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T h e  H a d a m a r d  Matro id  and an A n o m a l y  in 
Its Single E l e m e n t  Extens ions  
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A b s t r a c t - - A  nonstandard vector space is formulated, whose bases afford a representation of what 
is called a Hadamard matroid, Mp. For prime p, existence of Mp is equivalent to the existence of 
both a classical Hadamard matrix H(p, p) and a certain aliine resolvable, balanced incomplete block 
design AR(p). An anomaly in the representable single element extension of a Hadamard matroid is 
discussed. 

K e y w o r d s - - - C ,  eneralized Hadamard matrix, Hadamard matroid, Independence space, Combina- 
torial equivalence, Hadamard exponential. 

1. I N T R O D U C T I O N  

The purpose of this note is to present a nonstandard vector space Vp = V(p,p) whose bases 
afford, for prime p, representations of what  is called a Hadamard  matroid Mp. Existence of Mp 
is equivalent to the existence of a generalized Hadamard  matr ix  H(p,p). 

There  is established a combinatorial equivalence between the class of Hadamard  matroids  Mp 
and a certain class of afline resolvable BIB designs AR(p). 

The  concept of matroid construction by means of an independence rule is considered. I t  is 

shown tha t  although some sets in the domain of an independence rule may represent matroids 
which under the rule allow representable extensions, incompatible sets may exist which are not 
so favored. Whereas, by set partitioning separate but possibly unrelated matroids may be repre- 
sented, these incompatible sets en toto violate the axioms of an independence space. 

In the sequel, unqualified occurrence of the letter p in a mathematical  context will be un- 
derstood as signifying a prime number larger than  two. Where special emphasis is desired, the 
occurrence of prime p will be explicitly indicated. 

2. A-INDEPENDENCE 

For p > 2 a prime number  and A a positive integer, consider the vector space V~p = V(Ap, F) 
of vectors whose elements are from the Galois field F = Gf(p).  A subset Q is to be called 
A-independent iff the vector difference, modp,  of any two arbi t rary vectors in Q contains among 
its elements each member  of F exactly A times. The thrust  of this paper  will be directed to the 
case for which A = 1, in which circumstance these spaces will be referred to as Vp = V(p,p). 
Other  cases exhibit  somewhat  similar behaviour and will receive perhaps cursory at tent ion in the 
final section. 

A maximal  A-independent set of vectors from V~p shall be called a A-base. The  A-rank of a 
set B will be defined as the cardinality of a maximal A-independent subset. The  following two 
theorems characterize the A-bases of Vp. 
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THEOREM 1. Le t  A be a q x q matr ix  over F ,  where q = Ap. Then,  the column vectors o f  A are 
A- independent  i f f  the  column vectors o f  A v are A-independent.  

THEOREM 2. A A-base of  Vp contains exact ly  p vectors. 

PROOF OF THEOREM 1. For primes p > 2, let x be a primitive pth root of unity. Consider 
the matrix H = x A, where the notation suggests that  H 0 = xAq;  i , j  = 0, 1 . . . .  , A p -  1. The 
condition that  the column vectors of A are A-independent and of dimension Ap guarantees that  
the column vectors of H are orthogonal and have square norm of value Ap. Therefore, for p > 2, 
H is a generalized Hadaraard matrix (see [1,2] for a discussion of generalized Hadamard matrices). 
As the conjugate-transpose of H is also Hadamard, the row vectors of H are orthogonal and have 
square norm of value Ap. Consequently, the row vectors of A are A-independent. Conversely, if 
the rows of A are A-independent, the previous proof applied to A T shows that  the columns of A 
are A-independent. 1 

PROOF OF THEOREM 2. For A = 1, let w T = ( 0 , 1 , 2 , . . . , p  - 1). The set of vectors { j w  : j = 

0, 1 , . . .  ,p - 1} exhibit a A-independent set which has cardinality p. To see that  p is maximal 
requires an excursion into the theory of combinatorial design (see [3]). If the zero vector is 
excluded, the remaining set of p -  1 vectors can be cyclicly developed, modp, to obtain a set 
of mutually orthogonal Latin squares (mols) of side p. If the base were to possess an additional 
nonzero vector, a set of p + 1 mols could likewise be found. However, a maximal set of mols of 
side p cannot exceed p - 1 in cardinality, l 

E q u i v a l e n c e  O p e r a t i o n s  

The major differences encountered when representing vector matroids over subsets of Vp under 
A-independence as opposed to ordinary linear independence is now considered. The equivalence 
operations Eo_a) given below preserve A-independence of subsets from Vp whose vectors appear 
as the columns of some matrix A: 

(1) interchange of two rows (or columns); 
(2) add any element from F to all elements of any row (or column); 
(3) add any element from F to every element of the matrix. 

Pivoting as it usually is practiced in solving linear systems does not necessarily preserve 
A-independence; nor does permutation of the elements via automorphisms of F.  The deletion of 
an all-zero row can change the character of a set. Possible incompatibility of subsets of vectors 
of the nonstandard vector space also complicates matters; this subsequently will be discussed. 

C a n o n i c a l  Bases  

By applying equivalence operations to a matrix B whose column vectors form a base of Vp, 
one can obtain an equivalent base, or canonical form B, whose first row and column are zero, 
and whose second row and column each consist of the elements of F in natural order. When 
matrix A represents a canonical base of Vp, the Hadamard matrix H = x A referred to in the 
proof of Theorem 1 is in standard form, and it is also a Vandermonde matrix (H  0 -- xO, 
i , j = O ,  1 , 2 , . . . , p - 1 ) .  

EXAMPLE 1. For p ---- 5 the symmetric canonical base, C, of V~ which appears to the right 

[i i] ooooo 
3 0 2 4 0 1 2 3 
1 4 2 0 0 2 4 1 
1 0 4 3 0 3 1 4 
4 4 4 4 0 4 3 2 
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is obtained from the unsymmetric and apparently unlikely base, B, on the the left by the following 

sequence: add respectively, one to row 1, four to row 2, two to row 3, three to row 4, one to 

row 5; then move row 5 into the first position. 

3. MATROIDS REPRESENTABLE OVER Vp 
Oxley [4] gives the following definition: a matroid M -- M(E) is an ordered pair (E,I )  

consisting of a finite set E and a maximal collection, I ,  of subsets from E which satisfy the 
axioms (~)1,2 of heredity and independence augmentation: 

(1) l l  E l and l2 C l l  ~ 1 2  e l ,  
(2) 11,I2 6 I with [I1[ < [I2[ :=~ 3e 6 (12 - I1) such that  I1 t3 e E I. 

REMARK. (a)l  =~ ¢ e I.  

EXAMPLE 2: THE HADMARD MATROID. Let E = (0, 1, 2, 3, 4} represent the collection of column 
indices of either of the 5 x 5 matrices B or C of Example 1. If a subset of E is defined as 
independent when the corresponding set of column vectors of B (or C) are A-independent, there 
results two vector matroids M~(E) ,Mv(E) ,  each of which is isomorphic to the uniform free 
matroid U5,5 (see [4, p. 19]). B and C are called representation matrices over Vp of the matroid 

Us,5. 
In general, under the rule of A-independence Up,p is representable by a vector matroid over Vp 

(see the bases Bp which appear in the proof of Theorem 2). This representation is not unique, 
as any sequence of equivalence operations E l - E 3  produces the representation matrix of a vector 
matroid isomorphic to Up,p. In the sequel any vector matroid Mp over Vp which is a representation 
of Up,p will be referred to as a Hadamard matroid. 

4. COMBINATORIALLY EQUIVALENT STRUCTURES 

Butson [1,2] investigates the properties of generalized Hadamard matrices and relations to 
relative difference sets. Shrikhande [5] establishes that  the existence of certain orthogonal arrays 
of strength two implies existence of generalized Hadamard matrices. In the present section it 
is demonstrated that  for primes p > 2, the problems of constructing a generalized Hadamard 
matrix H(p,p), or a Hadamard matroid Mp, are combinatorially equivalent to constructing an 
aj~ine resolvable balanced incomplete block design characterized by parameters 

AR(p) : v = p  2, b = p 2 T p ,  r = p + l ,  k = p ,  A =  1. (1) 

This result is a counterpart of Todd's report [6] that,  for integers t > 1, construction of a 
classical Hadamard matrix H(2, 4t) is combinatorially equivalent to the problem of constructing 
an unresolvable, symmetric, balanced incomplete block design whose parameters are (v = b = 
4 t -  1, r = k = 2 t -  1, A = t -  1). 

For primes p > 2 and x a primitive pth root of unity, consider the Hadamard matrix H(p,p) 
whose elements satisfy hij = x~J; i , j  = 0, 1, 2 , . . .  ,p - 1, and whose conjugate-transpose has the 
property H • HcT  = pI. It is remarked that  any generalized Hadamard matrix H* (p, p) can be 
transformed into the standard form H(p, p). 

As in the proof of Theorem 1, there is associated by means of the equation 

H = x E, (2) 

a matrix of exponents E = (e~j) = (ij), modp : i , j  = 0, 1 , . . .  ,p - 1, where E as a base for Vp 
uniquely represents (the standard form of) what has been defined as an isomorphic class of 
Hadamard matroids Mp. 

The fact that  for A = 1, E is A-independent and in the standard form required of a generating 
matrix for the a method (see [7]) assures that  the a(0,1) design generated by E will be a group 
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divisible (GDD2), resolvable, incomplete block design characterized by m groups of n treatments 
whose parameters are 

GDD(p) : v = m n ;  m = n = p; k = r = p; b = p2; AR = 0; A 2 = 1. (3) 

Moreover, the groups of first associates of the design appear together in the rows of the matrices 
which represent each resolution class. 

The previous process can be reversed: as John [7] observes, given design GDD(p) generated by 
the alpha method, its generating matrix B is readily inferred. If the generator matrix B were not 
a A-base, the design could not be c~(0, 1). By transforming the base to canonical form E through 
the equivalence operations (E l -E3) ,  a generalized Hadamaxd matrix H ( p , p )  = x E in standard 
form is obtained. 

Finally, to complete the demonstration it is shown that  A R ( p )  and GDD(p) can each be 
obtained from the other. To obtain A R ( p )  from GDD(p), as resolution class p +  1 simply take the 
transpose of the first resolution class, whose columns are the p groups of first associates which 
have never concurred in the blocks of the design. The extended design is the affine resolvable 
BIB design having parameters 

A R ( p )  : v = p2; k = p; r = p + 1; b = p2 _{. p; A = 1. (4) 

Clearly, to obtain GDD(p) from' arbitrary A R ( p ) ,  that  unique resolution class is omitted whose 
columns qualify as the groups of first associates. (If no resolution class has columns which qualify 
as groups of first associates, there is an isomorphic design for which this will be true.) 

Thus, to within isomorphism on the design end, and to within standard form of the A-base and 
the generalized Hadamard matrix H ( p , p ) ,  there exists a combinatorial equivalence between the 
three said structures. 

5. A N O M A L I E S  C O N C E R N I N G  
M A T R O I D  SINGLE E L E M E N T  E X T E N S I O N S  

The concept of matroid extension by means of an independence rule is now considered. It 
is shown that  although some sets in the domain of the independence rule for Vp may represent 
matroids which under the rule have representable extensions, incompatible sets may exist which 
are not so favored. Whereas by set partitioning separate but unrelated matroids thus may be 
represented, these incompatible sets e n  t o to  violate the axioms of an independence space. 

Matroids can be defined by many equivalent sets of axioms (see [4]), of which (~)1,2 repre- 
sent perhaps the most basic. The study of matroids is an analysis of an abstract theory of 
independence, and matroidal structures are sometimes referred to as independence spaces [8]. 

Implicit in Oxley's definition of a matroid is the existence of an i n d e p e n d e n c e  ru le ,  R ,  for 
determining which subsets of ground set E are independent. This rule can be an explicit listing 
of independent subsets, or an analytical prescription describing means to partition the members 
of the power set 2 ~ into independence class I and dependence class not(I).  In any case, the 
rule implies existence of a binary mapping f : 2 ~ --* Gf(2).  An independence space is defined a 
p o s t e r i o r i  by the rule iff the set members of I -- f - l ( 1 )  satisfy the axioms of independence (~)1,2. 

An independence rule, R, whose domain covers the entire power set of a space S is defined as 
a global  or else a local independence rule on S depending upon whether or not the power set 2 E 
of each finite set E C S possesses a maximal subcollection I of sets satisfying ~(1,2). Ordinary 
and affine linear independence each provide a global independence rule on Vp. It is intended to 
show that  the rule associated with A-independence is strictly local. 

Where no confusion should be so caused, subsets of Vp could simply be referred to as inde- 
pendent whenever they are A-independent; otherwise, they are called dependent. However, this 
terminology is strictly correct only for specially selected subsets E of Vp which also satisfy the 
axioms (/~;)I,2 of an independence space. 
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For example, consider the bases B and C exhibited in Example 1: suppose it is a t tempted to 
represent a six element matroid M1 = M(BUe) by inclusion of any column vector, e E C. Of ne- 
cessity, MCB ) is a restriction of M1 ( a deletion of e). However, under the rule of A-independence, 
the independent sets B and e do not satisfy the independence augmentation axiom (s)2- This 
is because in its actions e is a zero vector: although there are no vectors in Vp which under 
),-independence represent single-element minimal dependent sets, yet e makes dependent any 
subset of B with which it is included. Therefore, B U e cannot represent a vector matroid. CHow- 
ever, changing the independence rule such that  e is a dependent vector (a loop) would allow BUe 
to represent a vector matroid.) 

As Example 2 indicates, whereas Q -- B u C does not collectively represent a matroid on Vp, 
the existence of MCB ) and MCC ) demonstrates existence of restricted subsets of Q which do 
represent vector matroids. Generally, the matroids which are representable by vector matroids 
over V v consist of the direct sum of a uniform free matroid U,~,,~, n < p + 1 and a nontrivial 
parallel class. Loops as well as circuits of more than two elements cannot be represented. Of 
course, this means that  the dual of a representable matroid may not be representable. 

Oxley [4] proves that  if matroid M = M(E) possesses a modular cut C, there is a unique 
single element extension N = M ( E  U e) such that  C consists of fiats F of M for which F U e 
is a fiat of N having the same rank as F.  This theorem has been used by Crapo [9] in finding 
all matroids on a given set of eight elements. The process concerns starting with a matroid M 
having n elements and progressing to matroids N having n +  1 elements by examining all modular 
cuts of M and its dual M*. It  is perhaps interesting to point out that  in forming representable 
single element extensions of representable matroids, for the case of a global independence rule it 
appears necessary only to arbitrarily include another vector. 

S P A C E S  V A p W I T H  A > 1 6.  

There is now given an example of A-independence where A > 1. Consider Vp = V3v = V(3p, F) :  
for p = 3 the column vectors of the matrix D defined by 

"* * * * D * * * *" 
0 0 0 0 0 0 0 0 0 
0 1 2 1 2 0 2 0 1 
0 2 1 2 1 0 1 0 2 
0 1 2 2 0 1 1 2 0 
0 2 1 0 2 1 0 2 1 
0 0 0 1 1 1 2 2 2 
0 2 1 1 0 2 2 1 0 
0 0 0 2 2 2 1 1 1 
0 1 2 0 1 2 0 1 2 

constitute a A-base of VAs. The justification is as follows: these nine vectors are a maximal 
independent set, as existence of a set of ten independent vectors contradicts the fact tha t  no first 
associates of an a(0,  3) GDD2 design can concur in the design. Nine resolution classes employ 
each pair of second associates exactly three times each. 

Further,  as one suspects, if x is a primitive cube root of unity, the generalized Hadamard 
matr ix H = H(3,  9) is obtained from the relation H = x D. Also, the vector matroid MCD ) is 
the Hadamard matroid which represents the free matroid U9,9. 

Shrikhande [5] establishes tha t  the existence of a certain orthogonal array of strength two 
implies the existence of a generalized Hadamard matrix H(p, p2). 
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The array Q given below provides the Hadamard exponent for a Hadamard matrix H(3, 6) = 
xQ: 

" ,  * Q * * , "  

O 0  0 0 O 0  
0 0 1 1 2 2 
0 1 0 2 2 1 
0 1 2 0 1 2 
0 2 2 1 0 1 

.0 2 1 2 1 O. 

Whereas matrix Q is tedious to obtain by trial and error, the matrix D easily follows by use 
of a direct sum, employing 

[ i  E i ]  0 21 

the result below on E, plus row and column interchanges. 

LEMMA 1. H H = H(p,p)  is a Hadamard exponent, then the direct sum H(p ,p  2) = (hij + H; 
i, j = O, 1 , . . . ,  p -  1) is a block Hadamard exponent which is also a Hadamard exponent. 
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