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Abstract 

The P,-reducible graphs are a natural generalization of the well-known class of cographs, 
with applications to scheduling, computational semantics, and clustering. More precisely, the 
Pa-reducible graphs are exactly the graphs none of whose vertices belong to more than one 
chordless path with three edges. A remarkable property of P,-reducible graphs is their unique 
tree representation up to isomorphism. In this paper we present a linear-time algorithm to 
recognize P,-reducible graphs and to construct their corresponding tree representation. 

1. Introduction 

The class of cographs arises naturally in many different areas of applied mathematics 
and computer science [2-4,7-121. Jamison and Olariu [S] introduced the notion of 
a P,-reducible graph: this is a graph none of whose vertices belongs to more than one P4. 
Clearly, P,-reducible graphs strictly contain the class of cographs. As it turns out, 
a remarkable property of the P,-reducible graphs is their unique tree representation up to 
(labelled) tree isomorphism. The purpose of this paper is to present a linear-time 
incremental algorithm to recognize P.+educible graphs. As a by-product of our algo- 
rithm we obtain, for a P,-reducible graph G, in linear time, the largest induced cograph of 
G. Our recognition algorithm can be perceived as computing an incremental modular 
decomposition of the graph at hand [ 133. Our recognition algorithm is subsequently used 
for the purpose of obtaining the unique tree associated with a P,-reducible graph. 

The paper is organized as follows: Section 2 provides background information on 
cographs and P4-reducible graphs; Section 3 presents our linear-time recognition for 
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P,-reducible graphs; finally, Section 4 shows how to use the canonical cotree 
of a P,-reducible graph G in order to obtain in linear time the corresponding 

pr-tree. 

2. Background and terminology 

All the graphs in this work are finite, with no loops nor multiple edges. In addition 

to standard graph-theoretical terminology compatible with Berge Cl], we use some 
new terms that we are about to define. For a vertex x of a graph G, No(x) will denote 
the set of all the vertices of G which are adjacent to x: since we assume adjacency to be 
nonreflexive, x r# NG(x). We let d,(x) stand for lNo(x)l. 

To simplify the notation, a P4 with vertices a, b, c, d and edges ab, bc, cd, will be 
denoted by abed. In this context, the vertices a and d are referred to as endpoints while 
b and c are termed midpoints of the P4. Consider a P4 in G induced by A = [a, b, c, d]. 
A vertex x outside A is said to have a partner in A if x together with three vertices in 
A induces a P4 in G. Given an induces subgraph H of G and a vertex x outside H, we 
say that x is natural with respect to H if x has a partner in no P4 in H. In the remaining 
part of this work we shall often associate, in some way, rooted trees with graphs. In 
this context, we shall refer to the vertices of trees as nodes. For a node w in a tree T, we 
let p(w) stand for the parent of w in T. 

Lerchs [8] showed how to associate with every cograph G a unique tree T(G) called 
the cotree of G, and defined as follows. 
l every internal node, except possibly for the root, has at least two children. 
l the internal nodes are labeled by either 0 (O-nodes) or (l-nodes) in such a way that 

the root is always a l-node, and such that l-nodes and O-nodes alternate along 
every path in T(G) starting at the root; 

l the leaves of T(G) are precisely the vertices of G, such that vertices x and y are 
adjacent in G if, and only if, the lowest common ancestor of x and y in T(G) is 
a l-node. 
Lerchs [9] proved that the cographs are precisely the graphs obtained from 

single-vertex graphs by a finite sequence of 0 and @ operations defined as follows. 
Let G1 = (V,, E,) and G2 = (V,, E,) be arbitrary graphs with VI n V, = 0. Now, 

l Gi@Gz = (I’, u k-2, El u Ez); 

. GiOGz = (I’, u VZ, El u & u {xv Ix E VI, Y E b>, 

Next, Jamison and Olariu proved the following fundamental results [S, Theorems 
1 and 23 which is at the heart of a constructive characterization of P,-reducible 
graphs. 

Proposition 1. A graph G is P4-reducible iJ and only if, for every induced subgraph H of 
G exactly one of the following conditions are satisJied: 
(i) H is disconnected; 

(ii) fi is disconnected; 
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(iii) there exists a unique P4 abed in H such that every vertex of H outside {a, b, c, d} is 
adjacent to both b and c and nonadjacent to both a and d. 

For the purpose of constructing the P,-reducible graphs, Jamison and Olariu [S] 
defined yet another graph operation as follows. Let the graphs Gr = (VI, El) and 
G2 = (V,, E,) (VI n V, = 8) be such that VI = {a, d}, El = 0, and some adjacent 
vertices b, c in V, are adjacent to all the remaining vertices in V2. Now 

GIQG,=(VIuV,{ab,cd}uE,). (*) 

Proposition 2. G is a P,-reducible graph if and only if G is obtained from single-vertex 

graphs by aJinite sequence of operations @,, @,a. 

The following natural observation follows directly from Proposition 2. 

Observation 0. Let G be a P,-reducible graph. If G (G) is disconnected with components 

GI,Gz, . . . , G, (p 2 2), then we can write G = G1 @(Q)...@)(@)G,. 

Propositions 1,2, and Observation 0 combined suggest a natural way of associating 
with every P,-reducible graph G a tree T(G) (called the pr-tree of G), as described by 
the following recursive procedure. 

Procedure Build _ tree(G); 

(Input: a P,-reducible graph G = (V, E); 
Output: the pr-tree T(G) corresponding to G.} 

begin 
if [VI = 1 then 

return the tree T(G) consisting of the unique vertex of G; 
if G (c) is disconnected then begin 

let G1, Gz, . . . , G, (p > 2) be the components of G (G); 
let T1, T,, . . . . T,, be the corresponding pr-trees rooted at rl , r2, . . . , r,; 
return the tree T(G) obtained by adding rl, r2, . . . , rp as children of a node 
labelled 0 (1); 
end 

else begin {now both G and G are connected} 
write G = G1 Q G2 as in (*); 
let T,, T2 be the corresponding pr-trees rooted at rl and r2; 

return the tree T(G) obtained by adding rl, r2 as children of a node labelled 2 
end 

end; (Build _ tree} 

As it turns out (see [S]) the pr-tree of a P,-reducible graph G is unique up to 
isomorphism. Let G = (V, E) be a P,-reducible graph. The canonical cograph 
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C(G) associated with G is the induced subgraph of G obtained by the following 
procedure. 

Procedure Greedy(G): 
{Input: a P,-reducible graph G; 
Output: the canonical cograph C(G)) 

begin 
Ht G; 

while there exist P4’s in H do begin 
pick a P4 uoxy in H: 

pick z at random in {u, y}; 
HtH-{z} 

end; 
return(H) 

end; 

Clearly, procedure Greedy removes precisely one endpoint of every P4 in G. The 
fact that the graph C(G) returned by Greedy is a cograph follows from the definition 
of Pa-reducible graphs; the uniqueness implied by the definition of the canonical 
cograph is justified by the following result. 

Proposition 3 (Jamison and Olariu [S, Theorem 33). The canonical cograph of a P4- 

reducible graph is unique up to isomorphism. 

3. The recognition algorithm 

To outline our recognition algorithm for P,-reducible graphs, consider an arbitrary 
graph G. We assume that we have already processed a nonempty induced 
P,-reducible subgraph H of G. (Note that such a subgraph H can always be found: in 
fact, the subgraph induced by a subset of at most four vertices in G is a Pa-reducible 

graph.) 
The relevant information about H is stored in the tuple (T(H), L(H)): T(H) is the 

cotree associated with the canonical cograph C(H) of H (we shall refer to T(H) as the 
canonical cotree of H); L(H) contains precisely one endpoint of every P4 in H. In 
addition, for the purpose of checking that no vertex belongs to more than one P4, 

those vertices that are known to belong to some P4 in H are “flagged”. 
To process a new vertex x we need to verify the following conditions: 

l x is neutral with respect to H; 

l x belongs to at most one P,, in H + x; furthermore, this P4 involves no “flagged” 
vertex; 
Trivially, if either of these conditions fails, then H + x cannot be a P4-reducible 

graph and the algorithm terminates. If, on the other hand, both conditions are 
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satisfied, then H + x is a P,-reducible subgraph of G and we proceed to update the 
tuple (T(H), L(H)). This involves the following operations: 
l if x belongs to no P4 in H + x, then x is added as a leaf in T(H), and L(H) is 

unchanged; 
l if x is an endpoint of a P4 in H + x, then T(H) is unchanged, and x is added to 

L(H); 
l if x is a midpoint of a P4 in H + x, then with y standing for an endpoint of this P4, 

we do the following: y is removed from T(H) and added to L(H); x is added as a leaf 
in T(H - y). 

Our recognition algorithm for P,-reducible graphs relies, in part, on a marking 
scheme similar to that developed by Corneil et al. [4]. We borrow their notation 
relevant to the marking scheme. 

For a vertex u in the canonical cotree T(H), rooted at R, we let d(u) stand for the 
number of children of U; md(u) represents the current number of marked, and 
subsequently unmarked children of U. (Initially, md(u) is 0 for all the nodes u in T(H); 
when u is unmarked, r&(u) is reset to 0.) A marked l-node of T(H) is said to be 
properly marked whenever md(u) = d(u) - 1; otherwise it will be termed improperly 

marked. 

The next procedure using the adjacency information of a new vertex x performs the 
following: 
l marks, and subsequently unmarks, as appropriate, certain nodes of 7’(H); 
l builds up a linked list n(x) of P4’s in H containing vertices adjacent to x; 
l adds marked but not subsequently unmarked nodes of T(H) to one or the other of 

the linked lists M0 (containing marked O-nodes). M1 (containing improperly 
marked l-nodes) or Mz (containing properly marked l-nodes). 

Procedure Mark(x); 
0. begin 
1. MotM1tMzC~;CoCcltcztO;n(x)c8; 
2. for each u in N,(x) do 
3. if (u is a leaf in T(H) or (II E L(H)) then begin 
4. Ii’(x) t n(x) u {P4 in H containing v}: 

5. mark u unless u E L(H) 

6. end; 
7. for each marked node u in T(H) do 
8. if d(u) = md(u) then begin 
9. unmark u: 

10. md(u) t 0; 
11. if u # R then begin 
12. w + p(u); 

13. mark w; 
14. r&(w) c md(w) + 1; 
15. add u to the list of marked and subsequently unmarked children of w 
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16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 
27. 
28. 
29. 
30. 
31. 
32. 
33. 
34. 
35. 

end 

end 

else {now d(u) # md(u), and so u is marked but not unmarked} 
case label (u) of 

0: begin (u is a marked O-node} 

cg+cg+ 1; 

MO+-MO+) 
end; 

1: begin 

if md(u) # d(u) - 1 then begin u is improperly marked 

Cl 4- cr + 1; 

Mr+-Mru(u) 
end 

else begin (now u is a properly marked l-node} 

c2 4- c2 + 1; 

M24-44244 

end 

end 

endcase; 

if (co + cl + c2 > 0) and d(R) = 1 then mark R 
36. end; (Mark) 

In the remainder of this paper a node w of T(H) will be referred to as marked only if 
w remains marked at the end of procedure Mark (i.e. w is marked but not sub- 
sequently unmarked). For a node w in T(H), T(w) will denote the subtree of 7’(H) 
rooted at w. For later reference, we make note of the following simple observations. 

Observation 1. Let w be a marked node in T(H). There must exist a child w’ of w such 

that all the leaves in T(w’) are adjacent to x. 

Observation 2. Let w be a never marked or a marked, but not unmarked, node of T(H). 
There must exist a descendant w” of w in T(w) such that all the leaves in T(w”) are 
nonadjacent to x. 

Let w be an arbitrary node of T(H) and let I(w) stand for the set of children of 
w which have a marked (and not subsequently unmarked) descendant in T(H). Let 
T’(w) stand for the subtree of T(w) defined by 

T’(w) = T(w) - u T(u). 
uel(w) 

Partition of the leaves of T’(w) into nonempty, disjoint sets A(w) and B(w), in such 
a way that x is adjacent to all the leaves in ,4(w) and nonadjacent to all the leaves in 

B(w). 
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Observation 3. w is the lowest common ancestor of any leaves a in A(w) and b in B(w). 

If T(H) contains marked nodes, then the marked node with the lowest level in 
T(H), denoted 01(x) (or simply Q, if no confusion is possible) plays a distinguished role 
in our algorithm. (If several marked nodes are at the same level, pick one at random.) 
Let 

(P) R=wl,w2,...,wp=Cl(x) (pal) (1) 

stand for the unique path in T(H) joining R and CI. The path (P) is referred to as 
complete if no marked vertex in T(H) lies outside (P). 

For nodes Wj with 1 <j < p - 1 of a complete path (P), the subtree 
7’(Wj) - T(wj+ 1) contains no marked node: as before, we let 
l A(wj) stand for the set of leaves inT(wJ - T(Wj+i) which are adjacent to x; 
l B(wj) stand for the set of leaves in T(wj) - T(Wj+ 1) which are not adjacent to x. 

For wP ( = a(x)), denote by 
l A(w,,) the set of all the leaves in T(w,,) which are adjacent to x; 
l B(w,) the set of all the remaining leaves in T(w,). 

Observation 4. No wk (1 < k < p) on the path (P) is marked and subsequently 
unmarked. 

Observation 5. Let w be an arbitrary unmarked node, or an improperly marked l-node in 
P. There exists a nonempty set S of leaves of T(w), such that x is nonadjacent to all the 
leaves in S. 

Observation 6. Zf d(R) = 1 and R is marked, then R is properly marked. 

Call a node Wj (1 < j < p - 1) of(P) regular if Wj is either a properly marked l-node 
or else an unmarked O-node. Otherwise, wj is termed special. The path (P) is said to be 
admissible if the following conditions are satisfied. 

(al) (P) is complete: 
(a2) there is at most one subscript k (1 < k < p - 1) such that the node wk is special. 

Furthermore, if a special node exists, then the following conditions must be true 
(a2.1) k = p - 2 or k = p - 1; 
(a2.2) if k = p - 1 then IA( = IB(w,)l = 1 with both vertices in A(w,) and B(w,) 

unflagged; furthermore. 
l I B(wk) I = 1 and the vertex in B(wk) is unflagged whenever wP is a O-node; and 
l 1 A( = 1 and the vertex in A(wk) is unflagged whenever wP is a l-node. 

(a2.3) if k = p - 2 then 
l IB(w,)l = IA(w,_~)I = IA( = 1 with none of the vertices in B(w,), 

A(w,_ 1) A(wk) flagged and B(w,_ 1) = 8 whenever wP is a O-node; 
l IA( = (B(w,_ 1)l = IB(wk) = 1 with none of the vertices in A(w,), B(w,_ 1), B(wk) 

flagged and A(w,_ J = 0 whenever wP is a l-node; 
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Note that, if T(H) contains no marked nodes, then the path (P) is, trivially, empty 
and hence vacuously admissible. Now in our notation, Theorem 1 in Comeil et al. [4] 
can be formulated as follows. 

Proposition 4 (Corneil et al. [4]). If H is a cograph, then H + x is a cograph if and 

only if, the path in T(H) joining the root and a(x) is admissible and contains no special 

nodes. 

We are now ready to state a result which provides the theoretical basis for our 
recognition algorithm for P4-reducible graphs. We assume the existence of an underly- 
ing graph G = (V, E) which is in the process of being investigated by the recognition 
algorithm. For the proof the reader is referred to [6]. 

Theorem 1. If H is a P,-reducible graph, then H + x is a P4-reducible graph if and only 

if, x is neutral with respect to H and the path joining the root of T(H) and N(X) is 

admissible. 

Corollary 1. If IMO u MI 1 > 2, then H + x is not a P4-reducible graph. 

Proof. If c,, + ci > 2 then the path (P) joining a and R cannot be admissible. The 
conclusion follows by Theorem 1. 0 

As previously mentioned, our recognition algorithm for P,-reducible graphs is 
incremental. Given a graph G = (V, E), whose vertices are enumerated as ul, u2, . . . , v, 
we proceed in the following two stages. 

Algorithm Recognize(G); 
Stage 1. [Initialization] 

set all the vertices in G “unflagged”; 

H+ {ai, az}; 
construct the cotree T(H) rooted at R; 

. LW)+Q; 
Stage 2. [Incrementally process the remaining vertices in G - H, as follows] 

Step 2.0. pick x in G - H, Mark(x); 
Step 2.1. if x is not neutral with respect to H then return(‘no”); 
Step 2.2. if x belongs to more than one P4 or if x belongs to a P4 involving 

a “flagged” vertex in H + x then return(“no”); 
Step 2.3. H t H + x; update (T(H), L(H)). 

We assume that upon executing the statement return(“no”) the entire algorithm 
terminates: H + x is not a P,+-reducible graph (this will be justified later). Since the 
details of Step 2.0 have been discussed in Section 3, we shall turn our attention to the 
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remaining steps in Stage 2. For this purpose, we note that Step 2.1 can be implemented 
by the following procedure. 

Procedure Test -Neutral(x); 
{n(x) is a list of P4’s created in procedure Mark} 

1. begin 
2. while n(x) # 0 do begin 
3. pick a P4 in n(x) with endpoints x0 and x1 and midpoints x1 and x2; 
4. if x has a partner in {x0, x r, x2, x3} then return (“no”); 

5. n(x) + n(x) - (x0, Xl, x3) 

6. end 
7. end; 

Two nodes of T(H) play a distinguished role in Steps 2.2-2.3; first, a(x) stands, as 
before, for a marked node in T(H) with the lowest level (ties being broken arbitrarily); 
next, y(x) is a candidate for a special node on the path joining a and R. (We shall write, 
simply, a and y instead of a(x) and y(x) since no confusion is possible.) 

Step 2.2. is further refined into two substeps as follows. 
Step 2.2. [if x belongs to more than one P4 or if x belongs to a P4 involving 

a “flagged’ vertex in Zf + x then return (“no”);] 

Step 2.2.1. Find a: 

Step 2.2.2. If the path in T(H) joining R and a is not admissible then return(“no”); 
Step 2.2.1 is implemented by the procedure Find whose details are given below. 

Procedure Find; 
{returns a node that plays the role of a.} 

1. begin Find t undefined; 
2. if cot c1 + c2 = 0 then Find t A; 
3. case co + cl of 
4. 0: if p@(z)) is an unmarked node of T(H) for some z in M2 then 
5. Find t z 
6. else begin 
7. let z be a node in M2 such that z # p(p(z’)) for all z’ E M2; 
8. Find t z 
9. end; 

10. 1: begin 
11. let z be the unique node in MO u Ml; 

12. if z = p(z’) or z = p(p(z’)) for some z’ E M2 then 
13. Find t z’ 
14. else 
15. Find t z 
16. end; 
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17. 2: if for distinct z, z’ in M0 u Ml, z’ = p(z) or z’ = &I(Z)) then 
18. Find + z 
19. endcase 
20. end; {Find} 

The following result (for the proof refer to [5b]) shows that H + x is a Pa-reducible 
graph only if the node returned by the procedure Find can play the role of a. More 

precisely: 

Fact 5. Let z be the node returned by thefunction Find. H + x is P4-reducible, only ifthe 

following statements are satisjied: 
(5.1) z = A whenever T(H) contains no marked nodes; 
(5.2) z and a coincide whenever T(H) contains marked nodes. 

We assume that whenever the unmark w statement is executed during Steps 2.2 and 
2.3 with w E Ml, the following statements are implicitly performed 

Mi+Mi-{W}; Ci+Ci-1; md(w)+Q 

Step 2.2.2 is implemented by the procedure Test-Admissible whose details are 
spelled out next. As justified by Fact 5, we may use tl for the node returned by 
procedure Find. 

Procedure Test -Admissible; {tests the path in T(H) joining a and R for admissibility.} 
1. 
2. 
3. 
4. 
5. 

6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 

14. 
15. 
16. 

begin 
if a = undefined then return(“no”); 

y + a; if a = A then exit; 
if (p(a) E MO) or (label(p(a)) = 1 and p(a) 4 M2) then y + p(a) 

else if(p(p(a)) E MO) or (label(p@(a))) = 1 and p@(a)) $ MA then Y + p(p(a)); 
(to begin, check the path between y and R} 

z+ y; 
if label(z) = 0 then begin 

z + P(Z) 
else z + PM)); 
while z E T(H) do begin 

if z 4 M2 then return(“no”) else unmark z; 

z + P(P(Z)) 
end; 
{check whether an appropriate number of nodes remain marked} 
if (y = p(p(a))) and (label(a) = 0) then {we know that p(a) E M2} 

unmark p(a); 

if (c,, + cl + c2 > 2) or ((co + cl + c2 > 1) and (y not marked)) then 
return(“n0”); 

(finally, check conditions 2.2 and 2.3) 
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17. case y of 
18 p(a): begin if IA( # 1 or II? # 1 or one of the vertices in A(E), B(a) is 

“flagged” then return(“no”) 
else flag the vertices in A(a), B(a); 

19. if label(a) = 0 and (II?(y)1 # 1 or B(y) contains a “flagged” vertex) 
then return(“no”) 

20. 
else flag the vertex in B(y); 
if label(u) = 1 and (IA(y)1 # 1 or A(y) contains a “flagged” vertex) 
then return(“no”) 
else flag be vertex in A(y) 

21. end; 
22. p(p(cr): begin if label(a) = 0 and (IB(a)l # 1 or IA(p(a))l # 1 or IA(y)l # 1 or 

B(a), A(p)), A(y) contain “flagged” vertices 
or B(p(a)) # 0) then return(“no”) 

else flag the vertices in B(a), A(p(ol)), A(y); 

23. if label(a) = 1 and (IA(a)1 # 1 or jB(y)l # 1 or IB(p(a))l # 1 or A(u), 
B(y), B(p(u)) contain “flagged” vertices 

or A(p(a)) # 0) then return(“no”) 
else flag the vertices in A(a), B(y), B(p(cc)) 

24. end 
25. endcase; 
26. if 01 # y then flag x 
27. end; {Test _ Admissible) 

Fact 6. The path (I’) in T(H) from o! to R is admissible if, and only if the statement return 
“no” is not executed in Test _ Admissible. 

The proof of Fact 6 can be found in [6]. We note that by virtue of Facts 5 and 6, 
Theorem 1 can be reformulated as follows. 

Theorem 2. Zf H is a P4-reducible graph, then H + x is a P,-reducible graph if, and only 

if the statement return(“no) is not executed in Steps 2.1 and 2.2. 

To make our arguments more transparent, we further refine Step 2.3 as follows 

Step 2.3 [H + H + x; update (T(H), L(H))] 
if u = y then 

Update _ 1 
else 

Update _ 2; 

Here, Update _ 1 is reminiscent of the way Corneil et al. [4] update the cotree once 
they know that x is contained in no P4 in H + x. The procedure Update-2 deals with 
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the more general case where the path in T(H), though admissible, is known to contain 
a special node, namely y. T(H) is altered to represent the canonical cotree of H + x. 
The details of these two procedures are spelled out next. 

Procedure Update - 1; 
(x is contained in no P4 in H + x; 
wedo:HcH+x; T(H+x)cT(H)+x;L(H+x)cL(H)} 

1. begin 
2. if a = .4 then 
3. if all nodes in T(H) were marked and subsequently unmarked then 

4. add x as a child of R 

5. else {no node in T(H) was marked} 
6. if d(R) = 1 then 

7. make x a child of the (only) child of R 

8. else begin 
9. make the old root and x children of a new O-node 8; 

10. make 8 the only son of the new root 
11. end 
12. else (now a is the only marked node in T(H)} 
13. if label(a) = O(1) then 
14. if &(a) = l(d(a) - md(a) = 1) then begin 

15. 1 c unique marked and unmarked (never marked) child of a in T(a); 

16. if 1 is a leaf in T(H) then begin 
17. make A, x children of a new node 8; 
18. make 0 a child of a 

19. end 
20. else 
21. make x a child of 1 
22. end 
23. else begin {now ml(a) # 1 (d(a) = md(a) # l)} 
24. add every marked child of a to a new node 8 with label(e) = label(a); 
25. if label(a) = 0 then begin 
26. make x, 8 children of a new node 8’; 
27. make 8’ child of a 

28. end 
29. else begin 
30. make 8 a child of p(a); 

31. make x, a children of a new node 0’; 
32. make 8’ a child of 8 
33. end 
34. end 
35. end; {Update_ l} 
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To specify the details of the procedure Update_2, we shall find it convenient to 
introduce the following notation: 
l write A(a) = {a}, whenever [A( = 1; 
l write B(E) = {b}, whenever IB(ol)l = 1; 
l write A(y) = {c}, whenever IA(y)l = 1; 
l write B(y) = {d}, whenever IB(y)l = 1; 

if y # p(a) then 
l write A(p(a)) = {t} whenever IA(p(a))l = 1; 
l write B(p(or)) = {t’} whenever IB(p(a))( = 1; 

For the purpose of justifying our way of updating the tuple (T(H), L(H)) in Step 2.3 
we need the following intermediate result (see [6]). 

Fact 7. x is the endpoint of a unique P4 in H + x g and only if, y is a l-node. 

Procedure Update _ 2; 
{x is contained in precisely one P4 in H + x; 
the procedure performs H c H + x and updates T(H) and L(H) accordingly} 

1. begin 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 

if label(y) = 1 then begin 
T(H + x)+ T(H); 
L(H + x) + L(H) u {x}; 
end 

else hegin {now y is a O-node} 

L(H + x) + L(H) u {b}; 
remove b from T(H); 
case a of 

1: if B(y) = 0 then begin 
add a as a child of y; 
add x as a child of p(y); 

remove a from T(H) 

end 
else begin 

make a, c, children of a new O-node 8; 
make 8, x children of a 
end; 

0: begin 
if B(y) = $ then 

add x as a child o p(y) 

else begin 
make p(a) and c children of a new O-node 8; 
make 8 and x children of a new l-node 8’; 
make 8’ a child of y; 

end; 
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27. if md@) = 1 then begin 
28. let IX’ be the marked and subsequently unmarked child of a; 

29. if LX’ is a leaf in T(H) then 
30. make LX’ child of p(a) 

31. else begin 
32. make every child of a’ a child of p(a); 

33. remove a’ from T(H) 
34. end; 
35. remove a from T(H) 
36. end; 
37. unmark a, unless already removed; 
38. if y is marked then unmark y 
39. end 
40. endcase 
41. end; {Update} 

Fact 8. The cotree T(H + x) returned by Step 2.3 is the canonical cotree of H + x. 

Our next result shows that the iteration consisting of processing x E G - H takes 
time proportional to the degree of x. The reader can find the proof in [6]. 

Theorem 3. Given a P,-reducible graph H specified by (T(H), L(H)) and a given vertex 
x $ H, the algorithm Recognize performs in time O(do(x)) one of the following: 
(i) either determines that H + x is not a P,-reducible graph, or else 

(ii) incorporates x into H, updating T(H) and L(H) accordingly. 

5. A tree representation for P4-reducible graphs 

Let G be a Pa-reducible graph represented by the tuple (T(G), L(G)). We now 
address the problem of efficiently constructing the pr-tree representation of G. For this 
purpose we shall use the fact that T(G) is the canonical cotree of G (i.e. the cotree 
corresponding to the canonical cograph C(G) of G), and that every vertex in L(G) is 
endpoint of precisely one P4 in G. Our arguments make use of the following result 
whose proof can be found in [6]. 

Theorem 4. For every u E L(G) such that uvwz is a P4 in G with v, w, z in T(G), there 
exist a unique O-node A(u) and a l-node A’(u) in T(G) satisfying 

4u) = p(z); X(U) = p(w); n,(u) = P@(U)), (11) 

Furthermore, 

either A(u) = p(v) or else A”(u) = p(v) with A(u) = p(nl’(u)). (12) 
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Since for every vertex u in L(G) there is a unique A(u) with the properties mentioned 
in Theorem 4, we shall write simply ,I, A’, I” dropping the reference to u. 

To construct the tree representation of a P,-reducible graph G, we need a way of 
incorporating the vertices of L(G) into the tree structure. For this purpose, a new type 
of node is needed; this is the 2-node which has precisely two children: a O-node and 
a l-node. Obviously, the 2-node corresponds to the 0 operation as in (*). The details 
of theis tree construction are spelled out in the following procedure. 

Procedure Build-treel(G); 
(input: a P4-reducible graph represented as (Z’(G), L(G)) 
Output: a tree n(G), rooted at R;} 

1. 
2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 
27. 
28. 
29. 
30. 

begin 

Tl(G) .- T(G); 
while L(G) # 8 do begin 

pick an arbitrary vertex u in L(G); 
find u, w, z in Tl(G) such that uuzw is a P4 in G; 
Iz + p(z); I’ + p(w); ;I” +- p(u); 
create a 2-node 8; 
add u as a child of 4 

if I = A” then begin 

if d(X) # 2 then begin 

add /3 as a child of I’; 
add il and a new l-node r as children of /L?; 
add v, w as children of t 
end 

else begin 

add I, I’ as children of j?; 
add fl as a child of p(X); 
add u as a child of 1 
end 

else begin 

add A, A.” as children of /?; 
add w as a child of A”; 

if d(L) # 2 then 
add fi as a child of I 

else begin 

add b as a child of p(Z); 
remove I’ from n(G) 
end 

end; 

L(G)+ L(G) - {u> 
31. end; 
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32. if d(R) = 1 then R t unique child of R 
33. end; 

The following result argues about the correctness and the running time of proced- 
ure Build-treel. More precisely, we have the following theorem whose proof can be 
found in [6]. 

Theorem 5. The tree Tl(G) returned by the procedure Build-tree1 is precisely the 

pr-tree corresponding to G. Furthermore, Tl(G) is constructed in linear time. 
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