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Unbounded Functions and Positive Linear Operators 

J. J.SWETITS 

Department of Mathematics. 
Old Dominion University, 
Norfolk, Virginia 23508 

AND 

B. WOOD 

Department of Marhematics, 
University of Arizona, 

Tucson, Arizona 85721 

Communicated by Oued Shisha 

Received May 9. 1977 

The approximation of unbounded functions by positive linear operators under 
multiplier enlargement is investigated. It is shown that a very wide class of positive 
linear operators can be used to approximate functions with arbitrary growth on the 
real line. Estimates are given in terms of the usual quantities which appear in the 
Shisha-Mond theorem. Examples are provided. 

1. INTRODUCTION 

In recent years there has been a great amount of research concerning the 
approximation of unbounded functions by means of positive linear operators. 
In particular, we cite works of Hsu [7, 81, Hsu and Wang [9], Walk [19], 
Miiller and Walk [ 141, Eisenberg and Wood [4, 51, Ditzian [3], and Rathore 
1151. 

In the papers [4,5, 7,8,9], the technique of multiplier enlargement was 
employed. Let {Ln} be a sequence of linear operators mapping Cl-a, u) to 
C[-6, b] such that L, is positive on [-b, b], or mapping C[O, a] to C[O, b] 
such that L, is positive on [0,6], where 0 < b < a. Let (a,} be a sequence of 
positive numbers which is strictly increasing to infinity. ForfE C(-00, co) 
and x E (-co, co), or f6Z C[O, co] and x E [0, co], the sequence (L,} takes 
the form L,(f(a,t), x/a,) and this modified operator is positive for all n so 
large that Ix/a,] < b. 

In the papers cited above, convergence results for unbounded functions 
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were obtained under the assumption that the functions satisfied some growth 
condition (e.g., exponential type). An exception to this was noted by Hsu 
181. Let H,(f; .x) be the Hermite-Fejir interpolatory polynomial of degree 
<2n - 1. Then 

ffnu xl = T7 f(XkJ(l - xX,.,( 
k:l 

(1.1) 

where xkn = cos((2k - 1)/2n) x, k = 1, 2 ,..., n, are the zeros of the 
Tschebycheff polynomial T,,(x). Hsu showed that, for anyfE C(-co, co). 

,‘i”, H,, (fW; ;) =f(x) 

uniformly on compact subsets of (-co, co), provided that (a,} was properly 
chosen. An estimate for the rate of convergence was obtained by Eisenberg 
and Wood [5]. 

In [8], Hsu pointed out that, for the Bernstein polynomials and the 
Landau polynomials, convergence properties have been established only for 
certain classes of functions with restricted orders of growth along the real 
axis. He then stated that perhaps the Hermite-Fejer polynomials may be the 
most suitable ones that can be conveniently modified so as to approximate 
arbitrary non-bounded, continuous functions on (-co, co). In this paper we 
show that such is not the case. We prove, in Section 2, that a very broad 
class of positive linear operators can be modified by multiplier enlargement 
so as to approximate any function which is continuous on (-0~). co). 
Examples are given in Section 3. 

2. MAINRESULT 

In the sequel let ek(x) = xk, k = 0, 1, 2,.... We note the following. As a 
consequence of the Riesz representation theorem, if {L, } is a sequence of 
positive linear operator mapping C[a, b] to C[c, d], where (c,d] G [a, 61, 
then, for each n, L,(f(t), x) involves values of f(t) only for t E [a, b]. This 
fact insures that, if f is continuous on (-co, co), then the restriction off to 
[a, b] is continuous and the growth rate off is not a factor in determining 
whether or not L,Jf) exists for each n. Specific examples of such operators 
are the Bernstein polynomials, the Hermite-Fejer polynomials and the 
variation-diminishing splines of Marsden and Schoenberg [ 12, 13, 41. 

We shall have need of the following lemmas. 

LEMMA 2.1 (compare with [ 5 1). Let (a,, } be a positive sequence, strictly* 
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increasing to co. Let 0 and its derivative, R’, be positive, increasing 
functions on [0, a]. If p > 1 and g(x) = [l?(a,~-ul)l” for x E [-a, a], then 

u(g, h) < ha,p[Q(a,a>lP-’ Q’(a,a). 

Here w( g, h) denotes the modulus of continuity of g on [-a, a] and 
O<h<a. 

Proof. Since RP(x) is convex, it follows that for g(x) = Qp(ajxl). 
1.~1 < a, 

u( g, h) = RP(aa) - RP(a(a - h)) 

= ahpaP-‘@ Q’(c), 

where a(a - h) ,< [ < aa. Since R and 0’ are increasing, it follows that 

w( g, h) < ahpap-‘(aa) R’(aa). 

b3tMA 2.2. Let IL,,} be a sequence of linear operators that map 
C[-a, a] to C[-b, b], 0 < b < a, such that, for each n, L, is positive on 
[-b, b]. Let l2 and its derivative, R’, be positive, increasing functions on 
[0, co 1, and let (a,} be a positive sequence, strictly increasing to 03. Let 
--cx,<a,<x</?<+~andchooseNsothatx/a,~[-b,b]foranyn>N 
and for all x E [a, p]. If p > 1 and if n > N, then 

Ln(QP(a,Ifl), x/a,) < Qp(14)(1 + IIL,W - 1 II) 

+ Wnh)ll + l)lll,a,p~P-‘(a,a)R’(a,a), 

where ,u: = max (L,((t - y)‘, ~1): -b ,<J < b) and the norms are sup norms 
over [-6, b]. 

ProoJ Let g,(t) = RP(an I tl) and let n > N. Since g,,(t) E C[-a, a], 
x/a, E [-6, b], and L, is positive on [-b, b], we can apply the theorem of 
Shisha and Mond [ 161 to obtain 

where CO( g,, .) is the modulus of continuity of g, over [-a, a]. From 
Lemma 2.1, 

u(gn,iUn)~<rUnanpnP-‘(a,a)n’(a,a). 

The proof of the lemma is completed by observing that g,(x/a,) = ap(lxl). 
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We can now establish our main result. 

THEOREM 2.3. Let f E C(-co, co) and let Q, and its derivative, R’, be 
positive increasing functions on [0, co). Let p > 1 and l/p + l/p’ = 1. 
Assume f(t) = O(Q(ltl)ltl”p’ + t’) (ItI --$ co), and let {a,} be a positive 
sequence, strictly increasing to 00. Let {L, } be a sequence of linear operators 
from C[-a, a] to C[-b, b], 0 < b < a, such that L, is positive on [-b, b]. 
Let 6 > 0, --a~ < a - 6 < a < x < p < p + 6 < 00, and choose N so large 
that x/a, e[-b, b]. Then, for x E [a,P] and n > N, 

+ (wJ2 ( $F + y) + IIS II . IIWJ - III 

C,M”P’ 
+ g2lP’ (w,)2’p’ P(lxlMl + IlLk$ - 1 II) 

+ (llL&,Il+ l)iu,a,pRP-‘(a,a)R’(a,a)J’.‘P, 

where ws(f, +) denotes the modulus of continuity off over [a - 6, /3 - 61, 
IIUed - 1 II and IIL(edll are uniform norms over [-6, b], ]( f (I is the 
untform norm over [a, /?I, C,, Cz are positive constants which depend on!, 
on f and A4 is a positive constant which depends onL\l on 6, a and p. 

Proof. Minor modifications to Theorem 2 of [ 15, p. 1021, yield 

1 i L, f(a,t)lc -f(x) 
) I n 

< wa(A wb)(ll~n(eoIl + 1) 

+ (w42 ( 9 + y) + Il./II . lILAed - 1 II 

+ * (anpn)2’p’ (L, (DP(a,]t]), :)) I”. 
n 

Applying Lemma 2.2 to L,(Qp(a,, 1 tl), x/a,) yields the result. 

Remarks 1. Our estimate does not require that one evaluate or find an 
upper bound for L,(fip, x). Rather, one only needs the usual quantities 
11 L,(e,)]] , (1 L,(e,) - 1 (I and L,((t - x)‘, x), as in the Shisha-Mond theorem 
[16]. Compare with [3,4, 14, 151. 
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Remark 2. The theorem is easily modified in case fE C[O, 00) and 
0 < a < /I < co. See Section 3. 

Remarks 3. Let exp, x = ex and exp, x = exp(exp,-, x), k = 2,3,4 ,..., 
and let In, n = In n, In, n = ln(ln,-, n), K = 2, 3 ,.... If G(t) = exp,t and 
%=‘%+I n for same K, then n(an) = In n and n’(an) = (In, n) (In, n) ... 
(In, n) Q (In n)“. If ,u~ = 0(~~) for same r > 0, then our estimate has the 
simpler form 

where p’ > 1 and Ai, i = 1, 2,3,4, are constants. 

Remarks 4. The multiplier enlargement process worsens the degree of 
approximation somewhat, i.e., pn in the Shisha-Mond theorem [ 16 ] becomes 
(x,,,u~, in Theorem 2.3. Note the example in Section 3. 

Remarks 5. Suppose (K,} is a sequence of linear operators from C[c, d] 
to C[c + II, d - ~1, 0 < 9 < (d - c)/2, such that K, is positive on [c + v, 
d-v]. Let g be the linear map from [-I, l] onto [c + q, d- q]. g-’ then 
maps [c, d] onto [(c - d)/(d - c - 29), (d - c)/(d - c - 2~)]. Thus, if 
fE C[ (c - d)/(d - c - 2r,r), (d - c)/(d - c - 2r7)], the sequence, (L,}, where, 
for yE [-1, 11, 

LW)~ Y) = K,,(f(g-‘(t), d?,))). 

is positive on [-1, I]. Theorem 2.3 can be applied to (L,}. 

3. APPLICATIONS 

3.1. Variation Diminishing Splines 

Let n > 1, m > 2 be integers and 1 = m + n - 2. Let Nj(x), j = 0, l,..., 1, be 
the functions defined by Marsden and Schoenberg [ 13, p. 661, and let rj be 
the nodes defined by [ 13, p. 661. With a function f(t) defined on [0, I], 
associate the B-splines 

S,,,(J X) = " f(tj) Nj(x)q 
,z 

(3.1) 

where 0 <x < 1, having knots x0 = 0, x, = l/n ,..., x, = 1, and degree m - 1 
(see [13, p. 68)). A s noted in [ 131, the operators (3.1) are positive on [0, 1 I. 
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Let p;(x) = S,,,((t -x)‘;x). We shall need the following result, which 
combines Lemma 3, relation (4.13) and relation (2.4) of [ 131. 

LEMMA 3.1. (i) Sm,n(eO; x) = 1. 0 <.Y < 1; 

(ii) if 3 < m < n + 2, then ,uf < ~.O<x<l: 

(iii) if m > n + 2. then ,u f < ’ 
4(m - 2) 

, O<x< 1: and 

(iv) ifm=2, then,u:<&. O<x< 1. 

THEOREM 3.2. Let l/p + l/p’ = 1, where p > 1. Let 0 < u <x </I < co 
and f E C[O, a~]. Let k be a positive integer such that f(x) = 0 
(exp,(x) x2jp’ +x2),x+00. ChooseJsuch thatxE (O,ln,+,JJ. LetJ>Obe 
such that 0 < a - 6. Let a, = In,+,(f) Then: 

(i) if3<m<n+2andl>J. 

(3.2) 

as I+ co, where /If I( and the constants have the same meaning as in 
Theorem 2.3 and os(f, .) is the modulus of continuity off over [a - S, 
B + 4 = (0, a). 

(ii) ifm > n + 2 and 1 >J, then (ln(l)/n) (m/12)“’ in (3.2) is replaced 
by ln(l)/( 2(m - 2) I”); 

(iii) if m = 2 and I >.I, then (ln(l)/n) (m/12)“2 in (3.2) is replaced bl 
ln(1)/2n. 

Proof. Use Lemma 3.1, Theorem 2.3 and Remark 2. 
Theorem 3.2 improves Theorem 4.5 of [4). which was stated for 

f(x) = O(exp(x)). For the choice n = 1, we obtain an estimate for the 
Bernstein polynomial of degree m - 1 under multiplier enlargement. In this 
particular case, Theorem 3.2 improves Chlodovsky’s result [ 11, p. 361, which 
was established for f (x) = O(exp(x)). 
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3.2. Convolution Operators 

Let o(x) be non-negative, even and Lebesgue integrable on [-1, I]. 
Assume w  is bounded and bounded away from 0, on closed subintervals of 
(-1, 1). Let {Q,(x)} be the sequence of orthonormal polynomials on [-I, l] 
corresponding to w(x). Let x,,?,, and x~,?~ be the two smallest positive zeros 
of QJx). Define the sequence of polynomials, (A,(t)}. by 

A”(l) = c, ( 
Q,,(t) 

(t2 - xf.?“)(t? -x:.,,, I2 ’ n = 1, 2,.... 

where C,I is chosen so that l\, A,(t) dt = 1. Define the sequence of operators 
kf,L by 

A,df;x) =Jf-/f,2f(t)In(t -x) dt. Then (A,} is a sequence of positive 
linear operators from C[-l/2, l/2] to C[-v, ~1, where 0 < q < f. 

In [2, p. 183 J (see also [ 11). it is shown that there are absolute constants 
a03 a,, a, such that 

Ilei -~n(ei)llt-r?.rt~ <dnJ3 i=O, 1 (3.3) 

and 

Pt, = IlA,((t - 4’; x)Il-,,,, ,< az/nz. 

Furthermore, I]n,,(e,)]],-,,,, < 1 for n = 1,2,.... The operators A, provide an 
optimal order of approximation to function in Cl-q, q] by means of linear. 
positive, algebraic polynomial operators [2, Chap. 61. 

Combining (3.3), (3.4) and Theorem 2.3, we have 

THEOREM 3.3. Let f E C(-00, 00) and let k be a positive integer and 
p’ > 1 such thatf(x)=O (exp, (kl/xIZip’ +x2), IxI+ co. Let a,=ln,+,(n). 
Let a ,< x ,< /3 and let 6, v be positive numbers with 0 < ty < f. Choose N such 
that x E [-qa,b,, rla,V]. Then, if {A,,} is the sequence of operators deJined 
aboce and f n > N, we haoe 

+ llfll 2 + 
C,(f) M’@ in(n) 

J2ip! (-+y. O(l), 
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as n- co, where a,,, a2 are from (3.3) and (3.4) and cog, 11 f 1) and the 
remaining constants are as in Theorem 2.3. 

In Theorem 3.3, if 1 < p’ < 2, then the rate of convergence is governed by 
l/n’-’ for any E, O<a<l. In the case of IA,(f(t);x)-f(x)(, where 

f E C[-l/2, l/2] and x E [-q, ~1, the rate of convergence is governed by 
l/n. In view of the fact that (A,(f (t); x)} is optimal on [-11, ~1, the estimate 
given by Theorem 3.3 is possibly the best that can be obtained for positive. 
polynomial operators under multiplier enlargement. 

3.3. An Optimal Discrete Polynomial Operaior 

Let (Q,(t)} denote the sequence of orthonormal Legendre polynomials on 
I-1, 1) with weight function W(X) = 1. If P,(t) = Q,(2t - l), then {P,(t)) is 
orthonormal on [0, 1 ] with weight function o(x) = 2. Let 0 < x,,, < 

xl,n < -0. < X,,” < 1 be the zeros of P,(t). Let y,.*,, and j’2,2n be the two 
smallest positive zeros of Q*,(t). Let R,(t) be defined by 

( Qzn(f) 
1 

2 

R,(t) = c, 
Cl2 -JL,,)(~2 -Ji,,,, ’ 

n = 1. 2,..., 

where C, is chosen so that 

1.’ R,,(r) dt = 1. (3.5) 
I 

For each n = 1, 2 ,..., let Ak,?,, , k = 1, 2 ,..., 2n, be the Cotes numbers which 
arise in the Gauss quadrature formula applied to (0, l] and based on the 
zeros of Z’Jt). Let pkaZn, k = - n, -n + l,..., -1, 1, 2 ,..., n, be the Cotes 
numbers which arise in the Gauss quadrature formula applied to [-1, 1 ] and 
based on the zeros of QJt) (see, e.g., [ 18, p. 47)). 

For each n = 1. 2,.... define the operator K, by 

K,,(f(f); xl = f \‘ f(x,.zn) ~,c.~nRA-~~.~n -dy). 
k:l 

(3.6) 

K, is a positive linear operator from C[O. l] to C[q, 1 - ~1, 0 < r] < 4. In 
] 171, it is shown that the sequence, (K,}, is optimal in the sense of DeVore 
[ 2, Chap. 61. Specifically, there are absolute constants, a,, a, and oz. such 
that 

and 

llK,(eJ - eillt,.,--I?, < ai/nJ, i = 0, 1, n = 1, 2... . . (3.7) 

,ui = IIK,((t - -xl’; x)ll,,,. , --rll < a2/n2. n = 1, 2,.... (3.8) 
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In addition, jlK,Je,,)ll < 1 for n = 1, 2 ,.... We also note that the constant C, 
defined by (3.5) is given by 

1 2 

c,= j-r2 Pj,2nPj3 

jt0 

where pi denotes the value of (Q2,(t)/(t2 -r:,z,)(t2 --J>;.~,,))’ at yj,?,,. 

THEOREM 3.4. Let 6, q be positive numbers with 0 < 9 < j. Let 
f E C(-co, 00) and choose a positive integer k and p’ > 1 such that f (x) = 0 
(exp,Ix11x(2’p’ +x. Let a, = In,,, (n). Let --03 < a < x < p < co. Choose N 
so that x E [-a,V, czy]. For the operators, K, , defined by (3.6) we have 

+ 2W) dG 22 
( (l-h)n 1 [ 

ll$l + WY Wh PI 
6’ I 

+ Ilf I/ 3 + 
C,(f) M”P’ 

pp ( 
2 ln(n> VG *lp’ . o(1j 

41 - 2vl) 1 , 

as n+ co, where ao, al are from (3.7) and (3.8), g is the linear transfor- 
mation mapping [-I, 11 to [q, 1 - 111 and cog. I( f (1 and the remaining 
constants are as in Theorem 2.3. 

Proof. Use (3.7), (3.8) and Theorem 2.3, and Remark 5. 
The comments following Theorem 3.3 apply equally well to Theorem 3.4. 
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