
Old Dominion University
ODU Digital Commons

Computer Science Faculty Publications Computer Science

1995

A Linear-Time Recognition Algorithm for
P4-Reducible Graphs
B. Jamison
Old Dominion University

S. Olariu
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_fac_pubs

Part of the Theory and Algorithms Commons

This Article is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in
Computer Science Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

Repository Citation
Jamison, B. and Olariu, S., "A Linear-Time Recognition Algorithm for P4-Reducible Graphs" (1995). Computer Science Faculty
Publications. 115.
https://digitalcommons.odu.edu/computerscience_fac_pubs/115

Original Publication Citation
Jamison, B., & Olariu, S. (1995). A linear-time recognition algorithm for P4-reducible graphs. Theoretical Computer Science, 145(1-2),
329-344. doi:10.1016/0304-3975(95)00016-p

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_fac_pubs?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_fac_pubs?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_fac_pubs/115?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

ELSEVIER Theoretical Computer Science 14: i (1995) 329-344

Theoretical
Computer Science

Note

A linear-time recognition algorithm for
P,-reducible graphs*

B. Jamison, S. Olariu*

Department of Computer Science. Old Dominion University, Norfolk, VA 23529-0162, USA

Received June 1992; revised December 1994
Communicated by M. Nivat

Abstract

The P,-reducible graphs are a natural generalization of the well-known class of cographs,
with applications to scheduling, computational semantics, and clustering. More precisely, the
Pa-reducible graphs are exactly the graphs none of whose vertices belong to more than one
chordless path with three edges. A remarkable property of P,-reducible graphs is their unique
tree representation up to isomorphism. In this paper we present a linear-time algorithm to
recognize P,-reducible graphs and to construct their corresponding tree representation.

1. Introduction

The class of cographs arises naturally in many different areas of applied mathematics
and computer science [2-4,7-121. Jamison and Olariu [S] introduced the notion of
a P,-reducible graph: this is a graph none of whose vertices belongs to more than one P4.
Clearly, P,-reducible graphs strictly contain the class of cographs. As it turns out,
a remarkable property of the P,-reducible graphs is their unique tree representation up to
(labelled) tree isomorphism. The purpose of this paper is to present a linear-time
incremental algorithm to recognize P.+educible graphs. As a by-product of our algo-
rithm we obtain, for a P,-reducible graph G, in linear time, the largest induced cograph of
G. Our recognition algorithm can be perceived as computing an incremental modular
decomposition of the graph at hand [133. Our recognition algorithm is subsequently used
for the purpose of obtaining the unique tree associated with a P,-reducible graph.

The paper is organized as follows: Section 2 provides background information on
cographs and P4-reducible graphs; Section 3 presents our linear-time recognition for

*This work was supported by the National Science Foundation under grant CCR-9407180.
*Corresponding author.

0304-3975/95/$09.50 0 1995-Elsevier Science B.V. All rights reserved
SSDI 0304-3975(95)00016-X

330 B. Jamison, S. Olariu / Theoretical Computer Science 145 (1995) 329-344

P,-reducible graphs; finally, Section 4 shows how to use the canonical cotree
of a P,-reducible graph G in order to obtain in linear time the corresponding

pr-tree.

2. Background and terminology

All the graphs in this work are finite, with no loops nor multiple edges. In addition

to standard graph-theoretical terminology compatible with Berge Cl], we use some
new terms that we are about to define. For a vertex x of a graph G, No(x) will denote
the set of all the vertices of G which are adjacent to x: since we assume adjacency to be
nonreflexive, x r# NG(x). We let d,(x) stand for lNo(x)l.

To simplify the notation, a P4 with vertices a, b, c, d and edges ab, bc, cd, will be
denoted by abed. In this context, the vertices a and d are referred to as endpoints while
b and c are termed midpoints of the P4. Consider a P4 in G induced by A = [a, b, c, d].
A vertex x outside A is said to have a partner in A if x together with three vertices in
A induces a P4 in G. Given an induces subgraph H of G and a vertex x outside H, we
say that x is natural with respect to H if x has a partner in no P4 in H. In the remaining
part of this work we shall often associate, in some way, rooted trees with graphs. In
this context, we shall refer to the vertices of trees as nodes. For a node w in a tree T, we
let p(w) stand for the parent of w in T.

Lerchs [8] showed how to associate with every cograph G a unique tree T(G) called
the cotree of G, and defined as follows.
l every internal node, except possibly for the root, has at least two children.
l the internal nodes are labeled by either 0 (O-nodes) or (l-nodes) in such a way that

the root is always a l-node, and such that l-nodes and O-nodes alternate along
every path in T(G) starting at the root;

l the leaves of T(G) are precisely the vertices of G, such that vertices x and y are
adjacent in G if, and only if, the lowest common ancestor of x and y in T(G) is
a l-node.
Lerchs [9] proved that the cographs are precisely the graphs obtained from

single-vertex graphs by a finite sequence of 0 and @ operations defined as follows.
Let G1 = (V,, E,) and G2 = (V,, E,) be arbitrary graphs with VI n V, = 0. Now,

l Gi@Gz = (I’, u k-2, El u Ez);

. GiOGz = (I’, u VZ, El u & u {xv Ix E VI, Y E b>,

Next, Jamison and Olariu proved the following fundamental results [S, Theorems
1 and 23 which is at the heart of a constructive characterization of P,-reducible
graphs.

Proposition 1. A graph G is P4-reducible iJ and only if, for every induced subgraph H of
G exactly one of the following conditions are satisJied:
(i) H is disconnected;

(ii) fi is disconnected;

B. Jamison, S. Olariu / Theoretical Computer Science 145 (1995) 329-344 331

(iii) there exists a unique P4 abed in H such that every vertex of H outside {a, b, c, d} is
adjacent to both b and c and nonadjacent to both a and d.

For the purpose of constructing the P,-reducible graphs, Jamison and Olariu [S]
defined yet another graph operation as follows. Let the graphs Gr = (VI, El) and
G2 = (V,, E,) (VI n V, = 8) be such that VI = {a, d}, El = 0, and some adjacent
vertices b, c in V, are adjacent to all the remaining vertices in V2. Now

GIQG,=(VIuV,{ab,cd}uE,). (*)

Proposition 2. G is a P,-reducible graph if and only if G is obtained from single-vertex

graphs by aJinite sequence of operations @,, @,a.

The following natural observation follows directly from Proposition 2.

Observation 0. Let G be a P,-reducible graph. If G (G) is disconnected with components

GI,Gz, . . . , G, (p 2 2), then we can write G = G1 @(Q)...@)(@)G,.

Propositions 1,2, and Observation 0 combined suggest a natural way of associating
with every P,-reducible graph G a tree T(G) (called the pr-tree of G), as described by
the following recursive procedure.

Procedure Build _ tree(G);

(Input: a P,-reducible graph G = (V, E);
Output: the pr-tree T(G) corresponding to G.}

begin
if [VI = 1 then

return the tree T(G) consisting of the unique vertex of G;
if G (c) is disconnected then begin

let G1, Gz, . . . , G, (p > 2) be the components of G (G);
let T1, T,, T,, be the corresponding pr-trees rooted at rl , r2, . . . , r,;
return the tree T(G) obtained by adding rl, r2, . . . , rp as children of a node
labelled 0 (1);
end

else begin {now both G and G are connected}
write G = G1 Q G2 as in (*);
let T,, T2 be the corresponding pr-trees rooted at rl and r2;

return the tree T(G) obtained by adding rl, r2 as children of a node labelled 2
end

end; (Build _ tree}

As it turns out (see [S]) the pr-tree of a P,-reducible graph G is unique up to
isomorphism. Let G = (V, E) be a P,-reducible graph. The canonical cograph

332 B. Jamison. S. Olariu / Theoretical Computer Science 145 (1995) 329-344

C(G) associated with G is the induced subgraph of G obtained by the following
procedure.

Procedure Greedy(G):
{Input: a P,-reducible graph G;
Output: the canonical cograph C(G))

begin
Ht G;

while there exist P4’s in H do begin
pick a P4 uoxy in H:

pick z at random in {u, y};
HtH-{z}

end;
return(H)

end;

Clearly, procedure Greedy removes precisely one endpoint of every P4 in G. The
fact that the graph C(G) returned by Greedy is a cograph follows from the definition
of Pa-reducible graphs; the uniqueness implied by the definition of the canonical
cograph is justified by the following result.

Proposition 3 (Jamison and Olariu [S, Theorem 33). The canonical cograph of a P4-

reducible graph is unique up to isomorphism.

3. The recognition algorithm

To outline our recognition algorithm for P,-reducible graphs, consider an arbitrary
graph G. We assume that we have already processed a nonempty induced
P,-reducible subgraph H of G. (Note that such a subgraph H can always be found: in
fact, the subgraph induced by a subset of at most four vertices in G is a Pa-reducible

graph.)
The relevant information about H is stored in the tuple (T(H), L(H)): T(H) is the

cotree associated with the canonical cograph C(H) of H (we shall refer to T(H) as the
canonical cotree of H); L(H) contains precisely one endpoint of every P4 in H. In
addition, for the purpose of checking that no vertex belongs to more than one P4,

those vertices that are known to belong to some P4 in H are “flagged”.
To process a new vertex x we need to verify the following conditions:

l x is neutral with respect to H;

l x belongs to at most one P,, in H + x; furthermore, this P4 involves no “flagged”
vertex;
Trivially, if either of these conditions fails, then H + x cannot be a P4-reducible

graph and the algorithm terminates. If, on the other hand, both conditions are

B. Jamison, S. Olariu / Theoretical Computer Science 145 (1995) 329-344 333

satisfied, then H + x is a P,-reducible subgraph of G and we proceed to update the
tuple (T(H), L(H)). This involves the following operations:
l if x belongs to no P4 in H + x, then x is added as a leaf in T(H), and L(H) is

unchanged;
l if x is an endpoint of a P4 in H + x, then T(H) is unchanged, and x is added to

L(H);
l if x is a midpoint of a P4 in H + x, then with y standing for an endpoint of this P4,

we do the following: y is removed from T(H) and added to L(H); x is added as a leaf
in T(H - y).

Our recognition algorithm for P,-reducible graphs relies, in part, on a marking
scheme similar to that developed by Corneil et al. [4]. We borrow their notation
relevant to the marking scheme.

For a vertex u in the canonical cotree T(H), rooted at R, we let d(u) stand for the
number of children of U; md(u) represents the current number of marked, and
subsequently unmarked children of U. (Initially, md(u) is 0 for all the nodes u in T(H);
when u is unmarked, r&(u) is reset to 0.) A marked l-node of T(H) is said to be
properly marked whenever md(u) = d(u) - 1; otherwise it will be termed improperly

marked.

The next procedure using the adjacency information of a new vertex x performs the
following:
l marks, and subsequently unmarks, as appropriate, certain nodes of 7’(H);
l builds up a linked list n(x) of P4’s in H containing vertices adjacent to x;
l adds marked but not subsequently unmarked nodes of T(H) to one or the other of

the linked lists M0 (containing marked O-nodes). M1 (containing improperly
marked l-nodes) or Mz (containing properly marked l-nodes).

Procedure Mark(x);
0. begin
1. MotM1tMzC~;CoCcltcztO;n(x)c8;
2. for each u in N,(x) do
3. if (u is a leaf in T(H) or (II E L(H)) then begin
4. Ii’(x) t n(x) u {P4 in H containing v}:

5. mark u unless u E L(H)

6. end;
7. for each marked node u in T(H) do
8. if d(u) = md(u) then begin
9. unmark u:

10. md(u) t 0;
11. if u # R then begin
12. w + p(u);

13. mark w;
14. r&(w) c md(w) + 1;
15. add u to the list of marked and subsequently unmarked children of w

334 B. Jamison, S. Oiariu / Theoretical Computer Science 145 (1995) 329-344

16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.

end

end

else {now d(u) # md(u), and so u is marked but not unmarked}
case label (u) of

0: begin (u is a marked O-node}

cg+cg+ 1;

MO+-MO+)
end;

1: begin

if md(u) # d(u) - 1 then begin u is improperly marked

Cl 4- cr + 1;

Mr+-Mru(u)
end

else begin (now u is a properly marked l-node}

c2 4- c2 + 1;

M24-44244

end

end

endcase;

if (co + cl + c2 > 0) and d(R) = 1 then mark R
36. end; (Mark)

In the remainder of this paper a node w of T(H) will be referred to as marked only if
w remains marked at the end of procedure Mark (i.e. w is marked but not sub-
sequently unmarked). For a node w in T(H), T(w) will denote the subtree of 7’(H)
rooted at w. For later reference, we make note of the following simple observations.

Observation 1. Let w be a marked node in T(H). There must exist a child w’ of w such

that all the leaves in T(w’) are adjacent to x.

Observation 2. Let w be a never marked or a marked, but not unmarked, node of T(H).
There must exist a descendant w” of w in T(w) such that all the leaves in T(w”) are
nonadjacent to x.

Let w be an arbitrary node of T(H) and let I(w) stand for the set of children of
w which have a marked (and not subsequently unmarked) descendant in T(H). Let
T’(w) stand for the subtree of T(w) defined by

T’(w) = T(w) - u T(u).
uel(w)

Partition of the leaves of T’(w) into nonempty, disjoint sets A(w) and B(w), in such
a way that x is adjacent to all the leaves in ,4(w) and nonadjacent to all the leaves in

B(w).

B. Jamison. S. Olariu 1 Theoretical Computer Science 145 (1995) 329-344 335

Observation 3. w is the lowest common ancestor of any leaves a in A(w) and b in B(w).

If T(H) contains marked nodes, then the marked node with the lowest level in
T(H), denoted 01(x) (or simply Q, if no confusion is possible) plays a distinguished role
in our algorithm. (If several marked nodes are at the same level, pick one at random.)
Let

(P) R=wl,w2,...,wp=Cl(x) (pal) (1)

stand for the unique path in T(H) joining R and CI. The path (P) is referred to as
complete if no marked vertex in T(H) lies outside (P).

For nodes Wj with 1 <j < p - 1 of a complete path (P), the subtree
7’(Wj) - T(wj+ 1) contains no marked node: as before, we let
l A(wj) stand for the set of leaves inT(wJ - T(Wj+i) which are adjacent to x;
l B(wj) stand for the set of leaves in T(wj) - T(Wj+ 1) which are not adjacent to x.

For wP (= a(x)), denote by
l A(w,,) the set of all the leaves in T(w,,) which are adjacent to x;
l B(w,) the set of all the remaining leaves in T(w,).

Observation 4. No wk (1 < k < p) on the path (P) is marked and subsequently
unmarked.

Observation 5. Let w be an arbitrary unmarked node, or an improperly marked l-node in
P. There exists a nonempty set S of leaves of T(w), such that x is nonadjacent to all the
leaves in S.

Observation 6. Zf d(R) = 1 and R is marked, then R is properly marked.

Call a node Wj (1 < j < p - 1) of(P) regular if Wj is either a properly marked l-node
or else an unmarked O-node. Otherwise, wj is termed special. The path (P) is said to be
admissible if the following conditions are satisfied.

(al) (P) is complete:
(a2) there is at most one subscript k (1 < k < p - 1) such that the node wk is special.

Furthermore, if a special node exists, then the following conditions must be true
(a2.1) k = p - 2 or k = p - 1;
(a2.2) if k = p - 1 then IA(= IB(w,)l = 1 with both vertices in A(w,) and B(w,)

unflagged; furthermore.
l I B(wk) I = 1 and the vertex in B(wk) is unflagged whenever wP is a O-node; and
l 1 A(= 1 and the vertex in A(wk) is unflagged whenever wP is a l-node.

(a2.3) if k = p - 2 then
l IB(w,)l = IA(w,_~)I = IA(= 1 with none of the vertices in B(w,),

A(w,_ 1) A(wk) flagged and B(w,_ 1) = 8 whenever wP is a O-node;
l IA(= (B(w,_ 1)l = IB(wk) = 1 with none of the vertices in A(w,), B(w,_ 1), B(wk)

flagged and A(w,_ J = 0 whenever wP is a l-node;

336 B. Jamison, S. Olariu 1 Theoretical Computer Science 145 (1995) 329-344

Note that, if T(H) contains no marked nodes, then the path (P) is, trivially, empty
and hence vacuously admissible. Now in our notation, Theorem 1 in Comeil et al. [4]
can be formulated as follows.

Proposition 4 (Corneil et al. [4]). If H is a cograph, then H + x is a cograph if and

only if, the path in T(H) joining the root and a(x) is admissible and contains no special

nodes.

We are now ready to state a result which provides the theoretical basis for our
recognition algorithm for P4-reducible graphs. We assume the existence of an underly-
ing graph G = (V, E) which is in the process of being investigated by the recognition
algorithm. For the proof the reader is referred to [6].

Theorem 1. If H is a P,-reducible graph, then H + x is a P4-reducible graph if and only

if, x is neutral with respect to H and the path joining the root of T(H) and N(X) is

admissible.

Corollary 1. If IMO u MI 1 > 2, then H + x is not a P4-reducible graph.

Proof. If c,, + ci > 2 then the path (P) joining a and R cannot be admissible. The
conclusion follows by Theorem 1. 0

As previously mentioned, our recognition algorithm for P,-reducible graphs is
incremental. Given a graph G = (V, E), whose vertices are enumerated as ul, u2, . . . , v,
we proceed in the following two stages.

Algorithm Recognize(G);
Stage 1. [Initialization]

set all the vertices in G “unflagged”;

H+ {ai, az};
construct the cotree T(H) rooted at R;

. LW)+Q;
Stage 2. [Incrementally process the remaining vertices in G - H, as follows]

Step 2.0. pick x in G - H, Mark(x);
Step 2.1. if x is not neutral with respect to H then return(‘no”);
Step 2.2. if x belongs to more than one P4 or if x belongs to a P4 involving

a “flagged” vertex in H + x then return(“no”);
Step 2.3. H t H + x; update (T(H), L(H)).

We assume that upon executing the statement return(“no”) the entire algorithm
terminates: H + x is not a P,+-reducible graph (this will be justified later). Since the
details of Step 2.0 have been discussed in Section 3, we shall turn our attention to the

B. Jamison. S. Olariu 1 Theoretical Computer Science 145 (1995) 329- 344 331

remaining steps in Stage 2. For this purpose, we note that Step 2.1 can be implemented
by the following procedure.

Procedure Test -Neutral(x);
{n(x) is a list of P4’s created in procedure Mark}

1. begin
2. while n(x) # 0 do begin
3. pick a P4 in n(x) with endpoints x0 and x1 and midpoints x1 and x2;
4. if x has a partner in {x0, x r, x2, x3} then return (“no”);

5. n(x) + n(x) - (x0, Xl, x3)

6. end
7. end;

Two nodes of T(H) play a distinguished role in Steps 2.2-2.3; first, a(x) stands, as
before, for a marked node in T(H) with the lowest level (ties being broken arbitrarily);
next, y(x) is a candidate for a special node on the path joining a and R. (We shall write,
simply, a and y instead of a(x) and y(x) since no confusion is possible.)

Step 2.2. is further refined into two substeps as follows.
Step 2.2. [if x belongs to more than one P4 or if x belongs to a P4 involving

a “flagged’ vertex in Zf + x then return (“no”);]

Step 2.2.1. Find a:

Step 2.2.2. If the path in T(H) joining R and a is not admissible then return(“no”);
Step 2.2.1 is implemented by the procedure Find whose details are given below.

Procedure Find;
{returns a node that plays the role of a.}

1. begin Find t undefined;
2. if cot c1 + c2 = 0 then Find t A;
3. case co + cl of
4. 0: if p@(z)) is an unmarked node of T(H) for some z in M2 then
5. Find t z
6. else begin
7. let z be a node in M2 such that z # p(p(z’)) for all z’ E M2;
8. Find t z
9. end;

10. 1: begin
11. let z be the unique node in MO u Ml;

12. if z = p(z’) or z = p(p(z’)) for some z’ E M2 then
13. Find t z’
14. else
15. Find t z
16. end;

338 B. Jamison, S. Olariu J Theoretical Computer Science 145 (1995) 329- 344

17. 2: if for distinct z, z’ in M0 u Ml, z’ = p(z) or z’ = &I(Z)) then
18. Find + z
19. endcase
20. end; {Find}

The following result (for the proof refer to [5b]) shows that H + x is a Pa-reducible
graph only if the node returned by the procedure Find can play the role of a. More

precisely:

Fact 5. Let z be the node returned by thefunction Find. H + x is P4-reducible, only ifthe

following statements are satisjied:
(5.1) z = A whenever T(H) contains no marked nodes;
(5.2) z and a coincide whenever T(H) contains marked nodes.

We assume that whenever the unmark w statement is executed during Steps 2.2 and
2.3 with w E Ml, the following statements are implicitly performed

Mi+Mi-{W}; Ci+Ci-1; md(w)+Q

Step 2.2.2 is implemented by the procedure Test-Admissible whose details are
spelled out next. As justified by Fact 5, we may use tl for the node returned by
procedure Find.

Procedure Test -Admissible; {tests the path in T(H) joining a and R for admissibility.}
1.
2.
3.
4.
5.

6.
7.
8.
9.

10.
11.
12.
13.

14.
15.
16.

begin
if a = undefined then return(“no”);

y + a; if a = A then exit;
if (p(a) E MO) or (label(p(a)) = 1 and p(a) 4 M2) then y + p(a)

else if(p(p(a)) E MO) or (label(p@(a))) = 1 and p@(a)) $ MA then Y + p(p(a));
(to begin, check the path between y and R}

z+ y;
if label(z) = 0 then begin

z + P(Z)
else z + PM));
while z E T(H) do begin

if z 4 M2 then return(“no”) else unmark z;

z + P(P(Z))
end;
{check whether an appropriate number of nodes remain marked}
if (y = p(p(a))) and (label(a) = 0) then {we know that p(a) E M2}

unmark p(a);

if (c,, + cl + c2 > 2) or ((co + cl + c2 > 1) and (y not marked)) then
return(“n0”);

(finally, check conditions 2.2 and 2.3)

B. Jamison. S. Olariu / Theoretical Computer Science I45 (1995) 329- 344 339

17. case y of
18 p(a): begin if IA(# 1 or II? # 1 or one of the vertices in A(E), B(a) is

“flagged” then return(“no”)
else flag the vertices in A(a), B(a);

19. if label(a) = 0 and (II?(y)1 # 1 or B(y) contains a “flagged” vertex)
then return(“no”)

20.
else flag the vertex in B(y);
if label(u) = 1 and (IA(y)1 # 1 or A(y) contains a “flagged” vertex)
then return(“no”)
else flag be vertex in A(y)

21. end;
22. p(p(cr): begin if label(a) = 0 and (IB(a)l # 1 or IA(p(a))l # 1 or IA(y)l # 1 or

B(a), A(p)), A(y) contain “flagged” vertices
or B(p(a)) # 0) then return(“no”)

else flag the vertices in B(a), A(p(ol)), A(y);

23. if label(a) = 1 and (IA(a)1 # 1 or jB(y)l # 1 or IB(p(a))l # 1 or A(u),
B(y), B(p(u)) contain “flagged” vertices

or A(p(a)) # 0) then return(“no”)
else flag the vertices in A(a), B(y), B(p(cc))

24. end
25. endcase;
26. if 01 # y then flag x
27. end; {Test _ Admissible)

Fact 6. The path (I’) in T(H) from o! to R is admissible if, and only if the statement return
“no” is not executed in Test _ Admissible.

The proof of Fact 6 can be found in [6]. We note that by virtue of Facts 5 and 6,
Theorem 1 can be reformulated as follows.

Theorem 2. Zf H is a P4-reducible graph, then H + x is a P,-reducible graph if, and only

if the statement return(“no) is not executed in Steps 2.1 and 2.2.

To make our arguments more transparent, we further refine Step 2.3 as follows

Step 2.3 [H + H + x; update (T(H), L(H))]
if u = y then

Update _ 1
else

Update _ 2;

Here, Update _ 1 is reminiscent of the way Corneil et al. [4] update the cotree once
they know that x is contained in no P4 in H + x. The procedure Update-2 deals with

340 B. Jamison, S. Olariu / Theoretical Computer Science 145 (1995) 329-344

the more general case where the path in T(H), though admissible, is known to contain
a special node, namely y. T(H) is altered to represent the canonical cotree of H + x.
The details of these two procedures are spelled out next.

Procedure Update - 1;
(x is contained in no P4 in H + x;
wedo:HcH+x; T(H+x)cT(H)+x;L(H+x)cL(H)}

1. begin
2. if a = .4 then
3. if all nodes in T(H) were marked and subsequently unmarked then

4. add x as a child of R

5. else {no node in T(H) was marked}
6. if d(R) = 1 then

7. make x a child of the (only) child of R

8. else begin
9. make the old root and x children of a new O-node 8;

10. make 8 the only son of the new root
11. end
12. else (now a is the only marked node in T(H)}
13. if label(a) = O(1) then
14. if &(a) = l(d(a) - md(a) = 1) then begin

15. 1 c unique marked and unmarked (never marked) child of a in T(a);

16. if 1 is a leaf in T(H) then begin
17. make A, x children of a new node 8;
18. make 0 a child of a

19. end
20. else
21. make x a child of 1
22. end
23. else begin {now ml(a) # 1 (d(a) = md(a) # l)}
24. add every marked child of a to a new node 8 with label(e) = label(a);
25. if label(a) = 0 then begin
26. make x, 8 children of a new node 8’;
27. make 8’ child of a

28. end
29. else begin
30. make 8 a child of p(a);

31. make x, a children of a new node 0’;
32. make 8’ a child of 8
33. end
34. end
35. end; {Update_ l}

B. Jamison, S. Olariu / Theoretical Computer Science 145 (1995) 329-344 341

To specify the details of the procedure Update_2, we shall find it convenient to
introduce the following notation:
l write A(a) = {a}, whenever [A(= 1;
l write B(E) = {b}, whenever IB(ol)l = 1;
l write A(y) = {c}, whenever IA(y)l = 1;
l write B(y) = {d}, whenever IB(y)l = 1;

if y # p(a) then
l write A(p(a)) = {t} whenever IA(p(a))l = 1;
l write B(p(or)) = {t’} whenever IB(p(a))(= 1;

For the purpose of justifying our way of updating the tuple (T(H), L(H)) in Step 2.3
we need the following intermediate result (see [6]).

Fact 7. x is the endpoint of a unique P4 in H + x g and only if, y is a l-node.

Procedure Update _ 2;
{x is contained in precisely one P4 in H + x;
the procedure performs H c H + x and updates T(H) and L(H) accordingly}

1. begin
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

if label(y) = 1 then begin
T(H + x)+ T(H);
L(H + x) + L(H) u {x};
end

else hegin {now y is a O-node}

L(H + x) + L(H) u {b};
remove b from T(H);
case a of

1: if B(y) = 0 then begin
add a as a child of y;
add x as a child of p(y);

remove a from T(H)

end
else begin

make a, c, children of a new O-node 8;
make 8, x children of a
end;

0: begin
if B(y) = $ then

add x as a child o p(y)

else begin
make p(a) and c children of a new O-node 8;
make 8 and x children of a new l-node 8’;
make 8’ a child of y;

end;

342 B. Jamison, S. Olariu J Theoretical Computer Science I45 (1995) 329-344

27. if md@) = 1 then begin
28. let IX’ be the marked and subsequently unmarked child of a;

29. if LX’ is a leaf in T(H) then
30. make LX’ child of p(a)

31. else begin
32. make every child of a’ a child of p(a);

33. remove a’ from T(H)
34. end;
35. remove a from T(H)
36. end;
37. unmark a, unless already removed;
38. if y is marked then unmark y
39. end
40. endcase
41. end; {Update}

Fact 8. The cotree T(H + x) returned by Step 2.3 is the canonical cotree of H + x.

Our next result shows that the iteration consisting of processing x E G - H takes
time proportional to the degree of x. The reader can find the proof in [6].

Theorem 3. Given a P,-reducible graph H specified by (T(H), L(H)) and a given vertex
x $ H, the algorithm Recognize performs in time O(do(x)) one of the following:
(i) either determines that H + x is not a P,-reducible graph, or else

(ii) incorporates x into H, updating T(H) and L(H) accordingly.

5. A tree representation for P4-reducible graphs

Let G be a Pa-reducible graph represented by the tuple (T(G), L(G)). We now
address the problem of efficiently constructing the pr-tree representation of G. For this
purpose we shall use the fact that T(G) is the canonical cotree of G (i.e. the cotree
corresponding to the canonical cograph C(G) of G), and that every vertex in L(G) is
endpoint of precisely one P4 in G. Our arguments make use of the following result
whose proof can be found in [6].

Theorem 4. For every u E L(G) such that uvwz is a P4 in G with v, w, z in T(G), there
exist a unique O-node A(u) and a l-node A’(u) in T(G) satisfying

4u) = p(z); X(U) = p(w); n,(u) = P@(U)), (11)

Furthermore,

either A(u) = p(v) or else A”(u) = p(v) with A(u) = p(nl’(u)). (12)

B. Jamison, S. Olariu / Theoretical Computer Science 145 (1995) 329-344 343

Since for every vertex u in L(G) there is a unique A(u) with the properties mentioned
in Theorem 4, we shall write simply ,I, A’, I” dropping the reference to u.

To construct the tree representation of a P,-reducible graph G, we need a way of
incorporating the vertices of L(G) into the tree structure. For this purpose, a new type
of node is needed; this is the 2-node which has precisely two children: a O-node and
a l-node. Obviously, the 2-node corresponds to the 0 operation as in (*). The details
of theis tree construction are spelled out in the following procedure.

Procedure Build-treel(G);
(input: a P4-reducible graph represented as (Z’(G), L(G))
Output: a tree n(G), rooted at R;}

1.
2.

3.

4.

5.

6.

7.

8.

9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.

begin

Tl(G) .- T(G);
while L(G) # 8 do begin

pick an arbitrary vertex u in L(G);
find u, w, z in Tl(G) such that uuzw is a P4 in G;
Iz + p(z); I’ + p(w); ;I” +- p(u);
create a 2-node 8;
add u as a child of 4

if I = A” then begin

if d(X) # 2 then begin

add /3 as a child of I’;
add il and a new l-node r as children of /L?;
add v, w as children of t
end

else begin

add I, I’ as children of j?;
add fl as a child of p(X);
add u as a child of 1
end

else begin

add A, A.” as children of /?;
add w as a child of A”;

if d(L) # 2 then
add fi as a child of I

else begin

add b as a child of p(Z);
remove I’ from n(G)
end

end;

L(G)+ L(G) - {u>
31. end;

344 B. Jamison, S. Olariu / Theoretical Computer Science 14s (1995) 329-344

32. if d(R) = 1 then R t unique child of R
33. end;

The following result argues about the correctness and the running time of proced-
ure Build-treel. More precisely, we have the following theorem whose proof can be
found in [6].

Theorem 5. The tree Tl(G) returned by the procedure Build-tree1 is precisely the

pr-tree corresponding to G. Furthermore, Tl(G) is constructed in linear time.

References

[l] C. Berge, Graphs and Hypergraphs (North-Holland, Amsterdam, 1973).
[Z] D.G. Comeil and D.G. Kirkpatrick, Families of recursively defined perfect graphs, Congr. Numer. 39

(1983) 237-246.
[3] D.G. Corneil, H. Lerchs and L.S. Burlingham, Complement reducible graphs, Discrete Appl. Math.

3 (1981) 163-174.
[4] D.G. Comeil, Y. Per1 and L.K. Stewart, A linear recognition algorithm for cographs, SIAM J.

Computing 14 (1985) 926934.
[S] B. Jamison and S. Olariu, P,-reducible-graphs, a class of uniquely tree representable graphs, Stud.

Appl. Math. 81 (1989) 79-87.
[6] B. Jamison and S. Olariu, A linear-time algorithm to recognize PCreducible graphs, in: Proc. 9th Conf

On Foundations of Software Technology and Theoretical Computer Science, Bangalore, India, 1989,
Lecture Notes in Computer Science, (Springer, Berlin, 1989) 1-19.

[7] H.A. Jung, On a class of posets and the corresponding comparability graphs, J. Combin. Theory Sci.
(B) 24 (1978) 125-133.

[S] H. Lerchs, On cliques and kernels, Dept. of Computer Science, University of Toronto, March 1971.
[9] H. Lerchs, On the clique-kernel structure of graphs, Dept. of Computer Science, University of

Toronto, October 1972.
[lo] D. Seinsche, On a property of the class of n-colorable graphs, J. Combin. Theory Ser. B 16 (1974)

191-193.
[l l] L. Stewart, Cographs, a class of tree representable graphs, MSc. Thesis, Dept. of Computer Science,

University of Toronto, 1978, TR 126/78.
[12] D.P. Sumner, Dacey Graphs, J. Australian Math. Sot. 18 (1974) 492-502.
[13] J.H. Muller and J. Spinrad, Incremental modular decomposition, J. ACM 36 (1989) 1-19.

	Old Dominion University
	ODU Digital Commons
	1995

	A Linear-Time Recognition Algorithm for P4-Reducible Graphs
	B. Jamison
	S. Olariu
	Repository Citation
	Original Publication Citation

	PII: 0304-3975(95)00016-P

