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A bstract 

Olariu, S., Some aspects of the semi-perfect elimination, Discrete Applied Mathematics 31 (1991) 

291-298. 

Several efficient algorithms have been proposed to construct a perfect elimination ordering of the 

vertices of a chordal graph. We study the behaviour of two of these algorithms in relation to a 

new concept, namely the semi-perfect elimination ordering, which provides a natural generaliza- 

tion of chordal graphs. 

1. Introduction 

A graph G is said to be chordal (also triangulated or rigid circuit) if every cycle 

in G of length at least four has a chord. Chordal graphs arise naturally in a wide 

spectrum of applications including the study of evolutionary trees [l], the facility 

location problem [2], scheduling [lo], and solving sparse systems of linear equations 

[12,13]. For a wealth of results concerning chordal graphs the interested reader is 

referred to Duchet [4] or Golumbic [6]. 

Dirac [3] proved that chordal graphs contain a vertex whose neighbours are pair- 

wise adjacent: such a vertex is termed simplicial. An ordering x1,x,, . . . ,x,, of the 

vertices of G is said to be a perfect elimination ordering (PEO, for short) if the 

corresponding linear order < with xj<,uj iff i<j satisfies 

xi is a simplicial vertex in Gt,,,+ ,, __,, X,,) for every i. 

Fulkerson and Gross [S] proved that a graph G is triangulated if and only if it 

admits a perfect elimination ordering. Later, Rose, Tarjan and Leuker [13], Tarjan 

and Yannakakis [ 151, Shier [14], and Hoffman and Sakarovitch (see [14]) proposed 

efficient algorithms to find perfect elimination orderings in chordal graphs. They 

all prove particular instances of the following template theorem: 
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A graph G is chordal if and only if any ordering of the vertices 
of G produced by algorithm A is a PEO. (1) 

Here, of course, A stands for one of lexicographic breadth-first search (or LBFS) 

[ 131, maximum cardinality search (or MCS) [15], maximum element in component 

(or MEC) [14], maximum neighbourhood in component (or MCC) [14], or the 

Hoffman-Sakarovitch algorithm mentioned in [ 141. 

A natural extension of the class of chordal graphs is obtained by relaxing the con- 

dition related to the existence of the simplicial vertex, as we are about to explain. 

For this purpose, however, we need to introduce some new terms. As usual, we 

let C, (Pk) stand for the chordless cycle (path) on k vertices. If {a, b, c, d} induces 

a Ps in G with edges ab, bc, cd, then we shall refer to b and c as the midpoints of 

this P4. 
Call a vertex x in G semi-simpliciaf if x is midpoint of no P4 in G. Clearly, every 

simplicial vertex is semi-simplicial, but not conversely. 

An ordering xl, x2, . . . ,x, of the vertices of G is said to be a semi-perfect elimina- 
tion ordering (SPEO, for short) if the corresponding linear order < with xi <Xj iff 

i < j satisfies 

xi is a semi-simplicial vertex in GIX,,,Y,+ ,,__,,, u(,l for every i. (2) 

The present work was motivated by a search for a result in the spirit of (1). More 

precisely, we want an answer to the following natural question: 

What is the class C, of graphs for which every ordering produced 

by algorithm A is a SPEO? (3) 

Jamison and Olariu [7] and Olariu [8] have provided an answer to (3) with A 
standing for LBFS and MCS. They also show how to solve the four classical op- 

timization problems on C,,,, and CMcs in linear time. 

The purpose of this paper is to answer question (3) for MEC and MCC. Our main 

results states that 

C MCS = C,,c = CKC. 

This common class of graphs strictly contains all chordal graphs, all 

Welsh-Powell opposition graphs (see Olariu and Randall [9]) and all superfragile 

graphs (see Preissmann, de Werra and Mahadev [l 11). 

2. The result 

Let G be a graph. We shall let V stand for the vertex set of G; E will denote the 

set of edges of G. For a vertex x in G let N(x) stand for the set of all the vertices 

adjacent to x in G. (We assume adjacency to be nonreflexive, and so xeN(x).) We 

let N’(x) stand for the set of all the vertices adjacent to x in the complement G of G. 
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To make our exposition self-contained, we shall reproduce here the details of 

MEC and MCC. 

Procedure MEC(G); 

/ Input: the adjacency list of G; 

Output: an ordering (T of the vertices of G / 

begin 

S+0; 

for it n downto 1 do 

begin 

let C be an arbitrary component of G-S; 

pick x in C such that N(x) tl SCN(_Y) fl S for no vertex y in C; 

o(x) + i; / assign to x number i / 
S+SU {x} 

end 

end; 

Procedure MCC(G); 

/ Input: the adjacency list of G; 

Output: an ordering (T of the vertices of G / 

begin 

S+0; 

for it n downto 1 do 

begin 

let C be an arbitrary component of G - S; 

pick x in C such that IN(x) fl S I< IN(y) fl S 1 for no vertex y 

in C; 

a(x) + i; / assign to x number i / 
S+SU {x} 

end 

end; 

Note that we can think of the output of both MEC and MCC as a linear order 

< on V by setting 

u < u whenever D(U) < a(u). 

Our arguments rely on the following results that we present as lemmas. 

Lemma 1. Let (T be produced by MEC or MCC and let < be the corresponding 
linear order. Let vertices a, b, c satisfy a < b, b < c, ac E E, be $ E, and let S stand 
for the set of ordered vertices in G just before b is about to be ordered. If a and 
b are in the same component of G - S, then there exists a vertex b’ in G with 66’ E E, 
ab’$E and b<b’. 



294 S. Olariu 

4 

1 B 3 

F 

Fig. 1 

Proof. Let o be produced by MEC (MCC) and let Ns(a), Ns(b) stand for 

N(a) tl S, N(b) tl S, respectively. Since b is chosen before a, it must be the case that 

Ns (b) tz Ns (a) (INs(b)I 4. INs(a) 

Thus, since ac E E and bc $ E, there must exist a vertex, say, b’ in S with ab’b E, 
bb’ E E, as claimed. 0 

Lemma 2. Let G be a graph with no induced p5, C, (kz 5) or the graph F in 
Fig. 1, let o be an ordering of the vertices of G produced by MEC or MCC, and 
let < stand for the corresponding linear order. Then, for every choice of vertices 
a, 6, c, d satisfying 

a<b, b<c, a<d, ab,ac,bdEE, bc,ad$E, 

we have cd E E. 

(4) 

Proof. Write G= (I’,,!?). If < is a semi-perfect elimination, then the conclusion 

follows trivially. 

We may, therefore, assume that < is not a semi-perfect elimination. If the state- 

ment is false, then we shall let a stand for the last vertex in the linear order < for 

which there are vertices b, c, d with cd@ E satisfying (4). Next, we let c stand for 

the largest vertex in N(a) for which there exist vertices b and d with cd d E satisfying 

(4). Further, with a and c chosen as before, let b stand for the largest vertex in < 

for which there is a vertex d, cd@E, such that (4) is satisfied. Finally, with a, b, c 
chosen as above, we let d be the largest vertex in the linear order < which is adjacent 

to b and nonadjacent to both a and c. 

To begin, we claim that 

b and c have no common neighbour e with a < e and ae $ E. (5) 
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(Let e be a common neighbour of b and c with a< e and ae $ E. But now, {a, 6, c, d, e} 
induces a P5 or an F, depending on whether or not de E E.) 

Next, we claim that 

b < d. (6) 

(To justify (6), we note that Lemma 1 applied to the vertices a, b, c implies the ex- 

istence of a vertex b’ with bb’e E, ab’$ E and b < b’. If b’ coincides with d, then we 

are done. Otherwise, by virtue of (5), we have cb’$ E. But now, 6’ contradicts our 

choice of d.) 
Write XE B whenever there exists a path 

b=wo,w, ,..., ws=x, 

joining b and x, with 

w,_i<w; and aw;$E (15ir.s). 

Trivially, b E B. We note that (6) implies that d E B. 
Similarly, write y E C whenever there exists a path 

(7) 

c=uo,u~)..., u,=y, 

joining c and y, with 

ui_,<ui and av;$E (lsizzt). (8) 

Let b’, c’ stand for the largest vertex in < which belongs to B, C, respectively. 

By the definition of B, we find a chordless path 

b=b,,b, ,..., bp=b’, 

in B, joining b and b’, with the hi’s satisfying (7) in place of the w;‘s. 

Similarly, the definition of C guarantees the existence of a chordless path 

c = co, C,, . . . ) cq = c’ 

in C, joining c and c’, with the c,‘s satisfying (8) in the place of the u;‘s. 

For further reference, we note that 

cb,$E (Osisp). (9) 

(To justify (9), let i stand for the smallest subscript for which cb; E E. Since bc $ E, 
we have i> 1; by (.5), we have ir 2. But now, {a, c, bo, b,, . . . , b;) induces a C, with 

kr5.) 

It is easy to see that 

c< 6’. (10) 

(Otherwise, Lemma 1 applied to the vertices a, b’, c implies the existence of a vertex 

b” with b’b”E E, ab”$E and b’< b”, contradicting the maximality of b’.) 
Further, we claim that 
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C# {c}. (11) 

To justify (11), let i stand for the smallest subscript such that CC bj. Such a 

subscript must exist by the assumption that b < c together with (10). 

Note that (9) together with the fact that the hi’s satisfy (7) guarantees that we 

can apply Lemma 1 to the vertices bj_ , , c, b,. We find a vertex x with xbi~, $ E, 
XCE E and c<x. We may assume that axe E, otherwise we are done. 

Observe that X&,E E, for otherwise either {a, bO, bl, c,x} induces a 4 or x con- 

tradicts our choice of c, depending on whether or not xb, E E. Let j (0 <j< i - 1) be 

the largest subscript such that Xbj~ E. But now, (7), (9) together with our choice of 

the subscript i guarantee that bj contradicts our choice of a. Thus (11) must hold. 

Next, we claim that 

Bnc#0. 

To prove (12), we may assume that 

no edge in G has 

for otherwise we are done. 

Symmetry in the following 

b’<c’. 

one endpoint in B and the other in 

argument allows us to assume that 

(12) 

C 

(13) 

Let i be the smallest subscript for which b’<c; (such a subscript must exist by 

virtue of (10) and (13) combined). 

Lemma 1 applied to the vertices c,_ ], b’, ci guarantees the existence of a vertex 

b” with b’b”E E, c;_,b”$E and b’< 6”. We must have ab”EE, else we contradict 

the maximality of b’. 
Note that b”c,EE, for otherwise either {a, c,, c,, b’, b”} induces an F (in case 

c,b”~E), or with the assignment b+co, d t c, , c 6 b” we contradict our original 

choice of the vertices c, b and d (in case c, b” $ E). Let j (O$< i- 1) stand for the 

largest subscript such that b”c, E E. But now, our choice of i guarantees that Cj con- 

tradicts our choice of a. Thus, (12) must hold true. 

Let w be the first vertex in the linear order < which belongs to B fl C. By the 

definition of B, there exists a chordless path PB in B joining w and b satisfying (7); 

Fig. 2. 
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similarly the definition of C implies the existence of a chordless path PC in C join- 

ing w and c, and satisfying (8). 

By our choice of the vertex w, PB fl PC= {w}. By (5), w is adjacent to at most 

one of the vertices b and c, and thus G must contain a chordless cycle of length at 

least five induced by {a, 6, c} together with PB UPC. With this the proof of Lemma 

2 is complete. 0 

We are now in a position to state our main result. 

Theorem 3. For a graph G the following two statements are equivalent: 

(i) G contains no induced subgraph isomorphic to a P5, a C, (kz 5) or to the 
graph F in Fig. 1, 

(ii) for every induced subgraph H of G, every ordering of the vertices of H 
produced by MEC or A4CC is a semi-perfect elimination ordering. 

Proof. Write G = (V, E). The implication (ii) Z. (i) is trivial: no ordering produced 

by MEC or MCC on a C, with kr 5, is a semi-simplicial elimination; furthermore, 

it is a routine matter to check that the orderings implied by the labelings of the graph 

F in Fig. 1 and 4 suggested in Fig. 2 are produced by both MEC and MCC and 

yet not a semi-perfect elimination. 

Assuming the implication (i) =) (ii) true for all the graphs with fewer vertices than 

G, we only need to show that G itself satisfies the implication. 

If this is not the case, then some linear order < on Vproduced by MEC or MCC 

is not a semi-perfect elimination. We shall let a stand for the last vertex in the linear 

order < which contradicts (2). Write x~A whenever a<x. 
Let c be the largest vertex in N(a) n A for which there exist a vertex b in N(a) n A 

with bc@ E, and a vertex in N’(a) fl A which is adjacent to precisely one of the ver- 

tices b and c. Our choice implies, trivially, that b< c. 
Lemma 2 guarantees that every vertex w in N(b) fl N’(a) fl A is adjacent to c. 

Therefore, by our choice of a, we find a vertex din A, with cde E and ad, bdeE. 
Lemma 1 applied to the vertices a, 6, c guarantees the existence of a vertex 6’ with 

ab’$ E, bb’e E and b< b’. By Lemma 2, b’ce E. However, now (a, 6, b’,c,d} in- 

duces a 4 or an F, depending on whether or not b’d E E. 0 

Jamison and Olariu [7] proved that the class of graphs containing no induced 

subgraph isomorphic to one of the graphs P5, C, (kr 5) or Fin Fig. 1 is precisely 
the class of graphs for which every ordering produced by the algorithm MCS of 

Tarjan and Yannakakis [15] is a semi-perfect elimination ordering. 

Thus, in the terminology of (3) we can write 

C MCS - - GvlEC = GKC- 
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