
Old Dominion University
ODU Digital Commons

Computer Science Faculty Publications Computer Science

1995

An Optimal Path Cover Algorithm for Cographs
R. Lin

S. Olariu
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_fac_pubs

Part of the Applied Mathematics Commons, and the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in
Computer Science Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

Repository Citation
Lin, R. and Olariu, S., "An Optimal Path Cover Algorithm for Cographs" (1995). Computer Science Faculty Publications. 118.
https://digitalcommons.odu.edu/computerscience_fac_pubs/118

Original Publication Citation
Lin, R., Olariu, S., & Pruesse, G. (1995). An optimal path cover algorithm for cographs. Computers & Mathematics with Applications,
30(8), 75-83. doi:10.1016/0898-1221(95)00139-p

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_fac_pubs?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_fac_pubs?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_fac_pubs/118?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

Computers Math. Applic. Vol. 30, No. 8, pp. 75-83, 1995
P e r g a m o n Copyright©1995 Elsevier Science Ltd

Printed in Great Britain. All rights reserved
0898-1221/95 $9.50 + 0.00

0898-1221(95)00139-$

An Optimal Path Cover
Algorithm for Cographs*

R. LIN
Department of Computer Science

SUNY at Geneseo, Geneseo, NY 14454, U.S.A.

S. O L A R I U
Department of Computer Science

Old Dominion University, Norfolk, VA 23529-0162, U.S.A.

G . PRUESSE
Department of Computer Science and Electrical Engineering
University of Vermont, Burlington, VT 05405-0156, U.S.A.

(Received November 1993; accepted March 1995)

A b s t r a c t - - T h e class of cographs, or complement-reducible graphs, arises naturally in many dif-
ferent areas of applied mathematics and computer science. In this paper, we present an optimal
algorithm for determining a minimum path cover for a cograph G. In case G has a Harniltonian path
(cycle) our algorithm exhibits the path (cycle) as well.

Keywords - -Cographs , Scheduling, Path cover, Hamiltonicity, VLSI, Greedy algorithms, Optimal
algorithms.

1. INTRODUCTION

The graphs are among the few fundamental objects tha t arise naturally in many algorithms in
computer science and engineering. A computat ional problem with a large spectrum of prac-
tical applications is the minimum path cover, which involves finding a minimum number of
vertex-disjoint paths which together cover the vertices of a graph. The pa th cover problem finds
application to database design, networking, VLSI design, ring protocols, code optimization, and

mapping parallel programs to parallel architectures, among many others. A graph tha t admits
a pa th cover of size one is referred to as Hamiltonian. If the unique pa th tha t covers all the

vertices can be extended to a cycle, the graph is said to possess a Hamiltonian cycle. I t is, there-
fore, clear tha t the minimum path cover problem is at least as hard as the problem of deciding
whether a graph has a Hamiltonian pa th (resp. cycle). I t is well known that , as many other
interesting problems in graph theory, the minimum path cover problem and many of its variants
are NP-complete [1].

I t is common knowledge tha t in spite of the fact tha t many interesting problems are NP-
complete on general graphs, in practical applications one rarely has to contend with general
graphs. Typically, a careful analysis of the problem at hand reveals sufficient s tructure to limit
the graphs under investigation to a restricted class. The purpose of this paper is to exhibit a

*Work supported by NSF Gramts CCR-9407180, MIP-09307664, and OSR-9350450.
The algorithm presented in this paper was discovered independently by the authors. We would like to thank
L. Stewart and D. Corneil for making our cooperation possible. In addition, the third author wishes to thank
D. Corneil and J. Edmonds for helpful discussions.

75

76 R. LXN et al.

simple and elegant algorithm to return a minimum path cover in a class of graphs that we are
about to define.

The cographs, or complement-reducible graphs, arise so naturally in many different area of ap-
plied mathematics and computer science that their independent discovery by various researchers
comes as no surprise. In the literature, the cographs are also known as P4-restricted graphs [2],
D*-graphs [3], SD-graphs [4], and CU-graphs [5]. This class of graphs has been studied exten-
sively from both the theoretical and algorithmic points of view [2-8]. An early characterization [8]
asserts that cographs are precisely the graphs which contain no induced subgraph isomorphic to
the chordless path with three edges.

The class of cographs is defined recursively as follows:

• a single-vertex graph is a cograph;

• if G is a cograph, then its complement G is also a cograph;

• if G and H are cographs, then their union is also a cograph.

As it turns out [8], the cographs admit a unique tree representation up to isomorphism. Specif-
ically, we can associate with every cograph G a unique rooted tree T(G) called the cotree of G,
featuring the following.

PROPERTY 1. Every internal node, except possibly for the root, has at least two children; fur-
thermore, the root has only one child if, and only if, the underlying graph G is disconnected.

PROPERTY 2. The internal nodes are labeled by either 0 (0-nodes) or 1 (1-nodes) in such a way
that the root is always a 1-node, and such that 1-nodes and 0-nodes alternate along every path

in T(G) starting at the root.

PROPERTY 3. The leaves of T(G) are precisely the vertices of G, such that vertices x and y are
adjacent in G if, and only if, the lowest common ancestor of x and y in T(G) is a 1-node.

Figure 1 features a cograph along with its unique tree representation.

f

b

c e f a b c d
Figure 1. Illustrating a cograph and its cotree.

A path cover in a graph G is a set P of paths of G that contains all the vertices in G. A path
cover is termed minimum if it uses the smallest possible number of paths. For an illustration,
refer to Figure 2: Figure 2(a) shows a possible path cover; Figure 2(b) features a minimum path
cover.

The minimum path cover problem is to find a path cover of the smallest cardinality. This prob-
lem finds important applications to scheduling, VLSI, operating systems, among many others. A
graph G that admits a path cover of size one is referred to as Hamiltonian. If the unique path
that covers G can be extended to a cycle, G is said to possess a Hamiltonian cycle. It is well

Algorithm for Cographs 77

(a) (b)
Figure 2. Various path covers of a graph.

known that the problem of determining whether a graph G has a Hamiltonian path or cycle is
one of the most difficult problems in computational graph theory.

An algorithm to determine the hamiltonicity of cographs was given in [6]. Unlike that algo-
rithm, the one presented here is constructive in nature. In fact, we propose an algorithm that
returns a minimum path cover for a cograph G. In case G has a path cover of size one, our
algorithm exhibits a Hamiltonian path in G. In case G has a Hamiltonian cycle, the unique path
returned by our algorithm as a path cover for G can be augmented trivially to yield a Hamiltonian

cycle.
The remainder of this paper is organized as follows. Section 2 presents the idea of our approach

in terms slightly more general than the cographs; Section 3 proposes the minimum path cover
algorithm for cographs along with the proof of correctness and a timing analysis; Section 4
concludes with a number of open problems.

2. O U R B A S I C I D E A

All graphs in this paper are finite with no loops or multiple edges. We use standard graph
theoretical terminology compatible with [9]. Let G be an a r b i t r a r y graph whose vertex-set par-
titions into nonempty, disjoint sets A and B with r = IAI < IBI = t, and such that every vertex
of A is adjacent to all the vertices in B. Let P B = { P l , P 2 , . . . , P s } , s _> 1, be a minimum path
cover for B. For convenience, we enumerate the vertices of A arbitrarily as

v l , v2 , . . . , v,.; (1)

similarly, enumerate the vertices of B as

Wl, W2, . . . , Wt (2)

by first writing down the vertices of pl (in the same order as they appear in Pl), followed by the
vertices in P2, and so on.

The next result establishes a property of the minimum path cover of G which will be instru-
mental in our path cover algorithm for cographs.

THEOREM l. G has a m i n i m u m p a t h c o v e r o [s i z e max{l, s - r}.

PROOF. We first argue that G cannot have a path cover of size k with k < max{l , s - r } . Assume
that such a path cover exists. Consider removing from this path cover all the vertices in A. What
results is a set of paths which is clearly a path cover for B.

Since the removal of a vertex in A will increase the number of paths by at most one, we obtain
a path cover for B of size at most k + r. Now the assumption that k < max{l , s - r} guarantees
tha t k q- r < s, contradicting the minimality of P B .

To complete the proof of Theorem 1, we shall present an algorithm that actually returns a
path cover of G of size max(l , s - r}. In outline, our algorithm proceeds in the following two
stages. (Refer to Figures 3-5 for an illustration.)

78 R. LINet al.

v2 • w5

V3 • P2 w6

V4 • W 7

vs• I w8 P3 w9

wll

Figure 3. Illustrating Mend..and_Merge: the initial setup.

THE MENDING STAGE. The idea of this stage is to use vertices in A to "stitch" together disjoint
paths in PB. Specifically, we begin by initializing

i~- l , A ' ~ A , p~pi , andB'*--B\{p~}.

Then, repeatedly, we at tempt to extend p, in the natural way, by using the vertex v~ to join p
and Pi + 1; afterwards, we remove vi from A t, the path Pi+l from B', and set i ~ i + 1.

The mending stage ends when precisely one of the following conditions is satisfied:

A' = 0; (3)

the number of vertices in B' becomes less than the number of vertices in A'. (4)

In case the mending stage ends with A' = 0, the algorithm returns the set of paths {p, p~+l , . . . , Pa }
which, by our construction, is a path cover of G of size max{l , s - r}.

If at the end of the mending stage A' is not empty, we proceed to the next stage of our algorithm.
For further reference we note that at this point A ~ contains r - i + 1 vertices, namely vi, vi+l, • • •, yr.
Furthermore, B ' is the set of vertices contained in the paths Pi+l, P~+2,. . . , Ps.

THE MERGING STAGE. The idea of this stage is to incorporate the vertices in A' into the set of
paths {p, p~+l , . . . , P8 } to create a unique path that covers all the vertices of G. For this purpose,
consider the last r - i + 1 vertices

W t - - r d - i , W t - - r + i + l , • • • ~ W t

in the enumeration of the vertices of B specified by (2).
The correctness of this stage relies on the following intermediate result.

LEMMA 2. The vertex w~_r+~ belongs to the p~th p. Furthermore, no vertex wj with j > t - r +i
belongs to A.

PROOF OF LEMMA 2. To begin, note that since A' is not empty, it must be the case that (4)
holds true. Consequently, B ~ contains strictly fewer than r - i + 1 vertices, implying that wt-~+i
belongs to the path p. We distinguish between the following two cases.

Algorithm for Cographs 79

,4 w/
w2

W3

W4
V2 W5

V3 W6

W 7

W8 v,. /

Figure 4. Illustrating Mend_and_Merge: after the mending stage.

CASE 1. i = 1 .
I f this is the case, then no vertex in A is used to stitch together vertices in B, and so A' = A

a n d B ' = B \ {Pl}. Now the assumption tha t r = [A[< [B I = t guarantees tha t t - r + i _> 1
and so all vertices wj with j > t - r 4- i belong to B, as claimed.

CASE 2. i > 2.

By our construction, vertices vt, v2 , . . , v i - 1 of A were used in the mending stage to join paths in B.
In particular, when vi-1 was so used, neither of conditions (3) and (4) was satisfied, implying

tha t the set of vertices contained in the paths Pi, Pi+t, • • •, P8 contained at least r - i 4- 2 elements.
On the other hand, at the end of the mending stage, the set B ~ contained fewer than r - i 4- 1
elements. Since v~-i was used to join p and pi, it follows tha t all vertices wj with j > t - r 4- i
belong to P i , P i + I , . . . ,Ps, and Case 2 is settled.

With this, the proof of Lemma 2 is complete. |

Formally, the merging stage begins by removing from the pa th p all vertices wj with j _>

t - r 4- i 4- 1. Next, assign every vertex

• vj with 1 < j < r the label 2(j - i 4- 1);
• wj with t - r + i _< j _< t the label 2(j - t + r - i) 4- 1.

Trivially, after this assignment, the vertices in A ~ receive labels 2, 4, 6 , . . . , 2(r - i 4- 1), while the
vertices in B ~ receive labels 1 , 3 , . . . , 2(r - i) 4- 1. Now consider the sequence

f f : ?£)t_rd-i, v i , ~l]t_r.t-i~-l, . . . , Vr - - l , ~lIt, Vr

obtained by merging the vertices in A' and B ' according to their labels. By Lemma 2, together
with the assumption tha t every vertex in A is adjacent to all the vertices in B, it follows tha t p ' is,
in fact, a pa th in G. Note, further, tha t the paths p and p~ share exactly one vertex, namely w t -

r 4 - i .

Therefore, the pa th obtained by concatenating p and p ' contains all the vertices in G. The
details are spelled out by the following procedure. (Here, the procedure append used in lines 6
and 16 works as follows: in line 6, v~ is joined to the last vertex in p and to the first vertex

80 R. LIN et al.

Figure 5. Illustrating Mend_and.Merge: after the merging stage.

in P~+I, thus extending the path p; in line 16, the two paths p and p' are joined along their
common vertex.)

P r o c e d u r e Mend_and_Merge(A, PB)
0. b e g i n
1. A t ~- A;

2. i ~-- 1;
3. p ~--p,;
4. S ' ~- B \ {p ,};

5. whi le A' • 0 and IB'I >_ IA'I do
6. p ~ append(p , v i ,p i+l) ;

7. A' ~ A' \ {vi};
s.
9. i ~ - i + l

10. endwhi l e ;
11. i f A ~ = 0 t h e n
12. re turn((p ,p~+l , . . . ,Ps})
13. e lse {start merging stage}
14. remove vertices wj with j > t - r + i + 1 from p;

15. pt ~._ Wt_r+i ~ Vi~Wt_r+i+l~ . . . ~Vr_l~l)t~Vr;

16. return(append(p, p'))
17. e n d i f
18. end; {Mend_and.Merge}

This completes the proof of Theorem 1. |

COROLLARY 1.1. H r = s -- 1 t hen G a d m i t s a Hami l tordan pa th . I f r > s - t hen G a d m i t s a

H a m i l t o n i a n cycle.

Algorithm for Cographs 81

PROOF. Trivially, in case r = s - 1, at the end of the mending stage, A t and B' are both empty
confirming that G has a Hamiltonian path. In case r > s - 1, then A' is nonempty when the
mending stage ends; consequently, G has a path cover of size one returned in line 16 of procedure
Mend_and_Merge. Note that , by our construction, the first vertex of path p is in B, while the last
vertex of the path pt is in A. Now the fact tha t every vertex in A is adjacent to all the vertices
in B guarantees tha t the edge Vr wt can be added to the concatenation of p and pt to obtain a
Hamiltonian cycle of G. |

Next, we show that if a suitable data structure is used to maintain the collection Ps of paths,
then the procedure Mend_and_Merge can be implemented efficiently. More precisely, we maintain
the vertices of B in a unique doubly linked list corresponding to the enumeration in (4). The
set A is maintained as a doubly-linked list, as well. Individual paths in PB are delimited using
a second doubly-linked list: the j th entry (1 <_ j _< s) in this second list contains the following
information:

• a pointer to the first element of path pj;
* a pointer to the last element of p j;
• the number of elements in pj.

It is easy to confirm that each iteration of the mending stage takes Oi l) t ime if a counter for
the elements in B ' is also maintained. Consequently, the mending stage takes at most O([AI)
t ime altogether.

The merging stage starts off by removing from p all the vertices wj with j >_ t - r ÷ i + 1. This
takes O(r - i) C O([A[) time. The subsequent merging itself takes 21A [- 1 operations, implying
that the running t ime of the procedure Mend_and_Merge is bounded by O([A D. To summarize
our findings, we state the following result.

THEOREM 3. The procedure Mend_andAPlerge can be implemented in such a way that its running
time is bounded by 0(--.4---). |

3. A M I N I M U M P A T H C O V E R A L G O R I T H M FOR C O G R A P H S

Let G be an n-vertex cograph represented by its cotree T(G). Imagine that the cotree T(G)
is a binary tree, and let x be an arbitrary node of this cotree. We plan to compute, recursively,
a minimum path cover of the subgraph of G induced by the leaves of the subtree of T(G) rooted
at x. For this purpose, we note that in case x is a leaf we return, simply, {x}. By Proper ty 2 and
Proper ty 3 in the definition of the cotree, should x be a 0-node we only need return the union of
the paths covers corresponding to its left and right subtrees, respectively.

In case x is a 1-node, Property 3 guarantees that every leaf in the left subtree of x is adjacent (as
a vertex of G) to all the leaves in the right subtree of x. Now to use procedure Mend_and_Merge
developed in the previous section, we only need ensure that the left subtree of x contains no more
leaves than its right subtree.

The previous discussion motivates us to preprocess T(G) as follows: first, we binarize T(G)
and then proceed to swap the subtrees of every 1-node such that no left subtree contains more
leaves than the corresponding right subtree. Finally, we shrink the left subtree of every 1-node
to its root, as we are about to explain.

First, to binarize T(G) (refer to Figure 6 for illustration) we add to every node x of degree k
by k - 2 identical copies of x, namely xl , x2 xk-2 in such a way that , with x0 standing for x,

* the parent of xi is x~-i whenever i > 1;
. the left child of x~ is the (i + 1) st child of x in T(G);
. the right child of x~ is Xi+l in case i <_ k - 3, and the k th child of x in T(G) otherwise.

Let BT(G) be the binarized version of T(G). For each node x of BT(G), we let BT(x) stand
for the subtree of BT(G) rooted at x; L(x) stands for the set of all the leaves in BT(x); x_left

3 0 4 4

82 R. LXN et al.

X ~.X 0

Cl C2 c3 Ck C 3 ~ - 2

w
Ck-I C k

Figure 6. Illustrating the process of binaxizing a tree.

and x_right will denote the left and right children of x, respectively. Next, by using standard
traversing techniques, we determine L(x) for every node x of BT(G). In case x is a 1-node, we
do the following (we continue to refer to the new version of the tree as BT(G)):

i f IL(x-left)l > [L(x_right)[t h e n
swap(T(x_left) , T(x_right));
shrink BT(x_left) to its root;

In other words, we ensure that for every 1-node, its left subtree contains at most as many
leaves as the right subtree. Furthermore, the left subtree of every 1-node is shrunk to its root
(we can think of this as replacing the root of this subtree by a supernode that contains, in some
order, all the vertices in L(x_left). The details of our algorithm to compute a minimum path
cover for cographs can be spelled out as follows.

P r o c e d u r e FindAVlin_Path_Cover (v);
0. b e g i n
1. i f v is a leaf t h e n return(v);
2. if v is a 0-node t h e n
3. return(FindAVlin_Path_Cover(v_left) U FindAYlin_Path_Cover(v_right))
4. else
5. return(Mend_andAVlerge(L(v_left), FindAVlin_Path_Cover(v_right)))
6. end; {Find_Min_Path_Cover}

THEOREM 4. With an arbitrary n-vertex cograph G represented by its cotree as input, procedure
Find_Min_Path_Cover returns a minimum path cover of G in O(n) time.

PROOF. The correctness of the procedure follows instantly from Property 2, Property 3 together
with Theorem 1. To argue for the complexity, we note that processing a 0-node takes O(1)
time; by virtue of Theorem 3, processing a 1-node v takes O(L(v_left)). Since [L(v_left)[<
[L(v_right)[, it follows that the overall time needed to process 1-nodes is bounded by 2n. The
conclusion follows. 1

4 . C O N C L U S I O N S A N D O P E N P R O B L E M S

We have proposed an optimal algorithm to compute a minimum path cover for cographs.
An interesting open question would be to see if a similar technique applies for the purpose

Algorithm for Cographs 83

of determining a minimum path cover for other classes of graphs related to the cographs. Of

particular interest are the classes of P4-reducible graphs [10] defined as graphs for which every
vertex can belong to at most one chordless path of length three, and the class of Pa-sparse
graphs [11], defined as graphs for which no set of five vertices induces more than one chordless

pa th of length three.
A second direction for further research is to obtain efficient parallel algorithms to compute a

minimum path cover for cographs. The first known a t t empt at solving the problem in parallel

goes back to [12]. Specifically, with an n-vertex cograph G represented by its cotree as input,
the algorithm in [12] returns a minimum path cover in a cograph in O(log2n) t ime using O(n 2)

processors in the Concurrent Read Concurrent Write (CRCW) PRAM. I t is interesting to note
tha t the algorithm in [12] requires O(log2n) t ime and O(n 2) CRCW processors even to detect
whether the graph at hand contain a Hamiltonian cycle. More recently, Lin et al. [13] have ob-
tained an algorithm tha t determines the number of paths in a minimum path cover in O(log n)

t ime using n / l o g n processors in the Exclusive Read Exclusive Write (EREW) PRAM. Con-
sequently, they can answer the question: "Does the graph have a Hamiltonian pa th (cycle)?"

optimally in parallel. Unfortunately, the problem of exhibiting all the paths in a minimum path
cover requires O(log2n) t ime and uses n / t o g n processors in the EREW-PRAM, being subopti-

mal. However, the result in [13] is a considerable improvement over the algorithm in [12] both in

the model of computat ion and in the number of processors used. I t would be interesting to see if
a cost-optimal parallel algorithm for this problem can be devised. To the best of our knowledge,
no such algorithm has been proposed in the literature.

R E F E R E N C E S
1. M.R. Garey and D.S. Johnson, Computers and Intractability, A Guide to the Theory of NP-completeness,

Freeman, San Francisco, CA, (1979).
2. D. Seinsche, On a property of the class of n-colorable graphs, Journal of Combinatorial Theory (B) 16,

191-193 (1974).
3. H.A. Jung, On a class of posers and the corresponding comparability graphs, Journal of Combinatorial

Theory (B) 24, 125-133 (1978).
4. D.P. Sumner, Demey graphs, Journal of the Australian Math. Society 18, 492-502 (1974).
5. D.G. Corneil and D.G. Kirkpatrick, Families of recursively defined perfect graphs, Congressus Numerantium

39, 237-246 (1983).
6. D.G. Corneil, H. Lerchs and L.S. Burlingham, Complement reducible graphs, Discrete Applied Mathematics

3, 163-174 (1981).
7. D.G. Corneil, Y. Perl and L.K. Stewart, A linear recognition algorithm for cographs, SIAM Journal on

Computing 14, 926-934 (1985).
8. H. Lerchs, On the clique-kernel structure of graphs, a manuscript, Department of Computer Science, Uni-

versity of Toronto, (October 1972).
9. J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, North-Holland, Amsterdam, (1976).

10. B. Jamison and S. Olariu, P4-reducible, a class of uniquely tree representable graphs, Studies in Applied
Mathematics 81, 79-87 (1989).

11. B. Jamison and S. Olariu, A tree representation for P4-sparse graphs, Discrete Applied Mathematics 35,
115-129 (1992).

12. G.S. Adhar and S. Peng, Parallel algorithm for path covering, Hamiltonian path, and Hamiltonian cycle in
cographs, In Proceedings of the International Conference on Parallel Processing, Vol. III, St. Charles, IL,
364-365, (August 1990).

13. R. Lin, S. Olariu, J.L. Schwing and J. Zhang, An efficient EP~W algorithm for minimum path cover and
hamiltonicity on cographs, Parallel Algorithms and Applications 2, 99-113 (1994).

14. L. Stewart, Cographs, a class of tree representable graphs, M.Sc. Thesis, Department of Computer Science,
University of Toronto, (1978, TR 126/78).

	Old Dominion University
	ODU Digital Commons
	1995

	An Optimal Path Cover Algorithm for Cographs
	R. Lin
	S. Olariu
	Repository Citation
	Original Publication Citation

	PII: 0898-1221(95)00139-P

