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The Adjoint Alternative for Matrix Operators 
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A b s t r a c t - - T h e  following inverse problem is considered: given a matrix B of rank r, does there 
exist a matrix A such that 

B = T(A) ---- adjoint (A) 

where the classical adjoint operation is intended? Conditions are determined on the rank of B which 
decides whether or not B lies in the range of the matrix adjoint operator. 

Keywords - -Ad j o i n t  alternative, Matrix range, Matrix operator, Adjoint range, Range character- 
ization. 

I N T R O D U C T I O N  

Consider the following problem, posed by Wardlow [1] in Mathematics Magazine. Show tha t  

E = 5 (1) 

1 

is not the classical adjoint of any matr ix  with real entries. 
As shall be established, for a given matr ix  B whose rank is RB, the inverse problem 

B = T ( A )  = adj(A), (2) 

where A, B are n × n matrices, may have no solution, for A real or complex. Indeed, the counter- 

example (1) indicates tha t  the range of T does not cover the whole space S n of n x n matrices. 

The  purpose of this note is to characterize the range of T, through a careful s tudy of (2) by 
means of the adjoint property 

A B  = B A  = aI ,  a = det(A). (3) 

The general conclusion is tha t  there are "more" B excluded from range (T) than  axe included. 

THEOREM I. THE ADJOINT ALTERNATIVE. As regards solutions of the inverse problem (2), the 
following trichotomy holds. 

(i) I f  RB = n, equation (2) has n - 1 solutions, some of which are complex. 

(ii) I f  the i n c o m p a t i b i l i t y  c o n d i t i o n  

1 < Re < n (4) 

holds, then equation (2) has no solution. 
(iii) I f R B  <_ 1, equation (2) has infinitely many  solutions, except when B = 0 and n < 3. In 

this case A = 0 is the only solution. 
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PROOF OF THE ADJOINT ALTERNATIVE. 

I. Nonsingular B. In this case, equation (3) implies that  

1 
det(A) = det(B) m, m = - -  (5) 

n - l "  

For each root ai ,  i = 1, 2 , . . . ,  n - 1 of det(B),  equation (2) determines a unique matrix 

A = a i B  -1  (6) 

which satisfies equation (2). For complex a and real B, A is complex. 
II. Incompatible B. For B satisfying the incompatibility condition (4), a search for solutions A 

of (3) which additionally satisfy (2) is necessary. However, if B A  = O, then A can have at 
most n - 2 linearly independent columns. Therefore, T ( A )  = O. Thus, equation (2) has 
no solutions. 

IIIa. B = 0. If n > 2, any square matrix A of rank RA < n -- 1 satisfies equation (2). However, 
if n _> 2, A = 0 is the only solution of (2). Thus, an infinite number of solutions exist 
when n > 2. 

IIIb. Rank(B) -- 1. This is the interesting case, as the proof is more difficult. Looking for 
solutions of B A  = O, the columns of A will be linear combinations of the n - 1 linearly 
independent null vectors of B, which are denoted by X l , . . . ,  xm.  Each linear combination 
can involve n - 1 free parameters. Thus the further requirement tha t  A B  = 0 appears 
to lead to a system of n 2 equations in n 2 - n unknowns, about which little can be said. 
However, a closer look leads to more modest requirements. 

LEMMA 1. Le t  A ,  B denote  n x n matrices,  wi th  R B  = 1. Then  A B  = 0 f f  and oa ly  f f  A S  = 0 

for every invariant vector  B which corresponds to  a nonzero eigenvalue. 

PROOF. If A = 0, the result is trivial; therefore, assume n > 1. As R B  = 1, )~ = 0 is an 
eigenvalue of geometric and algebraic multiplicity n = 1, with the null vectors 4; serving as a 
corresponding set of linearly independent eigenvectors. Complete this set with an eigenvector Sn 
which corresponds to the one nonzero eigenvalue of B. Writing a general vector ~ as a linear 
combination of the complete set ~1 , . . . ,  ~n, with constants cj, j = 1, 2 , . . . ,  n, it follows that  

A B I  = ~ , ~ . A ~ , n  (7) 

Then A B ~  = 0 for general • if and only if A~n = O. | 

The structure of the column vectors of A must now be taken into consideration. Let b with 
components (bl, b 2 , . . . ,  bn) 'be any nonzero row vector of B. It is just as general to assume that  
bn is nonzero; otherwise, the structure of a matrix for which we aim in the sequel is merely 
row-shifted. Then, the typical column vector of the most general matrix A, satisfying B A  = 0 is 
of the form 

• y = (sa) 

where j = 1 , 2 , . . . , n  and 
1 n--1 

i----1 

Now, for j = 1, 2 , . . . ,  n, define vectors 

and let 
S T = (c l ,c2 , . . .  ,c~) 

(8b) 

(9) 
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be any invariant vector of B corresponding to the nonzero eigenvalue (any nonzero column vector 
of B will serve). Invoking Lemma 1, the requirement A B  = 0 leads to the system of equations 

n 

c#aj  = 0. (10) 
j=l  

Here, one additional equation, which is a linear combination of the equation (10), has been 
discarded. (If bn = 0 but bk ~ 0, the equation to be discarded would come from row k versus 
row n of the coefficient matr ix  for the set of unknowns ~ resulting from A~ = 0.) 

Since some ck does not vanish, equation (10) expresses ~k as a linear combination of the 

remaining ~j .  The one unaddressed concern is tha t  the resulting matr ix  A be of rank n - 1. 

However, this clearly can be accomplished, nonuniquely, as many ways as one can determine a 
linearly independent set of n - 1 vectors ~j.  

Therefore, A B  = B A  = 0 has infinitely many solutions, A, of rank n - 1. For each such A, 

adj(A) = 0 or else adj(A) is a nonzero multiple of B. In this case, the relation 

B - adj(A) _ adj(qA), c = q l - n  (11) 
C 

produces the desired result. The adjoint alternative is thus established. 

AN EXAMPLE. Consider the matrices 

B =  1 

0 
(12) 

and 

A = 
1 0 
0 0 

0 0 
!] 

For any finite values of % $, A B  = B A  = 0 and adj(A) = 7B. Therefore, B = a d j ( A / v ~ ) .  

(13) 

R E F E R E N C E  

1. W.P. Wardlow, Problem 1334, Mathematics Magazine 62 (5), 343, (December 1989). 
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