The Adjoint Alternative for Matrix Operators

C. H. Cooke
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/mathstat_fac_pubs
Part of the Applied Mathematics Commons, and the Computer Sciences Commons

Repository Citation

Cooke, C. H., "The Adjoint Alternative for Matrix Operators" (1998). Mathematics \& Statistics Faculty Publications. 134.
https://digitalcommons.odu.edu/mathstat_fac_pubs/134

Original Publication Citation

Cooke, C. H. (1998). The adjoint alternative for matrix operators. Computers \& Mathematics with Applications, 35(5), 79-81. doi:10.1016/s0898-1221(98)00006-6

The Adjoint Alternative for Matrix Operators

C. H. Сооке
Department of Mathematics and Statistics, Old Dominion University Norfolk, VA 23529-0077, U.S.A.

(Received March 1997; accepted April 1997)

$$
\begin{aligned}
& \text { Abstract-The following inverse problem is considered: given a matrix } B \text { of rank } r \text {, does there } \\
& \text { exist a matrix } A \text { such that } \\
& \qquad B=T(A)=\operatorname{adjoint}(A)
\end{aligned}
$$

where the classical adjoint operation is intended? Conditions are determined on the rank of B which decides whether or not B lies in the range of the matrix adjoint operator.

Keywords-Adjoint alternative, Matrix range, Matrix operator, Adjoint range, Range characterization.

INTRODUCTION

Consider the following problem, posed by Wardlow [1] in Mathematics Magazine. Show that

$$
E=\left[\begin{array}{lll}
5 & 5 & 2 \tag{1}\\
5 & 5 & 2 \\
1 & 1 & 6
\end{array}\right]
$$

is not the classical adjoint of any matrix with real entries.
As shall be established, for a given matrix B whose rank is R_{B}, the inverse problem

$$
\begin{equation*}
B=T(A)=\operatorname{adj}(A), \tag{2}
\end{equation*}
$$

where A, B are $n \times n$ matrices, may have no solution, for A real or complex. Indeed, the counterexample (1) indicates that the range of T does not cover the whole space S^{n} of $n \times n$ matrices. The purpose of this note is to characterize the range of T, through a careful study of (2) by means of the adjoint property

$$
\begin{equation*}
A B=B A=\alpha I, \quad \alpha=\operatorname{det}(A) . \tag{3}
\end{equation*}
$$

The general conclusion is that there are "more" B excluded from range (T) than are included. Theorem I. The Adjoint Alternative. As regards solutions of the inverse problem (2), the following trichotomy holds.
(i) If $R_{B}=n$, equation (2) has $n-1$ solutions, some of which are complex.
(ii) If the incompatibility condition

$$
\begin{equation*}
1<R_{B}<n \tag{4}
\end{equation*}
$$

holds, then equation (2) has no solution.
(iii) If $R_{B} \leq 1$, equation (2) has infinitely many solutions, except when $B=0$ and $n<3$. In this case $A=0$ is the only solution.

Proof of the Adjoint Alternative.

I. Nonsingular B. In this case, equation (3) implies that

$$
\begin{equation*}
\operatorname{det}(A)=\operatorname{det}(B)^{m}, \quad m=\frac{1}{n-1} . \tag{5}
\end{equation*}
$$

For each root $\alpha_{i}, i=1,2, \ldots, n-1$ of $\operatorname{det}(B)$, equation (2) determines a unique matrix

$$
\begin{equation*}
A=\alpha_{i} B^{-1} \tag{6}
\end{equation*}
$$

which satisfies equation (2). For complex α and real B, A is complex.
II. Incompatible B. For B satisfying the incompatibility condition (4), a search for solutions A of (3) which additionally satisfy (2) is necessary. However, if $B A=0$, then A can have at most $n-2$ linearly independent columns. Therefore, $T(A)=0$. Thus, equation (2) has no solutions.
IIIa. $B=0$. If $n>2$, any square matrix A of rank $R_{A}<n-1$ satisfies equation (2). However, if $n \geq 2, A=0$ is the only solution of (2). Thus, an infinite number of solutions exist when $n>2$.
IIIb. $\operatorname{Rank}(B)=1$. This is the interesting case, as the proof is more difficult. Looking for solutions of $B A=0$, the columns of A will be linear combinations of the $n-1$ linearly independent null vectors of B, which are denoted by $x_{1}, \ldots, \bar{x}_{n_{1}}$. Each linear combination can involve $n-1$ free parameters. Thus the further requirement that $A B=0$ appears to lead to a system of n^{2} equations in $n^{2}-n$ unknowns, about which little can be said. However, a closer look leads to more modest requirements.

Lemma 1. Let A, B denote $n \times n$ matrices, with $R_{B}=1$. Then $A B=0$ if and only if $A \bar{x}=0$ for every invariant vector B which corresponds to a nonzero eigenvalue.
Proof. If $A=0$, the result is trivial; therefore, assume $n>1$. As $R_{B}=1, \lambda=0$ is an eigenvalue of geometric and algebraic multiplicity $n=1$, with the null vectors \bar{x}; serving as a corresponding set of linearly independent eigenvectors. Complete this set with an eigenvector \bar{x}_{n} which corresponds to the one nonzero eigenvalue of B. Writing a general vector \bar{x} as a linear combination of the complete set $\bar{x}_{1}, \ldots, \bar{x}_{n}$, with constants $c_{j}, j=1,2, \ldots, n$, it follows that

$$
\begin{equation*}
A B \bar{x}=c_{n} \lambda_{n} A \bar{x}_{n} \tag{7}
\end{equation*}
$$

Then $A B \bar{x}=0$ for general \bar{x} if and only if $A \bar{x}_{n}=0$.
The structure of the column vectors of A must now be taken into consideration. Let \bar{b} with components ($b_{1}, b_{2}, \ldots, b_{n}$) be any nonzero row vector of B. It is just as general to assume that b_{n} is nonzero; otherwise, the structure of a matrix for which we aim in the sequel is merely row-shifted. Then, the typical column vector of the most general matrix A, satisfying $B A=0$ is of the form

$$
\begin{equation*}
\bar{x}_{j}^{\top}=\left(\alpha_{1}^{j}, \alpha_{2}^{j}, \ldots, \alpha_{n-1}^{j}, Q^{j}\right), \tag{8a}
\end{equation*}
$$

where $j=1,2, \ldots, n$ and

$$
\begin{equation*}
Q^{j}=\frac{-1}{b_{n}} \sum_{i=1}^{n-1} \alpha_{i}^{j} b_{i} . \tag{8b}
\end{equation*}
$$

Now, for $j=1,2, \ldots, n$, define vectors

$$
\begin{equation*}
\bar{\alpha}_{j}^{\top}=\left(\alpha_{1}^{j}, \alpha_{2}^{j}, \ldots, \alpha_{n-1}^{h}\right) \tag{9}
\end{equation*}
$$

and let

$$
\bar{x}^{\top}=\left(c_{1}, c_{2}, \ldots, c_{n}\right)
$$

be any invariant vector of B corresponding to the nonzero eigenvalue (any nonzero column vector of B will serve). Invoking Lemma 1, the requirement $A B=0$ leads to the system of equations

$$
\begin{equation*}
\sum_{j=1}^{n} c_{j} \bar{\alpha}_{j}=0 . \tag{10}
\end{equation*}
$$

Here, one additional equation, which is a linear combination of the equation (10), has been discarded. (If $b_{n}=0$ but $b_{k} \neq 0$, the equation to be discarded would come from row k versus row n of the coefficient matrix for the set of unknowns α_{i}^{j} resulting from $A \bar{x}=0$.)

Since some c_{k} does not vanish, equation (10) expresses $\bar{\alpha}_{k}$ as a linear combination of the remaining $\bar{\alpha}_{j}$. The one unaddressed concern is that the resulting matrix A be of rank $n-1$. However, this clearly can be accomplished, nonuniquely, as many ways as one can determine a linearly independent set of $n-1$ vectors $\bar{\alpha}_{j}$.

Therefore, $A B=B A=0$ has infinitely many solutions, A, of rank $n-1$. For each such A, $\operatorname{adj}(A)=0$ or else $\operatorname{adj}(A)$ is a nonzero multiple of B. In this case, the relation

$$
\begin{equation*}
B=\frac{\operatorname{adj}(A)}{c}=\operatorname{adj}(q A), \quad c=q^{1-n} \tag{11}
\end{equation*}
$$

produces the desired result. The adjoint alternative is thus established.
An Example. Consider the matrices

$$
B=\left[\begin{array}{lll}
0 & 0 & 0 \tag{12}\\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

and

$$
A=\left[\begin{array}{lll}
1 & 0 & \delta \tag{13}\\
0 & 0 & 0 \\
0 & 0 & \gamma
\end{array}\right]
$$

For any finite values of $\gamma, \delta, A B=B A=0$ and $\operatorname{adj}(A)=\gamma B$. Therefore, $B=\operatorname{adj}(A / \sqrt{\gamma})$.

REFERENCE

1. W.P. Wardlow, Problem 1334, Mathematics Magazine 62 (5), 343, (December 1989).
