Old Dominion University

ODU Digital Commons

Computer Science Faculty Publications Computer Science

1990

Pipelining Data Compression Algorithms

R. L. Bailey

R. Mukkamala
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience fac pubs

b Part of the Computer and Systems Architecture Commons, Databases and Information Systems

Commons, Software Engineering Commons, and the Theory and Algorithms Commons

Repository Citation

Bailey, R. L. and Mukkamala, R., "Pipelining Data Compression Algorithms" (1990). Computer Science Faculty Publications. 112.
https://digitalcommons.odu.edu/computerscience_fac_pubs/112

Original Publication Citation

Bailey, R. L., & Mukkamala, R. (1990). Pipelining data compression algorithms. Computer Journal, 33(4), 308-313. doi:10.1093/
comjnl/33.4.308

This Article is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in
Computer Science Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact

digitalcommons@odu.edu.

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_fac_pubs?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_fac_pubs?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_fac_pubs/112?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

Pipelining Data Compression Algorithms

R. L. BAILEY* AND R. MUKKAMALA**

* UNISYS Defense Systems, Virginia Beach Operations, Virginia Beach, VA 23452, USA
** Department of Computer Science, Old Dominion University, Norfolk, VA 23529, USA

Many different data compression techniques currently exist. Each has its own advantages and disadvantages.
Combining (pipelining) multiple data compression techniques could achieve better compression rates than is possible

with either technique individually. This paper proposes a pipelining technique and investigates the characteristics of
two example pipelining algorithms. Their performance is compared with other well-known compression techniques.

Received February 1990

1. INTRODUCTION

In everyday life, computers manipulate or use data in
many forms such as programs, files, messages, and many
other types of information. Nearly all data contains
some redundant information. The objective of a data
compression algorithm is to transform redundant data
into a form that is smaller but still retains the same
information. When data is compressed, a trans-
formation occurs such that the various character strings
of the data are replaced with one or more code words.
This relationship can be implemented in various ways.
Regardless of the method utilized, an effective com-
pression algorithm must output fewer bits than are
input.

Data compression can be useful for various data pro-
cessing applications. Computer networks require data
to be transmitted from one site to another. Data com-
pression can reduce communication costs in computer
networks by compacting messages before transmission.
Data compression can also reduce the storage require-
ments of databases and file systems, and thereby increas-
ing the effective capacity of storage systems.

In general, data compression techniques can be classi-
fied into two categories: static and dynamic (sometimes
referred to as adaptive). Static data compression algor-
ithms are effective when the frequencies of occurrence
of characters (or strings) do not significantly change
within a given data set.* When the input data sets
do not exhibit this uniformity, static data compression
algorithms cannot result in optical codes. Dynamic (or
adaptive) data compression algorithms are designed to
adapt to such nonuniformities in the input data by
keeping track of the changes in character probabilities
within a data set.

Currently, a number of static and dynamic data com-
pression algorithms have been suggested in literature. ?
Each algorithm is shown to be effective in compressing
data with certain characteristics (see Section 2 for
details). There is no universal data compression algor-
ithm that can optimally compress all data sets. In this
paper, we suggest a new pipelining technique that com-
bines two or more coding algorithms to compress data
more effectively than the individual algorithms. Our

* In this paper, a data set is defined as a sequence of characters.
The likelihood of any given character occurring in a data set is referred
to as a character probability.

0®//:sdy WOl papeojumo(]

current efforts represent some initial steps in cons
structing a universal data compressor using plpelme(ﬁ
structures.The choice of the candidate algorithms as3
well as their ordering within the pipeline influence theg
performance of the proposed technique. In this papers
we present a summary of the results obtained by some3
pipelined algorithms. The initial efforts only considered
pipelining of two algorithms. 3

The remainder of the paper is organized as followsE
Section 2 examines several existing data compressiom
algorithms. The rationale for the proposed pipelinings
technique and the criteria for the candidate algorithms™ >
selection are discussed in Section 3. Section 4 presents:
the initial results obtained with some candidate algor-
ithms. Fimally, Section 5 summarizes our observation
and discusses proposals for future work.

2. DATA COMPRESSION ALGORITHMS

Static data compression algorithms were among the
first attempts at reducing data size. Huffman coding? i)
among the best known static data compression algor-a
ithms. Huffman coding is implemented in a binary treeo
using a prefix coding scheme to assign variable lengthE.
code words. Minimum redundancy is achieved bys
assigning the shortest codes to the most probable characc
ters, while the longest codes are assigned to the leasté
probable characters. Unless the character probabilitiess
are known beforehand, two passes are required. The=
first pass analyzes the character probabilities and them
second pass performs the actual compression. Huffmano
coding is typical of static compression techniques 1nsofaro
as it is optimal only when the character probabilities dOU
not vary within a given source. o

Adaptive compression algorithms can dynam1cally3
respond to changes in the input source.? Some of theseﬁ
techniques have been modifications to static methods.S
Several adaptive variations of Hoffman coding have®
been devised.**#1 These methods utilize counters to
maintain the current probability of each character. The
counters are used to dynamically modify the code map-
ping. With this technique, the more probable characters
are moved closer to the root of the tree and therefore,
receive shorter code words. Mikinen!® suggests using
transpose and interval coding to maintain the code
mapping in a list. With these methods, only one pass is
needed to encode the data.

d'€8v//€/80€/v/Fed

308 THE COMPUTER JOURNAL, VOL 33, NO. 4, 1990

PIPELINING DATA COMPRESSION ALGORITHMS

Ziv and Lemple'>' devised a coding scheme that was
radically different from the Huffman style. Lempel-Ziv
coding uses a parsing technique to dynamically encode
the input source. This scheme parses strings of charac-
ters that do not exceed a prescribed length and builds
a table to map these strings to fixed length code words.
The more frequently occurring strings are grouped into
longer strings which result in many characters being
represented by a single fixed length code word. The
length of the code word is dependent upon the size of
the table used to contain the string/word code mapping.
For example, a table size of 4096 requires a 12 bit code
word. The code word is simply the table address of the
corresponding string.

LZW coding is a variable of the Lemple-Ziv
technique.'* In Welch’s implementation, the table is
initialized with the character set and rather than con-
taining strings of a prescribed length, contains fixed
length (code word, character) pairs. The table is built
by parsing off the longest recognized (in the table) string
and using the subsequent character to form a new table
entry. This allows a relatively small table to be utilized
and provides high compression ratios for most inputs.
The LZW algorithm has gained wide acceptance and is
used in many data compression programs, such as Unix
Compression'? and the popular PC archiving utilities
ARC! and PKPAK.! The wide use of LZW can be
attributed to its speed, high compression ratios, and
ease of implementation.

Another adaptive data compression technique was
described by Jakobsson.® It is similar to the LZW algor-
ithm insofar as it uses a parsing method. However, its
dictionary is built with a forest of trees rather than a
table. Strings of a predetermined length are parsed from
the input and added to the dictionary trees. A separate
tree is constructed for each character of the input set:
all strings beginning with the character a are added to
tree a, strings beginning with b are added to tree b, etc.
As the dictionary forest is built, subsequently longer
strings can be parsed off and encoded with the tree
address.

A recent innovation in adaptive data compression
involves the use of splay trees to encode characters.’
With splay tree coding, characters are encoded in a
manner very similar to adaptive Huffman coding. A
variable length prefix code is constructed based upon
the characters position in the tree. In order to produce
an optimal code, the tree must be balanced. If the tree
becomes unbalanced, then some characters will require
more bits for encoding than would be required if the
tree was properly balanced. The advantage of splay
tree coding is its ability to move the more probable
characters closer to the top of the tree while quickly
and easily balancing the tree. Splaying accomplishes this
by twisting the tree branch around the current character.
The result of this operation is that the distance from the
current character to the root is shortened by a factor of
2. A side benefit is that it tends to group the characters
with similar probabilities.

3. RATIONALE FOR PIPELINING
ALGORITHMS

Individually, each of the various data compression
algorithms have certain strengths and weaknesses. To

compare these algorithms, the characteristics of redun-
dancy must be examined.

Some data compression techniques take advantage of
character redundancy to compress data. Prefix code
methods, such as Huffman coding and splaying utilize
this technique. The prefix code methods tend to perform
well on data where relatively few characters occur fre-
quently. Consider the following data example with 52
characters:
a;b;c;d; e; f, 85 h; 15 J; ks I, m; g

o;p; ;s us vswixiys z; (1)

In this example, every other character is a semi-colon
and therefore has a probability of 0.5. The remaining
characters are equally distributed and each has a prob-
ability of 0.0192. If fixed length codes were used to
represent the 27 unique characters, each code would be
a minimum of 5 bits in length. The resulting data length
would be at least 52 * 5 or 260 bits. If Huffman encoding
is used, the semi-colon, being the most probable charac-
ter, could be represented by 1 bit. The remaining charac-
ters, all of equal probability, would each require 5
or 6 bits (details of computing these are omitted for
brevity). The total data length would then be (26 *
1) + (16 * 6) + (10 * 5) or 172 bits. This results in com-
pressing the data to 66% of its original size.

String redundancy occurs when the same string of
characters appears two or more times in the data. Data
compression techniques that use string parsing, such as
LZW or dictionary trees, exploit this data characteristic.
In both of these algorithms, strings of characters are
parsed from the data and are used to build a dictionary
of strings. Each string is assigned a code based upon the
address of the string within the dictionary. As the length
of the repeated strings increase, so does the rate of
compression. The rate of compression also increases as
the frequency of string occurrence increases. Consider
this example with 55 characters:

aababcabcdabcdeabcdefabcdefgabedef
ghabcdefghiabcdefghij (2)

If fixed length codes were used to represent the 10
unique characters (a—j), each code would be a minimum
of 4 bits in length. The resulting data length would be
55 # 4 or 220 bits. To compress this data using the LZW
algorithm, a table size of 32 could be used, requiring a
fixed length code word size of 5 bits. Following the
LZW algorithm, the first ten table entries are initialized
with the 10 unique characters. After initialization, the
string parsing begins. When complete, the algorithm
will reduce the example to 19 code words of 5 bits each
for a total of 95 bits (details of computation are omitted
for brevity). This effectively compresses the data to
43% of its original size.

If LZW encoding is applied to the first example,
no compression occurs. With the 27 characters in this
example, 5 bits are required for encoding. This allows
a table size of 32. The reason that no compression occurs
is that this data contains redundant characters, but
does not contain any redundant strings. Since the LZW
algorithm finds no redundant strings, it must send a
separate code word for each character. The result is
52 * 5 or 260 bits. If the table size is increased, the data
would be expanded rather than compressed.

THE COMPUTER JOURNAL, VOL 33, NO. 4, 1990 309

8102 Jaquieoa(GO Uo Jasn AlisiaAlun uoluiwoq PO Aq €81/ 7 E/80€/v/EEN0BNSqR-0j01E/|ulod/woo dnooiwapeoe//:sdiy Wwoll papeojumoq

R. L. BAILEY AND R. MUKKAMALA

If the data string in the second example is compressed
using Huffman codes, some compression occurs, but, it
is less than in example 1. Example 2 contains some
redundant characters, but there is less character redun-
dancy than in example 1. Since the Huffman algorithm
compresses redundant characters, less compression is
possible. In this instance, the character probabilities are
more equally distributed. The number of output bits
will be 173, resulting in a compressed size 77% of the
original.

These examples show that the various algorithms
behave differently with a variety of data. With character
redundancy, the algorithms which use variable length
code words (e.g. Huffman,® Splay’) outperform the
string parsing algorithms. If the data exhibits string
redundancy, the string parsing algorithms perform
better. It should be noted that if the data contains
string redundancy, it will always have some character
redundancy. The converse, however, is not true.

Given these observations, it appears to be desirable
to combine string parsing with variable length code
words. The advantage of combining the two techniques
would be to represent strings as variable length code
words. If this were possible, more efficient compression
should be obtainable. One important observation was
made while examining the output of the string parsing
algorithms: for every occurrence of a given redundant
string, the algorithms output the same code word to
represent it. This is another form of redundancy. If this
redundancy could be reduced or eliminated, further
compression would be possible. The proposed pipe-
lining scheme includes this feature. Fig. 1 illustrates
the concept of a two-stage pipelining of compression
algorithms.

| | FIXED | | VARIABLE
DATA | STRING | LENGTH | PREFIX | LENGTH
------- >| PARSING |--------=>| CODE |-----==-=--==>
| ALGO. | CODE | ALGO. | CODE
| | WORDS | | WORDS

Figure 1. Illustration of a 2-Stage Pipelining Algorithm.

As shown here, the redundant strings were first com-
pressed utilizing one of the string parsing algorithms.
The output of this was then pipelined directly into a
variable length code word algorithm. The sequence of
the algorithms is critical. If the order of the algorithms
were reversed, the string parsing algorithm would con-
vert the variable length code words into fixed length
code words. This would cause the advantage of the
variable length code words to be lost.

4. RESULTS

To determine the efficacy of the proposed pipelining
scheme, we considered two pipelining algorithms. The
first algonthm combines a dictionary forest as described
by Jakobsson® with the splay algorithm of Jones.” The
second algorithm combines LZW'* with splaying.” The
splay algorithm was chosen rather than Huffman coding,

because it dynamically adapts to changes in probability.
The performance of these two algorithms is compared
with some of the other existing data compression algor-
ithms.

Two sets of data files were used. The first set of data
files consisted of a mixture of actual files along with
several files that were contrived to provide significant
redundancy. These are described in Table 1. The second
set of data files (in Table 3) was chosen to further
explore the tendencies discovered during the first set of
tests. Each algorithm was tested 1ndxv1dually beforeo
testing the combined pipelined versions. Fors
comparison, the Unix Compress program and thes
PKPAK program were also run.

e

Table 1. Data Files—Set-1

File # | Contents 8
1| A-Z (64X) 3
2| A-Z,AA-ZZ,... AAAAA-ZZZ77 &
3| A-H (8X) 3
4 | A-H,AA-HH,..,AAAAA-HHHHH | 32
5 | ABRACADABRA (700X) 3
6 | PASCAL SOURCE 1 =
7 | PASCAL SOURCE 2 5
8 | PASCAL SOURCE 3 5
9 | PASCAL SOURCE 4 Z
10 | OBJECT 1 &
11 | OBJECT 2 s
12 | OBJECT 3 2

Table 2 summarizes the results of test 1. It lists the o
original file sizes along with the compressed file sizest 2 e
with each of the data compression algorlthms g
considered. The last two columns of the table (i.e.
Forest-Splay and LZW-Splay) are the two plpelmmg
algorithms considered here. The performance of these S
pipelining algorithms is co J)ared with five other algor- 5
ithms: Forest of trees,’ Splay,” LZW,"* Unix%
Compress,'”? and PLPAK."! We make the followmgc
observations from these results:

OIU w

[Except for the dictionary forest algorithm, all the S
other six algorithms were able to achieve some meas- &
ure of compression on all of the test files. For files 8 3
10 and 11, the forest algorithm failed to compress 3
the data.

@ In every test, the pipelined forest-splay algorithms B
produced better compression rates than either algor- &
ithm alone.

@ Both the pipelined forest-splay and the pipelined
LZW-splay excelled in the compression of small files
with significant redundancy.

@ All of the LZW algorithms (individual and pipelined)
produced similar results. They had excellent com-
pression on the program sources.

19q

t The file sizes are in bytes.

310 THE COMPUTER JOURNAL, VOL 33, NO. 4, 1990

PIPELINING DATA COMPRESSION ALGORITHMS

Table 2. Comparison of Data Compression Algorithms with Data Set-1

File | Orig. | Forest | Splay | LZW Unix | PKPAK | Forest- | LZW-
Size Comp. Splay | Splay
1 1793 571 1280 347 351 349 571 290
2 953 366 327 383 388 409 286 346
3 34 30 38 31 36 34 19 26
4 131 66 55 72 77 75 47 61
5] 9053 2728 | 3714 655 660 658 1114 584
6 | 10341 5340 | 7010 | 4136 4141 4088 5291 4327
7| 5444 3320 | 3618 | 2535 2540 2517 2840 2581
8 | 15077 8905 | 9494 | 6152 6120 6117 7924 6358
9| 6688 4454 | 4338 | 2882 2887 2858 3218 2943
10 | 15284 | 19326 | 14592 | 15782 | 14157 13770 14514 | 13476
11 343 372 295 274 299 296 285 272
12 | 2594 2241 | 2020 | 1812 1891 1856 1864 1726

@ Except for the very small, highly redundant files,
the pipelined LZW-splay algorithms performed even
better than the pipelined forest-splay algorithms.

@® LZW-splay demonstrated the highest compression
rate for object files.

@ LZW-splay showed the best overall performance.
On average, it excelled by 6% on both the highly
redundant files and the binary files. It was only 1%
less efficient on the source files.

Table 3. Data Files—Set-2

File # | Contents
13 | GRAPHICS 1
14 | GRAPHICS 2
15 | GRAPHICS 3
16 | GRAPHICS 4
17 | GRAPHICS 5
18 | DATABASE 1
19 | DATABASE 2
20 | CSOURCE 1
21 | C SOURCE 2
22 | CSOURCE 3
23 | C SOURCE 4
24 | C SOURCE 5
25 | CSOURCE 6

26 | TEXT 1
27 | TEXT 2
28 | TEXT 3
29 | TEXT 4
30 | TEXT 5
31 | OBJECT 1
32 | OBJECT 2
33 | OBJECT 3
34 | OBJECT 4
35 | OBJECT 5

The second set of tests was chosen to further explore
the characteristics discovered in the first round of tests.
The results are shown in Table 4. These tests were
applied only to the LZW and the pipelined LZW-splay
because they excelled in the compression of the actual
files. Although the pipelined forest-splay algorithms
produced excellent results on the files of fewer than
500 bytes, this particular characteristic has a minimum
benefit for most data compression applications. Small
files generally do not get compressed because there is
little to be gained when they are compressed. This
characteristic could, however, be useful for data trans-
mission where the packet sizes are small. This group of
tests concentrated on a variety of actual files: graphics
files, database files, C sources, text files and binary
object files.

After reviewing the results of Table 4, the following
observations were made:

@ Graphics files 1 and 2 were line art drawings. These
contained an abundance of white space. The large
white space provided significant redundance for com-
pression. LZW-splay produced the best results on
this type of file.

@ Graphics files 3, 4, and 5 were black and white
scanned photographs. These images contained many
areas of varied contrast. The shading in the image
was accomplished by various dithered patterns.
Because of the many shade changes in the images,
there was less redundance than in 1 and 2. LZW
showed a slight advantage on 3 and 4, but LZW-splay
did better on 5. This image had a more pronounced
pattern which provided for more redundance than 3
or 4.

@ In the C source files, LZW-splay produced greater
compression when the file size was less than 1000
bytes.

@ Text files 1-4 were an assortment of documentation
files. On the larger files, LZW was better by a few
percentage points, while LZW-splay was again
slightly better at compressing the small files.

@ Text file 5 was a collection of articles from USENET
and was the largest test file. In this instance, the
LZW programs performed better than LZW-splay.

THE COMPUTER JOURNAL, VOL 33, NO. 4, 1990 311

8102 Jaquieoa(GO Uo Jasn AlisiaAlun uoluiwoq PO Aq €81/ 7 E/80€/v/EEN0BNSqR-0j01E/|ulod/woo dnooiwapeoe//:sdiy Wwoll papeojumoq

R. L. BAILEY AND R. MUKKAMALA

Table 4. Comparison of Data Compression Algorithms with Data Set-2

File Orig. LZW Unix | PKPAK | LZW-
Size Comp. Splay
13| 5437 1303 | 1391 1297 | 1285
14| 17268 | 3003 | 3037 3026 | 2616
15| 18768 | 7128 | 7452 7590 | 7663
16 | 14471 | 5136 | 5336 5360 | 5573
17| 19974 | 11906 | 11369 | 11491 | 11408
18| 25856 | 5235 | 6107 5931 | 5615 g
19| 35072 | 6857 | 8293 8393 | 7359 5
20| 388 | 1974 1979 1980 | 2003 2
21| 11073 | 5568 | 5584 5555 | 5748 =
22 123 110 115 112 99 5
23| 1012 602 606 604 561 E
24| 3697 | 2021 | 2026 2028 | 2046 <
25| 19374 | 8348 | 8062 8059 | 8575 8
26| 4607 | 2179 | 2184 2146 | 2233 3
27| 8959 | 4502 | 4507 4494 | 4709 &
28 720 474 479 476 451 3
29 | 140355 | 50994 | 43508 | 44291 | 48178 3
30 | 967086 | 860627 | 571776 | 607370 | 656669 s
31| 25462 | 23514 | 23999 | 23986 | 22154 =
32| 34678 | 29808 | 30124 | 30120 | 27775 5
33| 12303 | 10986 | 11303 | 11258 | 8955 3
34 | 51749 | 43677 | 45289 | 44390 | 35741 2
35| 2994 | 2031 2165 2098 | 2036 2
£
3
<

It is also interesting that the Unix Compress program
achieved significantly better compression on this file.
This can be attributed to the fact that Compress can
utilize 16 bits, providing a string table of 64 K bytes,
while the other LZW based programs (including
LZW-splay) use a maximum of 12 bits for a 4 K table
size. The larger dictionary seems to provide a big
advantage when compressing very large files.

® LZW-splay consistently provided higher com-
pression on the binary files.

5. CONCLUSIONS

The idea of pipelining two different data compression
algorithms is a viable one. Depending upon the data
characteristics and the selection of appropriate data
compression algorithms, pipelining can improve data
compression ratios. The pipelining concept retains the
general characteristics of the individual algorithms and
usually enhances the strengths of each while minimizing
their weaknesses. Like other universal dynamic com-
pression techniques, this is a one pass process which
adapts to provide excellent compression ratios for a
variety of inputs.

Pipelined algorithms seem to perform best at the
opposite extremes of redundancy. They exhibit superior
compression ratios when the redundancy is either very
slight or very pronounced. Also, they tend to excel in
the compression of small files.

Both the forest-splay pipeline and the LZW-splayy
pipeline could be useful for compressing small data files®
or for compressing small packets of data for trans-Z
mission. The LZW-splay pipeline appears to be par-2
ticularly useful for obtaining maximum compression ony
files with significant redundance, binary object files and3
graphics image files. The major disadvantage of pipe-3-
lining algorithms would appear to be the overhead ofZ
running two completely different algorithms sequen-2.
tially. This study did not address the execution time of}
pipelined compression. This is an area that should be=
the topic of future work. @

Another area that would seem to warrant further;
consideration is to add some form of intelligence to the_
process to allow the use of multiple algorithms. The”
decision making process could dynamically evaluate theg
data being compressed to determine which algorithm(s)g
would provide the best compression ratio. It is con-o
ceivable that when the data is not consistent throughoutw
the entire file, that the best compression ratios woulds
be obtained by using different data compression algor-
ithm(s) for portions of the data.

REFERENCES

1. ARC, ARC File Archive Utility, Version 5.1, System
Enhancement Associates, Wayne, NJ (1986).

2. C.J. Date, An Introduction to Database Systems, Volume
1, Fourth Edition, Addison-Wesley (1986).

312 THE COMPUTER JOURNAL, VOL 33, NO. 4, 1990

PIPELINING DATA COMPRESSION ALGORITHMS

3. N. Faller, An Adaptive System for Data Compression,

Record of the 7th Asilomar Conference on Circuits, Sys-
tems and Computers (Pacific Grove, CA, Nov. 1973),
Naval Postgraduate School, Monterey, CA, pp. 593-597.

4. R. G. Gallager, Variations on a Theme by Huffman,

IEEE Transactions on Information Theory IT-24, (6),
668-674 (1978).

5. D. A. Huffman, A Method for the Construction of Mini-

mum Redundancy Codes, Proceedings of the IRE 40, (9),
1098-1101 (1952).

6. M. Jakobsson, Compression of Character Strings by an

Adaptive Dictionary Bit 25, (4), 593-603 (1985).

7. D. W. Jones, Application of Splay Trees to Data Com-

pression, Communications of the ACM 31, (8), 996-1007
(1988).

8. D. E. Knuth, Dynamic Huffman Coding, Journal of

Algorithms 6, (2), 163-180 (1985).

9. D. A. Lelewer and D. S. Hirschberg, Data Compression,

10.

11.
12.

13.
14.
15.

16.

E. Mékinen, On Implementing two Adaptive Data-com-
pression Schemes, The Computer Journal 32, (3), 238-240
(1989).

PKPAK Fast! File Archival Utility, Version 3.6, PKware,
Inc., Glendale, WI (1988).

UNIX User’s Manual, Version 4.2. Berkeley Software
Distribution, Univ. of California, Berkeley, California
(1984).

J. S. Vitter, Design and Analysis of Dynamic Huffman
Codes, Journal of the ACM 34, (6), 825-845 (1987).

T. A. Welch, A Technique for High-Performance Data -

Compression, IEEE Computer 17, (6), 8-19 (1984).

J. Zivand A. Lempel, A Universal Algorithm for Sequen-
tial Data Compression, [EEE Transactions of Information
Theory IT-23, (3), 337-343 (1977).

J. Ziv and A. Lempel, Compression of Individual
Sequences via Variable-Rate Coding, IEEE Transactions
on Information Theory IT-24, (5), 530-536 (1978).

ACM Computing Surveys 19, (3), 261-296 (1987).

Announcements

3-6 SEPTEMBER 1990
UNIVERSITY OF DURHAM, U.K.

The Second International Conference on
Visual Search

Background

The term ‘Visual search’ has been used to
cover a range of activities from human cog-
nitive phenomena to applied problems, for
man and machine, in industrial, medical and
military environments. Since the oppor-
tunities for academic discussion of visual
search are generally restricted to a narrow
range of disciplines, workers in a particular
area can be unaware of recent developments
in related fields.

This is the second in a series of inter-

national conferences devoted exclusively to

all aspects of visual search processing. The
proceedings of the first international con-
ference on visual search was published by
Taylor and Francis in October, 1989.

Venue

The conference will take place at the Uni-
versity of Durham. Accommodation will be
in Grey College, within walking distance of
the lecture halls.

Invited Lecture

Prof. J. Beck

University of Oregan, U.S.A.

Keynote Speaker

Prof. L. Stark

University of California, Berkeley, U.S.A.
Sessions

Conference sessions will include (but not be
limited to) the following:

® Attention and Segmentation
® Eye Movements

® Computer Vision

® Search Modelling

® Applied Aspects of Search

There will also be a workshop. The con-
ference proceedings will be published.

Mailing Address

All correspondence and enquiries about the
conference should be addressed to:

Bell Howe Conference (VS)

1 Willoughby Street, Beeston, Nottingham
NG9 2LT. Tel: (0602) 436323; Fax: (0602)
436440

5-7 SEPTEMBER 1990
UNIVERSITY OF OXFORD

VLSI for Artificial Intelligence and Neural
Networks

International Workshop

An International Workshop on VLSI for
Artificial Intelligence and Neural Networks
is to be held at the University of Oxford on
the 5-7 September 1990.

Topics will include Prolog Machines, Lisp
Architectures, Functional Programming
Oriented Architectures, Knowledge Based
Systems, Neural Networks, Architectures for
Neural Computing, Logic Programming Sys-
tems, Garbage Collection Support, Content-
Addressable Memories, Hardware Accel-
erators, Symbolic Machines, Parallel Archi-
tectures.

The Programme Committee is drawn from
the UK, USA, Canada and France and has
been organised by Dr. Will Moore of the
Department of Engineering Science at the
University of Oxford and Dr Jose Delgado-
Frias of the Department of Electrical Engin-
eering, State University of New York at
Binghampton.

The aim of the workshop is to provide a
forum where Al experts, VLSI and Computer
Architecture designers can discuss the
present status and future trends on VLSI and
ULSI implementations of machines for Al
computing.

The workshop will be held in Jesus College
with meals and accommodation available on
the nights of the 4-6 September.

Further details are available. If you would
like further information please write, tele-
phone or fax:

CPD Unit, University of Oxford, Depart-

ment for External Studies, Rewley House,

Wellington Square, Oxford OX1 2JA

England.

Telephone: (0865) 270373—direct line
(0865) 270360—switchboard

Fax: (0865) 270708 (CPD Unit—Ext Stud)

23-25 OCTOBER 1990
BRIGHTON, UK

1990 ADA UK International Conference

The annual Ada Conference has become the
major event in the UK calendar, at which
those interested in the Ada language and its
environments meet to discuss and exchange
ideas on recent advances in Ada and its use.
The 1990 Programme is structured to allow
delegates to attend either the full conference
or those parts which are of particular interest
and relevance to their needs. Both full con-
ference and day registrations will be avail-
able.

The Conference will comprise Tutorial ses-
sions and submitted Papers. A non-exhaus-
tive list of topics will be:

® Real-Time

® Object-Oriented Design
® Long-Life Ada

® Ada 9X

® Secure Subsets

® Management Issues.

The Conference will be held at the Royal
Albion Hotel, which is located on the
seafront between the Marina and the Brigh-
ton Centre. Accommodation will be available
at the hotel or, if preferred, elsewhere in
Brighton.

Conference organised by Ada Language
UK Ltd, telephone +44 904 412740.

Mailing Address: c/o Computer Science
Department, University of York, Hesling-
ton, York YO1 5DD

THE COMPUTER JOURNAL, VOL 33, NO. 4, 1990 313

8102 Jaquieoa(GO Uo Jasn AlisiaAiun uoluiwoq PO Aq €81/ 7 E/80€/v/EEN0BNSqR-0j011E/|uliod/woo dnoolwapeoe//:sdiy Woll papeojumod

	Old Dominion University
	ODU Digital Commons
	1990

	Pipelining Data Compression Algorithms
	R. L. Bailey
	R. Mukkamala
	Repository Citation
	Original Publication Citation

	tmp.1544030538.pdf.YfQgy

