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Abstract
Hoang, C.T., F. Maffray, S. Olariu and M. Preissmann, A charming class of perfectly
orderable graphs, Discrete Mathematics 102 (1992) 67-74.

We investigate the following conjecture of VaSek Chvital: any weakly triangulated graph
containing no induced path on five vertices is perfectly orderable. In the process we define a
new polynomially recognizable class of perfectly orderable graphs called charming. We show
that every weakly triangulated graph not containing as an induced subgraph a path on five
vertices or the complement of a path on six vertices is charming.

A classical problem in graph theory is of colouring the vertices of a graph in
such a way that no two adjacent vertices receive the same colour. For this
purpose a natural way consists of ordering the vertices linearly and colouring
them one by one along this ordering, assigning to each vertex v the smallest
colour not assigned to the neighbours of v that precede it. This method is called
the greedy algorithm. Unfortunately it does not necessarily produce an optimal
colouring of the graph (i.e., one using the smallest possible number of colours).
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Given an ordered graph (G, <), the ordering <is called perfect ([2]) if for each
induced ordered subgraph (H, <) the greedy algorithm produces an optimal
colouring of H. The graphs admitting a perfect ordering are called perfectly

Urueraute 1"\[1 obstruction lll an

ordered graph is a chordless path with four
vertices abcd such that a <b and d <c. It is easily seen that a perfectly ordered
h

oranh hag no obstruction. Chvital has chown that thic condition is alens sufficient:
HARPAR LIRS MY VUUL WWRLI L. SRRV G I-ll ATRLT WJEARS VY AL LAACARL LALAW WAWLINMALIVUIAL 1T QIOVU OWMEVIV LI,
a graph is perfectly orderable if and only if it admits an obstruction-free ordering
(12D.

Recall that a graph is perfect if every induced subgraph H admits an optimal
colouring with a number of colours equal to the largest size of a clique of H (see
[7,1]). Chvital ([2]) has shown that perfectly orderable graphs are perfect, and
that perfectly orderable graphs include two well-known classes of perfect graphs
(chordal graphs and transitively orientable graphs). More generally it is natural to
wonder which graphs among the important families of (perfect) graphs are also
perfecily orderabie. Chvatal has investigated this question for line-graphs ({5])
and for claw-free graphs ([4]). Another possible class to consider is that of weakly

trinnoulatod aranhe A aranh (7 ic callad weally tria ney 1latad if naithar 7 nar
triangusalea grapns. A grapn G 1S Caucd weakuy wiar igaild it neiuilr U nor its

complement G contains an induced cycle of length at least five. We denote by P,
(resp. C,) a chordless path (resp. cycle) with k vertices.

riecture 1 (Chvatal [3]).

i L

erfectly orderable.

n Every weakly triangulated graph

Co
is

The aim of this note is to examine this conjecture. Our main result is the
following.

Theorem 1. Every weakly triangulated graph with no induced Ps and Pj is
perfectly orderable.

For reasons of convenience we will use an alternate definition of perfect
orderability. One says that an orientation of a graph G is perfect if and only if it is
acyclic and its does not contain an induced P, abcd with arcs ab and dc. Using the
natural correspondence between orderings and acyclic orientations, it is straight-
forward to check that a graph admits a perfect ordering if and only if it admits a
perfect orientation. Without ambiguity a P, as in the definition of a perfect
orientation wili aiso be called an obstruciion.

In a Pk with k =2 the two vertices of degree 1 are called the endpoints of the

P.. In a P, the two vertices of deoree 2 are called the mufnnrntc The neichbour
F. In a 1y the vertices of degree 2 are calleQ the » 1he neighbour

set of a vertex x is denoted by N(x), and N(x) will denote the neighbour set of x
in the complement graph.

Definition 1. We will say that a vertex v of a graph G is charming if it satisfies the
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following three properties:
(c1) v is not the endpoint of a Fs in G;
(c2) v is not the endpoint of a Ps in G;
(c3) v does not lie on a Cs of G;

Lemma 2. Let G=(V, E) be a graph with a charming vertex v. Then G is
perfectly orderable if and only if G — v is.

Proof of Lemma 2. The ‘only if’ part is trivial, so we only need to prove the ‘if’
part. We suppose that G —v is perfectly orderable; so there exists a perfect
orientation (V — v, A) of G —v. We define an orientation G = (V, A’) of G as
follows: for every edge with an endpoint x in N(v) and the other endpoint y in
N(v) U {v}, we put the arc xy in A’; for any other edge we put in A’ the
orientation which the edge has in A. We are going to prove that Gisa perfect
orientation of G. It is clear that it has no circuits. Let us suppose that G has an
obstruction abcd (with arcs ab and dc). Note that v # a and v # d since v has no
successor in G. If v =5, then we must have c € N(v) and d e N(v) and thus
cdeA’, a contradiction. Therefore v#b and, by symmetry, v#c. Hence
a, b, c, d are all in V — v. Since there is no obstruction in (V, A), at least one of
the arcs ab and dc is not in A. So we may assume without loss of generality that
a € N(v) and b € N(v). Since v is charming we must have ¢ € N(v) and d € N(v),
for otherwise one of (cl), (c2), (c3) is violated by v in the subgraph induced by
v, a, b, ¢, d. But then abcd is not an obstruction because cd € A’. Consequently
G is a perfect orientation of G. [

We call charming any graph in which every induced subgraph has a charming
vertex. It follows from Lemma 2 that every charming graph is perfectly orderable.
In particular, this yields a new and shorter proof of the fact that every graph
containing no induced Ps, Ps and C; is perfectly orderable (see [6]), for in such a
graph every vertex is charming. We can also remark that a vertex is charming in a
graph G if and only if it is charming in the complement of G. Hence a graph is
charming if and only if its complement graph is charming.

An ordering x,, . . ., x,, of the vertices of a graph G is called charming if for
each i (with 1=<<i=n) x; is a charming vertex in the subgraph of G induced by
X1, ..., x;. (In particular x,, is a charming vertex of G.) The following points are

easily seen:

e A graph is charming if and only if it admits a charming ordering, and a
charming ordering for G is also a charming ordering for its complement G.

o The existence of a charming ordering (and its construction, if one exists) can
be determined in time polynomial in the size of the input graph. (Recall that in
general the recognition of perfectly orderable graphs is an NP-complete problem,
as shown in [10].)
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e Given a charming ordering of a graph G, one can determine in polynomial
time a perfect ordering of G, as in the proof of Lemma 2. However these
orderings may be different. Fig. 1 shows a charming graph in which no
charming ordering is perfect.

Recall that a graph is brittle (see [9]) if every induced subgraph H has a vertex
which either is not the midpoint of any P, or is not the endpoint of any P, in H.
Let us name ‘domino’ the bipartite graph consisting of a cycle with six vertices
and with exactly one chord. Then the graph made up of a domino in which each
vertex of degree 3 is substituted by the complement of a domino is charming and
not brittle. On the other hand F is brittle and not charming. Hence brittle graphs
and charming graphs form two incomparable classes of perfectly orderable
graphs.

Incidentally, we can ask the following question: is it true that a minimal
imperfect graph cannot contain a charming vertex?

Since there exist Ps-free weakly triangulated graphs that are not charming (e.g.
P,), Lemma 2 does not imply Chvatal’s conjecture. Nonetheless we will now see
that it implies the validity of a special case of the conjecture.

Definition 2. A P, of a graph G is bad if there exists a minimal cutset C of G such
that the P, has one midpoint in G — C and all three other vertices in C.

Lemma 3. Let G be a weakly triangulated graph. Then G has an induced
subgraph isomorphic to one of P, F,, E5, or F; (see Fig. 2) if and only if there
exists an induced subgraph of G that has a bad P,.

Fig. 1.
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VAAAY

Fig. 2. The graphs P, F,, E,, F,.

Remark. Clearly, a Ps-free graph contains none of F, K, F; as an induced
subgraph.

Lemma 4 (Hayward [8]). Let G be a weakly triangulated graph. Let C be a
minimal cutset of G, and D be any connected component of the graph G[C). Then
every connected component of G — C contains a vertex that is adjacent to all
vertices of D.

Proof of Lemma 3. It is easy to check on Fig. 2 that, for each of the graphs
B, F, E, F,, the black vertices form a minimal cutset and that the subset of black
or grey vertices forms a bad P, with respect to that minimal cutset. Hence the
‘only if’ part of the lemma holds true. Now we will prove ‘if’ part.

Let G be a weakly triangulated graph having a bad P, abcd. Let C be a minimal
cutset such that a,c,de C and b ¢ C. Let B be the connected component of
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G — C that contains b, and B' be another component of G — C. Clearly, a, ¢, d
belong to the same connected component of G[C]. Therefore and by Hayward's
Lemma, B (respectively B’) contains a vertex x (respectively y) that is adjacent to
all three vertices a, ¢, d. Note that b and x are different since b is not adjacent to
d and x is. Since B is connected, there exists a chordless path Q from b to x lying
entirely in B. Without loss of generality, we may choose the vertices b and x
(with the property that a, c, d are neighbours of x, that a, ¢ are neighbours of b,
and that d is not a neighbour of ») in such a way that this path is as short as
possible. We now examine the length of Q.

If Q is of length 1, (i.e., b and x are adjacent), then a, b, ¢, d, x, y induce a P.

Observation: If Q is of length at least 2, an interior vertex v of Q cannot be
adjacent to both a and c. Indeed, if v is adjacent to both a and ¢, consider the
pair v, x if v is not adjacent to d, or the pair b, v if v is adjacent to d: in either
case the new pair is connected by a subpath of Q shorter than Q, and the choice
of b, x is contradicted.

If Q is of length exactly 2, let v be the vertex between b and x along Q. By the
observation, v is not adjacent to both a and c. If v is adjacent to @ and not to c,
then v must not be adjacent to d, for otherwise v, y, b, d, a, c induce a Cq in G;
now a, b, ¢, d, v, x, y induce an F; and G. If v is not adjacent to a, then v must
not be adjacent to d, for otherwise v, b, a, y, d induce a Cs; now a, b, ¢, d, v, x,y
induce an F; or an F; in G.

If Q is of length at least 3, write Q =bv,u,---v, with v, =x and k=3.
Remark that @ must be adjacent to at least one of v,, v,, for otherwise we can
find an induced cycle abv; v, - - - v; of length at least 5 (where i is the smallest
integer such that v; € N(a)), contradicting the fact that G is weakly triangulated.
The same argument holds for ¢ instead of a. However, by the observation above,
no interior vertex of O can be adjacent to both a and c. It follows that the edges
between {a, ¢} and {v,, v,} are either av, and cv, or av, and cv,; in either case
¥, a, ¢, Uy, U, induce a Cs in G, a contradiction. This completes the proof. O

Lemma 5. A graph G such that no induced subgraph of G has a bad P, contains a
vertex satisfying (c2).

Proof. We will prove the lemma by induction on the order of G. The lemma is
true when G has one vertex. We now assume that it is proved for all graphs with
strictly less vertices than G.

We call side of G any set B = V for which there exists a minimal cutset C of G
such that B is a connected component of G — C. We will show that:

Every side of G contains a vertex satisfying (c2). (1)

It is easy to see that every graph that is not complete has at least two non-empty
sides, and that every vertex of a complete graph is charming. Thus (1) implies the
lemma.
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Assume that (1) is false: there exists a side B of G that contains no vertex
satisfying (c2). We choose B of minimum size with this property, and we denote
by C a minimal cutset of G such that B is a component of G — C.

We first suppose that B is of size 1, and write B = {b}. Note that C = N(b)
the minimality of C. If b is the endpoint of a P; bstuv in G, then usvt is a bad P,
2)

(‘v‘v’iﬂ" racnact to ) in (7 contradictino the hunathacic: thuc b caticfiec (9

Ll tOSpPLlt WU L) i U, LULIUalliliillg Wit Uy PpULTICEIS, UWIUS U Sausues (Vo).

We now suppose that B is of size at least 2. We call homogeneous any set S of
vertices such that every vertex in V —§ is adjacent to either all or none of the
vertices of §. We distinguish between two cases.

Case 1: B is a homogeneous set of G.

By the induction hypothesis the graph G[B] has a vertex b that satisfies (c2) in
G[B]. Suppose that b is the endpoint of a Ps bstuv in G. Since B is homogeneous,
the vertices s, t, u, v are either all in B or all in V — B. If they are in B, then b
violates (c2) in G[B], a contradiction If they are in V — B, then usvt is a bad P,
(with respect to C) in G, contradicting the hypothesis of the lemma.

Case 2: B is not a homogeneous set of G.

e D ot hamangananiig thara ara tgarn nan adicanant varticag b and » writh
Dlll\fc D lb nut uuunuscucuua, lllClL« alv Ltwu j1uil aulapcut VOILLILOD U allu L wilil
beB and ce C. The set N(b) is a cutset separating b and c; so it contains a
minimal cutset C' of (5. (‘Iearlv C'cCUBand ce C—CC’'. Since C is a minimal

cutset of G, every vertex in C, and in particular ¢, has at least one neighbour in
each component of G — C. It follows that the set (C —~ C’')U (V ~ C — B) induces
a connected subgraph of G — C’, and so it must be contained in one connected
component of G —C’. Hence any other connected component of G —C’ is
included in B—C’'. Since c¢ C’ and C is a minimal cutset of G, we have
C' N B #0. We conclude that there exists a connected component B’ of G — C’
that is strictly included in B. By the minimality of B, B’ must contain a vertex
that satisfies (c2) in G.

In both cases B contains a vertex satisfying (c2) in G, and
complete. [J

1

[

he proof is

Theorem 6. Every weakly triangulated graph with no induced P; and P, is
charming.

Proof. Let G be a weakly triangulated graph with no induced P or P;. Note that
every vertex of G satisfies conditions (c1) and (c3); thus a given vertex of G is
charming if and only if it satisfies (c2). The existence of such a vertex is a
consequence of Lemma 3, the remark following it, and Lemma 5. O

Now Theorem 1 follows as a simple coroilary of the above.
Note that the proof above actually yields that every weakly triangulated graph

with nn indiced P and D ecithar iec a ~slinus Ar nnccaccae twa nan_adiarant
witll DO IMGQUCCG 5 and g CIUiCr 15 a GiQUe Or POSsEsses two non-adgjacent

charming vertices. This is not true for all charming graphs: for example P; is
charming and has just one charming vertex.
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Finally, since the complement of a charming graph is also charming and hence
perfectly orderable, we obtain as a corollary of Theorem 6 that every weakly
triangulated graph with no induced P; or Py is perfectly orderable. This parallels a
result of Hoang and Khouzam ([9]) which states that a weakly triangulated graph
with no induced P or domino is perfectly orderable.
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