Wings and Perfect Graphs

Stephan Olariu
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_fac_pubs
Part of the Applied Mathematics Commons, and the Computer Sciences Commons

Repository Citation

Olariu, Stephan, "Wings and Perfect Graphs" (1990). Computer Science Faculty Publications. 129.
https://digitalcommons.odu.edu/computerscience_fac_pubs/129

Original Publication Citation

Olariu, S. (1990). Wings and perfect graphs. Discrete Mathematics, 80(3), 281-296. doi:10.1016/0012-365x(90)90248-g

WINGS AND PERFECT GRAPHS

Stephen OLARIU
Department of Computer Science, Old Dominion University, Norfolk, VA 23508, USA

Received 18 September 1986
Revised 9 February 1988

Abstract

An edge $u v$ of a graph G is called a wing if there exists a chordless path with vertices u, v, x, y and edges $u v, v x, x y$. The wing-graph $W(G)$ of a graph G is a graph having the same vertex set as $G ; u v$ is an edge in $W(G)$ if and only if $u v$ is a wing in G. A graph G is saturated if G is isomorphic to $W(G)$. A star-cutset in a graph G is a non-empty set of vertices such that $G-C$ is disconnected and some vertex in C is adjacent to all the remaining vertices in C. V. Chvátal proposed to call a graph unbreakable if neither G nor its complement contain a star-cutset. We establish several properties of unbreakable graphs using the notions of wings and saturation. In particular, we obtain seven equivalent versions of the Strong Perfect Graph Conjecture.

0. Introduction

Claude Berge proposed to call a graph G perfect if for every induced subgraph H of G the chromatic number of H equals the size of the largest clique in H. He conjectured that a graph is perfect if and only if its complement is perfect. This conjecture was proved by Lovász [4] and is known as the Perfect Graph Theorem.

A graph G is minimal imperfect if G itself is imperfect but every proper induced subgraph of G is perfect.
The only known minimal imperfect graphs are the odd chordless cycles of length at least five (also called odd holes) and their complements (termed odd anti-holes). Berge conjectured that these are the only minimal imperfect graphs. This conjecture is the celebrated Strong Perfect Graph Conjecture (SPGC, for short) and it is still open.

An edge $u v$ of a graph G will be called a wing if there exists a P_{4} (standing for the chordless path with three edges) in G, with vertices u, v, x, y and edges $u v$, $v x, x y$. The wing-graph $W(G)$ of a graph G is a graph having the same vertex-set as $G ; u v$ is an edge in $W(G)$ if and only if $u v$ is a wing in G.

Obviously, if the SPGC holds true, then $W(G)$ is an odd hole whenever G is a minimal imperfect graph. It was this link between perfection and wings that motivated the work presented in this paper: in fact, we shall prove several equivalent versions of the SPGC. One of them states that the SPGC holds true if and only if the wing-graph of every minimal imperfect graph is an odd hole.
Some of the results established here for minimal imperfect graphs hold for a larger class of graphs.

A star-cutset in a graph G is a non-empty set C of vertices such that $G-C$ is disconnected and some vertex of C is adjacent to all the remaining vertices in C. Chvátal proposed to call a graph unbreakable if neither G nor its complement \bar{G} contains a star-cutset. He also showed that every minimal imperfect graph is unbreakable (see Chvátal [1]).

Our first two results, which we call Theorem 1 and Theorem 2 play a key role in the rest of the paper. The first one shows that in an unbreakable graph a wing is two-sided, meaning that it extends from each side to a P_{4}. The second gives a characterization of wings in an unbreakable graph.

Next, Theorem 3 asserts that in an unbreakable graph every vertex is endpoint of at least two wings. If the SPGC is true, then every vertex of a minimal imperfect graph is endpoint of precisely two wings. We prove that the converse implication holds as well.

Bruce Reed conjectured that $W(G)$ is connected whenever G is a minimal imperfect graph. In fact, this conjecture is an easy corollary of the following theorem of Chvátal and Hoang [2]:

If the vertices of a minimal imperfect graph G are coloured red and white in such a way that every colour appears on at least one vertex, then at least one P_{4} in G has one vertex of one colour and three of the other.
(To settle Reed's conjecture, we only need observe that one wing of this P_{4} has endpoints of different colours).

The Chvátal-Hoang theorem also implies that $W(G)$ is non-bipartite whenever G is a minimal imperfect graph. (Here, we only need observe that the other wing of the P_{4} has endpoints of the same colour.)

We prove that for an unbreakable graph $G, W(G)$ is disconnected if and only if \bar{G} is bipartite. This result also implies Reed's conjecture. Furthermore, if G is an unbreakable graph, then at most one of $W(G), W(\bar{G})$ is disconnected.

We prove a stronger statement than Reed's conjecture, namely that in every minimal imperfect graph G, the wing-graph $W(G)$ is 2 -connected. It turns out that the SPGC is true if and only if in every minimal imperfect graph G, the wing-graph $W(G)$ is minimally 2 -connected.

Throughout this paper we shall use the symbol N for "neighbourhood":
$N(u)$ stands for the set of vertices adjacent to u;
$N^{\prime}(u)$ stands for the set of vertices adjacent to u in the complement.

We shall rely on the following known properties of unbreakable graphs:
(P1) Every unbreakable graph contains a P_{4}.
(P2) No unbreakable graph contains two vertices x, y such that

$$
N(x) \subseteq\{y\} \cup N(y) .
$$

(P3) No unbreakable graph contains a set H of at least two vertices such that all vertices outside H are either adjacent to all vertices of H or to none of
them. (A set H with the property described above is often referred to as a homogeneous set).
(P4) In every minimal imperfect graph G, every vertex is contained in exactly ω cliques of size ω. (Here ω denotes the largest size of a set of pairwise adjacent vertices in G).
(P5) If G is a minimal imperfect graph, then for every vertex w of G, $\omega(G-w)=\omega(G)$.
((P1) follows from a result of Seinsche [8]; (P 2) is immediate; $(\mathrm{P} 3)$ is a restatement of Theorem 1 in Lovász [3]; (P4), (P5) are included in a result of Padberg [6]).

1. Basics

Theorem 1. In an unbreakable graph every wing is two-sided.

Proof. Let $G=(V, E)$ be an unbreakable graph and let vertices a, b, c, d induce a P_{4} with edges $a b, b c, c d$. We only need find vertices v, w such that $\{a, b, v, w\}$ induces a P_{4} with edges $b a, a v, v w \in E$.

For this purpose, write $C=\{b\} \cup N(b) ; A=N(a)-C$.
Since G is unbreakable, we have $A \neq \emptyset$, and $G-C$ is connected. Since $d \notin A \cup C$, it follows that some v in A is adjacent so some w in $G-(A \cup C)$, as claimed. This completes the proof of the theorem.

Note. When referring to unbreakable graphs we shall use the term wing as a synonym for two-sided wing, as justified by Theorem 1.

Theorem 2. For an unbreakable graph G the following two statements are equivalent:
(i) the edge uv is a wing
(ii) there exists a vertex w in G distinct from u and v and adjacent to neither of them.

Proof. Let $G=(V, E)$ be an unbreakable graph.
The implication (i) \rightarrow (ii) is trivial.
To prove the implication (ii) \rightarrow (i), let $u v$ be an edge, and let w be a vertex satisfying (ii). Write
$t \in A$ whenever $t u \in E, t v \notin E, t \neq v$, $t \in B$ whenever $t u \in E, t v \in E$, $t \in A^{\prime}$ whenever $t u \notin E, t v \in E, t \neq u$, $t \in B \prime$ whenever $t u \notin E, t v \notin E$.

By our assumption B^{\prime} is non-empty. Since G is unbreakable, there must exist a path in $G-(\{u\} \cup A \cup B)$ from v to some vertex in B^{\prime}. The shortest such path contains two edges. To put it differently, there exist vertices x in A^{\prime} and y in B^{\prime} such that $x y \in E$. Now $\{u, v, x, y\}$ induces a P_{4} in G, and so $u v$ is a wing and the proof is complete.

Theorem 3. In an unbreakable graph every vertex is endpoint of at least two wings.

Proof. Let $G=(V, E)$ be an unbreakable graph and let w be an arbitrary vertex in G. Write $N(w)=N_{0} \cup N_{1}$ such that $w t$ is a wing if and only if $t \in N_{0}$.

If N_{1} is empty, then we are done: since G is unbreakable, w must be endpoint of at least two edges, both wings.

Now $N_{1} \neq \emptyset$. We note that since \bar{G} is connected, N_{0} must be non-empty: otherwise by Theorem 2, every vertex in $N(w)$ would be adjacent to all vertices in $N^{\prime}(w)$,

We claim that
If N_{1} is non-empty then every vertex in $N^{\prime}(w)$ is adjacent to at least one vertex in N_{0}.
[If a vertex z in $N^{\prime}(w)$ is adjacent to no vertex in N_{0} then, in $\bar{G},\{z\} \cup N_{0}$ is a star-cutset; since \bar{G} is unbreakable, such a vertex z cannot exist.]

By this claim and Theorem 2 combined, $\left|N_{0}\right|=1$ implies that every vertex w^{\prime} in $N^{\prime}(w)$ satisfies $N(w) \subseteq\left\{w^{\prime}\right\} \cup N\left(w^{\prime}\right)$; since G is unbreakable this cannot happen. Hence N_{0} contains at least two vertices, as claimed.

This completes the proof of the theorem.

Theorem 3 implies the following result of Chvátal [9]:

Corollary 3a. In an unbreakable graph every vertex is endpoint of at least two P_{4} 's and midpoint of at least two P_{4} 's.

Proof. Follows from Theorem 3 together with Theorem 1.

Lemma 4.1. Let $G=(V, E)$ be an unbreakable graph and let C be a proper subset of V such that $V-C$ splits into disjoint subsets U and B, satisfying:
(*) $|B| \geqslant 2$,
(**) $^{* *} u v \in E$ for all $u \in U, v \in C$, and
$\left({ }^{(* *)}\right.$) at most one vertex in B is endpoint of wings joining vertices from B and C.

Then C induces a clique in G.

Proof. The proof is by induction on the cardinality of C. Suppose the statement true for sets C with $1 \leqslant|C|<k$ and let $|C|=k>1$.

We claim that

$$
\begin{equation*}
C \text { induces a disconnected subgraph of } \bar{G} . \tag{1}
\end{equation*}
$$

[Suppose not; let B^{\prime} be the set of all the vertices in B that have at least one neighbour in C. Since C is not homogeneous, we must have $B^{\prime} \neq \emptyset$. We note that if every edge joining a vertex x in B^{\prime} to a vertex in C is a non-wing, then x is adjacent to all vertices in C. (This follows from Theorem 2 together with the assumption that C induces a connected subgraph of \bar{G}).
Thus, if no wing has an endpoint in B and the other endpoint in C, then C is a homogeneous set.

Now there exists a vertex b in B and some vertex c in C such that $b c$ is a wing. (Recall that by $\left({ }^{* * *}\right), b$ is unique.)
Note that $B^{\prime}=B$. (Else, since every vertex in $B^{\prime}-\{b\}$ is adjacent to all vertices in C, it follows that $\{c\} \cup B^{\prime} \cup U$ is a star-cutset in G, a contradiction.
But now, $\{b\}$ is a star-cutset in \bar{G}. Hence, C induces a disconnected subgraph of \bar{G}, as claimed.]
By virtue of (1), there exists a partition of C into non-empty, vertex-disjoint sets C_{1}, C_{2} such that every vertex in C_{1} is adjacent to all vertices in C_{2}.

By the induction hypothesis, (with the other C_{i} adjoined to U) C_{1} and C_{2} are cliques and therefore C is a clique, as claimed.
This completes the proof of the lemma.
Theorem 4. For an unbreakable graph G the following three statements are equivalent:
(i) $W(G)$ is disconnected
(ii) the set of vertices of G partitions into sets B and C with $|B| \geqslant 3,|C| \geqslant 3$ such that no wing joins a vertex in B to a vertex in C.
(iii) \bar{G} is bipartite.

Proof. Let $G=(V, E)$ be an unbreakable graph.
The implication (i) \rightarrow (ii) is immediate: $|B| \geqslant 3,|C| \geqslant 3$ are implied by Theorem 2. To prove the implication (ii) \rightarrow (iii), note that by Lemma 4.1 with $U=\emptyset$, it follows that both B and C induce cliques. Thus \bar{G} is bipartite.
Finally, to prove the implication (iii) \rightarrow (i), we note that if \bar{G} is bipartite, then we can write $V=V_{1} \cup V_{2}$ such that V_{1}, V_{2} induce complete subgraphs in G. Trivially, no edge joining vertices from V_{1} and V_{2} can be a wing. Hence $W(G)$ is disconnected.

Bruce Reed's conjecture mentioned in the introduction is implied by Theorem 4. More precisely,

Corollary 4a. In a minimal imperfect graph $G, W(G)$ is connected.
Proof. Let G be a minimal imperfect graph. Since \bar{G} cannot be bipartite, it follows (by Theorem 4) that $W(G)$ is connected.

Corollary 4b. If G is an unbreakable graph, then at most one of $W(G), W(\bar{G})$ is disconnected.

Proof. If both $W(G), W(\bar{G})$ were disconnected then by Theorem 4 it must be that both G, \bar{G} are bipartitc. However, this implies that G has at most four vertices, and we are done.

Theorem 5. If G is an unbreakable graph, then every component of $W(G)$ is 2-connected.

Proof. Let $G=(V, E)$ be an unbreakable graph, let A be a component of $W(G)$ and let A^{\prime} stand for the set $V-A$.

If A is not 2-connected, then there exist distinct vertices x, y in A and a vertex z in A such that all paths joining x and y and consisting of wings only contain z.
Let X stand for the component of $W(G)-\{z\}$ containing x, and let Y stand for $A-(X \cup\{z\})$. Lemma 4.1 with $B=X \cup\{z\}, C=Y \cup A^{\prime}, U=\emptyset$, guarantees that

$$
\begin{equation*}
Y \cup A^{\prime} \text { is a clique. } \tag{2}
\end{equation*}
$$

Lemma 4.1 with $B=Y \cup\{z\}, C=X \cup A^{\prime}, U=\emptyset$, guarantees that $X \cup A^{\prime}$ is a clique.

Let vertices u in X and v in Y be such that the edges $u z$ and $v z$ are both wings. By Theorem 2, there exist vertices w, w^{\prime} such that $w \neq u, w \neq z$ and $w u, w z \notin E$, $w^{\prime} \neq v, w^{\prime} \neq z$ and $w^{\prime} v, w^{\prime} z \notin E$. By (2), $w \in Y$; by (3), $w^{\prime} \in X$.

If A^{\prime} is not empty, then by (2) and (3) combined, $\{z\}$ is a star-cutset in the complement of G.

Now we may assume that A^{\prime} is empty. We claim that

$$
\begin{equation*}
\text { every path in } G \text { joining } w \text { and } w^{\prime} \text { contains } z \text { or a neighbour of } z . \tag{4}
\end{equation*}
$$

To see that this is the case, let N_{X}, N_{Y} stand for $N(z) \cap X, N(z) \cap Y$ respectively. Clearly, both $X-N_{X}$ and $Y-N_{Y}$ are non-empty, and no edge in G has one endpoint in $X-N_{X}$ and the other in $Y-N_{Y}$, for otherwise, by Theorem 2, we contradict that z is an articulation vertex. Now (4) follows by connectedness of G.

However, (4) implies that $\{z\} \cup N(z)$ is a star-cutset in G, a contradiction. This completes the proof of the theorem.

Corollary 5a. The wing-graph of every minimal imperfect graph is 2-connected.

Proof. Let G be a minimal imperfect graph. By Corollary $4 \mathrm{a}, W(G)$ is connected. Now the conclusion follows by Theorem 5.

2. Equivalent versions of the SPGC

The following result gives seven equivalent versions of the Strong Perfect Graph Conjecture involving the notion of wings.

Theorem 6. The following seven statements are equivalent:
(i) every minimal imperfect graph is either an odd hole or an odd anti-hole
(ii) the wing-graph of every minimal imperfect graph is an odd hole
(iii) in every minimal imperfect graph, every wing extends to precisely one P_{4} in each direction
(iv) in every minimal imperfect graph, every vertex is endpoint of at most two wings.
(v) in every minimal imperfect graph, every vertex is endpoint of exactly two wings
(vi) the wing-graph of every minimal imperfect is minimally 2 -connected
(vii) the wing-graph of every minimal imperfect graph is triangle-free.

Proof of Theorem 6. The implications (i) \rightarrow (ii) and (ii) \rightarrow (iii) are immediate. The implication (iii) \rightarrow (iv) follows from the following stronger statement.

Lemma 6.1. If in an unbreakable graph G every wing extends to precisely one P_{4} in each direction, then every vertex in G is endpoint of at most two wings.

Proof of Lemma 6.1. Let $G=(V, E)$ be an unbreakable graph satisfying the hypothesis of the Lemma, and let u be an arbitrary vertex in G.

Theorem 3 guarantees the existence of a vertex v such that $u v$ is a wing. Write

$$
V=\{u, v\} \cup A \cup B \cup A^{\prime} \cup B^{\prime}
$$

with

$$
\begin{aligned}
& A=N(u)-(\{v\} \cup N(v)), \\
& A^{\prime}=N(v)-(\{u\} \cup N(u)), \\
& B=N(u) \cap N(v), \\
& B^{\prime}=V-(N(u) \cup N(v)) .
\end{aligned}
$$

By Theorem 2, B^{\prime} is not empty. By assumption, there exist vertices x in A, x, in A^{\prime} and y, y^{\prime} in B^{\prime} such that $\{u, v, x, y\}$ induces a P_{4} with edges $v u, u x, x y$ and $\left\{u, v, x^{\prime}, y^{\prime}\right\}$ induces a P_{4} with edges $u v, v x^{\prime}, x^{\prime} y^{\prime}$.

For further reference we make the following observations:

Observation 1. No vertex in $A \cup A^{\prime}-\left\{x, x^{\prime}\right\}$ is adjacent to a vertex in B^{\prime}. (Else, the wing $u v$ would extend to more than one P_{4} in some direction.)

Observation 2. Vertices y and y^{\prime} are adjacent to all the vertices in B. (Else, let $y b \notin E$ for some $b \in B$. Now $y x$ extends to either $y x b v$ or $y x u b$ in addition to $y x u v$, a contradiction.)

Observation 3. x is adjacent to all vertices in $A-\{x\}, x$, is adjacent to all vertices in $A^{\prime}-\left\{x^{\prime}\right\}$. (Else, by Observation 1 the wing $y x$ (or $y^{\prime} x^{\prime}$) would extend to more than one P_{4} in the same direction.)

Observation 4. Both x and x, are non-adjacent to at most one vertex in B. (Assume x is non-adjacent to different vertices t, t^{\prime} in B. This implies that both $\{x, y, t, v\}$ and $\left\{x, y, t^{\prime}, v\right\}$ induce a P_{4}, and thus $x y$ extends to more than one P_{4} in the same direction, contrary to our assumption. The same argument with x ' in place of x and y^{\prime} in place of y shows that x^{\prime} is non-adjacent to at most one vertex in B.)

Observation 5. If $y=y^{\prime}$ then $B^{\prime}=\{y\}$. (Else, by Observation $2,\{y\} \cup B \cup$ $\left\{x, x^{\prime}\right\}$ is a star-cutset in G.)

Fact 1. $|A|=\left|A^{\prime}\right|=1$.
Proof of Fact 1. Let t be a vertex of A distinct from x. By Observation 3 we have $t x \in E$; by Observation $1, t$ is adjacent to no vertices in B^{\prime}. We claim that
all paths joining t to a vertex in B^{\prime} contain u or a neighbour of u.
[If not, then t has a neighbour t^{\prime} in A^{\prime}. Clearly, $t^{\prime} y \notin E$, for otherwise $y t t^{\prime}$ would extend to two P_{4} 's in the same direction, namely $y t^{\prime} v u$ and $y t^{\prime} t u$, a contradiction.

Note that $x t^{\prime} \notin E$, for otherwise $y x$ would extend to $y x t^{\prime} v$ in addition to $y x u v$. But now, $y x t t$ ' is a P_{4}, contrary to our assumption.]

This completes the proof of Fact 1.
Fact 1 allows us to write $A=\{x\}, A^{\prime}=\{x\}$. If B is empty, then we are done by Fact 1.

Now B is non-empty.
Fact 2. Every vertex in B ' is adjacent to all vertices in B.
Proof of Fact 2. First, we note that if y and y^{\prime} coincide, then we are done by Observation 2 and Observation 5.

Now, $y \neq y^{\prime}$. Clearly, $x y^{\prime}, x^{\prime} y \notin E$. Let z be a vertex in B^{\prime} non-adjacent to some vertex t in B. Since G is unbreakable, there must exist a path

$$
z=w_{0}, \quad w_{1}, \ldots, w_{p}=x, \quad(p \geqslant 2)
$$

with w_{i} in $V-(\{y\} \cup N(y))$ for all $i=1,2, \ldots, p$, joining z to x^{\prime}.
By taking p as small as possible, we ensure that this path is chordless. Let j be the first subscript such that $w_{j} t \in E$. But now, the wing $w_{j-1} w_{j}$ extends to two different P_{4} 's in the same direction, namely $w_{j-1} w_{j} t u$ and $w_{j-1} w_{j} t v$, a contradiction.

This completes the proof of Fact 2.
Fact 3. If $\left|B^{\prime}\right| \geqslant 2$, then x^{\prime} is adjacent to all vertices in B.

Proof of Fact 3. Note that by Observation 5, y and y^{\prime} are distinct. Suppose that there exists a vertex t in B non-adjacent to x '.

It is easy to see that $y y^{\prime} \in E$, for if not then $y t$ extends to the P_{4} 's $y t u x$ ' and $y t y^{\prime} x$ ', a contradiction.

Next, observe that x is not adjacent to x^{\prime}, for otherwise $y^{\prime} x^{\prime}$ would extend to the P_{4} 's $y^{\prime} x$ 'xu and $y^{\prime} x^{\prime} v u$.

But now, $x^{\prime} y^{\prime}$ extends to $x^{\prime} y^{\prime} y x$ and $x^{\prime} y^{\prime} t u$. Since this cannot happen, the conclusion follows.

Fact 4. If $\left|B^{\prime}\right|=1$, then x^{\prime} is non-adjacent to at most one vertex in $A \cup B$.
Proof of Fact 4. Now y, y^{\prime} coincide; by Observation 4, x ' is non-adjacent to at most one vertex in B. The only way the statement can fail is to have $x x^{\prime} \notin E$ and $x^{\prime} t \notin E$ for some t in B.

But this implies that the wing x ' y extends to two P_{4} 's in the same direction, namely x ' $y t u$ and $x^{\prime} y x u$.

The conclusion follows.
To complete the proof of Lemma 6.1, we note that by Observation 4, Fact 1, Fact 2, Fact 3, Fact 4 and Theorem 2 combined, it follows that u is endpoint of at most two wings, as claimed.

The implication of (iv) \rightarrow (v) follows by Theorem 3.
To prove the implication (v) $\rightarrow(\mathrm{vi})$, consider a minimal imperfect graph G. By Theorem $5, W(G)$ is 2-connected. Since (v) is satisfied, by removing any edge in $W(G)$ two vertices of degree one are obtained. Thus (vi) holds.
The implication (vi) \rightarrow (vii) follows from a result of Plummer [10].
For the proof of the implication (vii) \rightarrow (i) we need the following result.
Lemma 6.2. Let G be a minimal imperfect graph with $\omega(G) \geqslant 3$. If $W(G)$ contains no triangle then every edge in \bar{G} is a wing.

Proof of Lemma 6.2. By Theorem 2, we only need prove that every two non-adjacent vertices in G have a common neighbour. For this purpose, consider
any two non-adjacent vertices x and y. If x and y have no common neighbour then, by Theorem 2, y is endpoint of wings only; since $W(G)$ contains no triangle, no triangle in G contains y and so $\omega(G)=2$, a contradiction.

This completes the proof of Lemma 6.2.
Consider a minimal imperfect graph G that does not satisfy (i). Now $\omega(G) \geqslant 3$ and $\omega(\bar{G}) \geqslant 3$. By the Perfect Graph Theorem, both G and \bar{G} are minimal imperfect; hence we only need show that at least one of $W(G)$ or $W(\bar{G})$ contains a triangle.
If $W(G)$ contains no triangle, then by Lemma 6.2 , every edge in \bar{G} is a wing and so, having $\omega(\bar{G}) \geqslant 3, W(\bar{G})$ must contain a triangle.
This completes the proof of Theorem 6.
Remark. The graph with vertices a, b, c, d and edges $a b, a c, a d$ is usually referred to as the claw. A graph is termed claw-free if it contains no induced subgraph isomorphic to the claw.
The implication (vii) \rightarrow (i) can also be established using the notion of claw-free graph. Parthasarathy and Ravindra [7] proved that the SPGC is true for claw-free graphs.
If (i) is false, then some minimal imperfect graph G has $\omega(\bar{G}) \geqslant 3$; by the result of Parthasarathy and Ravindra [7] combined with the Perfect Graph Theorem, \bar{G} contains a claw.
To put it differently, G contains a triangle $a b c$ and a vertex d adjacent to neither of a, b or c. Since every edge of the triangle $a b c$ is a wing by Theorem 2, the proof is completed.

3. Saturation

Call a graph saturated if $G=W(G)$. The motivation for this concept comes from the observation that if the SPGC holds true, then for every minimal imperfect graph G, either G or \bar{G} is saturated.

Remark. Theorem 2 implies that
An unbreakable graph G is saturated if and only if for every edge there exists a vertex of G non-incident with that edge and adjacent to neither of its endpoints.

The next result gives a characterization of saturated unbreakable graphs.
Theorem 7. For an unbreakable graph G the following two statements are equivalent:
(i) G is saturated
(ii) all induced P_{4} 's are saturated.

Proof.

The implication (i) \rightarrow (ii) is immediate.
To prove the implication (ii) \rightarrow (i), let G be an unbreakable graph and assume that all induced P_{4} 's in G are saturated. Consider an arbitrary vertex u in G; as usual, write $N(u)=N_{0} \cup N_{1}$ such that $u u^{\prime}$ is a non-wing if and only if $u^{\prime} \in N_{1}$. We only need prove that $N_{1}=\emptyset$. We claim that
every vertex in N_{1} is adjacent to all vertices in N_{0}
[Let x be an arbitrary vertex in N_{0} and let y be an arbitrary vertex in N_{1}. By Theorem 1, there are distinct vertices t, t^{\prime} in $N^{\prime}(u)$ such that $\left\{u, x, t, t^{\prime}\right\}$ induced a P_{4} with edges $u x, x t, t t^{\prime}$. By Theorem 2, $t^{\prime} y \in E$. Since every P_{4} is saturated, $\{x, u, y, t\rangle$ does not induce a P_{4}; hence $x y \in E$.]
Now Theorem 2 implies that every vertex in N_{1} is adjacent to all vertices in $N^{\prime}(u)$. Since \bar{G} is not disconnected, it must be that $N_{1}=\emptyset$, as claimed.

Remark. Theorem 7 would follow instantly if in every unbreakable graph every edge were in an induced P_{4}.

However, the latter statement is false: consider the graph \bar{C}_{9}.
Our next aim is to provide several sufficient conditions for an unbreakable graph to be saturated.

One of these results is Lemma 6.2. Other such conditions are given in Theorem 8 and Theorem 10.

Theorem 8. If G is an unbreakable graph with no induced \bar{P}_{5} then G is saturated.
Theorem 8 follows from the following stronger statement.
Theorem 9. In an unbreakable graph every non-wing is in a \bar{P}_{k}, for some $k \geqslant 5$.
Proof. Let $G=(V, E)$ be an unbreakable graph and let $u v$ be a non-wing in G. Write $N(u)=N_{0} \cup N_{1}$ such that $u t$ is a wing if and only if $t \in N_{0}$.
Let F be the subgraph of \bar{G} induced by $N(u)$. Let S be the set of all the vertices w in N_{1} for which there is no path in F from w to N_{0}. By definition, each vertex in S is adjacent to all vertices in $N(u)-S$; by Theorem 2, each vertex in S is adjacent to all the vertices in $N^{\prime}(u)$. Since \bar{G} is connected, S must be empty. In particular, there is a path $x_{0}, x_{1}, \ldots, x_{j}$ in F, with $x_{0} \in N_{0}$ and $x_{j}=v$. By taking j as small as possible, we ensure that the path is chordless and that $x_{1}, x_{2}, \ldots, x_{j} \in$ N_{1}. By Theorem 1, there are adjacent vertices t_{1} and t_{2} in $N^{\prime}(u)$ such that $x_{0} t_{1} \in E, x_{0} t_{2} \notin E$. Now $\left\{t_{1}, u, t_{2}, x_{0}, x_{1}, \ldots, x_{j}\right\}$ induces the desired \bar{P}_{k}.

Remark. The converse of Theorem 8 is not true: there exist unbreakable graphs which are saturated and which contain a \bar{P}_{5} (see Fig. 1).

Fig. 1.

Is the converse true in the context of minimal imperfect graphs? More precisely, is it true that if a minimal imperfect graph is saturated then it contains no \bar{P}_{5} ?

Obviously, if the SPGC is true, then the answer is yes.
Theorem 10. Let G be an unbreakable graph. If no P_{4} in \bar{G} is saturated, then G is saturated.

Proof. By Theorem 7, we only need prove that in G all induced P_{4} 's are saturated. For this purpose, consider an arbitrary P_{4} in G with vertices a, b, c, d and edges $a d, b d, a c$. Clearly, $\{a, b, c, d\}$ induce a P_{4} in \bar{G} with edges $a b, b c, c d$. By our assumption $b c$ is not a wing. We claim that a and d have a common neighbour in \bar{G}.
[Since \bar{G} is unbreakable, there must exist a chordless path

$$
\begin{aligned}
& a=w_{0}, w_{1}, \ldots, w_{p-1}, w_{p}=d \text { with } w_{i} \notin \mathbf{N}^{\prime}(b) \cup\{b\} \\
& \qquad \text { for all } i=1,2, \ldots, p .
\end{aligned}
$$

Trivially, $p \geqslant 2$. Note that if $p \geqslant 3$ then, by Theorem $2,\left\{a, w_{1}, w_{2}, w_{3}\right\}$ induces a saturated P_{4} in \bar{G}; since \bar{G} is unbreakable, this eventuality cannot happen. Thus, $p=2$ and the conclusion follows.]

Let e be a common neighbour of a and d. Note that e is adjacent in G to neither a nor d and thus $\{a, b, c, d\}$ induce a saturated P_{4} in G.

The Triangle Lemma. In a minimal imperfect graph every non-wing belongs to a triangle.

Proof. Olariu [6] has proved that in a minimal imperfect graph there cannot exist distinct vertices u and v such that every vertex in $G-\{u, v\}$ is adjacent to exactly one of u, v.

Let G be a minimal imperfect graph and let $u v$ be an edge of G that belongs to no triangle. By Olariu's result, the set S of all the vertices adjacent to neither u nor v is not empty. Now Theorem 2 guarantees that $u v$ is a wing.

This completes the proof of the Triangle Lemma.

Remark. The Triangle Lemma is false in the context of unbreakable graphs which are not minimal imperfect. To see this, note that with G standing for the graph \bar{C}_{6}, the theorem fails.

Theorem 11. If in a minimal imperfect graph the neighbourhood of a vertex u is disconnected then u is endpoint of wings only.

Proof. Let $G=(V, E)$ be a minimal imperfect graph and let u be a vertex in V such that $N(u)$ is disconnected. We may assume that there is a non-wing $u v$, else we are done. By the Triangle Lemma, the connected component of $N(u)$ that includes v has at least two vertices; by Theorem $2, v$ is adjacent to all vertices in $N^{\prime}(u)$. Since $N(u)$ is disconnected, $\{u, v\} \cup N^{\prime}(u)$ is a star-cutset, and we are done.

Remark. This statement is not true in the context of unbreakable graphs which are not minimal imperfect. A counterexample is, again, \bar{C}_{6}. However, the following statement holds for unbreakable graphs:

> Let G be an unbreakable graph. If the neighbourhood of a vertex u is disconnected then uv is a wing whenever v belongs to a component H of $N(u)$ with $|H| \geqslant 2$.

The proof follows easily from the proof of Theorem 11.
Theorem 12. Let G be a minimal imperfect graph and let the edge uu' be a non-wing in G. There exist vertices $x, x^{\prime}($ possibly $x=x$ ') in $N(u) \cap N(u$ ') such that both $u x, u^{\prime} x$ ' are wings.

Proof. Write $G=(V, E)$; write

$$
\begin{aligned}
& t \in A \text { whenever } t u \in E, t u^{\prime} \notin E, t \neq u^{\prime}, \\
& t \in B \text { whenever } t u \in E, t u^{\prime} \in E, \\
& t \in A^{\prime} \text { whenever } t u \notin E, t u^{\prime} \in E, t \neq u .
\end{aligned}
$$

Note that B is non-empty by the Triangle Lemma. If $u v$ is a non-wing for all v in B, then by Theorem $2, v z \in E$ whenever $z \in A$ '. This, however, implies that $\left\{u^{\prime}\right\} \cup A$ is a star-cutset in \bar{G}. Since G is unbreakable, it follows that there exists a vertex x in B such that $u x$ is a wing.

The same argument with u ' playing the role of u guarantees the existence of a vertex x^{\prime} in B such that $u^{\prime} x^{\prime}$ is a wing.

Theorem 13. Let u be a vertex of a minimal imperfect graph. If a vertex x in $N(u)$ is not endpoint of a P_{4} in $N(u)$ then the edge $u x$ is a wing.

Proof. Write $G=(V, E)$. Let x be a vertex in $N(u)$ with the property specified in the theorem. By Theorem 12 there exists a vertex x ' in $N(x) \cap N(u)$ such that $x x^{\prime}$ is a wing. By Theorem 1 , this wing must extend symmetrically to a P_{4} in G. Hence, there exist vertices y, z in V such that $\{x, x, y, z\}$ induces a P_{4} in G with edges $x x^{\prime}, x^{\prime} y, y z$. Since x is endpoint of no P_{4} in $N(u)$, at least one of the vertices y and z must belong to $N^{\prime}(u)$. Now Theorem 2 guarantees that $u x$ is a wing.

Remark. Theorem 13 is false in the context of unbreakable graphs which are not minimal imperfect. It is easy to see that with G standing for the graph \bar{C}_{6}, the theorem fails.

A triangle of a graph G will be called a tent if it contains precisely two wings. A chordless C_{4} will be called a shelter if it contains two opposite edges which are wings, the other edges being non-wings.

Theorem 14. For a minimal imperfect graph G, the following two statements are equivalent:
(i) G is not saturated
(ii) G contains a tent or a shelter.

Proof. Let $G=(V, E)$ be a minimal imperfect graph.
The implication (ii) \rightarrow (i) is immediate.
To prove the implication (i) \rightarrow (ii), suppose the statement false. Now $G \neq W(G)$ and yet G contains neither a tent nor a shelter. Consider a non-wing $u u^{\prime}$ in G. Write
$x \in N_{0}$ if and only if $u x$ is a wing;
$x \in N_{1}$ whenever $u x$ is a non-wing and $x y \notin E$ for some $y \in N_{0}$.
Note that $N_{1} \neq \emptyset$ or else \bar{G} would be disconnected, a contradiction. [If $N_{1}=\emptyset$, then every vertex in $N(u)-N_{0}$ is adjacent to all vertices in N_{0}. On the other hand, by Theorem 2 every vertex in $N(u)-N_{0}$ is adjacent to all vertices in $\left.\{u\} \cup N^{\prime}(u)\right]$.

For the proof of the implication (i) \rightarrow (ii) we shall rely on the following facts:
Fact 1. $N(u)=N_{0} \cup N_{1}$.
Proof of fact 1. If not, then let T stand for $N(u)-\left(N_{0} \cup N_{1}\right)$, and let t be an arbitrary vertex in T. Note that t must be adjacent to all vertices in N_{1} for otherwise there would exist vertices t^{\prime} in N_{1} and $t^{\prime \prime}$ in N_{0} such that $t t^{\prime} \nexists E$ and (by the definition of N_{1}) $t^{\prime} t^{\prime \prime} \notin E$, implying that $\left\{u, t, t^{\prime \prime}\right\}$ induces a tent, a contradiction.

However, now every vertex in T is adjacent to all vertices in $V-T$ and thus \bar{G} is disconnected, a contradiction. Thus $T=\emptyset$, as claimed.

Fact 2. All edges $x w$ with $x \in N_{1}, w \in N^{\prime}(u)$ are wings.
Proof of fact 2. By Theorem 2, every vertex x in N_{1} is adjacent to all vertices in $N^{\prime}(u)$. On the other hand, by the definition of N_{1}, for every x in N_{1} there exists a vertex x^{\prime} in N_{0} such that $x x^{\prime} \notin E$. By Theorem 2 for every x^{\prime} in N_{0} there exists a vertex x " in $N^{\prime}(u)$ such that $x^{\prime} x " \notin E$.
However, now again by Theorem $2 x x$ " is a wing. Since $N^{\prime}(u)$ is connected and since every edge in $N^{\prime}(u)$ is a wing (Theorem 2, again) the result follows, or G contains a tent.

Fact 3. Every vertex in N_{0} is either adjacent to all vertices in N_{1} or to none of them.

Proof of fact 3. Let t be a vertex in N_{0} and let x, x^{\prime} be vertices in N_{1} such that, without loss of generality, $t x \in E, t x^{\prime} \notin E$. Since G is unbreakable, $N(u)$ is a minimal cutset in G; hence t must have a neighbour t^{\prime} in $N^{\prime}(u)$. By Fact $2, x t^{\prime}$, $x^{\prime} t t^{\prime}$ are both wings. Note that $t t^{\prime}$ must be a wing for otherwise $\left\{u, t, x^{\prime}, t^{\prime}\right\}$ would induce a shelter in G, a contradiction.
However, this implies that either $\{u, t, x\}$ or $\{t, x, t\rangle$ induces a tent in G, contradicting our assumption. Therefore, such a vertex t cannot exist.

By Fact 3 together with the trivial observation that every vertex in N_{1} is adjacent to all vertices in $\{u\} \cup N^{\prime}(u)$ it follows that $\left|N_{1}\right|=1$ or else N_{1} would be a homogeneous set in G. Write $N_{1}=\{x\}$.
By Theorem 12, $N(u) \cap N(x)$ contains a vertex x ' $\in N_{0}$ such that $x x^{\prime}$ is a wing and thus the triangle $u x x^{\prime}$ is a tent.
This completes the proof of the theorem.

Acknowledgement

The author is grateful to Vašek Chvatal for his help during the realisation of this work.

References

[1] V. Chvátal, Star-cutsets and Perfect Graphs, McGill University, Montreal, School of Computer Science, Tech. Report SOCS-83.21.
[2] V. Chvâtal and C. Hoang, On the P_{4}-Structure of Perfect Graphs. I: Even Partitions, McGill University, Montreal, School of Computer Science, Tech. Report SOCS-83.10.
[3] L. Lovasz, Normal hypergraphs and the perfect graph conjecture, Discrete Math. 2 (1972) 253-267.
[4] L. Lovász, A characterization of perfect graphs, J. Combinat. Theory (B) 13, 95-98.
[5] S. Olariu, No Antitwins in Minimal Imperfect Graphs, McGill University, Montreal, School of Computer Science, Tech. Report SOCS-85.28.
[6] M. Padberg, Perfect zero-one matrices, Math. Programming 6, 180-196.
[7] K.R. Parthasarathy and G. Ravindra, The strong perfect graph conjecture is true for $K_{1,7}$-free graphs, J. Combinat. Theory (B) 21 (1976) 212-223.
[8] D. Seinsche, On a property of the class of n-colorable graphs, J. Combinat. Theory (B) (1974) 191-193.
[9] V. Chvátal, Perfect Graph Seminar, McGill University, Montreal (1983).
[10] M. Plummer, On minimal blocks, Trans. Am. Math. Soc. 134 (1968) 85-94.

