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A b s t r a c t - - T h e  class of cographs, or complement-reducible graphs, arises naturally in many dif- 
ferent areas of applied mathematics and computer science. In this paper, we present an optimal 
algorithm for determining a minimum path cover for a cograph G. In case G has a Harniltonian path 
(cycle) our algorithm exhibits the path (cycle) as well. 

Keywords - -Cographs ,  Scheduling, Path cover, Hamiltonicity, VLSI, Greedy algorithms, Optimal 
algorithms. 

1. INTRODUCTION 

The  graphs are among the few fundamental objects tha t  arise naturally in many  algorithms in 
computer  science and engineering. A computat ional  problem with a large spectrum of prac- 
tical applications is the minimum path cover, which involves finding a minimum number  of 
vertex-disjoint paths which together cover the vertices of a graph. The pa th  cover problem finds 
application to database design, networking, VLSI design, ring protocols, code optimization, and 

mapping  parallel programs to parallel architectures, among many  others. A graph tha t  admits  
a pa th  cover of size one is referred to as Hamiltonian. If  the unique pa th  tha t  covers all the 

vertices can be extended to a cycle, the graph is said to possess a Hamiltonian cycle. I t  is, there- 
fore, clear tha t  the minimum path  cover problem is at  least as hard as the problem of deciding 
whether  a graph has a Hamiltonian pa th  (resp. cycle). I t  is well known that ,  as many  other 
interesting problems in graph theory, the minimum path cover problem and many  of its variants 
are NP-complete  [1]. 

I t  is common knowledge tha t  in spite of the fact tha t  many  interesting problems are NP- 
complete on general graphs, in practical applications one rarely has to contend with general 
graphs. Typically, a careful analysis of the problem at hand reveals sufficient s tructure to limit 
the graphs under investigation to a restricted class. The purpose of this paper  is to exhibit a 

*Work supported by NSF Gramts CCR-9407180, MIP-09307664, and OSR-9350450. 
The algorithm presented in this paper was discovered independently by the authors. We would like to thank 
L. Stewart and D. Corneil for making our cooperation possible. In addition, the third author wishes to thank 
D. Corneil and J. Edmonds for helpful discussions. 
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simple and elegant algorithm to return a minimum path cover in a class of graphs that  we are 
about to define. 

The cographs, or complement-reducible graphs, arise so naturally in many different area of ap- 
plied mathematics and computer science that  their independent discovery by various researchers 
comes as no surprise. In the literature, the cographs are also known as P4-restricted graphs [2], 
D*-graphs [3], SD-graphs [4], and CU-graphs [5]. This class of graphs has been studied exten- 
sively from both the theoretical and algorithmic points of view [2-8]. An early characterization [8] 
asserts that  cographs are precisely the graphs which contain no induced subgraph isomorphic to 
the chordless path with three edges. 

The class of cographs is defined recursively as follows: 

• a single-vertex graph is a cograph; 

• if G is a cograph, then its complement G is also a cograph; 

• if G and H are cographs, then their union is also a cograph. 

As it turns out [8], the cographs admit a unique tree representation up to isomorphism. Specif- 
ically, we can associate with every cograph G a unique rooted tree T(G) called the cotree of G, 
featuring the following. 

PROPERTY 1. Every internal node, except possibly for the root, has at least two children; fur- 
thermore, the root has only one child if, and only if, the underlying graph G is disconnected. 

PROPERTY 2. The internal nodes are labeled by either 0 (0-nodes) or 1 (1-nodes) in such a way 
that  the root is always a 1-node, and such that  1-nodes and 0-nodes alternate along every path 

in T(G) starting at the root. 

PROPERTY 3. The leaves of T(G) are precisely the vertices of G, such that  vertices x and y are 
adjacent in G if, and only if, the lowest common ancestor of x and y in T(G) is a 1-node. 

Figure 1 features a cograph along with its unique tree representation. 

f 

b 

c e f a b c d 
Figure 1. Illustrating a cograph and its cotree. 

A path cover in a graph G is a set P of paths of G that  contains all the vertices in G. A path 
cover is termed minimum if it uses the smallest possible number of paths. For an illustration, 
refer to Figure 2: Figure 2(a) shows a possible path cover; Figure 2(b) features a minimum path 
cover. 

The minimum path cover problem is to find a path cover of the smallest cardinality. This prob- 
lem finds important  applications to scheduling, VLSI, operating systems, among many others. A 
graph G that  admits a path cover of size one is referred to as Hamiltonian. If the unique path 
that  covers G can be extended to a cycle, G is said to possess a Hamiltonian cycle. It is well 
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(a) (b) 
Figure 2. Various path covers of a graph. 

known that  the problem of determining whether a graph G has a Hamiltonian path or cycle is 
one of the most difficult problems in computational graph theory. 

An algorithm to determine the hamiltonicity of cographs was given in [6]. Unlike that  algo- 
rithm, the one presented here is constructive in nature. In fact, we propose an algorithm that  
returns a minimum path cover for a cograph G. In case G has a path cover of size one, our 
algorithm exhibits a Hamiltonian path in G. In case G has a Hamiltonian cycle, the unique path 
returned by our algorithm as a path cover for G can be augmented trivially to yield a Hamiltonian 

cycle. 
The remainder of this paper is organized as follows. Section 2 presents the idea of our approach 

in terms slightly more general than the cographs; Section 3 proposes the minimum path cover 
algorithm for cographs along with the proof of correctness and a timing analysis; Section 4 
concludes with a number of open problems. 

2.  O U R  B A S I C  I D E A  

All graphs in this paper are finite with no loops or multiple edges. We use standard graph 
theoretical terminology compatible with [9]. Let G be an a r b i t r a r y  graph whose vertex-set par- 
titions into nonempty, disjoint sets A and B with r = IAI < IBI = t, and such that  every vertex 
of A is adjacent to all the vertices in B. Let P B  = { P l , P 2 , . . .  , P s } ,  s _> 1, be a minimum path 
cover for B. For convenience, we enumerate the vertices of A arbitrarily as 

v l  , v2 ,  . . . , v,.; (1) 

similarly, enumerate the vertices of B as 

Wl, W2, . . . ,  Wt (2) 

by first writing down the vertices of pl (in the same order as they appear in Pl), followed by the 
vertices in P2, and so on. 

The next result establishes a property of the minimum path cover of G which will be instru- 
mental in our path cover algorithm for cographs. 

THEOREM l.  G has a m i n i m u m  p a t h  c o v e r  o [ s i z e  max{l,  s - r}. 

PROOF. We first argue that  G cannot have a path cover of size k with k < max{l ,  s - r } .  Assume 
that  such a path cover exists. Consider removing from this path cover all the vertices in A. What  
results is a set of paths which is clearly a path cover for B. 

Since the removal of a vertex in A will increase the number of paths by at most one, we obtain 
a path cover for B of size at most k + r. Now the assumption that  k < max{l ,  s - r} guarantees 
tha t  k q- r < s, contradicting the minimality of P B .  

To complete the proof of Theorem 1, we shall present an algorithm that  actually returns a 
path cover of G of size max( l ,  s - r}. In outline, our algorithm proceeds in the following two 
stages. (Refer to Figures 3-5 for an illustration.) 
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v2 • w5 

V3 • P2 w6 

V4 • W 7  

vs• I w8 P3 w9 

wll 

Figure 3. Illustrating Mend..and_Merge: the initial setup. 

THE MENDING STAGE. The idea of this stage is to use vertices in A to "stitch" together disjoint 
paths in PB. Specifically, we begin by initializing 

i~- l ,  A ' ~ A ,  p~pi ,  andB'*--B\{p~}. 

Then, repeatedly, we at tempt  to extend p, in the natural way, by using the vertex v~ to join p 
and Pi + 1; afterwards, we remove vi from A t, the path Pi+l from B', and set i ~ i + 1. 

The mending stage ends when precisely one of the following conditions is satisfied: 

A' = 0; (3) 

the number of vertices in B'  becomes less than the number of vertices in A'. (4) 

In case the mending stage ends with A' = 0, the algorithm returns the set of paths {p, p~+l , . . . ,  Pa } 
which, by our construction, is a path cover of G of size max{l ,  s - r}. 

If at the end of the mending stage A' is not empty, we proceed to the next stage of our algorithm. 
For further reference we note that  at this point A ~ contains r - i + 1  vertices, namely vi, vi+l, • • •, yr. 
Furthermore, B '  is the set of vertices contained in the paths Pi+l, P~+2,. . . ,  Ps. 

THE MERGING STAGE. The idea of this stage is to incorporate the vertices in A' into the set of 
paths {p, p~+l , . . . ,  P8 } to create a unique path that  covers all the vertices of G. For this purpose, 
consider the last r - i + 1 vertices 

W t - - r d - i ,  W t - - r + i + l ,  • • • ~ W t  

in the enumeration of the vertices of B specified by (2). 
The correctness of this stage relies on the following intermediate result. 

LEMMA 2. The vertex w~_r+~ belongs to the p~th p. Furthermore, no vertex wj with j > t -  r +i 
belongs to A. 

PROOF OF LEMMA 2. To begin, note that  since A' is not empty, it must be the case that  (4) 
holds true. Consequently, B ~ contains strictly fewer than r - i + 1 vertices, implying that  wt-~+i 
belongs to the path p. We distinguish between the following two cases. 
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,4 w/ 
w2 

W3 

W4 
V2 W5 

V3 W6 

W 7  

W8 v,. / 

Figure 4. Illustrating Mend_and_Merge: after the mending stage. 

CASE 1. i = 1 .  
I f  this is the case, then no vertex in A is used to stitch together vertices in B, and so A'  = A 

a n d  B '  = B \ {Pl}. Now the assumption tha t  r = [A[ < [B I = t guarantees tha t  t - r + i _> 1 
and so all vertices wj with j > t - r 4- i belong to B, as claimed. 

CASE 2. i > 2. 

By our construction, vertices vt,  v2 , . . ,  v i -  1 of A were used in the mending stage to join paths in B. 
In particular,  when vi-1 was so used, neither of conditions (3) and (4) was satisfied, implying 

tha t  the set of vertices contained in the paths Pi, Pi+t, • • •, P8 contained at least r -  i 4- 2 elements. 
On the other hand, at the end of the mending stage, the set B ~ contained fewer than  r - i 4- 1 
elements. Since v~-i was used to join p and pi, it follows tha t  all vertices wj with j > t - r 4- i 
belong to P i , P i + I , . . .  ,Ps, and Case 2 is settled. 

With  this, the proof of Lemma 2 is complete. | 

Formally, the merging stage begins by removing from the pa th  p all vertices wj with j _> 

t - r 4- i 4- 1. Next, assign every vertex 

• vj with 1 < j < r the label 2(j - i 4- 1); 
• wj with t - r + i _< j _< t the label 2(j - t + r - i) 4- 1. 

Trivially, after this assignment, the vertices in A ~ receive labels 2, 4, 6 , . . . ,  2(r  - i 4- 1), while the 
vertices in B ~ receive labels 1 , 3 , . . . ,  2(r - i) 4- 1. Now consider the sequence 

f f  : ?£)t_rd-i, v i ,  ~l]t_r.t-i~-l, . . . , Vr - - l ,  ~lIt, Vr 

obtained by merging the vertices in A' and B '  according to their labels. By Lemma 2, together 
with the assumption tha t  every vertex in A is adjacent to all the vertices in B,  it follows tha t  p '  is, 
in fact, a pa th  in G. Note, further, tha t  the paths p and p~ share exactly one vertex, namely w t  - 

r 4 - i .  

Therefore, the pa th  obtained by concatenating p and p '  contains all the vertices in G. The 
details are spelled out by the following procedure. (Here, the procedure append used in lines 6 
and 16 works as follows: in line 6, v~ is joined to the last vertex in p and to the first vertex 
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Figure 5. Illustrating Mend_and.Merge: after the merging stage. 

in P~+I, thus extending the path p; in line 16, the two paths p and p' are joined along their 
common vertex.) 

P r o c e d u r e  Mend_and_Merge(A, PB) 
0. b e g i n  
1. A t ~- A; 

2. i ~-- 1; 
3. p ~--p,; 
4. S '  ~-  B \ {p ,};  

5. whi le  A' • 0 and IB'I >_ IA'I do  
6. p ~ append(p ,  v i ,p i+l ) ;  

7. A' ~ A' \ {vi}; 
s.  
9. i ~ - i + l  

10. endwhi l e ;  
11. i f A  ~ = 0 t h e n  
12. re turn((p ,p~+l , . . .  ,Ps}) 
13. e lse  {start merging stage} 
14. remove vertices wj with j > t - r + i + 1 from p; 

15. pt ~._ Wt_r+i ~ Vi~Wt_r+i+l~ . . . ~Vr_l~l)t~Vr; 

16. return(append(p, p')) 
17. e n d i f  
18. end;  {Mend_and.Merge} 

This completes the proof of Theorem 1. | 

COROLLARY 1.1. H r = s -- 1 t hen  G a d m i t s  a Hami l tordan  pa th .  I f  r > s -  t hen  G a d m i t s  a 

H a m i l t o n i a n  cycle. 
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PROOF. Trivially, in case r = s - 1, at the end of the mending stage, A t and B'  are both empty 
confirming that  G has a Hamiltonian path. In case r > s - 1, then A' is nonempty when the 
mending stage ends; consequently, G has a path cover of size one returned in line 16 of procedure 
Mend_and_Merge. Note that ,  by our construction, the first vertex of path p is in B, while the last 
vertex of the path pt is in A. Now the fact tha t  every vertex in A is adjacent to all the vertices 
in B guarantees tha t  the edge Vr wt can be added to the concatenation of p and pt to obtain a 
Hamiltonian cycle of G. | 

Next, we show that  if a suitable data  structure is used to maintain the collection Ps of paths, 
then the procedure Mend_and_Merge can be implemented efficiently. More precisely, we maintain 
the vertices of B in a unique doubly linked list corresponding to the enumeration in (4). The 
set A is maintained as a doubly-linked list, as well. Individual paths in PB are delimited using 
a second doubly-linked list: the j th  entry (1 <_ j _< s) in this second list contains the following 
information: 

• a pointer to the first element of path pj; 
* a pointer to the last element of p j; 
• the number of elements in pj. 

It  is easy to confirm that  each iteration of the mending stage takes Oi l  ) t ime if a counter for 
the elements in B '  is also maintained. Consequently, the mending stage takes at most O([AI) 
t ime altogether. 

The merging stage starts off by removing from p all the vertices wj with j >_ t - r ÷ i + 1. This 
takes O(r  - i )  C O([A[) time. The subsequent merging itself takes 21A [ - 1 operations, implying 
that  the running t ime of the procedure Mend_and_Merge is bounded by O([A D. To summarize 
our findings, we state the following result. 

THEOREM 3. The procedure Mend_andAPlerge can be implemented in such a way that  its running 
time is bounded by 0(--.4---). | 

3. A M I N I M U M  P A T H  C O V E R  A L G O R I T H M  FOR C O G R A P H S  

Let G be an n-vertex cograph represented by its cotree T(G). Imagine that  the cotree T(G) 
is a binary tree, and let x be an arbitrary node of this cotree. We plan to compute, recursively, 
a minimum path cover of the subgraph of G induced by the leaves of the subtree of T(G) rooted 
at x. For this purpose, we note that  in case x is a leaf we return, simply, {x}. By Proper ty  2 and 
Proper ty  3 in the definition of the cotree, should x be a 0-node we only need return the union of 
the paths covers corresponding to its left and right subtrees, respectively. 

In case x is a 1-node, Property 3 guarantees that  every leaf in the left subtree of x is adjacent (as 
a vertex of G) to all the leaves in the right subtree of x. Now to use procedure Mend_and_Merge 
developed in the previous section, we only need ensure that  the left subtree of x contains no more 
leaves than its right subtree. 

The previous discussion motivates us to preprocess T(G) as follows: first, we binarize T(G) 
and then proceed to swap the subtrees of every 1-node such that  no left subtree contains more 
leaves than the corresponding right subtree. Finally, we shrink the left subtree of every 1-node 
to its root, as we are about to explain. 

First, to binarize T(G) (refer to Figure 6 for illustration) we add to every node x of degree k 
by k -  2 identical copies of x, namely xl ,  x2 . . . . .  xk-2 in such a way that ,  with x0 standing for x, 

* the parent of xi is x~-i whenever i > 1; 
. the left child of x~ is the (i + 1) st child of x in T(G);  
. the right child of x~ is Xi+l in case i <_ k - 3, and the k th child of x in T(G) otherwise. 

Let BT(G) be the binarized version of T(G). For each node x of BT(G), we let BT(x) stand 
for the subtree of BT(G) rooted at x; L(x) stands for the set of all the leaves in BT(x); x_left 

3 0 4 4  
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X ~.X 0 

Cl C2 c3 Ck C 3 ~ - 2  

w 
Ck-I C k 

Figure 6. Illustrating the  process of binaxizing a tree. 

and x_right will denote the left and right children of x, respectively. Next, by using standard 
traversing techniques, we determine L(x) for every node x of BT(G). In case x is a 1-node, we 
do the following (we continue to refer to the new version of the tree as BT(G)): 

i f  IL(x-left)l > [L(x_right)[ t h e n  
swap(T(x_left) ,  T(x_right) ); 
shrink BT(x_left) to its root; 

In other words, we ensure that  for every 1-node, its left subtree contains at most as many 
leaves as the right subtree. Furthermore, the left subtree of every 1-node is shrunk to its root 
(we can think of this as replacing the root of this subtree by a supernode that  contains, in some 
order, all the vertices in L(x_left). The details of our algorithm to compute a minimum path 
cover for cographs can be spelled out as follows. 

P r o c e d u r e  FindAVlin_Path_Cover (v); 
0. b e g i n  
1. i f  v is a leaf t h e n  return(v); 
2. if  v is a 0-node t h e n  
3. return(FindAVlin_Path_Cover(v_left) U FindAYlin_Path_Cover(v_right) ) 
4. else 
5. return(Mend_andAVlerge(L(v_left), FindAVlin_Path_Cover(v_right))) 
6. end;  {Find_Min_Path_Cover} 

THEOREM 4. With an arbitrary n-vertex cograph G represented by its cotree as input, procedure 
Find_Min_Path_Cover returns a minimum path cover of G in O(n) time. 

PROOF. The correctness of the procedure follows instantly from Property 2, Property 3 together 
with Theorem 1. To argue for the complexity, we note that  processing a 0-node takes O(1) 
time; by virtue of Theorem 3, processing a 1-node v takes O(L(v_left)). Since [L(v_left)[ < 
[L(v_right)[, it follows that  the overall time needed to process 1-nodes is bounded by 2n. The 
conclusion follows. 1 

4 .  C O N C L U S I O N S  A N D  O P E N  P R O B L E M S  

We have proposed an optimal algorithm to compute a minimum path cover for cographs. 
An interesting open question would be to see if a similar technique applies for the purpose 
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of determining a minimum path cover for other classes of graphs related to the cographs. Of 

particular interest are the classes of P4-reducible graphs [10] defined as graphs for which every 
vertex can belong to at most  one chordless path  of length three, and the class of Pa-sparse 
graphs [11], defined as graphs for which no set of five vertices induces more than  one chordless 

pa th  of length three. 
A second direction for further research is to obtain efficient parallel algorithms to compute a 

minimum path  cover for cographs. The first known a t t empt  at solving the problem in parallel 

goes back to [12]. Specifically, with an n-vertex cograph G represented by its cotree as input, 
the algorithm in [12] returns a minimum path  cover in a cograph in O(log2n) t ime using O(n 2) 

processors in the Concurrent Read Concurrent Write (CRCW) PRAM. I t  is interesting to note 
tha t  the algorithm in [12] requires O(log2n) t ime and O(n 2) CRCW processors even to detect 
whether the graph at hand contain a Hamiltonian cycle. More recently, Lin et al. [13] have ob- 
tained an algorithm tha t  determines the number of paths in a minimum path  cover in O(log n) 

t ime using n / l o g n  processors in the Exclusive Read Exclusive Write (EREW) PRAM. Con- 
sequently, they can answer the question: "Does the graph have a Hamiltonian pa th  (cycle)?" 

optimally in parallel. Unfortunately, the problem of exhibiting all the paths in a minimum path  
cover requires O(log2n) t ime and uses n / t o g n  processors in the EREW-PRAM,  being subopti- 

mal. However, the result in [13] is a considerable improvement over the algorithm in [12] both  in 

the model of computat ion and in the number of processors used. I t  would be interesting to see if 
a cost-optimal parallel algorithm for this problem can be devised. To the best of our knowledge, 
no such algorithm has been proposed in the literature. 
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