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AND

Hipeakl KANEKO

Department of Mathematics and Statistics, Old Dominion University,
Norfolk, Virginia 23529-0077

Submitted by Héléne Frankowska
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In a recent paper N. Mizoguchi and W. Takahashi gave a positive answer to
the conjecture of S. Reich concerning the existence of fixed points of multi-valued
mappings that satisfy a certain contractive condition. In this paper, we provide
an alternative and somewhat more straightforward proof for the theorem of Mizo-
guchi and Takahashi. Also the problems associated with fixed points of weakly
contractive multi-valued mappings are studied. Finally, we make a few comments
that improve other results from their paper (J. Math. Anal. Appl. 141 (1989),
177-|88). © 1995 Academic Press, Inc.

1. INTRODUCTION

Let (X, d) be a metric space. A subset K of X is called proximinal if,
for each x € X, there exists an element & € K such that d(x, k) = d(x, K),
where d(x, K) = inf{d(x, y) : y € K}. The family of all bounded proximinal
subsets of X is denoted by P(X). We denote the family of all nonempty
closed and bounded subsets of X by CB(X). A mapping ¢: X X X —
[0, =) is called compactly positive if inf{d(x, y):a = d(x, y) < b} > 0 for
each finite interval {a, b} C (0, »). A mapping T: X — CB(X) is called
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weakly contractive if there exists a compactly positive mapping ¢ such that
H(T(x), T(y) = d(x,y) — ¢(x,y)

for each x, y € X, where H denotes the Hausdortf metric on CB(X)
induced by d. We state below Lemma 1 of [6] for convenience.

LEMMA L.1. The following statements about a mapping T: X — P(X)
are equivalent:

(a) T is weakly contractive.

(b) H(T(x), T(y)) < h(x, y)d(x, y) for some nonnegative function h
that satisfies

supth(x,y):a=d(x,y)= b} <1

for each finite closed interval a, b] C (0, *).

(c) H(T(x), T(y)) = ¥ix, y), where b is such that d —  is com-
pactly positive.

Dugundji and Granas [4] proved that a single-valued weakly contractive
mapping of a complete metric space into itself has a unique fixed point.
Using the equivalent characterization (b) in Lemma 1.1 for the weakly
contractive mapping, Kaneko [6] gave a partial generalization (Theorem
1.3 below) of the theorem of Dugundji and Granas to the multi-valued
mappings. To the best of our knowledge, a complete generalization is not
yet available in the literature. The following two theorems were proved
in [6].

THEOREM 1.2. Let (X, d) be a complete metric space and T: X —
P(X). If a is a monotone increasing function such that 0 < a(t) < 1 for
each t € (0, ©) and if H(T(x), T(y)) = ald(x, y))d(x, y¥) for each x, y €
X, then T has a fixed point in X.

THEOREM 1.3. Let (X, d) be a complete metric space and T: X —
P(X) be such that

H(T(x), T(y)) = h(x, y)d(x, y)
for each x, y € X and for some nonnegative function h that satisfies

sup{h(x,y):a=dx,y) = b} <1
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for each finite closed interval {a, b] C (0, ®). Assume also that if (x,, y,)
€ X X X is such that lim,_,, d(x,, y,) = 0, then lim,_,. h(x,, vy,) = k for
some k € [0, 1). Then T has a fixed point in X.

Theorems 1.2 and 1.3 were investigated in response to a problem which
was put forth by Reich. Reich [9] proposed the following problem.

Conjecture 1.4. Let (X, d) be a complete metric space. Suppose that
T: X — CB(X) satisfies

H(T(x), T(y)) = k(d(x, y))d(x, y)

for all x, y € X, x # y, where &: (0, =) — [0, 1) and lim sup,,,: k(r) < |
for all 0 < t < =, Then T has a fixed point in X.

This conjecture has now been proven valid in an almost complete form
by Mizoguchi and Takahashi [7]. They replaced the condition on k& by the
following stronger condition:

lim sup &(r) < 1 forallQ =t <o, (M-T)

r‘—»lJr

In this paper, we reaffirm this positive response by Mizoguchi and
Takahashi to the conjecture of Reich by giving an alternative proof. This
will be done in Theorem 2.1. The proofis, in our opinion, more straightfor-
ward and more succinct than the one used by Mizoguchi and Takahashi.
The argument of Mizoguchi and Takahashi is, however, used to prove
Theorem 2.2 concerning the fixed point of weakly contractive multi-
valued mappings. This theorem generalizes Theorem 1.3 by allowing T
to take values in CB(X). Finally, we make some comments and observa-
tions in Section 3 that improve certain results of [7].

2. GENERALIZED CONTRACTIVE MULTI-VALUED MAPPINGS

The proof of Theorem 2.1 below is inspired by the paper of Nadler [8]
in which the classical Banach contraction principle was extended to hold
in the setting of multi-valued mappings. Theorem 2.1 is Theorem 5 of
Mizoguchi and Takahashi [7]. The proof is quite different.

THEOREM 2.1. Let (X, d) be a complete metric space and T: X —
CB(X). If a is a function of (0, x) to [0, 1) such that lim sup,_,,+ a(r) < 1
for every t € [0, ) and if
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H(T(x), T(y)) = ald(x, y))d(x, y)
for each x,y € X, then T has a fixed point in X.
Proof. Letx, € X and x, € T(x,). Select a positive integer n, such that
a"(d(xg, x;)) < {1 — ald(xq, x;D}dlxq, x;).

We may select x, € T(x,), using the definition of the Hausdorff metric,
so that

d(x2 ’ xl) = H(T(x1)9 T(Xo)) + anl(d(X(), x,)).
We then have
d(x,, x;) = aldx;, x))d(x;, xg) + a™(d(xg, x;)) < d(x;, xq).

Now choose a positive integer n, > n, so that a™(d(x;, x)) <
{1 — ald(x,, x N}d(x,, x;). Since T(x;) € CB(X), select x; € T(x,)
so that d(x;, x,) = H(T(x;), T(x,)) + a™d(x,, x;)). Then we have

d(xy, x) = H(T(x,), T(x,)) + a™(d(x;, x|))
= a(d(xz s xl))d(xz N x,) + a"2(d(x2 s xl))
< d(x;, xy).

Repeating this process, since T(x;) & CB(X) for each &k, we may select a
positive integer n, such that

a™(d(xy, x,- ) < {1 — ald(x;, X, D}dxy, x4 ).
Now select x;,, € T(x,) so that
dxpep, ) = H(T(x), T(x ) + a™(d(x,, x;_p)).

Then d(x,,, x,) < d(x;, x,_,) so that d, = d(x,, x,_,) is a monotone
nonincreasing sequence of nonnegative numbers.
We now show that the sequence {d,} so generated is Cauchy.
Letlim,_,.d, = ¢ = 0. By assumption, lim sup,_, .+ a(t) < 1. Hence there
is k, such that k = k, implies that a(d,;) < h, where lim sup,_, .+ a(t) < h < 1.
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Now
dyy = d(xgiy, Xy)
= H(T(x), T(x,_)) + a™dy)
= a(dk)dk + a"k(dk)
= aldy)ald_)d -, + ald)a™1(d,_,) + a"(d,)

& k-1

= H ald)d, + > H ald)a(d,,) + a"(d,)

i= m=1i=m+1

>~

k

H old)d, + E [I  adamd,)+ad)=A

i=1 m=1 i=max{kg,m+1}

In the last inequality, we have taken advantage of the fact that a < 1
to delete some a factors from the product. We now focus on the sum
of products,

k-1 k ko1
> [T ad)a(d,) = (ky— DRF5 S amn(d,,)
m=1 i=max{kg.m+1} m=1

k=1
+ > - matn(d,,)
m=ky
k-1 k=1
< (ko — l)hk~k0+l 2 a™(d,) + Z pr-m+n,
m=]

m=ky

k—~1
=Ch* + Y h"

m=kg
< Chk + hk+"ko_ko + hk+nku_l—(ko—l)

4o+ hk+"k—l_(k_]j
k+ny_—(k=1)

=Ch+ Y h”

m=k+nk0—k0

ktn, —kgtt _ phk+n,_ —k+2

et ) Rkt
1-h

e ~kott

— ChE k
Ch* + o ——

= Ch* +

= Cht,
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where C is a generic positive constant. Now we can continue our inequal-
ities,

&
A =[] a(d)d, + CH + a”(d))
i=1
k-1
< Wbt T ald)dy + CHE + i
i=1
< Ch* + CH + W
= CH,

C again being a generic constant. Now it is easy to show in the usual way
that {x,} is Cauchy. For k = k,, m € N,

d(xk’ 'xk+m) = d(xk’ xk+l) Foee Tt d('xlﬁ-m—l’ xk+m)

k+m

:zd,

i=k+1
k+m
< Z Chi—l
i=k+1
hk+l - hk+m
=0T
= ht,

which tends to zero as k — =. Let x, — x € X; then

dix, T(x)) = d(x, x;) + dlx;, T(x))
=dx, x) + H(T(x;_,), T(x))
= d(x, x) + ald(xi_,, x))d(x,_;, x).

Since both terms in the last expression tend to zero as k — =, we obtain
x€Tx). |

COROLLARY 2.2. Let (X, d) be a complete metric space and T: X —
CB(X). If a is a monotone increasing function such that 0 < alt) <1 for
each t € (0, <) and if

H(T(x), T(y) = ald(x, y))d(x, y)

for each x, y € X, then T has a fixed point in X.
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Corollary 2.2 above generalizes Theorem 1.2 by extending the range of
T from P(X) to CB(X). Now we make the same generalization to Theorem
1.3 by extending the range of 7. It is remarked that in order to prove
Theorem 1.3, we have used condition (b) of Lemma 1.1. In Theorem 2.3
below, we shall use the original definition of the weak contractiveness.

THEOREM 2.3. Let (X, d) be a complete metric space and T: X —
CB(X) weakly contractive. Assume that

lim infﬁ"‘—ﬁ’—@w 0<a=p),

-0

where N, B) = inf{d(x, y) | x, y € X, a = d(x, y) = B} for each finite
interval [a, B] C (0, =). Then T has a fixed point in X.

Proof. Select x;, € X and let 1, = d(x,, T(x;). If t;, > 0, let
T, = A1, 24;)/21,. Note that T, = 1, and since ¢ is compactly positive,
T, > 0. Now select ¢, such that 0 < g; < min{T,/(1 — T,), 1}. Select
x, € T(x,) such that d(x,, x,) < (1 + g)d(x,, T(x;)). Note that d(x,,
T(xy)) = H(T(x)), T(x,)) = d(x, x5) — ¢(x;, x,), and

dx;, T(x))) — dx;, T(x3))

1
=17 Py d(x,, x;) —{d(x,, x;) — $(x;, x,)}
= I _ _ dlx), x;)
1 A1y, 2
= T sld(xl,xz) - {1 ——LL'Z—;IJQ}d(x,,xz)

1
= {l .y - (1- T,)} d(xy, x3).

By the assumption on g, we see that 1/(1 + &) — (1 — T;) > 0.
Now let £, = d(x,, T(xy)). If t, > 0, put T, = \(¢,, 2 1,)/3 t,. From (¥),
t, — t, > 0, so that #,/t, > 1. Select &, such that 0 < &, < min{T,/
(1 = T,), /1, ~ 1, §}. Next, find x; € T(x,) such that d(x,, x;) = (1 +
&,)d(x,, T(x;)). As before, d(x,, T(x,)) — d(x;, T(x;)) = {l/(1 + &) —
(1 ~ To)}d(x,, x3). In general, if 1, > Q0 for i = 1, ..., n, let ¢, = d(,,
T(x,)) and T, = \t,, ((n + 1)/n) t,)/{(n + 1)/n) t,. Select g, such that
0 < e, < mn{T,/(1 - T,), (t,.,/t,) — 1, 1/n} and pick x,,, € T(x,) so
that d(x,, x,.) = (1 + g,)d(x,, T(x,)). We then have
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d(x,,, T(x,.)) - d(an ' T(-xn+l)) = { - (l - Tn)} d(xn ’ -xn+l)'

1+e¢,

If 1, = 0 for any n, then we are through. If ¢, > 0 for all n, then by
hypothesis, lim inf,7,, > 0 and we have lim sup,(1 — T,) < 1 so that for
some b > 0,

dix,, T(x,)) = d(x,.1, T(x,41)) = bd(x,, x,1)

for all sufficiently large n. Since {¢,} is a monotone decreasing sequence
of positive numbers, it converges. Now

m—1
d(x,, x,) < Z d(x;, x;.y)
=4 S ds, T05) = dln, 5. )
=3 {d(x,,' T(x,) — d(x,, T(x, N}

t,—t,)—0 asn, m—» o,

S| -

Hence {x,} is a Cauchy sequence. Let x, — x* € X. Then
H(T(x,), T(x*)) < d(x,, x*) — ¢(x,, x*) = d(x,, x*).

By Lemma 2 of Assad and Kirk [1], we conclude that x* € T(x*); thus
T has a fixed point in X. |

We note that the condition on A taken in Theorem 2.3 above, namely

llmmf B)>0

A—0
is weaker than the following condition assumed on the function A:

lim h(x,,y,) = kfor some k € [0, 1) whenever lim,_,,. d(x,,y,) = 0

This can be verified easily or the reader can find an argument in Corollary
2 of [6].
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3. COMMENTS ON THE PAPER OF MizOGUCHI AND TAKAHASHI

As was stated in Section 2, Mizoguchi and Takahashi [7] gave a positive
answer to the conjecture of Reich [9]. In addition to this result, the paper
of Mizoguchi and Takahashi contains numerous other interesting theo-
rems. The purpose of this section is twofold. First Theorem 1 of [7] will
be used to establish a fixed point theorem for generalized contractions,
This will be done in Theorem 3.3 below, Theorem 3.3 generalizes the fixed
point theorem (Corollary 1.1) of Kaneko [5]. Second, we shall improve
Theorem 3 of [7] by relaxing its hypotheses. This will be done in Theorem
3.5. We now state Theorems 1 and 3 of [7] for convenience.

THEOREM 3.1. (Mizoguchi and Takahashi). Let (X, d) be a complete
metric space and let T be a mapping of X into the family of nonempty
subsets of X such that for each x € X there exists y € T(x) satisfying

Y(y) +dx,y) = (x),

where Y is a proper (i.e., not identically equal to +=) bounded below and
lower semicontinuous function of X into (—«, +x]. Then T has a fixed
point in X.

As the authors note in [7], this theorem is a direct consequence of
Caristi’s fixed point theorem [3]. Let g: X — X and let F(g) denote the
set of fixed points of g. We recall that g is called quasi-nonexpansive if
dig(x), y) = d(x, y) for all x € X and y € F(g). Also for a multi-valued
mapping T defined on X and for a single-valued mapping g, g and T are
said to commute if g(T(x)) C T(g(x)) for all x € X. Finally, T is called -
contractive if there exists k € [0, 1) such that H(T(x), T(y)) = kd(x, y)
foreach x, y € X.

THEOREM 3.2 (Mizoguchi and Takahashi). Let K be a closed convex
subset of a uniformly convex Banach space, let g be a quasi-nonexpansive
mapping of K into itself and let T be a k-contractive mapping of K into
CB(K) such that T(x) is convex for each x € K. If g and T commute,
then there exists z € K with g(z) = z € T(2).

We are now in a position to prove our first theorem in this section.

THEOREM 3.3. Let (X, d) be a complete metric space and T: X —
CB(X) be such that

H(T(x), T(y)) = k max{d(x, y), d(x, T(x)), d(y, T(y)),
3d(x, T(y)) + d(y, TGD]}
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for0=k <1, forallx,y € X. If x — d(x, T(x}) is lower semicontinuous,
then there exists z € X such that z € T(2).

Proof. Let x € X and € > 0. Here we choose ¢ so small that 1/(1 +
€) > k. Lety € T(x) so that d(x, y) = (1 + €)d(x, T(x)). Then

d(y, T(y)) = H(T(x), T(y))
=< k max{d(x, y), d(x, T(x)), d(y, T(¥)),
3d(x, T(y) + d(y, TO)1}
= k max{d(x, y), d(x, T(x)), } d(x, T(y))}.

We need to examine the following three cases. First, suppose that

d(x,y) = max{d(x, y), d(x, T(x)), } d(x, T(y))}.
Then
d(x, T(x)) — d(y, T(y)) = d(x, T(x)) ~ kd(x, y)

1
= <1—+—8 -~ k> d(x, y).

Second, suppose that
d(x, T(x)) = max{d(x, ), dx, T(x)), $ d(x, T(y))}.
Then
d(x, T(x)) — d(y, T(y)) = d(x, T(x)) — kd(x, T(x))
= (1 = k)d(x, T(x))

11—k
=
I+e

d(x, y).
Third, for the final case, suppose that
1dx, T(y)) = max{d(x, y), d(x, T(x)), $ d(x, T(y)}.
Then, since d(y, T(y)) = (ki2){d(x, y) + d(y, T(y)},

k
2—k

i k
Z(l T e 2—k) d(x, y).

d(x, T(x)) — d(y, T(y)) = d(x, T(x)) — d(x,y)
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Considering these three cases, we conclude that

dix, T(x)) — d(y, T(y)) = (Ti_é - k) d(x,y).

Now define y(x) = (1/(1 + &) — k)" 'd(x, T(x)). Then using Theorem 3.1
above, we are guaranteed of an element z € X such that z € T(z). 1

A slight generalization of Theorem 3.3 can be made in the following
way. Here we denote the family of non-empty bounded subsets of X by
B(X). A proof is left to the reader.

THEOREM 3.4. Let (X, d) be a complete metric space and let T: X —
B(X) be such that

H(T(x), T(y)) = k max{d(x, y), d(x, T(x)),
d(y, T(y)), ald(x, T(y)) + d(y, T(x))]}

forall x,y € X, where 0 = k < 1 and 0 < a < 1/(2k + 8) for some & >
0. If x — d(x, T(x)) is lower semicontinuous on X, then T has a fixed point
in X.

Now we shift our attention to Theorem 3.2. In the next theorem, we
improve the result of Theorem 3.2 by dropping the convexity of the sets
K and T(x) and the uniform convexity of X from the hypotheses. We let
F(g) denote the fixed point set of g and P,(x) = {y € A| |x — y| = inf,c,
|x — 2|} with A C X.

THEOREM 3.5. Let X be a Banach space and K C X a nonempty closed
subset. Let g: K — K be quasi-nonexpansive and let T: K — CB(K) be
a k-contractive mapping. Suppose that g and T commute on F(g). Then
g maps Py, \(x) into itself. Suppose, further, that for each x € X, P (x)
is nonempty and that g: Py, (x) — Py, (x) possesses a fixed point. Then
there exists z € K with g(z) = z € T(2).

Proof. As in[7], since g is quasi-nonexpansive, F(g) is closed. Since
K is closed, Py,(x) is closed and by hypothesis it is nonempty. If y €
Pr(x) C T(x), then g(y) € g(T(x)) C T(g(x)) = T(x) for x € F(g) and,
hence, g: Py (x) = T(x). But for x € F(g), |lg(y) — x| = |y — x|, since
g is quasi-nonexpansive and since y € P (x), we also have g(y) €
Pr(x). This proves that g: Py, (x) = Pry(x). If g possesses a fixed point,
say y € Prp(x), then F(g) N Pp,y(x) # . This obviously implies that
T(x) N F(g) + D with T(x) = {y € T() | d(x, y) = (1 + e)d(x, T(x))}
and, hence, by applying Lemma 2 of [1], we conclude that there exists
z € Kwithg(z) =z € T). |
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In Theorem 3.2, since T(x) is convex for each x € X, it is easy to verify
that the set Py, (x) is also convex. Hence the assumption that g: Py,(x) —
Pry(x) has a fixed point is guaranteed by Theorem 1 of Browder [2].
Theorem 3.5 is thus a generalization of Theorem 3.2. Some related results
will be included in the ensuing corollaries.

CoROLLARY 3.6. Let X, K, g, and T be as in Theorem 3.5 and suppose
that T(x) is compact and convex for each x € K. Suppose, further, that
g is continuous. Then there exists 7z € K with g(z) = z € T(2).

Proof. Inthis case, Py, (x) is compact and g: P, (x) = Py, (x), beinga
continuous mapping, has a fixed point by the classical Schauder’s theorem.
Hence, Py, (x) N F(g) # <. Again by applying Lemma 2 of [1], we
conclude that there exists z € K with g(z) = z € T(2).

CoRroLLARY 3.7. Let X, K, g, and T be as in Theorem 3.5 and suppose
Sfurther that T(x) is proximinal for each x € F(g) and that g: K — K is
a k-contraction mapping. Then there exists z € K with g(z) = z € T(2).

Proof. Since g is a k-contraction, F(g) = {z} is nonempty and a
singleton by the Banach contraction principle. Since T(x) is proximinal,
it is closed and Py,(x) is closed and nonempty, and it is thus a complete
metric space. As in the proof of Theorem 3.5, g: Py, (x) = Py, (x) and,
again, by the Banach contraction principle, z € Py, (x). Hence, Pr,(x)
N F(g) #+ @ forall x € F(g). Thus g(z) = z € T(2). |
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