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Abstract 

Hoang, C.T., F. Maffray, S. Olariu and M. Preissmann, A charming class of perfectly 
orderable graphs, Discrete Mathematics 102 (1992) 67-74. 

We investigate the following conjecture of VaSek Chvatal: any weakly triangulated graph 
containing no induced path on five vertices is perfectly orderable. In the process we define a 
new polynomially recognizable class of perfectly orderable graphs called charming. We show 
that every weakly triangulated graph not containing as an induced subgraph a path on five 
vertices or the complement of a path on six vertices is charming. 

A classical problem in graph theory is of colouring the vertices of a graph in 
such a way that no two adjacent vertices receive the same colour. For this 
purpose a natural way consists of ordering the vertices linearly and colouring 
them one by one along this ordering, assigning to each vertex v the smallest 
colour not assigned to the neighbours of v that precede it. This method is called 
the greedy algorithm. Unfortunately it does not necessarily produce an optimal 
colouring of the graph (i.e., one using the smallest possible number of colours). 
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Given an ordered graph (G, < ), the ordering < is called perfect ([2]) if for each 
induced ordered subgraph (H, < ) the greedy algorithm produces an optimal 
colouring of H. The graphs admitting a perfect ordering are called perfectfy 
orderable. An obstruction in an ordered graph is a chordless path with four 
vertices abed such that a <b and d cc. It is easily seen that a perfectly ordered 
graph has no obstruction. Chvatal has shown that this condition is also sufficient: 
a graph is perfectly orderable if and only if it admits an obstruction-free ordering 

WI). 
Recall that a graph is perfect if every induced subgraph H admits an optimal 

colouring with a number of colours equal to the largest size of a clique of H (see 
[7,1]). Chvatal ([2]) h as shown that perfectly orderable graphs are perfect, and 
that perfectly orderable graphs include two well-known classes of perfect graphs 
(chordal graphs and transitively orientable graphs). More generally it is natural to 
wonder which graphs among the important families of (perfect) graphs are also 
perfectly orderable. Chvatal has investigated this question for line-graphs ([5]) 
and for claw-free graphs ([4]). Another possible class to consider is that of weakly 
triangulated graphs. A graph G is called weakly triangulated if neither G nor its 
complement G contains an induced cycle of length at least five. We denote by Pk 
(resp. C,) a chordless path (resp. cycle) with k vertices. 

Conjecture 1 (Chvatal [3]). Every weakly triangulated graph with no induced Ps 
is perfectly orderable. 

The aim of this note is to examine this conjecture. Our main result is the 
following. 

Theorem 1. Every weakly triangulated graph with no induced Ps and p6 is 
perfectly orderable. 

For reasons of convenience we will use an alternate definition of perfect 
orderability. One says that an orientation of a graph G is perfect if and only if it is 
acyclic and its does not contain an induced P4 abed with arcs ab and dc. Using the 
natural correspondence between orderings and acyclic orientations, it is straight- 
forward to check that a graph admits a perfect ordering if and only if it admits a 
perfect orientation. Without ambiguity a P4 as in the definition of a perfect 
orientation will also be called an obstruction. 

In a Pk with k 2 2 the two vertices of degree 1 are called the endpoints of the 
Pk. In a P4 the two vertices of degree 2 are called the midpoints. The neighbour 
set of a vertex x is denoted by N(x), and A(x) will denote the neighbour set of x 
in the complement graph. 

Definition 1. We will say that a vertex v of a graph G is charming if it satisfies the 
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following three properties: 
(cl) v is not the endpoint of a Ps in G; 
(~2) ZJ is not the endpoint of a Ps in G; 
(~3) v does not lie on a C5 of G ; 

Lemma 2. Let G = (V, E) be a graph with a charming vertex v. Then G is 

perfectly orderable if and only if G - v is. 

Proof of Lemma 2. The ‘only if part is trivial, so we only need to prove the ‘if 
part. We suppose that G - v is perfectly orderable; so there exists a perfect 
orientation (V - v, A) of G - v. We define an orientation G = (V, A’) of G as 
follows: for every edge with an endpoint x in N(v) and the other endpoint y in 
N(v) U {v}, we put the arc xy in A’; for any other edge we put in A’ the 
orientation which the edge has in A. We are going to prove that G is a perfect 
orientation of G. It is clear that it has no circuits. Let us suppose that G has an 
obstruction abed (with arcs ab and dc). Note that v # a and v # d since v has no 
successor in 6. If v = b, then we must have c E N(v) and d E N(v) and thus 
cd CA’, a contradiction. Therefore v fb and, by symmetry, v #c. Hence 
a, b, c, d are all in V - v. Since there is no obstruction in (V, A), at least one of 
the arcs ab and dc is not in A. So we may assume without loss of generality that 
a E N(v) and b E N(v). Since v is charming we must have c E N(v) and d E R(v), 

for otherwise one of (cl), (c2), (~3) is violated by v in the subgraph induced by 
v, a, b, c, d. But then abed is not an obstruction because cd E A’. Consequently 
6 is a perfect orientation of G. 0 

We call charming any graph in which every induced subgraph has a charming 
vertex. It follows from Lemma 2 that every charming graph is perfectly orderable. 
In particular, this yields a new and shorter proof of the fact that every graph 
containing no induced Ps, 4 and C5 is perfectly orderable (see [6]), for in such a 
graph every vertex is charming. We can also remark that a vertex is charming in a 
graph G if and only if it is charming in the complement of G. Hence a graph is 
charming if and only if its complement graph is charming. 

An ordering x1, . . . , x, of the vertices of a graph G is called charming if for 
each i (with 1 i < c n) xi is a charming vertex in the subgraph of G induced by 

Xl,.-., xi. (In particular x, is a charming vertex of G.) The following points are 
easily seen: 

l A graph is charming if and only if it admits a charming ordering, and a 
charming ordering for G is also a charming ordering for its complement G. 

l The existence of a charming ordering (and its construction, if one exists) can 
be determined in time polynomial in the size of the input graph. (Recall that in 
general the recognition of perfectly orderable graphs is an NP-complete problem, 
as shown in [lo].) 
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l Given a charming ordering of a graph G, one can determine in polynomial 

time a perfect ordering of G, as in the proof of Lemma 2. However these 

orderings may be different. Fig. 1 shows a charming graph in which no 

charming ordering is perfect. 

Recall that a graph is brittle (see [9]) if every induced subgraph H has a vertex 

which either is not the midpoint of any P4 or is not the endpoint of any P4 in H. 

Let us name ‘domino’ the bipartite graph consisting of a cycle with six vertices 

and with exactly one chord. Then the graph made up of a domino in which each 

vertex of degree 3 is substituted by the complement of a domino is charming and 

not brittle. On the other hand PS is brittle and not charming. Hence brittle graphs 

and charming graphs form two incomparable classes of perfectly orderable 

graphs. 

Incidentally, we can ask the following question: is it true that a minimal 

imperfect graph cannot contain a charming vertex? 

Since there exist P,-free weakly triangulated graphs that are not charming (e.g. 

P8), Lemma 2 does not imply Chvatal’s conjecture. Nonetheless we will now see 

that it implies the validity of a special case of the conjecture. 

Definition 2. A P4 of a graph G is bud if there exists a minimal cutset C of G such 

that the P4 has one midpoint in G - C and all three other vertices in C. 

Lemma 3. Let G be a weakly triangulated graph. Then G has an induced 
subgraph isomorphic to one of p,, F,, F2, or F3 (see Fig. 2) if and only if there 
exists an induced subgraph of G that has a bad P4. 

b 
Fig. 1 
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Fig. 2. The graphs p,, F,, F,, F3. 

Remark. Clearly, a P,-free graph contains none of F,, F2, F3 as an induced 

subgraph. 

Lemma 4 (Hayward [S]). Let G be a weakly triangulated graph. Let C be a 

minimal cutset of G, and D be any connected component of the graph G[C]. Then 

every connected component of G - C contains a vertex that is adjacent to all 

vertices of D. 

Proof of Lemma 3. It is easy to check on Fig. 2 that, for each of the graphs 

P6, F,, F2, F3, the black vertices form a minimal cutset and that the subset of black 

or grey vertices forms a bad P4 with respect to that minimal cutset. Hence the 

‘only if part of the lemma holds true. Now we will prove ‘if’ part. 

Let G be a weakly triangulated graph having a bad P4 ubcd. Let C be a minimal 

cutset such that u, c, d E C and b $ C. Let B be the connected component of 
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G - C that contains b, and B’ be another component of G - C. Clearly, a, c, d 
belong to the same connected component of G[C]. Therefore and by Hayward’s 
Lemma, B (respectively B’) contains a vertex x (respectively y) that is adjacent to 
all three vertices a, c, d. Note that b and x are different since b is not adjacent to 
d and x is. Since B is connected, there exists a chordless path Q from b to x lying 
entirely in B. Without loss of generality, we may choose the vertices b and x 
(with the property that a, c, d are neighbours of x, that a, c are neighbours of b, 
and that d is not a neighbour of 6) in such a way that this path is as short as 
possible. We now examine the length of Q. 

If Q is of length 1, (i.e., b and x are adjacent), then a, b, c, d, x, y induce a &. 
Observation: If Q is of length at least 2, an interior vertex v of Q cannot be 

adjacent to both a and c. Indeed, if u is adjacent to both u and c, consider the 
pair u, x if v is not adjacent to d, or the pair b, v if v is adjacent to d: in either 
case the new pair is connected by a subpath of Q shorter than Q, and the choice 
of b, x is contradicted. 

If Q is of length exactly 2, let Y be the vertex between b and x along Q. By the 
observation, v is not adjacent to both a and c. If v is adjacent to a and not to c, 
then v must not be adjacent to d, for otherwise V, y, b, d, a, c induce a C6 in G; 
now a, b, c, d, v, x, y induce an F1 and G. If v is not adjacent to a, then u must 
not be adjacent to d, for otherwise v, b, a, y, d induce a C,; now a, b, c, d, v, x,y 
induce an F2 or an F3 in G. 

If Q is of length at least 3, write Q = bv,v, - . . vk with uk =x and k 3 3. 
Remark that a must be adjacent to at least one of vi, v2, for otherwise we can 
find an induced cycle ubv, v2. . * vi of length at least 5 (where i is the smallest 
integer such that vi E N(u)), contradicting the fact that G is weakly triangulated. 
The same argument holds for c instead of a. However, by the observation above, 
no interior vertex of Q can be adjacent to both a and c. It follows that the edges 
between {a, c} and {vi, vz} are either uvl and cvz or uvz and cv,; in either case 
y, a, c, vi, v2 induce a C5 in G, a contradiction. This completes the proof. 0 

Lemma 5. A graph G such that no induced subgruph of G has a bud P4 contains a 
vertex satisfying (c2). 

Proof. We will prove the lemma by induction on the order of G. The lemma is 
true when G has one vertex. We now assume that it is proved for all graphs with 
strictly less vertices than G. 

We call side of G any set B c V for which there exists a minimal cutset C of G 
such that B is a connected component of G - C. We will show that: 

Every side of G contains a vertex satisfying (~2). (1) 

It is easy to see that every graph that is not complete has at least two non-empty 
sides, and that every vertex of a complete graph is charming. Thus (1) implies the 
lemma. 
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Assume that (1) is false: there exists a side B of G that contains no vertex 
satisfying (~2). We choose B of minimum size with this property, and we denote 
by C a minimal cutset of G such that B is a component of G - C. 

We first suppose that B is of size 1, and write B = {b}. Note that C = N(b) by 
the minimality of C. If b is the endpoint of a PS bstuv in G‘, then USV~ is a bad P4 
(with respect to C) in G, contradicting the hypothesis; thus b satisfies (~2). 

We now suppose that B is of size at least 2. We call homogeneous any set S of 
vertices such that every vertex in V - S is adjacent to either all or none of the 
vertices of S. We distinguish between two cases. 

Case 1: B is a homogeneous set of G. 
By the induction hypothesis the graph G[B] has a vertex b that satisfies (~2) in 

G[B]. Suppose that b is the endpoint of a Ps bstuv in G. Since B is homogeneous, 
the vertices s, C, U, u are either all in B or all in V - B. If they are in B, then b 
violates (~2) in G[B], a contradiction. If they are in V - B, then U.YVC is a bad P4 
(with respect to C) in G, contradicting the hypothesis of the lemma. 

Case 2: B is not a homogeneous set of G. 
Since B is not homogeneous, there are two non adjacent vertices b and c with 

b E B and c E C. The set N(b) is a cutset separating b and c; so it contains a 
minimal cutset C’ of G. Clearly C’ G C U B and c E C - C’. Since C is a minimal 
cutset of G, every vertex in C, and in particular c, has at least one neighbour in 
each component of G - C. It follows that the set (C - C’) U (V - C - B) induces 
a connected subgraph of G - C’, and so it must be contained in one connected 
component of G - C’. Hence any other connected component of G - C’ is 
included in B - C’. Since c $ C’ and C is a minimal cutset of G, we have 
C’ rl B # 0. We conclude that there exists a connected component B’ of G - C’ 
that is strictly included in B. By the minimality of B, B’ must contain a vertex 
that satisfies (~2) in G. 

In both cases B contains a vertex satisfying (~2) in G, and the proof is 
complete. 0 

Theorem 6. Every weakly triangulated graph with no induced Ps and p, is 
charming. 

Proof. Let G be a weakly triangulated graph with no induced PS or & Note that 
every vertex of G satisfies conditions (cl) and (~3); thus a given vertex of G is 
charming if and only if it satisfies (~2). The existence of such a vertex is a 
consequence of Lemma 3, the remark following it, and Lemma 5. •i 

Now Theorem 1 follows as a simple corollary of the above. 
Note that the proof above actually yields that every weakly triangulated graph 

with no induced PS and p6 either is a clique or possesses two non-adjacent 
charming vertices. This is not true for all charming graphs: for example P7 is 
charming and has just one charming vertex. 
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Finally, since the complement of a charming graph is also charming and hence 

perfectly orderable, we obtain as a corollary of Theorem 6 that every weakly 

triangulated graph with no induced p, or P6 is perfectly orderable. This parallels a 

result of Hoang and Khouzam ([9]) which states that a weakly triangulated graph 

with no induced p, or domino is perfectly orderable. 
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