
Old Dominion University
ODU Digital Commons

Computer Science Faculty Publications Computer Science

1995

Linear Time Optimization Algorithms for
P4-Sparse Graphs
Beverly Jamison

Stephan Olariu
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_fac_pubs

Part of the Applied Mathematics Commons, and the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in
Computer Science Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

Repository Citation
Jamison, Beverly and Olariu, Stephan, "Linear Time Optimization Algorithms for P4-Sparse Graphs" (1995). Computer Science Faculty
Publications. 123.
https://digitalcommons.odu.edu/computerscience_fac_pubs/123

Original Publication Citation
Jamison, B., & Olariu, S. (1995). Linear-time optimization algorithms for P4-sparse graphs. Discrete Applied Mathematics, 61(2),
155-175. doi:10.1016/0166-218x(94)00012-3

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_fac_pubs?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_fac_pubs?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_fac_pubs/123?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

DISCRETE
APPLIED

EISVIER Discrete Applied Mathematics 61 (1995) 155-175

MATHEMATICS

Linear time optimization algorithms for P4-sparse graphs

Beverly Jamison”, Stephan Olariub* *g ’

“Department of Computer Sciene, Marymount University, Arlington, VA 22347, USA
b Department of Computer Science, Old Dominion University, Norfolk, VA 23529-0162. USA

Received 24 November 1992; revised 24 November 1993

Abstract

Quite often, real-life applications suggest the study of graphs that feature some local density
properties. In particular, graphs that are unlikely to have more than a few chordless paths of
length three appear in a number of contexts. A graph G is P,-sparse if no set of five vertices in
G induces more than one chordless path of length three. P,-sparse graphs generalize both the
class of cographs and the class of Pa-reducible graphs. It has been shown that P,-sparse graphs
can be recognized in time linear in the size of the graph. The main contribution of this paper is
to show that once the data structures returned by the recognition algorithm are in place,
a number of NP-hard problems on general graphs can be solved in linear time for Pa-sparse
graphs. Specifically with an n-vertex P,-sparse graph as input the problems of finding a max-
imum size clique, maximum size stable set, a minimum coloring, a minimum covering by clique,
and the size of the minimum fill-in can be solved in O(n) time, independent of the number of
edges in the graph.

Keywords: Optimization; NP-hard problems; Resource allocation; Local density; Linear
algorithms; Optimal algorithms

0. Introduction

Numerous computational problems in LAN technology [16,18-J, group-based

cooperation [17], cluster analysis [2,12], scheduling [2-61, computational learning

[S], and resource allocation [6] have suggested the study of graphs featuring local

density properties. In these applications it is typical to equate local density with the

absence of chordless paths of length three (referred to as P4’s). Several natural

attempts to capture the notion of local density have motivated the study of the class of

cographs [2-4, 13-151 and P,-reducible graphs [9] corresponding, respectively, to the

*Corresponding author.

‘This author was supported, in part, by the National Science Foundation under grants CCR-

8909996and CCR-9407180.

016&218X/95/%09.50 0 1995-Elsevier Science B.V. All rights reserved
SSDI 0166-218X(94)00012-3

156 B. Jamison. S. Olariu / Discrete Applied Mathematics 61 (1995) 155-175

local density metrics described below:
(~1) the graph contains no induced P4;
(~2) every vertex of the graph belongs to at most one induced P,.

Recently, a new local density metric in graphs has been proposed [7,10,11]:
(,u3) every set of five vertices induces at most one P4.

In practical applications, the metric (~3) is less restrictive and thus more realistic
than both (~1) and (~2). The class of graphs that naturally corresponds to this metric
(the P4-sparse graphs) features a number of remarkable properties [lo, 111. Recently,
the authors have shown [lo] that just as the cographs, the P,-sparse graphs can be
recognized in time linear in the size of the graph at hand. The purpose of this paper
further exploit the data structures obtained during the recognition algorithm for the
purpose of obtaining linear time solutions to a number of combinatorial optimization
problems as we are about to explain.

It is well known that for a general graph G, the task of evaluating the following
parameters
l w(G) - the clique number of G - standing for the largest number of pairwise

adjacent vertices in G,
l x(G) - the chromatic number of G - representing the smallest number of colors

used in a coloring of G such that adjacent vertices always receive distinct colors,
l a(G) - the stability number of G - defined as the largest number of pairwise

nonadjacent vertices in G,
l 19(c) - the clique cover number of G - denoting the smallest number of cliques

which cover all the vertices of G,
l 4(G) - the minimum fill-in of G - defined as the smallest number of edges that have

to be added to G to obtain a chordal graph
is hard. More precisely, each of the problems of recognizing graphs G and integers
k with o(G) > k, x(G) < k, a(G) b k, Q(G) d k, and 4(G) < k is NP-complete. Further-
more, the second and fourth problems are NP-complete even if the value of k is fixed,
as long as k 2 3, [5,20]. We shall refer to these problems as optimization problems.
Although the optimization problems defined above are intractable for general graphs,
they are solvable in polynomial time for various particular classes of graphs that
happen to be of import in practical applications. The reader is referred to Golumbic’s
comprehensive work where many of these results are summarized [6].

This paper proposes to solve the above optimization problems for the class of
I’,-sparse graphs. More precisely, we are interested in solving instances of the
following template problem:

Given a P,-sparse graph G, compute a certain parameter n(G).

The parameter rc(G) will be instantiated with “clique number”, “chromatic num-
ber”, “stability number”, “ clique cover number”, and “minimum fill-in”. In addition to
returning the corresponding value of the desired parameter, we shall also return
a “certificate” validating the value of the parameter. Typically, the certificate will be
provided in the form of a set of vertices that achieve the desired parameter.

B. Jamison. S. Olariu / Discrete Applied Mathematics 61 (1995) 155-175 157

We note that the class of P,-sparse graphs is a subclass of weak bipolarizable

graphs [lS] for which the first four parameters discussed above can be solved in

O(n + m) time for graphs with n vertices and m edges. However, there are a number of

problems with these algorithms:

(a) they run in O(n’) time for dense graphs;

(b) they are not self-contained, in the sense that the algorithms depend on machinery

designed for a different class of graphs;

(c) the technique used to solve them [lS] does not seem to apply to computing other

parameters, the minimum fill-in being a prime example.

By contrast, all the optimization algorithms discussed in this paper run in O(n) time

once the data structures returned by the recognition algorithm are in place. Further-

more, the technique that we propose in this paper applies not only to the first four

parameters but also to other problems including computing the minimum fill-in,

a maximum matching, the scattering number, among others.

In addition, our strategy for solving instances of the above template problem for

P,-sparse graphs is quite natural: we exploit the fact that the P,-sparse graphs are

precisely those C5-free graphs for which a certain greedy algorithm always returns an

induced cograph unique up to isomorphism.

As it turns out, once this cograph (referred to as the canonical cograph) is known, the

optimization problems on Pa-sparse graphs can be solved elegantly by solving weighted

versions of the same optimization problems on the canonical cograph. Therefore, we

begin by providing extensions of known algorithmic results on cographs to handle the

weighted case. Our contribution here is to also show how a certificate can be obtained

efficiently. To the best of our knowledge these results are novel.

Next, the solution to the weighted optimization problem on the canonical cograph

will be used in conjunction with the data structures produced in the linear-time

recognition of P,-sparse graphs [lo]. The main contribution of this paper, as we see it,

is to show that this combined information yields O(n), and thus optimal, algorithms to

solve the optimization problems mentioned above.

The remainder of this paper is organized as follows: Section 1 presents extensions of

algorithmic problems on cographs that are instrumental in obtaining our linear time

optimization algorithms for P,-sparse graphs; Section 2 reviews fundamental results

about P,-sparse graphs; Section 3 details the proposed optimization algorithms;

finally Section 4 summarizes the results.

1. The tools

All the graphs in this work are finite, with no loops nor multiple edges. In addition

to standard graph-theoretical terminology compatible with Bondy and Murty [11, we

use some new terms that we are about to define. In the context of trees, vertices will be

called nodes. A clique is a set of pairwise adjacent vertices; a stable set is a set of

pairwise nonadjacent vertices.

158 B. Jamison. S. Olariu / Discrete Applied Mathematics 61 (1995) 155-175

For a node w in a tree T, we let p(w) stands for the patent of w in T, we let T(w) stand
for the subtree of T rooted at w; similarly, L(w) denotes the set of leaves in T(w); we let
G(w) represent the subgraph of G induced by L(w); finally, we let N(w) denote the
number of vertices in G(w).

For convenience, we shall assume that all the trees in this work are binary. To
convince the reader that this is a reasonable assumption, we now point out an easy
transformation that, with an arbitrary rooted tree T as input, returns a full binary tree
BT(i.e. every internal node of BThas precisely two children). We proceed as follows: if
a node x has degree k in T then, in BT, we add k - 2 identical copies of x, namely

x1,x2, .*. > xk_ 2 in such a way that, with x0 standing for x,
l the parent of Xi is Xi _ r whenever i 2 1;
l the left child of xi is the (i + 1)st child of x in T;

l the right child of xi is Xi + i in case i d k - 3, and the kth child of x in T otherwise.
Now an easy counting argument shows that the number of nodes in BT is linear in

the size of T, and that the conversion can be done in O((TI) time.
A graph G is called totally decomposable if there exists a rooted tree T(G), unique

up to isomorphism, whose leaves are the vertices of G and whose internal nodes
correspond to certain graph operations. If T(G) can be obtained efficiently, then
a number of optimization problems can be solved efficiently for G [2-4, 151.

Lerchs [15] has shown that the cographs are totally decomposable; specifically, we
can associate with every cograph G a unique rooted tree T(G) called the cotree of G,
featuring the following properties:

every internal node, except possibly for the root, has at least two
children; furthermore, the root has only one child if, and only if, the (1.1)
underlying graph G is disconnected;

the internal nodes are labeled by either 0 (O-nodes) or 1 (l-nodes) in such
a way that the root is always a l-node, and such that l-nodes and
O-nodes alternate along every path in T(G) starting at the root;

(1.2)

the leaves of T(G) are precisely the vertices of G; vertices x and y are
adjacent in G if, and only if, the lowest common ancestor of x and y in
T(G) is a l-node. (1.3)

For further reference, we note the following simple observation that follows directly
from (1.3).

Observation 1.1. Let u be an arbitrary node in T(G). Every leaf in L(root(T)) - L(u) is
either adjacent to all the leaves in L(u) or to none of them.

In their comprehensive papers on cograhs, Corneil et al. [2,3] noted that many
algorithmic problems for cographs can be solved elegantly by performing a certain
computation on the corresponding cotree. As a rule, they propose associating the
leaves of the cotree with a weight of 1, while the internal nodes are associated with

B. Jamison. S. Olariu / Discrete Applied Mathematics 61 (1995) 156175 159

various operators. This reduces the problem at hand to evaluating an algebraic
expression on the cotree.

It is easy to generalize the results in [2,3] in the following way: let G be a cograph
and let T(G) be the corresponding cotree. Let A be an arbitrary finite-carrier algebra
and let 0 and 0 be two associative operations on A. We assume unit-time operations
between the elements of A. If the leaves of T(G) are labeled with elements of A, the
l-nodes are labeled by 0, and the O-nodes of T(G) are labeled by 0, then the cotree
T(G) can be perceived as computing an algebraic expression in the obvious way.
Computationally, the corresponding expression can be evaluated efficiently by
traversing the cotree in postorder, and performing the prescribed operation at every
internal node. It is important to note that the postorder traversal guarantees that
when it comes to evaluating the expression corresponding to an internal node, the
corresponding operands are available.

The details of this simple procedure are spelled out as follows:

Procedure Evaluate(root(T), q ,O);
1. begin

2. v t initial node of Tin postoder;
3. while v # root(T) do begin

4. if p(v) is a l-node then

5. value(p(u)) c 0 (value(v),
6. else
7. value(p(u)) c 0 (value(v),
8. v t next node in postorder
9. end

10. end; (Evaluate}

value(p(v)))

vaWp(v)));

A simple inductive argument on the height of a generic node v in T(G) proves the
following lemma.

Lemma 1.2. When procedure Evaluate terminates, for every node v in T(G), value(v)
represents the value of the subexpression corresponding to G(v). Furthermore, the
computation takes time proportional to the size of T(v).

Lemma 1.2 will be instantiated in a number of different ways, tailored to suit
specific computational needs. For this purpose, we assume that the vertices of the
cograph G have been weighted by nonnegative integers. Note that properties
(l.lH1.3) together with Lemma 1.2 imply that for cographs the tasks of computing
a maximum weight clique and a maximum weight stable set are dual to one another in
the following strong sense.

160 B. Jamison. S. Olariu / Discrete Applied Mathematics 61 (1995) 155-175

Corollary 1.3. For every node v in T(G), the following statements hold:
l value(v) returned by Evaluate(root(T), + , max) represents the size of a maximum

weight clique in G(v);
l value(v) produced by Evaluate(root(T), max, +) represents the size of a maximum

weight stable set in G(v).

To begin, we provide the details of a simple algorithm to exhibit a maximum weight
clique in a cograph. Our algorithm proceeds in two stages. The first stage involves the
call Evaluate(root(T), + , max) as discussed above. In the second stage, we provide
a certificate in the form of a set of vertices that constitute a maximum weight clique in
the graph. The idea of the second stage is very simple: we traverse T(G), starting at the
root, in a way reminiscent of depth-first search. At every l-node U, the search proceeds
recursively for every child of u; at a O-node, the search continues in one subtree only
(this will be justified later). The details of the procedure implementing the second stage
follow.

Procedure Max-Weight-Clique(v);
1. begin

2. if v is a leaf then

3. mark v
4. else
5. if v is a l-node then

6. for every child w of v do

7. Max_WeightClique(w)
8. else begin {v is a O-node}
9. w t left-child(v);
10. while value(w) # value(v) do

11. w c right-child(v);
12. Max-Weight-Clique(w)
13. end; {if}
14. end; { Max_WeightClique}

The correctness of the above procedure hinges on the following technical result.

Lemma 1.4. Let u be an arbitrary l-node in T(G). If a maximum weight clique
C contains leaves from L(u), then C contains leaves of nonzero weight from every subtree
of T(u). Similarly, let v be an arbitrary O-node in T(G). If a maximum weight clique
C contains leaves from L(v), then these leaves belong to exactly one subtree of T(v).

Proof. Let C be an arbitrary maximum weight clique in the cograph G. Let u be
a l-node in T(G) such that for children v and w of u, C contains leaves from T(v) but

B. Jamison, S. Olariu 1 Discrete Applied Mathematics 61 (199s) 155~-175 161

not from T(w). Observation 1.1 guarantees that if L(w) contains a leaf x of nonzero

weight, then C can be augmentd by the addition of x, contradicting its maximality.

Similarly, if u is a O-node then, by property (1.3), no clique can contain nodes from

distinct subtrees of T(u). The conclusion follows, 0

Theorem 1.5. Once the cotree T(G) of an n-vertex cograph G is available, procedure

MaxxWeightLClique correctly returns a maximum weight clique in G in O(n) time.

Proof. To begin, we note that

any leaves marked by procedure Max._WeighttClique are adjacent in G. (1.4)

[To justify this claim, let u, u be arbitrary marked leaves. Now lines 8-12 in the

procedure guarantee that the lowest common ancestor of u and o cannot be a O-node.

The conclusion is implied by (1.3).]

By virtue of(l), the set C of marked leaves is indeed a clique in G. The fact that C is

a clique of maximum weight follows directly from the fact that, by Corollary 1.3, the

effect of the call Evaluate(root(T), + , max) performed in the first stage of the

algorithm is to compute for every node u in T(G), the size of the maximum weight

clique in T(v).

To complete the proof of Theorem 1.5, we only need observe that stage 1 of the

algorithm runs in time linear in the size of T(G); in the second stage the while loop in

lines 10-11 takes time proportional to the number of children of node v in T(G).

Therefore, the overall time is linear in the size of T(G), as claimed. 0

The following result follows by a mirror argument.

Theorem 1.6. Once the cotree T(G) is available, the maximum weight stable set in an

n-vertex cograph G can be computed in O(n) time.

Next, we discuss a linear time algorithm to compute a weighted coloring of

a cograph. Again, we assume an n-vertex cograph, the corresponding cotree T(G), and

an assignment of nonnegative integer weights to the vertices of G. For the purpose of

this paper, the weighted version of the graph coloring problem involves assigning to

each vertex a number of colors equal to the weight of that vertex (in particular,

vertices of zero weight receive no colors). We further assume that the colors are

represented by positive integers. Our weighted coloring algorithm assigns to every

vertex in the graph a range of colors. When the algorithm terminates, every leaf w of

T(G) stores an ordered pair (weight(w),color(w)) with the implication that w is

assigned consecutive colors from color(w) - weight(w) + 1 through color(w). As we

are about to demonstrate, this color assignment is optimal in the sense that is uses the

least number of colors. It is also helpful to notice that the coloring we obtain is an

interval coloring.

162 B. Jamison. S. Olariu / Discrete Applied Mathematics 61 (1995) 155-175

Again, our algorithm proceeds in two stages: the first stage involves calling Evalu-
ate(root(T), + ,max), while the second traverses the tree from the root down to the
leaves assigning ranges of colors to the nodes of the tree. Note that by Corollary 1.3,
for every node x in T(G), value(u) computed by the call Evaluate(root(T), + , max)
equals the maximum weight of a clique in G(v). In particular, value(root(T)) contains
the maximum weight of a clique in G. It is relatively straightforward to see that this
also represents the least number of colors in a coloring of the cograph G’ whose cotree
is obtained from T(G) by replacing every leaf w of weight h with h pairwise adjacent
siblings of weight 1.

The second stage of the algorithm proceeds top-down from the root to the leaves:
at every l-node, the range of colors inherited from its parent is partitioned among
its children; at every O-node the same range is shared by its children. The details
are spelled out by the following pseudo-code that we present for a generic node u of
T(G). Here, the parameter k represents the first available color that can be used
on G(u).

Procedure Weighted_Color(u, k);
1. begin

2.

3.

4.

5.

6.

7.

8.

9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

if v is a leaf and value(u) > 0 then begin

k t k + value(u);
color(u) c k
end

else

if u is a O-node then begin

oldk c maxk c k;
for every child w of u do begin

k’ c oldk;
Weighted_Color(w, k’);
if k’ > maxk then

maxk e k’
end; {for}
k c maxk
end {O-node handling)

else {handle a 1 -node}
for every child w of v do

Weighted_Color(w, k)
20. end; (Weighted-Color}

Theorem 1.7. Procedure Weighted-Color correctly produces a weighted coloring of
G(v) using the least number of colors. Furthermore, the running time is linear in the size of

T(u).

B. Jamison, S. Olariu J Discrete Applied Mathematics 61 (1995) 155.-175 163

Proof. To argue for the running time, note that procedure Weighted-Color is called
recursively once for each node in the tree. Other than the recursive calls, each node is
processed in a constant number of steps.

To settle the correctness, it is helpful to mentally replace every leaf w of weight h, by
h siblings w1 , wz, . . . , wh of w each carrying a weight of 1. Therefore, the weighted
coloring problem reduces to the standard coloring problem on the new cograph G’.
Since the cographs are perfect in the sense of Berge [6], it follows that for every
internal node u, value(u) returned by Evaluate(root(T), + ,max) equals the least
number of colors in a coloring of G(u).

Therefore, we only need argue that this is the number of colors used. For this
purpose, we proceed by induction on the size of T(u). The statement holds trivially for
leaves. If u is a O-node, the reassignment of k in line 10 to the initial value associated
with the O-node together with the induction hypothesis guarantees that the number of
colors used will not exceed value(u). Clearly, in the case of a l-node no colors can be
reused. The conclusion follows. q

Note that for a cograph there is a strong duality between weighted coloring
and the problem of assigning ranges of clique numbers in a minimum clique
cover of the complement of the graph. This is easily obtained by running Evalu-
ate(root(T), max, +) to obtain value(u) for every node of T, followed by running the
procedure Weighted-Color. What results is a “weighted coloring” of the complement
of G: a range of colors at a leaf should be interpreted as a range of clique numbers in
a minimum weight clique cover of G.

Therefore, we have the following result.

Theorem 1.8. Once the cotree T(G) is available, the minimum weight clique couer
problem in an n-vertex cograph G can be solved in O(n) time.

As another example, consider the problem of chordal graph completion or minimum

fill-in: the problem asks for the least number of vertices that have to be added to make
an arbitrary graph into a chordal graph. Yannakakis [19] showed that the decision
version of this problem is NP-complete. However, when the input is restricted for
particular classes of graphs, the problem becomes polynomial. In particular, Corneil
et al. [3] demonstrated that the cotree associated with a cograph can be used to
compute the minimum fill-in efficiently. Recall that we assume that the cotree is
a binary tree (should this not be the case, we can binarize it in time linear in the size of
the tree).

In order to compute the minimum fill-in for cographs Corneil et al. [3] introduced
two new parameters. Specifically, with every node u of the cotree they associate
nonnegative numbers Q(u), and F(u): Q(u) is the number of nonadjacencies in G(u),
while F(u) is the size of the minimum fill-in corresponding to G(u). In [3] the following
formulas are given for computing these parameters:
l for every leaf Y, F(u) = Q(U) = 0 and N(u) = 1;

164

0 for every

N(u) =

B. Jamison. S. Olariu 1 Discrete Applied Mathematics 61 (I995) 155-175

L-node v with children vr, v2, . . . , ok, set

i$I N(ui); Q(v) = ,gI Q(Vi);

F(u) = dn F(vi) + i Q(uj)
i=l j=l;j#i

(1.5)

l for every O-node zi with children ul, v2, . . . , uk, set

N(V) = i N(Vi);
i=l

Q(o) = i ,i N(vi)* [N(v) - N(~i)l;
1-l

F(V) = 1 F(Ui). (1.6)
i=l

As it turns out, formulas (1.5) and (1.6) become more tractable in the context of
binary trees. By way of motivation, and for further reference, consider an arbitrary
graph G whose vertex set partitions into nonempty, disjoint sets A and I3 such that
every vertex in A is adjacent to all the vertices in B. Let Q(A) and F(A) (resp. Q(B) and
F(B)) stand for the number of nonadjacencies in A and for the size of the minimum
fill-in corresponding to A (resp. B). The following simple results will be instrumental in
understanding how the minimum fill-in algorithm works.

Observation 1.9. G is a chordal graph if and only if at least one of the graphs induced
by A and B is a clique.

Observation 1.10. The following hold for G:

Q(G) = Q(A) + Q(B) and F(G) = min {F(A + Q(B),F(B) + Q(4).

(The first part is trivial; the second part follows directly from Observation 1.9.)
Note that Observations 1.9 and 1.10 along with property (1.3) afford us the

following simpler versions of (1.5) and (1.6) in the presence of a binarized cotree. As
before, consider a generic node v with left and right children u and w, respectively.
Then N(v), Q(V), and F(v) are computed as follows:
l if v is a l-node then

N(v) = N(u) + N(w); Q(v) = Q(u) + QW

F(v) = min{F(u) + Q(W), F(w) + Q(4);

l if v is a O-node then

N(v) = N(u) + N(w); Q(v) = Q(u) + QW + NW*NW;

(1.7)

F(u) = F(u) + F(w). (1.8)

Note that we can define weighted versions of the above formulas: the only difference
is in the original assignment of weights at the leaves. Furthermore, once the assignment

B. Jamison. S. Olariu 1 Discrete Applied Mathematics 61 (1995) 155- 175 165

of weights at the leaves is done, computing N(o), Q(U), and F(u) for an arbitrary node

u of the cotree is easy. To wit, Evaluate(root(T), + , +) determines N(u); to compute

Q(u) we use a new procedure Evaluate_Q(root(T), + , +) that is exactly like Evalu-

ate except that line 5 (i.e. processing of O-nodes) is altered by adding

N(u)N(w) to the partial result computed by Evaluate(root(T), + , +); finally to

compute F(u) we use a new procedure Evaluate_F(root (T), + , +) that is exactly like

Evaluate except that we replace line 7 (i.e. processing of l-nodes) with

min{F(u) + QW,FW + Q(u)}. T o summarize our findings we state the following result.

Theorem 1.11. Once the cotree T(G) of an n-vertex cograph G is available, the weighted

version of the minimum fill-in can be computed in G in O(n) time.

In the particular case where the weights at the leaves are N(v) = 1; Q(v) = F(u) = 0

we obtain the result in [3]. The usefulness of the general weighted case will become

apparent in computing the minimum fill-in for I’,-sparse graphs.

2. P,-sparse graphs, an overview

Let G be an arbitrary graph. We let the following greedy procedure return a co-

graph obtained by removing an arbitrary endpoint of every P4 in G.

Procedure Greedy(G);

{Input: an abitrary graph G;

Output: a cograph C(G)}

begin

C(G) + G;
while there exist P,‘s in C(G) do begin

pick a P, uvxy in C(G);

pick z abitrarily in {u, y};

C(G) +- C(G) - (4
end;
return(C(G))

end;

The following surprising result will be instrumental in understanding how our

algorithms work.

Proposition 2.1 (Jamison and Olariu [1 11). Let G be a graph with no induced C5. G is

P4-sparse iA and only $ for every induced subgraph H of G, C(H) is unique up to
isomorphism.

166 B. Jamison. S. Olariu / Discrete Applied Mathematics 61 (1995) 155-175

Proposition 2.1 justifies referring to the cograph C(G) of a &-sparse graph as the
canonical cograph of G.

An arbitrary graph G is said to have a special partition if there exists a family
c = {S&, . ..) S,} (4 2 1) of d’ . isJoint stable sets of G with ($1 3 2 (1 < i < q) and an
injection

f: 6 ISi+ V- (J Si
i=l i=l

such that the following two conditions are satisfied:

Ki = {z 1 z =f(s) for some s in Si} is a clique for all i (1 < i < q): (2.1)

a set A of vertices induces a P, in G if, and only if, there exists a sub-
script i (1 < i < q) and distinct vertices x, y in Si such that

A = {x3 Y,f(X)9f(Y)l. (2.2)

For further references, we let S and K stand for u y= 1 Si and u,f= 1 Ki, respectively.
The following results provide insight into the structure of P,-sparse graphs that will
be used for the purpose of developing our linear time algorithms.

Proposition 2.2 (Jamison and Olariu [lo]). A graph is P,-sparse if, and only g it is
a cograph or it has a special partition.

Proposition 2.3 (Jamison and Olariu [lo]). Let G be a P4-sparse graph with a special
partition. For every i (1 < i Q q), the following conditions are satisjed:
either
0 N(S)nKi = (f(S)} for every SESi,
or else
l N(S) A Ki = Ki - (f(s)} for every s E Si.

Proposition 2.4 (Jamison and Olariu [lo]). Let G = (V, E) be a P4-sparse graph. For
every i (1 < i 6 q), if a vertex in V - Ki is adjacent to a vertex in Si, then it is adjacent to
all the vertices in Ki v Si.

It is easy to see that given an arbitrary Pa-sparse graph G = (V,E), the canonical
cograph C(G) contains all the vertices in V - S, along with precisely one vertex in
every Si (1 < i < q). The optimal recognition algorithm for P,-sparse graphs [lo]
relies crucially on the fact that we can uniquely retrieve a P4-sparse graph G from the
tuple (C(G),SK). Here, SK can be thought of as an array such that for every
i (1 < i < q), SK[i] contains the pair (Si, KJ of the special partition of G, in a way that
naturally associates with every s in Si its unique imagef(s), along with a bit indicating
whether or not s and f (s) are adjacent.

167 B. Jamison, S. Olariu / Discrete Applied Mathematics 61 (19951 155-175

3. Algorithms for optimizing P,-sparse graphs

Throughout this section, G = (V, E) will represent an arbitrary P,-sparse graph. We

assume that the ordered pair (C(G),SK) is available. Furthermore, we assume that

C(G) is represented by its (binarized) cotree T(G). Due to the fact that C(G) contains

all of the vertices from K and only some of the vertices from S, the duality that was

present in cographs no longer holds. In particular, the canonical cograph of the

complement of G is not necessarily the complement of the canonical cograph of G. We

can compensate for this loss of duality by assigning appropriate weights to the leaves

of the canonical cotree.

To begin, we address the problem of exhibiting a maximum clique in G. For later

reference, we shall make an observation that will justify our algorithmic approach.

Lemma 3.1. G contains a maximum clique with no vertices from S.

Proof. To see this, let M be a maximum clique in G. If M contains a vertex Si from Si,

then by virtue of Propositions 2.3 and 2.4 combined, the set obtained by replacing

si with a vertex ki in Ki, nonadjacent to si, is a clique of cardinality 1 MI. The

conclusion follows. 0

Lemma 3.1 guarantees the existence of a maximum clique that contains no vertices

from S. This, in fact, justifies assigning weights to the vertices of G (and implicitly to

the leaves of T(G)) as follows:

every vertex in S receives a weight of 0;

all other vertices of G receive a weight of 1.

In order to find a maximum clique in G, we proceed in the following two stages:

first, we run procedure Evaluate(root(T), + ,max) with the leaves weighted as

above;

next, we run the procedure Max-Weight-Clique on T(G).

The details are spelled out in procedure Maximum-Clique that we present next.

Procedure Maximum-Clique(G);

1. begin

2. for all vertices u of G do

3. if v E S then

4. weight(u) t 0

5. else

6. weight(u) t 1;

7. Evaluate(root (T), + max); ,

8. Max_Weight_Clique(root (7))

9. end; { Maximum_Clique}

168 B. Jam&on. S. Olariu / Discrete Applied Mathematics 61 (1995) 155-175

Theorem 3.2, Procedure Maximum-Clique correctly returns a maximum clique in an
n-vertex Pa-sparse graph G in O(n) time.

Proof. Follows immediately from Corollary 1.3, Theorem 1.6, and Lemma 3.1 com-

bined. 0

Next, we shall present an optimal coloring algorithm for P,-sparse graphs. Our

coloring strategy is as follows: we begin by producing an optimal coloring of the

subgraph of G induced by V - S. We then complete the coloring by assigning colors

to the vertices in S. As it turns out, this can be done without the need of introducing

new colors. The details are contained in procedure SK-Color.

Procedure SK_Color(T);

1. begin

2. for every i do begin

3. for every s in Si do begin

4. if s is adjacent tof(s) then begin

5. choose a vertex ki in Ki - {f(s)};

6. color(s) 4- COlOr(ki)

7. end

8. else

9. color(s) +- color(f(s))

10. end

11. end

12. end; {SK-Color}

Note that lines 6 and 9 in procedure SK-Color guarantee that the colors assigned

to the vertices in Si occur among the colors received by the vertices in Ki, and so no

new colors are used. Therefore we state the following obvious result.

Lemma 3.3. If an optimal coloring of the graph induced by V - S is available, then the
coloring returned by procedure SK-Color is an optimal coloring of G.

We are now in a position to show how all the parts fit together. We begin by

assigning weights to the nodes of T(G) using the same scheme as before: nodes in

S receive a weight of 0, all the other nodes receive a weight of 1. This ensures that

procedure Weighted-Color will return an optimal coloring of the desired subgraph.

To see that this is the case, note that line 2 in procedure Weighted-Color disqualifies

nodes with a weight of 0 from receiving any colors in the coloring. The correctness

now follows from Theorem 1.7.

B. Jamison, S. Olariu 1 Discrete Applied Mathematics 61 11995) 155-175 169

Finally, Lemma 3.3 asserts that the coloring produced can be extended to the whole

graph. The fact that no new colors are used, guarantees the optimality of the coloring

of G. It is important to note that the entire computation can be performed in linear

time.

Procedure Optimal-Coloring(G);

1. begin

2. for all vertices v of G do

3. if v E Si then

4. weight(v) c 0

5. else

6. weight(v) +- 1;

7. Evaluate(root(T), + ,max);

8. kc 0;

9. Weighted_Color(root(T), k);

10. SK-Color(T)

11. end; {OptimalLColoring)

To summarize our findings we state the following result.

Theorem 3.4. Procedure Optimal-Coloring correctly returns an optimal coloring qf

a P,-sparse graph G in time linear in the size of the graph.

Proof. Follows directly from Corollary 1.3, Lemma 3.3 and Theorem 1.7 com-

bined. 0

We now turn to the problem of computing a maximum stable set in a P,-sparse

graph. Note that the duality arguments relating maximum cliques and maximum

stable sets that used to work in the context of cographs do not extend to P,-sparse

graphs. The reason lies in the fact that the sets S and K that describe the structure of

a P,-sparse graph G are not perfectly symmetric. Clearly, the canonical cotree of the

complement G of G need not coincide with the tree obtained by interchanging O’s and

l’s in the internal nodes of T(G).

Lemma 3.5. G contains a maximum stable set with no vertices from K.

Proof. To justify this claim, let I be a maximum stable set in G. If I contains a vertex

ki from Ki, then the contrapositive of Proposition 2.4 guarantees that the set obtained

by replacing ki with a vertex si in Si, adjacent to ki, is a stable set of cardinality 11 I. The

conclusion follows. 0

170 B. Jamison. S. Olariu / Discrete Applied Mathematics 61 (199.5) 155-175

Lemma 3.5 guarantees the existence of a maximum stable set that contains no
vertices from K. As a consequence of Proposition 2.4, once a vertex in Si belongs to
a maximum stable set, the whole set Si is included in the stable set. We plan to use this
fact, along with Lemma 3.5 to provide an appropriate weighting scheme to compen-
sate for the lack of duality between maximum cliques and maximum stable sets
discussed above. Specifically, we assign weights to the vertices of G (and implicitly to
the leaves of T(G)) as follows:

IKij to the unique vertex from Si present in T(G);
0 to all vertices in K;
1 to all remaining vertices.
In order to find a maximum stable set in G, we proceed in the following stages:
first, we assign weights to the vertices of G as described above;
next, we run Evaluate(root(T), max, +);
finally, we run procedure Max_WeightClique.
The details are spelled out by procedure MaximumStable-Set that we present

next.

Procedure Maximum-Stable-Set(G);
1. begin

2. for all vertices u of C(G) do

3. if u E Si then

4. weight(u) + IKiJ
5. else
6. if v E K then

7. weight(u) c 0;
8. else
9. weight(u) t 1;
10. Evaluate(root(T), max, +);
12. Max-WeightClique(root(T))
13. end; {MaximumStable-Set}

The following result follows immediately from the previous discussion along with
Lemma 3.5 and Theorem 2.5.

Theorem 3.6. Procedure Maximum-Stable-Set correctly returns, in linear time, a
maximum stable set in a P4-sparse graph G.

Next, we shall present an algorithm to exhibit a minimum clique cover for a P4-
sparse graph. Note that this problem is not the dual of optimal coloring: the problem
is that most of the vertices of S are absent from T(G). However, the weighted form of

B. Jamison. S. Olariu / Discrete Applied Mathematics 61 (1995) 155~175 171

the cograph coloring algorithm discussed in Section 2, permits us to obtain a range of

clique numbers for the single vertex in every Si present in the canonical cotree. We can

then distribute the clique assignments among the vertices in S. By weighting the

vertices in K by 0, we can postpone the assignment of clique numbers to these vertices

until after the clique numbers are distributed to the vertices in S. Our strategy of

implementing ideas is as follows: we use the same weighting scheme as for the

maximum stable set problem discussed above. Once the leaves of the canonical cotree

have been weighted, we call Evaluate(root(T), max, +) and then procedure

WeightehColor(root(T), 0); notice that in this case, procedure Weighted_Color as-

signs a range of clique numbers to the unique vertex in every Si that is present in T(G),

while no numbers are assigned to vertices in K. Next, we distribute clique numbers to

all vertices in S. Finally, once this is done, we assign clique numbers to the vertices in

K, by associating every vertex in Si with a vertex in Ki adjacent to it. Therefore, no

new clique numbers are used in this operation. The details of assigning clique numbers

to vertices in S u K follow.

Procedure SK-Cover(T);

1. begin

2. for every i do begin

{assume that si belongs to T(G))};

3. distribute the range of colors of si to all vertices in Si;

4. for every k in Ki do

5. if k is not adjacent tof -l(k) then

6. clique(ki) + clique(f _ ’ (ki))

7. else {now k is adjacent to f _ l(k)}
8. for every ki in Ki do begin

9. find sj E Si distinct from f ’ (ki)

10. clique(k,) + clique(sj))

11. end {{for!

12. end {for>

13. end; {SK-Cover}

Note that lines 6 and 10 in procedure SK-Cover guarantee that the clique numbers

assigned to the vertices in Ki occur among the clique numbers received by the vertices

in Si, and so no new clique numbers are used. Therefore we state the following result

whose proof is immediate.

Lemma 3.7. IA after having executed line 3 in SK-Cover, we have a minimum clique

cover of the subgraph of G induced by V - K, then when SK-Cover terminates, it

returns a minimum clique cover of G itself:

172 B. Jamison. S. Olariu 1 Discrete Applied Mathematics 61 (1995) 155-175

We are now in a position to show how all the parts fit together. Our strategy is to
produce a minimum clique cover of the subgraph of G induced by V - K, and then to
extend this cover to a minimum clique cover of G. We begin by assigning weights to
the nodes of T(G) using the same scheme as before: nodes in Si receive a weight of 1 Ki 1,

the nodes in Ki receive a weight of 0, while all the other nodes receive a weight of 1.
Next, we invoke Evaluate(root(T),max, +) and then procedure WeightedColor
obtaining an assignment of ranges of clique numbers to the nodes in S present in T(G),
no numbers assigned to nodes in K and a unique number assigned to all other nodes.
Furthermore, after line 3 in procedure SK-Cover has been executed, we obtain
a minimum clique cover of the subgraph induced by V - K. Now Lemma 3.7
guarantees that when SK-Cover ends we have the desired result. The details are
spelled out next.

Procedure Minimum-Clique-Cover(G);
1. begin

2. for all vertices v of G do

3. if v E 5’: then

4. weight(v) + 1 Ki 1
5. else
6. if v E K then

7. weight(v) c 0;
8. else
9. weight(v) t 1;
10. Evaluate(root(T), max, +);

11. kc0;
12. Weighted_Color(root(T), k));
13. SK-Cover (7’)
14. end; {MinimumClique-Cover)

In summary, we can state the following result.

Theorem 3.8. Procedure MinimumClique-Cover correctly results in linear time
a minimum clique cover for a P,-sparse graph G.

To compute the size of the minimum fill-in for Pa-sparse graphs we note that as
a consequence of Proposition 2.4, once a vertex in Si is incident to an edge added in
a minimum fill-in, in the whole set Si has this property. We plan to use this
observation along with Observations 1.9 and 1.10 to provide an appropriate weight-
ing scheme to compensate for the absence of vertices in Si in the canonical cograph.

B. Jamison. S. Olariu J Discrete Applied Mathematics 61 11995) 155-175 173

Specifically, we assign weights to the vertices of G (and implicitly to the leaves of T(G))

as follows:

l if v is the unique vertex from Si present in T(G) then we weight v as follows:

N(v)+ lKil;

Q(v)+ IKil *(lKil - 1)/T

F(v) + 0;

l with all remaining leaves we associate

N(,V) + 1;

Q(v) + 0;

F(v) + 0.

In order to compute the size of the minimum fill-in in G, we proceed in the following

stages:

l first, we assign weights to the vertices of G as described above;

l run Evaluate(root(T), + , +) to compute N(v) at all internal nodes v;

l run Evaluate_Q(root(T), + , +) to compute Q(v) at all internal nodes 11;

l run EvaluateeF(root(T), + , +) to compute F(v) at all internal nodes v.

The details are spelled out by procedure Minimum_Fill_In that we present next.

Procedure Minimum_Fill_In(G);

1. begin

2. for all vertices v of G do

3. if v E Si then begin

4. N(v)c lKil;

5. Q(v) + IKil *(IKil - I)/2

6. F(v) + 0

7. end

8. else begin

9. N(v) +- 1;

10. Q(v) + 0;

11. F(v) + 0

12. end

13. Evaluate(root(T), + , +); {compute N(v)}

14. EvaluateeQ(root(r), + , +); (compute Q(v)}

15. Evaluate-F(root(T), + , +); {compute F(v))

16. end; { Minimum_Fill_In}

The following results follows immediately from the previous discussion along with

Proposition 2.4 and Observations 1.9 and 1.10.

174 B. Jamison. S. Olariu / Discrete Applied Mathematics 61 (1995) 155-175

Theorem 3.9. Procedure Minimum_Fill_In correctly returns, in linear time, the size of
the minimum Jill-in in a P4-sparse graph G.

4. Conclusions and open problems

We have presented optimal time algorithms to solve a number of optimization
problems for P,-sparse graphs, by relying on the data structures returned by the
optimal recognition algorithm in [lo].

Our approach is motivated by the fact that a P,-sparse graph is uniquely deter-
mined by an ordered pair (C(G), SK) where C(G) is a cograph obtained by removing
one endpoint of every P4 in the graph. A surprising characterization of P,-sparse
graphs guarantees that the result is always unique up to isomorphism. The SK
component contains information about the P, structure of the original graph.

We note that the class P,-sparse graphs is a subclass of weak bipolarizable graphs
[18] for which the first four parameters discussed above can be solved in O(n + m)
time for graphs with n vertices and m edges. However there are a number of problems
with these algorithms:
(a) they run in O(n’) time for dense graphs;
(b) they are not self-contained, in the sense that the algorithms depend on machinery

designed for a different class of graphs;
(c) the technique used to solve them [18] does not seem to apply to computing other

parameters, the minimum fill-in being a prime example.
The recognition algorithm in [lo] captures the structure imposed by the local

density property (~3) into a tree representation that can be exploited to obtain
optimization algorithms running in time proportional to the number of vertices in the
graph, irrespective of the number of edges. Moreover, these techniques work not only
for the first four parameters but also for computing the minimum fill-in, a maximum
matching, the scattering number, a minimum path cover, hamiltonicity, among others.

It would be interesting to see what other algorithmic problems on Pa-sparse graphs
can be solved in O(n) time using similar techniques. This promises to be an exciting
area for further work.

Acknowledgement

The authors are indebted to two anonymous referees for many constructive com-
ments.

References

[l] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (North-Holland, Amsterdam, 1976).
[2] D.G. Come& H. Lerchs and L.S. Burlingham, Complement reducible graphs, Discrete AppI. Math.

3 (1981) 163-174.

B. Jamison, S. Olariu J Discrete Applied Mathematics 61 (1995) 155-175 175

[3] D.G. Corneil, Y. Per1 and L.K. Stewart, Cographs: recognition, applications, and algorithms, Congr.

Numer. 43 (1984) 249-258.

[4] D.G. Corneil, Y. Per1 and L.K. Stewart, A linear recognition algorithm for cographs, SIAM J.

Comput. 14 (1985) 926-934.

[S] M.R. Garey and D.S. Johnson, Computers and Intractability, a Guide to the Theory of NP-

completeness (W.H. Freeman, San Francisco, CA, 1979).

[6] M.C. Golumbic, Algorithm Graph Theory and Perfect Graphs (Academic Press, New York, 1980).

[7] C. HoBng, Doctoral Thesis, McGill University, Montreal (1985).

[S] L. Hellenstein and M. Karpinski, Learning read-once formulas using membership queries, in:

Proceedings 2nd Annual Workshop on Computational Learning Theory (1989) 146161.

[9] B. Jamison and S. Olariu, Pa-reducible graphs, a class of uniquely tree representable graphs, Stud.

Appl. Math. 81 (1989) 79-87.

[lo] B. Jamison and S. Olariu, A linear-time recognition algorithm for P,-sparse graphs, SIAM J. Comput.

21 (1992) 381406.

[l l] B. Jamison and S. Olariu, A tree representation for P&-sparse graphs, Discrete Appl. Math. 35 (1992)

115-129.

[12] H.A. Jung, On a class of posets and the corresponding comparability graphs, J. Combin. Theory Ser.

B 24 (1978) 125-133.

1131 A. Kelmans, The number of trees in graph 1, Automat. Remote Control 26 (1965) 21942204.

[14] A. Kelmans, The number of trees in graph II, Automat. Remote Control 27 (1966) 56-65.

[15] H. Lerchs, On the clique-kernel structure of graphs, Department of Computer Science, University of

Toronto (October 1972).

[16] J.O. Limb and C. Flares, Description of Fasnet - A unidirectional local area communication network,

BSTJ 61 (1982) 1413-1440.

[17] P.K. McKinley and J.W.S. Liu, Multicast tree construction in bus-based networks, Comm. ACM 33

(1990) 2942.

[18] S. Olariu, Weak bipolarizable graphs, Discrete Math. 74 (1989) 159-171.

[19] M. Yannakakis, Computing the minimum fill-in is NP-complete, SIAM J. Comput. 2 (1981) 77-79.

	Old Dominion University
	ODU Digital Commons
	1995

	Linear Time Optimization Algorithms for P4-Sparse Graphs
	Beverly Jamison
	Stephan Olariu
	Repository Citation
	Original Publication Citation

	PII: 0166-218X(94)00012-3

