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COMPACT CRABBING CAVITY SYSTEMS FOR  

PARTICLE COLLIDERS* 

S. U. De Silva 

Center for Accelerator Science, Old Dominion University, Norfolk, VA 23529, USA

Abstract 
In circular or ring-based particle colliders, crabbing 

cavities are used to increase the luminosity. The first 

superconducting crabbing cavity system was successfully 

implemented at KEKB electron-positron collider that have 

demonstrated the luminosity increase with overlapping 

bunches. Crabbing systems are an essential component in 

the future colliders with intense beams, such as the LHC 

high luminosity upgrade and proposed electron-ion 

colliders. Novel compact superconducting cavity designs 

with improved rf properties, at low operating frequencies 

have been prototyped successfully that can deliver high 

operating voltages. We present single cavity and multi-cell 

crabbing cavities proposed for future particle colliders and 

addresses the challenges in those cavity systems. 

INTRODUCTION 

Luminosity increase in particle colliders requires 
maximizing the number of interactions between the 
colliding bunches. Non-overlapping bunches limit the 
number of interactions due to crossing angle as given in 
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where θc is the crossing angle. This limitation can be 
overcome by using crabbing cavities to enable head-on 
collision of bunches. The crabbing concept was first 
proposed by R.B. Palmer [1], in using a rf cavity to 
generate a transverse kick at the head and tail of the bunch 
that  forces head-on collision at the interaction point of the 
colliding bunches as shown in Fig. 1.  

 

 

 

Figure 1: Transverse kick due to crabbing cavity (top) 
and bunch collision with and without crabbing cavities 
(bottom). 

Crabbing cavities can be used as an rf separator in 
splitting a single beam to multiple beams; operating at a 
phase offset of π/2. These cavities operating in crabbing 
mode can also be used in emittance exchange in beams, x-
ray pulse compression, and beam diagnostics. 

TM110–TYPE CAVITIES 

Crabbing cavities operating in TM110 mode uses the 
transverse magnetic field interaction with the beam to 
generate transverse kick as shown in Fig. 2 [2]. The TM110 
mode is degenerate in a cylindrical-shaped geometry; 
therefore a squashed-elliptical geometry is adapted to 
separate the two polarizations. 

 

Figure 2: Squashed-elliptical crabbing cavity operating 
in TM110 mode. 

The squashed-elliptical cavity has a lower order mode 
(LOM), which is the TM010 monopole mode present in the 
geometry. The narrow separation between the crabbing 
mode with LOM and HOMs while maintaining high R/Q 
for the crabbing mode makes the damping scheme very 
complex for these cavitues. The operating frequency is 
inversely related to the transverse dimensions, hence these 
shapes are not favourable at low operating frequencies. At 
high operating frequencies TM110-type cavities can deliver 
compact crabbing cavities that are capable of 
accommodating large beam apertures. The degrees of 
freedom in the parameter space for TM110-type cavities are 
limited, which makes the suppression of higher order 
multipole components difficult. 

1st Superconducting Crabbing Cavity 

The first and only superconducting crabbing cavity has 
been designed and developed at KEK for the KEKB 
factory [3]. 

 

Figure 3: 508.9 MHz KEK crabbing cavity. 
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Two crabbing cavity systems has been installed at each 
of the high and low energy rings and was in operation 
during 2007–2010. The crabbing cavity design was a 
TM110-type cavity operating at 508.9 MHz as shown in Fig. 
3. The cavity used a coaxial coupler to damp the lower 
order modes and TE11-type higher order modes. 

Crabbing Cavity for SPX Project 

The proposed short pulse x-ray (SPX) project at ANL 
had required a crabbing cavity operating at 2.815 GHz. 
Two TM110-type crabbing cavity designs have been 
developed at JLab as shown in Fig. 4 [4, 5]. 

  

Figure 4: 2.815 GHz crabbing cavities: MARK I – 
Baseline design (left) and MARK II – Alternate design 
(right). 

MARK I cavity was designed with an LOM coupler 
located on the beam pipe and MARK II cavity used an on-
cell LOM coupler. At high operating frequency the TM110-
type cavities are capable of accommodating a large beam 
aperture of 50 mm. The cryogenic tests of both cavities 
have achieved the design requirement of 0.5 MV. 

CRABBING CAVITY APPLICATIONS 

Recent crabbing cavity applications are in need of 
compact crabbing cavity designs due to tight dimensional 
constraints and strict design specifications. LHC high 
luminosity upgrade is one of the current collider 
applications that will be using compact crabbing cavities at 
two the interaction points of ATLAS and CMS experiments 
[6]. Jefferson lab electron-ion collider (JLEIC) and eRHIC 
at BNL are two future collider applications that are 
considering compact crabbing cavities.  

The operating frequency of the crabbing cavities is 
400.79 MHz where the transverse dimensions of the 
cavities are required to be less than 290 mm due to the 
beam pipe separation of 194 mm as shown in Fig. 5. 

 

Figure 5: Beam pipe separation for the LHC ring at 
CERN. 

A TM110-type cavity operating at 400 MHz is 
comparatively large and is not a feasible design for LHC 
high luminosity upgrade crabbing cavities. Therefore, 
alternate designs are considered operating TEM-like 
modes or TE-like modes as shown in Fig. 6. TEM-like 
cavities uses both electric and magnetic field in generating 

the transverse kick and in TE-like cavities the contribution 
to the transverse kick is mostly due to the transverse 
electric field. 

 
  

(a) (b) (c) 

 
  

(d) (e) (f) 
Figure 6: TEM-like designs: (a) 4-rod cavity 
(University of Lancaster, UK), (b)-(c) parallel-bar 
cavities (ODU). TE-like designs: (d) rf-dipole cavity 
(ODU), (e) double quarter wave cavity (BNL), (f) 
ridged-wave cavity (SLAC). 

TEM-LIKE CAVITIES 

4-Rod Cavity 

The 4-rod cavity consists of 4 quarter-wave resonators 
where the combination of the 4 rods gives 4 same order 
modes as shown in Fig. 7. The 3rd mode is the crabbing 
mode and 1st mode is the accelerating mode that has a 
lower frequency. 

  

  

Figure 7:  Electric field configuration of the four similar 
order modes in the 4-rod geometry. 

The superconducting 4-rod cavity is adapted from the 
499 MHz normal conducting rf separator at Jefferson Lab 
[7]. The new geometry has improved rod geometry of λ/4 
length as shown in Fig. 8 [8]. The surface electric and 
magnetic field profiles are shown in Fig. 9. 

  

Figure 8: 400 MHz superconducting 4-rod cavity. 
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Figure 9:  Surface magnetic (left) and electric field 
(right) of the 4-rod cavity crabbing mode.

Parallel-Bar Cavity 

The parallel-bar cavity operating in TEM-like mode has 
two degenerate modes (0 mode and π mode) where π mode 
is the deflecting mode where the transverse kick is 
generated by both transverse electric and magnetic fields 
[9]. Several iterations of parallel-bar cavities have been 
designed in improving the rf properties. The design has 
been evolved into a TE-like design called the rf-dipole 
cavity as shown in Fig. 10 [10].

Figure 10: Evolution of the parallel bar cavity in to rf-
dipole cavity.

TE-LIKE CAVITIES
RF-Dipole Cavity 

The rf-dipole cavity operates in TE11-like mode where 
primary contribution to the transverse kick is from the 
transverse electric field. The field profiles are shown in 
Fig. 11. Crabbing mode do not exist in pure TE11 mode as 
the resultant kick due to transverse electric is cancelled by 
the kick due to magnetic field.

Figure 11: Electric (left) and magnetic (right) field 
profile of rf-dipole cavity.

Ridged Waveguide Cavity 

Similar cavity design was proposed by Zenghai Li at 
SLAC named the ridged waveguide cavity operating in 
TE-like mode as shown in Fig. 12 [11].

Figure 12: Ridged waveguide cavity (left) with electric 
(middle) and magnetic (right) field profiles.

Double Quarter Wave Cavity 

The double quarter wave cavity from BNL [12] shown 
in Fig. 13, is one of the TE-like crabbing cavities with a 
strong transverse electric field that generates a transverse 
kick.

Figure 13: Double quarter wave cavity (left) with 
electric (middle) and magnetic (right) field profiles.

In TEM-like cavities frequency is dependent on the 
longitudinal dimensions and transverse dimensions are not 
depended on the frequency. Therefore, these designs can 
accommodate low operating frequencies with small 
transverse sizes. On contrary, in TE-like cavities the 
transverse dimensions are inversely related to the 
frequency, which is also favourable in low frequency 
applications. As the length is not dependent on the 
frequency these cavities can accommodate applications 
with low-velocity particles that wouldn’t be feasible with 
TEM-like cavities.

PROPERTIES OF TEM-LIKE AND          
TE-LIKE CAVITIES

The 4-rod cavity, double quarter wave cavity and rf-
dipole cavity operating at 400 MHz have been considered 
as the crabbing cavities for the LHC high luminosity 
upgrade. The designs have been modified with improved rf 
properties. The rf properties of the three geometries are 
listed in Table 1.
Table 1: RF Properties of the 400 MHz (a) 4-rod Cavity, 
(b) Double Quarter Wave Cavity and (c) Rf-dipole Cavity.

Parameter (a) (b) (c) Units

LOM 375.2 None None MHz

Nearest HOMs 436.6, 
452.1 590 633.5 MHz

Vt 3.4 3.4 3.4 MV
Ep 36 41 33 MV/m
Bp 69 71 57 mT/(MV/m)
G 62.8 89 107 Ω
[R/Q]t 915 430 430 Ω
RtRs 5.7 3.8 4.6 ×104 Ω2

HOM Damping 

The 4-rod cavity configuration of HOM couplers are 
shown in Fig. 14. The accelerating mode which is a lower 
order mode present in the cavity is damped using a notch 
filter. Two higher order mode HOM couplers (H-HOM & 
V-HOM) damps the dipole modes in horizontal direction 
and vertical direction. 
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Figure 14: HOM coupling of 4-rod cavity.

Unlike TEM-like cavities, TE-like cavities do not have 
any lower order modes present in those geometries. The 
HOM damping for the two TE-like cavities are shown in 
Figs. 15 and 16.

Figure 15: HOM coupling of double quarter wave 
cavity.

The HOM damping of the double quarter wave cavity 
was designed with 3 identical HOM couplers as shown in 
Fig. 15 [13]. The HOM coupler is a filter that cuts-off the 
fundamental crabbing mode. The pickup coupler is used to 
damp the HOM at 1.75 GHz.

Figure 16: HOM damping of rf-dipole cavity.

The rf-dipole cavity uses only two HOM couplers: a high 
pass filter (HHOM) that couples to the horizontal dipole 
modes and a vertical coax coupler (VHOM) that couples to 
the dipole modes in vertical direction [14]. The rotated 
HHOM coupler and the skewed VHOM probe strongly 
damps few of the HOMs near 2 GHz.

Multipacting Analysis 

Extensive multipacting analysis was performed to 
identify resonant conditions on these novel crabbing cavity 
designs. Multipacting levels were studied using the 
Track3P code of SLAC ACE3P suite [15]. Predicted 
multipacting levels shown in Fig. 17 were observed in both 

the crabbing cavities during the cryogenic tests and were 
easily processed.

Figure 17: Multipacting levels of double quarter wave 
cavity (left) and rf-dipole cavity (right).

Higher Order Multipole Analysis 

In circular particle colliders high order multipole 
components are required to be low in order to minimize 
beam effects. The non-uniform transverse fields across the 
beam aperture give rise to the higher order multipole 
components in TEM-like and TE-like crabbing cavities. 
Compared to TM110-type cavities these compact crabbing 
cavities have more degrees of freedom in parameters that 
can be used to reduce the higher order multipole 
components. The capacitive plates along the beam aperture 
was curved inward as shown in Fig. 18.

Figure 18: Field non uniformity of rf-dipole cavity (left) 
and 4-rod cavity (right).

CRYOGENIC TESTS OF PROOF-OF-
PRINCIPLE CAVITIES

The proof-of-principle cavities of the 4-rod cavity 
double quarter wave cavity, and rf-dipole cavity shown in 
Fig. 19 were fabricated at Niowave Inc..

Figure 19: Proof-of-principle cavities: 4-rod cavity (left), 
double quarter wave cavity (middle), and rf-dipole cavity 
(right).

Cryogenic test results of the three cavities are shown in 
Fig. 20. The 4-rod cavity was tested at CERN and achieved 
the design requirements of 3.4 MV. The double quarter 
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wave cavity was tested at BNL also achieved the design 
specifications. The rf-dipole cavity was tested at JLab 
surpassed the design specifications with a transverse kick 
of 7.0 MV and Q0 of 1.2×1010.

Figure 20: Cryogenic test results of 4-rod cavity (top), 
double quarter wave cavity (middle), and rf-dipole 
cavity (bottom).

CAVITY ENGINEERING AND 
PROTOTYPING

The crabbing cavities for LHC high luminosity upgrade 
is expected to be tested at SPS prior to installation at LHC. 
The cryomodule designs are underway at CERN for the 
two crabbing cavities [16]. Currently prototype cavities are 
being fabricated. The two cryomodule designs are shown 
in Fig. 21.
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