The Morphology of Convex Polygons

Stephan Olariu
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_fac_pubs
Part of the Applied Mathematics Commons, and the Computer Sciences Commons

Repository Citation

Olariu, Stephan, "The Morphology of Convex Polygons" (1992). Computer Science Faculty Publications. 116.
https://digitalcommons.odu.edu/computerscience_fac_pubs/116

Original Publication Citation

Olariu, S. (1992). The morphology of convex polygons. Computers of Mathematics with Applications, 24(7), 59-68. doi:10.1016/ 0898-1221(92)90154-a

THE MORPHOLOGY OF CONVEX POLYGONS

Stephan Olariu
Department of Computer Science, Old Dominion University
Norfolk, VA 23529, U.S.A.

(Received May 1991 and in revised form October 1991)

Abstract

A simple polygon P is said to be unimodal if for every vertex of P, the Euclidian distance function to the other vertices of P is unimodal. The study of unimodal polygons has emerged as a fruitful area of computational and discrete geometry. We study unimodality properties of a number of special convex polygons from the morphological point of view. In particular, we establish a hierarchy among three classes of convex polygons in terms of their unimodality properties.

1. INTRODUCTION

In pattern recognition and classification, the shape of an object is routinely represented by a polygon obtained from an image processing device [1,2]. One of the fundamental features that contributes to a morphological description useful in shape analysis is the distance properties among vertices of the polygon [3]. Traditionally, convexity has played a central role in analysing relevant features of the shape of a set of points.

Recently, Toussaint [4] pointed out that the notions of convexity and unimodality are quite different: convex polygons need not be unimodal, and unimodal polygons need not be convex. Furthermore, in [4] it is argued that the key factor for obtaining very efficient algorithms for a large number of problems in computational geometry is not convexity, but rather unimodality.

It is not surprising, therefore, that unimodality and multimodality have received considerable attention in the literature [4-8]. In [7] it is shown that every convex polygon with at most five vertices must contain a unimodal vertex; [6] exhibits examples of n-vertex ($n \geq 6$) convex polygons none of whose vertices are unimodal. An interesting question is to investigate unimodality properties of special convex polygons. The purpose of this note is to study unimodality properties of a number of special convex polygons from the morphological point of view. In particular, we establish a hierarchy among three classes of convex polygons in terms of their unimodality properties.

2. THE RESULT

Formaly, a simple n-vertex polygon $P=p_{0} \ldots p_{n-1}(n \geq 3)$ in the plane is specified by the list of its vertices along with their Cartesian coordinates; \mathbf{P} is said to be in standard form whenever its vertices are enumerated in clockwise order, with all the vertices distinct, and no three consecutive vertices collinear.

A pair p_{i}, p_{j} of distinct vertices defines an edge of P if, and only if, $|i-j|=1(\bmod n)$; otherwise, p_{i}, p_{j} defines a diagonal of P. A polygon P is termed convex if all its diagonals lie entirely within P. The diameter of P is defined as $\max _{0 \leq i \neq j \leq n-1} d\left(p_{i}, p_{j}\right)$.

[^0]Avis et al. [6] proposed to call a vertex p_{i} of \mathbf{P} unimodal with respect to the Euclidian distance, if there exists a subscript $j(0 \leq j \leq n-1)$ such that $d\left(p_{i}, p_{k}\right)$ is non-decreasing for $k=i+1, i+2, \ldots, j$ and non-increasing for $k=j+1, j+2, \ldots, i-1$. (Here, as usual, subscript arithmetic is modulo n.) A non-unimodal vertex is termed multimodal. The polygon P itself is termed unimodal if all its vertices are unimodal.

A convex polygon is termed cigar-shaped if all its vertices lie inside the diameter circle and the diameter itself is not an edge in the polygon (see Figure 1).

Figure 1. A cigar-shaped polygon.

Figure 2.
Let $\mathrm{P}=p_{0} p_{1}, \ldots, p_{n-1}$ be a cigar-shaped polygon, and let p_{i} and p_{j} be the vertices of P which realize the diameter; we will refer to p_{i} and p_{j} as the tips of P.
Lemma 1. In a cigar-shaped polygon, every tip is unimodal.
Proof. Let k be an arbitrary subscript with $i+1 \leq k \leq j-1$. We note that the angle $\varangle p_{i} p_{k} p_{k+1}$ is greater than $\pi / 2$; to see that this is the case, consider the angle $\left\langle p_{i} p_{k} p_{j}\right.$ and refer to Figure 2.

By the convexity of $\mathrm{P}, \pi / 2<\left\langle p_{i} p_{k} p_{j}<\left\langle p_{i} p_{k} p_{k+1}\right.\right.$. Now in the triangle $p_{i} p_{k} p_{k+1}$ the angle $\left\langle p_{i} p_{k} p_{k+1}>\pi / 2\right.$ implies that $d\left(p_{i}, p_{k}\right)<d\left(p_{i}, p_{k+1}\right)$. Since k was arbitrary, it follows that p_{i} is unimodal with respect to the chain $p_{i+1}, p_{i+2}, \ldots, p_{j}$.
Similarly, let k be an arbitrary subscript in the range $j+1 \leq k \leq i-1$. We claim that the angle $\varangle p_{i} p_{k} p_{k-1}$ is greater than $\pi / 2$: this follows, instantly, from the convexity of P. Now in the triangle $p_{i} p_{k} p_{k-1}$ we have $d\left(p_{i}, p_{k}\right)<d\left(p_{i}, p_{k-1}\right)$. Since k was arbitrary it follows that the vertex p_{i} is unimodal, as claimed.

The proof of the fact that p_{j} is also unimodal follows by a mirror argument and is, therefore, omitted.

The following result shows that every cigar-shaped polygon must have at least two unimodal vertices. As it turns out, some cigar-shaped polygons contain exactly two unimodal vertices.
Theorem 2. Cigar-shaped polygons need not have more than two unimodal vertices.
Proof. Let P be a cigar-shaped polygon; Lemma 1 guarantees the existence of at least two unimodal vertices of P. To complete the proof of the theorem we show that no other vertices of a cigar-shaped polygon need to be unimodal.
Consider two points x_{0} and y_{0} in the plane. We propose to construct a cigar-shaped polygon having x_{0} and y_{0} as tips and such that no other vertices of the polygon are unimodal. For this purpose, draw the circle having x_{0} and y_{0} as a diameter and refer to Figure 3.

Figure 3.
Imagine symmetric arcs through x_{0} and y_{0} such that their angle α is less than $\pi / 3$. Now take n points $x_{1}, x_{2}, \ldots, x_{n}$ in clockwise order on the upper arc and take n points $y_{1}, y_{2}, \ldots, y_{n}$ on the lower arc such that

$$
d\left(x_{0}, x_{i}\right)=d\left(x_{0}, y_{n-i+1}\right), \quad(i=1,2, \ldots, n) .
$$

We claim that none of the x_{i} 's and y_{i} 's $(i=1,2, \ldots, n)$ can be unimodal. For this purpose, let i be an arbitrary subscript in the range $1 \leq i \leq n$. Clearly, in the isosceles triangle $x_{0} x_{i} y_{n-i+1}$, we must have

$$
d\left(x_{i}, x_{0}\right)>d\left(x_{i}, y_{n-i+1}\right),
$$

because the angle $\varangle x_{i} x_{0} y_{n-i+1}<\pi / 3$ by construction.
Similarly, in the isosceles triangle $y_{0} x_{i} y_{n-i+1}$, we can write

$$
d\left(x_{i}, y_{0}\right)>d\left(x_{i}, y_{n-i+1}\right)
$$

and so neither x_{i} nor y_{i} are unimodal. Since i was arbitrary, the conclusion follows.
Call a convex polygon semi-circle if all its vertices lie inside the diameter circle, and the diameter itself is an edge in the polygon (see Figure 4). As it turns out, every vertex of a semi-circle polygon is unimodal. Specifically, we state the following result.

Theorem 3. Every semi-circle polygon is unimodal.

Proof. Let $P=p_{0} p_{1} \ldots p_{n-1}$ be a semi-circle polygon and assume without loss of generality that the diameter is realized by p_{0} and p_{n-1}. Referring to Figure 5 , let $p_{i}(0 \leq i \leq n-1)$ be an arbitrary vertex of P.
We shall prove that $d\left(p_{i}, p_{k}\right)$ is non-decreasing for $k=i+1, i+2, \ldots, n-1$ and non-increasing for $k=0,1, \ldots, i-1$. First, consider a vertex p_{j} with $j \in\{i+1, i+2, \ldots, n-2\}$. We claim that

$$
<p_{i} p_{j} p_{j+1}>\frac{\pi}{2}
$$

Figure 4. A semi-circle polygon.

The justification of this claim relies on the observation that $\left\langle p_{0} p_{j} p_{n-1}\right.$ must be greater than $\pi / 2$ (because p_{j} is inside the semi-circle). Now the convexity of P guarantess that $\left\langle p_{i} p_{j} p_{j+1}\right.$ $><p_{0} p_{j} p_{n-1}$. Therefore, in the triangle $p_{i} p_{j} p_{j+1}$, we must have $d\left(p_{i}, p_{j}\right)<d\left(p_{i}, p_{j+1}\right)$. Since p_{j} was arbitrary, it follows that $d\left(p_{i}, p_{k}\right)$ is non-decreasing for $k=i+1, i+2, \ldots, n-1$.

Similarly, for $j \in\{0,1,2, \ldots, i-2\}$ we claim that

$$
<p_{i} p_{j+1} p_{j}>\frac{\pi}{2}
$$

As before, the convexity of P together with the fact that P is semi-circle guarantees that

$$
<p_{i} p_{j+1} p_{j}><p_{n} p_{j+1} p_{0}>\frac{\pi}{2}
$$

Now in the triangle $p_{i} p_{j+1} p_{j}, d\left(p_{i}, p_{j+1}\right)>d\left(p_{i}, p_{j}\right)$ and the conclusion follows.
A convex polygon P is said to be weakly semi-circle if the diameter of P is an edge in the polygon (see Figure 6). Let $P=p_{0} p_{1} \ldots p_{n-1}$ be a weakly semi-circle polygon. Without loss of generality, we let p_{0} and p_{n-1} realize the diameter.
We note that, by definition, all the vertices of P must lie in the region $\mathrm{S}\left(p_{0}, p_{n}\right)$ delimited by the intersection of:

- the left half-plane generated by $p_{0} p_{n-1}$;
- the circle drawn with p_{0} as center and of radius $d\left(p_{0}, p_{n-1}\right)$;
- the circle drawn with p_{n-1} as center and of radius $d\left(p_{0}, p_{n-1}\right)$.

The region $S\left(p_{0}, p_{n-1}\right)$ defined above will be referred to as the semi-lune of p_{0} and p_{n-1}.

Figure 6. A weakly semi-circle polygon.

Figure 7.
Let $p_{i}, p_{j}(i, j=0, \ldots, n-1 ; i \neq j)$ be arbitrary vertices of P. We shall say that p_{j} is below p_{i} if the perpendicular distance from p_{j} to the edge $p_{0} p_{n-1}$ is less than the perpendicular distance from p_{i} to $p_{0} p_{n-1}$.
Lemma 4. In a weakly semi-circle polygon P, every vertex is unimodal with respect to all the vertices lying below it.
Proof. Draw an infinite ray from p_{0} perpendicular to $p_{0} p_{n-1}$ and wholly contained in the left half-plane determined by $p_{0} p_{n-1}$ and refer to Figure 7. Draw an infinite line parallel to $p_{0} p_{n-1}$ passing through p_{i} and denote by t the intersection point with the ray drawn from p_{0}.

Consider an arbitrary vertex $p_{j}(j=1,2, \ldots, i-1)$; by the convexity of P,

$$
\varangle p_{i} p_{j} p_{j-1}>\varangle p_{i} p_{j} p_{0}
$$

At the same time,

$$
<p_{i} p_{j} p_{0}><p_{i} t p_{0}=\frac{\pi}{2}
$$

(because p_{j} lies inside the semi-circle passing through p_{i}, t, p_{0} and having $p_{0} p_{i}$ as a diameter).
Combining the two inequalities above, we get $<p_{i} p_{j} p_{j-1}>\pi / 2$, and so $d\left(p_{i}, p_{j}\right)<d\left(p_{i}, p_{j-1}\right)$. Now it follows that p_{i} is unimodal with respect to all the vertices $p_{k}(k=0,1, \ldots, i-1)$.

Similarly, let p_{r} be the first vertex below p_{i} on the path from p_{i} to p_{n-1} in the clockwise direction. A mirror argument shows that for any subscript $s \in\{r, r+1, \ldots, n-2\}$ we have $d\left(p_{i}, p_{s}\right)<d\left(p_{i}, p_{s+1}\right)$. The conclusion follows.
Corollary 4.1. Any antipodal vertex corresponding to the diameter $p_{0} p_{n-1}$ is unimodal.
Proof. Clearly, all the vertices of the polygon lie below an antipodal vertex p_{j} of the diameter $p_{0} p_{n-1}$. Now Lemma 4 guarantees that p_{j} is unimodal.

Although every vertex of a semi-circle polygon is unimodal, surprisingly, weakly semi-circle polygons need not have more than two unimodal vertices. The details are contained in the following theorem.
Theorem 5. Weakly semi-circle polygons need not contain more than two unimodal vertices.
Proof. Let $\mathrm{P}=p_{0} p_{1} \ldots p_{n-1}$ be a weakly semi-circle polygon, and let p_{0} and p_{n-1} realize the diameter of P. Refer to Figure 8. Let p_{m} be the antipodal vertex corresponding to $p_{0} p_{n-1}$. By Corollary 4.1, p_{m} is unimodal.

Figure 8.
Without loss of generality, let p_{m-1} be the vertex immediately below p_{m}; we claim that p_{m-1} is also unimodal.

To justify this claim, note that by Lemma 4, p_{m-1} is unimodal with all the vertices of P except, perhaps, p_{m}. In order to establish the unimodality of p_{m-1}, we only need show that

$$
\begin{equation*}
d\left(p_{m-1}, p_{m}\right)<d\left(p_{m-1}, p_{m+1}\right) \tag{1}
\end{equation*}
$$

Let δ be an infinite ray originating at p_{m-1} and parallel to $p_{0} p_{n-1} ; \delta$ intersects the edge $p_{m} p_{m+1}$ at x. Note that by our assumption that p_{m-1} is the first vertex below p_{m}, x must belong to the interior of $p_{m} p_{m+1}$.

Now $\left\langle p_{m-1} x p_{m}\right\rangle\left\langle p_{m-1} p_{m+1} p_{m}\right.$ and therefore in the triangle $p_{m-1} x p_{m+1}$

$$
\begin{equation*}
d\left(p_{m-1}, x\right)<d\left(p_{m-1}, p_{m+1}\right) \tag{2}
\end{equation*}
$$

Consider the triangle $p_{0} p_{m} p_{n-1}$; since p_{0} and p_{n-1} realize the diameter of P, we have $d\left(p_{0}, p_{n}\right)$ $\leq d\left(p_{0}, p_{m}\right)$, which implies that

$$
\begin{equation*}
\varangle p_{0} p_{n-1} p_{m} \leq \varangle p_{0} p_{m} p_{n-1} . \tag{3}
\end{equation*}
$$

Let y stand for the intersection point of the extensions of the lines $p_{0} p_{n-1}$ and $p_{m} p_{m+1}$: by convexity, y must lie outside $p_{0} p_{n-1}$. Trivially,

$$
\begin{equation*}
\left\langle p_{0} p_{n-1} p_{m}\right\rangle\left\langle p_{n} y p_{m+1} .\right. \tag{4}
\end{equation*}
$$

On the other hand, since δ is parallel to $p_{0} p_{n-1}$, we have

$$
\begin{equation*}
<p_{n-1} y p_{m+1}=<p_{m-1} x p_{m} \tag{5}
\end{equation*}
$$

By the convexity of P, we can write

$$
\begin{equation*}
\left.\varangle p_{m-1} p_{m} p_{m+1}\right\rangle\left\langle p_{0} p_{m} p_{n-1}\right. \tag{6}
\end{equation*}
$$

Now combining (3)-(6) we get

$$
<p_{m-1} x p_{m}=<p_{n-1} y p_{m+1} \ll p_{0} p_{n-1} p_{m} \leq \varangle p_{0} p_{m} p_{n-1} \ll p_{m-1} p_{m} p_{m+1}
$$

Consequently, in the triangle $p_{m-1} p_{m} x$, we have

$$
\begin{equation*}
d\left(p_{m-1}, p_{m}\right)<d\left(p_{m-1}, x\right) . \tag{7}
\end{equation*}
$$

Finally, note that (2) and (7) combined imply (1) which proves the unimodality of p_{m-1}. To complete the proof of Theorem 5, we shall exhibit an instance of a weakly semi-circle polygon featuring exactly two unimodal vertices.

Let p_{1} and p_{5} be two arbitrary points in the plane and refer to Figure 9 . We propose to construct a weakly semi-circle pentagon with vertices $p_{1}, p_{2}, p_{3}, p_{4}, p_{5}$ having $p_{1} p_{5}$ as a diameter and such that exactly two of the vertices are unimodal.

Construct the semi-lune $\mathrm{S}\left(p_{1}, p_{5}\right)$ and let x denote the tip (i.e., the vertex of $\mathrm{S}\left(p_{1}, p_{5}\right)$ furthest away from the edge $p_{1} p_{5}$). Let p_{3} be a point on the perpendicular bisector of $p_{1} p_{5}$ inside the semi-lune obtained by perturbing x by a very small $\varepsilon=0$; write $d\left(p_{3}, x\right)=\varepsilon$. We define the following planar regions.
Region A_{1} : defined as the intersection of the circle centered at p_{1} of radius $d\left(p_{1}, p_{3}\right)$ with the left half-plane determined by $p_{3} p_{5}$;
Region A_{2} : defined as the intersection of the circle centered at p_{5} of radius $d\left(p_{5}, p_{3}\right)$ with the left half-plane determined by $p_{1} p_{3}$;

Let p_{4} be a point on the open line segment determined by the intersection of A_{1} with the perpendicular bisector of $p_{3} p_{5}$.
Region A_{3} : defined as the intersection of A_{2} with the circle centered at p_{4} and of radius $d\left(p_{4}, p_{3}\right)$.
Take p_{2} to be any point inside region A_{3}. Clearly, the points $p_{1}, p_{2}, p_{3}, p_{4}, p_{5}$ determine a convex polygon in the plane. We claim that

First, to argue that the points $p_{1}, p_{2}, p_{3}, p_{4}, p_{5}$ determine a weakly emmi-circle polygon, we observe that the polygon lies completely inside the semi-lune $S\left(p_{1}, p_{s}\right)$. Next, note that, by construction,

$$
d\left(p_{1}, p_{4}\right)<d\left(p_{1}, p_{3}\right)<d\left(p_{1}, p_{5}\right)
$$

and, therefore, p_{1} is not unimodal. Similarly,

$$
d\left(p_{5}, p_{2}\right)<d\left(p_{5}, p_{3}\right)<d\left(p_{5}, p_{1}\right)
$$

and so p_{5} is not unimodal.
Finally, by construction,

$$
d\left(p_{4}, p_{1}\right)>d\left(p_{4}, p_{2}\right) \text { and } d\left(p_{4}, p_{3}\right)>d\left(p_{4}, p_{3}\right)
$$

concluding the proof of the theorem.
A natural generalization of the class of weakly semi-circle polygons is obtained as follows. We consider the class of convex polygons such that there exists an edge, say $p_{0} p_{n-1}$, such that one can draw parallel lines of support δ_{1} and δ_{2} through p_{0} and p_{n-1}, respectively, perpendicular to $p_{0} p_{n-1}$. We call such a convex polygon barn-shaped (see Figure 10).

Figure 10. A bern-ahaped polygon.
It is obvious that every weak semi-circle polygon is barned-shaped, but not conversely. We now study the unimodality properties of this new class of polygons. For this purpose, let $\mathbf{P}=p_{0} p_{1} \ldots p_{n-1}$ be a barn-shaped polygon; we inherit all the terminology eatablished for weakly semi-circle polygons.
Lemma 6. In a barn-shaped polygon every vertex is unimodal with reapect to all the vertices below it.
Proof. Follows directly from Lemma 4.
Note that Lemma 6 implies that the vertex antipodal to the edge $p_{0} p_{n-1}$ must be unimodal. As it turns out, the barn-shaped polygons need not have more than one unimodal vertex. Our next result asserts that this is the case.
Theorem 7. Barn-shaped polygon need not have more than one unimodal vertex.

Proof. By the previous argument, every barn-shaped polygon contains at least one unimodal vertex. We propose to exhibit a barn-shaped polygon with exactly one unimodal vertex. Our construction will involve a barn-shaped pentagon with vertices $p_{1}, p_{2}, p_{3}, p_{4}, p_{5}$.

Referring to Figure 11, let p_{1} and p_{5} be arbitrary points in the plane and write $d=d\left(p_{1}, p_{5}\right)$. Construct the semi-lune $\mathrm{S}\left(p_{1}, p_{5}\right)$. Now take the vertex p_{3} on the perpendicular bisector δ of $p_{1} p_{5}$ at a distance of $d / 2(4-\sqrt{3})$ from $p_{1} p_{5}$. It is easy to confirm that p_{3} was chosen in such a way that the semi-lune $\mathrm{S}\left(p_{1}, p_{6}\right)$ is seen from p_{3} under an angle of $\pi / 3$.
Let δ^{\prime} stand for the perpendicular bisector of the segment $p_{3} p_{5}$. Let p_{2} be a point on the open line segment determined by the intersection of δ^{\prime} with the area determined by $S\left(p_{1}, p_{5}\right)$ and the left half-plane determined by the infinite line collinear with $p_{1} p_{3}$. Finally, let p_{4} be the symmetric of p_{2} with respect to δ.

It is easy to see that the pentagon with vertices $p_{1}, p_{2}, p_{3}, p_{4}, p_{5}$ is barn-shaped. In addition, we claim that none of the vertices $p_{1}, p_{2}, p_{4}, p_{5}$ are unimodal.
First, p_{5} is not unimodal since by construction $d\left(p_{5}, p_{2}\right)<d\left(p_{5}, p_{1}\right)$ and $d\left(p_{5}, p_{2}\right)<d\left(p_{5}, p_{3}\right)$. The proof that p_{1} is not unimodal follows by symmetry.

Next, by our choice of the vertex p_{3}, the angle $\left\langle p_{2} p_{3} p_{4}\right.$ is less than $\pi / 3$. Now the isosceles triangle $p_{2} p-3 p_{4}$ guarantees that $d\left(p_{2}, p_{4}\right)<d\left(p_{2}, p_{3}\right)$. Furthermore, since p_{2} is on δ^{\prime} we have $d\left(p_{2}, p_{3}\right)=d\left(p_{2}, p_{5}\right)$ and so p_{2} is not unimodal. The fact that p_{4} is not unimodal follows by a mirror argument, left as an exercise.

We have established a hierarchy of three classes of convex polygon from the point of view of unimodality:

SEMI-CIRCLE C WEAKLY SEMI-CIRCLE \subset BARN-SHAPED.

Here, the semi-circle polygons are unimodal, that is, all their vertices are unimodal; weakly semicircle polygons must have two unimodal vertices but not more than two; finally, the barn-shaped polygons must have one unimodal vertex.

References

1. J. Serra, Image Analysis and Mathematical Morphology, Academic Preas, New York, (1982).
2. G.T. Touseaint, Computational Morphology, North-Holland, Amsterdam, (1988).
3. J.D. Radke, On the shape of a set of points, In Computational Morphology (Edited by G.T. Toussaint), pp. 105-136, North-Holland, Amsterdam, (1988).
4. G.T. Touseaint, Complexity, convexity and unimodality, International J. Compst. Information Sciences 13, 197-217 (1984).
5. A. Aggarwal and R.C. Melville, Fast computation of the modality of polygons, J. of Algorithms 7, 369-381 (1986).
6. D. Avis, G.T. Toussaint, and B.K. Bhattacharya, On the multimodality of distance in convex polygons, Comput. Math. Appl. 8 (2), 153-156 (1982).
7. S. Olariu, On the unimodality of convex polygons, Information Processing Letters 29, 289-292 (1988).
8. S. Olariu, A simple linear-time algorithm for computing the RNG and MST of unimodal polygons, Information Processing Letters 31, 243-247 (1989).

[^0]: The author is indebted to Professor Toussaint for reading an earlier version of the manuscript, and for many uneful discussions. I would also like to thank an anonymous referee for many constructive comments.

