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Abstract 

In this paper, we analyse the iterated collocation method for Hammerstein equations with smooth and weakly singular 
kernels. The paper expands the study which began in [ 161 concerning the superconvergence of the iterated Galerkin method 
for Hammerstein equations. We obtain in this paper a similar superconvergence result for the iterated collocation method 
for Hammerstein equations. We also discuss the discrete collocation method for weakly singular Hammerstein equations. 
Some discrete collocation methods for Hammerstein equations with smooth kernels were given previously in [3, 181. 

Keywords: The iterated collocation method; The discrete collocation method; Hammerstein equations with weakly 
singular kernels; Superconvergence 

AMS classzjication: 65B05; 45LlO 

1. Introduction 

In this paper, we investigate the superconvergence property of the iterated collocation method for 
Hammerstein equations. In a recent paper [ 161, the superconvergence of the iterated Galerkin method 
for Hammerstein equations with smooth as well as weakly singular kernels was established. The paper 
generalizes the previously reported results on the superconvergence of the iterated Galerkin method 
for the Fredholm integral equations of the second kind [8, 9, 221. A more important contribution made 
in [ 161 lies in the fact that the superconvergence result was established under weaker assumptions 
[16, Theorem 3.31. The approach used in [16] to establish the superconvergence of the iterated 
Galerkin method can easily be adopted to prove the results of Graham et al. [8], Joe [9] and Sloan 
[22] under weaker conditions imposed upon the Fredholm equations. This will be demonstrated in 
Section 3. In Section 2, we review the collocation method for Hammerstein equations as well as 
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some necessary known results that will be pertinent to the materials in the ensuing sections. We 
recall that the collocation method for weakly singular Hammerstein equations was discussed and 
some superconvergence results of the numerical solutions at the collocation points were discovered 
by Kaneko, Noren and Xu in [ 121. In Section 3, the supereconvergence of the iterated collocation 
method for Hammerstein equations is established. The results obtained there encompass Hammerstein 
equations with smooth as well as weakly singular kernels. Finally, in Section 4, we discuss the 
discrete collocation method for Hammerstein equations with weakly singular kernels. The result 
obtained in this section extends the results of [3, 181 which deals with the discrete collocation 
methods for Hammeratein equations with smooth kernels. Some examples are also included in this 
section. 

We note that there have been several other research papers published in recent years that describe 
various numerical methods for Hammerstein equations. A variant of Nystiim method was proposed 
by Lardy [ 191. The degenerate kernel method was studied by Kaneko and Xu [ 151. We point out 
that a superconvergence of the iterates of the degenerate kernel method was recently observed when 
a decomposition of the kernel is done properly. This will be reported in a future paper [14]. The 
reader who is interested in more information on numerical methods for a wider class of nonlinear 
integral equations may find necessary materials in [2, 51. 

2. The collocation method 

In this section, the collocation method for Hammerstein equations is presented. Some materials 
from the approximation theory are also reviewed in this section to make the present paper self- 
contained. We consider the following Hammerstein equation 

J’ 

1 

x(t) - k(t,s)$(s,x(s))ds = f(t), 0 < t d 1, (2.1) 
0 

where k, f and $ are known functions and x is the function to be determined. Define k,(s) E k(t,s) 
for t,s E [0, l] to be the t section of k. We assume throughout this paper unless stated otherwise, 
the following conditions on k, f and tj: 
1. lim,,, ]I kl - k, ljoo =O, TE [O,l]; 
2. A4 == sup,!; Ik(t,s)lds < co; 
3. f E C[O, 11; 
4. $(s,x) is continuous in s E [0, l] and Lipschitz continuous in x E (-co, co), i.e., there exists a 

constant C1 > 0 for which 

Iti - $(GQ)] G Cllxl -x21, for all ~172 E(--oo,m); 

5. the partial derivative $ (‘J) of tj with respect to the second variable exists and is Lipschitz con- 
tinuous, i.e., there exists a constant C, > 0 such that 

(Il/(“l)(t,x,) - $(0”)(t,x2)l < C21xI -x21 for all x1, x2 E (-co,oo); (2.2) 

6. for x E C[O, 11, t&.,x(.)), $(‘,‘)(.,x(.)) E C[O, 11. 
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We let 

(KY)(x)(t) = 1’ Wt,sW,x(s)) ds. 

With this notation, Eq. (2.1) takes the following operator form: 

x-KYx= f. 

For any positive integer IZ, we let 

II, : 0 = to < t1 < . . . < tn_l < t, = 1 

(2.3) 

be a partition of [0, 11. Let r and v be nonnegative integers satisfying 0 < v < Y. Let sF(II,) denote 
the space of splines of order r, continuity v, with knots at II,, i.e., 

SyY(&) = {x E C’[O, l]:~lt,,~,+,~ E Pr-,, for each i = 0, 1,. . . ,n - l}, 

where P,_i denotes the space of polynomials of degree d Y - 1. For the collocation method, we 
are interested in the cases v = 0 or 1. That is, it is possible to work with the space of piecewise 
polynomials with no continuity at the knots or with the space of continuous piecewise polynomials 
with no continuity requirement on the derivatives at the knots. We assume that the sequence of 
partitions III, of [0, l] satisfies the condition that there exists a constant C > 0, independent of IZ, 
with the property: 

maxl <i&t, - ti-l 1 

mini <i&ti - ti-1) 
< C, for all II. (2.4) 

In many cases, Eq. (2.1) possesses multiple solutions (see, e.g., [15]). Hence, it is assumed for 
the remainder of this paper that we treat an isolated solution x0 of (2.1). Let ri = (ti_l, ti) for each 
i=l , . . . ,n. Then for v = 0, we let ril, ri2, . . . , Tir be the Gaussian points (the zeros of the rth degree 
Legendre polynomial on [- 1, 11) shifted to the interval 1i. We define 

Go = (7,: 1 < i < IZ, 1 <j < Y}. (2.5) 

The points in Go give rise to the piecewise collocation method where no continuity between poly- 
nomials is assumed. This is the approach taken by Graham, Joe and Sloan [8]. Joe [9], on the other 
hand, considered the continuous piecewise polynomial collocation method. His method corresponds 
with taking v = 1. Here we define the set Gi of the collocation points to be the set consisting of 
the knots along with the Labatto points (the zeros of the first derivative of the (v - 1 )th degree 
Legendre polynomial) shifted to the interval 1i. Namely, let &-i = 1 and for 1 < 1 < r - 2 (r > 3), 
let t1 denotes the Zth Labatto point. If lri] denotes the length of 1i, then Gi contains 

r(i_l)(,_l)+[+i = i(ti_1 + ti + Ilil</), 1 < i < IZ, 1 < 1 < Y - 1 and ~1 = to = 0. (2.6) 

The analyses of [8, 91 are very similar. We therefore confine ourselves to developing the collocation 
method for Hammerstein equations that is analogous to the method of [8]. An obvious extension 
to the continuous piecewise collocation method will be left to the reader. Define the interpolator-y 
projection P,, from C[O, l] + SF(&) to S,Y(II,) by requiring that, for x E C[O, l] + S,“(III,), 

Pnx(Zii) = X(Zij), for all rij E Go. (2.7) 
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Then we have, for x E C[O, l] + S;(&) 

P,x +x asn+oc (2.8a) 

and consequently , 

SUP II pn II < c. (2.8b) 
n 

The collocation equation corresponding to (2.3) can be written as 

X” - PJWX” = P, f) 

where x, E S,“(II,). Now we 

fx= f +KYx and 

so that Eqs. (2.3) and (2.9) 

let 

(2.9) 

T,,x, G P,, f + P,,KYx, 

can be written, respectively, as x = fx and x,, = T,,x,,. We obtain 

Theorem 2.1. Let x0 E C[O, l] be an isolated solution of Eq. (2.3). Assume that 1 is not an eigen- 
value of the linear operator (KY)‘(xo), where (KY)‘(xo) denotes the Frechet derivative of KY at 
x0. Then the collocation approximation equation (2.9) has a unique solution x, E B(xo, S) for some 
6 > 0 and for sufficiently large n. Moreover, there exists a constant 0 < q < 1, independent of n, 
such that 

a, d 11 x, -x0 Iloo < 2% 
1+9 l-q’ 

(2.10) 

where a, ~11 (I - T,‘(xo))-‘( T,(xo) - T(xo)) IIw . Finally, 

&(xo) G II xn -xo llm G CE,(xo), (2.11) 

where C is a constant independent of n and E,,(xo) = infu~s~~n,j II x0 - u ]I,_,. 

A proof is a straight application of Theorem 2 of [23] and is demonstrated in the proof of 
Theorem 2.1 [12]. We denote by FVr[O, 11, 1 < p d 00, the Sobolev space of functions g whose 
mth generalized derivative g cm) belongs to L,[O, 11. The space WF[O, l] is equipped with the norm 

II 9 IIw;=: 2 II CP) IIP . 
k=O 

Itisknownfrom[6,7]thatifO<v<r, l~p<oo,m>Oandx~W~,thenforeachn>l,there 
exists u, E ST(&) such that 

II x - % Ilp G ChP II x Ilw;, (2.12) 

where p = min{ m, r} and h =max 1 <i<n(ti - ti- I). The inequality (2.12) when combined with Theorem 
2.1 yields the following theorem. 
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Theorem 2.2. Let x0 be an isolated solution of Eq. (2.3) and let x, be the solution of Eq. (2.9) 
in a neighborhood of x o. Assume that 1 is not an eigenvalue of (K!P)‘(xo). If x0 E WA, then 

II x0 -x, llco =O(hP), 

where ,a = min{l, 7). If x0 E Wj (1 < p < oo), then 

II x0 -x, Iloo =O(h”), 

where v = min{ I - 1, r}. 

When the kernel k is of weakly singular type, namely, if 

M&s) = W&dlt - sl>, 

where m E P’+‘([O, l] x [0, 11) and 

(2.13) 

Sa(S) = 
i 

r-l s > O<a<l, 

logs, c( = 1. 
(2.14) 

then the solution x0 of Eq. (2.3) does not, in general, belong to WF. To better characterize the 
regularity of the solution of (2.3) with weakly singular kernel, consider a finite set S in [0, l] 
and define the function as(t) = inf { It - s\ : s E S}. A function x is said to be of T’pe(a, k, S), for 
-l<a<O,if 

IXyt)J < C[coo,(t)]“-k t $! s, 

and for CI > 0, if the above condition holds and x E Lip(a). Here Lip(a)={x : Ix(t)-x(s)1 < Clt-~1”). 
It was proved by Kaneko et al. [ll] that if f is of Type(P,p, (0, l}), then a solution of Eq. (2.1) 
with the kernel defined by (2.13) is of T’pe(y,p, (0, l}), where y = min{cc,/?}. The optimal rate of 
convergence of the collocation solution x, to x0 can be recovered by selecting the knots that are 
defined by 

t, = i(2i/n)q, 0 d i G 42, 
I 1 - tn_i, n/2 -C i < n, 

(2.15) 

where q = rJy denotes the index of singularity. Details can be found in [ 121. 

3. The iterated collocation method 

The faster convergence of the iterated Galerkin method for the Fredholm integral equations of 
the second kind compared to the Galerkin method was first observed by Sloan in [20, 211. On the 
other hand, the superconvergence of the iterated collocation method was studied in [S, 91. Given the 
equation of the second kind 

X-Kx=f, (3.1) 
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where K is a compact operator on X - C[O, l] and x, f EX, the collocation approximation x, is 
the solution of the following projection equation: 

x, - P,Kxn = Pnf, (3.2) 

Here P, is the interpolatory projection of (2.7). The iterated collocation method obtains a solution 

xz, by 

xi =f+&. (3.3) 

Under the assumption of 

(3.4) 

it can be shown that 

ll x -xi 1) G II u - m-’ II II K(x - Pnx) II * (35) 

The assumption (3.4) is satisfied if X=& and P,, is the orthogonal projection satisfying ]I P,,g-g II+ 
0 for all g in the closure of the range of the adjoint K* of K since in this case ]I Kp, - K ]I 
= II P,K* -K* 11. Th e results of Sloan were recently generalized to the iterated Galerkin method 
for Hammerstein equations by Kaneko and Xu [ 161. The main theorem of [ 161, Theorem 3.3, that 
guarantees the superconvergence of the iterates was proved by making use of the collectively compact 
operator theory. 

The purpose of this section is to study the superconvergence of the iterated collocation method. 
For the collocation solution xn of (2.9), we define 

xi= f +KYx,,. (3.6) 

A standard argument shows that xi satisfies 

xf, = f +KYP,x;. (3.7a) 

We denote the right side of (3.7a) by S,,x!,, namely, 

&xi E f + KYP,,xt,. 

We recall the following two lemmas from [ 161. 

(3.7b) 

Lemma 3.1. Let x0 E C[O, l] be an isolated solution of (2.3). Assume that 1 is not an eigenvalue 
of (KW’(xo). Th en or sujkiently large n, the operators I -,$(x0) are invertible and there exists f 
a constant L > 0 such that 

II u - axor II o. d L for sufJiciently large n. 

Lemma 3.2. Let x0 E C[O, l] be an isolated solution of Eq. (2.3) and x,, be the unique solution of 
(2.9) in the sphere B(xo, 6,). Assume that 1 is not an eigenvalue of (KY)‘(xo). Then for sufJiciently 



H. Kaneko et al. I Journal of Computational and Applied Mathematics 80 (1997) 335-349 341 

large II, XL defined by the iterated scheme (3.6) is the unique solution of (3.7) in the sphere B(xo, 8). 
Moreover, there exists a constant 0 < q < 1, independent of n, such that 

where Pn= 11 (I - S~(X~))-~[&(X~) - ?(xo)] lloo . Finally, 

II XL -x0 Iloo G CE,(xo). 

The definitions of 6 and & are described in [ 161. Following the development made in [ 161, we 
let 

ti(% Y) = w> Yo> + $(“% Yo + O(Y - Yo>)(Y - YO>> 

where 8 : = 0(s, yo, y) with 0 < 0 < 1. Also let 

(3.8) 

g(t,s, Yo, Y, 0) = w,s)lCI’“% yo + KY - yo)), 

(GxXt) = I’ s(t,s,P,xoo(s),P,x~(s),e)x(s)ds, 

and (Gx)(t) = s,’ g,(s)x(s) ds, where g,(s)=k(t,s)$(“~l)(s,xO(s)). N ow we are ready to state and prove 
the main theorem of this paper. The proof is a combination of the idea used in [Theorem 3.3; 8, 
Theorem 4.21. 

Theorem 3.3. Let x0 E C[O, l] be an isolated solution of Eq. (2.3) and x, be the unique solution 
of (2.9) in the sphere B(xo,&). Let xi be defined by the iterated scheme (3.7). Assume that 1 is 
not an eigenvalue of (KY)‘(xo). Assume that x0 E W[ (0 < 1 < 2r) and gt E W;l (0 < m < r) with 
(( gt I( w;’ bounded independently of t. Then 

II xo -xi IIw =O(hY), where y = min(1, Y + m>. 

(3.9) 

Proof. From Eqs. (2.3) and (3.7), we obtain 

x0 - xi = K( Yxo - wp,.;) = K( Yxo - Ylpnxo) + K( YPnxo - YP,xL). 

Using (3.8) the last term of (3.9) can be written as 

K( YP,xo - ‘ypnx;)(t) = (G,P,,(xo - x;))(t). 

Eq. (3.9) then becomes 

x0 - x; = K( Yxo - YPnxo) + G,P,(xo - xi). 

Using the Lipschitz condition (2.2) imposed on $(O,l), for x E C[O, 11, 

(3.10) 

II (GJ) - (Gx) Iloo G G sup 
.I 

IW9l ds II x (lm (II PJO - xo Ilm + )I Pn [[cell xi - xo II,). 
O<f<l 0 
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This shows that 

11 Gfl - G Iloo < MCz(ll J’,xo -XO Jim +c 11 x1, -xo llm) + 0 as n + co. 

Also, for each x E C[O, I], 

sup I(GKW) - (GM)] = sup 
o<t<1 

./’ g,(s)[p,x(s) -x(s)] ds < MM, II P,X -x [loo, 
o<t<1 0 

where 

M, = sup ]‘j’oX”(t,x&))l < + 00. 
o<t<1 

It follows that GP, + G pointwise in C[O, l] as n -+ co. Again since P, is uniformly bounded, we 
have for each x E C[O, 11, 

II G,P,x - Gx Ilo3 < II G, - G Ilo P, ll~ll x Ilo3 + II GP,J - Gx Iloo . 

Thus, G,,P, ---f G pointwise in C[O, l] as n ---f co. By Assumptions 2, 5, and 6, we see that there 
exists a constant C > 0 such that for all IZ 

I$‘““‘(~,p,xo(~) + W%:(S) - P,Xo(~)))l < C, II POX0 -X0 ]loo +%p II XL -X0 Jlotr +M, < C. 

This implies that {G,P,,} is a family of collectively compact operators [l]. Since G = (KY)‘(xo) 
is compact and (I - G)-’ exists, it follows from the theory of collectively compact operators that 
(I - G,P,)-1 exists and is uniformly bounded for sufficiently large IZ. Now using (3.10), we see that 

II x0 -xi Iloo d C II K(Yxo - YPnxo) II 
Hence we need to estimate II K(Y x0 - YPnxo ) II. The following four inequalities are known [8, 
Theorem 4.21. Let I/,, E $(I&) be such that 

2 II (x0 - ‘fW)llW;l(I,) < ch’-+ollw~, 0 <j < 1, (3.11) 
i=l 

fycn II PIIW~VJ G 4x0 Ilw+ j 3 0. (3.12) 

Also for each t E [0, 11, there exists qn,t E &!$II,) such that 

f: II (st - (Pn,t)O” ]Iw’;“(I,’ d chm-jK,,, 0 d j < m, (3.13) 
i=l 

12y2n II cp:t) bv~m d cKn> j 2 0, (3.14) 

where K, = supOctGl II k 11~; < co. Now for t E [0, l] we have 

K(Yxo - yp,xo)(t) = (gr - %,t,Xo - Pdo) + (cPn,t,(~ - Pn>(xo - $I)> 

+(cpn,t, u - pn If& >. (3.15) 

Using Eqs. (3.11)<3.14) along with the arguments from [8, p. 3621 we can show that each of the 
three terms is bounded by chY uniformly in t. This completes our proof. ??
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One way to establish the superconvergence of the iterated collocation method for the Fredholm 
equation is to assume (3.4). In the context of the present discussion, (3.4) is equivalent to assuming 

II (KV’(xo)U - ~n)IC[a,bl IL -+ 0 as n + 00. (3.16) 

Theorem 3.3 was thus proved under weaker assumptions. The idea used to prove Theorem 3.3 
originates from [4, Section 61 in which the superconvergence of the iterated collocation method for 
the Fredholm equations was established by showing that {KP,,} is a family of collectively compact 
operators. 

Finally in this section, we investigate the superconvergence of the iterated collocation method for 
weakly singular Hammerstein equation. Specifically, we consider Eq. (2.3) with kernel given by 
(2.13) and (2.14). An enhancement in the rate of convergence is given in the following theorem. 

Theorem 3.4. Let x0 E C[O, l] be an isolated solution of Eq. (2.3) and x, be the unique solution of 
(2.9) in the sphere B(xo,&) with kernel de$ned by (2.13) and (2.14) and knots defined by (2.15). 
Let XL be dejined by the iterated scheme (3.7). Assume that 1 is not an eigenvalue of (KY)‘(xo) 
and that I,V~%‘)(.,X~(.)) is of Type(a, r, (0, 11) f or c1 > 0 whenever x0 is of the same type. Then 

11 xo -xf, llm =O(h’+‘). 

Proof. We follow the proof of Theorem 3.3 exactly the same way to (3.15), which is 

K(Yxo - Y~?Jo)(t) = (St - %,f, x0 - Pnxo) + (%,f, (1 - Pn>(xo - $4)) 

+(cpn,t,(~ - ~n)$n:,). 

The difference in superconvergence arises from the degree to which we may bound the first term. As 
in 116, Theorem 3.61, using an argument similar to [17], it can be proved that there exists u E S,V(II,) 
with knots II, given by (2.15) such that I( g1 - u 11, =O(h’). Here h = maxlQiQn{x, -xi-,}. Then 

I(% - (Pn,t,Xo - cPo)l d II gt - %,r II1 ll x0 - Pdo Iloo 
= O(hx+r). 

The rest of proof follows in the same way as described in [8, p. 3621. 0 

4. The discrete collocation method for weakly singular Hammerstein equations 

Several papers have been written on the subject of the discrete collocation method. Joe [lo] gave 
an analysis of discrete collocation method for second kind Fredholm integral equations. A discrete 
collocation-type method for Hammerstein equations was described by Kumar in [ 181. Most recently 
Atkinson and Flores [3] put together the general analysis of the discrete collocation methods for 
nonlinear integral equations. In this section, we describe a discrete collocation method for weakly 
singular Hammerstein equations. In the aforementioned papers [ 10, 18, 31, their discussions are 
primarily concerned with integral equations with smooth kernels. Even though, in principle, an 
analysis for the discrete collocation method for weakly singular Hammerstein equations is similar to 



344 H. Kaneko et al. I Journal of Computational and Applied Mathematics 80 (1997) 335-349 

the one given in [3], we feel that a detailed discussion on some specific points pertinent to weakly 
singular equations, e.g., a selection of a particular quadrature scheme, a convergence analysis, etc., 
will be of great interest to practioners. Our convergence analysis of the discrete collocation method 
presented in this section is different from the one given in [3] in that it is based upon Theorem 2 of 
Vainikko [23]. The idea of the quadrature used here was recently developed by Kaneko and Xu [ 171 
and a complete Fortran program based on the idea is being developed by Kaneko and Padilla [ 131. 
A particular case of the quadrature schemes developed in [ 161 is concerned with an approximation 
of the integral 

ICI-) = J ’ f(s) ds, 
0 

where f E Type(a, 2r, S) with a > - 1. For 
define q = (2r + 1 )/(a + 1) and a partition 

(4.1) 

simplicity of demonstration, we assume S = (0). We 

7c,: so = 0, s1 = n-Q, Sj = jqs,, j = 2,3, . . . , n. 

Now we construct a piecewise polynomial S, of degree r - 1 
s E [so,sl) and S,.(s) is the Lagrange polynomial of degree r - 

SE [s;,s;+,), i= 1,2,.. .,n-2 and for xc [xn_i,xn]. Here {$‘}J=, 

(4.2) 

by the following rule; S,.(s) = 0, 
1 interpolating f at {z.$‘};~, for 

denote the zeros of the rth degree 
Legendre polynomial transformed into [si,si+i ). Our approximation process consists of two stages. 
First, 1(f) is approximated by 

i(f) = 1’ f(s) ds = F j-“+’ f(s) ds. 
XI i=i $1 

(4.3) 

Second, i(f) is approximated by i(S) = S,: S,(s) ds. A computation of i(S) can be accomplished 
as fOllOWS; let 0 : [Siy Sifl] + [-1, l] be defined by 0 = [2~ - (Si+i + si)]/(si+i - si) SO that 

where 
n-l 

Ff(e) = C kCsi+l - si)f (iCsi+l - si)e + i<si+* + si>) . 

i=l 

If {U;:i= 1,2... , r} denotes the zeros of the Legendre polynomial of degree r, then 

SXs) = C Ff(“i)li(s) 

i=l 

with ii(s) the fundamental Lagrange polynomial of degree r - 1 so that 

i=l 

1 

where wi = J Z;(S) dS. 
-1 

(4.4) 

(4.5) 

(4.6) 

It was proved in [ 171 that 

11(f) - i(S,)I = O(n-2Y). 
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In this section, we examine Eq. (2.1) with the kernel k defined by (2.13) and (2.14). When the 
knots are selected according to (2.15), as stated earlier, it was shown in [ 121 that the solution X, 
of the collocation Eq. (2.9) converges to the solution x of (2.1) in the rate that is optimal to the 
degree of polynomials used. Specifically, x, must be found by solving 

(4.7) 

where i=O,l,... ,~t - 1 andj= 1,2 ,..., r. 
The discrete collocation method for Eq. (2.1) is obtained when the integral in (4.7) is replaced 

by a numerical quadrature given in (4.5). Let &(s) G g2(1uy) - s])m(~j.‘),s). Then 

i’s&:) - sl)m(ui”,S)~(S,X,(S))ds = I’ k,(Ms,x,(s))ds 

(4.8) 

The integrals in the last expression of (4.8) represent two weakly singular integrals which can be 
approximated to within O(K~~) order of accuracy by (4.5) by transforming them to [-1, l] and 
selecting the points in (4.2) appropriately. 

Writing (4.7) as 

P,,x, - P,K Yx, = PJ, (4.9) 

we consider the approximation 2, to x, defined as the solution of 

2, = Q,,& = P,K,, !E, + P, f, (4.10) 

where K, is the discrete collocation approximation to the integrals in (4.8) described above. 
We will use [23, Theorem 21 to find a unique solution to (4.10) in some 6 neighborhood of x,, 

where n is sufficiently large. Clearly, Q:(x) = P,K, Y’(x), where Y’(x)[y](s) = $~“~l~(s,x(s))y(s). For 
sufficiently large n, (4.9) has a unique solution in some 6 neighborhood of x. To see that I - QA(xn) 
is continuously invertible with {(I - QL(xn))-‘},OO=,, uniformly bounded, it is enough to observe that 
{Q~(x~)},OO=~ is collectively compact, and to do this we will show that 

1 Q;(~&l(t> - Q:,<~n>[~l(t’) I = I WM”(xnkW - PJW’(4x(t’) I+ 0 (4.11) 

as t --f t’, for each x E C[O, 11, [ 11. Here N is some sufficiently large number. 
If we show (4.11) then part (a) of Theorem 2 [23] is also verified. In order to verify part 

(b) of Theorem 2 [23], we only need to establish (because of the uniform boundedness of {(I - 
Qn(xn>>-‘EN) that 

II Q;(x) - Q;<xn> Iloo G L II x - xn Iloo G L& (4.12) 

for some constant L, and 

ll Qnh> - Z&d II+ 0 as n + 00. (4.13) 
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Once this is done, Theorem 2 [23] applies yielding a unique solution f,, in some neighborhood 
of X, (for sufficiently large n) and 

II &I -%I II d La”, G L II Q&l) - T,(A) 1103 . (4.14) 

(Here and throughout the remainder of the section, L denotes a generic constant, the exact value of 
which may differ at each occurrence.) This inequality will be used to obtain the order of convergence. 

Considering (4.11), the right-hand side is bounded by T, + T2 + T3, where 

TI = I EXn~‘(~&W - f’nK%&(O 1, 

T2 = 1 P,K Y/(x,)x(t) - P,K W’(x,)x(t’) 1, 

T3 = 1 P,K,Y’(x,)x(t’) - P,K,Y’(x,)x(t’) I . 

Let E > 0. Since {Pn},oO=l is uniformly bounded, T, + T3 < fe by applying (4.6) with f(s) = 

~~“~‘~(s,x,(s))x(s) and letting yt be sufficiently large. For T, we have T2 < A4 Ji 1 k(t,s) - k(t’,s) ( 

ds d M(S, + S), 
where 

and 

&= o’ Iga(lt-sI>-ga(lt’-sI)IIm(t’,s>Ids. s 
but 

SI < sup ( 44s) - m(W I I’&(1 t -s I)& 
O<S<l 

<L sup I m(t,s) - m(t’,s) I+ 0 as t + t', 

O<S<l 

and 

&<L o1 IdIt-SI)-gdlt’-SI)IdS s 
= (L/a){ l t” - (t’)” I + I (1 - t)” - (1 - t’)” I +(4/2”) I t - t’ I”} 

40 as t + t’. 

Hence (4.11) holds. For (4.12) 

II Q;(x) - Q;<d llm = II WWf”(4 - Y’W> II 
<kqx-XJ <kG=q<l 

for 6 sufficiently small. Note that we have used the uniform boundedness of {P,}, {K,} and because 
Y(‘,‘)(s, y(s)) is locally Lipschitz, so is the operator Y’ : C[O, l] --+ B(C[O, 11, C[O, 11) (the space of 
bounded linear operators from C[O, l] into CIO, 11). 
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For (4.13), we have 

~LII(K,-K)y(x,)dL(R,+R2+R3), (4.15) 

where 

RI = 11 &Y(x,) - KY(xo) 11, R2= 11 KWo) - KWo) II> R3= II K Wo) -K Wn) 11 . 

(4.16) 

RI d L 11 W,> - yu(xo> 11 G CJ 11 xn -xo 11 

because Y is a Lipschitz operator and {K,} is uniformly bounded, and also 

& < ~4 11 Y(xo) - Y(x,) II < ClM II x, -xo II . 

Finally, 

R2 = O(PZ-~‘) 

by (4.6) using f(s) = Y(x,xo(s)). 

(4.17) 

(4.18) 

(4.19) 

Thus Vainikko’s theorem yields a unique solution ZX for IZ sufficiently large and (4.14) holds. 
Now (4.14) and (4.15) - (4.19) show that 

II &I -%I II =0(n-?, (4.20) 

where p is the minimum of 2r and the order of convergence of IJxo -x, II. We summerize the results 
obtained above in the following theorem: 

Theorem 4.1. Let x0 be an isolated solution of Eq. (2.3) and let x, be the solution of Eq. (2.9) in a 
neighborhood of x0. Moreover, let x”, be the solution of (4.10). Assume that 1 is not an eigenvalue 
of (KY)‘(xo). If x0 E WL, then 

11x0 - -Iznllcc = O(hP), 

where ,u = min{l,r}. If x0 E Wi (1 < p < co), then 

11x0 - %IIcc = O(h”)> 

where v = min{l - 1,~). 

5. Numerical examples 

In this section we present two numerical examples. Let k(s, t)=es-’ and Y(s,x(s))=cos (s+x(s)). 
The spline coefficients were obtained using a Newton-Raphson algorithm. Also, the Gauss-type 



348 H. Kaneko et al. IJournal of Computational and Applied Mathematics 80 (1997) 335.349 

Table 1 

Errors 

n Non-iterated Iterated 

2 0.153571593748756e - 1 0.286029074365e - 4 

3 0.71758714356116e - 2 0.47721991441e - 5 

4 0.41291276625525e - 2 0.14180649575e - 5 

5 0.26770046422053e - 2 0.5636996160e - 6 

Convergence rate ” 2 N 4 

Table 2 

Errors 

n Non-iterated Iterated 

2 0.157961272540103e - 1 0.24257900549439e - 2 

3 0.71150661058771e - 2 0.7663852778203e - 3 

4 0.41192622669880e - 2 0.3210258989686e - 3 

5 0.25982238843077e - 2 0.1770978040470e - 3 

Convergence rate z 2 z 3 

Table 3 

Errors 

n Non-iterated Iterated 

2 0.01540556116740788 0.005968844100471715 

3 0.00722550448387438 0.002566222099442683 

4 0.00416092487581254 0.001371170616411344 

5 0.00269785684908008 0.000835161756464808 

Convergence rate N 2 N 2.2 

quadrature algorithm described in [ 171 is used to calculate all integrations. The computed errors for 
the solution and the iterated solution are shown in Table 1. 

For the second example, let k(s, t) = log( 1s - tl) and Y(s,x(s)) = cos(s + x(s)). The computed 
errors for the solution and iterated solution of the weakly singular integral are shown in Table 2. 

For the third example, let k(s, t) = l/Jm, Y(s,x(s)) = cos(s + x(s)), and x(t) = cos(t). The 
computed errors for the solution and iterated solution of the weakly singular integral are shown in 
Table 3. 
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