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HOM AND IMPEDANCE STUDY OF RF SEPARATORS FOR LCLS-II* 

S. U. De Silva#, B. R. P. Gamage, R. G. Olave, J. R. Delayen, G. A. Krafft, T. Satogata 

Old Dominion University, VA 23529, USA

Abstract 
The LCLS-II upgrade requires an rf spreader system to 

guide bunches into a switchyard delivering beam to two 

undulators and the primary beam dump. The beam pattern 

therefore needs a 3-way beam spreader. An rf deflecting 

cavity concept was proposed that includes both 

superconducting and normal conducting options. We 

characterize the higher order modes (HOM) of these rf 

separator cavities and evaluate beam dynamics effects due 

to potential HOM excitation. This study includes both 

short term wake and multi-bunch effects. 

INTRODUCTION 

The LCLS-II upgrade includes a superconducting linac 
that will deliver an electron beam with energy of 4 GeV 
to one of three destinations of the SXR undulator, the 
HXR undulator and the beam dump. The beam switching 
and transporting system that separates the beam therefore, 
requires a three-way beam spreader [1]. Among the 
options considered for the beam separation are fast 
magnet kicker systems or a set of rf separator cavities.  

An rf separator system operating at a frequency of 325 
MHz is required to provide a transverse voltage of 4.0 
MV that deflects the beam in vertical direction with a 
separation of 1 mrad [1]. 

 

Figure 1: The three rf separator designs: superconducting 

rf-dipole design (left), normal conducting 4-rod design 

(center) and normal conducting rf-dipole design (right). 

Three preliminary cavity options have been studied, 
including a superconducting rf-dipole design and two 
normal conducting designs: the 4-rod design, and normal 
conducting version of the rf-dipole design [2]. The design 
requirement of 4.0 MV can be achieved with one 
superconducting rf-dipole cavity, or by 6 cavities for each 
of the normal conducting cavity options. 

The LCLS-II linac is expected to accelerate an electron 
beam with an average beam current of 0.02 mA consisting 
of very short bunches and high bunch repetition rate. The 
operating beam parameters are shown in Table 1. 

The beam may generate single pass beam effects 
including both transverse and longitudinal effects. This 
paper presents the higher-order mode properties with 

further analysis of  longitudinal and transverse 
impedances for the superconducting rf-dipole cavity. 

Table 1: Operational Electron Beam Parameters 

Parameter 
Nominal 

Value 
Range Units 

Electron energy (Ef) 4.0 2.0-4.0 GeV 

Electron bunch 
charge (Qb) 

0.1 0.01-0.5 nC 

Bunch repetition 

rate (CW) (fb) 
0.2 0-1 MHz 

Average current 
(Iavg) 

0.02 0.001-0.3 mA 

Peak current (Ipk) 1000 500-1500 A 

rms bunch length 
( z) 

8.3 0.6-52 µm 

 

LOM AND HOM PROPERTIES 

The lower-order mode (LOM) and higher-order modes 
(HOM) are determined for the three rf-separator cavities 
using CST Microwave Studio and compared to the values 
obtained from Omega3P package of the SLAC ACE3P 
suite [3]. The modes are categorized as accelerating 
modes and transverse modes with a net deflection in the 
horizontal and vertical directions, respectively. 

Superconducting RF-Dipole Cavity 

 
Figure 2: Mode spectrum of the superconducting rf-dipole 
cavity. 

The HOM spectrum of the superconducting rf-dipole 
design is shown in Fig. 2. The fundamental deflecting 
mode is the lowest mode with no lower-order modes 
existing in the rf-dipole geometry where the [R/Q] values 
decrease as a function of the mode frequency. 
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Normal Conducting 4-Rod Cavity 

  Figure 3 shows the HOM spectrum of the normal 
conducting 4-rod cavity. This particular design has a 
lower mode, which is an accelerating mode at 226 MHz. 
The nearest LOM and HOM have low frequency 
separation from the fundamental deflecting mode with 
narrow mode separation. 

 
Figure 3: Mode spectrum of the normal conducting 4-rod 
cavity. 

Normal Conducting RF-Dipole Cavity 

  The HOM spectrum for the normal conducting rf-
dipole cavity shown in Fig. 4 has few higher-order modes 
with considerably high [R/Q]. As frequency increases the 
modes are well separated with decreasing [R/Q] in the 
order of 10 or lower. 

 
Figure 4: Mode spectrum of the normal conducting rf-
dipole cavity. 

The unloaded quality factors of the excited HOM in 
normal conducting rf cavities are in the order of 104~105 
compared to 108~1010 in superconducting rf cavities. 
Therefore, the effects due to HOM excitation in normal 
conducting cavities are negligible compared to that from 
superconducting cavities. Further analysis on beam cavity 
interactions are carried out for the superconducting rf-
dipole cavity option. 

BEAM LOADING 

A beam traversing through a deflecting cavity may 
excite all the modes including longitudinal and transverse 
modes [4, 5]. Subsequently, the beam loses energy due to 

the beam-induced voltage, which also adds to the 
cryogenic losses in superconducting cavities. 

The superconducting rf-dipole cavity has a transverse 
[R/Q] of 2130 Ω and sees a reduction in the transverse 
voltage by 0.2% at an offset of Δx = 5 mm. The beam 
loading in the fundamental mode for an off-axis beam 
requires about 1.5 kW with a resultant loaded Q (QL) of 
5.5×106 for the average beam current (Iavg) of 0.02 mA. 

The beam-induced transverse voltage in the 
fundamental deflecting mode [4] is 

                  , 8 kVt induced L avg

R
V Q k xI

Q

                  (1)                          

where k is the wave number. The corresponding induced 
power is 0.16 W. 

The beam-cavity interactions due to excitation of 
HOMs can be categorized as single bunch effects and 
multi-bunch effects. These effects are primarily governed 
by the decay time of each excited modes given by 

d=2Qext,n/ωn where Qext is the coupled quality factor and 
ωn is the mode frequency. 

SINGLE BUNCH EFFECTS 

The superconducting rf-dipole cavity is designed with a 
fundamental power coupler (FPC) that couples at a QL of 
5.5×106. The study presented here evaluates the feasibility 
of extracting the excited HOM power through the FPC 
and operating the cavity with no additional HOM 
couplers. Therefore, the Qext values for each mode are 
determined by considering the coupling of HOMs to the 
FPC as shown in Fig. 5. Deflecting modes with a net 
deflection in the vertical direction and most of the 
accelerating modes couple to the FPC, whereas the modes 
with the net deflection in horizontal direction do not. For 
those modes that do not couple to FPC, the decay time is 
governed by the unloaded quality factor (Q0,n) at 4.2 K. 

 
Figure 5: Qext as a function of mode frequency for the 
superconducting rf-dipole cavity. 

The single bunch effects in its simplest form do not 
produce regenerative effects as the wake potential from 
the bunch decays before the arrival of the next bunch. The 
LCLS-II beam has a bunch repetition rate of 1 MHz with 
a bunch separation of 1.0 µs. The decay times of most 
modes are higher than the bunch separation therefore; the 
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beam-cavity interactions are mainly due to the multi-
bunch effects. 

MULTI BUNCH EFFECTS 

The bunch cut-off frequency for an rms bunch length of 
0.6 µm given in Table 1 relates to a limit of frms=500 GHz, 
up to which the effects due to HOM excitation needs to be 
evaluated. However, the modes above the cut off 
frequency related to the beam aperture radius propagate 
out of the cavity through the beam pipe. As shown in Fig. 
2 above ~2GHz the resultant [R/Q] drops significantly 
therefore, multi-bunch effects are calculated for a 
reasonable range of 2.5 GHz. 

Longitudinal Effects 

Accelerating modes or monopole modes get excited as 
the beam traverses on-axis through the cavity. The HOM 
excitation due to accelerating modes contributes directly 
to the power loss in the beam. The induced voltage acts 
back on the beam and may lead to energy spread in the 
beam [6]. 

In this particular case, the excited modes contribute to 
the dynamic heat load through the FPC. The modes that 
are not coupled to FPC dissipate through the cavity 
surface increasing cryogenic losses. Figure 6 shows the 
induced beam power for the accelerating modes up to 2.5 
GHz. The total induce beam power is ~32 mW with a 
total induced voltage of 0.11 kV that contributes 
negligibly to the energy spread. 

 
Figure 6: Induced beam power due to excitation of 
accelerating modes. 

Transverse Effects 

Transverse effects are generated by a train of bunches 
that passes through the cavity at an offset. These effects 
may lead to beam instabilities and, if not controlled, to a 
beam break up situation, especially with multi-pass 
beams. The excited transverse modes may deflect the 
beam further enhancing the transverse effects. For a 
single pass beam the regenerative beam effects gives a 
threshold current above which the effects grow 
exponentially [5]. The threshold current is given by 

                  

3

2

f

th

t

E k
I

Z L

 ,                                     (2) 

where Ef is the beam energy, k is the wave number, L is 
the length of the cavity and Zt is the transverse 
impedance. The operational beam current must be below 
the threshold current to prevent generating any transverse 
beam instabilities. Therefore, the corresponding 
transverse impedances must satisfy the following 

    

3

,
2

f n

t n n ext

avg

E kR
Z k Q

Q LI

     .                     (3) 

 
Figure 7: Transverse impedance from HOM and due to 
average beam current. 

Figure 7 shows the transverse impedance for modes 

with a deflection in both vertical and horizontal 

directions. The horizontal deflecting modes have higher 

impedances calculated with the unloaded quality factor. 

The impedances due to transverse mode excitation are 

significantly below to that from the impedances due to the 

nominal average current of 0.02 mA, also for the 

maximum of 0.3 mA in the average current range. 

CONCLUSION 

The multi-bunch effects evaluated here do not produce 

significant longitudinal or transverse effects that lead to 

beam instabilities. The induced beam voltage is very low 

for the modes with high [R/Q]. However, the excited 

HOMs increase the total power dissipation adding to the 

cryogenic losses at 4.2 K. The 325 MHz rf-dipole cavity 

option therefore can be operated with LCLS-II design 

beam parameters with no additional HOM couplers. 
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