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PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 124, Number 10, October 1996

ON A CONJECTURE OF S. REICH

PETER Z. DAFFER, HIDEAKI KANEKO, AND WU LI

(Communicated by Dale Alspach)

Abstract. Simeon Reich (1974) proved that the fixed point theorem for
single-valued mappings proved by Boyd and Wong can be generalized to mul-
tivalued mappings which map points into compact sets. He then asked (1983)
whether his theorem can be extended to multivalued mappings whose range
consists of bounded closed sets. In this note, we provide an affirmative answer
for a certain subclass of Boyd-Wong contractive mappings.

1. Introduction

Let (X, d) be a complete metric space. Denote by CB(X) and K(X) the space
of all nonempty closed and bounded subsets of X and the space of all nonempty
compact subsets of X , respectively. The Hausdorff metric induced by d will be
denoted by H. In [5, p. 40], Reich proved that a mapping T : X → K(X) has a
fixed point in X if it satisfies H(Tx, Ty) ≤ k(d(x, y))d(x, y) for all x, y ∈ X with
x 6= y, where k : (0,∞)→ [0, 1) satisfies lim supr→t+ k(r) < 1 for every t ∈ (0,∞).
This result generalizes the fixed point theorem for single-valued mappings that was
proved by Boyd and Wong [1]. One of the conjectures made by Reich in [6, 7] asks
whether or not the range of T can be relaxed. Specifically the question is whether
or not the range of T , K(X), can be replaced by CB(X). In response to Reich’s
conjecture, the following theorem was recently proved by Mizoguchi and Takahashi
[4], and other proofs have been given by Daffer and Kaneko [3] and Tong-Huei
Chang [2].

Theorem 1. Let (X, d) be a complete metric space and T : X → CB(X). Assume
that T satisfies

H(Tx, Ty) ≤ k(d(x, y))d(x, y)(1)

for all x, y ∈ X with x 6= y, where k : (0,∞)→ [0, 1) satisfies lim supr→t+ k(r) < 1
for every t ∈ [0,∞). Then T has a fixed point in X.

The stronger condition assumed on k in Theorem 1, viz., lim supr→t+ k(r) < 1
for every t ∈ [0,∞), implies that k(t) < h for some 0 < h < 1 and for small t > 0.
Therefore, with this condition, one may conclude that a mapping satisfying (1) is
a contraction in the sense of Banach over a region for which d(x, y) is sufficiently
small. In this paper, we obtain a theorem which replaces the closed interval [0,∞)
of this result with the open interval (0,∞) of the classical Boyd-Wong fixed point
theorem.
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2. The main result

In recent papers ([2, 8]) the following class of functions was introduced and
studied.

Definition 2. Let φ : R+ → R+. The function φ is said to satisfy the condition (Φ)
(denoted φ ∈ (Φ) ) if (i) φ(t) < t for all t ∈ (0,∞); (ii) φ is upper semicontinuous
from the right on (0,∞); and (iii) there exists a positive real number s such that φ
is nondecreasing on (0, s] and

∑∞
n=0 φ

n(t) <∞ for all t ∈ (0, s].

Chang [2] observed that if k : (0,∞) → [0, 1) satisfies lim supr→t+ k(r) < 1 for
every t ∈ [0,∞), then there exists a function φ ∈ (Φ) such that k(t)t ≤ φ(t) for all
t ∈ (0,∞).

Subsequently, Chang proved the following theorem that generalizes Theorem 1
above.

Theorem 3. Let (X, d) be a complete metric space. Let T : X → CB(X) and
suppose that there exists a function φ ∈ (Φ) such that

H(Tx, Ty) ≤ φ
(

max

{
d(x, y), d(x, Tx), d(y, T y),

d(x, Ty) + d(y, Tx)

2

})
for all x, y ∈ X. Then T has a fixed point in X.

The purpose of this note is to establish a class of functions that satisfy the in-
equality lim supr→t+ k(r) < 1 for every t ∈ (0,∞) and that belong to (Φ). Utilizing
the result of Chang above, we can then obtain a fixed point theorem for multival-
ued functions that satisfy the conditions required in the conjecture of Reich. The
existence of such a class of functions confirms that the conjecture of Reich is still
open and that a further investigation toward a complete resolution is required.

Lemma 4. Suppose ϕ(t) = t− atb, where a > 0.

(i) If b ≥ 2, then
∑∞
n=0 ϕ

n(t) = +∞, for all real numbers t except for t = 0 and

t = a−
1
b−1 ;

(ii) If 1 < b < 2, then the series
∑∞
n=0 ϕ

n(t) converges if 0 ≤ t ≤ a−
1
b−1 and

it diverges if t < 0 or t > a−
1
b−1 , where ϕn = ϕ ◦ · · · ◦ ϕ denotes the n-fold

composition.

Proof. A sketch shows that
∑∞
n=0 ϕ

n(t) = +∞ for t < 0 or a−
1
b−1 < t, for any

value of b greater than 1. Also, it is clear that the series converges for t = 0 and

t = a−
1
b−1 . Thus we restrict our attention to the case when t ∈ (0, a−

1
b−1 ).

For t ∈ (0, a−
1
b−1 ), 0 < ϕ(t) < t. Since {ϕn(t) : n = 1, 2, . . .} is a strictly

monotone decreasing sequence and bounded below by 0, it has a limit z. Since ϕ
is a continuous function, we have ϕ(z) = limn→∞ ϕ (ϕn(t)) = z. As a consequence,
z = 0. That is,

lim
n→∞

ϕn(t) = 0 for 0 < t < a−
1
b−1 .(2)

Let b ≥ 2 and choose an integer k > a. Then 1
n −

a
nb
≥ 1

n −
a
n2 ≥ 1

n+k , for all

n ≥ ak
k−a =: m0. Thus ϕ( 1

n ) ≥ 1
n+k for n ≥ m0. On the interval

(
0, (ab)−

1
b−1

)
, ϕ

is increasing. Let ε = min
{

1
m0
, (ab)−

1
b−1

}
. Then

ϕ(t) ≥ ϕ
(

1

mt

)
≥ 1

mt + k
for 0 < t < ε,(3)
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where mt :=
[

1
t + 1

]
. ([x] denotes the largest integer less than or equal to x.)

Now let t ∈ (0, a−
1
b−1 ). By (2), there exists a positive integer n0 such that

0 < ϕn(t) < ε for n ≥ n0. Let r := 1
ϕn0(t) . Then it follows that

ϕn(t) ≥ 1

r + k(n− n0)
for n ≥ n0.(4)

Indeed, this is true for n = n0, and we see that, for n ≥ n0,

ϕn+1(t) = ϕ(ϕn(t))

≥ ϕ
(

1

r + k(n− n0)

)
≥ 1

r + k(n− n0) + k
=

1

r + k(n+ 1− n0)
,

where we use the induction assumption for the first inequality. The induction
method proves (4). Hence,

∞∑
n=1

ϕn(t) ≥
∞∑

n=n0

ϕn(t) ≥
∞∑

n=n0

1

r + k(n− n0)
= +∞.

Now let 1 < b < 2. For 1 < c < 1
b−1 , we have

nbc
(

1

nc
− 1

(n+ 1)c

)
=
nbc((n+ 1)c − nc)

nc(n+ 1)c
=

nbc−c−1

(1 + 1
n )c
·

(1 + 1
n )c − 1
1
n

→ 0

as n→∞. Thus, we can choose n0 such that n−c0 < (ab)−
1
b−1 (so that 1

nc0
is in the

interval where ϕ is increasing) and 1
nc −

1
(n+1)c ≤

a
nbc

, for all n ≥ n0. As a result,

we have ϕ( 1
nc ) ≤ 1

(n+1)c for all n ≥ n0. For every t ∈ [0, a−
1
b−1 ], limn→∞ ϕ

n(t) = 0

(cf. (2)), and so for some integer k0 we have ϕk0(t) ≤ 1
nc0

.

We claim that ϕn(t) ≤ 1
(n0+n−k0)c , for all n ≥ k0. Indeed, this is true for n = k0,

and we have that

ϕn+1(t) = ϕ (ϕn(t)) ≤ ϕ
(

1

(n0 + n− k0 + 1)c

)
≤ 1

(n0 + n+ 1− k0)c
,

where the induction assumption is used for the first inequality. This completes the
proof of our claim. Hence

∞∑
n=0

ϕn(t) =

k0−1∑
n=0

ϕn(t) +
∞∑

n=k0

ϕn(t) =

k0−1∑
n=0

ϕn(t) +
∞∑

n=k0

1

(n0 + n− k0)c
< +∞

since c > 1.

Theorem 5. Let (X, d) be a complete metric space and T : X → CB(X). If there
exists an upper right semi-continuous function ϕ : R+ → R+ such that (i) ϕ(t) < t
for all t > 0, (ii) ϕ(t) ≤ t− atb, a > 0, for some 1 < b < 2 on some interval [0, s],
s > 0, and (iii)

H(Tx, Ty) ≤ ϕ(d(x, y))

for all x, y ∈ X, then T has a fixed point in X.

Proof. Writing ψ(t) = t−atb and ε = min
{
s, (ab)

1
b−1

}
, we have that ϕn(t) ≤ ψn(t)

for every positive integer n and t ∈ [0, ε] (an interval upon which ψ is increasing).
Indeed, this holds for n = 1 and if it holds for n, then

ψn+1(t) = ψ(ψn(t)) ≥ ψ(ϕn(t)) ≥ ϕ(ϕn(t)) = ϕn+1(t),
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since ψn(t), ϕn(t) ∈ [0, ε] for every n. This completes the induction proof of ϕn(t) ≤
ψn(t). By Lemma 4, ψ ∈ (Φ); hence we also have ϕ ∈ (Φ) and the conclusion follows
from Theorem 3.

We remark that Theorem 5 can be formulated using the contractive condition

H(Tx, Ty) ≤ ϕ
(

max

{
d(x, y), d(x, Tx), d(y, T y),

d(x, Ty) + d(y, Tx)

2

})
,

because of Theorem 3 above. However, because of a more relevance to the con-
jecture of Reich, we chose to describe our theorem using the contractive condition
H(Tx, Ty) ≤ ϕ(d(x, y)).

Theorem 5 reveals that with k(t) = 1− atb−1 we have a class of functions that
satisfy all the conditions in the conjecture of Reich. Hence we obtain the following:

Corollary 6. Let (X, d) be a complete metric space and T : X → CB(X). Assume
that T satisfies

H(Tx, Ty) ≤ k(d(x, y))d(x, y)

for all x, y ∈ X, where k : R+ → [0, 1] with k(t) < 1 for t > 0, and k(t) ≤ 1−atb−1,

a > 0, for some b ∈ (1, 2) on some interval [0, s], 0 < s < a−
1
b−1 . Then T has a

fixed point in X.
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