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T H E  M O R P H O L O G Y  OF C O N V E X  P O L Y G O N S  

STEPHAN OLARIU 
Department of Computer Science, Old Dominion University 

Norfolk, VA 23529, U.S.A. 

(Received May 1991 and in revimed form October 1991) 

A b s t r a c t - - A  simple polygon P is said to be unimo~sJ, i f  for every vertex of P, the Euclidian distance 
function to the other vertices of P is nn!modal. The study of nnlmodal polygons has emerged as & 
fruitful area of computational and discrete geometry. We study -nlmodality properties o f a  mmaber of 
special convex polygons from the morphological point of view. In particular, we establish a hierarchy 
among three classes of convex polygons in terms of their unimodality properties. 

1. INTRODUCTION 

In pattern recognition and classification, the shape of an object is routinely represented by a 
polygon obtained from an image processing device [1,2]. One of the fundamental features that 
contributes to a morphological description useful in shape analysis is the distance properties 
among vertices of the polygon [3]. Traditionally, convexity has played a central role in analysing 
relevant features of the shape of a set of points. 

Recently, Toussaint [4] pointed out that the notions of convexity and unimodality are quite 
different: convex polygons need not be unimoda], and unimodal polygons need not be convex. 
Furthermore, in [4] it is argued that the key factor for obtaining very efllcient algorithms for a 
large number of problems in computational geometry is not convexity, but rather unimodality. 

It is not surprising, therefore, that unimodality and multimodaUty have received considerable 
attention in the literature [4--8]. In [7] it is shown that every convex polygon with at most five 
vertices must contain a unimodal vertex; [6] exhibits examples of n-vertex (n _> 6) convex poly- 
gons none of whose vertices are unimodal. An interesting question is to investigate unimodality 
properties of special convex polygons. The purpose of this note is to study unimodality proper- 
ties of a number of special convex polygons from the morphological point of view. In particular, 
we establish a hierarchy among three classes of convex polygons in terms of their unimodality 
properties. 

2. THE RESULT 

Formaly, a simple n-vertex polygon P = P0 . . .P , - I  (n >_. 3) in the plane is specified by the list 
of its vertices along with their Cartesian coordinates; P is said to be in standard form whenever its 
vertices are enumerated in clockwise order, with all the vertices distinct, and no three consecutive 
vertices collinear. 

A pair p~, pj of distinct vertices defines an edge of P if, and only if, [i - Jl - 1 (rood n); 
otherwise, pi, pj defines a diagonal of P. A polygon P is termed convez if all its diagonak lie 
entirely within P. The diameter of P is defined as max d(p~, pj). 

0_<i#j_<n-1 

The author is indebted to Professor Tonss~nt for reading an earlier version of the ,~n,,~cr~pt, and for m a ~  useful 
dJscnssions. I would also like to thank an anonymous referee for many constructive comments. 

Typ~et by .4 j~-T~ 
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Avis et al. [6] proposed to call a vertex Pi of P unimodai with respect to the Euclidian 
distance, ff there exists a subscript j (0 ~ j _< n - 1) such that d(pi, p~) is non-decreasing 
for k -- i ÷  1 , i ÷  2, . . . , j  and non-increasing for k = j-t- 1,j  + 2 , . . . , i -  1. (Here, as usual, 
subscript arithmetic is modulo n.) A non-unimodal vertex is termed multimodal. The polygon 
P itself is termed unimodal if all its vertices are unimodal. 

A convex polygon is termed cigar-shaped if all its vertices lie inside the diameter circle and the 
diameter itself is not an edge in the polygon (see Figure 1). 

t 

Figure 1. A cigar-shaped polygon. 

f ' .  
J 

Figure 2. 

Let P - pop1, . . .  ,pn-1 be a cigar-shaped polygon, and let Pi and pj be the vertices of P which 
realize the diameter; we will refer to Pi and pj as the tips of P. 

L~.MMA 1. /n a c~ar-shaped polygon, every tip is unimodai. 

PROOF. Let k be an arbitrary subscript with i+  1 < k < j -  1. We note that the angle ~Pl P~ pk+l 
is greater than 9/2; to see that this is the case, consider the angle ~Pi Ph Pj and refer to Figure 2. 

By the convexity of P, 7/2  < ~p~p~pj < ~pipkp~+l. Now in the triangle PtPkPh+l the angle 
~PtPhPk+l > 9/2 implies that d(p~,p~) < d(p~,pk+l). Since k was arbitrary, it follows that p~ is 
unimodai with respect to the chain Pi+l, Pi+2,... ,Pj. 

Similarly, let k be an arbitrary subscript in the range j + 1 < k < i - 1. We claim that the 
angle ~PtPkP~-I is greater than lr/2: this follows, instantly, from the convexity of P. Now in 
the triangle PiPkPk-1 we have d(pi, Ph) < d(pi, Pk-1). Since k was arbitrary it follows that the 
vertex p~ is unimodal, as claimed. 

The proof of the fact that pj is also unimodal follows by a mirror argument and is, therefore, 
omitted. | 
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The following result shows that  every cigar-shaped polygon must have at least two unimodal 
vertices. As it turns out, some cigar-shaped polygons contain exactly two unimodal vertices. 

THEOREM 2. Cigar-shaped polygons need not have more than two unimodal vertices. 

PRooF.  Let P be a cigar-shaped polygon; Lemma 1 guarantees the existence of at least two 
unimodal vertices of P. To complete the proof of the theorem we show that  no other vertices of 
a cigar-shaped polygon need to be unimodal. 

Consider two points z0 and I/0 in the plane. We propose to construct a cigar-shaped polygon 
having z0 and y0 as tips and such that  no other vertices of the polygon are unimodal. For this 
purpose, draw the circle having z0 and Y0 as a diameter and refer to Figure 3. 

Fi~u~ 3. 

Imagine symmetric arcs through z0 and I/0 such that  their angle ~ is less than ~/3. Now take 
n points z l ,  x2, . . . , x n  in clockwise order on the upper arc and take n points Yl, Y2,... ,Yn on 
the lower arc such that  

d(z0,x,)  = d(z0,U,-i+1),  (i = 1 ,2 , . . . , n ) .  

We claim that  none of the zi 's  and ~ ' s  (i -- 1 ,2 , . . .  ,n) can be unimodal. For this purpose, let i 
be an arbitrary subscript in the range I _< i < n. Clearly, in the isosceles triangle zoz~ yn-i+1, 
we must have 

d(z~, Zo) > d(z~, Y,-~+I), 

because the angle ~z l  z0 Yn-i+l < 7/3  by construction. 
Similarly, in the isosceles triangle I/0 zi Yn-i+l, we can write 

d(z~, Yo) > d(zi, Yn-i+l) 

and so neither x~ nor yi are unimodal. Since i was arbitrary, the conclusion follows. | 

Call a convex polygon semi-circle if all its vertices lie inside the diameter circle, and the 
diameter itseff is an edge in the polygon (see Figure 4). As it turns out, every vertex of a 
semi-circle polygon is unimodal. Specifically, we state the following result. 

THEOREM 3. Every semi-circle polygon is unimodal. 

PROOF. Let P = POP1...P,~-I be a semi-circle polygon and assume without loss of generality 
that  the diameter is realized by P0 and Pn-1. Referring to Figure 5, let Pi (0 < i < n - 1) he an 
arbitrary vertex of P. 

We shall prove that  d(p~, ph) is non-decreasing for k = i-I-1, i + 2 , . . . ,  n -  1 and non-increasing 
for k = 0, 1 , . . . ,  i - 1. First, consider a vertex pj with j E {i -t- 1, i -l- 2 , . . . ,  n - 2). We claim that  

~PiPj Pj-}-I > ~. 
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Fibre 4. A ~ . e . i ~ e  poly~n. 

P/ 

+I 

Po ~ P,,-! 

Figure 5. 

The justification of this claim relies on the observation that ~P0pj Pn-1 must be greater than 
:r/2 (because pj is inside the semi-circle). Now 'the convexity of P guarantees that ~Pl Pj Pj+l 
> ~PoPJPn-1. Therefore, in the triangle PiPjPj+I, we must have d(pi, pj) < d(p~, Pj+x). Since 
pj was arbitrary, it follows that d(p~, Ph) is non-decreasing for k = i + I, i + 2 , . . . ,  n - I. 

Similarly, for j E {0, 1,2 . . . .  , i -  2) we claim that 
z" 

As before, the convexity of P together with the fact that P is semi-circle guarantees that 
z" 

~p~pj+IPj • ~pnPj+xPo > ~. 

Now in the triangle p, Pj+IPj, d(p~, Pj+x) > d(p~, pj) and the conclusion follows. II 
A convex polygon P is said to be weaMy semi.circle if the diameter of P is an edge in the 

polygon (see Figure 6). Let P -- PoPI. . .Pn-x be a weakly semi-circle polygon. Without loss of 
generality, we let P0 and Pn-x realize the diameter. 

We note that, by definition, all the vertices of P must lie in the region S(p0, Pn) delimited by 
the intersection of: 

• the left haif-plane generated by Popn-1; 
• the circle drawn with Po as center and of radius d(po, P~-x); 
• the circle drawn with p ,_  i as center and of radius d(po, p , -x) .  

The region S(po, Pn-z) defined above will be referred to as the semi-/Bne of P0 and pn-x. 
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Po 

P•#" Pn--3 

Pn-2 

P,,-! 

Figure 6. A w,,Aldy semi-circle polygon. 

+ I  

Po P,,-1 

Figure 7. 

Let p~, pj ( i , j  = 0 , . . . ,  n - 1; i ~ j )  be arbitrary vertices of P. We shall say that  pj is below Pi 
if the perpendicular distance from pj to the edge p0 Pn- x is less than the perpendicular distance 
from p~ to Po Pn- 1. 

LEMMA 4. /n a weakly semi-circle polygon P, every vertex is unimodal with respect to all the 
vertices lying below it. 

PROOF. Draw an infinite ray from P0 perpendicular to PoPn-1 and wholly contained in the left 
half-plane determined by PoPn-1 and refer to Figure 7. Draw an infinite line parallel to p0p, -1  
passing through p~ and denote by t the intersection point with the ray drawn from p0. 

Consider an arbitrary vertex pj (j = 1, 2 , . . . ,  i - 1); by the convexity of P, 

~P~pj pj-1 > ~p~pj po. 

At the same time, 
~r 

~Pi Pj Po > ~P~ t P0 = 

(because pj lies inside the semi-circle passing through Pi, t, po and having poP~ as a diameter). 
Combining the two inequalities above, we get ~PiPj Pj-1 > ~r/2, and so d(pt, p~) < d(pi, pj-1). 

Now it follows that  pi is unimodal with respect to all the vertices Pk (k = 0, 1 , . . . ,  i - 1). 
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Similarly, let pr be the first vertex below Pi on the path from Pi to P.-x in the clockwise 
direction. A mirror argument shows that for any subscript s E {r, r + 1 , . . . ,  n - 2) we have 
d(pi, p,) < d(pi, P,+I). The conclusion follows. | 

COROLLARY 4.1. Any antipodal vertex corresponding to the diameter po I~-1 is unimodal. 

PROOF. Clearly, all the vertices of the polygon lie below an antipodal vertex py of the diameter 
p0 Pn-1. Now Lemma 4 guarantees that pj is unimodal. | 

Although every vertex of a semi-circle polygon is unimodai, surprisingly, weakly semi-circle 
polygons need not have more than two unimodal vertices. The details are contained in the 
following theorem. 

THEOREM 5. Weakly semi-circle polygons need not contain more than two unnnodal vertices. 

PROOF. Let P = PoP1 . . .P , -1  be a weakly semi-circle polygon, and let P0 and P,-1 realize the 
diameter of P. Refer to Figure 8. Let Pm be the antipodal vertex corresponding to p0 P,-1- By 
Corollary 4.1, Pm is unimodal. 

pm 8 

po 
~z=l 

Figure 8. 

Without loss of generality, let Pro-1 be the vertex immediately below Pro; we claim that pro_ 1 
is also unimodal. 

To justify this claim, note that by Lemma 4, P,--1 is unimodal with all the vertices of P except, 
perhaps, p,~. In order to establish the unimodality of pro_l, we only need show that 

d(pm-x, Pro) < d(prn-1, prn+x). (i) 

Let 6 be an infinite ray originating at Pro-1 and parallel to PoPn-x; 6 intersects the edge 
PmPm+x at z. Note that by our assumption that Pro-1 is the first vertex below Pro, z must 
belong to the interior of Pm Pm+l. 

Now ~Pm-1 zpm > ~Pm-1Pm+l Pm and therefore in the triangle Pro-1 Zpm+l 

d(pm-l,  z) < d(Pm-l,pm+l)- (2) 

Consider the triangle P0 Pm Pn- 1; since P0 and Pn- 1 realize the diameter of P, we have d(p0, p . )  
<_ d(po,pm), which implies that 

~Po Pr~-- 1 Pm ~_ '~Po Pm Pn-  1. (3) 

Let y stand for the intersection point of the extensions of the lines PoPn-1 and Pm Pro+l: by 
convexity, y must lie outside PoPn-1. Triviaily, 

~PoPn-- lPm > ~Pn YPm+I.  (4) 
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On the other hand, since 6 is parallel to p o P , - l ,  we have 

~p , -1  ypm+l = ~Pm-1 zprn. (5) 

By the convexity of P, we can write 

~Pm-1 Pm pro-l-1 ~> ~PO Pm Pn-1. (6) 

Now combining (3)-(6) we get 

~Pm-I zpm = ~Pn-1YPm+I ~ ~PoPn-lPm ~_ ~PoPmP,-1 ~ ~pm--lPrnPm+l. 

Consequently, in the triangle prn-1 pm z, we have 

d(p,n-l ,pm) < d(pm-1, z). (7) 

Finally, note that (2) and (7) combined imply (1) which proves the unimodality of pin-1. To 
complete the proof of Theorem 5, we shall exhibit an instance of a weakly semi-circle polygon 
featuring exactly two unimodal vertices. 

Let Pl and P5 be two arbitrary points in the plane and refer to Figure 9. We propose to 
construct a weakly semi-circle pentagon with vertices pl, p2, ps,/)4, p5 having pl p6 as a diameter 
and such that exactly two of the vertices are unimodal. 

2 -  

X 

// 

v 

Figure 9. 

Construct the semi-lune S(pl,ps) and let z denote the tip (i.e., the vertex of S(pl,ps) furthest 
away from the edge pl ps). Let/)3 be a point on the perpendicular bisector of Pl P~ inside the 
semi-lune obtained by perturbing z by a very small e = 0; write d(pa, z) = ~. We define the 
following planar regions. 
Region AI: defined as the intersection of the circle centered at Pl of radius d(pl, Pa) with the 
left half-plane determined by psps; 
Region A2: defined as the intersection of the circle centered at P5 of radius d(ps, Ps) with the 
left half-plane determined by Pl Ps; 

Let P4 be a point on the open line segment determined by the intersection of A1 with the 
perpendicular bisector of I:)32:)5. 
Region An: defined as the intersection of A2 with the circle centered at/)4 and of radins d(p4, pa). 

Take P2 to be any point inside region As. Clearly, the points Pl, P2,/)3, P4, P5 determine a 
convex polygon in the plane. We claim that 

p~ and lo3 are the only unimodal vertices of this polygon. 
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F/rst, to argue that the points Ph P~, Pa, P4, PS determine a weakly a~a/-eire.le polygon, we 
observe that the polygon lies completely inside the semi-lune S(pl, Ps). Next, note that, by 
construct/on, 

d(pl, P4) < d(Ph PS) < d(p,, Ps) 

and, therefore, Pl is not unimodal. Similarly, 

d(~, ~ )  < dO,s, ~ )  < dO,s, pl) 

and so ps is not unimodal. 
Finally, by construction, 

d(p4, Pl) > d(p4,p~) and d(p4, Pa) > d(P4, ~ )  

concluding the proof of the theorem. | 

A naturu] generalization of the class of weakly semi-circle polygons is obtained as follows. We 
consider the class of convex polygons such that there exists an edge, say P0Pa-x, such that one 
can draw parallel lines of support 61 and 62 through P0 and P,-x,  respectively, perpendicular to 
p0pa-1. We call such a convex polygon barn.shaped (see Figure I0). 

61 

Po 

P. 

4, ° 

I 

I 
t 

e 

Fisare 10. A bam-.hap~ potvSm. 

8~ 

It is obvious that every weak semi-circle polygon is bsrned-shaped, but not conversely. We 
now study the unimodality properties of this new class of polygons. For this purpose, let 
P - p0px. . .Pn-x be a barn-shaped polygon; we inherit all the terminology established for 
weakly semi-circle polygons. 

LgMMA 6. /n a barn-shaped po/ygon every vertex is unimodal with respect to all the vertices 
below it. 

PltoolL Follows directly from Lemma 4. | 

Note that Lemma 6 implies that the vertex antipodal to the edge P0Pa-1 must be unimodal. 
As it turns out, the barn-shaped polygons need not have more than one unimodsl vertex. Our 
next result asserts that this is the case. 

T H E O I ~  7. Barn-shaped polygon need not have more th~n one unimodsd vertex. 
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PltooP. By the previous argument, every barn-shaped polygon contains at least one unimodal 
vertex. We propose to exhibit a barn-shaped polygon with exactly one unimodal vertex. Our 
construction will involve a barn-shaped pentagon with vertices Pl, P2, Ps, P4, Ps. 

Referring to Figure 11, let Pl and Ps be arbitrary points in the plane and write d = d(pl, ps). 
Construct the semi-lune S(pl, Ps). Now take the vertex ps on the perpendicular bisector 6 of pl p, 
at a distance of d/2(4 - V~) from Pl Ps. It is easy to confirm that P3 was chosen in such a way 
that the semi-lune S(pl, Ps) is seen from Ps under an angle of g/3. 

Let 6 ~ stand for the perpendicular bisector of the segment/>8 Ps. Let /~  he a point on the open 
line segment determined by the intersection of 6' with the area determined by S(pl, Ps) and the 
left half-plane determined by the infinite line collinear with/>1 Ps. Finally, let P4 be the symmetric 
of p~ with respect to 6. 

oo*" ~ " • 

° ° . . ° * ° ~  
%•  

° . ° + * ° ° '  

Figure 11. 

. ° °  
° ° - *  

v 

It is easy to see that the pentagon with vertices Pl, P2,/)3, P4, P5 is barn-shaped. In addition, 
we claim that none of the vertices p l , /~ ,  p4, p5 are unimodal. 

First, P5 is not unimodal since by construction d(ps, p~) < d(ps, Pl) and d(ps, P2) < d(ps, Ps). 
The proof that Pl is not unimodal follows by symmetry. 

Next, by our choice of the vertex Ps, the angle <p2psp4 is less than :r/3. Now the isosceles 
triangle p~p - 3p4 guarantees that d(p~, P4) < d(p2, Ps). Furthermore, since p~ is on 6 ~ we have 
d(p~, Ps) = d(p~, Ps) and so P2 is not unimodal. The fact that P4 is not unimodal follows by a 
mirror argument, left as an exercise. | 

We have established a hierarchy of three classes of convex polygon from the point of view of 
unimodality: 

SEMI-CIRCLE C WEAKLY SEMI-CIRCLE C BARN-SHAPED. 

Here, the semi-circle polygons are unimodal, that is, all their vertices are unimodal; weakly semi- 
circle polygons must have two unimodal vertices but not more than two; finally, the barn-shaped 
polygons rrmst have one unimodal vertex. 
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