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ABSTRACT 

 

SOLID OXIDE ELECTROCHEMICAL CELLS FOR HIGH TEMPERATURE HYDROGEN 

PRODUCTION: THEORY, FABRICATION AND CHARACTERIZATION 

 

Can Zhou 

Old Dominion University, 2018 

Director: Dr. Xiaoyu Zhang 

In this dissertation, the concept of water splitting using solid oxide photoelectrochemical 

cells (SOPCs) at high temperature was introduced and experimentally investigated. High 

temperature photoelectrochemical water splitting physically broadens the selection of potential 

applicable semiconductor materials and enables more visible sunlight absorption. This newly 

conceived concept provides a unique pathway for solar hydrogen production, as compared to 

conventional photoelectrochemical cells (PECs) that use wide band gap semiconductors in 

aqueous environments. The theoretical framework of SOPC was elaborated, followed by the 

experimental investigation to search for appropriate high temperature materials. Selected high 

temperature Schottky and p-n junction diodes, which were expected to be applicable to the 

photocatalytic/oxygen electrodes of SOPCs, were fabricated and evaluated. Their rectifying 

characteristics were characterized at elevated temperatures. Among those diodes, only LSM/TiO2 

demonstrated acceptable rectifying properties up to 450 °C, indicating that such configuration 

may be applicable to the proposed SOPC.  

 The further investigation was carried out on fabrication of the electrodes of SOPC and 

solid oxide fuel cell (SOFC) using fused deposition modeling (FDM), a technique of 3D printing. 

The goal was to directly print out ceramic substrates and eventually make porous electrodes. 

Ceramic filaments that consist of ceramic electrode materials and thermoplastics were fabricated 



   

 

in house. After experimenting many thermoplastics, Nylon 12 was identified as an ideal 

thermoplastic polymer to make composite ceramic filaments. The printouts were sintered in the 

furnace to burn out all the organics, leaving behind porous electrodes made of pure ceramics. 

The 3D printed cathodes on half SOFCs were evaluated and demonstrated comparable 

performance to conventional SOFCs using dip-coating method. Therefore, FDM provides a 

viable and low cost means to fabricate the porous electrodes of SOPC/SOFC.  
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This thesis is dedicated to the proposition 

that the harder you work, the luckier you get. 
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NOMENCLATURE 

 

hv  Photon 

e-  Electron 

p+  Hole  

∆G   The change of Gibbs free energy, kJ/mol 

∆H  The change of enthalpy, kJ/mol 

∆S  Entropy change, kJ/(mol·K) 

Ne   The number of reacted electrons  

Np
absorbed  The number of absorbed photons 

Np
incident  The number of incident photons  

EH2   The energy of photogenerated hydrogen  

Es
incident  The energy of incident solar energy 

𝐸𝑔(𝑇)   The semiconductor bandgap, eV 

𝐸𝑔(0)  The bandgap at absolute temperature of 0 K, eV 

𝑇   Absolute temperature, K 

𝐸  Nernst potential, V 

𝐸0   Standard cell potential, V 

R   Ideal gas constant, 8.314 J/(mol·K) 

F   Faraday constant, 96485.3329, C/mol 

P  Partial pressure, Pa 

∆𝑁̇𝐻2
  Molar hydrogen generation rate 

NC  The number of unit cell in the stacks 

ΦM  Work function of metal, eV 

ΦS  Work function of semiconductor, eV 

ΦMS  Schottky barrier height, eV 

EC  Energy of conduction band  
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EV  Energy of valance band  

EF  Energy of Fermi level 

χ  Semiconductor electron affinity 

𝐴∗  Effective Richardson constant 

q  Electron charge 

𝐼𝑠  Saturation current, A 

𝑘  Boltzmann constant, 1.38064852×10−23 J/K 

𝑛  Non-ideal factor 

V𝑏𝑖  Build-in potential, V 

NA   Concentrations of acceptors  

ND   Concentrations of donors  

ni  Carrier concentration in the neutral region 

𝐷𝑝,𝐷𝑛  The diffusivities of the holes and electrons respectively 

𝑝𝑛0  The hole concentration in the neutral region of n-type semiconductors 

𝑛𝑝0  The electron concentration in the neutral region of p-type semiconductors 

𝐿𝑝, 𝐿𝑛  The depletion lengths of p-type and n-type semiconductors respectively 

𝐼𝑑𝑖𝑓𝑓  Diffusion current  

𝐼𝑟𝑒𝑐  Recombination current 

𝜏𝑔, 𝜏𝑝   The generation lifetime and p-type carrier lifetime respectively  

W  The width of space charge region  

𝜀  The dielectric permittivity  

N   The dielectric constant  

aH+   The activity of H+ 

𝜂𝑃𝐸𝐶   Efficiency limit for a PEC device made of a single junction diode 

jop   Maximum exchange current density 

Erxn   Nernst potential of water electrolysis 

fFE   Faradaic efficiency, which ideally is unit 

Pin   Incident solar power   
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V  Volume, cm3  

W  Weight, g 

ρ  Density, g/cm3 

ϕ   Initial porosity before sintering   
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CHAPTER 1 

INTRODUCTION 

Hydrogen is considered as one of the most promising energy carriers for vehicles and 

various other applications. Compared to traditional fossil fuels, hydrogen has its salient 

advantages. First, hydrogen production is not dependent on non-renewable natural resources 

since it can be generated from water. Second, unlike oil and natural gas, the availability of 

hydrogen does not depend on geographical, political, and other factors. Last but not least, using 

hydrogen is environmentally friendly with zero-emissions of greenhouse gas (GHG) and other 

air pollutants. Therefore, many countries, led by Japan, Germany and United States, are focusing 

on the research and development (R&D) of technologies of hydrogen production. Currently, 

most hydrogen is produced from natural gas reforming that could emit GHG into the air and 

potentially cause global warming. Aimed at more economical and environmental hydrogen 

production in the future, the Department of Energy (DOE) has supported a variety of 

technologies such as the thermal process, electrolytic process, photolytic process and 

biochemical process. In the thermal process, hydrogen is released by using the energy contained 

in the resources such as natural gas, coal or biomass. Water can also be used as the feedstock to 

produce hydrogen through thermochemical process when the heat is combined with closed 

chemical cycles. Techniques of thermal process includes the natural gas reforming, renewable 

liquid fuel reforming, coal gasification, biomass gasification, and high-temperature water 

splitting. In the electrolytic process, water is decomposed into hydrogen and oxygen by external 

electricity. When the electrolysis is coupled with renewable energy, such as wind, solar and 

nuclear sources, the whole process is sustainable with zero carbon emission that would be the 

greatest pathway for large-scale hydrogen production. In the photolytic process, the water 
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molecules are separated directly into hydrogen and oxygen by light energy. The carriers could be 

either algae through photosynthesis or semiconductor through photoelectrochemical (PEC) 

reaction. In the biochemical process, the organic biomass is converted into hydrogen by 

biochemical or microbial methods. Typically, the biochemical process includes the fermentation 

and microbial electrolysis cells. To facilitate the commercial development of hydrogen 

production with a target cost of less than $4/kg, the DOE has scheduled a roadmap of various 

techniques from near to long terms considering the hydrogen production scale as shown in 

Figure 1. Near-term development is limited to the natural gas reforming that is not sustainable, 

and mid-term development mainly focuses on thermal process techniques at distribute and semi-

central production. In a long-term perspective, hydrogen production via solar energy and high-

temperature electrolysis are the most promising techniques for the semi-central and central 

production facilities.  
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Figure 1. Hydrogen production pathways published by DOE [1]. 

In this dissertation, a novel concept of solar hydrogen production using solid oxide 

photoelectrochemical cell (SOPC) is introduced. The SOPC we proposed includes two key 

components, the photovoltaic (PV) cell and high temperature electrolysis cell (SOEC). Therefore, 

two parts of review will be presented in this dissertation for PEC and SOEC, respectively. Both 

parts of review focus on literature survey, fundamentals, and operation principles.  

1.1 Photoelectrochemical cells 

As shown in Figure 1, the PEC pathway is a long-term technique for hydrogen 

production for semi-central facilities. Basically, the solar energy is converted directly to 

chemical energy in forms of hydrogen and oxygen via the photoelectrochemical process. The 

semiconductor materials used in the PEC devices are similar to those used in the PV cells. In 

photovoltaic devices, the key component is the p-n junction that integrates the p-type and n-type 
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doped semiconductors. At the junction interface, the excess of electrons from the n-type 

semiconductor tend to diffuse into the p region that will leave the positive holes in the n region. 

Likewise, the excess of holes in the p-type doped semiconductors tend to diffuse into n region 

leaving negative electrons in the p region. The immigration of electrons and holes results in a 

space charge region where the internal electric field is created. When the space charge region is 

irradiated by light energy that is larger than the semiconductor bandgap, the excited-state 

electrons will jump over the bandgap into the conduction band leaving the holes in the valence 

band. Due to the internal electric field, the electrons and holes then will move to opposite 

directions leading to electric current if an external load is connected. The photovoltaic process is 

also applicable to Schottky junction where the metals serve as p-type semiconductors with 

combination of n-type semiconductors. Unlike the PV cell that integrates the semiconductor 

electrodes together, the PEC cell has separated electrodes that are both immersed into the 

electrolyte as shown in Figure 2. The separated electrodes are connected through an external 

conductive wire that is used for electron transfer. After solar irradiation the surface of n-type 

semiconductor, oxygen evolution is observed at the photoanode while hydrogen bubbles are 

generated at the Pt photochathode.  
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Figure 2. Schematic diagram of photoelectrochemical devices [2]. 

 

1.1.1 Fundamental mechanism of photoelectrochemical system 

The fundamental principles of the photoelectrolysis process are shown in Figure 3. 

Typically, as a semiconductor photocatalyst, the photoanode semiconductor could absorb solar 

irradiation during the photoelectrochemical reaction. At the stage of semiconductor’s “photo-

excited” state, the electrons in the valance band of TiO2 are excited to the conduction band while 

extra holes are left at valance band. This photocatalytic process creates the electron-hole pairs. 

After some inevitable recombination of such pairs, the electrons are then transferred to the 

photocathode through external circuit for hydrogen production. The left holes at TiO2 electrode 

are responsible for oxygen evolution due to its oxidation capability of water molecules. The 

photoelectrochemical reactions happening on both electrodes could be described as follows: 

n-type + 2 hv → 2 e- +2 p+ 

(

1) 
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2 p+ + H2O → ½ O2 + 2 H+  at photoanode (

2) 

2 e- + 2 H+ → H2    at photocathode (

3) 

 

Figure 3. Fundamental mechanism of photoelectrochemical reaction [3]. 

 

The theoretically thermodynamic threshold for water splitting is 1.23 V at standard 

conditions according to the change of Gibbs free energy, as shown in equation 4.  

H2O → ½ O2 + H2; ∆G = + 237 kJ/mol 

(

4) 

Such energy threshold corresponds to a wavelength of approximate 1000 nm. Note that 

the visible light with spectrum of more than 400 nm corresponds to the bandgap energy of less 

than 3.1 eV. To guarantee the photoexcited reduction and oxidation of water molecules, the 

bandgap of photocatalytic semiconductor must straddle the redox potentials for water splitting. 

Specifically, the energy level of conduction band should be more negative than the reduction 
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potential of H+/H2 while the energy level of valance band has to be more positive than the 

oxidation potential of O2/H2O. Figure 4 shows the bandgap structures of some typical 

semiconductors compared with redox potential of water splitting. Besides TiO2, many 

photocatalytic materials, such as BaTiO3, ZnO, SiC, CdSe, CdS etc., have the potential to be 

applied in the PECs. However, the photocatalytic generation of hydrogen from water splitting is 

dependent not only the bandgap structure of semiconductor, but also other factors such as 

overpotentials, separation and recombination of electron-hole pairs, mobility,  and lifetime of 

electrons/holes [3]. Therefore, the photoelectrode materials and semiconductor substrate 

determine the system performance. 

 

 

Figure 4. Semiconductors for PECs. The bandgap positions are relative to the redox potential of 

water [4]. 
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1.1.2 Main process of photoelectrochemical system 

The schematics of photocatalytic water splitting is illustrated Figure 5. The processes 

include photon absorption, photon excitation, charge separation, charge transfer, and charge 

recombination. The hydrogen generation efficiency of PEC system is significantly dependent on 

these processes. Among them, the charge recombination is considered as the deactivation process 

and it is the only process that consumes the photoexcited electrons. Therefore, possible steps 

should be taken to avoid charge recombination. Meanwhile, the other activation processes should 

be facilitated to maximize the PEC system efficiency. 

 

 

Figure 5. Schematic diagram of the photoelectrochemical process, including I. Photon absorption, 

II. Photon excitation, III. Charge separation, IV. Charge transfer, and V. Charge recombination 

[3]. 
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As mentioned above, with light irradiation, the processes of photon absorption, photon 

excitation and charge separation take place in the semiconductor photocatalysts. Thus, small 

bandgap semiconductor materials are preferred to absorb the photons as much as possible. 

However, the utilization of those photocatalysts with too narrow bandgap is not suggested due to 

the excess waste of light energy. In addition, the light reflection and scattering by the 

semiconductors should be minimized. Furthermore, the photocatalysts should have a strong 

junction, i.e. internal electric field, which is effective in generating and separating charges.  

Once the photogenerated charges are created, charge transfer (IV) and charge 

recombination (V) are the two important competitive processes that could significantly affect the 

hydrogen production efficiency. The charge recombination includes the volume recombination 

and the surface recombination. Both deactivation processes will consume the photogenerated 

charges by emitting light or releasing heat energy. On the other hand, charge transfer is an 

activation process due to the charges on the photocatalyst surface for hydrogen and oxygen 

production. Therefore, it is fundamentally important to facilitate the charge transfer and suppress 

the charge recombination. Effective approaches consist of designing internal electric field of 

junction and developing high photoconductive photocatalysts.    

When the hydrogen and oxygen evolve at the photocatalyst surface, it is possible for the 

reaction of these two gas molecules and this chemical process is known as surface back reaction 

(SBR). The SBR has a negative influence in the PEC systems, since the amount of 

photogenerated hydrogen will be decreased. Typically, there are two main ways of avoiding SBR 

effectively. The first approach is to add redox mediators in the electrolyte. The electron donors 

or acceptors of the sacrificial reagents can supply an external force to drive the PEC reaction and 

suppress the combination of product molecules. The other way is to create separation sites for 
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water reduction and oxidation. For example, Pt and Au are the most common materials used to 

be deposited on the photocatalyst surface. Due to the excellent electron conductivity, the Pt or 

Au can supply an ideal reaction site for hydrogen generation. 

Considering all the processes that can significantly affect the PEC efficiency, there are 

two key factors for developing suitable semiconductor photocatalysts driven by visible light. 

First, the bandgap should be in the range from 1.23 eV to 3eV with corresponding to the 

spectrum wavelength from 400 nm to 1000 nm. This range can enable the photocatalysts to 

harvest the solar energy as much as possible without losing the capability of splitting water. 

Second, both deactivation processes of the charge recombination and SBR should be depressed. 

The effective approaches include design of internal-build electric field, addition of sacrificial 

reagents into electrolyte and creation of active reaction sites. 

1.1.3 Photocatalytic activity of photoelectrochemical system 

 Photocatalytic activity is an important indicator for evaluating the hydrogen production 

efficiency of PEC system. It can be calculated directly by measuring the amount of hydrogen 

evolution or indirectly by converting gas generation to effective electron transfer within a certain 

testing duration. There are many research groups of PEC systems and their experiments are 

usually conducted using different setup configurations, i.e. inner irradiation and top irradiation, 

and light sources, i.e. Xe lamp and Hg lamp. Different experimental results may be achieved 

despite of using same catalysts. Therefore, it is necessary to normalize the testing data and get 

approximate correlations between these experimental results. The units of photogenerated 

hydrogen production rate are denoted as µmol/h or µmol/h/gcatalyst. These units are universal and 

can be used to compare different photocatalysts under different experimental conditions.   
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In addition, the quantum yield, including overall and apparent quantum yields, has been 

widely used to evaluate the photocatalytic efficiency of PEC systems. The overall quantum yield 

(OQY) and apparent quantum yield (APY) are defined by equations 5 and 6 respectively.  

OQY = Ne/Np
absorbed × 100% 

(

5) 

APY = Ne/Np
incident × 100% 

(

6) 

Where, the Ne is the number of reacted electrons, Np
absorbed and Np

incident denote the 

number of absorbed and incident photons, respectively.  

Apparently, the OQY is lower than the APY due to the fact that the semiconductor 

photocatalysts cannot absorb all the incident photons to generate charges. Besides, the solar to 

hydrogen (STH) efficiency is another common indicator that has been frequently reported in the 

literature review, and it is defined by equation 7. 

STH = EH2/Es
incident × 100% 

(

7) 

Where, EH2 and Es
incident denote the energy of photogenerated hydrogen and incident solar 

energy, respectively. 

1.1.4 Photoelectrochemical process driven by UV light 

The photoelectrochemical cell was first demonstrated in Fujishima and Honda’s 

pioneering work using an n-type TiO2 electrode [2]. Afterwards, hydrogen production via 

photocatalytic splitting water has been considered as one of the most promising technologies to 

solve the world energy crisis [5]. Over the past four decades, considerable research has been 
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conducted on the R&D of semiconductor photocatalysts working in the ultraviolet (UV) light 

region [6-10]. Takahashi et al. applied a polymerized complex (PC) technique to prepare a 

highly active photocatalyst, K2La2Ti3O10, at various conditions and the highest activity was 

obtained when the sample was calcined at 1173 K for 2 h [9]. Sr2Ta2O7 and Sr2Nb2O7 with 

layered perovskite structure both exhibited photocatalytic activities under UV irradiation. When 

NiO was loaded as a cocatalyst with pretreatment, the Sr2Ta2O7 photocatalyst showed a quantum 

yield of 12% at 270 nm [7]. Kato et al. also confirmed the importance of NiO-loaded cocatalyst, 

and the quantum yield of NiO/NaTaO3:La photocatalyst was 56% at 270 nm [6]. La2Ti2O7 with 

layered perovskite structure was synthesized by Kim et al. via PC method. The quantum yield of 

La2Ti2O7 photocatalyst could be as high as 27% [8]. Maeda et al. prepared a non-oxide 

photocatalyst, β-Ge3N4, for photocatalytic water splitting. Loaded by RuO2, β-Ge3N4 behaved the 

highest activity in 1 M H2SO4 under UV irradiation (λ<200 nm).     

Even though these impressive results can be achieved by developing new materials, the 

overall solar-to-hydrogen (STH) efficiency is limited due to the fact that the UV spectrum only 

takes a minority part (just over 8%) of the whole solar spectrum. So far, one of the most 

challenging problems is how to harvest more visible light using the semiconductor photocatalysts. 

Generally, strategies to utilize visible light include creating two-step photoexcitation systems, 

innovating new photocatalysts via band engineering, developing novel cocatalysts, fabricating 

efficient photoelectrodes and constructing tandem-type PEC systems [11]. Therefore, during the 

recent years, the mainstream research has been focused on the development of novel 

semiconductor photocatalysts and advanced cell configurations and a few excellent reviews have 

been published [3, 11-14].  
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1.1.5 Two-step photoelectrochemical system driven by visible light 

As shown in Figure 6, the two-step photoexcitation process is considered as an effective 

design to harvest visible light, and it is also known as the Z-scheme [15-17]. The PEC process is 

decomposed into two stages: SI and SII for hydrogen production and oxygen production 

respectively. The reversible redox mediators, i.e. IO3ˉ/Iˉ, are added into the electrolyte to realize 

the photocatalytic water splitting under visible light.  In the stage SI for hydrogen evolution, the 

energy of visible photons is large enough to excite the electrons jumping over the narrow 

bandgap. The excited electrons will then reduce the water molecules into hydrogen while the 

holes left at the valance band will oxidize the Red mediator into Ox mediator, i.e. Iˉ → IO3ˉ. 

Likewise, in the stage SII for oxygen production the photoexcited electrons in the conduction 

band will be oxidized by the Ox mediator in the electrolyte while the left holes will oxidize the 

water molecules to produce oxygen. The PEC reactions for both stages are shown in the 

following equations: 

2 H+ + Red → H2 + Ox              for SI stage (

5) 

H2O + Ox → ½ O2 + 2 H+ + Red  for SII stage (

6) 
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Figure 6. Schematic redox energy diagram of PEC using two-step systems [15]. 

 

Compared with one-step systems, the two-step systems reduce the energy requirements 

for water electrolysis and allow the photoelectrodes to harvest more visible light efficiently. 

Therefore, more semiconductor materials that are not applicable for one-step systems could be 

potentially used in Z-scheme systems. For example the band structure of WO3 doesn’t straddle 

the redox potentials of water electrolysis according to Figure 4 so that it cannot be used directly 

in one-step systems. However, the valance band of WO3 falls below the redox potential of 

O2/H2O and the photoexcited holes are able to oxidize the water molecules into oxygen. 

Meanwhile, if the reversible redox mediators can be reduced by the photoexcited electrons from 

the conduction band, WO3 will be suitable for the photoanode materials in Z-scheme systems. 

Similar material candidates that can utilize the visible light are TiO2 (rutile), FeTiO3, MnTiO3, 

Fe2O3 and SnO2 as shown in Figure 4. Another advantage of the two-step system is that 
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hydrogen and oxygen can be produced separately by adding a gas filter. The filter only allows 

the transportation of redox mediators in the electrolyte and blocks the recombination of gas 

products. It is impossible for the one-step system of PEC to collect different gases independently 

when the hydrogen and oxygen are simultaneously photogenerated on the surface of 

semiconductor particles.  

The two-stage PEC system was first proposed by Bard in 1978 [18]. The creative design 

is innovated by the biological photosynthesis that carries out the water oxidation and the CO2 

reduction. After that, the mainstream research effort has been focused on the developing new 

photoelectrode materials and reversible redox mediators. Sayama et al. developed the RuO2-

WO3 photocatalysts that were suspended in H2SO4 solution with redox mediators of Fe3+/Fe2+. 

When irradiated by visible light at less than 460 nm, the WO3 particles could oxidize the water 

molecules into oxygen and reduce Fe3+ into Fe2+. Meanwhile, hydrogen gas was evolved and the 

Fe2+ was oxidized back to Fe3+ at the surface of RuO2
 catalyst with UV irradiation at less than 

280 nm [19]. Bamwenda et al. obtained higher initial oxygen production rates but lower long 

term yields using WO3 photocatalysts when the Fe2(SO4) 3 was replaced by Fe(NO3)3 or FeCl3 as 

a source of electrons acceptors [20]. The aqueous suspension of TiO2 and Ag2O was proved to 

have the ability of PEC process with pH adjustment of NaOH [21]. With visible light of less than 

630 nm, Ag2O was reduced into Ag when the oxygen is produced at pH<7.4. If the pH was 

increased up to 12.3-12.6, the Ag was oxidized back to Ag2O with the photogenerated hydrogen. 

Tennakone et al. found with UV light irradiation, the CuCl suspension in dilute HCl could be 

oxidized to CuCl2 when producing photogenerated hydrogen. The CuCl2 can be reduced back to 

CuCl by photocatalysts, i.e. SrTiO3, TiO2 and WO3, with oxygen evolution [22]. TiO2 was also 

found to enable photogeneration of hydrogen when ground with MnO2 in an alkaline solution. 
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TiO2 suspension with MnO4
2-, on the other hand, was observed to produce hydrogen when 

irradiated by a 90 W medium pressure mercury lamp [23]. When loaded by Pt, TiO2 suspension 

with I3ˉ could reduce the water molecules into hydrogen under visible light. The PEC reaction 

wouldn’t proceed until the I3ˉ concentration reached a certain level to overcome the back 

reaction. The highest reaction rate was obtained at pH of 2.4 [24, 25]. Brˉ could also be used as 

the electron donor for the hydrogen production on the surface of Pt loaded TiO2 [26]. For the 

other PEC stage, pure TiO2 particles could act as the photocatalyst to oxide water molecules into 

oxygen with visible light if the Fe3+ was used as the electron acceptor [26-28]. Abe et al. 

successfully demonstrated the PEC water splitting with visible light irradiation (λ > 420 nm) 

using Z-scheme systems. Pt-SrTiO3:Cr/Ta and Pt-WO3 are used as the photocatalysts for 

hydrogen and oxygen evolutions respectively with the reversible redox mediators of IO3ˉ/Iˉ [15-

17]. Trari and co-workers successfully synthesized a series of photocatalysts for hydrogen 

production driven by visible light irradiation. These semiconductor combinations consisted of p-

CuMnO2/n-Cu2O [29], p-CuCrO2/n-Cu2O [30], p-CuAlO2/n-TiO2 [31], p-CuFeO2/n-SnO2 [32], 

p-ZnFeO4/n-SrTiO3 [33]. The corresponding redox mediators included S2ˉ/Sn
2ˉ, SO3

2ˉ/SO4
2ˉ, 

SO3
2ˉ/S2O6

2ˉ [29-33]. Jang and his Korean research group also found p-AgGaS2/n-CdS [34] and 

p-AgGaS2/n-TiO2 [35] showed high photocatalytic activity for hydrogen evolution under visible 

light (λ>420nm). The hole scavengers used in the experiments were Na2S, Na2SO3 [34, 35].  

As mentioned above, most researchers focused only on the half PEC reactions, i.e. either 

hydrogen or oxygen evolution. This results from the fact that the two-stage reactions have 

different favorable pH and redox concentrations. For example, the hydrogen evolves more 

readily with lower pH and higher concentration of reduction mediators. On the other hand, 

oxygen generation prefers to higher pH and higher concentration of oxidation mediators. Even 
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though the hydrogen favorable conditions can facilitate the hydrogen production rate, it will 

suppress the oxygen evolution. Besides, in the most cases of Z-scheme system, the backward 

reactions can potentially proceed. For example, due to the redox potential difference as shown in 

Figure 6, the photoexcited electrons in the SI stage are more likely to reduce the oxidation 

mediators instead of water molecules into hydrogen. Meanwhile, the photoexcited holes in the 

SII stage tend to be reduced by reduction mediators instead of water molecules for oxygen 

evolution. Therefore, it’s much more difficult to achieve the hydrogen and oxygen production 

simultaneously for the two-stage PEC systems. Furthermore, due to the two stages of PEC 

reactions, the Z-scheme systems require much more photons to split water molecules. This is 

also considered as a disadvantage compared with simple one-step photoexcitation systems. To 

realize the two-stage PEC systems, a high selectivity for forward reactions is necessary for future 

research and development.   

1.1.6 Tandem photoelectrochemical system driven by visible light 

Another effective design to harvest visible light is to use the tandem PEC system. As 

shown in Figure 7 (a) and (b), traditional PEC configurations include either n-type photoanode 

system or p-type photocathode system. The fundamentals of former configuration have been 

explained. In the latter configuration, the p-type semiconductor serves as the photocatalyst. With 

light irradiation, excess of holes are excited into the valance band leaving the electrons in the 

conduction band. The water molecules are then reduced into hydrogen by the electrons on the 

material surface while the oxygen is generated by the oxidation of water on the counter electrode. 

In both configurations of n-type photoanode and p-type photocathode, a short wavelength of 

light source, i.e. UV, is necessary to supply enough excitation energy for the majority carriers. 

Besides, an external bias between the photoelectrodes is usually applied due to insufficient 
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photogenerated potential. However, in terms of the system energy consumption and efficiency, 

required extra electrical energy is undesirable. Thus, innovated by the heterogeneous 

photocatalytic systems, the tandem PEC configuration is proposed as shown in Figure 7(c). The 

tandem system consists of an n-type photoanode and an appropriate p-type photocathode. The 

two electrodes have sufficient high band level and eligible for hydrogen and oxygen production 

respectively when irradiated by visible light. Other tandem PEC system that includes a 

semiconductor photoelectrode and a solar cell to supply bias potential will not be discussed here.   

 

Figure 7. Schematic diagram of PEC systems: (a) n-type photoanode, (b) p-type photocathode, 

and (c) tandem system [11]. 

The tandem PEC system is based on two photosystems that are connected in a series as 

shown in Figure 8. The n-type semiconductor serves as the photoanode to absorb the irradiated 

photons and then create photoexcitation electrons and holes in conduction band and valance band 

respectively. The holes will oxidize the water molecules into oxygen as equation (2). The 

conduction-band electrons are fed into the valance band of p-type photosystem to combine with 

the holes that has been photoexcited. Hydrogen is generated due to the reduction ability of 

electrons at the surface of p-type photocathode. The whole process is close analogy to the Z-

scheme system of two-stage PEC. There are three material criteria for the photoelectrode 
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selection. First, the bandgap of photoanode should straddle over the redox potential of O2/H2O to 

enable the oxidation of water molecules. Similarly, the bandgap of photocathode needs straddle 

over the redox potential of H+/H2 to enable the photogenerated hydrogen. Last, the energy level 

of n-type conduction band should be higher than that of p-type valance band, so that 

photoexcited electrons in the p-type can be compensated by those fed from n-type conduction 

band. The overall PEC process can be driven by visible light if appropriate n-type and p-type 

semiconductors are selected as the photoelectrodes. 

 

Figure 8. Electron-flow fundamentals of tandem PEC system [11]. 

The most challenging problem for developing tandem PEC systems is to find new 

materials and semiconductor combinations with high STH efficiency. Nozik constructed a p-

GaP/n-TiO2 tandem PEC diode that was much more efficient than single p-GaP or n-TiO2 
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devices for water splitting [36]. Because the tandem heterojunction could significantly suppress 

the recombination of photoexcited hole-electron pairs and thus facilitate the charge separation 

during the PEC process. Hu et al. developed a p-Cu2O/n-WO3 tandem system by coupling the 

electrodeposited Cu2O powders with WO3 in suspensions. It was found that the crystalline 

texture played a very important role in hydrogen production rate of tandem systems and the p-

Cu2O with [1 1 1] orientation could be a promising photocatalyst for photogenerated hydrogen 

[37]. Kim et al. fabricated a bulk heterojunction structure promoted by Pt and RuO2, the 

photocatalytic configuration was RuO2/n-MgFe2O4/p-CaFe2O4/Pt. With visible light irradiation 

(λ>420nm), the PEC devices achieved a quantum yield of 10.1% for hydrogen evolution [38]. p-

CaFe2O4/n-PbBi2Nb1.9W0.1O9 was proved as a photocatalytic nanodiode with high efficiency. 

Experimental results showed a quantum yield of oxygen evolution of 38% with visible light 

irradiation [39]. Low-cost photocatalysts, i.e. WO3 [40] or Fe2O3 [41], could also serve as the top 

electrode of tandem PEC system with combination of nanocrystalline TiO2. The top electrodes 

were responsible for the absorbing the blue part of solar spectrum while the TiO2 electrode could 

capture the green and red parts.  

Compared to the two-stage photocatalytic system, the tandem PEC system doesn’t 

require the addition of redox mediators into the electrolyte. Thus, the backward reactions of Z-

scheme system can be avoided and the system complexity decreases. Besides, the photocatalyst 

semiconductors can be fabricated into electrodes instead of powder suspension, which is more 

convenient for gas collection. However, to satisfy the three material criteria as mentioned above, 

there are more requirements of the manufacturing of the semiconductor photocatalysts. It is very 

necessary to develop new catalytic materials for tandem PEC system.   
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1.1.7 Hybrid photoelectrochemical system driven by visible light  

In addition to the Z-scheme systems of two-stage and tandem PEC, the hybrid catalytic 

system has been shown as another way of improving the PEC efficiency. The system includes a 

variety of combinations of p-type, n-type semiconductors and metals with different fabrication 

configurations. Generally, the heterojunction structure of semiconductor combinations can 

effectively separate the photogenerated electro-hole pairs and suppress the recombination 

process. The catalytic metals, i.e. Pt and Au, are loaded onto the surface of heterojunction that 

can extremely enhance the photocatalytic activity. Therefore, the overall hydrogen production 

efficiency is significantly dependent on the catalytic materials and configurations.  

The CdS is a well-known photocatalyst driven by visible light. However, this 

semiconductor material is unstable and photocorrosive because of self-oxidation by the 

photogenerated holes in the valance band. Therefore, it’s necessary for CdS to be embedded in 

various inert matrices, i.e. TiO2, ZnO etc. Figure 9 illustrates the PEC mechanism of CdS/(Pt-

TiO2) hybrid photocatalytic system. The Pt was first photodeposited on the TiO2 particles which 

was followed by the deposition of CdS [42]. With visible light irradiation, the photoexcited 

electron in CdS will jump over the bandgap (2.5 eV) to the conduction band. Due to the energy 

level difference of conduction bands between two semiconductors, the electrons tend to transfer 

to the conduction band of TiO2 and avoid to be recombined with the valance band holes. The 

electrons continue moving to the Pt catalyst where the hydrogen evolves by reducing the water 

molecules. On the other hand, the holes left at the valance band of CdS are responsible for 

oxidizing the water molecules into oxygen.  
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Figure 9. Illustrative diagram of the electron transfer in CdS/(Pt-TiO2) hybrid photocatalytic 

system [42]. 

As mentioned above, the performance of the hybrid catalytic system is determined by the 

material combinations and system configurations. The visible-light driven hydrogen production 

rate of CdS/(Pt-TiO2) system ranged 6~9×10-3 mol/(h·g), that was higher by a factor of 3~30 

than other configurations, i.e. Pt-(CdS/TiO2), at the same testing conditions [42]. Since the 

semiconductor combination of the hybrid catalytic system has been proven as an effective way of 

separating photogenerated carriers, many other different combinations of PEC systems have been 

developed. Silva and co-workers developed a series of hybrid photocatalytic systems based on 

CdS, including cubic-phase CdS (c-CdS) and hexagonal CdS (hex-CdS). After comparing the 

hydrogen production rate of different combinations under visible light, the photocatalytic activity 

of CdS based systems were found to be c-CdS/Pt/hex-CdS > Pt/c-CdS/hex-CdS > Pt/hex-CdS > 

hex-CdS > c-CdS/hex-CdS > quantum-sized c-CdS. It was concluded that the potential gradient 

formations at the material interface were necessary to achieve the efficient charge separation and 

transfer [43]. Tada et al. constructed the anisotropic CdS-Au-TiO2 heterojunction with all three 

components spatially fixed. The system shoed an impressive photocatalytic activity that far 
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exceeded either single or two-component system. This was explained by the two-step excitation 

of TiO2 and CdS that could drive the vectorial electron transfer [44].  Wang et al. synthesized a 

novel composite PEC system, Zn-doped Lu2O3/Ga2O3, for stoichiometric water splitting with 

UV irradiation. The composite semiconductor was proved to be a promising approach for high 

efficient catalyst due to the ability of charge separation [45]. Similarly, Pd- TiO2-xNx-WO3 

showed a good performance for photogenerated hydrogen production with the S2ˉ/SO3
2ˉ as the 

redox mediators [46]. Other hybrid photocatalytic systems that has been approved successfully 

includes Cr-doped Ba2In2O5/In2O3 [47], MWNT-TiO2 [48] etc.  

Compared to Z-scheme systems of two-stage and tandem PEC, the hybrid photocatalytic 

system can achieve higher hydrogen or oxygen production rate, thus increasing the STH 

efficiency. In addition, the backward reactions in the two-stage systems can be avoided since the 

redox mediators are not necessary for the hybrid PEC system. However, fabrication complexity 

may increase due to the additional deposition of active-site materials for hydrogen evolution.  

1.1.8 Summary and prospects  

The photoelectrochemical has been proven as a promising technique for the hydrogen 

production in a long-term pathway. Currently, the highest apparent quantum yield of PEC system, 

to our best knowledge, was reported to be 75% with the light wavelength ranging 350 to 500 nm 

[49]. The 3D organic/inorganic material was used as the photoelectrode based on CdS-IO 

(inverse opal) networks and Nafion polymers. However, the overall STH efficiency has been still 

quite low with consideration of the whole spectrum. The best experimental results are reported 

from a BiVO4-perovskite tandem PEC system with STH efficiency of 6.2% [50]. This is still far 

from the STH efficiency target for practical application (15%). Therefore, it is necessary to 

develop the cost-effective and high efficient photocatalyst for PEC systems under visible light.  
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For the visible-light-driven photocatalysts, the bandgap needs fall into the energy range 

between 1.6 eV and 3.0 eV in addition to straddling the redox potentials of hydrogen and oxygen. 

Thus, bandgap engineering, i.e. ion doping, semiconductor sensitization and solid solution, can 

be applied to modify the band structure and make it suitable for visible-light-active systems. 

Other factors such as chemical composition, electronic properties, crystallinity, surface state and 

morphology, can determine the band structure and need to be further investigated in great details. 

Besides, adding the redox mediators into the electrolyte is another effective way of increasing 

the STH efficiency. Traditional sacrificial reagents include Iˉ/IO3ˉ, S2ˉ/Sn
2ˉ, SO3

2ˉ/SO4
2ˉ, 

SO3
2ˉ/S2O6

2ˉ, Fe3+/Fe2+ etc. These electron donors/acceptors tend to participate into the half-

reactions and make the hydrogen and oxygen generation separately. This can prohibit the 

undesirable charge recombination and facilitate the production rate. However, the concentration 

of sacrificial reagents should be precisely controlled according to different PEC systems to avoid 

backward reactions. Furthermore, noble metals, i.e. Pt and Au, can be deposited on the 

photocatalysts and used as the active site for hydrogen evolution. The application of metal 

catalysts is beneficial for photogenerated electron transfer and can effectively suppress the 

backward reaction of hydrogen and oxygen molecules. Nevertheless, the noble materials are too 

expensive and not economic for practical application despite of high catalytic efficiency. 

Alternative catalysts, such as non-noble metals and derived metal-based compounds, need to be 

developed as the substitutes for Pt or Au.    

1.2 Solid-state photoelectrochemical cells  

For a traditional photoelectrochemical system, liquid electrolyte is necessary to supply 

the electrochemical environment for redox reactions and ion transportation. The PEC process is 

significantly dependent on the aqueous electrolyte conditions such as the pH and concentrations 



   

 

42 

of sacrificial reagents. However, it is not easy to find the appropriate liquid electrolyte for a 

specific photocatalyst with consideration of the material properties, redox potential, Fermi 

energy alignment etc. To overcome those problems, solid-state PEC systems have recently 

attracted a lot of research interest [51-56]. All the components, including electrolyte, of the 

innovative systems are solid materials. The concept of solid-state photoelectrochemical water 

splitting was independently proposed by Zhang [57] and Ye et al. [51] in 2013, though with 

different cell configurations. In Zhang’s original concept, a solid oxide photoelectrochemical cell 

(SOPC) was proposed, which integrated a solid oxide electrolysis cell (SOEC) and a 

photovoltaic (PV) cell. However, only a small output voltage (around 100 mV) was achieved 

using TiO2/Pt Schottky diode based cells in the preliminary research [57]. Based on a 

heterojunction between a light absorber and a mixed ionic and electronic conducting (MIEC) 

oxide, the integrated high temperature PECs proposed by Ye et al. absorb both thermal and 

photon energy from concentrated solar light. Specifically, the light absorber semiconductor is 

able to separate electron-hole pairs, while the MIEC oxide conducts the excited electrons and 

oxygen ions at a temperature range from 400 °C to 700 °C [51, 52]. The feasibility of high 

temperature photoelectrochemical water splitting was first experimentally demonstrated by 

Brunauer et al. recently, using a solid oxide photoelectrochemical cell (namely SOPEC) [53, 55]. 

An open circuit voltage (Voc) of 920 mV was achieved using a LaSrCrO3/SrTiO3 p-n junction 

diode at 400 °C under ultraviolet (UV) light. Then an electrochemically oxygen pump driven by 

UV light was demonstrated using the SOPECs [55]. The same group reported that cells with 

configurations of SrTiO3/YSZ and TiO2/YSZ were able to store oxygen upon UV light from 

360 °C to 460 °C. Their further experiments showed that oxygen vacancies in SrTiO3 or TiO2 

were filled during UV illumination, leading to a battery-type voltage of 30-70 mV at 460 °C [53, 
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54]. To date, both the theoretical and experimental research on high temperature 

photoelectrochemical water splitting is extremely limited, since it is a newly conceived concept. 

The solid-state PEC systems that have been developed so far can be divided into three 

categories, the system based on proton-exchange-membrane (PEM), the mixed ionic and 

electronic conductor (MIEC), and integrated PV/EC (electrolysis cell).  

1.2.1 Proton-exchange-membrane based PEM system 

Xu et al. replaced the traditional aqueous electrolyte with a proton conducting hydrated 

Nafion polymer membrane and fabricated the sandwiched configuration of PEM system as 

shown in Figure 10 [56]. The system consisted of Pt/C-based cathode, Nafion electrolyte, and 

photoanode that was made by either thermally prepared TiO2 film on Ti foil (T-TiO2) or highly 

ordered TiO2 nanotubes (TNT) with different lengths. The working principles are similar to those 

of traditional PEC systems as described in section 1.1.1. The difference is that only photoanode 

is immersed in the liquid, either pure water or Na2SO4 solution. The short-circuit photocurrent of 

PEC cell was characterized under the UV-rich light with the intensity of 4 mW/cm2. The PEC 

system with TNT electrode exhibited a better performance with 230 µA/cm2 and 400 µA/cm2 at 

pure water and Na2SO4 (aq), respectively. Due to the high ionic conductivity of the salt solution, 

the APY of solid-state PEM system can reach as high as 33%. Further study needs to be focused 

on the utilization of visible-light-driven photoanode, improvement of solid electrolyte and 

hydrogen production in the cathode chamber.   
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Figure 10. Schematic diagram of proton-exchange-membrane based process [56]. 

1.2.2 The MIEC based PEC system 

Recently, MIEC based solid-state PEC systems have been developed independently by 

both J. Fleig’s [53, 54] and C. Chueh’s [51, 52] research groups. This is innovated by the fact 

that solid electrolyte, typically YSZ, has been successfully used in solid oxide fuel cells (SOFC) 

or electrolysis cells (SOEC) at high temperature. The solid oxide photoelectrochemical cells 

(SOPEC) of J. Fleig’s research group is shown in Figure 11. The solid electrolyte, YSZ, was 

pulsed-laser deposited on the MIEC substrate, SrTiO3 or TiO2. The porous Pt counter electrode 

was then applied on the YSZ surface via paste brush. The metal grid was deposited on the MIEC 

electrode as the current collector. The whole system was operated at temperature of 360-460 °C. 

With UV irradiation, the SOPEC cell exhibited a build-up battery voltage of more than 300 mV. 

After turning off the light source, the electric potential decayed slowly. This is caused by two 
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mechanisms of UV-induced oxygen incorporation into the MIEC, the electrochemical process 

and photovoltaic process. Generally, when the UV is turned on, the majority of existing oxygen 

vacancies of MIEC tend to be filled leading to the charge state of SOPEC. On the other hand, 

after UV off, the oxygen ions tend to be released from MIEC leading to the discharge currents. 

Thus, the SOPEC cell based on the MIEC can be considered as the light-charged oxygen battery, 

which is similar to the electrical charging of Lithium-ion battery by intercalating Li into carbon.   

 

Figure 11.  Schematic diagram of solid oxide photoelectrochemical cells used as the light-

charged oxygen battery  [51-54]. 

 

Another configuration of MIEC based PEC system was developed by C. Chueh and his 

co-workers [51, 52] as shown in Figure 12. The MIEC should have a sufficiently large bandgap 

(>3eV) to allow most light spectrum to be utilized by light absorber. Many ceria-based and 

ferrite-based materials can meet such requirement. The lighter absorber should have the bandgap 

ranging from 2.0 eV to 3.0 eV and maintain stable performance at elevated temperature. Fe2O3, 

SrTiO3, and TiO2 could be potential material candidates. Similar to the SOEC materials, YSZ 
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and LSCF can be used to fabricate electrolyte and anodes, respectively, because these materials 

can exhibit excellent performance at high temperature. The whole system is projected to work 

between 400 °C to 700 °C. With illumination of visible light, 97% of the whole spectrum will 

pass through the MIEC due to the large bandgap. Incident photons with higher energy than the 

bandgap of light absorber can excite the electrons into the conduction band leaving the holes at 

the valance band (step I in Figure 12). The photoexcited electrons with extra energy can 

thermalize and heat up the absorber rapidly. Despite the energy barrier at the absorber/MIEC 

interface, the fully thermalized conduction-band electrons can be thermionically emitted into 

MIEC conduction band (step II). Meanwhile, the valance-band holes tend to migrate to anode 

due to diffusion (step III). The water molecules are reduced by the emitted electrons to produce 

hydrogen and oxygen ions at the MIEC surface (step IV). The oxygen ions then diffuse through 

the solid electrolyte at high temperature to combine with the migrated holes at the anode (step V). 

Eventually, the oxygen gas can be evolved at the anode surface due to the oxidization ability of 

the photoexcited holes (step VI). Compared to the conventional PEC cells, the proposed MIEC 

heterojunction integrates the charge excitation, separation, emission, transportation, and gas 

generation into a single device that remarkably decreases the system complexity. A temperature-

dependent photoelectrode model was developed to simulate the MIEC based PEC system [51]. It 

was concluded that an efficiency of 17% and 11% can be achieved at 450 °C and 600 °C 

respectively from the devices with the absorber bandgap of 2.0 eV and uphill band offset of 0.3 

eV.     
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Figure 12. Schematic diagram of MIEC based solid-state PEC system designed by Ye [51], I. 

Charge separation, II. Electron transfer, III. Holes migration, IV. Water splitting, V. Oxygen ion 

transfer, VI. Oxygen generation  [51, 52]. 

 

1.2.3 Integrated-PV/EC PEC system 

Instead of simply combing the PV and EC cells, the two subsystems can be integrated 

into a single device, named SOPEC [53, 55], as shown in Figure 13. In the configuration, the PV 

part is based on the LSCr/SrTiO3 heterojunction and the design of EC part is symmetric with two 

porous LSF electrodes and TZP electrolyte. The PV part has a shared bottom electrode that acts 

as the top electrode of EC part. Thus, the electric energy produced from the PV cell can be 

directly used by the EC cell for water electrolysis. This solid-state PEC cell is operated between 

400 °C and 500 °C under 365 nm UV light. The PV part exhibited an open circuit voltage (OCV) 

of 920 mV at 400 °C. Even though this electric potential is not enough for water electrolysis of 

EC part, it can act as a driving force to pump the oxygen from low partial pressure (EC side) to 
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high partial pressure (PV side). The experimental results demonstrate the feasibility of light-

driven chemical storage by the SOPEC.  

 

 

Figure 13. Schematic diagram of PV/EC integrated solid-state PEC system  [53, 55]. 

 

1.2.4 Summary and prospects 

Compared to conventional PEC systems, the solid-state PEC systems have a huge 

potential to achieve the high STH efficiency. These new PEC configurations have several 

advantages over the traditional PEC systems. First, the system complexity will decrease because 

the solid-state PEC process is generally a one-step approach so that the Z-scheme systems and 

sacrificial reagents become unnecessary. Second, the backward reaction can be avoided. The 

hydrogen and oxygen are evolved on the separate electrodes instead of the particle surface. Thus, 

it is beneficial for collecting the gases while suppressing the recombination process. Last but not 



   

 

49 

least, the solid-state PEC systems can be operated at elevated temperature. This will bring even 

more benefits such as more absorption of visible light, low requirement of photovoltaic potential, 

reduced threshold of water electrolysis, faster kinetics and application of cost-effective catalysts. 

However, since the solid-state PEC is a new technique that was proposed only 5 years ago, there 

hasn’t been any report that can successfully demonstrate the photogenerated hydrogen. To 

achieve the goal of STH via solid-state PEC devices, scientific research should focus on the 

following areas. First, the material candidates should maintain the electrochemical properties and 

stability at elevated temperature. It means that the selected semiconductor material has a high 

melting point and cannot be further oxidized. Second, the configuration design needs to be 

improved. The selected p-type and n-type semiconductors are able to form a strong p-n junction 

and maintain an acceptable performance at elevated temperature. Currently, the most effective 

configuration of solid-state PEC systems is the integrated PV/EC with an OCV of 0.92 V at 

400 °C and this is still not enough for water electrolysis. Third, the bandgap theory of 

semiconductors at high temperature is necessary. The bandgap of selected semiconductors 

usually narrows with increasing temperature. Several studies have been performed to quantify 

the effect of temperature on the band gap energy of TiO2 [58-64] based on the following 

correlation: 

𝐸𝑔(𝑇) =  𝐸𝑔(0) −  
𝛼𝑇2

𝑇 + 𝛽
 

(

8) 

Where, Eg(0) is the bandgap at absolute temperature of 0 K, T denotes the temperature 

(K), α and β are constants independent on the temperature change. It was predicted that the 

bandgap of TiO2 will narrow down to 1.7-2.3 eV as temperature rises to 1000 K [58-64]. 

However, the energy levels of the conduction band and valance band still remain unclear. 
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Furthermore, similar studies or experiments need to be conducted on other semiconductor 

candidates, such as SrTiO3, Fe2O3 etc. 

1.3 Solid oxide electrolysis cells 

As shown in Figure 1, the high-temperature electrolysis pathway is a long-term technique 

for hydrogen production for central facilities. The process can be realized by using SOECs. 

Reversibly, the hydrogen product can generate electricity with combination of air through 

SOFCs, which is exactly the same device as SOECs. Figure 14 depicts the future energy 

infrastructure with various scenarios for producing renewable hydrogen and electricity. The 

hydrogen energy system plays a very important part as a conversion energy carrier. Specifically, 

the excess of renewable energy can be converted into hydrogen as the energy storage by the 

electrolyzer. Similar to the gasoline, the hydrogen then is compressed in the tanks and 

transported to the places where there is a need, i.e. synthesizing natural gas and ammonia. 

Besides, with hydrogen as the feedstock, fuel cells can act as the power plants that are integrated 

into the electric grid when there is a peak demand.  
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Figure 14. The renewable hydrogen production and electricity/hydrogen cogeneration 

infrastructure system proposed by national renewable energy laboratory (NREL) [65]. 

1.3.1 History  

Water electrolysis for production of hydrogen and oxygen is the reverse chemical process 

of the hydrogen fuel cell. The word “electrolysis” was introduced by Faraday in 19th century, and 

the English scientist provided a mathematical explanation of his two laws of electrolysis in 1834. 

It was not until the ‘HotElly’ project in 1980s that SOEC attracted worldwide interest. After 

theoretical and experimental analysis, Doenitz et al. reported that the thermal efficiency of 

electrolysis at elevated temperature can be as high as 40-50% [66]. The German researchers first 

tested a single SOEC using tubular configuration and a typical current density of 0.4 A/cm2 was 
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achieved when the cell was operated at 900 °C with an applied voltage of 1.3 V. Subsequently, a 

10-cell tubular stack was assembled using modular electrolysis units to investigate the feasibility 

of high production rate of H2 [67]. Furthermore, a concept of 3.5 kW prototype plant was 

demonstrated at the end of the German project [68]. After that, the worldwide R&D of solid-

oxide focused on solid oxide fuel cells (SOFCs), and research on innovative materials, 

thermodynamic modeling, degradation issues etc. has increased remarkably in recent two 

decades. Recently, the global energy and environment crisis have revoked the R&D of SOECs 

due to the potential of hydrogen economy. Many research groups and companies all over the 

world have been focusing on efficiently producing hydrogen, oxygen as well as syngas in a large 

scale using SOECs. In the Idaho National Laboratory (INL), SOEC research scope included 

fundamental mechanism, small-scale experiments, CFD simulation, system modeling, and 

technology demonstration. Under the DOE Nuclear Hydrogen Initiative (NHI), the scale of test 

activities ranged from button cell (1.5 W) to multiple-stack module (12 kW) from 2003 to 2009 

[69]. During FY09, DOE selected High-Temperature Electrolysis (HTE) as the primary 

technology of nuclear hydrogen production and from FY10 to FY12, HTE research was funded 

under the Next Generation Nuclear Plant (NGNP) in INL. In European Institute for Energy 

Research (EIFER), many long duration experiments of SOECs including single cells and 

assembled stacks have been conducted since 2004 under the European project Hi2H2. With 

current densities of 0.4-1 A/cm2, the lifetime of these tests ranged from 1000 to 9000 hours and 

finally a lifetime of more than 20000 h was estimated for the single cells with active area of 45 

cm2 [70]. Researchers in Technical University of Denmark (DTU) Energy have been working on 

the performance and durability of SOECs in the past decade. The improvements consisted of the 

increase of anode performance, purification of inlet streams, upgrade of processing route and 
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optimization of fuel electrode structure. As a result, the degradation rate and area specific 

resistance have been decreased from 40%/kh to 0.4%/kh and from 0.44 Ωcm2 to 0.15 Ωcm2 

respectively at -0.5 A/cm2 and 750 °C [71]. Aimed at increasing the performance, durability and 

reliability as well as reducing the cost, the French researchers in Alternative Energies and 

Atomic Energy Commission (CEA) designed low-weight SOEC stacks with 3 to 25 cells. Based 

on the 25-cell stack, H2 fuel production of 1.2 Nm3/h was achieved 700 °C with an overall 

electrical consumption of 3.9 kWh/Nm3 [72]. In China, the R&D of HTE technology started 

from 2005 in Institute of Nuclear and New Energy Technology (INET) of Tsinghua University. 

SOECs technology was selected as one of the approaches in high temperature gas-cooled reactor 

(HTGR) project that was aimed at efficiently utilizing the nuclear process heat in the future. 

Currently, H2 production of 274 L/h in the lab scale has been achieved and coupling such key 

technology with HTR-10 in the pilot scale is underway [73]. Besides, Chinese researchers in 

Ningbo Institute of Material Technology and Engineering (NIMTE) have achieved H2 

production rate of 360 NL/h using a 30-cell SOE stack operated at 750 °C under a current 

density of -0.5 A/cm2 with 4.06%/kh degradation rate [74]. To reach the DOE target of 78% 

water electrolysis efficiency based on low heating value (LHV) before 2020, Versa Power 

System have been developing SOECs technology which is capable of operating at ultra-high 

current density of more than 3 A/cm2 with an upper voltage limit of 1.6 V. By increasing the fuel 

electrode porosity, a performance of over -6 A/cm2 was delivered in a single SOEC at 78% 

efficiency (LHV) and a degradation rate of 1.8%/kh was demonstrated with the current density 

of -3 A/cm2. Moreover, the current density of -3 A/cm2 was achieved for a 20-cell stack at 

operation voltage of 1.493 V with 83.9% water electrolysis efficiency (LHV). NASA scientists 

have designed a CES plant using combination of SOECs and Sabatier Reactor for human 
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exploration of Mars. With inlet CO2 from Mars atmosphere (95% CO2) combined with steam 

and H2, the plant could produce pure O2 for human life support as well as CH4 for Earth-return 

propellant [75, 76]. By replacing the metal interconnect with Ca-doped LaCrO3 ceramic, the 

power density of SOECs increased significantly from 0.5 to 4.1 kW/L, leading to a remarkable 

reduce of transportation cost for Mars exploration [77]. In addition, significant progress has been 

achieved on SOECs in the rest of the world such as Italy, Switzerland, Korea, Japan, etc. [78-81]. 

1.3.2 Operating principles  

The electrochemical reactions at SOECs are inverse to those at SOFCs as shown in 

Figure 15. Due to the opposite cell polarizations, the roles of cathode and anode are 

interchanged. Specifically, for steam electrolysis, the water vapor is reduced to hydrogen at 

cathode, while the other product, oxygen ions, is transferred through the electrolyte and then 

oxidized to oxygen molecules at anode. The reactions at fuel electrode (cathode) and oxygen 

electrode (anode) are as follows: 

H2O + 2 e- → O2- + H2 cathode 
(

9) 

O2- → ½ O2 + 2 e-  anode (

10) 

H2O → ½ O2 + H2  overall (

11) 

The SOECs is also eligible for operating co-electrolysis. Compared to the water 

electrolysis, the half reaction of co-electrolysis at cathode is different while the other at anode 

side remains the same. 
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CO2 + 2 e- → O2- + CO cathode 
(

12) 

O2- → ½ O2 + 2 e-  anode (

13) 

CO2 → ½ O2 + CO  overall (

14) 

Besides, when the feedstock is the mixture of steam and CO2, syngas (CO/H2) will be 

generated at fuel electrode, that is defined as “co-electrolysis”. The CO/H2 mixture can be further 

used to produce liquid fuel through the Fischer-Tropsch process [82]. During co-electrolysis, the 

steam electrolysis is the principal reaction due to the fact that there was almost no difference of 

area-specific resistance for co-electrolysis versus steam electrolysis [83]. Part of H2 from steam 

electrolysis is used to reduce CO2 via the reverse water-gas shift (RWGS) reaction [84]: 

H2 + CO2 ↔ H2O + CO 

(

15) 

 

Figure 15. Operation principles of SOFC and SOEC [84]. 
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1.3.3 Thermodynamics 

Due to different working temperatures, there are two main types of electrolysis 

technology, the low temperature electrolysis (LTE) and high temperature electrolysis (HTE). The 

alkaline electrolyzers and proton-exchange membrane (PEM) electrolyzers are the most widely 

used LTE systems and these devices are reported to achieve an energy efficiency as high as 75% 

[85]. Even though the LTE is a mature technology, the high electric energy consumption is still a 

major problem. Basically, the Nernst potential for water electrolysis is 1.23 V at standard 

conditions. But the practically applied voltage is required to be 1.6~1.8 V with consideration of 

overpotentials. This can degrade the competitiveness of the LTE technique. On the other hand, 

the HTE shows a great potential for splitting water due to the highly endothermic process at 

elevated temperatures. Specifically, the electrical power demand is reduced with increasing 

temperature. Because the joule heat can compensate a portion of total required energy for water 

electrolysis. In addition, the overpotential of electrodes can be effectively suppressed leading to 

less power loss in the SOECs. The HTE process consumes electrical energy as well as thermal 

energy. The minimum electric energy required for electrolysis is equal to the change of Gibbs 

free energy (∆G): 

∆G = ∆H – T∆S 

(

16) 

where ∆H is the change of enthalpy and indicate the total energy requirement. T and ∆S denote 

operation temperature and entropy change respectively.  

In terms of thermodynamics, the increase in the thermal energy requirement is more 

noticeable than that of total energy demand as temperature increases. Therefore, the required 

electrical energy decreases with temperature increasing as shown in Figure 16. When the heat 
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energy is obtained from other renewable sources such as solar, wind, nuclear etc., the HTE has a 

distinct advantage over LTE due to its lower electrical input and thus higher efficiency. Besides, 

several restraining factors for LTE, e.g. kinetics, activation and ohmic overpotentials decrease 

significantly with rising temperature [86].  

 

Figure 16. Thermodynamics water electrolysis from 273K to 1000K [87]. 

 

The thermal energy can be obtained from Joule heat that is converted from electrical 

energy when the current passes through the cell. Thus, at a certain applied voltage, the cell can 

run in the electrolysis model with maintaining high temperature.  Such thermoneutral potential is 

defined as: 
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𝐸 =
∆𝐻

𝑛𝐹
 

(

17) 

where n is the electron number involved in the electrochemical reactions, and F is the Faraday 

constant. If the applied voltage is lower than the thermoneutral potential, the electrical energy 

supply is less than the total energy consumption. Therefore, the SOEC works in endothermic 

model and extra thermal energy compensation is required to maintain the operation temperature. 

On the other hand, if the applied voltage is higher than the thermoneutral potential, SOEC 

operates in exothermic model and the electrical energy can drive the electrolysis without extra 

energy supply. Even though the electrical efficiency cannot reach 100%, high current density 

will be achieved leading to high H2 production. 

Besides temperature and thermal energy supply, reactant concentrations have remarkable 

effect on electrical voltage in HTE as well as shown in Figure 17. Taking steam electrolysis as an 

example, water vapor is usually mixed with hydrogen as inlet reactants to avoid the oxidation 

and degradation of cathode. Therefore, the minimum electrical energy requirement of mixture is 

lower than that of steam at atmosphere pressure. This can be described by Nernst potential [88] 

as follows: 

𝐸 = 𝐸0 −
𝑅𝑇

2𝐹
ln

𝑃𝐻2𝑂

𝑃𝐻2
𝑃𝑂2

1/2
 

(

18) 

where 𝐸0 is the standard cell potential; R is the ideal gas constant; T is the operating temperature; 

F is Faraday constant; and 𝑃𝐻2𝑂 , 𝑃𝐻2
, and 𝑃𝑂2

 represent the partial pressure of H2O, H2, and O2, 

respectively. At standard conditions, the Nernst potential is 1.23 V for water splitting. As shown 

in Figure 17, at elevated temperatures, Nernst potential significantly decreases. It can be further 

reduced using higher steam content. Furthermore, activation overpotentials are very small at high 
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temperature. A practical VOC value of 0.85-0.95 V (based on various steam contents) is 

commonly observed in high temperature electrolysis [87, 89, 90]. 

 

 

Figure 17. Nernst potential for H2O splitting at atmosphere pressure as temperature increases. 

 

1.3.4 Configurations and Materials 

A number of SOE cell/stacks have been developed and tested since the German ‘HotElly’ 

project in 1980s. Among all the cell/stacks, planar and tubular designs are the most focused in 

the stack level. Initially, tubular configuration was more popular due to its sealing advantages 

even though the fabrication cost of tubular designs is much higher than that of planar designs. 

Besides, tubular cell unit could be much easier to be connected in series with respect to electrical 
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current and gas flow [91].  Afterwards, with R&D of sealing materials and designs, planar 

configuration became dominant because of its shorter current collection paths and higher 

volumetric density. Furthermore, all ceramic SOE stacks were innovated by NASA for Mars 

exploration since it could reduce the stack weight and volume significantly thus resulting in 

higher power density. The three stack designs mentioned above will be discussed in detail in the 

following sections. 

According to the supported components of SOECs, there are four types of cell designs, 

namely: anode-supported, electrolyte-supported, cathode-supported, and externally supported 

configurations [92]. Electrolyte-supported and electrode-supported configurations are the most 

common designs. Generally, electrolyte-supported SOEC stacks have much higher area specific 

resistance (ASR) due to thicker electrolytes. Therefore, higher energy input is required to 

compensate the ohmic loss. However, the experimental results showed that electrolyte-supported 

SOEC stacks had higher possibility to survive during the long-term degradation test because 

electrode-supported SOEC stacks were more sensitive to thermal cycles and unintentional redox 

events [93]. 

1.3.4.1 Electrolyte-supported cells 

Scandia-stabilized zirconia (ScSZ) and 3 mole% yttria-stabilized zirconia (3YSZ) exhibit 

high ionic conductivity at elevated temperature and they are the most common electrolyte 

materials in electrolyte-supported SOECs [83, 94]. Figure 18 shows the planar stack fabricated 

by Ceramatec, Inc., of Salt Lake City, UT. The thickness of ScSZ electrolyte was approximately 

140 um. The graded air-sweep electrode consisted of a manganite/zirconia inner layer (13 um), a 

manganite middle layer (18 um) and a cobaltite outer bond layer. The steam/hydrogen electrode 

was graded as well and were made of an inner layer of nickel cermet (13 um) and an outer layer 
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of pure nickel (10 um) [69]. A variety of experimental investigations about ScSZ-supported SOE 

stacks have been conducted at INL. The testing stack level ranged from multi-cell stacks (10-cell, 

25-cell) to multi-stack systems (720-cell) [69, 83, 93, 95-99]. Besides, a 5-cell 3YSZ-supported 

SOE stack was fabricated by Energy research Center of Netherland (ECN). The 3YSZ electrolyte 

was made through tape casting with thickness of 90 um. Both electrodes were screen-printed and 

the oxygen electrode was made of strontium-doped lanthanum ferrite/cobaltite (LSCF). The 

hydrogen/steam electrode consisted of three layers, namely Nickel and ceria-gadolinia (CGO) 

with thickness of 40 um [94].  

 

 

Figure 18. Exploded view of a 10-cell stack from Cermatec [93]. 

1.3.4.2 Electrode-supported cells 

Nickel (Ni) is extremely popular in cathode materials of SOECs due to its electrical 

conductivity, mechanical strength and catalytic property. As a supported component, the cathode 
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thickness ranged from 300 um to 700 um in the stack level [73, 86, 100]. However, the different 

thermal expansion coefficients between cathode and electrolyte could cause electrolyte cracking 

during fabrication and operation. Therefore, mixture of Ni and electrolyte were usually 

recommended for cathode materials to reduce the mismatch of thermal expansion coefficients. 

For example, Ni-YSZ and Ni-CeO2 were cathode materials in terms of YSZ and ScSZ 

electrolytes, respectively [80, 93]. Figure 19 shows a 5-cell SOE stack fabricated by Materials 

and Systems Research Inc. (MSRI). The supported steam/hydrogen electrode was made of Ni-

YSZ and the corresponding electrolyte and oxygen electrode were YSZ and LSCF, respectively 

[93]. Besides, other oxygen electrode materials, such as LSC [101-103], LSM [70, 100, 104], 

LSCF [105], LSCF-GDC [73, 74], LSM-YSZ [78, 106-108], CGO|LSC-CGO|LSC [109], LSCF-

CGO [79, 110, 111], YDC-LSCF [112, 113] and LSC-GDC [80], were reported to be suitable for 

cathode-supported SOE stacks as well. 
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Figure 19. Exploded view of a 5-cell stack from MSRI [93]. 

 

1.3.4.3 Tubular cells 

Tubular configurations were extremely common during the initial development of SOE 

stacks. Generally, there were two common designs as shown in Figure 20 and Figure 21 [114]. In 

the first design, the electrolyte was continuous and thus can provide a convenient structural 

element. However, the principal problem is to series-connect the anode and cathode through 

electrolyte without introducing leaks. In the second design, electrolyte was discontinuous and the 

anodes and cathodes were connected directly. With the development of sealing materials and 

technology, the discontinuous design was more popular because there was no concern about the 

mismatch of thermal expansion for connection wires and electrolytes. 

 

 

Figure 20. Schematic diagram of tubular SOECs with a continuous electrolyte [114]. 
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Figure 21. Schematic diagram of several possible configurations for tubular stacks with 

discontinuous electrolytes [114]. 

 

Figure 22 shows the tubular electrolyzer stacks from the German ‘HotElly’ project in 

1980s [115]. The unit cells with inner diameter of 13 mm were connected in series and used Pt 

foils as interconnectors. The electrolyte was made of ZrO2 + 8 mol% Y2O3 ceramic with 

thickness of 1.5 mm and had a high O2- conductivity of 0.1 S/cm at 1000 °C. Both anode and 

cathode were made of porous Pt with porosity of less 3%. Besides, other inner cathode materials 

such as Ni-YSZ [81, 116] and outer anode materials such as LaCoO3 [116], LSM [116] and LSC 

[81] were reported in tubular SOE stacks. 
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Figure 22. Schematic drawing of the fabricated electrolyzer cell [115]. 

 

1.3.4.4 All ceramic SOEC stacks  

As shown in Figure 23, NASA Glen Research Center (GRC) has developed a novel 

design of SOE stack for sample return missions and human exploration of Mars [77, 117]. The 

metal interconnects and frames accounted for 70% of the stack mass in traditional SOE stacks. 

These were replaced by a thin, Ca-doped LaCrO3 (LCC) layer with a thickness of 30-60 m in 

state-of-the-art planar stack from GRC. Therefore, this all ceramic SOE stacks had the potential 

to improve the power density by 3 to 4 times [117]. The unit cell was symmetrical structurally 

and named bielectrode-supported cell (BSC). The thin YSZ electrolyte layer was supported by 

identical, porous YSZ electrodes on both sides through a freeze-casting technique. The porous 

electrodes were graded from smallest pores (1-5 um) at electrode/electrolyte interface to 80-100 

um pores as air and fuel channels. The fuel and air pathways were perpendicular to each other 
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without interference in BSC stack. Besides, the seals were made of YSZ as well to match the 

CTE with LCC interconnect.  

 

 

Figure 23. The design of a 2-cell bielectrode-supported stack [117]. 

1.3.5 Manufacturing 

1.3.5.1 Electrolyte manufacturing 

The electrolyte layer has to be dense with high ionic conductivity, zero gas penetration 

and negligible electric conductivity. To improve the ionic conductivity, the small particle size of 

electrolyte powders is preferred. It has been reported that the ionic conductivity of YSZ particle 

with 300 nm is 95% higher than that with 2.15 um [118]. The tape casting and lamination is the 

most widely used fabrication technique [119-121]. First, a three-layer YSZ wafer is prepared by 

laminating the ceramic tapes. The central layer is a dense wafer sandwiched by two porous 

electrode layers. Note that, the central wafer only includes YSZ and organic binders while the 

other electrode wafers contains sacrificial pore formers, i.e. graphite or polyethylene. Then, the 

multi-layer disc synthesized by tape casting is sintered around 1500 °C leading to a dense YSZ 
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electrolyte and two porous electrodes. Besides, vacuum system coating is considered as another 

effective method of fabricating dense electrolyte layer. The coating techniques include 

magnetron sputtering [122], plasma spraying [123], slip casting [124], physical vapor deposition 

[125], etc. Depending on various methods and electrolyte materials, the sintering temperature 

ranges from 1100 °C to 1600 °C. Pressing has also been reported as a successful manufacturing 

technique of electrolyte [125-131]. The electrolyte powder is typically pressed under pressure 

from 140 MPa to 200 MPa before sintering. On the other hand, the electrolyte powder can be 

mixed with organic binder in the ball milling and screen-printed on the electrodes [132]. The 

organic binder (terpineol based) is removed when the sintering temperature is above 800 °C. 

1.3.5.2 Fuel electrode manufacturing 

To transport the ions and electrons during the H2O/H2 redox reactions, the fuel electrode 

must have a high ionic and electric conductivity. It is usually made of metal-ceramic mixture 

(Ni-YSZ), where the metal and ceramic materials are responsible for conducting electrons and 

ions respectively. The metal-ceramic mixture can also avoid delamination issues due to the 

mismatch of thermal expansion coefficients between electrodes and electrolytes. The overall 

conductivity of fuel electrode materials is required to be 1 S/cm with consideration of various 

cell designs and path lengths of current collection [133, 134]. Another important parameter of 

fuel electrode is porosity. The electrode with high porosity can supply sufficient area for 

electrochemical reactions. However, the electrical conductivity decreases with an increase of 

electrode porosity because high porosity leads to the discontinuous conductor materials, thus 

increasing the ohmic resistance. The suggested porosity for SOFC ranges from 35% to 40% 

[135]. Higher porosity of 50% is required for SOEC mode due to different gas transport 
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mechanisms. For instance, H2O has a remarkable influence in Knudsen diffusion, so that the 

diffusion is affected more significantly in electrolysis mode [136].  

Nickel (Ni) is the most commonly used metal material in the mixture due to its high 

conductivity and catalytic property. The ceramic part is dependent on the electrolyte materials 

including YSZ, GDC, ScSZ, etc. Generally, these materials are either wet or dry and mixed in a 

ball mill. Compared to the dry milling, the wet milling can develop a more uniform structure by 

coating YSZ particles on Ni surface, leading to a higher conductivity [137]. The powder forming 

techniques of fuel electrode include dip coating [119, 121, 138, 139], pressing [132, 137, 140-

142], screen-printing [126, 128, 129, 143, 144], air plasma spraying [123], spray painting [145], 

etc. The last two methods are applied for depositing thin layer with thickness of less than 70 µm. 

Thus, they are limited to manufacturing electrolyte-support SOFC/SOEC. Except for air plasma 

spraying, all the fabrication techniques require the ceramic suspension as the preparation. The 

casting devices, such as doctor blade, stencil and immersion holder, are necessary as well. The 

porous electrode structure can be created by adding the pore formers into the suspension before 

sintering. The electrode porosity is controlled by the concentration of pore formers. Normally, 

there are two main categories of pore former materials, including organic formers and inorganic 

formers. The utilization of organic formers can achieve higher porosity but lower electrical 

conductivity than that of inorganic formers [140, 146]. The sintering temperature of electrode 

ranges from 800 °C to 1200 °C and it is usually lower than that of electrolyte.   

1.3.5.3 Oxygen electrode manufacturing 

Similar to the fuel electrode, the oxygen electrode must have a high electrical 

conductivity, high ionic conductivity and high catalytic activity for oxygen reduction. Besides, 

the materials should be compatible with electrolyte at high temperature. LSM is the most widely 
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used materials of oxygen electrode due to its electro-catalytic conductivity. The thermal 

expansion coefficient of LSM is close to that of YSZ electrolyte and this can avoid delamination 

issues during SOFC/SOEC operation. However, the oxygen reduction only takes place in a small 

area at the electrolyte/electrode interface, so the poor ionic conductivity limits the performance 

of SOFC/SOEC based on LSM. To solve such a problem, a composite electrode of LSM and 

YSZ is usually employed to improve the ionic conductivity [145]. Other composite electrodes 

have been reported as well, such as LSF-YSZ [119, 120], LSC-YSZ [120], BSCF-SDC [147], 

SSC-BCZY [126], LSCF-GDC [148], etc. 

The oxide powders of oxygen electrode are generally synthesized though calcination at 

high temperature. For example, the nitrates of La(NO3)3·6H2O, Sr(NO3)2, Fe(NO3)3·9H2O are 

dissolved in the acid solution of NH4NO3. The LSF powders can be achieved after calcination at 

900 °C [119]. They are later mixed with YSZ powders in the ball mill at a specific ratio. The 

porous formers are usually necessary to generate porosity in the electrodes. Furthermore, the 

pore formers can reduce the shrinkage rate of electrode layers during sintering or operation, thus 

avoiding delamination between layers and cracking issues. The graphite is the most common 

pore formers for the electrodes and porosity can be adjusted by mixing electrode materials at 

different ratios. The processing techniques are similar to those of fuel electrodes such as dip 

coating [119-121, 125], screen-printing [130, 132, 149, 150], spray-painting [145], plasma-

spraying [123], etc. They are selected according to different shapes and component sizes.  
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1.3.6 Hydrogen and Oxygen Production via SOEC 

1.3.6.1 Hydrogen production  

Except for electricity price, the capacity of H2 production was the most significant 

parameter influencing the hydrogen production cost. When the H2 production capacities were 

between 50 and 900 Nm3/h, the hydrogen production cost would vary between 2.45 €/kg and 

3.45 €/kg with electricity price of 50 €/MWe and SOEC lifetime of 40,000 hours [70]. Figure 24 

summarizes the H2 production rate in stack level as a function of publication year of 

experimental results. Note that, the hydrogen production rate could be estimated based on 

downstream dewpoint measurements. Besides, the molar hydrogen generation rate can be 

predicted independently by the applied the current through the equation as follows: 

∆𝑁̇𝐻2
=

𝐼

2𝐹
𝑁𝑐 

(

19) 

where NC is the number of unit cell in the stacks, and F is Faraday constant.   

 

Figure 24. The hydrogen production rate of SOE stacks as a function of time. 
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Currently, the most impressive hydrogen production rate is 1.7 Nm3/h from a 25-cell 

stack at CEA in 2015 [103]. The cathode-supported SOE stack consisted of Ni-YSZ hydrogen 

electrode, 8% molar YSZ electrolyte, LSC oxygen electrode and CGO diffusion barrier layer. 

With a feedstock of 90% steam, the SOE stack was operated at 800 °C. A current density of 1.6 

A/cm2 was obtained with the applied voltage below 1.3 V. For the long-term durability test, the 

best performance for hydrogen production is 1.38 Nm3/h determined from the supplied current 

using Faraday’s law [86]. Besides, a hydrogen production rate of 1.2 Nm3/h was achieved for the 

15 kW ILS test facility at INL [69]. Note that the 720-cell multi-stack was reported to produce 

hydrogen at a peak value of 5.7 Nm3/h based on the measured current.  

To reach the DOE target of 78% electrolysis efficiency based on low heating value (LHV) 

by 2020, the Versa Power System (VPS) focuses on developing SOE cell/stack with ultra-high 

electrolysis current density and efficiency. Over 20 types of RSOFC cells have been innovated in 

the project that funded by DOE and VPS. One type of cells, RSOFC-7, was successfully 

operated with current density up to 4 A/cm2 at an upper potential limit of 1.6 V. Besides, in the 

long-term durability test, RSOFC-7 demonstrated a degradation rate of only 1.8%/kh at current 

density of 3 A/cm2 after 1200 hours’ operation. Furthermore, VPS assembled a SOE stack using 

20 RSOFC-7 unit cells with active area of 22.3 cm2. With fuel inlet of 78% H2O and steam 

utilization of 50%, the stack was capable of operation at 800 °C with current density of 3.004 

A/cm2 corresponding to 83.9% electrolysis efficiency (LHV). The stack was then operated over 

1000 hours for durability test at 2 A/cm2 corresponding to hydrogen production of 333 L/h. No 

apparent voltage degradation for average cell was observed as shown in Figure 25. VPS are 
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currently preparing for production of Compact SOFC Architecture (CSA) stack that will be 

deployed later in 2017 for hydrogen production of 2.775 Nm3/h.  

 

Figure 25. Durability test of a 20-cell stack operated at high current density [151]. 

1.3.6.2 Syngas production from high temperature co-electrolysis 

The research on large-scale production of syngas using SOE stacks is limited. To our best 

knowledge, the best experimental performance for co-electrolysis is obtained from a 10-cell 

stack with syngas production rate of 286 Nl/h [110, 111]. The stack was fabricated by Topsoe 

Fuel Cell and assembled with 10 electrode-supported cells with an active area of 9.6×9.6 cm2. 

All the cells consist of Ni-YSZ hydrogen electrode, YSZ electrolyte and LSCF-CGO or LSM-

YSZ oxygen electrode. The feedstock were a mixture of 45% CO2, 45% steam and 10% H2 with 

a flow rate of 540 L/h and pure oxygen with a flow rate of 60 L/h for both electrode sides. The 

durability test was operated at 800 °C for 1000 hours with a current density of 0.75 A/cm2. The 

impressive results with low degradation demonstrated the feasibility of long-term co-electrolysis. 
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Besides, co-electrolysis using SOE stacks has been conducted and remarkable results have been 

achieved in INL [83, 97], Italy [78] and Switzerland [79].   

1.3.6.3 Oxygen production for space missions  

As shown in Figure 23, a 3-cell stack with cell area of 4 cm2 was developed in NASA 

GRC [117]. Including the interlayers, the mass of stack was only 36 g. The SOE stack was 

operated at 850 °C with a mixture of H2 (200 sccm), steam (100 sccm) and CO2 (395 sccm) for 

anode side and sweep air (1000 sccm) for cathode side. However, a low current density (<0.1 

A/cm2) was measured corresponding to oxygen production of 0.25 L/h. The severely current 

limited problem resulted from excessive reaction between the Ca-doped LaCrO3 interconnect 

and the YSZ electrode scaffold layer. Recently, Pt-GDC was chosen as cathode material due to 

the expected oxidation tolerance and catalytic activity for CO2 reduction of Pt [117]. With steam 

to H2 ratio of 1:1, the advanced single cell was tested at 850 °C using DC voltage sweep method. 

A current density up to 0.57 A/cm2 was achieved corresponding to an oxygen production of 1.77 

L/h. Besides, the durability experiments of two Pt-GDC single cells were conducted in steam 

electrolysis mode. Both tests were operated under constant current densities of 0.2 A/cm2. It was 

reported that cell #1 showed 3% degradation over 600 hours of operation while cell #2 saw <1% 

degradation over 1200 hours of operation. The impressive results demonstrated the promising 

application for Pt-GDC as a cathode material.    

1.3.7 SOEC Degradation 

Due to inherent complexity and interrelation between different components, multiple 

degradation mechanisms may potentially exist in SOE cell especially in stack level. Figure 26 

summarizes various degradation issues that are well-known in a single-repeating unit (SRU) of 

SOE stack [152]. Besides, excellent reviews presenting common degradation problems and 
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solutions for SOECs have already been finished by other researchers [95, 152-155]. Furthermore, 

the long-term duration test with degradation rate in stack level has been summarized in Table 6 

from appendices.  

The contacting issues of interconnect are unique in stack level. Because of contacting 

directly with endplates, the top cells and bottom cells in a stack usually exhibit abnormal 

behaviors when the ohmic losses happen at endplate contacts. In a 25-cell stack operated in 

electrolysis mode over 9000 hours, the top cell (SRU 1) was observed to degrade the most with a 

rate of 3.0%/kh compared to an average of 2.3%/kh. On the other hand, the bottom cell showed 

the best performance with degradation rate of only 1.77%/kh. The main reason was the 

degradation of endplate contact that increased the operation temperature and improved the 

durability behavior of bottom cell [156]. The same problems were also reported in short stacks 

[79, 93, 94, 109, 110]. Besides, the SOE stack may suffer from unexpected disturbance, such as 

condensation in H2 recycle loop [69], water pump failure [156], power supply failure [156], gas 

flow change [112], inlet gas impurities [112] etc. These interference factors from the 

management system could suspend the stable operation of SOE stack. Despite restoring to 

normal operation conditions, the degradation of stack performance is irreversible.  

 



   

 

75 

 

Figure 26. A simplified exploded view of a single-repeating unit (SRU) and a few of the possible 

degradation mechanisms [152]. 

 

To solve the contact issues, coating of interconnects has been proved as an effective 

method. Zhang et al. pre-treated the stainless steel based interconnects with spinel coatings 

before a durability test of a 10-cell SOE stack [93]. Operating the stack at either high or low 

current density, the average degradation rate was much lower compared to the previous SOE 

stack tests. The significant improvement was attributed to the novel coatings that successfully 

inhibited the steam oxidation and Cr contamination. Besides, surface treatment of top cell could 

effectively decrease the stack ASR since the top cell is directly connected with current collector 

plate and easily suffer from Cr poisoning.  
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1.3.8 Summary and prospects 

The solid oxide fuel/electrolysis cells have been presented as a promising technique for 

large-scale hydrogen production. The materials and manufacturing of electrolyte, fuel electrode, 

and oxygen electrode have been reviewed and they are summarized in Table 1. 

Table 1. Material and manufacturing summary of SOEC electrolyte, fuel electrode and oxygen 

electrode.  

Components Electrolyte Fuel electrode Oxygen electrode 

Materials YSZ [142] 

GDC [128] 

SDC [125] 

CBC [127] 

BCZY [126] 

ScSZ [148] 

LSGM [157] 

 

Ni-YSZ [125] 

Ni-CeO2-ZrO2 [130] 

LSCM-YSZ-Pd|CYZ 

[119] 

CeO2 [121] 

Cu-YSZ [129] 

Ni-GDC [149] 

Ni-BCZY [126] 

Ni-ScSZ [148] 

LSM [125] 

LSC [125] 

LCM [130] 

LSCF [123] 

LSF-YSZ [120] 

LSC-YSZ [120] 

LSM-YSZ [120] 

LSF-YSZ [119] 

BSCF-SDC [147] 

Manufacturing Tape Casting & 

lamination [119] 

Dip coating [142], 

Pressing [128] 

Slurry coating [148] 

Reactive Magnetron 

Sputtering [122] 

Screen-printing [132] 

Slip Casting [125] 

Vacuum Plasma 

Spraying [123] 

Vacuum Slip Casting 

[124] 

Physical Vapor 

Deposition [125] 

Tape Casting & 

Spray painting [145] 

Tape Casting & Dip 

Coating [119] 

Screen-printing [129] 

Pressing [118] 

Air Plasma Spraying 

[123] 

Dip coating [121] 

 

Dip Coating [125] 

Screen-printing [130] 

Spray-painting [120] 

Plasma Spraying 

[123] 

 

Due to its huge potential, the development of SOE cell/stack is essential on several 

directions in the future. First, high current density (> 2A/cm2) is required for the stack in 

durability tests since it corresponds to high electrolysis efficiency of hydrogen. Currently, most 



   

 

77 

experiments are conducted at a current density of less than 1A/cm2 that is not sufficient for future 

commercial applications. Therefore, the R&D of new SOEC materials is necessary to maintain 

the high current density with acceptable degradation during long-term operation. Second, the 

stability of RSOFC needs to be guaranteed during alternate SOFC and SOEC operation. Because 

of the different electrochemical reactions and atmosphere at electrodes, the degradation issues of 

RSOFC are of a greater concern for commercialization. Novel materials and new processing 

techniques are required to improve the cell/stack performance. Third, it’s necessary for high 

temperature electrolysis to use SOE stacks coupled with renewable energy such as solar, wind, 

nuclear, etc., because the total process is sustainable and environmentally friendly with zero-

carbon emission. Worldwide research activities have been focusing on producing large-scale 

hydrogen with nuclear power supply and this technology could be a remarkable contributor 

towards future hydrogen economy.      
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CHAPTER 2 

WATER SPLITTING USING HIGH TEMPERATURE SOLID OXIDE 

PHOTOELECTROCHEMICAL CELL AND VISIBLE LIGHT: SEARCHING FOR THE 

APPROPRIATE SEMICONDUCTOR MATERIALS 

In this chapter, the concept of using solid oxide photoelectrochemical cells (SOPCs) to 

split water at high temperature using visible sunlight was experimentally investigated, in order to 

search for the appropriate semiconductor materials. High temperature photoelectrochemical 

water splitting physically broadens the selection of potential applicable semiconductor materials 

and enables more visible sunlight absorption. This newly conceived concept provides a unique 

pathway for solar hydrogen production, compared to conventional photoelectrochemical cells 

that require aqueous environments, though experimental validation is needed. The 

main focus of this study was on the fabrication and evaluation of high temperature diodes 

suitable for use as the photocatalytic/oxygen electrodes of SOPCs. The rectifying characteristics 

of TiO2 based diodes, including Ag/TiO2, LSM/TiO2, LSC/TiO2, and LSCF/TiO2, etc., were 

investigated at elevated temperatures. Among those diodes, only LSM/TiO2 demonstrated 

acceptable rectifying properties up to 450 °C, indicating that such configuration may be 

applicable to the proposed SOPC. The results also excluded Schottky diodes from the candidates 

due to their rapidly degrading rectifying behaviors at elevated temperatures. Candidate 

semiconductors for the photovoltaic (PV) part of the cell and electrolytes for the electrolysis part 

were also identified and summarized in this paper for future investigations. 
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2.1 Background 

Photocatalytic water splitting provides a renewable pathway for hydrogen production 

with minimum environmental impact. As a long term goal of producing hydrogen economically, 

the Department of Energy (DOE) of the United States has outlined several solar-to-hydrogen 

pathways, including solar thermochemical, photoelectrochemical, electrolysis (solar), and 

photobiological [158]. Among those technologies, direct water splitting using 

photoelectrochemical cells (PECs) and sunlight has received enormous scientific interest in 

recent decades, following the pioneering research by Fujishima and Honda in 1972 [2].  

In order to harvest more visible sunlight and increase energy conversion efficiencies, 

most research on PECs has been focused on materials development and cell configurations [3, 

11]. The fundamental problem is that the visible spectrum and the thermodynamic threshold for 

water splitting (Nernst potential for electrolysis) basically constrain the range of the 

semiconductor materials (photocatalysts) suitable for PECs. While most investigations focused 

on the former factor, few paid attention to the latter. In fact, most PECs reported were operated 

in aqueous environments such that, naturally, the latter factor was excluded from consideration. 

More specifically, an ideal PEC must have a band gap large enough (>1.23 eV at standard 

conditions) to support water splitting, but small enough to include most of the visible spectrum. 

However, at low temperature (<100 °C), significant activation overpotentials result in a 

minimum practical voltage of 1.6-1.7 V for splitting water [159, 160]. In addition, to include 

sensitivity over most of the visible spectrum, the semiconductor band gap should not be much 

larger than 2.2 eV. Furthermore, the semiconductor band edges must straddle the H2O redox 

potentials and the material must be stable in an aqueous electrolyte solution over a range of pH 
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values. Simultaneous satisfaction of all these requirements has proven difficult with a single 

semiconductor material.  

The concept of high temperature photoelectrochemical water splitting was independently 

proposed by us [57] and Ye et al. [51] in 2013, though with different cell configurations. In our 

original concept, a solid oxide photoelectrochemical cell (SOPC) was proposed, which integrates 

a solid oxide electrolysis cell (SOEC) and a photovoltaic (PV) cell. However, only a small output 

voltage (around 100 mV) was achieved using TiO2/Pt Schottky diode based cells in the 

preliminary research [57]. Based on a heterojunction between a light absorber and a mixed ionic 

and electronic conducting (MIEC) oxide, the integrated high temperature PECs proposed by Ye 

et al. absorb both thermal and photon energy from concentrated solar light. Specifically, the light 

absorber semiconductor is able to separate electron-hole pairs, while the MIEC oxide conducts 

the excited electrons and oxygen ions at a temperature range from 400 °C to 700 °C [51, 52]. 

The feasibility of high temperature photoelectrochemical water splitting was first experimentally 

demonstrated by Brunauer et al. recently, using a solid oxide photoelectrochemical cell (namely 

SOPEC) [53, 55]. An open circuit voltage (Voc) of 920 mV was achieved using a 

LaSrCrO3/SrTiO3 p-n junction diode at 400 °C under ultraviolet (UV) light. Then an 

electrochemically oxygen pump driven by UV light was demonstrated using the SOPECs [55]. 

The same group reported that cells with configurations of SrTiO3/YSZ and TiO2/YSZ were able 

to store oxygen upon UV light from 360 °C to 460 °C. Their further experiments showed that 

oxygen vacancies in SrTiO3 or TiO2 were filled during UV illumination, leading to a battery-type 

voltage of 30-70 mV at 460 °C [53, 54]. To date, both the theoretical and experimental research 

on high temperature photoelectrochemical water splitting are extremely limited, since it is a 

newly conceived concept.  
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In this chapter, the theoretical framework of SOPC was elaborated with highlighted 

advantages compared to conventional PECs. The present experimental investigation focused on 

searching for the appropriate high temperature semiconductor materials for SOPCs. As an initial 

screening process, the rectifying properties of several semiconductor diodes at elevated 

temperatures (up to 500 °C) were characterized. Specifically four types of diodes were 

investigated, including a Schottky diode (i.e. Ag/TiO2), and three p-n junction diodes (i.e. 

LSM/TiO2, LSC/TiO2, and LSCF/TiO2). This chapter provides an overview of this newly 

conceived concept and potential pathways for the future research. 

2.2 Theoretical framework 

2.2.1 Thermodynamics 

Photoelectrochemically splitting water at high temperature has two main theoretical 

advantages. First, the thermodynamic threshold is significantly reduced at elevated temperatures. 

The ideal minimum potential for water splitting at atmosphere pressure, or Nernst potential, is 

given by equation (18) [88]. At standard conditions, the Nernst potential is 1.23 V for water 

splitting. Practically however, a minimum voltage of 1.6-1.7 V is needed for splitting water due 

to high activation energies [159-161]. As shown in Figure 17, at elevated temperatures, the 

Nernst potential significantly decreases. It can be further reduced using high steam content. 

Furthermore, activation overpotentials are very small at high temperature. A practical open 

circuit voltage (VOC) of 0.85-0.95 V (based on various steam contents) are commonly observed 

in high temperature steam electrolysis cells [87, 89, 90].  

Therefore, the minimum band gap requirement of a semiconductor for splitting H2O is 

practically reduced to ~ 1.4 eV at high temperature, compared to practically 2.2 eV at standard 

conditions. This reduced band gap allows for a drastically different choice of semiconductors to 
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be made, while still using single junction solar cell.  Therefore no triple junction amorphous 

silicon or wide band gap material is needed as is the case at room temperature.  

Second, band gap narrowing enables more visible sunlight absorption. The band gap of a 

semiconductor determines a threshold of the light frequency required for exciting electrons from 

the valence band to the conduction band. Only light with frequencies higher than the threshold is 

able to excite electrons out. Therefore, by narrowing the band gap the threshold will decrease, 

enabling the semiconductor to absorb longer wavelength light (i.e. more visible light).  

The band gap values of most semiconductors decrease as temperature rises, with near 

linear behavior at higher temperatures [162-166]. For instance, the band gap of anatase TiO2 is   

~3.2 eV at room temperature, which corresponds to a threshold of 387 nm near the ultraviolet 

spectrum.  That means in order to excite electrons out of TiO2, an ultra violet light source is 

needed. Several studies have been performed to quantify the effect of temperature on the band 

gap energy of TiO2 [58-62, 64, 167] based on the following correlation: 

𝐸𝑔(𝑇) =  𝐸𝑔(0) −  
𝛼𝑇2

𝑇 + 𝛽
 (20) 

Where, Eg(0) is the band gap at temperature of absolute zero. α and β are both constants 

determined by experiments. Based on this correlation, the band gap of TiO2 will narrow down to 

1.7-2.3 eV as temperature rises to 1000 K [58-62, 64, 167]. That energy level falls right in the 

visible spectrum.  

2.2.2 Schottky Barriers 

The metal-semiconductor contact is known as the Schottky Barrier that usually exhibits 

the rectifying behavior. Such electrical behavior is significantly dependent on the barrier height, 

ΦMS, and it can be predicted by the surface state model for a simplified case. The surface state 
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model is valid when the surface-state density of the semiconductor is large enough, i.e. > 1014 

cm-2. Therefore, the barrier height, ΦMS, is independent on the metal part [168, 169]. For the n-

type semiconductors, the barrier height can be expressed by equation 21. 

ΦMS
n ≈ 2/3·Eg

n (21) 

Where Eg
n denotes the n-type semiconductor bandgap. For p-type semiconductors, the barrier 

height can be expresses by equation 22. 

ΦMS
p ≈ 1/3·Eg

p (22) 

Where Eg
p denotes the bandgap of p-type semiconductors. According to the surface state model, 

the barrier height is only dependent on the bandgap of semiconductors when the working 

temperature of Schottky diode changes. This has been confirmed by Crowell [169] using the 

Au/n-Si Schottky diode.  

For the general case, the barrier height results from the work function difference of 

metals and semiconductor. If the work function of the metal is larger than that of the 

semiconductor, the electrons will flow across the interface from the semiconductor to the metal. 

To equalize the Fermi levels, the band tends to bend upward leaving a depletion region in the 

semiconductor as shown in the Figure 27a. The space charge is then due to the donor ions when 

the conduction electrons are completely depleted. If the space charge is assumed to be distributed 

uniformly, the electric field will increase linearly along with the distance starting from the 

depletion region. Therefore, the electrostatic potential will increase quadratically leading to the 

potential barrier that is known as the Schottky barrier.   
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Figure 27. Schematic energy diagram of Schottky barriers for different types of semiconductors 

and metals: a. ΦM> ΦS, n-type; b. ΦM> ΦS, p-type; c. ΦM< ΦS, n-type; d. ΦM< ΦS, p-type [170]. 

 

The diffusion potential indicates the amount that the bands bend. It can be expressed as 

the difference in work functions of the metal and semiconductor, 

Vd = ΦM – ΦS (23) 

As mentioned above, the diffusion potential is positive and the band will bend upward if 

the work function of metal is larger. For the n-type semiconductor, this will result in a Schottky 

barrier height as shown in Figure 27a. 



   

 

85 

ΦMS
n = Vd + (EC - EF) 

= ΦM - χ 

(24) 

Where EC and EF denote the energy of conduction band and Fermi level respectively. χ is the 

semiconductor electron affinity that is the energy required to remove the electron from the 

bottom of the conduction band to the vacuum level.  

χ = ΦS - (EC - EF) (25) 

For the p-type semiconductors, there is not hole motion despite of bending bands as 

shown in Figure 27b. Thus, the rectifying behavior cannot be observed due to the ‘ohmic’ 

contact.  

 On the other hand, the bands tend to bend downward when the work function of metal is 

lower than that of the semiconductor. For the p-type semiconductor, the bending bands result 

from the electron diffusion from the metal to the semiconductor as shown in Figure 27d. The 

electrostatic field is attributed to the acceptor ions in the space charge region. If the acceptor ions 

are assumed to be uniformly distributed, the electrostatic strength and potential vary linearly and 

quadratically respectively with distance from the edge of the depletion region.  The Schottky 

barrier height can be expressed by the equation 24. 

ΦMS
p = Vd + (EF – EV) 

= Eg – (ΦM - χ) 

(26) 

For the n-type semiconductor, the electrons will not diffuse despite of bending bands 

leading to the ohmic contact as shown in Figure 27c.  

The rectifying behavior of Schottky diode can be expressed by equation 27 [171], 

𝐼 = 𝐴∗𝑇2𝑒−Φ𝑀𝑆/𝑘𝑇[𝑒𝑞𝑉/𝑘𝑇 − 1] (27) 
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where 𝐴∗ is the effective Richardson constant, k is the Boltzmann constant, q is the electron 

charge, and T denotes the operation temperature. It has been found that when 𝑉 ≥ 3𝑘𝑇/𝑞, the 

relation between 𝑙𝑛𝐼 and V is linear. The saturation current 𝐼𝑠 can be estimated by the intercept 

of such straight line at V=0, and defined as 

𝐼𝑠 = 𝐴∗𝑇2𝑒−Φ𝑀𝑆/𝑘𝑇 (28) 

Apparently, 𝐼𝑠/𝑇2 decreases linearly with the increase of 1/𝑇 if the 𝐼𝑠 is determined by 

the equation 28. Thus, the Schottky barrier can be calculated through the intercept of such linear 

line. However, this is only applicable when  Φ𝑀𝑆 is constant and independent on the working 

temperature.  

 The equation 27 was then modified by Atalla et al. as shown in equation 29 [172] 

𝐼 = 𝐼𝑠(𝑒𝑞𝑉/𝑛𝑘𝑇 − 1) (29) 

where n is a constant that is larger than 1. It can be adjusted to fit the curves for those non-ideal 

Schottky barriers. However, Padovani et al. investigated the Au/GaAs Schottky barrier and 

found the non-ideal factor is dependent on the temperature, 

𝑛 = 1 + 𝑇0/𝑇 (30) 

where, 𝑇0 was found to be 50 ± 5 ° K for Au/GaAs Schottky barrier.  

2.2.3 p-n junction 

 When the p-type and n-type semiconductors are joined together, the carrier diffusion 

happens due to the concentration gradients at the junction. Specifically, the holes from the p-type 

side tend to diffuse into n-type side. Meanwhile, the electrons from the n-type side diffuse into p-

type side. As the process of carrier diffusion continues, some negative acceptor ions are left at 

the p-side near the junction. Similarity, some positive donor ions are left uncompensated at the n-
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side near the junction as shown in Figure 28. Therefore, the negative charges accumulate at the 

p-side while the positive charges forms at the n-side. This space charge region will create an 

internal electric field with direction from n-side to p-side. The electric field can cause the hold 

drift from right to left and electron drift in the opposite direction. Apparently, the direction of the 

drift current is different from the diffusion current.   

 

Figure 28. Schematic diagram of p-n junction in thermal equilibrium with zero-bias voltage 

applied [173].   
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At thermal equilibrium, these diffusion current and drift current are identical at a given 

temperature. Due to the internal electric field, the total electrostatic potential difference at the 

space charge region at steady-state condition can be calculated as the build-in potential. 

V𝑏𝑖 =  
𝑘𝑇

𝑞
ln (

𝑁𝐴𝑁𝐷

𝑛𝑖
2 ) (31) 

where NA and ND are the concentrations of acceptors and donors respectively in the depletion 

region, and ni is the carrier concentration in the neutral region.  

If a forward biased voltage is applied on the p-n junction as shown in Figure 29b, the 

total electrostatic potential across the junction will decrease to Vbi-VF, leading to a narrower 

depletion region. Thus, more electrons have enough energy to overcome the smaller energy 

barrier and diffuse from the n-side to p-side. Similarly, more holes will diffuse over the shrinking 

energy barrier from p-side to n-side. This process is named as the minority carrier injections. On 

the other hand, if a reverse biased voltage is applied, the total electrostatic potential across the 

junction will increase to Vbi+VR, resulting in a wider space charge region. It is more difficult for 

minority carriers to diffuse over the energy barrier and this can remarkably reduce the diffusion 

currents. The drift current is mainly dependent on the concentrations of minority carriers. 

Therefore, the barrier change due to either forward or reverse bias has negligible effect on the 

drift current. The drift current and diffusion current coexist in the space charge region whenever 

the p-n junction is in steady state conditions.  
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Figure 29. Schematic diagram of p-n junction under various conditions. a. thermal equilibrium 

condition, b. forward bias condition, c. reverse bias condition [170].  

 The p-n junction exhibits rectifying behaviors based on the following assumptions. First, 

the build-in potential and applied voltage are supported by a diploe layer with abrupt boundaries, 

and it is assumed to be neutral for the outside of the semiconductor boundaries. Second, 

Boltzmann statistics is effective. Third, the injected minority carrier densities are smaller than 

the majority carrier densities. Fourth, there is no generation-combination that exists inside the 

space charge region, and the currents of electrons and holes are constant throughout the depletion 

region. For an ideal case, the current-voltage characteristics of p-n junction can be described by 

Shockley equation [174].  
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𝐼 = 𝐼𝑠(𝑒𝑞𝑉/𝑘𝑇 − 1) (32) 

𝐼𝑠 =
𝑞𝐷𝑝𝑝𝑛0

𝐿𝑝
+

𝑞𝐷𝑛𝑛𝑝0

𝐿𝑛
 

(33) 

where 𝐷𝑝  and 𝐷𝑛  are the diffusivities of the holes and electrons respectively. 𝑝𝑛0  is the hole 

concentration in the neutral region of n-type semiconductors, while 𝑛𝑝0  is the electron 

concentration in the neutral region of p-type semiconductors. 𝐿𝑝  and 𝐿𝑛  denote the depletion 

lengths of p-type and n-type semiconductors respectively.  

 The operation temperature has a significant influence in the device performance. Both 

diffusion and recombination-generation currents depend strongly on the temperature. For the 

forward-bias case, the ratio of diffusion current to the recombination current can be expressed by 

the following equation. 

𝐼𝑑𝑖𝑓𝑓

𝐼𝑟𝑒𝑐
≈ exp (

𝐸𝑔 + 𝑞𝑉

2𝑘𝑇
) (34) 

 The ratio is determined by temperature and the bandgap of semiconductor. Generally, the 

recombination current dominates when the device is applied by a small forward voltage at room 

temperature. The diffusion current will become dominant when a higher forward voltage is 

applied. At a given forward bias, the diffusion current will increase more rapidly than the 

recombination current as the temperature increases.  

 For the one-side p+-n junction, the diffusion current dominates. The dependence of the 

saturation current on the temperature can be estimated by the following equation.  

𝐼𝑠 ≈ exp (
𝐸𝑔

𝑘𝑇
) (35) 

Therefore, the bandgap of semiconductor can be obtained from the slope of 𝐼𝑠 versus 1/T.  
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 For the p+-n junction in the reverse biased condition, the ratio of the diffusion current to 

the generation current is given as, 

𝐼𝑑𝑖𝑓𝑓

𝐼𝑟𝑒𝑐
≈

𝑛𝑖

𝑁𝐷

𝐿𝑝

𝑊

𝜏𝑔

𝜏𝑝
 (35) 

where 𝜏𝑔 and 𝜏𝑝 are the generation lifetime and p-type carrier lifetime respectively. W is the 

width of space charge region. Similar to the forward-bias case, the diffusion current will 

eventually dominate as the operation temperature increases.  

 The heterojunction can be formed when two different semiconductors are joined together 

as shown in Figure 30. The two semiconductors are supposed to have different work function 

and band structure, including bandgap, conduction band, valance band and Fermi level. The 

Figure 30b shows the thermal equilibrium state of the heterojunction. It is assumed that the 

heterojunction is ideal without traps or generation-recombination centers at the interface. Besides, 

the two semiconductors have closely matched lattice constants. The total built-in potential can be 

expressed by the following equations.  

𝑉𝑏𝑖 =  𝑉𝑏1 +  𝑉𝑏2 (35) 

𝑉𝑏1 =  
𝜀2𝑁2(𝑉𝑏𝑖 − 𝑉)

𝜀1𝑁1 + 𝜀2𝑁2
 

(36a) 

𝑉𝑏2 =  
𝜀1𝑁1(𝑉𝑏𝑖 − 𝑉)

𝜀1𝑁1 + 𝜀2𝑁2
 

(36b) 

where, 𝜀 is the dielectric permittivity, and N denotes the dielectric constant.   
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Figure 30. Schematic diagram of band energy of heterojunction. a. before contact, b. thermal 

equilibrium [170].  

2.2.4 Constrains and challenges 

High temperature photoelectrochemical water splitting faces several constraints and 

challenges. The most needed theoretical research is to establish the quantitative criteria for 

suitable semiconductors; that is to identify the band edge alignments of various semiconductors 

with regard to absolute H2O redox potentials at high temperature, similar to the Figure 4 diagram 

shown in [175]. However, at high temperature many parameters (i.e. absolute position of the 
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hydrogen electrode, bandgap, absolute positions of the valence band edge and the conduction 

band edge) are unknown/unclear and therefore in need of both experimental and theoretical 

investigations. First, the water electrolysis redox potential changes with temperature, resulting in 

multiple diagrams needed for different temperatures. Also the absolute position of the hydrogen 

electrode will shift with increasing temperature and various hydrogen gas partial pressures, based 

on the Nernst equation below 

𝐸 =  
𝑅𝑇

𝐹
𝑙𝑛

𝑎𝐻+

√𝑝𝐻2
/𝑝0

 (37) 

where aH+ is the activity of H+ which depends on temperature as well; pH2 and p0 are the partial 

pressure of hydrogen gas and the standard pressure, respectively. Second, the bandgap energy 

reduces with increasing temperature, but research on the impact of high temperatures on 

semiconductors is extremely limited. The correlation expressed in Eq. 21 is rather empirical, 

such that the experimental research on high temperature for various semiconductors are critical. 

Third, the shifts of absolute positions of the valence band edge and the conduction band edge 

with increasing high temperature are unknown. At low temperature, they were derived from the 

electronegativity,[175] but electronegativity itself is also dependent on temperature. 

Another major constraint of high temperature photoelectrochemical water splitting is its energy 

conversion efficiency at elevated temperatures. The efficiency limit for a PEC device made of a 

single junction diode can be expressed as [176], 

𝜂𝑃𝐸𝐶 =  
𝑗𝑜𝑝𝐸𝑟𝑥𝑛𝑓𝐹𝐸

𝑃𝑖𝑛
 (38) 

where jop is the maximum exchange current density; Erxn is the Nernst potential of water 

electrolysis; fFE is the faradaic efficiency, which ideally is unit; Pin is the incident solar power. 
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The maximum efficiency occurs when the electrolysis voltage is very close to the Nernst 

potential and the current density peaks.  

At higher temperatures Erxn decreases, as shown in Eq. 18, which contributes to a 

reduction of the efficiency limit. The variation of another ruling factor jop however, remains 

undetermined because there are two competing changes. As temperature increases, the absorber 

efficiency decreases due to radiation loss, whereas the carrier transport and kinetics become 

more activated [177]. Commonly the theoretical efficiency limit of a single junction PEC or solar 

cell decreases as temperature increases [177, 178]. In some rare cases, large bandgap 

semiconductors may shift to their peak efficiency at higher temperature due to bandgap 

shrinkage. Note that Eq. 21 does not include the terms of overpotentials, which could 

significantly impact the practical efficiency. At higher temperatures however, overpotentials 

become trivial, which makes the practical efficiency very close to the theoretical prediction. 

Nevertheless, the solar-to-hydrogen efficiency of high temperature photoelectrochemical water 

splitting needs further investigations to provide insights into the factors that influence the SOPC 

performance and to improve its efficiency. 

2.3 SOPC configuration 

Figure 31 shows a schematic diagram of an SOPC for hydrogen and syngas (H2+CO) 

production, based on the outcomes of the experimental investigations. A SOPC integrates a 

photovoltaic (PV) cell and an electrolysis cell. The PV cell consists of a p-n junction diode that 

converts sunlight into electron-hole pairs and creates an electrolysis voltage. The materials used 

for both n-type and p-type semiconductors are metal oxides that are electrochemically stable in 

strong oxidizing environment and high temperature. The electrolysis cell is similar to a common 

SOEC [87], which consists of a hydrogen cathode, an oxygen ion conducting electrolyte, and an 
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oxygen anode. For a complete circuit, the excited electrons are conducted through an external 

circuit to the cathode, where they combine with protons to generate H2. Oxygen ions (O2-) 

migrate through the ion-conducting electrolyte to the anode, where they combine with positive 

holes to produce O2 gas.  

 

 

Figure 31. Schematic diagram of hydrogen or syngas (H2+CO) production using a SOPC, which 

integrates a PV cell and an electrolysis cell [179]. 

 

Note that although theoretically possible, the research results in the following section 

indicate that Schottky diodes could easily lose their PV characteristics at elevated temperatures, 
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such that they may not be suitable for application in SOPCs. In addition, noble metals used in the 

Schottky diodes make them less attractive for further research due to cost considerations. 

In addition to the capability of splitting H2O, this SOPC can also be used to produce 

syngas (H2+CO), if the feedstock consists of a steam and CO2 mixture, as shown in Figure 31. 

Syngas can further be used to synthesize liquid fuel using the Fischer–Tropsch process [180]. 

Syngas production is a unique capability of the SOPC, which conventional PECs cannot achieve. 

2.4 Experimental 

2.4.1 Electrolysis cell materials 

The high temperature electrolyte materials for the SOPCs are similar to the ceramic 

electrolytes used in SOECs. Materials such as yttria-stabilized zirconia (YSZ), scandia-stabilized 

zirconia (ScSZ), and gadolinia doped ceria (GDC) are widely used as the electrolytes in SOECs 

[87]. Those ceramic electrolytes operate over a temperature range from 400°C to 900°C [55]. 

The high ionic conductivity of those materials at high temperature makes those oxides ideal for 

SOPCs. Platinum (Pt) can be used as the hydrogen electrode for research purposes, due to its 

electrochemical stability and excellent catalytic activity at high temperature. Practically, nickel 

(Ni) can be used as the hydrogen electrode due to its low cost and relatively high catalytic 

activity at high temperature [181]. The oxygen electrode is made of perovskite oxides that have 

both high electronic conductivity and catalytic activity for oxygen reduction. Common oxygen 

electrode materials used in SOECs [87] include, Lanthanum Strontium Manganite (LSM), 

Lanthanum Strontium Cobaltite (LSC), and Lanthanum Strontium Cobalt Ferrite (LSCF). 

2.4.2 PV cell materials 

The most critical component in a SOPC is the photocatalytic diode formed by 

semiconductors. The following selection criteria of semiconductors are proposed as the guideline 
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for selecting suitable semiconductors. First, the selected semiconductor is electrochemically 

stable at high temperature (400-800 °C), which means the material has a high melting point and 

cannot be further oxidized. Many metal oxide semiconductors fall in this category. Second, 

selected p-type and n-type semiconductors are able to form a p-n junction and maintain an 

acceptable performance at elevated temperatures. That means the PV cell needs to work at above 

400 °C and provide enough electrolysis voltage in the meantime. 

Following the criteria above, Table 2 lists some metal oxide based p-n junction diodes 

that have been reported to demonstrate good rectifying behaviors at room temperature. Note that 

those semiconductors were handpicked from many candidates from a review article [182] 

because they demonstrated large knee voltages (Vknee >1 V). The knee voltage correlates the VOC 

of a PV cell under solar irradiation. Therefore, it is expected that the photo-generated voltages 

achieved by those selected diodes will overcome the Nernst potentials of water splitting at high 

temperature. Once the rectifying behaviors at high temperature are proved to be acceptable, they 

can be integrated into the SOPC for evaluation. Table 2 also includes some high temperature p-n 

junction diodes that were either reported in the literature or are from the present research. 

Table 2. Selected p-n junction diodes for further evaluation of their rectifying properties at high 

temperature (partially adapted from [182]) . 

Semiconductors Rectifying Properties Ref. 

n-type p-type Vknee  Temp. 

ZnO SrCu2O2 1-3 V room [183, 184] 

ZnO ZnRh2O4 2 V room [185] 

ZnO NiO 1 V room [186, 187] 

GIZO ZnCo2O4 2.5 V room [188, 189] 

SrTiO3 LaSrCrO3 - room to 500°C [190] 

TiO2 LaSrMnO3 0.74-4.29 V room to 500°C This study 
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TiO2 LaSrCoO3 0.18-2.75 V room to 500°C This study 

TiO2 LaSrCoFeO3 0.49-3.67 V room to 500°C This study 

 

Figure 32 shows an even broader range of candidate semiconductors that might be able to 

form acceptable p-n junctions at high temperature. The band alignments of selected n- and p-type 

oxide semiconductors imply the research direction of the proposed SOPC in the future. As 

mentioned previously, Brunauer et al. fabricated SOPCs using SrTiO3/LaSrCrO3 based diodes 

and demonstrated a fully functional photoelectrochemical oxygen pump [190]. Their work first 

experimentally proved that the concept of p-n junction based SOPC is feasible.  
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Figure 32. Band alignment of candidate n- and p-type oxide semiconductors suitable to form p-n 

junction diodes (adapted from [3, 175, 191, 192]). 

 

In the present research, LSM, LSC, LSCF and NiO were selected as p-type 

semiconductors and expected to form p-n junctions with n-type TiO2, ZnO and Fe2O3. Those 

materials were selected due to their p-type conductivity previously reported [193, 194].  

2.4.3 Experiments 

The investigation to date has therefore been focused on characterizing the rectifying 

behaviors of various diodes at elevated temperatures. The TiO2 based diodes were fabricated 
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using direct oxidation. Titanium (Ti) pellets with dimensions of 1.5×1.5×0.1 cm3 were initially 

oxidized in a muffle furnace (GSL-1100X, MIT Co.) at 700 °C for 10 hours to obtain a thin layer 

of TiO2. The thickness of the oxide layer was approximately 2 µm, measured by a field emission 

scanning electron microscopy (Hitachi S-4700 FE-SEM) as shown in Figure 33. One side of each 

pellet was then polished to remove TiO2 layer for current collection.  
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Figure 33. SEM images showing the (a) cross-section and (b) surface of the Ti/TiO2 pellets 

prepared by thermal oxidation [179].  

 

To fabricate an Ag/TiO2 Schottky diode, electron beam physical vapor deposition 

(EBPVD) (PVD 75, KJLC) was used to deposit an Ag layer above the TiO2 surface. Ag slugs 



   

 

102 

(Fisher Scientific, 99.99% purity) were used as the sintering targets. A mask was adopted during 

deposition to ensure that silver was deposited only onto a circular area of 0.25 cm2. Prior to 

deposition, the e-beam chamber was pumped down to 1.5×10-4 Pa to minimize the impact of 

residual gases. The Ag layer was deposited at 8 kV with an emission current of 66 mA. The 

thickness of the Ag layer was measured as 560 nm with an average deposition rate of 1.71 Å/s. 

To fabricate p-n junction diodes, LSM, LSC and LSCF powders (Fuelcellmaterials, USA) 

were first mixed respectively with α-terpineol (Fisher Scientific) and ethanol (100%, Fisher 

Scientific) with a weight ratio of 1:0.5:10. The prepared slurries were then deposited onto TiO2 

layers using a spin coater (VTC-100, MTI Co.). The coating process included three cycles, each 

of which was performed at 3000 rpm for 40 seconds. Finally the prepared pellets were sintered at 

700 °C to obtain a dense layer.  

The rectifying properties of TiO2 based diodes were characterized by I-V measurements 

using a Keithley 2400 SourceMeter. The scanning voltage was set symmetrically with a 

maximum current of 10 mA. Silver wires were attached on both sides of the diodes for current 

collection. The cells were tested in the center of a tubular furnace (GSL-1100X, MTI Co.) with 

temperatures ranging from room temperature to 500 °C.  

2.5 Results and discussion 

Based on the aforementioned criteria, suitable diodes for implementation in SOPCs 

should demonstrate acceptable rectifying behaviors at temperatures >400 °C, in accordance with 

the minimum operating temperature of electrolyte materials. In this study, Schottky diodes 

(Ag/TiO2) and p-n junction diodes (LSM/TiO2, LSC/TiO2, and LSCF/TiO2), were evaluated 

systematically from room temperature to 500 °C.  
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The representative rectifying behaviors of TiO2 based diodes are shown in Figure 34. In 

all the cases shown in Figure 34, temperature significantly affected the rectifying properties, 

which diminished as the temperature increased. As a combination of the generation current (Igen) 

and the reverse diffusion current (Idiff), the saturation current of TiO2 based diodes became 

remarkable once the temperature surpassed 400 °C. Specifically, the generation current was 

caused by thermal generation of electron-hole pairs within the depletion region of diodes and the 

diffusion current resulted from minority carriers diffusing across the depletion region. Both Igen 

and Idiff are proportional to exp (−𝐸𝑔/𝑥𝑘𝑇) where 𝑥 = 1 for Idiff and 𝑥 = 2 for Igen. At elevated 

temperature, Igen was dominant at forward bias making the diode junctions nearly ohmic contact 

while Idiff was more noticeable at reverse bias leading to a higher leakage current of TiO2 based 

diodes.  
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Figure 34. Rectifying characteristics of TiO2 based diodes from room temperature to 500 °C. (a), 

(b), (c) and (d) show the Ag/TiO2, LSM/TiO2, LSC/TiO2 and LSCF/TiO2 diodes respectively 

[179]. 

 

The knee voltage (Vknee) is a performance indicator of diodes at elevated temperatures. 

Beyond such knee points in the I-V curves, the current I starts increasing rapidly with an increase 

of voltage V. In this paper, the knee voltages were obtained from the intersection point of voltage 

axis and tangent line of rectifying curves in the saturation zone. The knee voltage corresponds to 

an open circuit voltage that a diode works as a PV cell at various temperatures. A suitable diode 

for the SOPC must demonstrate a knee voltage that is larger than the Nernst potential for 
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electrolysis at a given temperature. As shown in Figure 34a, Vknee of Ag/TiO2 based Schottky 

diode decreased significantly from 1.26 V at room temperature to 0.22 V at 500 °C, way below 

the Nernst potentials for electrolysis at those temperatures. Consequently Ag/TiO2 diodes are not 

suitable for the SOPC at high temperature. The results also agree with the low photo-response 

voltages of TiO2 based Schottky diodes reported by Fleig et al [53] and us [57]. The 

investigation was shifted to p-type semiconductors such as LSM, LSC and LSCF, which might 

form stable and strong junctions with n-type TiO2 at high temperature. 

Compared to the Schottky diodes, all the p-n junction diodes, including LSM/TiO2, 

LSC/TiO2, and LSCF/TiO2, exhibited larger knee voltages at elevated temperatures, as shown in 

Figure 34 b-d. Among all the p-n junction diodes, LSM/TiO2 performed best by demonstrating 

the largest knee voltages, while LSC/TiO2 performed worst. The low performance of LSC was 

due to its relative high electronic conductivity, which was reported to be more than 1500 S/cm 

even below 500 °C [194], leading to lower knee voltages of LSC/TiO2. The electronic 

conductive property of LSC could be suppressed by adding element Fe into the compound. Less 

than 150 S/cm was reported in LSCF below 500 °C [194], resulting in better rectifying properties 

of LSCF/TiO2 than LSC/TiO2. In fact, recent research indicated that LSCF and LSM act as p-

type semiconductors up to certain temperatures [193, 194]. Therefore, a stronger junction could 

be formed if these p-type materials were coated onto n-type TiO2 surface, resulting in higher 

knee voltages of these two diodes. 

Figure 35 summarizes the knee voltages of TiO2 based diodes from room temperature to 

500 °C obtained from curve fitting in Figure 34. In all TiO2 based diodes, Vknee decreased 

linearly as temperature rose. The reduction rates of Vknee were calculated as -2.3 mV/°C, -8.5 

mV/°C, -5.3 mV/°C and -7.3 mV/°C for Ag/TiO2, LSM/TiO2, LSC/TiO2, and LSCF/ TiO2 
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respectively. To obtain an appropriate diode for used in the SOPC, one must obtain a VOC that is 

larger than the Nernst potential for steam electrolysis. However, most TiO2 based diodes except 

LSM/TiO2 in this present research failed to satisfy this requirement and are therefore not 

appropriate for use in SOPCs. As a comparison, the estimated knee voltages of LSM/TiO2 diodes 

were 1.26 V, 1.03 V and 0.74 V compared with the electrolysis (90% steam inlet) thresholds of 

0.98 V, 0.96 V and 0.94 V at 400 °C, 450 °C and 500 °C respectively.  

 

Figure 35. Knee voltages of Ag/TiO2, LSM/TiO2, LSC/TiO2 and LSCF/TiO2 diodes as a function 

of temperature compared to thresholds of steam electrolysis [179]. 

 

As a result of the present research, LSM/TiO2 became the only candidate for the SOPC, 

which is limited to operate at below 450°C. Some common electrolyte materials, such as YSZ 
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and ScSZ, are excluded in this case due to their higher operating temperature (above 700 °C) 

[195, 196]. Thus, to ensure considerable ionic conductivity the appropriate electrolyte material is 

limited to ceria based ceramics, such as GDC, which is commonly used for intermediate 

temperature SOFCs above 400 °C [197].  In addition, Samaria-doped ceria (SDC) [198] and 

Ba(Zr0.1Ce0.7Y0.2)O3–δ (BZCY7) [199] electrolytes were also reported to maintain high ionic 

conductivities at 400 - 700 °C and 450 - 600 °C, respectively. As a practical material for 

hydrogen electrodes, Ni could still maintain its high catalytic property and low resistance at low 

temperature if mixed with those electrolyte materials. Nevertheless, more candidate p-n junction 

diodes need to be evaluated at high temperatures.  

2.6 Summary  

In this chapter, the concept of solar water splitting using SOPCs was elaborated. The 

concept provides a totally different pathway for solar water splitting than the conventional low 

temperature PEC. Experimental investigation was carried out to search for appropriate 

semiconductor diodes to be used for SOPCs at high temperature. The rectifying properties of 

both Schottky diodes and p-n diodes, including Ag/TiO2, LSM/TiO2, LSC/TiO2, and LSCF/TiO2, 

were evaluated from room temperature to 500 °C. The knee voltages extracted from the 

rectifying curves and the corresponding Nernst potentials for electrolysis at elevated 

temperatures were used to determine whether a diode is suitable for use in SOPCs and worth 

further research. The results showed that only LSM/TiO2 was suitable for the application in 

SOPC. Further research will focus on the integration of the LSM/TiO2 diode and electrolysis 

cells to demonstrate water splitting at high temperature using light. In addition, other 

semiconductors materials, such as those listed in Table 2 and Figure 32, need to be explored for 

potential use in SOPCs.  
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CHAPTER 3 

FABRICATION OF SOLID OXIDE ELECTRODES USING 3D PRINTING 

 In this chapter, 3D printing was applied as an addictive manufacturing technology to 

fabricate porous electrodes of SOFC/SOPC. Compared to the traditional fabrication techniques 

such as tape casting, sputtering and screen printing etc., the innovative approach can print the 

objectives from nanoscale to macroscale, thus having a great potential to accurately control the 

device geometry, such as dimension, morphology, and structure. Furthermore, 3D printing 

provides a cost-effective method of controlling the thickness and porosity of SOFC/SOPC 

electrodes. This study focuses on the fabrication of the electrodes of SOFC/SOPC, using 

homemade composite filaments and a regular 3D printer. The composite filaments of 

thermoplastic and ceramic materials were preheated and extruded under the specific temperature. 

The electrodes were then 3D printed using the fused deposition modeling method. The porous 

ceramic structure was obtained by sintering the green cells in kiln at high temperature. Fully 

assembled SOFCs were fabricated in house using commercial half cells and 3D printed cathodes. 

The cell performance was characterized in the fuel cell mode between 700 and 800 °C, to 

compare with the performance of cells that were fabricated via conventional dip-coating method.  

3.1 Background 

 3D printing (aka. additive manufacturing) technology usually makes 3D solid objects by 

fabricating materials layer upon layer. It is generally controlled by modeling software of 

computer-aided design (CAD), such as AutoCAD, SolidWorks, and Fusion 360, etc. This allows 

the additive process to lay down successive layers of materials in different shapes and structures. 

The additive manufacturing process has been grouped by ASTM International and categorized 
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into seven types [200]: (1) Binder jetting, which deposits liquid bonding to join powder materials; 

(2) Directed energy deposition, which fuses materials by thermal energy before deposition; (3) 

Material extrusion, which dispenses material though a nozzle or orifice; (4) Material jetting, 

which deposits droplets of build material; (5) Powder bed fusion, which fuses regions of a 

powder bed by thermal energy; (6) Sheet lamination, which bonds material sheets to form an 

object; (7) Vat photopolymerization, which cures liquid photopolymer by light-activated 

polymerization. As a comparison, conventional manufacturing that applies cutting and drilling to 

remove additional materials, which wastes a lot of materials. Currently, 3D printing has been 

used in many applications during the product life cycle, from prototyping to post-production 

customization. More interestingly, the estimated market of additive manufacturing will be 

ranging from $230 billion to $550 billion by 2025 [201].  

 As mentioned in chapter 1, the components of solid oxide cells are made of ceramics. 

Specifically, both electrodes require porous structure, for flow distribution and electrochemical 

reactions on the triple phase boundaries (TPBs). The oxygen ion conductive electrolyte however, 

must be dense and thin to prevent the gas crossover and minimum Ohmic resistance. The SOFC 

performance is strongly dependent on the material compositions, thickness, and porosity. Besides, 

the components has to be mechanically and electrochemically stable at high temperature [202]. 

For example, the electrolyte need to be sintered around 1500 °C to produce gas-tight layer. The 

configurations of SOFC stacks are much more complicated with consideration of interconnects, 

joints, sealing and assembly. It was reported that more than one hundred procedures are required 

to manufacture SOFC stacks using traditional fabrication methods [203]. Such a huge number of 

steps make the manufacturing a very complicated task with low efficiency. Furthermore, the 

application of various fabrication techniques has a remarkable effect on the SOFC performance 
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and durability. Therefore, it is very difficult for the traditional manufacturing to achieve highly 

desirable custom-designed products with cost-effective method.  

Regarding SOFC technology, the 3D printing approaches to simultaneously control the 

microstructures, such as TPB, porosity and thickness. Compared to traditional SOFC fabrication 

methods, the proposed 3D ceramic printing offers several advantages. First, 3D printing has 

excellent material flexibility and structure controllability. A wide range of feedstock, such as 

liquid, powder, and filament, can be used by various printers for different applications. Special 

microstructure, i.e. gas flow channels and porous electrode, can be fabricated precisely by 3D 

printing via digital CAD design. Second, 3D printing can precisely control the thickness of 

components. Due to the additive process layer by layer, the total thickness is determined by the 

unit layer height times the number of layers. For the fused deposition modeling, the former is 

controlled by the nozzle size and printing speed that are pre-set in the modeling software. For a 

generally commercial product, the layer height is approximately 200 µm and that allows 

electrode thickness to be well controlled. Third, 3D printing is considered as the cost-effective 

and environmentally friendly technique. During the fabrication, the materials are printed directly 

on the platforms on demand. Such simple one-step process can minimize the material wastage 

and the energy consumption.  

Inkjet printing is the most commonly used 3D printing technique. It is a droplet-based 

material deposition process and able to fabricate complex configurations with high accuracy. 

Currently, Inkjet printing has been developed as a non-contact and direct deposition technique 

for various applications including medical, biology, and electrochemical [204]. Among them, 

extensive research has been focused on the development of SOFC components. Sukeshini and 

Cummins applied ink-jet printing to fabricate the NiO-YSZ anode interlayer and YSZ electrolyte 
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on a tape-cast anode-support cell before sintering at 1400 °C. The thickness of the electrolyte 

was measured by scanning electron microscopy (SEM) ranging from 6 µm to 12 µm. The ink-jet 

printed cell exhibited an open circuit voltage (OCV) of 0.95-1.06 V and a maximum power 

density (MPD) of 0.175 W/cm2 [205]. Then the author used similar process to fabricate the cell 

electrolyte with thickness ranging from 10 µm to 12 µm. A better performance with stable OCV 

of 1.1 V at 800 °C and MPD of 500 mW/cm2 at 850 °C was achieved [206]. The anode support 

SOFC was also fabricated with inkjet-print YSZ electrolyte, NiO-YSZ anode interlayer, LSM-

YSZ cathode. Similar with the performance of conventional hand-paste slurry SOFC, the cell 

produced a stable OCV of 1.1 V and a MPD of 430-460 mW/cm2 at 850°C [207]. Sukeshini also 

used aerosol jet printing to fabricate the LSM and GDC-LSCF cathode layers. The GDC-LSCF 

cathode exhibited a better performance than the LSM cathode did. It was found that the cathode 

current collection layer, layer thickness, solids loading and sintering temperature have a strong 

impact on the cell performance with a MPD ranging from 200 to 460 mW/cm2 [208]. Tomov and 

his co-workers employed inkjet printing to fabricate dense YSZ electrolyte layer on the NiO-

YSZ anode support SOFC. The desired electrolyte with thickness of 6 µm was achieved by 

moderate overlapping of nozzle opening and droplet as well as multiple coatings. With the 

feedstock of humidified hydrogen and ambient air, the cell could demonstrated a MPD of 170 

mW/cm2 at 800°C [209]. Similarly, the researchers employed inkjet printing to deposit NiO-

GDC anode layer and GDC electrolyte layer and achieved uniform coatings with thickness 

below 15 µm by optimizing the printing procedure [210]. Li et al. used thermal inkjet printing to 

fabricate the thin electrolyte layer of YSZ and buffering layer of Sm0.2Ce0.8O1.9 (SDC) for SOFCs. 

The thickness of YSZ membrane was approximately 1.5 µm and the cell delivered a MPD of 860 

mW/cm2 at 800 °C. Another cell with 7.5 µm-thick YSZ electrolyte, 2 µm-thick SDC buffering 
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layer and BSCF cathode delivered a MPD of 1040 mW/cm2 at 750 °C [211]. Esposito et al. 

fabricated a 1.2 µm-thick YSZ electrolyte using inkjet printer and 3.7% vol.% YSZ colloidal 

water-based ink. The SOFC with configuration of Ni-YSZ/YSZ/YSZ-LSM produced an OCV of 

1.15 V and a MPD of 1.5 W/cm2 at 800°C [212]. Wang et al. optimized the inkjet printing 

parameters for CGO electrolyte fabrication using a custom-built drop visualization system. It 

was found that 50:50 vol.% mixing ratio of terpineol and methanol could meet the 3d printing 

criteria, i.e. ink stability, printability and drop integrity. The printing pressure and nozzle opening 

time for stable printing were in the range of 400-800 mbar and 550-600 µs respectively [213]. 

These researchers then deposited the CGO electrolyte on the porous NiO-YSZ anode composite 

via inkjet printing and achieved a thin electrolyte layer with thickness of less than 10 µm [214].  

El-Toni et al. used inkjet printing to produce a dense GDC electrolyte layer and a honeycomb 

porous cathode of LSM. The thickness of the 10-layer electrolyte was about 6 µm and the 

channel density of LSM honeycomb monolith was 700 channels per square inch with channel 

size of 800 µm [215]. Han et al. fabricated the LSCF cathode layer using modified inkjet printer 

and adjusted the porosity and thickness by grayscale in the printing image. The anode support 

SOFC exhibited a MPD of 377 mW/cm2 at 600 °C [216]. Li et al. also used the inkjet printer to 

fabricate the porous cathode layer of SDC/SSC composite. To improve the performance, 10 wt.% 

pore former was added into the ink and an optimized powder synthesis method was applied to 

the preparation. The SOFC showed excellent electrochemical characteristics, with a MPD of 940 

mW/cm2 at 750 °C [217]. Yashiro et al. fabricated the LSCF-GDC cathode of SOFC via inkjet 

printing. A painted cathode layer with large particles was then deposited on the inkjet-print layer 

to improve the gas permeation. An excellent cell performance was demonstrated with an OCV of 

0.94 V and a MPD of 0.71 W/cm2 at 600 °C [218]. 
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Fused deposition modeling (FDM) is another 3D printing technique to fabricate objects 

layer by layer. Typically, the filaments of thermoplastic materials are heated to the glass transit 

state and then extruded through a stainless or brass nozzle to print onto the platform. The nozzle 

movement is controlled by a XYZ stage that is programmed by the computer. Common 

thermoplastic filaments include ABS, PLA, and PVA etc. Wei et al. prepared the 3D printable 

graphene/ABS composite filament with graphene weight ratio of 3.8 wt. %. The composites were 

extruded at 210 °C into a 1.75 mm-diameter filament to fit the commercialized 3D printer [219]. 

Leon et al. used FDM to design and construct an undivided electrochemical flow cell. The mass 

transport characteristics were evaluated using the reduction of ferricyanide, hexacyanoferrate (III) 

ions at a nickel surface. The results showed that the performance of 3D printed flow cell is 

comparable to that of traditional cells [220]. Due to the excellent conductivity of graphene, the 

graphene/ABS composite filament can be potentially used in the electrical circuit design. Similar 

synthesis process is applicable to the PLA thermoplastic which is more environmentally friendly 

than ABS [221]. Besides, FDM can be used to design and fabricate porous 3D scaffolds. The 

pore volume, structure, and the porosity are controlled by the CAD parameters. The printed 

scaffolds exhibit excellent mechanical properties and biocompatibility. Therefore, 3D printing 

via FDM has a huge potential to be applied to tissue engineering [222-226]. To our best 

knowledge, the research that focuses on fuel cell fabrication via FDM is limited. Dudek 

synthesized the PA12-HAP composites and extruded the mixture into filaments at 185 °C. The 

filaments were used to produce structural components for low-temperature proton exchange 

membrane fuel stacks [227]. However, this study focuses on designing the structural components 

instead of electrolyte or electrodes. In order to fabricate the electrodes, the fuel cell materials 

have to be mixed into the thermoplastics to make the composite filaments. Compared to inkjet 
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printing, the FDM is a more convenient and cost-effective method. More importantly, it can 

produce the porous structure after sintering which is a perfect solution to increase the porosity of 

fuel cell electrodes. 

In this chapter, the FDM is applied to fabricate the cathode on a half SOFC button cell. 

Details of the processes including mixing, extruding, printing, sintering, assembling, and 

characterization are discussed. Traditional dip-coating is also applied for performance 

comparison. The experimental results show that FDM is a promising technique for the 

SOFC/SOPC manufacturing.  

3.2 Experimental 

3.2.1 3D printer and extruder  

 The 3D printer used in the experiment is a common desktop 3D printer purchased from 

Monoprice, as shown in Figure 36a. The build area is 200×200×180 mm3 with the minimum 

resolution as low as 0.1 mm. The maximum extrusion temperature is 260 °C and the printer head 

can move as fast as 150 mm/s. The 3D printer requires standard 1.75 mm filaments made of 

thermoplastic materials, including ABS, PLA, PVA, TPU, PETG, etc. The 3D printer is operated 

via G-code files that can be created from Ultimaker Cura. Generally, the 3D model is built in a 

CAD software (e.g. Autodesk Fusion 360) and then transferred to Cura to set up various printing 

parameters, such as lay height, extruding temperature, internal pattern, etc. The printing process 

of FDM is shown as Figure 37. The motor is responsible for feeding the filament to the nozzle by 

friction. When the nozzle temperature reaches above the melting point, the filament changes to a 

glass transit state. The melted plastic is then extruded through the nozzle and printed on the 

platform. Cooling happens immediately after the extrusion, enabling solidification in a short time. 



   

 

115 

The objects will be created layer by layer with the nozzle movement in x-z plane and platform 

movement in y direction.  

 

Figure 36. FDM devices: a. 3D printer; b. extruder. 

 The filament extruder was purchased from Filastruder, in order to fabricate composite 

filament in house. The typical extrusion rate ranges from 10 in/min to 36 in/min depending on 

materials and temperature. The cylinder heater is located closely to the nozzle as shown in Figure 

38a. The extruder can be operated from room temperature to 260 °C. The working temperature is 

limited by the heater power to prevent thermal deposition of thermoplastic polymers. When the 

materials, normally powder or pellets, are fed into the extruder, the rotating drill will transport 

the raw materials to the nozzle. Due to the high temperature that is above the melting point, the 

thermoplastics are melted into glass transit state around the cylinder heater and then squeezed 

into filaments through the nozzle. However, it becomes more difficult for the extrusion process if 

the raw materials are composites, i.e. mixture of thermoplastics and ceramic or metal powders 

because the material fluidity is strongly dependent on the concentrations and viscosity of 
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thermoplastic polymers. Increasing the extrusion temperature is another effective method of 

improving the material fluidity, but this can potentially lead to the thermal decomposition of the 

polymers. To solve this problem, we have redesigned the heating system of the extruder. 

Specifically, the heating cord (HTC-030, OMEGALUX, US) was applied to wrap around the 

drill tube as shown in Figure 38b. The extended heating area was aimed to preheat the raw 

materials before reaching the nozzle part. This preheating design can effectively improve the 

material fluidity and decrease the squeezing resistance. The heating cord was connected to the 

temperature controller (689-0000, Barnant Company, US) that can supply much more power and 

control the temperature more precisely.  

 

 

Figure 37. Schematic diagram of FDM process. 
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Figure 38. Heating system design of filament extruder: a. before design, b. after design. 

 

3.2.2 Searching for appropriate thermoplastics 

 We identified the criteria for selecting the appropriate thermoplastic polymers for mixing 

with ceramic powders. First, the thermoplastic particles should not differ too much with ceramic 

particles in size. If the particle size of thermoplastic is much larger, the ceramic powders will be 

attached on the spherical surface during the mixing process. Such non-uniform distribution can 

significantly affect the filament homogeneity during extrusion. Vice versa, if the particle size of 

ceramic is too large. Second, the thermoplastic polymers should be liquid soluble if they cannot 

meet the first criteria. The polymers can be dissolved in the liquid where the ceramics are added 

before mixing by the blender. After liquid evaporation, the composites are able to be extruded 

into filaments. Third, the melting point (glass transit temperature) of thermoplastics should be 

lower than working temperature of the extruder and printer. As mentioned above, the maximum 

operation temperature of the extruder and printer are both 260 °C. Thus, the thermoplastic 



   

 

118 

melting point should fall below this upper limit so that the polymer is suitable for extrusion and 

printing processes. Fourth, the boiling point or decomposition temperature of the thermoplastics 

should be higher than the working temperature of extruder and 3D printer. Otherwise, the 

polymers would be vaporized during extrusion, resulting in gas bubbles. 

 The physical and chemical properties of common thermoplastic materials for 3D printing 

have been summarized in Table 3. In this study, ABS, Aquazol 50, PVA and Nylon 12 (PA12) 

are applied to be mixed with ceramics for filament extrusion. Specifically, ABS based mixture is 

obtained after it’s dissolved by the acetone while the others are made through ball milling 

without liquid. Even though other polymers, i.e. PLA, TPU and PETG etc., are widely used as 

commercial filaments for 3D printer, it is difficult to find commercially available bulk with small 

particles.   

Table 3. Physical and chemical properties of common thermoplastic materials for 3D printing 

[228, 229]. 

Thermoplastics Particle size Liquid 

soluble 

Melting 

point/°C 

Boiling 

point/°C 

Density 

g/cm3 

ABS N/A acetone 105* N/A 0.9-1.53 

Aquazol 50 ~ 0.8 mm water 110-120 N/A 1.14 

PVA ~ 1 mm water 200 228 1.19 

Nylon 12 45 µm N/A 178-180 314-315 1.01 

PLA N/A N/A 150-160 N/A 1.25 

TPU N/A N/A 50-145 N/A 1.06-1.21 

PETG N/A N/A 240-260** N/A 1.27 

* glass transit temperature, ** suggested working temperature of 3D printer  
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The ceramic materials we have used in this study include alumina (Al2O3, ~1 µm, 2.7 

g/cm3), YSZ (0.5-0.7 µm, 6.1 g/cm3), LSM (0.48 µm, 6.5 g/cm3) and LSCF (0.39 µm, 1.203-2.8 

g/cm3). The alumina was applied to fabricate the composite filaments for preliminary test. YSZ 

is the electrolyte material that is usually mixed with cathode materials, LSM and LSCF, to make 

the oxygen electrode. Compared with LSM cathode, YSZ-LSM electrode exhibits similar 

thermal expansion coefficient with YSZ electrode. Thus, the delamination issue during the 

SOFC/EC operation could be avoided.    

3.2.3 Mixing  

 The porosity of the 3D-printed objects can be calculated by the volume percentage of the 

thermoplastic materials, since only the polymers are vaporized or decomposed after sintering. It 

is mathematically expressed as the equation 39. 

𝜙 =
𝑉𝑝

𝑉𝑝 + 𝑉𝑐
=

𝑊𝑝/𝜌𝑝

𝑊𝑝/𝜌𝑝 + 𝑊𝑐/𝜌𝑐
 (39) 

𝑊𝑝

𝑊𝑐
=

𝜙𝜌𝑝

(1 − 𝜙)𝜌𝑐
 

(40) 

where, V, W and ρ denote the material volume, weight and density respectively. The index of p 

and c denote the thermoplastic polymers and ceramics respectively. For the mixture that contains 

multiple ceramics, the symbols represent the average value of volume, weight and density. The 

typical porosity of fuel cell electrodes ranges from 40% to 60%. The weight ratio of polymer and 

ceramic can be then calculated by equation 40. Note that, ϕ represents the initial porosity before 

sintering. The practical porosity is even lower with consideration of ceramic shrinkage at high 

temperature.   
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 The ingredients of polymer-ceramic composite for filament fabrication in this study have 

been summarized in Table 4. For ABS-Al2O3 composite, the ABS polymer was dissolved in the 

acetone before adding the alumina. The solution was blended uniformly and then air-dried in the 

fume hood as the preparation for extrusion. For other composites, after the polymer-ceramic 

powders were prepared, they were mixed thoroughly by the ball miller (Jar Mill, US Stoneware, 

USA) for 24 hours. All the materials were measured by the balance (HR-100A, Hogentogler & 

CO, USA) with resolution of 0.1 mg. Note that compared to PA12, PVA has bigger particle size 

as shown in Table 3. The incompatible particle size will lead to inhomogeneous mixture despite 

of long-term ball milling. Therefore, the vol. % of PVA (porosity) has to be increase for 

successful extrusion. On the other hand, the vol. % of PA12 is allowed to be much lower due to 

its smaller particle sizes. Lower porosity can also be obtained in the Aquazol 50 based composite 

due to its low melting point and high fluidity. The ceramic structure will be unstable after 

sintering if the vol. % of polymer (porosity) is too high. The composite mixtures are shown in 

Figure 39 as the preparation for filament extrusion.   

Table 4. Ingredients of polymer-ceramic composite for filament fabrication. 

Composites  Ratio  Porosity Mixing method 

ABS-Al2O3 1:1 wt.% 69.23% acetone & blender 

Aquazol-Al2O3 1:1 wt.% 77.6% ball miller 

PVA- Al2O3 3:1 wt.% 87.19% ball miller 

PVA-LSM 3:1 wt.% 94.25% ball miller 

PA12-LSM 1:1 wt.% 86.55% ball miller 

PA12-LSM-YSZ LSM-YSZ, 1:1 wt.% 

PA12-[LSM-YSZ], 3:2 vol.% 

60% ball miller 
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PA12-LSCF-YSZ LSCF-YSZ, 1:1 wt.% 

PA12-[LSCF-YSZ], 3:2 vol.% 

60% ball miller 

 

 

 

Figure 39. Thermoplastic-ceramic composite mixing: a.  ABS-Al2O3; b. Aquazol-Al2O3; c. PVA- 

Al2O3; d. PVA-LSM; e. PA12-LSM; f. PA12-LSM-YSZ.  

 

3.2.4 Extrusion 

 The extruder with improved preheating system was used for fabrication of composite 

filaments. For ABS-Al2O3 composite as shown in Figure 39a, it needs to be shaped into small 

pellets before extrusion. The extruding temperature is strongly dependent on the thermoplastic 

melting point and vol. %. Higher extruding temperature can potentially cause the vaporization or 
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decomposition of the thermoplastic materials, leading to the non-uniform filaments. On the other 

hand, lower extruding temperature would decrease the composite fluidity, making it more 

difficult for the extrusion process. In this study, successful extrusion can be achieved at ~150 °C 

for ABS and Aquazol 50 based composites. The PA12 based composites have to be extruded at 

approximately 200°C due to its high melting point and low concentration as shown in table 3 and 

table 4.  

The extruded composite filaments are shown in Figure 40. Even though ABS filaments 

are widely used, the extruded ABS-Al2O3 composite filaments are too brittle and unable to be 3D 

printed directly. This is because when the ABS pellets were dissolved in the acetone during 

mixing, the molecular structure of the ABS would be changed from long-chain forms to short-

chain forms, thus affecting the physical properties, such as brittleness. Similar brittleness was 

observed from Aquazol-Al2O3 despite of mixing by ball milling. However, the Aquazol based 

filament can be softened by moisture absorption due to its water solubility. The balance between 

brittleness and softness has be adjusted well before printing, which could limit the application of 

such composite filament. The PVA based filaments, including PVA-Al2O3 and PVA-LSM, were 

extruded with rough surface due to incompatible polymer and ceramic particles. It is necessary 

for these filaments to be polished by sand paper before printing. PA12 based composites, 

including PA12-LSM, PA12-LSM-YSZ and PA12-LSCF-YSZ, are the best filaments we have 

extruded so far. Compared to the other composite, the PA12 based filaments exhibited excellent 

flexibility as shown in Figure 40e. More importantly, lower porosity (60%) can be achieved to 

maintain structural stability after sintering. These advantages are attributed to the compatible 

particle sizes of PA12 (45 µm) with the ceramic powders.   
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Figure 40. Extruded thermoplastic-ceramic filaments based on the ingredients in table 4. a.  

ABS-Al2O3; b. Aquazol-Al2O3; c. PVA- Al2O3; d. PVA-LSM; e. PA12 based composites 

including PA12-LSM-YSZ and PA12-LSCF-YSZ; f. flexibility of PA12 based composite 

filaments.  

3.2.5 Printing 

 The default printing temperature of ABS is 230 °C and the same working temperature is 

applicable for Aquazol based filaments due to the similar melting point as shown in table 3. For 

PVA and PA12 based filaments with higher melting point, a higher printing temperature of 

250°C is suggested. The 3D printed objects were either in a square shape with 20×20 mm2 or a 

circle shape with a diameter of 30 mm. The thickness of unit layer was set as 0.25 mm and the 

0.4 mm-nozzle device was programmed to print 4 layers for each sample with total thickness of 
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1mm. Particularly, the PA12-LSM-YSZ and PA12-LSCF-YSZ based filaments were used to 

fabricate the porous SOFC cathodes. They had a higher vol. % of ceramic materials and thus a 

lower fluidity. Therefore, a larger nozzle diameter of 1 mm is necessary to avoid a choked nozzle. 

The SOFC cathodes are 3D printed with a diameter of 15 mm and a thickness of 1mm.  

The 3D printed objects are shown in Figure 41. Similar with the composite filaments, 

Aquazol-Al2O3 object was too brittle to be removed from the platform (Figure 41a). It can be 

concluded that Aquazol 50 is not suitable as the polymer to 3D print SOFC cathodes. The PVA 

based filaments, either PVA-Al2O3 or PVA-LSM, can be used to print the composite samples 

(Figure 41b and 41c). However, these samples showed a rough surface due to the non-uniform 

material distribution in the filaments and discontinuous printing. On the other hand, the 3D 

printed samples based on PA12 composites exhibited excellent uniformity at various material 

combination and porosity (Figure 41d and 41e).  
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Figure 41. 3D printing objects using the composite filaments: a. Aquazol-Al2O3; b. PVA- Al2O3; 

c. PVA-LSM; d. PA12-LSM; e. SOFC cathodes including PA12-LSM-YSZ and PA12-LSCF-

YSZ.  

3.2.6 Sintering  

 Sintering is the process of compacting and forming a solid mass of material by heat. 

During sintering, the thermoplastic polymers in the composite are vaporized or decomposed 

leaving the porous ceramic structure. The atoms in the ceramics diffuse across the boundaries of 

the particles, fusing the particles together and creating a solid structure. The furnace (KSL-

1700X, MTI Corporation, USA) with maximum temperature of 1700 °C was used for sintering 

process. PVA-Al2O3 based samples were sintered at 1400 °C for 4 hours with increasing and 

decreasing rate of 2 °C/min. The sintering temperature of PVA-LSM and PA12-LSM were 

1100 °C and 900 °C, respectively. Other conditions were the same with PVA-Al2O3 based 

samples.  
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The 3D printed composite samples after sintering are shown in Figure 42. A sintering 

shrinkage of over 50% was observed from the PVA-Al2O3 based samples. The large thermal 

shrinkage results from the high sintering temperature and long heat duration. PVA-LSM samples 

showed an incomplete structure after sintering due to extremely high porosity. However, the 

porosity cannot be decreased during the mixing because the incompatible particle sizes of PVA 

and LSM. Thus, PVA may not be a suitable polymer to fabricate composite filaments. The 

PA12-LSM based samples exhibited excellent porous structure with neglectable shrinkage after 

sintering. Nevertheless, the delamination between the 3D printed cathodes and electrolyte was 

observed even though the polymer glue is applied initially at the interface. Further improvements 

to strengthen the bonding at cathode/electrolyte interface are necessary for the 3D printing 

technique.  

 

 

Figure 42. The 3D printed composite samples after sintering: a. PVA-Al2O3; b. PVA-LSM; c. 

PA12-LSM.   
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3.2.7 SOFC button cell preparation 

 To avoid delamination at the cathode/electrode interface, pre-melting of the 3D printed 

cathode was applied before sintering. Specifically, the cathode and electrode was heated on the 

hotplate (Isotemp, Fisher Scientific, USA). When the temperature is above the thermoplastic 

melting point, the 3D printed cathode is in the glass-transit state and there is more contact 

surface area between the cathode and electrolyte. A stronger bonding was achieved after the 

thermoplastic solidification as shown in Figure 43b. However, the cracks would be observed at 

the cathode after sintering (Figure 43c). This is because when the furnace temperature is above 

the boiling point of the polymers, the internal pressure is generated and accumulated between the 

layers of 3D printed cathode as shown in Figure 43d. The cathode surface would be cracked if 

the pressure is high enough. Therefore, the pressing is necessary to prevent the internal pressure 

accumulation.   
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Figure 43. Bonding 3D printed cathode on the electrode: a. before melting; b. after melting; c. 

after sintering; d. during sintering.  

 

 It is difficult to directly apply pressing in the furnace due to the limited space of the 

furnace. Thus, the pressing was conducted on the hotplate after pre-melting when the 

temperature is above the boiling point of thermoplastic polymers. The whole process was 

operated in the fume hood. The sample was then sintered in the furnace to achieve the porous 
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structure as shown in Figure 44a. To act as the reference, the traditional dip-coating of cathode 

was applied as shown in Figure 44b. To prepare the composite cathode, LSM (or LSCF) powders 

and YSZ powders were mixed by ball milling with a weight ratio of 1:1. The mixed powder was 

stirred with the terpineol-cellulose vehicle to get the stable composite cathode paste. The 

terpineol-cellulose vehicle was prepared by dissolving 6 wt. % cellulose into 94 wt. % terpineol. 

The cellulose acted as the pore former and it would be decomposed at temperature of 260-270 °C. 

After the composite paste was brushed on the electrolyte, the sample was sintered in the furnace 

at 1000 °C for 2 hours.  

Afterwards, the silver mesh was attached on the electrodes by silver ink for current 

collection (Figure 44c and 44d). The silver wire was placed next to the mesh with ink adhesion. 

This would allow for 4 point conductivity testing and a lead for measuring voltage, while the 

other drew the current. The silver ink needs to be dried at 100 °C before firing the sample at 

800 °C for an hour with increasing and decreasing rate of 1 °C per minute. The active area of 

button cell was dependent on the shape of silver mesh or silver ink. In this study, two kinds of 

silver mesh were used with a circular area of 0.5 cm2 and a square area of 1 cm2. 
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Figure 44. SOFC button cell preparation: a. pressing and sintering; b. dip-coating; c. electrical 

collector on the cathode; d. electrical collector on the anode.   

 

3.2.8 Experimental setup for SOFC characterization 

The button cell was finally assembled on the ceramic tube with cathode side exposed to 

the ambient as shown in Figure 45a. The ceramic paste (Ceramabond 552, Aremco, USA) was 

used for sealing between the anode side and the ceramic tube. Note that, the inner diameter of the 

tube should be larger than the anode diameter to cover all the effective area. To achieve the 
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strong ceramic bonding, the paste was dried at room temperature for 1-4 hours followed by the 

step cure at 90 °C and 260 °C for 2 hours at each temperature. The four attached silver wires 

were extended to the other end of the ceramic tube as shown in Figure 45b. Two wires were 

connected to the voltage detector while the other two were connected to the load for current 

detection. Besides, the hydrogen was pumped into the ceramic tube though the stainless pipe that 

was close to the cell anode. The outlet was connected to the exhausted system for safety. Both 

hydrogen inlet and outlet pipes were fixed by silicon rubber at the end of ceramic tube. The 

prepared SOFC button cell was then placed horizontally inside the middle part of tubular furnace 

(GSL-1100X, MTI Corporation, USA) as shown in Figure 45c. The air was pumped to the 

cathode from the other side of the furnace. Either thermal blocker or asbestos was used for 

thermal insulation on two sides of the furnace. The fuel cell test station (855 SOFC, Scribner, 

USA) was used to characterize the cell performance as shown in Figure 45d. The hydrogen flow 

rate was controlled as 50, 100 and 200 sccm while the air flow rate was set at 250 sccm. The test 

station can detect, control and record the voltage and current of the SOFC at various conditions. 

The cell operation temperature was controlled by the furnace ranging from 700 °C to 800°C.  
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Figure 45. Experimental setup for SOFC characterization: a. ceramic tube assembly; b. hydrogen 

inlet/outlet and voltage/current detection; c. temperature control by furnace; d. gas control and 

data acquisition.    

 

3.2.9 SEM inspection 

 After characterization, the samples were disassembled from the experimental setup and 

their surface structures were then inspected by SEM to identify the cathode porosity. Due to the 

nonconductivity of cathodes, it is necessary to coat a thin conductive layer on the sample surface 
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before SEM inspection. The deposition process was conducted using Au target in the sputter 

coater (Hummer 6.2, Anatech, USA) as shown in Figure 46a and 46b. During sputtering, the air 

was first exhausted by inert argon gas and the chamber was then vacuumed to 4.4×103 Pa for 

higher deposition rate. The applied current was 15 mA with deposition duration of 2 minutes. 

Afterwards, the samples were loaded in the SEM (Phenom ProX, Micromeritics, USA) for 

surface inspection as shown in Figure 46c. The acceleration voltage was 10 kV with 

magnification range of 560-74000x. Besides, the 3D surface structure of the cathodes was 

characterized by the digital-video microscopy system (HK-7700, HIROX, USA) as shown in 

Figure 46d.  
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Figure 46. Inspection equipment: a. sputter coater; b. sputtering process; c. SEM; d. optical 

microscope.  

3.3 Results and discussion  

3.3.1 Dip-coating LSM cathode 

 The SOFC button cell with dip-coating cathode was first tested as the reference. The 

active area was 0.5 cm2. The cell was preheated to 400 °C and the hydrogen was then pumped 

through ceramic tube to the anode with a flow rate of 100 sccm while the cathode was exposed to 

the ambient in the furnace. The data (voltage and current density) had been recorded with the 

frequency of 1/30 s-1 since the temperature increased from 400 °C to 750 °C with a rate of 

1 °C/min. The cell anode is made of NiO and it can be reduced to Ni at hydrogen atmosphere. As 
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shown in Figure 47, it took approximately 2 hours to fully reduce the anode with the maximum 

OCV of 1.09 V at 525 °C. Voltage fluctuation happened at 510 °C due to reconnecting the 

detectors. The cell OCV then maintained for 1.5 hours and started decreasing since the operation 

temperature continued to increase. This trend could be explained by the thermodynamics in 

section 1.3.3. At 750 °C, the button cell showed an OCV of 1.03 V which is lower than the 

theoretical value due to humidified hydrogen according to equation 18. Afterwards, the load was 

applied by the test station at voltage control mode. However, only a neglectable current density 

of 0.021 A/cm2 at 0.12 V was detected that indicated the serious degradation issues. As the 

temperature decreased with 1 °C/min, the cell OCV showed an increase first and then a decrease. 

The increase can be explained by the thermodynamics as well and the decreasing OCV resulted 

from declining ion conductivity of YSZ electrolyte. The post-inspection of the SOFC button cell 

indicated a serious cracking and leaking problems of electrolyte as shown in Figure 48a. This 

was attributed to the significant thermal gradient during cell operation. To solve such problems, 

either thermal block or asbestos at two sides of tubular furnace is necessary to avoid thermal 

gradient. Besides, ceramic paste can be brushed on the electrolyte surface to strengthen the 

mechanical properties as shown in Figure 48b.  
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Figure 47. Characterization of SOFC button cell #1 with dip-coating LSM cathode (0.5 cm2 

active area).   
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Figure 48. Post-inspection of SOFC button cells: a. cracking problems; b. applying ceramic paste 

to avoid cracking.  

 

 The second SOFC button cell with dip-coating cathode (0.5 cm2 active area) was tested 

with the same operation conditions to those of button cell #1. As shown in Figure 49, a slightly 

unstable OCV of 0.938 V was observed at 750 °C. It is lower than the OCV (1.03 V) of cell #1 at 

the same conditions. This could be explained by the insufficient time for anode reduction. The 

hydrogen was pumped to the anode at 750 °C rather than 400 °C and the anode-reduction 

duration decreased from 6 hours to 2.5 hours before applying the load. Therefore, the NiO anode 

was not fully reduced to Ni. After running for 10 hours, the cell reached an OCV of 1.00 V that 

was much closer to the OCV of cell #1.  
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Figure 49. Characterization of SOFC button cell #2 with dip-coating LSM cathode (0.5 cm2 

active area). 

 

The voltage-current relation was characterized by applying various external load to 

control the voltage. The applied voltage was set from 0.9 V to 0.3 V with the step of 0.1 V. Each 

step lasted for 30 minutes to achieve a relatively stable state. However, the practical voltage was 

lower than the setting values due to voltage loss on the connections. The resistance of the 0.3 

mm-diameter silver wire was measured as 1 Ω/m. Moreover, the resistance could potentially 

increase with increasing usage frequency. The V-I characterization was plotted with error bar as 

shown in Figure 50. Approximately linear relation was observed from the experimental data. 

Specifically, the area specific resistance (ASR) was calculated as 1.728 Ω·cm2 at 750 °C based 
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on the curve slope. Based on the linearly curve fitting, the maximum power output was 0.086 

W/cm2 when the applied voltage was 0.385 V. The test results of SOFC button cells with dip-

coating cathode have successfully validated the feasibility of the experimental setup for cell 

characterization.  

 

 

Figure 50. Voltage scan of SOFC button cell #2 with dip-coating LSM cathode (0.5 cm2 active 

area) at 750 °C. 

 

3.3.2 SOFC button cell with 3D printed LSM cathode 

 The SOFC button cell #3 with 3D printed LSM cathode was tested using the same 

experimental setup. The voltage and current were recorded over the operation time as shown in 
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Figure 51. With the hydrogen flow rate of 100 sccm, the maximum OCV of 1.122 V was 

observed when the anode was fully reduced at 500 °C. After that, the OCV decreased with an 

increase temperature that was consistent with the thermodynamics. The cell showed a stable 

OCV of 1.03 V at 750 °C that was the same with dip-coating-cathode cells. However, current 

density of 0.0204 and 0.0321 A/cm2 were detected when the applied voltage were 0.698 and 

0.567 V, respectively. Similar to the first SOFC button cell with dip-coating cathode, it may 

result from the electrolyte cracking and hydrogen leaking and the post-inspection had confirmed 

that. Despite of that, the cell could still maintain an OCV of 1.03 V at 750 °C after two hours of 

operation.   

 

Figure 51. Characterization of SOFC button cell #3 with 3D printed LSM cathode (0.5 cm2 

active area).   
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 The SOFC button cell #4 with 1 cm2 active area was tested under the same conditions as 

cell #3. During the anode reduction with increasing temperature from 400 °C, the cell exhibited 

the maximum OCV of 1.135 V at 530 °C and a stable OCV of 1.068 V at 750 °C. Step voltage 

was then applied and the current density was recorded when the temperature was maintained at 

750 °C. After that, the cell voltage was detected without applying current when the temperature 

decreased from 750 °C. The whole characterization process was conducted at the hydrogen flow 

rate of 100 sccm.  

 

Figure 52. Characterization of SOFC button cell #4 with 3D printed LSM cathode (1 cm2 active 

area) at H2 flow rate of 100 sccm.   

 Compared to cell #2 with dip-coating cathode, cell #4 showed much lower current 

density despite of larger active area at similar applied voltage. The post inspection confirmed the 
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leaking issues between the button cell and ceramic tube. Through linearly fitting the voltage-

current data as shown in Figure 53, the cell resistance was estimated to be 17.27 Ω·cm2, which is 

an order of magnitude larger than the reference. The maximum power output of cell #4 was only 

13.2 mW/cm2 when the applied voltage was 0.478 V. 

 

 

Figure 53. Voltage scan of SOFC button cell #4 with 3D printed LSM cathode (1 cm2 active 

area). 

 

 The SOFC button cell #5 with 3D printed cathode was characterized under the same 

conditions with last one. The anode was reduced by hydrogen very quickly within 45 minutes 

when the maximum OCV was 1.051 V at 450 °C. When the temperature was maintained 750 °C, 
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the cell showed a stable OCV of 0.978 V that was lower than those of cell #1 and cell #3 (1.03 

V). This may be attributed to the insufficient reduction of anode by hydrogen. Two cycles of V-I 

characterization were then conducted on the cell by controlling the applied voltage. It was kept 

for 15 minutes for each step to achieve the stable current and voltage. After the first cycle, the 

anode was fully reduced and the button cell was recovered to an OCV of 1.037 V. The final 

OCV was 1.03 V after two cycles of characterization.  

 

 

Figure 54. Characterization of SOFC button cell #5 with 3D printed LSM cathode (0.5 cm2 

active area).   
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 The V-I characterizations of two cycles at 750 °C and the hydrogen flow rate of 100 sccm 

were plotted in Figure 55. The relation of current and voltage was linear for each cycle when the 

applied voltage increased from 0.1 V to 0.9 V. The cell resistance was estimated by the curve 

slopes as 3.484 Ω·cm2 and 3.730 Ω·cm2 for the first and second cycle respectively. The slightly 

increased resistance may be attributed to the cell degradation and further cell inspection was 

necessary to confirm this hypothesis. Compared to the cell #2 with the resistance of 1.728 Ω·cm2, 

the cell #5 showed nearly twice larger resistance at the same condition. This may explained by 

the thicker cathode layer of 3D printing than that of dip coating. The maximum power output 

was calculated as 61.7 mW/cm2 when the applied voltage was 0.464 V. Further performance 

improvements can be conducted by decreasing unit-layer thickness of the 3D printing and 

adjusting the pressing force during cell preparation, and increasing the active area.  
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Figure 55. V-I characterization of SOFC button cell #5 for two cycles at 750 °C and 100 sccm of 

H2. 

 

 Besides manually controlling the applied voltage, the fuel cell test station has the scan-

voltage mode in which the cell voltage can be accurately managed in either single scan or double 

scan. Following the second cycle of V-I characterization, the voltage scans at the hydrogen flow 

rate of 50, 100 and 200 sccm were conducted on button cell #5 as shown in Figure 56. Double 

scan was applied for each condition at 750 °C when the applied voltage increased from 0.1 V to 

1 V and then decreased back to 0.1 V with a step of 0.05 V. At the hydrogen flow rate of 100 

sccm, the cell resistance was calculated as 3.749 Ω·cm2; that is consistent with test result of the 

second cycle of V-I characterization. The button cell resistance would decrease from 3.84 Ω·cm2 
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to 3.646 Ω·cm2 with an increase of hydrogen flow rate from 50 sccm to 200 sccm. This is 

because more hydrogen can participated in the electrochemical reaction and higher H2 

concentration and pressure would improve the cell potential according to equation 18. The 

maximum power output were 59.2, 64.1, 69.7 mW/cm2 at the hydrogen flow rate of 50, 100, 200 

sccm respectively. It is not recommended to increase the hydrogen flow rate too much since the 

performance improvement is limited and it would lower the hydrogen utilization efficiency.  

 

 

Figure 56. Voltage scan of SOFC button cell #5 with 3D printed cathode (0.5 cm2 active area) at 

750 °C and the hydrogen flow rate of 50, 100, 200 sccm respectively.   
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 The SOFC button cell #6 with 3D printed LSM cathode was characterized as shown in 

Figure 57. During initial anode reduction with hydrogen flow rate of 100 sccm, the cell exhibited 

the maximum OCV of 1.127 V at 490 °C. When the temperature reached 750 °C, a stable OCV 

of 1.063 V was observed. Afterwards, the step voltage was applied from 0.9 V to 0.1 V and the 

corresponding current density was recorded with a frequency of 1/30 s-1. Three groups of voltage 

scan were then conducted on the cell #6 at operation temperature of 750 °C, 800 °C and 700 °C 

respectively. For each group experiment at constant temperature, the cell was tested at the 

hydrogen flow rate of 50 sccm, 100 sccm and 200 sccm respectively. The air was pumped into 

the cathode side with a constant flow rate of 250 sccm during the whole characterization process. 

Finally, the SOFC button cell showed a stable OCV of 1.071 V at 700 °C and H2 flow rate of 

100 sccm.  
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Figure 57. Characterization of SOFC button cell #6 with 3D printed LSM cathode (0.5 cm2 

active area).   

 

 The first group of voltage scan was conducted at 750 °C with hydrogen flow rate of 50 

sccm, 100 sccm and 200 sccm, respectively. As shown in Figure 58, the experimental data of 

applied voltage and current density followed linear relation at different H2 flow rate. The cell 

resistance was calculated by the slope of linearly fitting curves. It decreased from 7.65 Ω·cm2 to 

7.29 Ω·cm2 with an increase of gas flow rate. This could be explained by the increasing H2 

pressure or concentration at anode. Compared to the cell #2 with the reference resistance of 

1.728 Ω·cm2, the cell #6 is not competent despite of higher hydrogen flow rate. The maximum 

power output were 30.1 mW/cm2, 32.8 mW/cm2 and 35.3 mW/cm2 at H2 flow rate of 50 sccm, 

100 sccm and 200 sccm respectively.  
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Figure 58. Voltage scan of SOFC button cell #6 with 3D printed LSM cathode (0.5 cm2 active 

area) at 750 °C and H2 flow rate of 50 sccm, 100 sccm and 200 sccm respectively.  

 

 The second group of voltage scans was conducted at 800 °C and the other testing 

conditions were the same with those of the first group. As shown in Figure 59, V-I curves were 

also approximately linear at different H2 flow rates. The cell decreased from 5.097 Ω·cm2 to 

4.912 Ω·cm2 with an increase of gas flow rate. Compared to the first group of voltage scans, the 

second group test exhibited a much lower resistance. This is because the YSZ electrolyte is more 

ion conductive at higher temperature. The maximum power outputs were 46.0 mW/cm2, 50.5 

mW/cm2 and 54.6 mW/cm2 at H2 flow rate of 50 sccm, 100 sccm and 200 sccm respectively.  
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Figure 59. Voltage scan of SOFC button cell #6 with 3D printed LSM cathode (0.5 cm2 active 

area) at 800 °C and H2 flow rate of 50 sccm, 100 sccm and 200 sccm respectively. 

 

 The third group of voltage scans was conducted at 700 °C and the other testing conditions 

were the same with those of the first group. As shown in Figure 60, V-I curves were 

approximately linear at different conditions. The cell decreased from 12.72 Ω·cm2 to 12.38 

Ω·cm2 with an increase of gas flow rate. Compared to the resistance of the first group test, the 

resistance of the third group test was much higher due to the lower ion conductivity of YSZ 

electrolyte at lower temperature. The maximum power output were 17.8 mW/cm2, 19.8 mW/cm2 

and 21.1 mW/cm2 at H2 flow rate of 50 sccm, 100 sccm and 200 sccm respectively.   
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Figure 60. Voltage scan of SOFC button cell #6 with 3D printed LSM cathode (0.5 cm2 active 

area) at 700 °C and H2 flow rate of 50 sccm, 100 sccm and 200 sccm respectively. 

 The voltage scans of cell #6 with constant H2 flow rate of 100 sccm at different 

temperature were shown in Figure 61. Generally, the temperature can affect the SOFC 

performance in two ways. First, the Nernst potential decreases with increasing temperature due 

to the decreasing Gibb free energy according to equation 16. Second, the ion conductivity of 

YSZ electrolyte increases with an increase of temperature. It can be concluded that the first 

factor is negligible according to the significant decrease of resistance with increasing 

temperature. When the temperature increased from 700 °C to 800 °C, the maximum power 

outputs increased remarkably from 19.8 mW/cm2 to 50.5 m·cm2. 
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Figure 61. Voltage scan of SOFC button cell #6 with 3D printed LSM cathode (0.5 cm2 active 

area) at 100 sccm of H2 and temperature of 700 °C, 750 °C and 800 °C respectively. 

 The SOFC button cell #7 with 3D printed LSM cathode (1 cm2 active area) was tested as 

shown in Figure 62. With H2 flow rate of 100 sccm at the anode, the furnace increased from 

400 °C (preheat) to 750 °C with increasing rate of 1 °C/min. The cell showed the maximum 

OCV of 1.128 V at 470 °C and a stable OCV of 1.033 V at 750 °C. Afterwards, the step voltage 

was applied from 0.9 V to 0.2 V at a constant temperature of 750 °C and a constant H2 flow rate 

of 100 sccm. Similar to the testing conditions of cell #6, three groups of voltage scans were then 

conducted on the cell #7 at operation temperature of 750 °C, 800 °C and 700 °C respectively. For 

each group experiment at constant temperature, a voltage scan was applied to estimate the cell 

resistance at the hydrogen flow rate of 50 sccm, 100 sccm and 200 sccm respectively. During the 
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whole characterization process, the air flow rate was maintained as 250 sccm. Finally, the SOFC 

button cell showed a stable OCV of 1.041 V at 700 °C and H2 flow rate of 100 sccm.  

 

 

Figure 62. Characterization of SOFC button cell #7 with 3D printed LSM cathode (1 cm2 active 

area).   

 

 The first group of voltage scans of cell #7 was conducted at 750 °C with hydrogen flow 

rate of 50 sccm, 100 sccm and 200 sccm respectively. As shown in Figure 63, the relation of 

applied voltage and current density was approximately linear at different H2 flow rates. The cell 

resistance decreased from 4.45 Ω·cm2 to 4.295 Ω·cm2 with an increase of H2 flow rate. It could 

be explained by the increasing H2 pressure or concentration at anode. Compared to the cell #6, 
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the cell #7 showed a lower resistance at the same conditions. This is because the larger active 

area could reduce the transverse resistance of chargers that were collected by the silver mesh.  

The maximum power outputs were 50.6 mW/cm2, 57.2 mW/cm2 and 60.9 mW/cm2 at H2 flow 

rate of 50 sccm, 100 sccm and 200 sccm respectively. 

 

 

Figure 63. Voltage scan of SOFC button cell #7 with 3D printed LSM cathode (1 cm2 active area) 

at 750 °C and H2 flow rate of 50 sccm, 100 sccm and 200 sccm respectively. 

 

 The second group of voltage scans was conducted at 800 °C and the other testing 

conditions were the same with those of the first group. As shown in Figure 64, V-I curves were 

also approximately linear at different H2 flow rates. The cell decreased from 3.076 Ω·cm2 to 
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2.934 Ω·cm2 with an increase of gas flow rate. Compared to the first group of voltage scans, the 

second group test exhibited a much lower resistance due to more ion conductive of YSZ 

electrolyte at higher temperature. The maximum power outputs were 72.4 mW/cm2, 81.0 

mW/cm2 and 88.7 mW/cm2 at H2 flow rate of 50 sccm, 100 sccm and 200 sccm respectively. 

 

Figure 64. Voltage scan of SOFC button cell #7 with 3D printed LSM cathode (1 cm2 active area) 

at 800 °C and H2 flow rate of 50 sccm, 100 sccm and 200 sccm respectively 

 

 The third group of voltage scans was conducted at 700 °C and the other testing conditions 

were the same with those of the first group. As shown in Figure 65, V-I curves were 

approximately linear at different conditions as well. The cell decreased from 7.337 Ω·cm2 to 

6.859 Ω·cm2 with an increase of gas flow rate. Compared to the resistance of the first group test, 
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the resistance of the third group test was much higher due to the lower ion conductivity of YSZ 

electrolyte at lower temperature. The maximum power outputs were 30.1 mW/cm2, 33.7 

mW/cm2 and 36.7 mW/cm2 at H2 flow rate of 50 sccm, 100 sccm and 200 sccm respectively. 

 

 

Figure 65. Voltage scan of SOFC button cell #7 with 3D printed LSM cathode (1 cm2 active area) 

at 700 °C and H2 flow rate of 50 sccm, 100 sccm and 200 sccm respectively. 

 

The voltage scans of cell #7 with constant H2 flow rate of 100 sccm at different 

temperature were shown in Figure 66. Again, the temperature had a significant effect on the cell 

performance due to improved ion conductivity of YSZ electrolyte. When the temperature 

increased from 700 °C to 800 °C, the maximum power outputs increased remarkably from 33.7 
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mW/cm2 to 81.0 mW/cm2. However, the high operation temperature could potentially result in 

serious degradation issues of the materials especially for the SOFC stacks.  

 

 

Figure 66. Voltage scan of SOFC button cell #7 with 3D printed LSM cathode (1 cm2 active area) 

at 100 sccm of H2 and temperature of 700 °C, 750 °C and 800 °C respectively. 

 

3.3.3 SOFC button cell with 3D printed LSCF cathode 

 The SOFC button cell #8 with 3D printed LSCF cathode was characterized as shown in 

Figure 67. During initial anode reduction with H2 flow rate of 100 sccm, the cell exhibited the 

maximum OCV of 1.150 V at 505 °C. When the temperature reached 750 °C, a stable OCV of 

1.079 V was observed. Afterwards, the step voltage was applied from 0.9 V to 0.1 V and the 
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corresponding current density was recorded with a frequency of 1/30 s-1. Three groups of voltage 

scans were then conducted on the cell #8 at operation temperature of 750 °C, 800 °C and 700 °C 

respectively. For each group experiment at constant temperature, the cell was tested at the 

hydrogen flow rate of 50 sccm, 100 sccm and 200 sccm respectively. The air was maintained at a 

constant flow rate 250 sccm at the cathode side during the whole characterization process. 

Finally, the SOFC button cell showed a stable OCV of 1.026 V at 700 °C and H2 flow rate of 

100 sccm.  

 

 

Figure 67. Characterization of SOFC button cell #8 with 3D printed LSCF cathode (1 cm2 active 

area). 
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The first group of voltage scans was conducted at 750 °C with hydrogen flow rate of 50 

sccm, 100 sccm and 200 sccm respectively. As shown in Figure 68, the V-I experimental data of 

LSCF based cell also showed linear relation at different H2 flow rate. The cell resistance was 

calculated by the slope of linearly fitting curves. It decreased from 7.536 Ω·cm2 to 7.498 Ω·cm2 

with an increase of gas flow rate. Compared to the LSM based cells, the cell #8 had similar 

resistance with cell #6 but higher resistance than cell #5 and cell #7. The maximum power 

outputs were 32.8 mW/cm2, 35.1 mW/cm2 and 37.3 mW/cm2 at H2 flow rate of 50 sccm, 100 

sccm and 200 sccm respectively. 

 

Figure 68. Voltage scan of SOFC button cell #8 with 3D printed LSCF cathode (1 cm2 active 

area) at 750 °C and H2 flow rate of 50 sccm, 100 sccm and 200 sccm respectively. 
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The second group of voltage scan was conducted at 800 °C and the other testing 

conditions were the same with those of the first group. As shown in Figure 69, V-I curves were 

also approximately linear at different H2 flow rates. The cell decreased from 4.877 Ω·cm2 to 

4.818 Ω·cm2 with an increase of H2 flow rate. Compared to the first group of voltage scans, the 

second group test exhibited a much lower resistance due to higher ion conductivity of YSZ 

electrolyte at higher temperature. The maximum power outputs were 49.9 mW/cm2, 54.0 

mW/cm2 and 56.6 mW/cm2 at H2 flow rate of 50 sccm, 100 sccm and 200 sccm, respectively. 

 

 

Figure 69. Voltage scan of SOFC button cell #8 with 3D printed LSCF cathode (1 cm2 active 

area) at 800 °C and H2 flow rate of 50 sccm, 100 sccm and 200 sccm respectively 



   

 

161 

The third group of voltage scans was conducted at 700 °C and the other testing conditions 

were the same with those of the first group. As shown in Figure 70, V-I curves were 

approximately linear at different conditions. The cell decreased from 12.52 Ω·cm2 to 12.07 

Ω·cm2 with an increase of gas flow rate. Compared to the resistance of the first group test, the 

resistance of the third group test was much higher due to the lower ion conductivity of YSZ 

electrolyte at lower temperature. The maximum power outputs were 17.8 mW/cm2, 19.5 

mW/cm2 and 20.8 mW/cm2 at H2 flow rate of 50 sccm, 100 sccm and 200 sccm respectively. 

 

 

Figure 70. Voltage scan of SOFC button cell #8 with 3D printed LSCF cathode (1 cm2 active 

area) at 700 °C and H2 flow rate of 50 sccm, 100 sccm and 200 sccm respectively. 
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The voltage scans of cell #8 with constant H2 flow rate of 100 sccm at different 

temperature were shown in Figure 71. Similar to LSM based cells, the temperature had a 

significant effect on the LSCF based cell performance due to improved ion conductivity of YSZ 

electrolyte. When the temperature increased from 700 °C to 800 °C, the maximum power outputs 

increased remarkably from 19.5 mW/cm2 to 54.0 mW/cm2.  

 

 

Figure 71. Voltage scan of SOFC button cell #8 with 3D printed LSCF cathode (1 cm2 active 

area) at 100 sccm of H2 and temperature of 700 °C, 750 °C and 800 °C respectively. 

 

 The SOFC button cell #9 with 3D printed LSCF cathode was characterized as shown in 

Figure 72. With H2 flow rate of 100 sccm at the anode, the cell exhibited the maximum OCV of 
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1.163 V at 500 °C. A stable OCV of 1.093 V was observed when the temperature reached 750 °C. 

The step voltage was then applied from 1.0 V to 0.1 V and the corresponding current density was 

recorded. Afterwards, three groups of voltage scan were conducted on the cell #9 at operation 

temperature of 750 °C, 800 °C and 700 °C, respectively. For each group experiment maintained 

at constant temperature, the cell was tested at the hydrogen flow rate of 50 sccm, 100 sccm and 

200 sccm respectively. The air was kept at a constant flow rate 250 sccm at the cathode side 

during the whole characterization process. Finally, the SOFC button cell showed a stable OCV of 

1.101 V at 700 °C and H2 flow rate of 100 sccm.  

 

 

Figure 72. Characterization of SOFC button cell #9 with 3D printed LSCF cathode (1 cm2 active 

area). 
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The first group of voltage scan was conducted at 750 °C with hydrogen flow rate of 50 

sccm, 100 sccm and 200 sccm respectively. As shown in Figure 73, the V-I experimental data of 

LSCF based cell showed linear relation at different H2 flow rate as well. The cell resistance was 

calculated by the slope of linearly fitting curves. It ranged from 5.744 Ω·cm2 to 5.838 Ω·cm2 

with different gas flow rate. Compared to the cell #8 based on LSCF, the cell #9 showed a lower 

resistance at different conditions. This may be explained by the thinner cathode layer according 

to the post inspection. The maximum power outputs were 44.0 mW/cm2, 47.6 mW/cm2 and 50.3 

mW/cm2 at H2 flow rate of 50 sccm, 100 sccm and 200 sccm, respectively. 

 

 

Figure 73. Voltage scan of SOFC button cell #9 with 3D printed LSCF cathode (1 cm2 active 

area) at 750 °C and H2 flow rate of 50 sccm, 100 sccm and 200 sccm respectively. 



   

 

165 

The second group of voltage scans was conducted at 800 °C and the other testing 

conditions were the same with those of the first group. As shown in Figure 74, V-I curves were 

also approximately linear at different H2 flow rates. The cell decreased from 3.838 Ω·cm2 to 

3.762 Ω·cm2 with an increase of H2 flow rate. Compared to the first group of voltage scans, the 

second group test exhibited a much lower resistance due to higher ion conductivity of YSZ 

electrolyte at higher temperature. The maximum power outputs were 65.3 mW/cm2, 70.9 

mW/cm2 and 75.4 mW/cm2 at H2 flow rate of 50 sccm, 100 sccm and 200 sccm respectively. 

 

 

Figure 74. Voltage scan of SOFC button cell #9 with 3D printed LSCF cathode (1 cm2 active 

area) at 800 °C and H2 flow rate of 50 sccm, 100 sccm and 200 sccm respectively. 
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The third group of voltage scans was conducted at 700 °C and the other testing conditions 

were the same with those of the first group. As shown in Figure 75, V-I curves were 

approximately linear at different conditions. The cell decreased from 9.426 Ω·cm2 to 9.157 

Ω·cm2 with an increase of gas flow rate. Compared to the resistance of the first group test, the 

resistance of the third group test was much higher due to the lower ion conductivity of YSZ 

electrolyte at lower temperature. The maximum power outputs were 26.6 mW/cm2, 28.8 

mW/cm2 and 30.6 mW/cm2 at H2 flow rate of 50 sccm, 100 sccm and 200 sccm respectively. 

 

Figure 75. Voltage scan of SOFC button cell #9 with 3D printed LSCF cathode (1 cm2 active 

area) at 700 °C and H2 flow rate of 50 sccm, 100 sccm and 200 sccm respectively. 
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The voltage scans of cell #9 with constant H2 flow rate of 100 sccm at different 

temperature were shown in Figure 76. Similar to all the cells mentioned above, the temperature 

had a significant effect on the cell #9 performance due to improved ion conductivity of YSZ 

electrolyte. When the temperature increased from 700 °C to 800 °C with hydrogen flow rate of 

100 sccm, the maximum power outputs increased remarkably from 28.8 mW/cm2 to 70.9 

mW/cm2.  

 

Figure 76. Voltage scan of SOFC button cell #9 with 3D printed LSCF cathode (1 cm2 active 

area) at 100 sccm of H2 and temperature of 700 °C, 750 °C and 800 °C respectively. 
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3.3.4 Cathode surface characterization 

 Figure 77 shows the surface characterization of dip-coating LSM cathode. The cracks in 

Figure 77a resulted from the thermal expansion of LSM layer during sintering. The pores were 

uniformly distributed with a relatively low density. This is because the concentration of pore 

former (cellulose) was only 6 wt. % during mixing. The pore sizes exhibited a wide range from 

104 nm to 609 nm as shown in Figure 77d.  
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Figure 77. SEM surface characterization of dip-coating LSM cathode with scale bar of a. 100 µm; 

b. 10 µm; c. 5 µm; d. 1 µm. 

 

 Figure 78b, c, and d show the surface characterization of 3D printed LSM cathode. 

Similar to the dip-coating technique, cracks could not be avoided due to thermal expansion 
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during sintering as shown in Figure 78b. Compared to the dip-coating cathode, the porosity of 

3D printed cathode was higher since the volume ratio of thermoplastic polymers was much 

higher (60%) during mixing. The porosity was estimated as 35.5% after Matlab image 

processing based on Figure 78d. However, the performance of 3D printed cell was lower than 

that of reference cells. This could confirm that the layer thickness of cathodes has a significant 

influence in the SOFC performance. Further improvement of 3D printed cathodes should focus 

on reducing the cathode thickness. Note that, the pore size of Ag collector was much bigger as 

shown in Figure 78a, and the pore dimensions were similar to the reference ranging from 89.5 

nm to 835 nm as shown in Figure 78d.  
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Figure 78. SEM surface characterization of Ag collector (a) and 3D printed LSM cathode with 

scale bar of b. 8 µm; c. 3 µm and d. 1 µm.  

 

 Figure 79 shows the surface characterization of 3D printed LSCF cathodes. Similar to the 

LSM based cathodes, the LSCF based cathodes had uniformly distributed pores with dimensions 
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from 152 nm to 887 nm. This is attributed to the same PA 12 volume ratios during mixing. The 

porosity of LSCF electrode was estimated to be 42.53% via Matlab image processing based on 

Figure 79d. Therefore, it can be concluded that a better surface structure with higher porosity can 

be achieved using additive manufacturing technique despite of the layer thickness.  
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Figure 79. SEM surface characterization of 3D printed LSCF cathode with scale bar of a. 10 µm; 

b. 5 µm and c. 1 µm. 

 

 Finally, the 3D printed LSCF cathode was characterized by optical microscopy to 

identify the surface smoothness. A local area with dimensions of 2 mm × 1.5 mm was first 
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targeted in the microscopy as shown in Figure 80a. The 3D image was then generated through 

horizontal scanning as shown in Figure 80b. A height variance of 70.634 µm was obtained in this 

local area. Compared to the printing cathode with the thickness of 1 mm, the amplitude was 

neglectable. Therefore, the delamination issues could be effectively suppressed by preheating & 

pressing before sintering.  
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Figure 80. Surface characterization of 3D printed LSCF cathodes using optical microscopy: a. 

2D surface and b. 3D surface.   
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3.4 Summary  

 In this chapter, FDM 3D printing technique was applied to fabricate the electrodes of 

SOFC button cells. The new composite filaments were extruded using different thermoplastic 

polymers and ceramics. Due to compatible particle size and excellent flexibility, PA12 was 

selected as the matrix of cathode composites. The 3D printed cathodes were then bonded on the 

half cells through preheating and pressing to avoid delamination issues. After sintering, the 

SOFC button cells were assembled on ceramic tubes and characterized by the test station. 

Besides, the button cells with dip-coating cathodes were tested as the reference. The experiments 

were conducted at operation temperature ranging from 700 °C and 800 °C and H2 flow rate 

ranging from 50 sccm to 200 sccm. The parameters and performance of these SOFC button cells 

were summarized in table 5.  

Table 5. Summary of the SOFC button cell characterization.  

Cell 

#  

Fabrication  Cathode 

materials 

Active 

area 

(cm2)          

OCV* 

(V)  

Resistance* 

(Ω·cm2)  

Output 

Power* 

(mW/cm2)        

Maximum 

Output Power** 

(mW/cm2)  

1 Dip coating LSM 0.5 1.030 --- --- --- 

2 Dip coating LSM 0.5 0.938 1.728 85.7 --- 

3 3D printing LSM 0.5 1.030 --- --- --- 

4 3D printing LSM 1 1.068 17.27 13.2 --- 

5 3D printing LSM 0.5 1.037 3.484 61.7 --- 

6 3D printing LSM 0.5 1.063 7.4 32.8 54.6 

7 3D printing LSM 1 1.033 4.32 57.2 88.7 

8 3D printing LSCF 1 1.079 7.466 35.1 56.6 

9 3D printing LSCF 1 1.093 5.838 47.6 75.4 
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*750 °C, 100 sccm H2; **800 °C, 200 sccm H2 

 

During characterization, the cell anodes were initially reduced by hydrogen to achieve a 

stable OCV at 750 °C and 100 sccm H2. Most cells showed excellent Nernst potential (> 1.03 V) 

except for cell #2 due to insufficiently reduced anode. Note that, the OCV of LSCF based cells 

were slightly higher than those of LSM based cells but the reasons still remained unknown. The 

cell resistance can be estimated by the linear relation of cell voltage and current density. It has a 

significant effect on the cell performance. The cell #2 with dip-coating cathode was set as the 

reference and it exhibited the highest power output of 85.7 mW/cm2 at 750 °C and 100 sccm H2. 

This was attributed to the thinnest cathode layer leading to a cell resistance of 1.728 Ω·cm2. The 

best performance for LSM based cells and LSCF based cells were 61.7 mW/cm2 and 47.6 

mW/cm2 respectively. However, these were still lower than the reference cell with traditional 

dip-coating cathode. Further improvement could focus on reducing the cathode thickness during 

the 3D printing and pressing process. Besides, increasing the temperature and H2 flow rate could 

both increase the cell power output. The former method was more effective due to the 

significantly enhanced ion conductivity of YSZ electrolyte at high temperature. The latter was 

not recommended resulting from the unremarkable improvement and excessive waste of H2. The 

best performance of 88.7 mW/cm2 was achieved from the cell with 3D printed LSM cathode at 

800 °C and 200 sccm H2. Therefore, a perspective is provided here on how to apply the addictive 

manufacturing in the SOFC/SOPC to achieve the competent performance of the cell from 

traditional fabrication. 
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CHAPTER 4 

CONCLUSIONS AND FUTURE RESEARCH 

4.1 Conclusions 

 As one of the long-term solar-to-hydrogen pathways outlined by DOE, photocatalytic 

water splitting has received enormous scientific interest in recent decades. In this study, the 

concept of solid oxide photoelectrochemical cells was proposed in order to harvest more visible 

sunlight and increase the energy conversion efficiency. Compared to conventional PECs in 

aqueous environments, the SOPC is operated at higher temperature (> 400 °C) and its theoretical 

framework was elaborated with highlighted advantages. First, the thermodynamic threshold is 

significantly reduced from 1.6-1.7 V to 0.85-0.95 V at elevated temperature, thus allowing more 

choice of semiconductor candidates. Second, the narrowing bandgap at high temperature will 

enable more visible light absorption. The SOPC integrates a photovoltaic cell and a solid oxide 

electrolysis cell. The PV cell is responsible for converting solar energy to separated chargers 

while the SOEC utilizes the chargers to split water for hydrogen generation. The experimental 

investigation focused on fabrication and characterization of the PV cell and SOEC respectively.  

 For the PV cell of SOPC, various semiconductor candidates, i.e. n-TiO2, n-ZnO, n-Fe2O3, 

p-LSM, p-LSC, p-LSCF, p-NiO and Ag, were selected to fabricate either Schottky diodes or p-n 

diodes. The rectifying properties of these diodes were evaluated from room temperature to 

500 °C. The knee voltages were then extracted from the rectifying curves and compared with the 

Nernst potential for electrolysis in terms of operation temperature. The semiconductor diode is 

suitable for use in SOPC only if its knee voltages are higher than the electrolysis threshold at 

specific temperatures. The experimental results showed that only LSM/TiO2 was potentially 

applicable in SOPC when the temperature below 450 °C. 
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 For the SOEC/SOFC part, the FDM 3D printing was introduced as a novel manufacturing 

technique. Different polymeric ceramic composite filaments were fabricated in house. The PA12 

based filaments showed the best flexibility and printing quality. The cathodes were printed and 

bonded on the half cells via preheating and pressing to avoid delamination issues. Porous 

cathode structure of both LSM and LSCF were achieved. Afterwards, those button cells were 

evaluated in the fuel cell mode at temperature of 700-800 °C and H2 flow rate of 50-200 sccm. 

Compared to the conventional cathode made by dip-coating with power output of 85.7 mW/cm2 

at temperature of 750 °C and 100 sccm H2, the 3D printed cells showed comparable performance 

of 61.7 mW/cm2 and 47.6 mW/cm2 for LSM cathode and LSCF cathode, respectively. Moreover, 

increasing temperature could improve significantly the cell performance due to enhanced ion 

conductivity of YSZ electrolyte. Therefore, it is demonstrated that FDM is viable technology for 

fabricating porous electrodes for SOFC/SOPCs.  

4.2 Future research 

 We have successfully found the appropriate semiconductor diode for PV part and 

demonstrated the feasibility of applying FDM 3D printing to SOEC fabrication. Future research 

should focus on integration and characterization of the proposed SOPC. As shown in Figure 31, 

GDC is selected as the SOEC electrolyte due to the suggested operation temperature (450 °C) of 

LSM/TiO2 diode. The electrolysis cell can be fabricated by 3D printing hydrogen cathode (Ni) 

and oxygen anode (LSM) on the two sides of electrolyte. The p-LSM and n-TiO2 are then 

deposited in sequence on the surface of oxygen anode. Silver mesh is attached on the surface of 

n-TiO2 for current collection. Note that, the p-LSM deposition can be omitted due to the same 

materials as oxygen anode. A thin layer around micro scale of n-TiO2 is required to allow the 
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photon absorption by the junction. The characterization of SOPC is conducted step by step as the 

following procedures. 

4.2.1 OCV characterization of SOPC with light irradiation at high temperature 

The schematic of experimental setup is shown in Figure 81. The SOPC cell is sandwiched 

by two ceramic tubes on both sides with ceramic paste for sealing. The cell is then placed at 

middle of the furnace with PV part irradiated by solar simulator (Newport 500W, Oriel 

Instruments, USA). Both sides of PV cell are connected and extended by silver wires for OCV 

detection. When the temperature increases to 450 °C, an OCV that is approximately equal to the 

diode knee voltage is supposed to be detected with light irradiation. The switch effect of light on 

the cell voltage should be observed as well.  

 

 

Figure 81. OCV characterization of SOPC with light irradiation at high temperature. 
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4.2.2 Oxygen pump test of SOPC with light irradiation at high temperature 

Before the steam electrolysis test of SOPC, oxygen pump test is necessary due to the 

possible fact that the OCV obtained from previous test is insufficient for splitting water. During 

SOPC operation, the electrical potential of PV cell is able to reduce the oxygen molecules into 

oxygen ions at the cathode of SOEC. The oxygen ions then transfer through the electrolyte under 

the potential gradient and finally oxidized back into oxygen at the anode side. Basically, this test 

is aimed to verify the potential of SOPC for radiation energy to chemical energy conversion. 

Besides the same experimental setup with previous one, the gas inlet and outlet are designed at 

the ceramic tube of SOEC side. A silver wire is required to connect the PV part and SOEC part 

for transfer of photogenerated electrons. When the SOPC is operated at 450 °C with light 

irradiation, the low pressure O2 is pumped through the inlet of electrolysis cell side and a much 

lower pressure of O2 is expected at the outlet due to the operation of SOPC. 

 

 

Figure 82. Oxygen pump test of SOPC with light irradiation at high temperature. 
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4.2.3 Steam electrolysis of SOPC with light irradiation at high temperature 

Compared to the oxygen pump test, the inlet of electrolysis cell side is steam while air is 

used as sweep gas in the PV cell side. If the voltage of PV cell is sufficient for steam electrolysis 

with light irradiation, the steam can be reduced into hydrogen at the cathode side of electrolysis 

cell. The oxygen ions can transfer through the GDC electrolyte at 450 °C and then oxidized into 

oxygen at the anode side. The outlet gas at electrolysis side is collected and analyzed by gas 

chromatography. The mixture of steam and hydrogen should be detected and this can finally 

demonstrate the feasibility of our proposed SOPC.   

 

 

Figure 83. Steam electrolysis of SOPC with light irradiation at high temperature. 
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APPENDICES 

Table 6. Summary of long-term degradation of SOEC in stack level. 

Stack 

Type 

Manufacturer SOEC Configuration Interconnect Number of 

Cells 

Current 

Density 

(A/cm2) 

Long-term 

Test (hrs) 

Degradation Rate 

per 1000 hours 

Ref. 

Planar VPS CSC 

Ni-YSZ/YSZ/MIEC 

Haynes 230 

[230] 

20 2 1200 0.36% [151, 

231] 

MSRI CSC 

Ni-YSZ/YSZ/LSCF 

--- 80 0.41 820 3.1% [86] 

5 0.2 1000 8.9% [93] 

5 0.2 1000 3.2% [93] 

Ceramatec ESC 

Ni-CeO2/ScSZ/La-Co-Fe 

oxide based perovskite 

Alloy 441 with 

spinel coating 

10 0.25,0.317 1000 5.66%, 4.62% [93] 

10 0.25 1000 6.87% [93] 

10 0.25 1700 7.4% [93] 

Low-chromium 

ferritic stainless 

steel 

25 0.3 900 >40% [95] 

10  --- >1000 Significant [69] 

720 0.06 1080 --- [69] 

ESC 

Ni/ScSZ/Strontium doped 

manganite 

Ferritic 

stainless steel 

10 0.374 --- --- [98, 99] 

10 0.186 --- --- [83, 97] 

NIMTE, CAS CSC 

Ni-YSZ/YSZ/LSM-YSZ 

SUS 430 

ferritic stainless 

steel 

30 0.057 1000 --- [107] 

2 0.1 700 --- [107] 

30 0.15 1030 11.7% [106] 

2 0-0.2 175 --- [232] 

30 0.15,0.2 500,20 --- [232] 

CSC 

Ni-YSZ/YSZ/LSCF-

GDC 

SUS 430 

ferritic stainless 

steel 

30 0.5 527 4.06% [74] 

30 0.35 --- --- [73] 

Sunfire GmbH ESC 

Ni-GDC/ScSZ/LSCF 

--- 1920 0.38 100 --- [233] 
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Topsoe Fuel Cell ESC 

Ni-CGO/YSZ/LSCF 

Coated Crofer 5 0.4 4055 5.6% [94] 

CSC 

Ni-YSZ/YSZ/LSC 

Coated Crofer 25 0.57, 0.72 2528, 5640 2.3% [156, 

234] 

CSC 

Ni-YSZ/YSZ/LSM-YSZ 

or LSCF-CGO 

Crofer22APU 10 0.75* 1000 <9.1% [110, 

111] 

CSC 

Ni-YSZ/YSZ/CGO|LSC-

CGO|LSC 

--- 5 0.6 2133 2% [109] 

CSC 

Ni-YSZ/YSZ/LSM 

Coated Crofer 5 0.4-0.6 2651 3% [100] 

CSC 

Ni-YSZ/YSZ/LSM 

Coated Crofer 5 0.8 1250 4% [70] 

DTU-Risoe CSC 

Ni-YSZ/YSZ/LSM 

--- 5 1 2000 5% [70] 

ECN ESC 

Ni-CGO/YSZ/LSCF 

Coated Crofer 5 0.4 >2000 4.6% [100] 

Forschungszentrum 

Julich 

 

CSC 

Ni-YSZ/YSZ/LSCF 

 

Crofer22APU 2 0.875 1000 1.5% [235] 

2 0.5 2300, 1800 0.7%, 1.9% [236] 

2 0.5 18000 0.7% [237] 

CSC 

Ni-YSZ/YSZ/LSM-YSZ 

Crofer22APU 4 0.35 --- --- [108] 

4 0.377-

0.493 

--- --- [78] 

CEA CSC 

Ni-YSZ/YSZ/YDC-

LSCF 

Crofer22APU 5 0.5 2700 7-13% [112] 

5 0.5 1000 6%** [113] 

3 0.5 1000 3-4% [101, 

113] 

CSC 

Ni-YSZ/YSZ/LSC 

Crofer22APU 3 1 700 1.9-3.6% [102] 

10 2 --- --- [102] 

AISI441 

ferritic stainless 

steel 

10 1.5 --- --- [103] 

25 1.63 --- --- [103] 

HTceramix/SOFCpower CSC 

Ni-YSZ/YSZ 

/LSCF-CGO 

Crofer22APU 6 0.26, 0.34 1160, 615 5.1%, 0.9-5.8% [79] 
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CSC 

Ni-YSZ/YSZ/LSC 

Crofer22APU 6 0.6 1324 1.9% [79] 

SOLIDpower CSC 

Ni-YSZ/YSZ/LSC 

--- 6 0.6,0.5 3250, 7000 8%, 0.5%  [238] 

CSC 

Ni-YSZ/YSZ/LSCF 

Crofer22APU 6 1.25 --- --- [105] 

CSC 

Ni-YSZ/YSZ/LSCF 

Steel coated 

with MnCo2O4 

6 0.775 1500 0.7% [239] 

Korea Institute of Energy 

Research 

CSC 

Ni-YSZ/YSZ/LSM 

Ceramic 3 0.1 --- --- [104] 

Korea Institute of Science 

and Technology 

CSC 

Ni-YSZ/ScSZ/LSC-GDC 

Metallic 3 0.31 1000 7.75% [80] 

Tubular Dornier-system GmbH Ni-YSZ/YSZ/LSM --- 10 0.37 --- --- [91] 

Ni-YSZ/YSZ/LSM --- 5 --- --- --- [240] 

JAERI Pt/YSZ/Pt --- 24 0.25 A --- --- [241] 

Ni-YSZ/YSZ/LaCoO3 --- 12 0.15 --- --- [116] 

TOSHIBA Ni-YSZ/YSZ/LSC --- 15 0.45 --- --- [81] 

All 

Ceramic 

NASA GRC Pt-GDC/YSZ/LaCrO3 Co-doped 

Lanthanum 

chromite 

3 0.75 --- --- [117] 

--- Information are not supplied.  
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