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(or can be reduced to) one of the following type: in a Hilbert space X, find the best
approximation PK (x) to any x # X from the set K :=C & A&1(b), where C is a
closed convex subset of X, A is a bounded linear operator from X into a finite-
dimensional Hilbert space Y, and b # Y. The main point of this paper is to show
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the former. Prior to this, the result had been known only in the case of a convex
cone or for special data sets associated with a closed convex set. In fact, we give an
intrinsic characterization of those pairs of sets C and A&1(b) for which this can
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1. INTRODUCTION

Many interesting and important problems of best approximation are
included in (or can be reduced to) one of the following type: in a Hilbert
space X, find the best approximation PK (x) to any x # X from the set

K :=C & A&1(b),

where C is a closed convex subset of X, A is a bounded linear operator
from X into a finite-dimensional Hilbert space Y, and b # Y.

The main point of this paper is to give an intrinsic characterization of
those pair of sets [C, A&1(b)] for which the following perturbation property
holds: for every x # X, there exists y # Y such that

PK (x)=PC(x+A*y).

(We will later see that this equation is equivalent to the following nonlinear
one: APC(x+A*y)=b.) That is, when is it always true that the best
approximation to x from K is the same as the best approximation to some
perturbation x+A*y of x from C? Up to now, such characterizations had
been noticed only in certain special cases (see [12, 13, 2, 3, 19, 7]). In par-
ticular, we will show that if C is polyhedral or if b is in the relative interior
of A(C), then the perturbation property holds. Also, if we replace C by the
extremal subset Cb (see Definition 4.1 below), then the perturbation
property always holds! As a consequence of these results, we can obtain all
of the previous characterizations of best approximations from the inter-
section C & A&1(b) that are known to us.

The merit of this theorem is based mainly on four facts:

1. For most applications, it is easier to compute best approximations
from C than from K.

2. In many applications, X is infinite-dimensional and hence the
computation of PK (x) is intrinsically an infinite-dimensional problem.
However, as will be seen, the computation of PC(x+A*y) involves only a
finite number of parameters.

3. This problem includes the general ``shape-preserving inter-
polation'' problem that arises in curve and surface fitting (see, e.g., [12]
or [5]).

4. In many cases, APC(x+A*y)&b is the gradient of a differentiable
convex function 8( y). Thus, solving the nonlinear equation APC(x+A*y)
=b is equivalent to finding a global minimizer of 8( y) which can be
resolved by various unconstrained minimization techniques (cf. [10, 9]).
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The elementary facts from convex analysis necessary for the dual
approach to this problem are listed in Section 2. The main theoretical
results are stated in Sections 3 and 4. In Section 5, we include a worked
example showing how the theory can be applied. In Section 6, we show
that APC(x+A*y)&b is the gradient of a convex quadratic spline (i.e., a
convex differentiable piecewise quadratic function) if C is a polyhedral set.
As a consequence, we propose a steepest descent method for solving the
nonlinear equation APC(x+A*y)=b, which generates a sequence of
iterates converging linearly to a solution y of this equation.

We conclude the Introduction by describing some notation used and
stating a theorem which characterizes best approximations.

Recall that a subset K of the Hilbert space X is convex (resp., a convex
cone) provided that

*K+(1&*) K/K for all 0�*�1

(resp., \K/K and K+K/K for all \�0). For any nonempty subset S of
X, the convex hull (resp., conical hull ) of S is the intersection of all convex
sets (resp., convex cones) which contain S. The convex hull (resp., conical
hull) of S is denoted by co(S) (resp., con(S)). If S is nonempty, the dual
cone (resp., orthogonal complement) of S is the set

S0 :=[x # X | (x, y) �0 for all y # S]

(resp., S = :=[x # X | (x, y) =0 for all y # S]). Note that S 0 (resp., S =) is
a nonempty closed convex cone (resp., closed linear subspace). The closure
of any set S is denoted by S� .

It is well-known that if K is a closed convex subset of the Hilbert space
X, every x # X has a unique best approximation PK (x) in K to x. That is,
PK (x) # K and

&x&PK (x)&=inf[&x& y& | y # K].

The following result is well-known, but we are not certain where or when
it first appeared.

Theorem 1.1 (Characterization of Best Approximations). Let K be a
closed convex subset of the Hilbert space X, x # X, and x0 # K. Then
x0=PK (x) if and only if x&x0 # (K&x0)0.

If A is a bounded linear operator from X to Y, then A*, R(A), and
N(A) denote its adjoint map, range, and nullspace, respectively. All other
terminology and notation is standard and can be found, e.g., in [8].
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2. DUAL CONES

In this section we collect for reference purposes some basic facts about
dual cones that will be useful to us. We also define the strong property
CHIP which will prove fundamental to our work. Throughout this section
X will denote an arbitrary Hilbert space.

Lemma 2.1. Let S, S1 , ..., Sm be nonempty subsets of X. Then

S0=(S� )0=(con S)0, (2.1.1)

S 00 :=(S0)0=con S, and (2.1.2)

\,
m

1

Si+
0

#:
m

1

S 0
i . (2.1.3)

Lemma 2.2. Let C1 , ..., Cn be closed convex cones in X. Then

\:
n

1

Ci +
0

=,
m

1

C 0
i , and (2.2.1)

\,
m

1

Ci+
0

=:
n

1

C 0
i . (2.2.2)

Both these lemmas are well known and can be found, for example, in
[15, Theorem 14.1 and Corollary 16.4.2]. Also, it should be mentioned
that Lemma 2.2 is false, in general, for closed convex sets which are not
cones, and the closure bar in (2.2.2) cannot be removed, even if X is finite-
dimensional. The important definition for our purposes is the following.

Definition 2.3. A collection of convex sets [C1 , C2 , ..., Cm] having a
nonempty intersection will be said to have the strong property CHIP,
provided that for every x # �m

1 Ci ,

\,
m

1

Ci&x+
0

=:
m

1

(Ci&x)0. (2.3.1)

Remark. Recall [2] that [C1 , C2 , ..., Cm] was said to have ``property
CHIP'' (the ``conical hull intersection property'') provided that for every
x # �m

1 Ci , (2.3.1) holds with a closure bar over the set on the right. Thus
the strong property CHIP requires in addition that the sum of the dual
cones on the right of (2.3.1) always be closed.

Alternatively, one can show that the strong property CHIP is equivalent
to the statement that the subdifferential is additive on the sum of the
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indicator functions of the Ci (Lemma 2.4 below). To explain this, recall that
the indicator function of a set C is defined by

IC(x) :={ 0,
�,

if x # C,
if x � C.

Also, the subdifferential of a function f : X � R _ [�] is the set-valued
mapping �f defined on X by

�f (x) :=[x* # X | f (x)& f (x$)�(x*, x&x$) for every x$ # X].

Moreover, it is well-known and easy to check that

I�1
m Ci

=:
m

1

ICi , and (2.3.2)

�IC(x)=(C&x)0 for each x # C. (2.3.3)

We now show that the strong property CHIP can be characterized in
terms of an additivity property of the subdifferential mapping as well as in
terms of a distributive property of the closed conical hull mapping. This
latter property will prove especially useful later when verifying that the pair
of sets [C, A&1(b)] has the strong property CHIP whenever either C is
polyhedral or b is in the relative interior of A(C).

Lemma 2.4. The following statements are equivalent:

(1) [C1 , C2 , ..., Cm] has the strong property CHIP;

(2) For each x # �m
1 Ci ,

\,
m

1

Ci&x+
0

/:
m

1

(Ci&x)0;

(3) For each x # �m
1 Ci ,

� \:
m

1

ICi+ (x)=:
m

1

�ICi (x); and (2.4.1)

(4) For each x # �m
1 Ci ,

con \,
m

1

Ci&x+=,
m

1

con(Ci&x), and (2.4.2)

:
m

1

(Ci&x)0 is closed. (2.4.3)
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Proof. The equivalence of (1) and (2) follows using (2.1.3) with Si

replaced by Ci&x. Moreover, the equivalence of (1) and (3) follows from
(2.3.2) and (2.3.3).

Now suppose (1) holds and x # �m
1 Ci . Using Lemma 2.1 we get

\,
m

1

Ci&x+
0

=_con \,
m

1

Ci&x+&
0

.

By the strong property CHIP, we obtain

\,
m

1

Ci&x+
0

=:
m

1

(Ci&x)0. (2.4.4)

It follows that

_con \,
m

1

Ci&x+&
0

=:
m

1

(Ci&x)0.

Taking dual cones of both sides of this equation, and using Lemmas 2.1
and 2.2, we obtain

con \,
m

1

Ci&x+=_\con \,
m

1

Ci&x++
0

&
0

=\:
m

1

(Ci&x)0+
0

=,
m

1

((Ci&x)0)0=,
m

1

con(Ci&x).

That is, (2.4.2) holds. Furthermore, by (2.4.4) and the fact that dual cones
are closed, it follows that (2.4.3) holds. Thus (4) holds.

Conversely, if (4) holds, then taking dual cones of both sides of (2.4.2)
and using Lemmas 2.1 and 2.2, we obtain

\,
m

1

Ci&x+
0

=_con \,
m

1

Ci&x+&
0

=_,
m

1

con(Ci&x)&
0

=:
m

1

[con(Ci&x)]0=:
m

1

(Ci&x)0=:
m

1

(Ci&x)0.

Thus (1) holds, and this proves the equivalence of (1) and (4). K

Remark. The equivalence of statements (1) and (3) of Lemma 2.4 states
that [C1 , C2 , ..., Cm] has the strong property CHIP if and only if the
subdifferential is additive on the sum of the indicator functions of the Ci .
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3. MAIN RESULTS

In this section we present two of our main theoretical results. Here and
in the sequel, unless explicitly stated otherwise, X and Y will always denote
(real) Hilbert spaces with Y finite-dimensional, A is a bounded linear
operator from X to Y, C is a nonempty closed convex subset of X, b # Y,
and

K :=C & A&1(b)=[x # C | Ax=b].

Note K{< if and only if b # A(C). (See [7] for conditions which guarantee
this.) For our central results, it will be assumed that K{< (i.e., b # A(C)).
Then each x in X has a unique best approximation PK (x) in K. Our essential
purpose is to give a useful characterization of PK (x) which lends itself to
actual computation. Before proving the main characterization theorem, it
is convenient to give an alternate formulation of the strong property CHIP
for the pair of sets [C, A&1(b)].

Lemma 3.1. The following statements are equivalent:

(1) [C, A&1(b)] has the strong property CHIP;

(2) For every x0 # C & A&1(b),

[C & A&1(b)&x0]0=(C&x0)0+R(A*); (3.1.1)

(3) For every x0 # C & A&1(b),

[C & A&1(b)&x0]0/(C&x0)0+R(A*); and (3.1.2)

(4) For every x0 # C & A&1(b),

con[(C&x0) & N(A)]=con(C&x0) & N(A), and (3.1.3)

(C&x0)0+R(A*) is closed. (3.1.4)

Proof. First observe that for every x0 # C & A&1(b), we have

C & A&1(b)&x0=(C&x0) & (A&1(b)&x0)=(C&x0) & N(A).

Next note that from [8], we obtain

N(A)0=N(A)==R(A*)=R(A*),

where the last equality holds since R(A*) is finite-dimensional, hence
closed. Using these facts, an application of Lemma 2.4 yields the result. K
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Now we can prove our main characterization theorem. It shows that the
strong property CHIP for the sets [C, A&1(b)] is the precise condition that
allows us to always replace the approximation of any x # X from the set K
by approximating a perturbation of x from the set C.

Theorem 3.2. The following statements are equivalent:

(1) [C, A&1(b)] has the strong property CHIP;

(2) For every x # X, there exists y # Y such that

A[PC(x+A*y)]=b; (3.2.1)

(3) For every x # X, there exists y # Y such that

PK (x)=PC(x+A*y). (3.2.2)

In fact, the y that works in (3.2.1) also works in (3.2.2), and conversely. That
is, (3.2.1) holds if and only if (3.2.2) holds.

Proof. First note that if (3.2.2) holds, then PC(x+A*y) # K and, hence,
(3.2.1) holds. Conversely, suppose (3.2.1) holds. Then x0=PC(x+A*y) # K
and by Theorem 1.1,

x+A*y&x0 # (C&x0)0. (3.2.3)

It follows from (3.2.3) that x&x0 # (C&x0)0+R(A*). But the equivalence
of (2) and (3) in Lemma 3.1 implies that

(C&x0)0+R(A*)/(K&x0)0.

Thus x&x0 /(K&x0)0. By Theorem 1.1 again, x0=PK (x). Thus PK (x)=
PC(x+A*y); i.e., (3.2.2) holds. This proves the equivalence of (2) and (3)
as well as the last statement of the theorem.

Using Lemma 3.1, (1) holds if and only if for each x0 # K,

(K&x0)0=(C&x0)0+R(A*). (3.2.4)

If (1) holds and x # X, let x0=PK (x). Then Theorem 1.1 implies that
x&x0 # (K&x0)0. Using (3.2.4), there exists y # Y such that x&x0 #
(C&x0)0&A*y. Thus x+A*y&x0 # (C&x0)0 implies (by Theorem 1.1)
that x0=PC(x+A*y). That is, PK (x)=PC(x+A*y) and (3) holds.

Finally, suppose (3) holds and let x0 # K. Choose any z # (K&x0)0 and
set x :=z+x0 . Note that x&x0=z # (K&x0)0 so that by Theorem 1.1,
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x0=PK (x). Since (3) holds, there exists y # Y such that x0=PK (x)=
PC(x+A*y). Hence, Theorem 1.1 implies that

z=x&x0=x&PC(x+A*y)

=x+A*y&PC(x+A*y)&A*y # [C&PC(x+A*y)]0+R(A*)

=(C&x0)0+R(A*).

Since z was an arbitrary element of (K&x0)0, this shows that

(K&x0)0/(C&x0)0+R(A*).

We conclude from Lemma 3.1 that (1) holds. K

Remarks. (1) This theorem allows us to determine the best approxi-
mation in K to any x by instead determining the best approximation in C
to a perturbation of x. The usefulness of this is that it is usually much easier
to determine best approximations from C than the intersection K. The price
we pay for this simplicity is that now we must determine just which pertur-
bation of x works! However, this is determined by the (generally non-
linear) Eq. (3.2.1) for the unknown vector y. Moreover, since y lies in the
finite-dimensional space Y, (3.2.1) is an equation involving only a finite
number of parameters and is often amenable to standard algorithms (e.g.,
descent methods) for their solution. In fact, in Section 6 we describe
a descent method to solve this equation, and we prove the algorithm
converges linearly.

(2) Of course, to apply the theorem, one must first determine
whether the pair of sets [C, A&1(b)] has the strong property CHIP. For-
tunately, some of the more interesting pairs that arise in practice do have
this property. In the remainder of this section, we will show that if C is a
``polyhedral'' set, then the pair [C, A&1(b)] has the strong property CHIP.
A number of consequences, some well-known, will follow immediately from
this fact. In the next section, we will show that if b is in the relative interior
of A(C), then the pair [C, A&1(b)] has the strong property CHIP. An
important consequence of this fact is that we can define a certain convex
``extremal'' subset Cb of C such that Cb & A&1(b)=K :=C & A&1(b) and b
is in the relative interior of A(Cb). Thus we can apply the above result to
see that the pair [Cb , A&1(b)] has the strong property CHIP, and then
apply Theorem 3.2 to this pair. In short, if the pair [C, A&1(b)] has the
strong property CHIP, then Theorem 3.2 can be applied. If not, then we
can still apply Theorem 3.2, but to the pair [Cb , A&1(b)]! Thus in every
case, we have a formula for the best approximation PK (x) either as
PC(x+A*y) or PCb(x+A*y).

393CONSTRAINED INTERPOLATION FROM A CONVEX SUBSET
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(3) As an alternative to the numerical computation of PK (x), let us
mention the following. If the convex set K can be written as the intersection
of a finite number of closed convex sets Ki , K = �m

1 Ki , and it is
straightforward to compute best approximations from the Ki (e.g., if there
is a formula for computing PKi (x) for any x # X and any i), then the
problem of computing PK (x) is amenable to Dykstra's method of alter-
nating projections. This is an iterative algorithm that reduces the problem
to one involving computing best approximations from only the individual
sets Ki . (See [1] or the exposition [5].) This will be the case, for example,
when C is the cone of nonnegative functions (``shape-preserving interpola-
tion'') that was studied by many authors (e.g., [9, 2, 3, 6]). Computing
best approximations in this way is currently under investigation.

We are next going to show that when C is a polyhedron, then
[C, A&1(b)] has the strong property CHIP. Recall the the closed convex
set C is called a polyhedron if it is the intersection of a finite number of
closed halfspaces. That is, C is a polyhedron if and only if C=
�k

1 [z # X | (z, xi)�di] for some xi # X"[0] and real scalars di . Also, a
convex cone D is called finitely generated if there exists a finite set
[z1 , z2 , ..., zk] such that D=con[z1 , z2 , ..., zk]. That is, D=[�k

1 \i zi |
\i�0]. It is well-known that if C1 and C2 are polyhedral sets in the
Euclidean space Rn, then [C1 , C2] has the strong property CHIP (cf. [15,
Theorem 20.1]). In the following three lemmas, we are going to show that
when C is a polyhedron in any Hilbert space X (not necessarily finite-
dimensional ), then [C, A&1(b)] has the strong property CHIP.

Lemma 3.3. If C is a polyhedron, then for each x # C,

(1) (C&x)0 is a finitely generated cone, and
(2) (C&x)0+R(A*) is closed.

Proof. Let C=�k
1[ y # X | (zi , y) �di], where zi # X and di # R. For

any x # C, let I(x) :=[i | (zi , x)=di] be the set of indices for the ``active''
constraints at x. Then it is not too difficult to show that

(C&x)0={ :
i # I(x)

*izi | *i�0=
(cf. [15, Corollary 9.2.2]), and hence (1) holds.

The statement (2) is a consequence of statement (1) and Lemma 4.3
of [2]. K

Lemma 3.4. If B and D are convex sets and 0 # B & D, then

con(B & D)=con B & con D.
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Proof. Obviously, con(B & D)/con(B) & con(D). Now let x # con(B)
& con(D). Since 0 # B & D, we have

con(B)=[*x | *�0, x # B], con(D)=[*x | *�0, x # D].

If x=0, then x # con(B & D). Otherwise, there exist positive constants
*1 , *2 and x1 # B, x2 # D such that

x=*1x1=*2 x2 .

Let ==min[*&1
1 , *&2

2 ]. Then =x==*1 x1 # B since it is a convex combina-
tion of x1 and 0. Similarly, =x==*2x2 # D since it is a convex combination
of x2 and 0. Therefore, x==&1=x # con(B & D). K

Lemma 3.5. If x # C and con(C&x) is closed, then

con(C&x) & N(A)=con[(C&x) & N(A)]

Proof. By Lemma 3.4, con(C&x) & N(A)=con[(C&x) & N(A)].
Since con(C&x) is closed, it follows that con[(C&x) & N(A)] is closed
and, hence,

con(C&x) & N(A)=con(C&x) & N(A)=con[(C&x) & N(A)]

=con[(C&x) & N(A)].

Theorem 3.6. If C is a polyhedron, then for each x # X, there exists
y # Y such that

A[PC(x+A*y)]=b. (3.6.1)

Moreover,

PK (x)=PC(x+A*y) (3.6.2)

for each y # Y which satisfies (3.6.1).

Proof. Lemmas 3.3(2), 3.5, and 3.1 show that [C, A&1(b)] has the
strong property CHIP. The result then follows from Theorem 3.2. K

When X=Rn, special cases of Theorem 3.6 were obtained by Smith and
Wolkowicz [16] and by Chui, Deutsch, and Ward [2] for C :=[x # Rn |
x�0] and by Li, Pardalos, and Han [10] for C :=[x # Rn | l�x�u],
where l, u are vectors of n components and some components of l, u can
be &�, +�, respectively. See also [10, 9] for algorithms for solving
the piecewise linear equation: APC(x+A*y)=b when X=Rn and
C :=[x # Rn | l�x�u].
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Next we will establish our second main result. Namely, if b is in the
relative interior of A(C), then [C, A&1(b)] has the strong property CHIP.
We need some preliminary results. The first fact we need is the following
well-known metric regularity theorem, which is a consequence of the
celebrated Robinson�Ursescu theorem (see [14, Theorem 1; 17; 4,
Theorem 2.2]). Here and in the sequel, the interior (relative interior) of a
set S will be denoted by int S (ri S).

Theorem 3.7. Let Z and W be two (real ) normed linear spaces and 2W

be the collection of all subsets of W. Suppose that 1 : Z � 2W is a convex
multifunction with closed graph, i.e.,

*1(z1)+(1&*) 1(z2)/1(*z1+(1&*) z2)

for z1 , z2 # Z, 0�*�1,

and Graph(1 ) :=[(z, y) | z # Z, y # 1(z)] is a closed subset of Z_W. The
inverse of 1, denoted by 1&1, is defined by

1&1(S) :=[z # Z | S & 1(z){<].

Let z0 # Z and y0 # 1(z0). Then z0 # int 1&1(W ) if and only if 1&1 is ``metri-
cally regular'' at ( y0 , z0), i.e., there exist a neighborhood V of ( y0 , z0) and
a constant #>0 such that

d( y, 1(z))�#d(z, 1&1( y)) for every ( y, z) # V. (3.7.1)

Lemma 3.8. Suppose that b # ri A(C). Then for every x # K,

con(C&x) & N(A)=con[(C&x) & N(A)]. (3.8.1)

Proof. Let Z=span[A(C)&b] and W=span(C&x). Define

1(z)=[ y # C&x | Ay=z].

Then

1&1( y)={[Ay],
<,

if y # C&x,
if y � C&x.

Since C&x is convex and A is linear, we have

*1(z1)+(1&*) 1(z2)/1(*z1+(1&*)z2)

for z1 , z2 # Z, 0�*�1.

That is, 1 is a convex multifunction. Since C&x is closed and A is
continuous, Graph(1 )=[(z, y) | z # Z, y # C&x, z=Ay] is a closed subset
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of Z_W. Let y0=0 and z0=0. Then z0 # int 1&1(W). By Theorem 3.7,
there exists positive constants = and # such that

d( y, 1(z))�#d(z, 1&1( y)) for z # Z, y # W, &z&<=, &y&<=. (3.8.2)

Let y=0. Then

d( y, 1(z))=d(0, 1(z))=min[&w& | Aw=z, w # C&x],

d(z, 1&1( y))=d(z, 1&1(0))=d(z, [0])=&z&.

Therefore, (3.8.2) implies that for every z # span A(C&x) with &z&<=, we
have

min[&w& | Aw=z, w # C&x]�# &z&. (3.8.3)

It is obvious that con(C&x) & N(A)#con[(C&x) & N(A)]. On the
other hand, let u # con(C&x) & N(A). By the definition, there exist
elements uk # con(C&x) that converge to u. Since limk � � Auk=Au=0,
there is k0�0 such that &Auk &<= for k�k0 . Applying (3.8.3) with
z=&Auk (in span A(C&x)), we obtain that there exists wk # C&x such
that Awk=&Auk and &wk&�# &Auk&. Then (uk+wk) # con(C&x),
A(uk+wk)=0, and (uk+wk) � u as k � �. Thus, u # con[(C&x) & N(A)].
This proves that

con(C&x) & N(A)=con[(C&x) & N(A)]

and completes the proof. K

The following result, which seems to be new, characterizes when a point
is in the relative interior of a convex set.

Lemma 3.9. Let D be a convex set in a finite-dimensional space Y and
x # D. Then x # ri D if and only if (D&x)0=(D&x)=.

Proof. Since x # ri D if and only if 0 # ri(D&x), by replacing D with
D&x, we may assume x=0. We use the notation B(=) for the open ball
in Y centered at the origin with radius =. We have 0 # ri D if and only if
there exists =>0 such that B(=) & aff D/D if and only if there exists =>0
such that B(=) & span D/D which implies [B(=) & span D]0

#D0. Using
Lemmas 2.1, 3.4, and 2.2(2), this implies

D0/[con[B(=) & span D]]0=[con B(=) & span D]0

=(span D)0=(span D)==D=/D0.

Thus D0=D=.
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Conversely, suppose D0=D=. If 0 � ri D, then by setting Y0=span
D=aff D, we see that 0 � int D (relative to Y0). Thus by the separation
theorem (cf., e.g., [15, Theorem 11.6]), there exists y # Y0"[0] such that
0�( y, d) for every d # int D. By continuity, 0�( y, d) for every
d # int D=D� which implies y # (D)0=D==(span D)==Y =

0 =[0]. But
this contradicts y{0. K

As a consequence of this lemma, we easily obtain the following fact.

Lemma 3.10. The following statements are equivalent:

(1) b # ri A(C);

(2) [A(C)&b]0=[A(C)&b]=; and
(3) R(A*) & (C&x)0=R(A*) & (C&x)= for every x # C & A&1(b).

Proof. The equivalence of (1) and (2) follows by Lemma 3.9. Since
Ax=b for every x # C & A&1(b), we have that, for such x, (2) holds if and
only if [A(C&x)]0=[A(C&x)]= if and only if (A*)&1 (C&x)0=(A*)&1

(C&x)= if and only if (3) holds. K

Theorem 3.11. In a Hilbert space X, suppose that D is a closed convex
cone, M is a finite-dimensional subspace, and D & M is a subspace. Then
D+M is closed. In particular, if (C&x)0 & R(A*) is a subspace, then
(C&x)0+R(A*) is closed.

Proof. Assume first that D & M=[0]. Let xn # D+M and xn � x. We
must show that x # D+M. Write xn=dn+ yn , where dn # D and yn # M. If
some subsequence of [ yn] is bounded, then, by passing to a subsequence
if necessary, we may assume yn � y # M. Then dn=xn& yn � x& y. Since
D is closed, d :=x& y # D and x=d+ y # D+M.

If no subsequence of [ yn] is bounded, then &yn& � �. It follows that
[ yn�&yn&] is bounded in M so by passing to a subsequence if necessary,
we may assume that yn�&yn & � y and &y&=1. Then dn�&yn & # D for every
n and

dn

&yn &
=

xn

&yn &
&

yn

&yn &
� 0& y # D

since D is closed. Thus &y # D & M=[0] which contradicts &y&=1.
This proves the theorem when D & M=[0]. In general, V=D & M is a

closed subspace of M so we can write M=V+V=, where V= is the
orthogonal complement of V in M. Then D+M=D+V+V==D+V=

and D & V==[0]. By the first part of the proof (with M=V=), D+V=

is closed. Hence D+M=D+V = is closed. K
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Remark. In the special case of Theorem 3.11 when D & M=[0], we
recover what some writers call the ``Dieudonne� separation theorem.''

Now we can prove the second of our main results of this section.

Theorem 3.12. If b # ri A(C), then for each x # X, there exists y # Y such
that

A[PC(x+A*y)]=b. (3.12.1)

Moreover,

PK (x)=PC(x+A*y) (3.12.2)

for each y # Y which satisfies (3.12.1).

Proof. If b # ri A(C), then Lemma 3.10 implies that R(A*) & (C&x)0 is
a subspace. Theorem 3.11 implies that (C&x)0+R(A*) is closed. It
follows from Lemmas 3.8 and 3.1 that [C, A&1(b)] has the strong property
CHIP. Now the conclusion follows from Theorem 3.2. K

Various special cases of this theorem were obtained earlier by: Micchelli
and Utreras [13, Theorem 2.1] when C is a closed convex cone, x=0, and
b # int A(C); [13, Theorem 2.2] when C is the translate of a closed convex
cone, x=0, and b # int A(C); Chui, Deutsch, and Ward [2, Theorem 3.2]
when C is a closed convex cone and b # int A(C); Chui, Deutsch, and Ward
[3, Theorem 2.3] when C is a closed convex cone; and by [3, Theorem 4.7]
when b # int A(C).

4. MINIMAL EXTREMAL SUBSET OF C

In this section we will show that there exists a certain convex extremal
subset Cb of C with the property that Cb & A&1(b)=C & A&1(b)=: K and
b # ri A(Cb). Then we can apply Theorem 3.12, with C replaced by Cb .

Recall that a convex subset E of a convex set D is called an extremal
subset of D if x, y # D, 0<*<1, and *x+(1&*) y # E implies x, y # E.
Clearly, the intersection of any collection of extremal subsets of D is either
empty or extremal in D. Also, D is trivially extremal in D.

Definition 4.1. Let Cb denote the smallest closed convex extremal
subset of C such that Cb #K, i.e.,

Cb & A&1(b)=C & A&1(b) :=K.
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More precisely,

Cb=, [E | E/C, E closed convex extremal in C, and E & A&1(b)=K].

The extremal set Cb will play the essential role in our main character-
ization theorem (Theorem 4.5) below. Let us first note that there is an
alternate way of describing Cb . This will prove useful in recovering some
known results in the special case when C is a convex cone.

Definition 4.2. Let Fb denote the smallest closed convex extremal
subset of A(C) which contains b and set

CFb
:=C & A&1(Fb).

In the special case when C is a cone, this definition was given in [3].

Proposition 4.3. With Cb and CFb
defined as above, we have

(1) CFb
=Cb .

(2) A(Cb)= Fb .

(3) b # ri A(Cb).

Proof. Clearly, CFb
is closed and convex, since C is and A is linear

and continuous. Now let x, y # C, 0<*<1, and suppose z=*x+(1&*)
y # CFb

. Then z # C and Az # Fb . Hence *Ax+(1&*) Ay=Az # Fb . But
Ax, Ay # A(C) and Fb is extremal in A(C) implies that Ax, Ay # Fb . Hence x,
y # A&1(Fb) & C=CFb

. Thus CFb
is extremal in C.

Next we observe that the mapping AC :=A |C : C � A(C) is surjective so
that

A(CFb
)=AC(CFb

)=AC[C & A&1(Fb)]=AC[A&1
C (Fb)]=Fb .

That is,

A(CFb
)=Fb . (4.3.1)

Now we verify that b # ri Fb , or equivalently that 0 # ri(Fb&b). Since
0 # Fb&b and aff(Fb&b)=span(Fb&b), by working in the space Y0 :=
span(Fb&b) rather than Y, it is equivalent to show that 0 # int(Fb&b).
If 0 � int(Fb&b), then a well-known separation theorem (e.g., see [15,
Theorem 11.6]) implies that there exists y # Y0"[0] such that

( y, f &b)�0 for all f # Fb .
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If y # (Fb&b)=, then y # [span(Fb&b)]==Y =
0 =[0] which contradicts

y{0. Thus there is f0 # Fb such that ( y, f0&b) <0. Set

H=[z # Y0 | ( y, z)=0].

Then the hyperplane H supports Fb&b at 0 and E :=H & (Fb&b) is a
closed convex extremal subset of Fb&b such that E{Fb&b since
f0&b # (Fb&b)"E. It follows that E+b is a closed convex extremal subset
of Fb with b # E+b and E+b{Fb . Since Fb is extremal in A(C), E+b is
also extremal in A(C). But this contradicts the minimality of Fb . This
proves that 0 # int(Fb&b) and hence that

b # ri Fb=ri A(CFb
). (4.3.2)

Since CFb
is a closed convex extremal subset of C and CFb

#K, it follows
by the minimality of Cb that Cb /CFb

. For the reverse inclusion, let
c0 # CFb

. Then Ac0=d # Fb . By (4.3.2), we can choose d $ # Fb and 0<*<1
so that b=*d $+(1&*) d. Next choose c$ # CFb

so that d $=Ac$. Then
b=*Ac$+(1&*) Ac0=A[*c$+(1&*) c0] implies that c :=*c$+(1&*)
c0 # K/Cb . By extremality of Cb in C, it follows that c0 , c$ # Cb . Thus
CFb

/Cb . This proves (1) which, along with (4.3.1) and (4.3.2), verifies (2)
and (3). K

Next we characterize when b is in the relative interior of A(C).

Lemma 4.4. b # ri A(C) if and only if C=Cb .

Proof. The ``if '' part follows from Lemma 4.2(3).
Conversely, suppose b # ri A(C). It suffices to prove that Cb #C. Let

x # C and set y :=Ax. Since b # ri A(C), there exists y1 # A(C) and 0<*<1
so that b=*y+(1&*) y1 . Choose x1 # C such that Ax1= y1 . Then

A[*x+(1&*) x1]=*y+(1&*) y1=b

implies that *x+(1&*) x1 # K/Cb . By extremality of Cb in C, x and x1

are in Cb . Thus C/Cb . K

As an immediate consequence of Lemma 4.3(3) and Theorem 3.12
(applied to Cb rather than C), we obtain

Theorem 4.5. For each x # X, there exists y # Y such that

A[PCb(x+A*y)]=b. (4.5.1)
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Moreover,

PK (x)=PCb(x+A*y) (4.5.2)

for any y # Y which satisfies (4.5.1).

In many practical applications of Theorem 4.5, it is useful to know how
to recognize or construct the set Cb . The following proposition is often
useful in this regard.

Proposition 4.6. Suppose E is any closed convex extremal subset of C
with the property that E#C & A&1(b) (i.e., E & A&1(b)=C & A&1(b)).
Then, for any x # C & A&1(b), the following statements are equivalent:

(1) E=Cb ;

(2) b # ri A(E);

(3) [A(E)&b]0=[A(E)&b]=.

(4) R(A*) & (E&x)0=R(A*) & (E&x)=;

(5) A*y # (E&x)= whenever A*y # (E&x)0.

Proof. The equivalence of (1) and (2) is just Lemma 4.4 with C
replaced by E. The equivalence of (2)�(5) is just Lemma 3.10 with
C replaced by E. K

5. AN APPLICATION OF THEOREM 4.5

In any nontrivial applications of the theories of Sections 3 and 4, one
must be able to compute PC(z) or PCb(z) for any z # X. In particular, if
b � ri A(C), one must first be able to compute Cb before applying the main
characterization Theorem 4.5.

The following example is indicative of what must be done to apply the
theory of Section 4.

Example 5.1. Let X=L2[0, 3], ,i (t)=[1&|t&i | ]+ (i=1, 2),

C=[x # X | 0�x(t)�10 for almost all t # [0, 3]],

and define A : X � l2(2) by

Ax=((x, ,1) , (x, ,2) ), x # X. (5.1.1)

Then A*: l2(2) � X is given by

A*(:, ;)=:,1+;,2 . (5.1.2)
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Fig. 1. The bounded convex region A(C).

First observe that for each x # X,

PC(x)=[x]10
0 , (5.1.3)

where [x]10
0 is the ``truncated'' function on [0, 3] defined by

0, if x(t)<0

[x]10
0 (t) :={x(t), if 0�x(t)�10 (5.1.4)

10, if x(t)>10.

(This can easily be proved directly or deduced from Theorem 1.1.)
Next we compute the region A(C). Note that A(C) is symmetric about

the 45-degree line L=[(:, :) | : # R]. That is, if (:, ;) # A(C), then
(;, :) # A(C). To see this, choose x # C so that Ax=(:, ;). Then the func-
tion x~ , defined by x~ (t)=x(3&t), t # [0, 3], is in C and Ax~ =(;, :). This
symmetry will simplify the description of A(C) since now it suffices to only
describe A(C) above the line L (Fig. 1).

Since the functions x=0, x=10, x=10/[2, 3] , and x=10/[1, 3] are all
in C, it follows that Ax # A(C) for each of these functions x. Thus,

[(0, 0), (10, 10), (0, 5), (5, 10)]/A(C).
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By symmetry, (5, 0) and (10, 5) are also in A(C). Since A(C) is convex, we
have

co[(0, 0), (0, 5), (5, 0), (5, 10), (10, 5), (10, 10)]/A(C).

Moreover, it is easy to see that if ;>5, then (0, ;) � A(C). By symmetry,
(:, 0) � A(C) if :>5. By a similar argument, (:, 10) � A(C) if :<5 and
(10, ;) � A(C) if ;<5. Also, it is trivially true that if (:, ;) # A(C), then
:, ;�0 and :, ;�10 (Fig. 1).

Finally, we will compute the upper boundary of A(C) between the points
(0, 5) and (5, 10). That is, if 0<:<5, we want to determine the largest
number ; so that (:, ;) # A(C).

Proposition. For any 0�:�5, the largest number ; such that (:, ;) #
A(C) is given by ;=5&:+2 - 5:.

Proof. If :=0 or 5, the above argument shows that ;=5 or 10, respec-
tively. Thus, we may assume 0<:<5. Let

;� =;� (:) :=max[; | (x, ,1) =:, (x, ,2)=;, x # C]

=max[; | Ax=(:, ;), x # C].

That is,

;� =max[(x, ,2) | x # C, (x, ,1) =:]. (5.1.5)

It suffices to show that ;� =5&:+2 - 5:.
Since ,1 , ,2�0 and ,1=0 on [2, 3], it is clear that the x # C which

maximizes (x, ,2) must satisfy x=10 on [2,3]. For such x,

(x, ,2) =|
2

0
x(t) ,2(t) dt+|

3

2
10,2(t) dt=(x/[0, 2] , ,2) +5

and our problem can be restated as follows: determine

;� =5+max[(x/[0, 2] , ,2) | x # C, (x, ,1) =:]

=5+max[( y, ,2) | 0� y�10, supp y/[0, 2], ( y, ,1)=:],

where supp y is the support of y:

supp y :=[t # [0, 3] | y(t){0].

Let

D :=[ y # X | 0� y�10, supp y/[0, 2], ( y, ,1) =:].
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Then

;� =5+max[( y, ,2) | y # D]. (5.1.6)

Since the set D is a weakly closed convex subset of X which is bounded,
it is weakly compact. Since the linear mapping y [ ( y, ,2) is weakly
continuous, it attains its maximum on D at an extreme point of D. Thus
we next describe the extreme points of D, ext D. It can be shown that

ext D=[10/0 | 0/[0, 2] is measurable, (10/0 , ,1) =:]. (5.1.7)

We omit the details of the derivation.
As noted above, the search for a maximum of ( y, ,2) over all y # D may

be confined to y # ext D. Thus from (5.1.6) we may rewrite ;� as

;� =5+max {(10/0 , ,2) | 0/[0, 2], |
3

0
10/0,1=:= . (5.1.8)

For any subset 0/[0, 2], let 01=0 & [0, 1) and 02=0 & [1, 2]. It
follows from (5.1.8) that we may write

;� =5+max {(10/02
, ,2) | 01 /[0, 1), 02 /[1, 2],

| 10/01
,1+|10/02

,1=:= . (5.1.9)

Since ,1 is decreasing on [1, 2] and ,2 is increasing on [1, 2], it follows
from (5.1.9) that the search for a maximum may be further restricted:

;� =5+max {(10/[$, 2] , ,2) | $ # [1, 2), |
2

$
10,1(t) dt=:= . (5.1.10)

Now $ # [1, 2] and �2
$ 10,1(t) dt=: implies that

:=|
2

$
10(2&t) dt=5(2&$)2.

Solving this equation for $, we obtain $=2&- :�5. A substitution for $
into (5.1.10) yields

;� =5+(10/[2&- :�5, 2] , ,2) =5+|
2

2&- :�5
10(t&1) dt=5&:+2 - 5:

which proves the proposition. K
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It follows that the upper boundary of the region A(C) is given by the
union of the curves co[(0, 0), (0, 5)], [(:, 5&:+2 - 5:) | 0<:<5], and
co[(5, 10), (10, 10)]. The lower boundary is obtained using the symmetry
of A(C) about the 45-degree line. Furthermore, the extreme points of the
upper boundary are given by (0, 0), (0, 5), (:, 5&:+2 - 5:) for each
0<:<5, (5, 10), and (10,10).

From this knowledge of A(C), we can now easily compute Cb and PK (x)
for various b # A(C) and x # X. We exhibit this by a few specific examples.

Case 1. b=(5, 5).

Then b # int A(C)=ri A(C) so that by Theorem 3.12 and Eq. (5.1.3), we
see that Cb=C and

PK (0)=PC(:1,1+:2,2)=[:1,1+:2,2]10
0

for any choice of scalars :i satisfying

([:1,1+:2 ,2]10
0 , ,1)=5, (5.1.11)

([:1,1+:2 ,2]10
0 , ,2)=5. (5.1.12)

Since 0�[:1,1+:2,2]10
0 (t)�10 for all t, it follows that 0�:i�10

(i=1, 2) and, hence,

[:1,1+:2,2]10
0 =:1 ,1+:2,2 . (5.1.13)

Substituting (5.1.13) into (5.1.11)�(5.1.12), we obtain a pair of linear
equations for the :i whose solution is :1=:2=6. Thus,

PK (0)=6,1+6,2 .

Case 2. b=(0, 0), (5, 10), or (10,10).

In each case, b # ext A(C) so that Fb=[b] and Cb is the singleton set

Cb=C & A&1(Fb)=[0], [10/[1, 3]], or [10/[ 0, 3]],

respectively. Hence, for any x # X,

PK (x)=0, 10/[1, 3] , or 10/[0, 3] ,

respectively.

Case 3. b=(:, 5&:+2 - 5:) for some 0<:<5.

Then b # ext A(C) so Fb=[b] and the argument given in the above
proposition shows that the maximizer is uniquely given by x=10/[$, 3] ,
where $=2&- :�5. Thus

Cb=C & A&1(Fb)=[10/[2&- :�5]],
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and, hence,

PK (x)=10/[2&- :�5, 3]

for every x # X.

Case 4. b=(7, 10).

Then Fb=co[(5, 10), (10, 10)] and

Cb=C & A&1(Fb)=[ y # X | 0� y(t)�10, Ay # Fb]

=[ y # X | 0� y(t)�10, 5�( y, ,1)�10, ( y, ,2) =10].

From this it is easy to deduce that

Cb=[ y/[0, 1)+10/[1, 3] | 0� y(t)�10].

Moreover, for any z # X,

PCb(z)=[z]10
0 /[0, 1)+10/[1, 3] .

In particular,

PK (0)=PCb(:1,1+:2,2)=[:1,1+:2 ,2]10
0 /[0, 1)+10/[1, 3]

=[:1,1]10
0 /[0, 1)+10/[1, 3]

for any :1 which satisfies the equations

([:1,1]10
0 /[0, 1)+10/[1, 3] , ,1) =7,

([:1,1]10
0 /[0, 1)+10/[1, 3] , ,2) =10.

Since the second equation is always satisfied, independent of the choice
of :1 , we need only satisfy the first. Since 0�[:1,1]10

0 (t)�10 for all t, it
follows that 0�:1�10 and, hence, that [:1 ,1]10

0 =:1,1 . Substituting this
expression into the first equation and solving for :1 , we obtain :=1 and
thus

PK (0)=,1/[0, 1)+10/[1, 3] .

6. A LINEARLY CONVERGENT DESCENT METHOD

Since all m-dimensional Hilbert spaces are isometric, without loss of
generality we may assume that Y=Rm in this section. In both the main
results of this paper (Theorems 3.6 and 3.12), the problem of determining
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the best approximation PK (x) is reduced to solving the (generally non-
linear) equation

A[PC(x+A*y)]&b=0 (6.0.1)

for the unknown element y # Y. This problem can be solved by standard
optimization methods if one knows that the left side of Eq. (6.0.1) is the
gradient of some convex function defined on Rm. In this section, we will
show that this is indeed the case when C is a polyhedron, and we will also
describe a linearly convergent algorithm to solve this problem. For the first
two results below, C may be any closed convex set in a Hilbert space X.

Lemma 6.1. For any w, z # X,

(PC(w)&PC(z), w&z)�&PC(w)&PC(z)&2.

Thus, PC is a monotone mapping.

Proof. We have

(PC(w)&PC(z), w&z)=(PC(w)&PC(z), w&PC(w))

+(PC(w)&PC(z), PC(w)&PC(z))

+(PC(w)&PC(z), PC(z)&z).

The first and third terms on the right are nonnegative by Theorem 1.1. The
second term is &PC(w)&PC(z)&2. K

Corollary 6.2. Fix any x # X. Then the function . : Rm � Rm defined
by

.( y) :=APC(x+A*y)&b (6.2.1)

is a monotone mapping.

Proof. Let w=x+A*u and z=x+A*v. Then, using Lemma 6.1,

(.(u)&.(v), u&v) =(APC(x+A*u)&APC(x+A*v), u&v)

=(PC(x+A*u)&PC(x+A*v), A*u&A*v)

=(PC(w)&PC(z), w&z) �0.

Thus .( y) is a monotone mapping of y. K
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Theorem 6.3. If C is a polyhedral set, then, for any fixed x # X and
b # Rm, the following hold:

(1) The function . : Rm � Rm defined as in (6.2.1) is a piecewise affine
mapping.

(2) There exists a convex function 8 : Rm � R such that

{8( y)=APC(x+A*y)&b,

where {8 denotes the gradient of 8.

(3) If K :=C & A&1(b){<, then 8 has a global minimizer in Rm.
Moreover, PK (x)=PC(x+A*y� ) for any global minimizer y� of 8.

Proof. Let C :=[x # X | (x, ai) �;i , 1�i�n], where ai # X and
;i # R. Consider the finite-dimensional subspace of X generated by
a1 , ..., an :

X0 :=span[a1 , ..., an].

Then we claim that

(C & X0)+X =
0 =C. (6.3.1)

Obviously, (C & X0)+X =
0 /C. Now let w # C. Then u :=w&PX0

=(w) # X0

by Theorem 1.1. Since (ai , u)=(ai , w) , it follows that u # C. Thus,
w=u+PX0

=(w) # (C & X0)+X =
0 . This completes the proof of (6.3.1).

In particular, C=C&v for any v # X =
0 . Thus for any v # X =

0 and u # X,
PC(u)=PC&v(u)=PC(u+v)&v or PC(u+v)=PC(u)+v. Therefore,

PC(z)=PC[PX0
(z)+(z&PX0

(z))]=PC[PX0
(z)]+(z&PX0

(z)). (6.3.2)

For w # C, by (6.3.1), there exist u # C & X0 and v # X =
0 such that

w=u+v. Hence,

&PX0
(z)&w&2=&PX0

(z)&u&v&2=&PX0
(z)&u&2+&v&2

which implies PC[PX0
(z)] # C & X0 , so that PC[PX0

(z)]=PC & X0
[PX0

(z)].
Thus, from (6.3.2), we derive the following identity: for any z # X,

PC(z)=PC & X0
[PX0

(z)]+(z&PX0
(z)). (6.3.3)

Based on the piecewise affine property of PC & X0
, we prove statements (1)

and (2) simultaneously.
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For any index subset J of [1, 2, ..., n], define the following polyhedral
sets in X0 _Rn:

WJ :={(z, *) # X0_Rn | *�0, *i=0 for i � J,

z& :
j # J

*jaj # C, (z& :
j # J

*j aj , ai) =;i for i # J= .

By Theorem 19.3 in [15], the linear projection of WJ onto X0 is also
polyhedral. That is,

XJ :=[x # X0 | there exists * such that (x, *) # WJ]

is a polyhedral subset of X0 . Again, by Theorem 19.3 in [15],

YJ :=[ y # Y | PX0
(x+A*y) # XJ]

is a polyhedral set since PX0
(x+A*y) is an affine mapping of y. (Note that

YJ depends only on J.)
Next we prove that for any fixed index set J, .( y) is an affine mapping

on YJ and its derivative on YJ is self-adjoint (or its Jacobian matrix is
symmetric).

Let CJ :=[z # X0 | (z, ai) =;i for i # J]. We claim that for every y # YJ ,

PC(x+A*y)=PCJ
[PX0

(x+A*y)]+[(x+A*y)&PX0
(x+A*y)]. (6.3.4)

In fact, for y # YJ , PX0
(x+A*y) # XJ (by the definition of YJ). Thus, there

exists * # Rn such that (z, *) # WJ with z :=PX0
(x+A*y). Let u* :=

z&�j # J *jaj . Then, by the definition of WJ ,

u* # C and u* # CJ .

Moreover, z&u*=�j # J *j aj # (CJ&u*)0. By Theorem 1.1,

u*=PCJ
(z)=PCJ

[PX0
(x+A*y)].

On the other hand, v* :=(x+A*y)&PX0
(x+A*y) # X =

0 , i.e., (v*, ai) =0
for 1�i�n. Thus, u*+v* # C. Since *j�0 and (u*+v*, aj)=(u*, aj)=;j

whenever *j>0, we have

(x+A*y)&(u*+v*)= :
j # J

*jaj # [C&(u*+v*)]0.

Again, by Theorem 1.1, u*+v*=PC(x+A*y), which is equivalent to
(6.3.4).
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Since CJ is an affine set, PCJ
is an affine mapping. By (6.3.4), .( y)=

APC(x+A*y)&b is an affine mapping on YJ . Let GJ=[z # X0 | (z, aj) =0
for j # J]. Then CJ=GJ+zo for any z0 # CJ and, hence, for any z # X,
PCJ

(z)=PGJ (z&z0)+z0 . It follows from (6.3.4) that for y1 , y2 # YJ

.( y1)&.( y2)=APGJ
PX0

A*( y1& y2)+AA*( y1& y2)&APX0
A*( y1& y2).

Since GJ is a subspace of X0 , PGJ PX0
=PGJ . Therefore, we have

.( y1)&.( y2)=(APGJ A*+AA*&APX0
A*)( y1& y2) for y1 , y2 # YJ .

(6.3.5)

Since the orthogonal projection onto a subspace of a Hilbert space is a
linear self-adjoint mapping, it follows from (6.3.5) that the derivative of
.( y) for y # YJ is the linear operator in parenthesis on the right of (6.3.5)
and, hence, is self-adjoint.

To prove (1) we only have to show that Y=�J YJ . Let y # Y. Define
w :=PX0

(x+A*y) # X0 and J :=[ j | (PC(w), aj)=;j]. Then, by Theorem 1.1
and the representation of the dual cone for a polyhedral set (cf. the proof
of Lemma 3.3), there exist *j�0 such that

w&PC(w)= :
j # J

*jaj .

Let *i=0 for i � J. Then (w, *) # WJ . Thus, w=PX0
(x+A*y) # XJ and

y # YJ . So . is a piecewise affine mapping on Y.
Since the derivative of . is self-adjoint (i.e., its Jacobian matrix is sym-

metric) on each polyhedral set YJ , . is a conservative field on Y (cf. [18,
Theorem 2.6, p. 359]). As a consequence, there is a potential function 8 on
Y such that {8=.. Since {8 is a monotone mapping by Corollary 6.2,
the function 8 is convex on Y.

Since 8( y) is convex and differentiable, y� is a global minimizer of 8( y)
if and only if {8( y)=0. By Theorem 3.6, it follows that (3) holds. K

Remark. Note that (6.3.3) reduces the problem of determining PC(z)
to a finite-dimensional problem, namely, determining PX0

(z) and
PC & X0

[PX0
(z)].

Algorithm 6.4 (A Steepest Descent Method). Let 0�:<1, ;>0, and
y0 # Rm. Generate a sequence of iterates yk+1 for k = 0, 1, ... by the
following steepest descent method with line search:

(1) Let zk=x+A*yk ;

(2) Let dk=b&APC(zk);
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(3) Find a stepsize tk>0 such that

:(dk , APC(zk)&b)�(dk , APC(zk+tkA*dk)&b)�0; and

(4) Set yk+1= yk+min[tk , ;] dk .

Note that the above algorithm does not require an explicit form of the
potential for APC(x+A*y)&b. Therefore, it can be applied to any closed
convex subset C of X. However, our convergence analysis of iterates is
based on the fact that APC(x+A*y)&b is the gradient of a convex
quadratic spline function.

Theorem 6.5. Suppose that C is a polyhedral set in X and K :=C &
A&1(b){<. Let 0�:<1 and ;>0 be given. Then, for any initial point
y0 # Rm and the sequence [ yk] generated by Algorithm 6.4, there exists a
solution y* of (6.0.1) and positive constants 0�*<1 and #>0 (depending
only on K and y0) such that

&yk& y*&�# } *k for k=0, 1, 2, ... . (6.5.1)

Moreover, let xk=PC(x+A*yk). Then

&xk&PK (x)&�# &A*& } *k for k=0, 1, 2, ... . (6.5.2)

Proof. A minor modification of the proof of Theorem 2.3 in [9] will
yield a proof of Theorem 6.5. For easy reference, we give a complete proof
here.

By Theorem 6.3, there is a convex function 8 such that {8( y)=
APC(x+A*y)&b for all y # Rm. If :(dk , {8( yk)) �(dk , {8( yk+1)) ,
then, by Lemma 3.1 in [11], there exists a positive constant } (depending
only on 8 and :) such that

\(dk , {8( yk))
&dk& +

2

�}(8( yk)&8( yk+1)).

Since dk=&{8( yk), it follows that

&{8( yk)&2�}(8( yk)&8( yk+1)). (6.5.3)

If 0>:(dk , {,( yk))>(dk , {,( yk+1)) , then by the definition of tk , we
obtain yk+1= yk+;dk . Since g(%) :=( yk+1& yk , {8[ yk+%( yk+1& yk)])
is the derivative of the convex function

8[ yk+%( yk+1& yk)],
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g is a nondecreasing function of %. Therefore,

:(dk , {8( yk)) �(dk , {8[ yk+%( yk+1& yk)]) for 0�%�1. (6.5.4)

By the mean-value theorem and (6.5.4), there exists 0<%k<1 such that

8( yk)&8( yk+1)=&;(dk , {8[ yk+%k( yk+1& yk)])

�&;:(dk , {8( yk));

i.e.,

8( yk)&8( yk+1)�:; &{,( yk)&2. (6.5.5)

By the definition of yk , we have

&yk& yk+1&=&min[tk , ;] {8( yk)&�; &{8( yk)&. (6.5.6)

By Theorem 2.1 in [9], it follows from (6.5.3), (6.5.5), and (6.5.6) that there
exist a global minimizer y* of 8( y) (i.e., a solution of APC(x+A*y)=b)
and positive constants *, # with 0�*<1 such that (6.5.1) holds. The
estimate (6.5.2) follows from (6.5.1), PK (x)=PC(x+A*y*), and &PC(u)&
PC(v)&�&u&v& (cf. Lemma 6.1). K

Note that the solutions of (6.0.1) might form an unbounded subset of Y.
Theorem 6.5 ensures that the iterates [ yk] not only are bounded, but they
also converge to one specific solution of (6.0.1). Different choices of :, ;,
and y0 could result in sequences of iterates converging to different solutions
of (6.0.1).
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