal tissue at too great a rate! Thus, a calculation of the optimal 
period is extremely practical. For example, with f(D) = 0.25, the optimal period to deliver the 
drug is r zz 8 (minxi with respect to T), see Figure 6, while an acceptable period (11 < 1) 
ranges over the large interval 0 < 7 < 40. In general, the optimal period is shown in Figure 7 
for 0 < f(D) < 0.9. As can be seen, more effective drugs (smaller f(D)) optimal periods are 
larger then less effective ones, thus allowing the normal tissue more time to recover. 

1.2 

1.15 

1.1 

2 1.05 
.a 

8 
2 
zi 

1 

3 x 0.95 

0.9 

0.85 

0.8 

I’ 

L 

Figure 6. 1l(f(D),~) VS. T, f(D) = 0.25. 

Now, consider the chemotherapeutic regimen stated by Birkhead et al. [l]. That is, “the 
maximally-tolerated dose is given as frequently as the rate of bone marrow recovery permits.” 
Before seeing if our model agrees with this method, we need to consider what it is meant by this 
regimen. There are two possibilities; either administer the drug rapidly but do not use a strong 
dose, or allow higher doses but do not administer them as often. By looking at the bifurcation 
diagram for T(D) = 2f(D) (F’g 1 ure 4) and the optimal period graph (Figure 7), we observe that 
the calculated optimal period is a better regimen if less of a dose (survival fraction f(D) > 0.3) is 
given more frequently and Birkhead’s is better if the opposite holds true. This can be observed in 
Figure 8 by noting where the optimal period curve and the normal condition curve (6 = 0.1) cross. 
If the survival fraction is to the right of this intersection, then the optimal period is best and if 
it is to the left then it is not. Of course, the parameters chosen are just one possible acceptable 
set; thus, as stated above this is only meant to be a qualitative look at the problem. 
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Figure 7. Optimal period vs. f(D). 
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In many cases, the clinician would prefer to give a larger dose then is acceptable by conventional 

methods. The problem, as can be seen in Figure 8, is that these large doses (small f(D)) must be 
administered over a larger then optimal period to prevent overdestruction of the normal tissue. 

In the case of reduced leukocyte production because of damage to the bone marrow, (HGF’s) are 

used to help counteract this problem by increasing leukocyte production. This process is modeled 

mathematically by increasing the growth rate, S, of the normal tissue equation (either equation (6) 

or (8)). As can be seen from Figure 8, a higher growth rate for the normal tissue increases the 

region of acceptable drug regimens, thus allowing higher doses of chemotherapeutic drugs to 
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Figure 10. T = 7.25, f(D) = 0.275. 

be given at their optimal period. If 7 = 20 (the best period without growth factors, 6 = 0.1) 

and f(D) = 0.275, then there is about a 64.7% reduction in tumor mass. But if growth factors 

are given (S = 0.5), then the optimal period of T = 7.25 can be used and there is about a 

82.2% reduction in tumor mass, which is a 27% increase in tumor reduction over the nonoptimal 
period! Figures 9 and 10 show the phase planes (resting vs. proliferating) for each case. Observing 

Figure 9, we can see why the nonoptimal period does not have as large of a cell kill as the optimal 

case. The graph shows that the proliferating cancer cells are able to start regrowth before the 

next dose is given. Thus, this regimen is not optimal since the dose is too large. 
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Figure 12. Beta = 0.1, 15 doses. 

Another use of (HGF’s) is with (AML). They are used to increase the ratio of proliferating to 
resting cells, thus increasing the cell-kill of a cycle-specific drug. This is modeled by an increase 

in the parameter /3, which is the rate in which resting cells become proliferating, but can also be 

related to an increase in the cell growth rate. One question is: how does an increase in /3 affect 

the maximum eigenvalue of the characteristic polynomial? IZxamining the derivative of xr with 

respect to p, it can be seen that x,(/3) is a decreasing function of /I > 0. Thus, by increasing 
the rate at which resting cells become proliferating, the characteristic multiplier 11 decreases, 
which means there is a larger cell-kill. This can be seen in Figure 6. Next, we note that the 

optimal period decreases as p is increased (see Figure 7). This can be understood as the cells 
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Figure 13. Bifurcation curves. 
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Figure 14. Tumor reduction. 

are moving into the cycling compartment faster so we arrive at the optimal period faster. The 

most important fact is that by introducing a growth factor the same number of doses can have a 

larger overall effect on the (AML). This can be seen in Figures 11 and 12. With the previously 

stated parameters, it is calculated that fifteen doses of a drug with (AML) survival fraction 

of f(D) = 0.25, period of T = 8 and p = 0.05 will reduce the amount of (AML) by about 85.6%, 
while reducing it 97.1% with /3 = 0.1. In this csse, there is a 13.4% increase in tumor reduction. 

4. PIECEWISE CASE 

The model that we use in this case is based on equations (4),(5) and the normal tissue condi- 
tion (9). Analytic solutions to the tumor equation can be found in terms of confluent hypergeo- 
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Figure 15. Bifurcation curves with optimal period curve. 

metric functions (in preparation), but for the purposes of this article we only investigate numerical 
solutions to the above equations. In particular, we are interested in comparing the results of the 
pulsed therapy with those of the piecewise therapy. Note that the parameter y in the piecewise 
case describes the decay rate of the chemotherapeutic drug. A large value of y therefore, corre- 
sponds to the effects of the drug decaying away quickly. This is qualitatively equivalent to a high 
survival fraction, f(D), in the pulsed case. First, the parameters are set as in the pulsed case 
with the new parameter h = 0.5 for both the normal and tumor equations. The first comparison 
of the two cases is with their bifurcation diagrams. Note the similarities between Figures 13 
and 5. Both show similar regions in parameter space for acceptable period and strength, The 
main difference between the two is that in the piecewise case, since the drugs destroy cells over 
the complete period (not instantly as in the pulsed case), there is not the instantaneous drop in 
normal cell mass as there is in the pulsed case. Thus, in the piecewise case, we are not concerned 
about the cell mass instantly dropping below its critical value. Therefore, this model shows for 
larger drug doses. Note next the similarities between Figures 14 and 6. It should be recalled that 
the minimum eigenvaiue means highest tumor reduction in Figure 6. Finally, Figure 15 shows 
the optimal period curve along with the bifurcation curves of both normal and cancerous tissue. 
The most interesting point to be made here is that unlike the pulsed case, the optimal period 
curve is completely in the acceptable region. Therefore, if we are to compare the optimal period 
in the piecewise case to the regimen stated by Birkhead et al. (“the maximally-tolerated dose 
is given as frequently as the rate of bone marrow recovery permits”), we can see that they are 
basically equivalent. That is, if the clinician is to give a strong dose (r small), then the optimal 
period and the smallest period that allows bone marrow recovery are almost identical. 

5. DISCUSSION 

For chemotherapeutic drugs to be useful, they must be given to the patient at an appropriate 
interval with an effective dose. The clinician must also take into account the effects of the drugs 
on the normal tissue. Otherwise, a given drug regimen might eliminate the tumor but also destroy 
the normal tissue, or even have no detrimental effect at all upon the tumor. Thus far, few of the 
mathematically constructed models have considered these situations, and most drug protocols 
are developed empirically. It is our hope that this model gives some indication of how to better 
administer the drugs in order to more effectively destroy the cancerous cells. 
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The most basic question that can be asked about a chemotherapeutic regimen is, how much is 

enough and how much is too much? We have shown using the characteristic multipliers of the 

Poincare maps that there is a bifurcation or boundary (in terms of survival fraction and period), 

between regimens that will and will not eliminate the tumor mass. As noted earlier, this is only 

intended to be a qualitative approach, and quantitative details will of course very from patient to 

patient. Clearly, a bifurcation diagram is not enough to develop a good chemotherapeutic regimen 

since it includes modalities like continuously giving a very large dose of the drug. Obviously this 

will eliminate the tumor mass, but it will also kill the patient! Thus, the use of the constraint 

equation that models the effects of the drugs on the normal tissues must be included. 

However, with the constraint equation added, there is still a wide range of acceptable drug 

regimens. Thus, we look for the optimal regimen. In doing this, we have shown that the best 

drug protocol is not delivering the drug as often as possible and as strongly as possible, but 

rather at the optimal period and dose. Because of the constraint of normal tissue survival, this is 

not always possible with each dose (survival fraction). That is, for stronger doses, the period of 

delivery must be broadened at nonoptimal periods to prevent overly destroying the normal tissue 

or a weaker dose must be administered. 

Growth factors increasingly are being used to help cycle-specific chemotherapeutic drugs work 

more effectively. This is one area where much medical research has been done, so in principle 

the medical results and the mathematical models can be closely compared to improve our under- 

standing of how the various growth factors are affecting the use of chemotherapeutic drugs on 

cancerous tissue. The pulsed model clearly shows that incorporating growth factors in (AML) 

increases the cell kill by about 13%-14010, and reduces the number of doses needed to accomplish 

the same results, while in breast cancer they allow larger doses of chemotherapy to be adminis- 

tered at optimal periods to obtain maximal cell kill. In this case, the growth factors increased 

the cell kill to about 27%-a significant improvement. 

The piecewise model of chemotherapy is the more realistic of the two studied in this paper, 

but mathematically it is much more difficult to investigate. As noted above, it can be solved 

analytically, but this is mathematically very intensive especially when compared to the pulsed 

therapy case. By comparing the various bifurcation diagrams and optimal period diagrams, we 

can observe that the results obtained numerically using the piecewise model are qualitatively very 

similar to those obtained with the pulsed case. Only a few differences are noted. Because of this, 

very similar qualitative results may be drawn from either model. Therefore, it would be wise 

to choose the mathematically more appropriate model-the pulsed therapy model. However, if 

circumstances permit and a more realistic approach to the chemotherapeutic effects is desired, 

the piecewise model is the better choice. 

One of the limitations of this model is it does not take into account varying parameters. For 

example, it is known that over time the chemotherapeutic doses have more effect on the the normal 

tissue and less effect on the tumor mass (resistance, etc.) or the drugs reduce the carrying capacity 

of the normal tissue over time. Future work will include modifying some of these assumptions, 

thereby formulating a more comprehensive model. Even accepting the simplifications, this model 
illustrates some of the more important dynamics of chemotherapy. It identifies, for example, 

parameter regions of acceptable chemotherapeutic regimens, some of which reinforce regimens 

already developed empirically, and also it indicates the effects of the drugs on normal tissue and 

how this affects the chemotherapeutic process. The model also identifies how the use of growth 

factors increases the effectiveness of the drugs, again reinforcing much of the clinical work done 

in the area of cancer chemotherapy. 
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