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Applied 
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Letters 

Polynomial  Construction of Complex 
Hadamard Matrices with Cyclic Core 

C. H. COOKE AND I. HENG 
Department of Mathematics and Statistics 

Old Dominion University 
Norfolk, VA 23529, U.S.A. 

(Received and accepted November 1997) 

Abstract--Conditions are given which are necessary and sufficient to ensure invariance of an 
M-sequence under periodic rearrangement. In conjunction with a certain uniformity property of 
polynomial coeffÉcients, these conditions yield a simple method by which complex Hadamard matrices 
with cyclic core can be constructed. In such cases, a real p-ary linear cyclic error correcting code may 
be associated with the complex Hadamard matrix. © 1998 Elsevier Science Ltd. All rights reserved. 

Keywords - -Complex  Hadamard matrix, Maximal period circulant, M-invariant sequence, Cyclic 
error-correcting code, Hadamard exponent. 

I N T R O D U C T I O N  

Consider complex Hadarnard matrix H = H(p, pn), where p > 2 is prime and n is a positive 
integer. Let E be the exponent matrix which is defined by H = x E, with x = exp(2ri/p) .  The 
notation implies hjk = x ejk, where j,  k are matrix indices. Here, the elements of E lie in the 
Galois field Gf(p). 

If H is writ ten in standard form, then the first row and first column of E are all zero, and 
the remaining elements constitute a square submatrix Ee, called the core of H.  Using the theory 
of linear recurring sequences, Butson [1] shows how to construct from an appropriately chosen 
relative difference set, a cyclic matr ix Ec which qualifies as the core of some Hadamard matrix 
H(p, pn). In conjunction with the zero vector, the row vectors of Ee form a linear group [1]. 
Thus, by omission of the all-zero first column cyclic generalized Hadamard codes are possible, 
whose codewords are the row vectors of the punctured matrix. Generalized Hadamard codes, 
both linear and nonlinear, are discussed in references [2,3]. 

As matrix size increases, Butson's method for constructing cyclic core Ee becomes proportion- 
ately less desirable. It  is the opinion of the authors tha t  a simple equivalent constructive approach 
can be obtained, by searching for polynomials over Gf(p) whose zero-augmented coefficient vector 
satisfies a certain uniformity property later introduced. For several cases studied, the approach 

has been found fruitful. 
The purpose of the present paper is to supply proof tha t  this approach is generally applicable. 

In order to do so, it will first be necessary to develop a theorem concerning invariant M-sequences. 
Properties of Haxiamard matrices and complex Hadamard codes are then reviewed, followed by 
statement and proof of the main results, with some accompanying numerical examples. 

0893-9659/98/S--see front matter © 1998 Elsevier Science Ltd. All rights reserved. Typeset by .A.A4S-TEtX 
PII: S0893-9659(98)00131-1 
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M-SEQUENCES 
Let V be an arbitrary vector of length N whose elements are in the finite field Gf(p), where p 

is a prime. Let the elements of vector V constitute the first period of an infinite sequence a(V)  
which is periodic of period N. 

Although by definition a(V)  has period N, smaller periods are conceivable. If N is the least 
period, the sequence is called an M-sequence, or a sequence of maximal least period obtained 
by cycling N elements. If, when the elements of the ordered set V are permuted arbitrarily 
to yield V*, the sequence a(V*) is an M-sequence, the sequence a(V)  is called M- inva r i an t  
under periodic rearrangement. In the sequel, the property of M-invariance is shown useful in 
constructing Hadamard matrices with cyclic core. 

Classicly, for N + 1 = pU, an m-sequence is a solution of a linear difference equation of order u, 
which has least period N [4,5]. When the approach is taken of starting with vector V, and cycling 
to produce a sequence of period N, it may happen that  the sequence satisfies a linear difference 
equation of order larger than u. Thus, every m-sequence is also an M-sequence, but the converse 
does not hold. 

Let V = [ v 0 ? ) l . . - ~ ) N - 1 ]  be a particular vector over Gf(p). I f j  is a residue in Gf(p), let Aj be 
the multiplicity of j ,  as a member of the set of elements of V. If j is not such an element, define 
the multiplicity to be zero. Define a vector of multiplicities associated with V as ( -- (Aj : j = 
0 , 1 , 2 , . . . , p -  1). 

Let (i) = l signify congruence, modp (i = l + kp). Cycling arbitrary V produces an infinite 
sequence a(V)  = {v(i) : i = 0, 1 ,2 , . . .  }. The following theorem provides conditions under 
which a(V)  will be an invariant M-sequence. 

THEOREM I. Let ~ = [1011 ...Ap-1] be a vector whose components are nonnegative integers 
which satisfy compatibility relations (I) and (II): 

p-1 

j--O 
(II) g.c.d. ( ~, N) -~- q. 

There exists a vector V = [VOVl . . . v~- l ] ,  N > 1, whose set of  components contains the residues 
from GfO) with multiplicities ~, such that the sequence a(V)  is an invariant M-sequence, i f  and 
only i f  q = 1. 

PROOF.  NECF_.SSlTY. For ~ a vector having nonnegative integer components satisfying (I) and (II) 
with q > 1, suppose there exists a vector V with associated multiplicities ~ which generates an 
M-invariant sequence a(V).  A contradiction will be arrived at by showing that  the ordered set V 
can be permuted into an ordered set V* such that  a(V*) is periodic of period 0 < L < N. 

To this purpose, define nonnegative integers Aj ° = Affq, j = 0, 1 , . . .  , p -  1, which sum to 
L = N/q.  It is clear that  the sets Sj = {Vi : Vi = j}  of residues which appear in V are either 
empty, or else each can be divided into subsets S /  : i = 1, 2 , . . . ,  q of cardinality Aj °. For 
i = 1, 2 , . . .  q, form a vector Qi of length L by arranging sequentially the elements from Sj i, for 
all residues j represented in V. Next, form vector V* whose length is N by sequentially placing 
all elements of the group Qi after the elements of Qi-1, for i = 2, 3 , . . . ,  q. 

As it is clear that  a(V*) is periodic of period L, a(V)  cannot be M-invariant. Thus, the 
assumption of an M-invariant sequence in conjunction with q > 1 is a contradiction. 

SUFFICIENCY. Suppose V is a vector whose associated multiplicity vector ( satisfies (I) and (II), 
where a(V) is  an M-sequence, and q = 1. It will be shown that  a(V)  is M-invariant. Assume a(V)  
is not M-invariant. Then, there is a permutation V* of V whose elements satisfy multiplicity 
condition (I), such that  a(V*) is not an M-sequence, but has period L which satisfies 0 < L < N. 
But this means V* has a first L element pattern which repeats Q times, with N = QL. Moreover, 
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this pat tern assures tha t  Aj = QAj °, j = 0 , 1 , . . . , p -  1. Therefore, g.c.d.(~,N) = Q, with 
1 < Q < N. This contradicts q = 1. Hence, the assumption that  a(V) is not M-invariant is false. 

COMMENTS. Suppose V is of length N and its associated vector ~ of multiplicities has nonneg- 
ative integral components which satisfy (I) and (II) with q > 1. Suppose a(V) is periodic of 
period L < N,  and suppose two distinct residues appear in the first L components of V. By 
interchanging one distinct pair of components only in the first period, the resulting vector V* 
generates an M-sequence. Thus, M-sequences which are not M-invariant exist. 

H A D A M A R D  M A T R I C E S  A N D  
G E N E R A L I Z E D  H A D A M A R D  CODES 

Hadamard matrices H(p,  q), of index p, are matrices of dimension q x q, whose elements are 
pth roots of unity and whose rows are orthogonal; precisely H H  cT = qI. For the case p = 2, the 
elements are ±1, and the matrix is referred to as a classical Hadamard matrix. References [4,6-9] 
deal with theory and applications of classical Hadamard matrices, chiefly in the context of designs 
and codes. 

For p > 2, the elements of a Hadamard matrix are numbers on the unit circle, and the termi- 
nology used is tha t  of a complex, or generalized Hadamard matrix. References [1-3,10-12] are 
concerned with structure and properties of generalized Hadamard matrices. 

Butson [10] proves tha t  for primes p > 2, a necessary condition for existence of H(p, q) is that  
P I q (P divides q). Here, at tention is directed to complex Hadamard matrices H(p, pt), where 
p > 2 is a fixed prime and t is a positive integer. When such matrices exist, a real matrix E(p, pt) 
which is called a Hadamard exponent can be associated with H(p, pt). If x is a primitive pth root 
of unity, the association is H(p, pt) : x ~(p'pO . 

The elements of the Hadamard exponent matr ix lie in the Galois field Gf(p), and its row vectors 
constitute the codewords of what shall be called a generalized Hadamard code. Depending upon 
the value of the integer t, either a linear group code or a nonlinear code may emerge. Several 
examples of generalized Hadamard codes are given in references [2,3]. 

A PROPERTY OF VECTORS OVER Cp. The problem of establishing the value d(K),  which repre- 
sents the minimum Hamming distance between the codewords of a generalized Hadamard code K,  
is now reviewed. 

Let Cp = {1, x, x 2 , . . . ,  x p-I}  be the cyclic group generated by x, where x = exp(2r j /p)  is a 
complex primitive pth root of unity, and p > 2 is a fixed prime. Further, let A = (x a'), B = (x b') 
denote arbi t rary vectors over Cp which are of length N = pt, where t is a positive integer. Define 
the collection of differences between exponents Q = {ai - b~, m o d p  : i = 1, 2 , . . . ,  N}, and let nq 
be the multiplicity of element q of Gf(p) which appears in Q. 

P R O P E R T Y  U 

Vector Q is said to satisfy P r o p e r t y  U iff each element q of Gf(p) appears in Q exactly t times 
(nq = t, q = O, 1 , . . .  ,p - 1). 

The following lemma is of fundamental importance in constructing generalized Hadamard 
codes. 

LEMMA I. ORTHOGONALITY OF VECTORS OVER Cp. For fixed primes p, arbitrary vectors A, B 
of length N = pt, whose elements are from Cp, are orthogonal if[ the vector Q satisfies Property U, 
where Q is the co//ection of  mod p differences between the Hadamard exponents associated with 

A, B.  

COMMENT 1. Lemma I above can be inferred from assertions of Butson [1], for which he provides 
no proof, but  which he maintains are clearly valid. See also [2]. 
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COMMENT 2. For any p, Proper ty  U is sufficient for orthogonality. However, if p is not prime, 
cases are easily discovered of vectors over Cp which are orthogonal but  which do not satisfy 
Property U. Thus, Proper ty  U is not always necessary for orthogonality. 

COROLLARY I. Hp  is a prime number and ff the Hadamard matr/x H(p, pt) exists, the error cor- 
recting code K (p, pt ), associated with the corresponding row vectors of the Hadamard exponent 
E(p, pt), is characterized by the error protection afforded by d(K) = ( p -  1)t. 

PROOF. In the modp  difference of any two arbitrary row vectors of the Hadamard exponent 
matrix, the zero element of Zp appears exactly t times; hence, two code words differ in (p - 1)t 
symbols. 

CYCLIC H A D A M A R D  CODES 

Consider matr ix  E which is the Hadamard exponent associated with H = H ( p , p  n) when it 
is written in standard form. Thus, the first row and first column of E are all zero, and the 
remaining elements constitute a square submatrix, Ec, called the core of H.  Using the theory 
of linear recurring sequences, Butson [1] shows how to construct from an appropriately chosen 
relative difference set, a cyclic matr ix Ec which qualifies as the core of a complex Hadarnard 
matr ix H(p,  pn). Thus, cyclic generalized Hadamard codes are possible, by omission of the all- 
zero first column of E.  In coding theory, this is called puncturing. 

However, Butson's method is somewhat unwieldy, and becomes less desirable as matrix size in- 
creases. It  is the opinion of the authors that  a simpler, yet equivalent approach to constructing Ec 
is possible. The approach now outlined has been found to provide in several cases attempted, a 
cyclic matr ix  Ec which qualifies as a Hadamard core for specific H(p,  pn). 

The goal is to find cyclic matr ix E = Ec whose elements are in Galois field Gf(p) and whose 
dimension is N = pn _ 1. The rows of E will be the nonzero codewords of a linear cyclic code K,  
if and only if there is polynomial g(x) with coefficients in Gf(p), which is a proper divisor of 
x N - 1 and which generates K [4 ,13 ] .  In order to have N nonzero codewords, g(x) must be of 
degree N - n. Further,  in order to generate a cyclic Hadamard core, the vector (of coefficients 
of) g(x) when operated upon with the cyclic shift operation must be of period N,  and the vector 
difference of two arbi t rary rows of E (augmented with zero) must satisfy the uniformity condition 
of Butson [13], previously referred to as Property U. 

One necessary condition for N-peridoicity is that  x N - 1 = 9(x)h(x), where h(z) is monic 
irreducible over Gf(p) [5]. A sufficient condition is that ,  in addition, a certain subset [1] of the 
indices from the coefficients of g(x) be a relative difference set. 

The approach here is to replace the last requirement with the condition that  the coefficients of 
the vector [0,g(x)] be uniformly distributed over Gf(p): each residue 0, 1 , . . .  , p -  1 appears the 
same number of times (Property U). This heuristic approach has succeeded for all cases tried, 
and a proof tha t  it always produces a cyclic core is given in the sequel. 

CONSTRUCTION ALGORITHM. Consider all monic irreducible polynomials h(x) over Gf(p) which 
are of degree n, and which permit a suitable companion g(x) of degree N - n  such tha t  g(x)h(x) = 
x N - 1, where also vector [0, g(x)] satisfies Proper ty  U. This requires only a simple computer al- 
gorithm for long division over Gf(p). Since h(x) I xN --1, the ideal generated by g(x), rood x N - 1, 

will be a cyclic code K [4,13]. Moreover, Proper ty  U guarantees the nonzero codewords form a 
cyclic matrix, each row being of period N under cyclic permutation, which serves as a cyclic core 
for Hadamard matr ix  H(p, pn). 

As an example, a cyclic core for H(3, 9) results from the companions h(x) = x 2 + x + 2 and 
g(x) = x 6 + 2x 6 + 2x a + 2x 2 + x + 1. The coefficients of g indicate that  {0, 1, 6} is the relative 
difference set, mod 8, which instead could be used to generate the cyclic core [10], certainly more 
intricately than by calculating the codewords associated with g(x) using the cyclic shift operation. 
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P O L Y N O M I A L  C O N S T R U C T I O N  OF C O M P L E X  
H A D A M A R D  MATRICES P O S S E S S I N G  CYCLIC CORE 

THEOREM II. Let  p be a prime and N + 1 = pn, with g(x) a monic polynomial of degree N - n 
whose extended vector of coetticients C = [co, c l , . . . ,  CN-1] are elements of Gf(p). The conditions 
are as follows: 

(1) vector C = [0, Co, c l , . . . ,  cN-1] satisfies Property U, 
(2) g(x)h(x)  = x N - 1, where h(x) is a monic irreducible polynomial of degree n, guarantee 

the existence of a p-cry, linear cyclic code fi: of blocksize N,  such that the augmented 
code K = [0,/~] is the Hadamard exponent, for Hadamard matrix H(p ,p  n) = x K, with 

x = exp(27ri/p), where the core of H is cyclic matrix. 

PROOF. Since g(x) is monic, divides x N - 1, and has degree N - n, g(x) generates a p-cry, 
cyclic code which is an n-dimensional linear subspace/~  of Zp N [4,13], and which possesses pn 

codewords, N of which are nonzero. It  is intended to show that  the matr ix Ec whose rows are 
the nonzero codewords constitutes a cyclic core for some complex Hadamard matrix H(p, pn), 

written in standard form. 

First, since C satisfies Proper ty  U, the nonzero residues of Gf(p), all of which appear in C, will 
have multiplicity which is one unit greater than the multiplicity of the zero residue. Since any 
two successive positive integers are relatively prime, by Theorem I, the infinite sequence a(C) 
obtained by cycling C will be an M-invariant sequence, periodic of least period N. Thus, every 
codeword of Ec can be obtained by cyclicly permuting the first codeword. Hence, Ec is a cyclic 
matrix (circulant with least period N). 

Second, it follows that  augmentation of each codeword of E c  by adding a leading zero element 
produces a vector which satisfies Property U. Moreover, since the code is linear, the m o d p  vector 
difference of two arbitrary codewords is also a codeword. Hence, vector differences of arbitrary 
zero-augmented codewords satisfy Property U. Therefore, the row vectors of the augmented 
code K form a Hadamard exponent. It may be concluded that  x K is the standard form of some 
complex Hadamard matr ix H(p, pn). 

COROLLARY II. Existence of Hadamard matrix H(p ,p  n) having cyclic core is equivalent to the 
existence of  a pair of  polynomials over Gf(p) which satisfy g(x)h(x)  = x N - 1, where h(x) is 
irreducible of  degree n, and [0,g(x)] satisfies Property U, modp, where p is prime. 

PROOF. It is clear tha t  the lines of proof in Theorem II can be reversed: given H = H(p,p~),  

where p is prime, which has cyclic core, delete the first row and first column, and associate with 
the elements of arbi t rary remaining punctured row i, a polynomial f i (x)  whose coefficients are 
in Gf(p). Let g(x) be the unique polynomial of minimal degree (N - n) from the collection 
{f~(x) : i = 2, 3 , . . . ,  N + 1}. (If g(x) is not monic, it becomes such upon multiplication by a 
suitably chosen element of Gf(p).) As the core of H is cyclic, let h(x) = (x Iv - 1)/g(x),  where 
N + 1 = pn. Clearly, g(x) satisfies Proper ty  U. As the period of each row of core (H) under 
cyclic permutat ion is N [1], h(x) is irreducible [5]. 

COMPUTER-AIDED CONSTRUCTION 
OF POLYNOMIAL PAIRS 

In this section, there are given some results from computer-aided construction of the polyno- 
mial pairs (g(x), h(x)) which satisfy Theorem If. Table 1 shows typical irreducible h(x), whose 
companion g(x) (see Table 2) satisfies Property U. 

Interestingly enough, analysis of the type represented by Table 1 yields insights into the ques- 
tion of how many Hadamard matrices H(p, pn), unique to within row and column interchanges 
when written in standard form, can be expected to exist. 
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T a b l e  1. P a r i t y  c h e c k  p o l y n o m i a l s .  

N + 1 = pn h(x) 

x 2 + z + 2  
32 

z ~ + 2 z + 2  

x z + 2 z  + 1 

x 3 + 2 z  2 + 1 
33 

z 3 -{- 2 z  2 4- z -{- 1 

zs  + z2 + 2z +1 

34 

35 

z 4 + z + 2  

z 4 + 2 z + 2  

z 4 + z 3 + 2  

z 4 + 2 z  3 + 2 

z 4 + z  3 + z  2 + 2 z + 2  

z 4 + 2 z  s -~-Z 2 Jf-Z J¢- 2 

x s + 2 x  + 1 

z 5 + 2 x  4 + 1 

x 5 + z 4 + 2 x  + 1 

xs + 2x4 + z + l 

z 5 + z 3 + 2 z  2 + 1 

z 5 + 2 z  3 + z 2 -~- 1 

z 5 + z 4 + 2 z  3 + 1 

xS+zz+z+l 

Z 5 + Z 4 -{- Z 2 + 1 

Z 5 "~- Z 4 -{- 2Z 3 + Z 2 + Z + 1 

z 5+2z 4+z 3-{-z 2+z+l 

x s + z  4 + z  z + 2 z  ~ + z +  1 

z s + z  4 + z  3 + z  2 + 2 z  + i 

T a b l e  2. C o e f f i c ~ n t s  o f  g e n e r a t i n g  p o l y n o m i a L .  

N=p"- I g(x) = ao + alz+... + anz" 

11202210 
8 

12202110 

2 2 2 0 1 2 2 1 2 0 2 0 0 1 1 1 0 2 1 1 2 1 0 1 0 0  

2 0 2 1 2 2 1 0 2 2 2 0 0 1 0 1 2 1 1 2 0 1 1 1 0 0  
2 6  

2 1 1 1 2 1 0 2 0 2 2 0 0 1 2 2 2 1 2 0 1 0 1 1 0 0  

2 2 0 2 0 1 2 1 1 1 2 0 0 1 1 0 1 0 2 1 2 2 2 1 0 0  

8 0  

1 1 1 1 2 0 1 2 1 1 2 1 2 0 2 0 2 2 1 1 0 2 0 1 1 0 0 1 2 2 2 0 2 1 0 0 2 0 0 0 2 2 2 2  

1 0 2 1 2 2 1 2 1 0 1 0 1 1 2 2 0 1 0 2 2 0 0 2 1 1 1 0 1 2 0 0 1 0 0 0  

1 2 1 2 2 0 1 1 1 2 2 2 2 0 2 0 2 1 1 2 0 1 0 2 1 0 0 2 2 1 2 0 2 2 0 0 2 0 0 0 2 1 2 1  

1 0 2 2 2 1 1 1 1 0 1 0 1 2 2 1 0 2 0 1 2 0 0 1 1 2 1 0 1 1 0 0 1 0 0 0  

1 0 0 1 1 0 1 2 1 1 0 0 2 1 0 2 0 1 2 2 1 0 1 0 1 1 1 1 2 2 2 0 1 1 2 1 2 0 0 0 2 0 0 2  

2 0 2 1 2 2 0 0 1 2 0 1 0 2 1 1 2 0 2 0 2 2 2 2 1 1 1 0 2 2 1 2 1 0 0 0  

1 0 0 2 1 0 1 1 1 2 0 0 2 2 0 1 0 2 2 1 1 0 1 0 1 2 1 2 2 1 2 0 1 2 2 2 2 0 0 0 2 0 0 1  

2 0 2 2 2 1 0 0 1 1 0 2 0 1 1 2 2 0 2 0 2 1 2 1 1 2 1 0 2 1 1 1 1 0 0 0  

1 2 2 1 1 1 0 0 2 2 0 1 0 0 1 0 1 0 2 2 1 0 2 1 2 1 1 0 1 1 1 1 2 1 0 1 2 0 0 0 2 1 1 2  

2 2 0 0 1 1 0 2 0 0 2 0 2 0 1 1 2 0 1 2 1 2 2 0 2 2 2 2 1 2 0 2 1 0 0 0  

1 1 2 2 1 2 0 0 2 1 0 2 0 0 1 0 1 0 2 1 1 0 2 2 2 2 1 0 1 2 1 2 2 2 0 2 2 0 0 0 2 2 1 1  

2 1 0 0 1 2 0 1 0 0 2 0 2 0 1 2 2 0 1 1 1 1 2 0 2 1 2 1 1 1 0 1 1 0 0 0  
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