The Strong Perfect Graph Conjecture for Pan-Free Graphs

Stephan Olariu
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_fac_pubs
Part of the Computer Sciences Commons, and the Mathematics Commons

Repository Citation

Olariu, Stephan, "The Strong Perfect Graph Conjecture for Pan-Free Graphs" (1989). Computer Science Faculty Publications. 110.
https://digitalcommons.odu.edu/computerscience_fac_pubs/110

Original Publication Citation

Olariu, S. (1989). The strong perfect graph conjecture for pan-free graphs. Journal of Combinatorial Theory, Series B, 47(2), 187-191. doi:10.1016/0095-8956(89)90019-1

The Strong Perfect Graph Conjecture for Pan-Free Graphs

Stephan Olariu
Department of Computer Science, Old Dominion University, Norfolk, Virginia 23508

Communicated by U. S. R. Murty
Received June 24, 1987

Abstract

A graph G is perfect if for every induced subgraph F of G, the chromatic number $\chi(F)$ equals the largest number $\omega(F)$ of pairwise adjacent vertices in F. Berge's famous Strong Perfect Graph Conjecture asserts that a graph G is perfect if and only if neither G nor its complement \bar{G} contains an odd chordless cycle of length at least five. Its resolution has eluded researchers for more than twenty years. We prove that the conjecture is true for a class of graphs which strictly contains the claw-free graphs. © 1989 Academic Press, Inc.

1. Introduction

In the early 1960 s, Claude Berge [1] proposed the study of perfect graphs: these are graphs G such that for every induced subgraph F of G the chromatic number $\chi(F)$ of F equals the largest number $\omega(F)$ of pairwise adjacent vertices in F. He conjectured that a graph G is perfect if and only if its complement \bar{G} is perfect. This conjecture was proved by Lovász [4] and is known as the Perfect Graph Theorem.

A graph G is called minimal imperfect if G itself is imperfect but every proper induced subgraph of G is perfect.

The only known minimal imperfect graphs are the odd chordless cycles of length at least five (also called odd holes) and their complements (termed odd anti-holes). Berge [2] conjectured that these are the only minimal imperfect graphs. This conjecture is the celebrated Strong Perfect Graph Conjecture (SPGC, for short) and it is still open.

We define a k-pan to be the graph obtained from a chordless cycle C_{k} ($k \geqslant 4$) and a vertex x outside the cycle, by joining x by an edge to precisely one vertex of the cycle (see Fig. 1).

Call a graph pan-free if it contains no induced subgraph isomorphic to

Figure 1
a k-pan $(k \geqslant 4)$. It is customary to refer to the graph with vertices a, b, c, d and edges $a b, b c, b d$ as the claw.

Trivially, claw-free graphs are also pan-free, but not conversely. Thus, the class of pan-free graphs strictly contains the class of claw-free graphs.

Parthasarathy and Ravindra [6] proved the SPGC for claw-free graphs. The purpose of this work is to prove that the SPGC holds true for pan-free graphs.

2. The Results

Vašek Chvátal [3] defined the notion of star-cutset: this is a non-empty set C of vertices of a graph G such that $G-C$ is disconnected and some vertex in C is adjacent to all the remaining vertices in C. Chvátal [3] also proved the following result. (Actually, similar results were proved by Olaru [5] and Tucker [7].)

The Star-Cutset Lemma. No minimal imperfect graph contains a starcutset.

As usual, we shall use minimal with respect to set inclusion, not size. Furthermore, we let the symbol N stand for neighbourhood: $N(w)$ denotes the set of all vertices of a graph G adjacent to w (we assume that adjacency is not reflexive, and so $w \notin N(w)) ; N^{\prime}(w)$ stands for the set of all the vertices adjacent to w in the complement \bar{G} of G.

We shall find it convenient to use the following simple properties:
(P1) Let G have at least three vertices. If neither G nor \bar{G} has a starcutset, then the neighbourhood $N(u)$ of every vertex u is a minimal cutset in G.
(P2) If a graph G contains a proper subset H of at least two vertices such that every vertex outside H is either adjacent to all the vertices in H
or to none of them, then G or \bar{G} has a star-cutset. (A set H with the property described above is often referred to as homogeneous.)
[P1) is immediate; (P2) is a restatement of Theorem 1 in Lovász [4]].
We are now ready to state our main result.

Theorem 1. The Strong Perfect Graph Conjecture holds true for panfree graphs.

Our proof of Theorem 1 relies on the following result which is of independent interest.

Theorem 2. Let G be a pan-free graph. At least one of the following statements is true.
(i) G or \bar{G} has a star-cutset,
(ii) G is claw-free.

To see that Theorem 2 implies Theorem 1, consider a pan-free minimal imperfect graph. Theorem 2, the Star-Cutset Lemma, and the Perfect Graph Theorem combined guarantee that G must be claw-free. Now the result of Parthasarathy and Ravindra [5] implies that G or \bar{G} is an odd hole.

Proof of Theorem 2. Let $G=(V, E)$ be a graph satisfying the hypothesis of Theorem 2. We only need to prove that if neither G nor its complement \bar{G} has a star-cutset, then G is claw-free.

For this purpose, we shall assume that G has at least three vertices, for otherwise there is nothing to prove. If G is a clique, then we are trivially done.

Now G is not a clique and hence there exists a cutset in G. Let C be a minimal cutset in G, and enumerate the connected components of $G-C$ as $V_{1}, V_{2}, \ldots, V_{t}(t \geqslant 2)$.
For further reference, we make the following simple observation whose justification is trivial.

Observation 1. For non-adjacent vertices v, w in C and for any choice of the subscript $j, 1 \leqslant j \leqslant t$, there exists a chordless path joining v and w and having all the internal vertices in V_{j}.

In addition, we shall rely on the following intermediate results which we present as facts.

Fact 1. For every component V_{j} and for every pair of distinct, nonadjacent vertices u, v in $V-\left(C \cup V_{j}\right), N(u) \cap N(v) \cap C$ is a clique in G.

Proof of Fact 1. Let V^{\prime} stand for $N(u) \cap N(v) \cap C$. We only need to derive a contradiction from the assumption that V^{\prime} is not a clique.

For this purpose, consider a component H with at least two vertices of the subgraph of \bar{G} induced by V^{\prime}. Since neither G nor \bar{G} has a star-cutset, H cannot be a homogeneous set. We find, therefore, a vertex w outside H, adjacent to some, but not all the vertices in H. By the connectedness of H in \bar{G}, we find vertices h, h^{\prime} in H that are non-adjacent in G, and such that $w h \in E$, $w h^{\prime} \notin E$. The desired contradiction will be achieved as soon as we prove that the vertex w cannot exist.

First, we note that w is distinct from both u and v and, by the definition of H, w is not in V^{\prime}.

Next, w is not in V_{j}, for otherwise $\left\{u, v, h, h^{\prime}, w\right\}$ would induce a k-pan with $k=4$.

Further, w is not in $V-\left(C \cup V_{j}\right)$. To see this, note that by Observation 1, there exists a chordless path P joining h and h^{\prime} and having all the internal vertices in V_{j}. If w were in $V-\left(C \cup V_{j}\right)$, then w would be adjacent to both u and v, for if not, then $P \cup\{w, z\}$ would induce a k-pan $(k \geqslant 4)$, with $z=u$ or $z=v$. However, now $\left\{h^{\prime}, h^{\prime \prime}, u, v, w\right\}$ induces a k-pan with $k=4$, for any neighbour $h^{\prime \prime}$ of h^{\prime} in V_{j}.

Finally, w is not in $C-V^{\prime}$. To see that this is the case, note that if w is in $C-V^{\prime}$, then w cannot be adjacent to both u and v (else w would be in V^{\prime}). If w is adjacent to neither u nor v, then $\left\{u, v, h, h^{\prime}, w\right\}$ induces a k-pan with $k=4$. Hence, w is adjacent to precisely one of the vertices u and v. We shall assume, without loss of generality, that w is adjacent to v. Observation 1 guarantees the existence of a chordless path P^{\prime} joining h^{\prime} and w and having all the internal vertices in V_{j}. Thus, $P^{\prime} \cup\{u, v\}$ induces a k-pan $(k \geqslant 4)$, a contradiction.

This completes the proof of Fact 1.

FACT 2. For every component V_{j}, and for every vertex v in C, $N(v) \cap\left(V-\left(C \cup V_{j}\right)\right)$ is a clique.

Proof of Fact 2. Let $V^{\prime \prime}$ stand for $N(v) \cap\left(V-\left(C \cup V_{j}\right)\right)$. We only need derive a contradiction from the assumption that $V^{\prime \prime}$ contains non-adjacent vertices.

For this purpose, let x and y be non-adjacent vertices in $V^{\prime \prime}$. We claim that
the intermediate vertices of all the paths in G joining x or y to a vertex in $C-N(v)$ contain v or a neighbour of v.

Suppose not; there exists a path

$$
P, \quad z=w_{0}, w_{1}, \ldots, w_{p}(p \geqslant 2)
$$

joining a vertex z in $\{x, y\}$ to some vertex w_{p} in C, and such that $w_{i} \notin\{v\} \cup N(v)$, for $i \geqslant 1$. Let P be the shortest path violating (1), and let $r(1 \leqslant r \leqslant p)$ be the first subscript such that $w_{r} \in C$.

Now Observation 1 guarantees the existence of a chordless path Q joining v and w_{r}, with all the internal vertices in V_{j}.

We note that Q together with $\left\{z, w_{1}, \ldots, w_{r-1}\right\}$ determines a chordless cycle Γ in G of length at least 4.

Let z^{\prime} stand for the vertex in $\{x, y\}$ distinct from z. If $r=1$, then $z^{\prime} w_{r} \in E$, for otherwise $Q \cup\left\{z, z^{\prime}\right\}$ induces a k-pan $(k \geqslant 4)$. But now, the vertices z, z^{\prime} contradict Fact 1.

We may, therefore, assume $r \geqslant 2$. Clearly, $z^{\prime} w_{r} \notin E$, for if not, then since $z w_{r} \notin E, Q \cup\left\{z, z^{\prime}\right\}$ induces a k-pan ($k \geqslant 4$), a contradiction.

Let $s(1 \leqslant s \leqslant r-1)$ be the first subscript for which $z^{\prime} w_{s} \in E$. Trivially, $\left\{v, v^{\prime}, z, w_{1}, \ldots, w_{s}, z^{\prime}\right\}$ induces a k-pan ($k \geqslant 4$), for any neighbour v^{\prime} of v in V_{j}. Therefore, z^{\prime} is adjacent to no vertex w_{i} with $0 \leqslant i \leqslant r$. However, now $\Gamma \cup\left\{z^{\prime}\right\}$ induces a k-pan $(k \geqslant 4)$, a contradiction.

Hence, (1) must hold, and so G has a star-cutset. This is the desired contradiction.

To complete the proof of Theorem 2, assume that G contains an induced claw with vertices a, b, c, d and edges $a b, b c, b d$. Since, by assumption, neither G nor \bar{G} has a star-cutset, property (P1) guarantees that the neighbourhood $N(a)$ of a is a minimal cutset in G. Now Fact 2 , with $C=N(a), V_{j}=\{a\}$ implies that $N(b) \cap N^{\prime}(a)$ is a clique, a contradiction.

Thus G is claw-free, as claimed.

References

1. C. Berge, Färbung von Graphen, deren sämtliche bzw. deren ungerade Kreise starr sind, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe (1961), 114-115.
2. C. Berge, Sur une conjecture relative au problème des codes optimaux, Comm. 13e Assemblée générale de l'URSI, Tokyo, 1962.
3. V. Chvátal, Star-cutsets and perfect graphs, J. Combin. Theory Ser. B 39 (1985) 189-199.
4. L. Lovász, Normal hypergrahs and the perfect graph conjecture, Discrete Math. 2 (1972), 253-267.
5. E. Olaru, Uber die Uberdeckung von Graphen mit Cliquen, Wiss. Z. Tech. Hochsch. Ilmenau 15 (1969), 115-120.
6. K. R. Parthasarathy and G. Ravindra, The strong perfect graph conjecture is true for $K_{1,3}$-free graphs, J. Combin. Theory Ser. B 21 (1976), 212-223.
7. A. Tucker, Critical perfect graphs and perfect 3-chromtic graphs, J. Combin. Theory Ser. B 23 (1977), 143-149.
