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A b s t r a c t - - A  logistic differential equation with a time-varying periodic parameter is used to model 
the growth of cells, in particular cancer cells, in the presences of chemotherapeutic drugs. The 
chemotherapeutic effects are modeled by a periodic parameter that modifies the growth rate of the 
cell tissue. A negative growth rate represents the detrimental effects of the drugs. A simple criterion 
is obtained for the behavior of the chemotherapy. 

Keywords - -Log i s t i c  growth, Periodic differential equation, Cancer, Chemotherapy, Bifurcation. 

1. I N T R O D U C T I O N  

The logistic growth model has been used in many cases as a basic model of both  cell growth 
and more particularly tumor cell growth [1-5]. There are various methods to model the effects of 
chemotherapy with the logistic model. One of the easiest is to assume the drug kills instantly, thus 
giving a pulsing type action. This type of model is investigated by Berenbaum [6], Pane t ta  [7], and 
Pane t ta  and Adam [8]. A more realistic method of modeling chemotherapy is to assume tha t  the 
chemotherapeutic effects are modeled by continuous or piecewise-continuous periodic functions 
which affect the growth rate in the logistic growth model [5]. These periodic functions al ternate 
the growth rate between a negative rate when the drug is present and a positive rate during 
the recovery stage. This is the method investigated in this paper. Because of the availability of 
closed form solutions to the logistic equation, this chemotherapeutic problem can be handled with 
analytical methods. Numerical solutions to this model have been used in [8] to model the effects 
of the chemotherapy on bone marrow. A similar model is discussed by Hallam and Clark [9] which 
describes a deteriorating environment through the use of decreasing growth rates and carrying 
capacities, and by Coleman et al. [10] who investigate positive periodic growth rates and carrying 
capacities. The model in this paper  investigates periodic forms of the growth rate parameter  by 
allowing this growth rate to be negative to model periodic chemotherapy. 

2. M O D E L  

The logistic growth model is modified so tha t  there is a variable growth rate to take into 
account chemotherapy. The general form is 

dy(t) - ry(t) ( [ 1 -  b(t)] - Y(---~) ) 
dt - -  , (1) 

where y(t) is the cell mass, r is the growth rate, K is the carrying capacity, and b(t) is a periodic 
function representing the chemotherapeutic effects on the cell mass. If b(t) =- O, then there are 
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no chemotherapeutic effects and the equilibrium is K,  while if b(t) = b < 1, then the equilibrium 
is (1 - b)K. Conversely, if b(t) - b _> 1, then the equilibrium is 0. If the term [1 - b(t)] is positive 
for all t, then there is tumor growth with a reduced growth rate and there will be a.n equilibrium 
between zero and K.  Conversely, if [1 - b(t)] is negative for some range of t, then there are 
regions of negative growth or cell kill, thus the possibility for a zero equilibrium. The object of 
this model is to determine conditions on b(t) such that  the equilibrium of equation (1) is zero. To 
reduce the problem to a simpler form, scale equation (1) by y(t) = Kx( t ) .  The resulting equation 
is 

dx(t) _ rx(t)  ([1 - b(t)] - x( t ) ) .  (2) 
dt 

The function b(t) can take on various periodic (period T) forms including the step type function 
of the form 

b, nT ~ t K a q-nT, 
b( t )= O, a + n r < t < ( n + l ) T ,  (3) 

or exponentially decaying piecewise periodic function 

b(t) = be a( t -~) ,  nT <_ t < (n + 1)T, (4) 

or the periodic function 

b(t) = bsin ( 2~ t • (5) 

3.  S O L U T I O N S  

There are various methods of solving equation (2) for specific cases of b(t), but  in general the 
equation is of Bernoulli type and can be solved exactly. The solution is 

xo er f t  (1-b(s)) ds 
x(t) = . (6) 

1 + f t  er f ds 

Using this solution and the fact that  b(t) is periodic, we can set up a difference equation, which 
is sometimes referred to as a first return map or Poincar6 map, that  describes the state of the 
cells at the beginning of each period. Equation (6) describes the growth of the tissue over each 
period where x0 is the initial cell mass of the period. The difference equation is 

7" fo(n÷l)T (1-b(s))  ds 
x n T e  n~ 

x(~+l)~ = (n+l)~ ~ ~ (7) 
1 + f 

Of interest is the stable equilibrium of this difference equation. Solving the equation 

r f (~+l )~  (1-b(s))  ds 
X e q e  n~ 

Xeq = f (n+l)r  ~ (8) 
1 + (Xeq/r) ~nr e r r  (1-b(¢))d~ d8 

for Xeq, we can determine the equilibria. They are 

xeq = 0, (9) 

r(erf~(:+l) ' (1-b(8))& 1)  

Xeq = f(n-{-1)-r e r f "  (1-b(¢)) d~ ds (10) 
dnT 

Equation (10) is equal to zero for (b(t)l = 1, which is the bifurcation from a positive stable 
equilibrium to a zero stable equilibrium. That  is, for 0 <_ (b(t)) < 1, equilibrium (10) is stable 
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and equilibrium (9) is unstable. For (b(t))  > 1, the stability switches and equilibrium (9) becomes 
stable while equilibrium (10) switches to unstable. Therefore, the cells have a zero equilibrium 

when 
(b(t)) > 1. (11) 

In the above, we define 

as the mean value of b(t). 

1~0~ (b(t)) -= - b(t) dt (12) 
T 

4.  S T E P  F U N C T I O N  

We can examine the special case of the step function form of b(t) (equation (3)) directly by 
examining the solution over each piece of the period r.  First, find the solution in the region 
nT  ~_ t < a + nT; then match it to the solution in region a + nT <_ t < (n  + 1)T. Doing this, we 
obtain 

(1 - b)x ,~  
z ( t )  = z . ,  + [ ( 1  - b )  - ' n r  < t < a + 

x(~+~) (13) 
x(~+~) + [1 - x (~+~) ]e - r ( t - ( a + '~ ) )  ' a + nT  < t < (n  + 1)T. 

Matching the two solutions at a + nT, we find 

( 1  - 
X(a+n~) = (14) 

x ~  + [(1 - b) - x~r]e- (1-b)  ~r" 

From this solution, we can find a difference equation that  relates the size of x( t )  at the beginning 
of one period (Xnr)  to that  of the next period (x(n+l)r) .  The Poincar~ map for equations (13) is 

1 
x(n+l)r = 1 + [[x~+[(1-b)-x~]e-(1-b)a~(l_b)x~. -- 1] e_r ( r_a) .  (15) 

The equilibria for this difference equation are 

xeq = 0, (16) 
1 - e r ( a b - r )  

xeq = 1 - (1/(1 - b) ) (e -arO -b) - b)e-r(~-~) " (17) 

This is just a special case of equations (9) and (10) where the bifurcation from equilibrium (17) 
being stable to equilibrium (16) being stable is ab = T. (Note that  this is the same result 
as (b(t))  = 1.) Figure 1 shows the bifurcation diagram distinguishing between the stable and 
unstable equilibria. 

5.  C O N C L U S I O N S  

Some variations can be made to this model to more accurately model chemotherapy. A few 
possibilities are varying the carrying capacity K (either increasing of decreasing) to model either 
the tumor bed effect (see [4,11]) or decaying carrying capacity due to cytotoxic build-up (see [9]). 
Another possibility is to allow cytotoxic effects to decay over each successive period. This can 
be due to drug resistance; the drugs have less affect on the cells over time. Incorporating these 
steps into the model can help it better model the effects of chemotherapy. 

This model gives a concise and general form for the bifurcation between reduced steady state 
cell survival and cell destruction. It can be the basis for studying the chemotherapeutic effects 
on both cancerous cell tissue and normal cell tissue such as bone marrow. If it is used with 
cancerous tissue, then condition (11) describes the type of regimen needed to destroy the cancer 
cells. If it is used to model the chemotherapeutic effects on bone marrow, we might instead look 
for the point where the equilibrium is about half the carrying capacity since this is the limit of 
acceptable bone marrow destruction. 
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Figure 1. Bifurcation diagram, a ---- 3, T = 6, r = 1. 
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