

# Old Dominion University ODU Digital Commons

Mathematics & Statistics Faculty Publications

Mathematics & Statistics

1978

# Approximation by Discrete Operators

J. J. Swetits Old Dominion University

B. Wood

Follow this and additional works at: https://digitalcommons.odu.edu/mathstat\_fac\_pubs Part of the <u>Algebra Commons</u>, and the <u>Discrete Mathematics and Combinatorics Commons</u>

## **Repository Citation**

Swetits, J. J. and Wood, B., "Approximation by Discrete Operators" (1978). *Mathematics & Statistics Faculty Publications*. 109. https://digitalcommons.odu.edu/mathstat\_fac\_pubs/109

# **Original Publication Citation**

Swetits, J. J., & Wood, B. (1978). Approximation by discrete operators. *Journal of Approximation Theory*, 24(4), 310-323. doi:10.1016/0021-9045(78)90016-3

This Article is brought to you for free and open access by the Mathematics & Statistics at ODU Digital Commons. It has been accepted for inclusion in Mathematics & Statistics Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.

### Approximation by Discrete Operators

J. J. SWETITS

Mathematics Department, Old Dominion University, Norfolk, Virginia 23508

AND

#### B. WOOD

Mathematics Department, University of Arizona, Tucson, Arizona 85721

Communicated by Oved Shisha

Received April 22, 1977

A discrete, positive, weighted algebraic polynomial operator which is based on Gaussian quadrature is constructed. The operator is shown to satisfy the Jackson estimate and an optimal version is obtained.

#### 1. INTRODUCTION

There has been some recent interest [2, 8, 9] in obtaining discrete versions of positive linear integral operators. In this paper, we construct a sequence of discrete, positive, weighted algebraic polynomial operators,  $\{K_n\}$ , with the property

$$|K_n(f) - f| \leq C_1 \omega\left(f, \frac{1}{n}\right) + \frac{C_2 ||f||}{n^2}, \qquad (1.1)$$

for all *n* sufficiently large, where  $C_1$  and  $C_2$  are positive constants, independent of *f*. In (1.1)  $f \in C[0, 1]$ , the norms are taken over some subinterval [a, b] of (0, 1), and  $\omega(f, \cdot)$  denotes the modulus of continuity of *f* on [0, 1]. The construction of  $K_n$  is based on an approach taken by Bojanic [1] and DeVore [3, Chap. 6].

Let w(x) be an even, nonnegative, bounded, Lebesgue integrable function bounded on [-1, 1] with the properties:

(i) on each interval  $[a, b] \subseteq (-1, 1)$ , there is m > 0 such that  $0 < m \le w(x), x \in [a, b]$ ;

- (ii) w(x) has a continuous second derivative on (-1, 1); and
- (iii) w(0) = 1.

Copyright © 1978 by Academic Press, Inc. All rights of reproduction in any form reserved.

Let  $\{P_n(x)\}\$  be the sequence of orthonormal polynomials on [-1, 1] associated with w(x). It is known [10, p. 44] that the zeros of  $P_n(x)$  are real, simple, located in (-1, 1) and symmetric about 0.

Let, for  $0 \le x \le 1$ ,  $\overline{w}(x) = 2w(2x - 1)$ , and  $Q_n(x) = P_n(2x - 1)$ . Then  $\{Q_n(x)\}$  is orthonormal on [0, 1] with respect to  $\overline{w}(x)$ .

For each n = 1, 2,..., let  $x_{1n} < x_{2n} < \cdots < x_{nn}$  be the zeros of  $Q_n(x)$ . Let  $\lambda_{kn}$ , k = 1,...,n, be the Cotes numbers corresponding to  $x_{kn}$ , k = 1,...,n, so that, for each polynomial, p, of degree  $\leq 2n - 1$ ,

$$\int_0^1 \overline{w}(x) p(x) dx = \sum_{k=1}^n \lambda_{kn} p(x_{kn})$$

by the Gauss quadrature rule [10, p. 47].

Let  $y_{1n} < y_{2n} < \cdots < y_{nn}$  be the zeros of  $P_n(x)$  and  $\mu_{kn}$ , k = 1, ..., n, the corresponding Cotes numbers.

Define the control function g = g(x, t) for  $t \in [-1, 1]$  and  $x \in (0, 1)$  by

$$g(x,t) = 1 + \left(\frac{\overline{w}'(x) - \overline{w}(x) w'(0)}{\overline{w}(x)}\right) t.$$
(1.2)

Assume  $\overline{w}$  is such that, on some closed subinterval *I*, of (0, 1), there is an M > 0 such that

$$0 < M \leq g(x, t), \quad x \in I, \quad t \in [-1, 1].$$
 (1.3)

Let  $\alpha_{2n}$  be the smallest positive zero of  $P_{2n}(x)$  for each n = 1, 2, .... Note that  $-\alpha_{2n}$  is the largest negative zero of  $P_{2n}(x)$ .  $\mu_{2n}$  denotes the Cotes number corresponding to  $\alpha_{2n}$  and  $\mu_{-2n}$  denotes the Cotes number corresponding to  $-\alpha_{2n}$ . Define, for n = 1, 2, ...,

$$R_n(t) = \left(\frac{P_{2n}(t)}{t^2 - \alpha_{2n}^2}\right)^2, \quad t \in [-1, 1],$$

and

$$\frac{1}{C_n(x)} = \int_{-1}^1 w(t) g(x, t) R_n(t) dt, \qquad x \in I.$$
(1.4)

For each  $x \in I$ ,  $g(x, t) R_n(t)$  is a polynomial in t of degree 4n - 3. Hence, by the Gauss quadrature formula based on the zeros of  $P_{2n}(t)$ , we have

$$\frac{1}{C_n(x)} = \mu_{-2n} g(x, -\alpha_{2n}) \gamma_{2n} + \mu_{2n} g(x, \alpha_{2n}) \gamma_{2n} , \qquad (1.5)$$

where  $\gamma_{2n}$  denotes the value of  $(P_{2n}(t)/(t^2 - \alpha_{2n}2))^2$  at  $\alpha_{2n}$ . Note that  $C_n(x)$  is positive because of (1.3). For each n = 1, 2, ..., define the operator  $K_n$  by

$$K_n(f, x) = \frac{C_n(x)}{\overline{w}(x)} \sum_{K=1}^{2n} f(x_{K,2n}) \lambda_{K,2n} R_n(x_{K,2n} - x),$$
(1.6)

where  $f \in C[0, 1]$ ,  $x \in I$ , and  $C_n(x)$  is given by (1.5). Clearly,  $K_n$  is a positive linear operator from C[0, 1] to C(I) and, except for the factor  $C_n(x)/w(x)$ ,  $K_n$  is an algebraic polynomial.

It might seem more natural to consider the operator

$$K_n(f, x) = \frac{1}{w(x)} \sum_{K=1}^{2n} f(Y_{K,2n}) \mu_{K,2n} R_n(Y_{K,2n} - x),$$

where x is restricted to a subinterval of (-1, 1),  $Y_{K,2n}$  are the zeros of  $P_{2n}(x)$  on [-1, 1] and

$$x_{K,2n} = \frac{1+Y_{K,2n}}{2} \, .$$

This would avoid the shift from [-1, 1] to [0, 1]. However, this shift is essential to the proof of Lemma 2.1 below. In particular,  $x \in (0, 1)$  implies -1 < -x < 1 - x < 1 and hence (1.4) can be used in estimating  $-1 + K_n(1, x)$  in the proof of Lemma 2.1.

#### 2. DEGREE OF APPROXIMATION

In the sequel, I denote the interval of (1.3).

LEMMA 2.1. There exists a positive constant, C = C(w, I), such that for all n sufficiently large,

$$||K_n(1)-1|| \leq C/n^2,$$

where the norm is the sup norm over I and  $K_n$  is defined by (1.6).

*Proof.* By (1.6) and the Guass quadrature rule, we have, for  $x \in I$ ,

$$K_n(1, x) = \frac{C_n(x)}{\overline{w}(x)} \int_0^1 \overline{w}(t) R_n(t-x) dt$$
$$= \frac{C_n(x)}{\overline{w}(x)} \int_{-x}^{1-x} \overline{w}(t+x) R_n(t) dt.$$

Using (1.4) we obtain

$$-1 + K_n(1, x) = \frac{C_n(x)}{\overline{w}(x)} \int_{-x}^{1-x} R_n(t) (\overline{w}(t+x) - \overline{w}(x) w(t) g(x, t)) dt$$
  
$$- C_n(x) \int_{-1}^{-x} w(t) g(x, t) R_n(t) dt$$
  
$$- C_n(x) \int_{1-x}^{1} w(t) g(x, t) R_n(t) dt$$
  
$$= J_1 + J_2 + J_3.$$

In view of (i), (ii), and (1.2) there is an absolute constant,  $M_1$ , such that

$$g(x,t) \leqslant M_1$$
,  $t \in [-1,1]$ ,  $x \in I$ .

Next, since  $x \in I$  is bounded away from both 0 and 1, there are positive constants  $M_2$ ,  $M_3$ , which depend only on I such that

$$0 < M_2 \leqslant t^2, \qquad t \in [-1, -x], \quad x \in I,$$

and

$$0 < M_3 \leqslant t^2, \qquad t \in [1-x, 1], \quad x \in I.$$

Hence

$$|J_2| \leq \frac{C_n(x)}{M_2} \int_{-1}^1 w(t) t^2 R_n(t) dt,$$

and

$$|J_3| \leq \frac{C_n(x)}{M_3} \int_{-1}^1 w(t) t^2 R_n(t) dt.$$

Using (1.3), (1.4), [3, Lemma 6.4], and [3, proof of Theorem 6.3], we obtain a constant  $M_4 = M_4(I, w)$  such that,

$$C_n(x)\int_{-1}^1 w(t) t^2 R_n(t) dt \leq M_4/n^2,$$

if n is sufficiently large. Consequently, for all n sufficiently large, there is a constant,  $M_5$ , such that

$$|J_2| + |J_3| \leq M_5/n^2, \quad x \in I.$$
 (2.1)

In view of (ii), (iii), and (1.2) the function

$$h(x, t) = \overline{w}(t + x) - \overline{w}(x) w(t) g(x, t)$$

satisfied, for each fixed  $x \in I$ ,

$$h(x,0)=0,$$

and

$$\frac{\partial h}{\partial t}(x,0)=0.$$

By Taylor's formula, for each  $x \in I$ , there exist positive constants M(x) and  $\eta(x)$  such that

$$|h(x,t)| \leq M(x) t^2, \quad |t| \leq \eta(x).$$

Since I is compact, we can find  $\eta \in (0, 1)$  and  $M_6 > 0$ , both independent of  $x \in I$ , such that

$$|h(x,t)| \leqslant M_6 t^2, \quad |t| \leqslant \eta, \quad x \in I.$$

We thus have, for  $x \in I$ ,

$$\overline{w}(x) \mid J_1 \mid \leq \int_{-n}^{n} C_n(x) R_n(t) \mid h(x, t) \mid dt$$

$$+ \int_{-x}^{-n} C_n(x) R_n(t) \mid h(x, t) \mid dt$$

$$+ \int_{n}^{1-x} C_n(x) R_n(t) \mid h(x, t) \mid dt$$

$$= J_{11} + J_{12} + J_{13}.$$

First,

$$J_{11} \leq M_6 \int_{-\pi}^{\pi} C_n(x) t^2 R_n(t) dt$$
$$\leq \frac{M_6}{m(\eta)} \int_{-\pi}^{\pi} C_n(x) w(t) t^2 R_n(t) dt$$
$$\leq M_7 \int_{-1}^{1} C_n(x) w(t) t^2 R_n(t) dt,$$

where  $M_{\gamma} = M_6/m(\eta)$  and  $m(\eta)$  is such that  $0 < m(\eta) \le w(t), -\eta \le t \le \eta$ . Hence, as in the proof of (2.1),

$$J_{11} \leqslant M_8/n^2, \qquad x \in I, \tag{2.2}$$

where  $M_8$  is a constant.

314

Since h(x, t) is globally bounded, say by  $M_9$ , we have

$$J_{12} \leqslant M_{9} \int_{-x}^{-\eta} C_{n}(x) R_{n}(t) dt$$
$$\leqslant \frac{M_{9}}{\eta^{2}} \int_{-x}^{-\eta} C_{n}(x) t^{2} R_{n}(t) dt$$
$$\leqslant \frac{M_{9}}{M_{10}\eta^{2}} \int_{-x}^{-\eta} C_{n}(x) w(t) t^{2} R_{n}(t) dt,$$

where  $M_{10}$  is a constant guaranteed by (i). The argument used in establishing (2.1) yields a constant,  $M_{11}$ , such that

$$J_{12} \leqslant \frac{M_{11}}{\eta^2 n^2}, \qquad x \in I.$$
(2.3)

In a similar fashion, there is a constant,  $M_{12}$ , such that, for  $x \in I$ ,

$$J_{13} \leqslant \frac{M_{12}}{\eta^2 n^2} \,. \tag{2.4}$$

Since  $\overline{w}(x)$  is bounded away from 0 for  $x \in I$ , there exists a constant,  $M_{13}$ , such that, for  $x \in I$ ,

$$|J_1| \leqslant M_{13}/n^2. \tag{2.5}$$

Combining (2.5) and (2.1) completes the proof of Lemma 2.1.

LEMMA 2.2. There exists a positive constant, D = D(w, I), such that for all n sufficiently large,

$$||K_n((t-x^2);x)|| \leqslant \frac{D}{n^2},$$

where the norm is the sup norm taken over I.

*Proof.* Using (1.6) and the Gauss quadrature rule we obtain, for  $x \in I$ ,

$$\begin{split} K_n((t-x)^2, x) &= \frac{C_n(x)}{\overline{w}(x)} \int_0^1 \overline{w}(t)(t-x)^2 \ R_n(t-x) \ dt \\ &= \frac{C_n(x)}{\overline{w}(x)} \int_{-x}^{1-x} \overline{w}(t+x) \ t^2 R_n(t) \ dt \\ &\leqslant \frac{D_1 C_n(x)}{\overline{w}(x) \ D_2} \int_{-x}^{1-x} w(t) \ t^2 R_n(t) \ dt, \end{split}$$

where  $D_1$ ,  $D_2$  are constants guaranteed by the definition of w. Furthermore

640/24/4-4

 $\overline{w}(x)$  is bounded away from 0 for  $x \in I$ . Thus, by the argument used in establishing (2.1) there is a constant, D, such that, for n sufficiently large,

$$K_n((t-x)^2, x) \leq D\left(\frac{1}{n^2}\right).$$

This completes the proof of Lemma 2.2.

We can now establish the main result of this paper.

THEOREM 2.3. Let  $K_n$  be given by (1.6) and  $f \in C[0, 1]$ . Then, for all n sufficiently large,

$$\|K_n(f)-f\| \leqslant C_1\omega\left(f,rac{1}{n}
ight)+C_2\cdot\|f\|\cdotrac{1}{n^2},$$

where  $C_1$  and  $C_2$  are positive constants which depend only on the choice of w, the sup norm is taken over I, and  $\omega(f, \cdot)$  denotes the modulus of continuity of f on [0, 1].

Proof. Using an inequality of Shisha and Mond [5], we have

$$||K_n(f) - f|| \leq (||K_n(1)|| + 1) \omega(f, \beta_n) + ||f|| \cdot ||K_n(1) - 1||,$$

where

$$\beta_n^2 = \|K_n((t-x)^2; x)\|.$$

The proof of the theorem is now an immediate consequence of Lemma 2.1 and Lemma 2.2.

The following two special cases of the operators defined by (1.6) are of interest.

EXAMPLE 2.4. If  $w(x) \equiv 1$ , then the orthonormal sequence  $\{P_n(x)\}\$  is the sequence of Legendre polynomials. In this case  $g(x, t) \equiv 1$  and I can be any closed subinterval of (0, 1).

Using [10, p. 48] it can be shown that  $\mu_{kn} = \lambda_{kn}$  and  $\mu_{kn}$  is given by

$$\mu_{kn} = 2(1 - y_{kn}^2)^{-1} (p'_n(y_{kn}))^{-2}$$

([10, p. 352]).

Thus, in this case  $K_n$  is defined by

$$K_n(f, x) = \frac{C_n(x)}{2} \sum_{k=1}^{2^n} f(x_{k,2n}) \lambda_{k,2n} R_n(x_{k,2n} - x),$$

where

$$x_{k,2n}=\frac{1+y_{k,2n}}{2}$$

Estimates for  $y_{k,2n}$  can be found in [10, p. 122].

EXAMPLE 2.5. If  $w(x) = (1 - x^2)^{1/2}$ , then the orthonormal sequence is the sequence,  $\{u_n(x)\}$ , of Chebyshev polynomials of the second kind. In this case  $\overline{w}(x) = 2(x(1 - x))^{1/2}$ . Elementary computations show that (1.3) is satisfied if *I* is any closed subinterval of  $\{x: |x - \frac{1}{2}| < (2^{1/2} - 1)/2\}$ .

For this case, the Cotes numbers,  $\lambda_{kn}$ , are given by ([10, p. 353])

$$\lambda_{kn} = \frac{\pi}{n+1} \sin^2\left(\frac{n-k-1}{n+1} \pi\right),$$

and

$$x_{kn} = rac{\left[1 + \cos\left(rac{n-k-1}{n+1}\pi
ight)
ight]}{2}$$
  
=  $\cos^2\left(rac{n-k-1}{2(n+1)}\pi
ight), \quad k = 1, 2, ..., n$ 

In this example the operator  $K_n$  defined by (1.6) takes a particularly convenient form.

The operator (1.6) is essentially a discrete version of the convolution operator

$$L_n(f,x) = \int_0^{\infty} f(t) R_n(t-x) dt, \qquad 0 \leq x \leq 1, \qquad (2.6)$$

where

$$R_n(t) = C_n \left(\frac{P_{2n}(t)}{t^2 - \alpha_{2n}^2}\right)^2, \qquad -1 \leqslant t \leqslant 1,$$

and

$$\int_{-1}^{1} R_n(t) dt = 1, \qquad n = 1, 2, 3, \dots$$

Approximation in the space  $L_p[0, 1]$  via (2.6) is to be considered in [6]; (2.6) is close to the method  $\Lambda_n$  of Bojanic [1] and DeVore [3, Chap. 6]. DeVore has shown that  $\Lambda_n$  is optimal in a certain sense.

We can attain optimality for a version of our discrete operators, using a constant weight (Legendre polynomials). Specifically, let  $w(x) \equiv 1$  be our weight function on [-1, 1] and let  $\{P_n(x)\}$  be the associated orthonormal Legendre polynomials. For  $0 \leq x \leq 1$ , let  $\overline{w}(x) = 2w(2x - 1) \equiv 2$  and

 $Q_n(x) = P_n(2x-1)$  be the shifted Legendre polynomials. Hence  $\{Q_n(x)\}$  is orthonormal on [0, 1] with weight  $\overline{w}(x) = 2$ . For each n = 1, 2, ..., let  $x_{1n} < x_{2n} < \cdots < x_{nn}$  be the zeros of  $Q_n(x)$  and let  $\lambda_{kn}$ , k = 1, 2, ..., n, be the associated Cotes numbers (recall Example (2.4). Let  $0 < \alpha_{2n} < \alpha_{2n-1}$  be the two smallest positive zeros of  $P_{2n}(x)$  for each n = 2, 3, .... Notice that  $0 > -\alpha_{2n} > -\alpha_{2n-1}$  are the two largest negative zeros of  $P_{2n}(x)$ . Define, for n = 2, 3, ... and  $-1 \le t \le 1$ ,

$$R_n(t) = C_n \left[ \frac{P_{2n}(t)}{(t^2 - \alpha_{2n}^2)(t^2 - \alpha_{2n-1}^2)} \right]^2,$$

where  $C_n > 0$  is chosen so that

$$\int_{-1}^{1} R_n(t) dt = 1, \qquad n = 2, 3, \dots$$

Hence (recall example 2.4),

$$\frac{1}{C_n} = \int_{-1}^1 \left[ \frac{P_{2n}(t)}{(t^2 - \alpha_{2n}^2)(t^2 - \alpha_{2n-1}^2)} \right]^2 dt$$
$$= \sum_{k=1}^{2n} \lambda_{k,2n} \left[ \frac{P_{2n}(Y_{k,2n})}{(Y_{k,2n}^2 - \alpha_{2n}^2)(Y_{k,2n}^2 - \alpha_{2n-1}^2)} \right]^2,$$

where  $Y_{k,2n} = 2x_{k,2n} - 1$ , k = 1, 2, ..., 2n. Therefore, for n = 2, 3, ...,

$$1/C_n = (\lambda_{-2n,2n} + \lambda_{2n,2n}) \, \gamma_{2n} + (\lambda_{-(2n-1),2n-1} + \lambda_{2n-1,2n-1}) \, \gamma_{2n-1}$$
 ,

where  $\gamma_{2n-i}$  denotes the value of

$$\left\{\frac{P_{2n}(t)}{(t^2 - \alpha_{2n}^2)(t^2 - \alpha_{2n-1}^2)}\right\}^2$$

at  $t = \alpha_{2n-i}$ , i = 0, 1.

Let  $I_{\delta} = \{x: 0 < \delta \leq x \leq 1 - \delta < 1\}$ . For  $f \in C[0, 1]$ ,  $x \in I_{\delta}$  and n = 2, 3, ..., define

$$K_n(f, x) = \frac{1}{2} \sum_{k=1}^{2n} \lambda_{k,2n} f(x_{k,2n}) R_n(x_{k,2n} - x).$$
 (2.7)

Thus  $K_n(f, x)$  is a positive linear operator from C[0, 1] to  $C(I_{\delta})$  and  $K_n(f, x)$  is an algebraic polynomial of degree  $\leq 4n - 8$ .

LEMMA 2.6. For  $x \in I_{\delta}$  and all n sufficiently large,

$$|K_n(1,x)-1| \leqslant C_{\delta} \frac{1}{n^4},$$

where  $C_{\delta} > 0$  is a constant.

*Proof.* We follow the lines of the proof of Lemma 2.1. By Gauss quadrature, for  $x \in I_{\delta}$ ,

$$K_n(1, x) = \frac{1}{2} \sum_{k=1}^{2^n} \lambda_{k,2n} R_n(x_{k,2n} - x)$$
  
=  $\frac{1}{2} \int_0^1 2R_n(t - x) dt$   
=  $\int_{-x}^{1-x} R_n(t) dt.$ 

Hence

$$K_n(1, x) - 1 = \int_{-x}^{1-x} (R_n(t) - R_n(t)) dt$$
  
$$- \int_{-1}^{-x} R_n(t) dt - \int_{1-x}^{1} R_n(t) dt$$
  
$$= - \int_{-1}^{-x} R_n(t) dt - \int_{1-x}^{1} R_n(t) dt$$
  
$$= J_2 + J_3.$$

Since  $x \in I_{\delta}$ ,

$$|J_2| \leq \frac{1}{\delta^4} \int_{-1}^{-\infty} t^4 R_n(t) dt$$
$$\leq \frac{1}{\delta^4} \int_{-1}^{-1} t^4 R_n(t) dt.$$

Using the fact that degree of  $R_n(t)$  is 4n - 8 and [3, proof of Theorem 6.2], we find a constant  $M_1 > 0$  such that

$$|J_2| \leqslant rac{M_1}{\delta^4} \cdot rac{1}{n^4}.$$

A similar estimate holds for  $|J_3|$ . Hence there is a constant  $C_\delta > 0$  such that

$$|K_n(1, x) - 1| \leq \frac{C_{\delta}}{n^4}, \quad x \in I_{\delta}.$$

Let  $e_i(t) = t^i$ , i = 0, 1, 2. The optimal operators of DeVore [3, p. 171] are defined as follows.

A sequence of positive, algebraic, polynomial operators  $L_n$  is said to be optimal on [c, d], if  $L_n$  maps C[a, b] into C[c, d] and for i = 0, 1

$$||e_i - L_n(e_i)| = o(n^{-2})$$

while for  $e_2$ ,

$$||e_2 - L_n(e_2)|| = O(n^{-2}).$$

THEOREM 2.7. Operators (2.7) are optimal on  $I_{\delta} = \{x: 0 < \delta \leq x \leq 1 - \delta < 1\}.$ 

Proof. We have

$$|| K_n(e_0) - e_0 || = o(n^{-2})$$
(2.8)

by Lemma 2.6. Let  $x \in I_{\delta}$ . Then

$$\left| K_{n}(e_{1}, x) - x \right| = \left| x - \frac{1}{2} \sum_{k=1}^{2^{n}} \lambda_{k,2n} R_{n}(x_{k,2n} - x) x_{k,2n} \right|$$

$$= \left| x \int_{-1}^{1} R_{n}(t) dt - \int_{-x}^{1-x} (t - x) R_{n}(t) dt \right|$$

$$= \left| x \int_{-x}^{1-x} R_{n}(t) dt + x \int_{-1}^{-x} R_{n}(t) dt + x \int_{1-x}^{1} R_{n}(t) dt \right|$$

$$- x \int_{-x}^{1-x} R_{n}(t) dt - \int_{-x}^{1-x} t R_{n}(t) dt \right|$$

$$= \left| x \int_{-x}^{1-x} R_{n}(t) dt \right| + \left| x \int_{1-x}^{1} R_{n}(t) dt \right|$$

$$= \left| J_{1} \right| + \left| J_{2} \right| + \left| J_{3} \right|.$$

By Lemma 2.6, there is a positive constant  $M_1(\delta)$ , such that

$$|J_i| \leq \frac{M_1(\delta)}{n^4}, \quad i=1,2.$$

Next, since  $R_n(t)$  is even,

$$|J_3| = \left| \int_{-x}^{1-x} tR_n(t) dt \right| = \left| \int_{-x}^0 tR_n(t) dt + \int_0^{1-x} tR_n(t) dt \right|$$
$$= \left| -\int_0^x tR_n(t) dt + \int_0^{1-x} tR_n(t) dt \right|$$
$$= \left| \int_x^{1-x} tR_n(t) dt \right|$$

and, as in Lemma 2.6, this last integral can be estimated by

$$\left|\frac{1}{\delta^3}\int_x^{1-x}t^4R_n(t)\,dt\right|\leqslant \frac{1}{\delta^3}\int_{-1}^1t^4R_n(t)\,dt\leqslant \frac{M_2}{\delta^3}\cdot \frac{1}{n^4}\,,$$

where  $M_2 > 0$  is a constant. Hence

$$|K_n(e_1, x) - x| \leqslant \frac{M_3(\delta)}{n^4}$$
(2.9)

for a positive constant  $M_3(\delta)$  if  $x \in I_{\delta}$ .

Finally, for  $x \in I_{\delta}$ ,

$$|K_n(e_2, x) - x^2| < |K_n(e_2, x) - x^2 K_n(e_0, x)|$$
  
+  $|x^2 (K_n(e_0, x) - 1)|$   
 $\leq |K_n(e_2 - x^2 e_0, x)| + \frac{M_4(\delta)}{n^4},$ 

by Lemma 2.6, for some constant  $M_4(\delta)$ .

Now

$$K_n(e_2 - x^2 e_0, x) = \frac{1}{2} \sum_{k=1}^{2n} \lambda_{k,2n} (x_{k,2n}^2 - x^2) R_n (x_{k,2n} - x)$$
  
=  $\int_0^1 (t^2 - x^2) R_n (t - x) dt$   
=  $\int_{-x}^{1-x} [(t + x)^2 - x^2] R_n (t) dt$   
=  $\int_{-x}^{1-x} (t^2 + 2tx) R_n (t) dt.$ 

Thus

$$|K_n(e_2 - x^2 e_0, x)| \leq \left| \int_{-x}^{1-x} t^2 R_n(t) dt \right| + \left| 2x \int_{-x}^{1-x} t R_n(t) dt \right|.$$

As above, for a constant  $M_5(\delta)$ ,

$$\left| 2x \int_{-x}^{1-x} tR_n(t) \, dt \right| \leq \frac{M_5(\delta)}{n^4}$$

and

$$\left|\int_{-x}^{1-x}t^2R_n(t)\,dt\,\right|\leqslant\int_{-1}^{1}t^2R_n(t)\,dt\leqslant\frac{M_6}{n^2}\,,$$

for some positive constant  $M_6$ , as in [3, proof of Theorem 6.2]. Thus, for  $x \in I_\delta$ ,

$$K_n(e_2, x) - x^2 \ge \frac{M_7(\delta)}{n^2}$$
(2.10)

for a positive constant  $M_7(\delta)$ . Optimality of (2.7) follows from (2.8), (2.9), and (2.10).

Saturation and related topics for (2.7) have been discussed in [7].

It is possible to modify (1.6) so as to obtain the estimate of Theorem 2.3, minus the term  $||f||/n^2$ , on all of [0, 1].

Let g denote the linear map which takes [0, 1] onto I. Then  $g^{-1}$  maps I onto [0, 1] and [0, 1] onto a larger interval, say [c, d]. For  $f \in C[0, 1]$  define  $f(x) = f(0), c \leq x \leq 0$  and  $f(x) = f(1), 1 \leq x \leq d$ . Then  $f \circ g^{-1} \in C[0, 1]$ and we define the projection  $P_1$  from C[0, 1] to the constants by  $P_1(h) = h(0)$ for  $h \in C[0, 1]$ . Let  $\alpha = P_1(f \circ g^{-1}) = f \circ g^{-1}(0)$  and define the linear operator

$$L_n(f, x) = K_n(f \circ g^{-1} - \alpha, g(x)) + \alpha, \qquad 0 \leqslant x \leqslant 1.$$
 (2.11)

THEOREM 2.8. For  $f \in C[0, 1]$  and defined as above on  $[c, d] = g^{-1}[0, 1]$ ,  $0 \leq x \leq 1$ , and all n sufficiently large,

$$|L_n(f,x)-f(x)| \leq T_1\omega\left(f,\frac{1}{n}\right),$$

where  $T_1$  is a positive constant which depends only on the choice of the weight function w and  $\omega(f, \cdot)$  denotes the modulus of continuity of f on [0, 1].

*Proof.* Let  $x \in [0, 1]$ . Since  $g(x) \in I$  and  $f \circ g^{-1} - \alpha \in C[0, 1]$ , using Theorem 2.3, (1.6), and the definition of f on [c, d], we obtain

$$|L_{n}(f, x) - f(x)| = |K_{n}(f \circ g^{-1} - \alpha, g(x)) - (f \circ g^{-1}(g(x)) - \alpha)|$$
  
$$\leq C_{1}\omega \left(f \circ g^{-1} - \alpha, \frac{1}{n}\right) + \frac{C_{2} ||f \circ g^{-1} - \alpha||}{n^{2}} [0, 1]$$
  
$$= C_{1}\omega \left(f, \frac{1}{n}\right) + \frac{C_{2} ||f \circ g^{-1} - \alpha||}{n^{2}} [0, 1], \qquad (2.12)$$

where  $\omega(f, \cdot)$  is the modulus of continuity of f on [0, 1].

By [4, Corollary 3.1] and [11],

$$\|f \circ g^{-1} - \alpha\|_{[0,1]} \leqslant C_3 \omega(f \circ g^{-1}, 1), \qquad (2.13)$$

where  $C_3 > 0$  is a constant.

Theorem 2.8 follows from (2.12), (2.13), the definition of f, and properties of the modulus of continuity.

Notice that (2.11) is discrete but is not a positive operator.

322

#### References

- 1. R. BOJANIC, A note on the degree of approximation to continuous functions, *Enseigne*ment Math., T 15 (1969), 43-51.
- 2. R. BOJANIC AND O. SHISHA, Approximation of continuous, periodic functions by discrete positive linear operators, J. Approximation Theory 11 (1974), 231-235.
- R. A. DEVORE, "The Approximation of Continuous Functions by Positive Linear Operators," Lecture Notes in Mathematics No. 293, Springer-Verlag Berlin/Heidelberg/ New York, 1972.
- R. A. DEVORE, Degree of approximation, in "Approximation Theory II" (G. G. Lorentz, C. K. Chui, and L. L. Schumaker, Eds.), pp. 117–159, Academic Press, New York, 1976.
- 5. O. SHISHA AND B. MOND, The degree of convergence of sequences of linear positive operators, *Proc. Nat. Acad. Sci. USA* 60 (1968), 1196–1200.
- 6. J. SWETITS AND B. WOOD, Degree of  $L_p$ -approximation by positive convolution operators, in preparation.
- 7. J. SWETITS AND B. WOOD, A note on the degree of approximation with an optimal, discrete polynomial, preprint.
- J. SZABADOS, "Convergence and Saturation Problems of Discrete Linear Operators," I.S.N.M., Vol. 25, Birkhäuser, Basel, 1976, 405–419.
- 9. J. SZABADOS, On an interpolatory analog of the de la Vallee-Poussin means, Studia Sci. Math. Hungar. 9 (1974), 189-191.
- G. SZEGO, "Orthogonal Polynomials," American Mathematical Society Colloquim Publication, Vol. XXIII, Providence, R.I., 1967.
- 11. H. WHITNEY, On functions with *n*-th bounded differences, J. Math. Pures Appl. 36 (1957), 67–95.