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A discrete, positive, weighted algebraic polynomial operator which is based 
on Gaussian quadrature is constructed. The operator is shown to satisfy the 
Jackson estimate and an optimal version is obtained. 

1. INTR~OUCT~~N 

There has been some recent interest [2, 8, 91 in obtaining discrete versions 
of positive linear integral operators. In this paper, we construct a sequence 
of discrete, positive, weighted algebraic polynomial operators, {K,), with the 
property 

(1.1) 

for all n sufficiently large, where C, and C2 are positive constants, independent 
off. In (I .l)f~ C[O, I], the norms are taken over some subinterval [a, b] of 
(0, I), and w(,$ .) denotes the modulus of continuity off on [O, 11. The 
construction of K,, is based on an approach taken by Bojanic [I] and 
DeVore [3, Chap. 61. 

Let w(x) be an even, nonnegative, bounded, Lebesgue integrable function 
bounded on [-I, 11 with the properties: 

(i) on each interval [a, b] _C (-1, I), there is m > 0 such that 
0 < nz 52 w(x), x E [a, b]; 

(ii) W(X) has a continuous second derivative on (--I, 1); and 

(iii) W(O) = 1. 
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Let (P,(x)> be the sequence of orthonormal polynomials on [-1, I] 
associated with w(x). It is known [IO, p. 441 that the zeros of P,(x) are real, 
simple, located in (- I, 1) and symmetric about 0. 

Let, for 0 < x < 1, W(x) = 2w(2x - I), and en(x) = P,(2x - 1). Then 
{f&(x)> is orthonormal on [0, l] with respect to W(x). 

For each 12 = I, 2,..., let xln < xZn < ... <: x,, be the zeros of en(x). 
Let hkn , k = l,..., n, be the Cotes numbers corresponding to x~~ , k = I,..., n, 
so that, for each polynomial, p, of degree <2n - 1, 

s ’ W(X) p(x) dx 2: -f hknp(xrn) 
0 I.=1 

by the Gauss quadrature rule [lo, p. 471. 
Let yin -c yen -c ... < Y,, be the zeros of P,(x) and pk,, , k = I,..., n, 

the corresponding Cotes numbers. 
Define the control function g = g(x, t) for t E [- I, l] and x E (0, 1) by 

g(x, t> = 1 + ( W’(X) - w(x) d(o) 

fw 1 

t 
(1.2) 

Assume i? is such that, on some closed subinterval I, of (0, I), there is an 
A4 > 0 such that 

0 < M < g(x, tj, XEI, tE[-I, I]. (1.3) 

Let olzla be the smallest positive zero of P2,(x) for each n = 1, 2,... . Note 
that -OLD, is the largest negative zero of P2,(x). pLzn denotes the Cotes number 
corresponding to a2,, and CL-~,, denotes the Cotes number corresponding to 
-aZn . Define, for II = 1, 2 ,..., 

K%(t) = ( t2p:(;! )I tE I-1, 11, 
2n 

and 

1 
s 

1 
~ = 

c2w -1 
w(t) g(x> 0 Kdtj dtt, x E I. (1.4) 

For each x E I, g(x, t) R,(t) is a polynomial in t of degree 4n - 3. Hence, 
by the Gauss quadrature formula based on the zeros of Pz,(t), we have 

1 
- = p-en&, --a24 yzn + ELzndX, a2?J Yzn 2 
Cdx) 

(1.5) 
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where yzn denotes the value of (Z’zJt)/(t’ -~- CQ~~))’ at a27r . Note that C,,(.\-) 
is positive because of (I .3). For each n = 1, 2,..., define the operator K, by 

(1.6) 

wherefe C[O, I], x E Z, and C,(X) is given by (1.5). Clearly, K, is a positive 
linear operator from C[O, l] to C(Z) and, except for the factor C,(x)/n(x), 
K, is an algebraic polynomial. 

It might seem more natural to consider the operator 

L 5 f(YK,?n) pK,2nk(Z’K,2n - u”), 

where x is restricted to a subinterval of (- 1, l), YK,2n are the zeros of Pz,(x) 
on [-I, 1] and 

This would avoid the shift from [-I, l] to [0, 11. However, this shift is 
essential to the proof of Lemma 2.1 below. In particular, x E (0, 1) implies 
- 1 < -x < 1 - x < 1 and hence (1.4) can be used in estimating 
- 1 + K,( 1, x) in the proof of Lemma 2.1. 

2. DEGREE OF APPROXIMATION 

In the sequel, 1 denote the interval of (1.3). 

LEMMA 2.1. There exists a positive constant, C = C(w, Z), such that for 
all n sufJiciently large, 

where the norm is the sup norm over Z and K, is defined by (1.6). 

Proof. By (1.6) and the Guass quadrature rule, we have, for x E Z, 

K(] ,)=c7,0 ‘- 12 7 s 44 0 
w(t) R,(t - x) dt 

C,(x) 1--z =- 
s qx) --z 

w(t + x) R,(t) dt. 
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Using (1.4) we obtain 

- 1 + K (1 -u) = cncx) I-* n > s W(X) -? 
R,(t)(w(t + x) - W(x) w(t) g(x, t)) dt 

- Gl(-4 jix 4t) g(x, t> &if) u’t 

- GW s,;, 4t> d-x> t) W) dt 

= J1 + J2 + J3 

In view of (i), (ii), and (1.2) there is an absolute constant, MI , such that 

dx, 0 6 Ml > te [-1, I], XEI. 

Next, since x E I is bounded away from both 0 and 1, there are positive 
constants M, , MS, which depend only on I such that 

0 < M, < t2, fE[-1,--X], XGI, 

and 

Hence 

0 < M3 d t2, t E [l - x, 11, X E I. 

I J2 / < y j1 w(t) t2R,(t) dt, 
2 -1 

and 

/ J3 / < y j; w(t) t2R,(t) dt. 
3 1 

Using (I.3), (1.4), [3, Lemma 6.41, and [3, proof of Theorem 6.31, we obtain 
a constant M,, = M,(I, w) such that, 

C,(x) j1 w(t) t2R,(t) dt < M4/n2, 
-1 

if n is sufficiently large. Consequently, for all n sufficiently large, there is a 
constant, M5 , such that 

I J2 I + I J3 I G Ms/n2, x E I. 

In view of (ii), (iii), and (1.2) the function 

h(x, t) = iq(t + x) - E(x) w(t)g(x, t) 

(2.1) 
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satisfied, for each fixed x E I, 

and 

By Taylor’s formula, for each x E I, there exist positive constants M(x) and 
v(x) such that 

Since I is compact, we can find q E (0, 1) and M6 :, 0, both independent of 
x E I, such that 

= Jll + Jl2 + 513 . 
First, 

Jn G M, s n C,(x) t2R,(t) dt 
--R 

< M, 
I 
’ 

-Gs --n 
C,(x) w(t) t2R,(t) dt 

< M, s ’ C,(x) w(t) P&(t) dt, 
-1 

where M, = 44,/m(q) and m(7) is such that 0 < m(7) < w(t), -q 
Hence, as in the proof of (2.1), 

Ju < Wh2, x E z, 

where M, is a constant. 
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Since h(x, t) is globally bounded, say by M9 , we have 

< !s 
I 

-71 

T2 --2 
C,(x) P%(t) dt 

M -’ --c 
b M,oq2 s 

-’ c,(x) w(t) t2R,(t) dt, 
-z 

where M,, is a constant guaranteed by (i). The argument used in establishing 
(2.1) yields a constant, Ml, , such that 

In a similar fashion, there is a constant, M,, , such that, for x E Z, 

(2.4) 

Since i?(x) is bounded away from 0 for x E I, there exists a constant, Ml3 , 
such that, for x E I, 

I Jl I < M,d+‘. (2.5) 

Combining (2.5) and (2.1) completes the proof of Lemma 2.1. 

LEMMA 2.2. There exists a positive constant, D = D(w, Z), such that for 
all n suflciently large, 

where the norm is the sup norm taken over I. 

Proof. Using (1.6) and the Gauss quadrature rule we obtain, for x E I, 

K,((t - x)‘, x) = 7 s %4 0 
w(t)(t - x)” R,(t - X) dt 

C,(x) l-Cc x- r G(x) ‘-z 
ii(t + x) t”&(t) dt 

< D1CnW 
s 

l-’ 
YqTpq --3: 

w(t) t”R,(t) dt, 

where D1 , D, are constants guaranteed by the definition of w. Furthermore 

64012414-4 
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W(x) is bounded away from 0 for s E 1. Thus, by the argument used in esta- 
blishing (2.1) there is a constant, D. such that, for n sufficiently large, 

This completes the proof of Lemma 2.2. 
We can now establish the main result of this paper. 

THEOREM 2.3. Let K, be given by (1.6) and f E C[O, 11. Then, for all n 
sujficiently large, 

where C, and C, are positive constants uvhich depend only on the choice of w, 
the sup norm is taken over Z, and w(f, .) denotes the modulus of continuity off 
on [0, 11. 

Proof. Using an inequality of Shisha and Mond [5], we have 

I! K,(f) -f Ii d (II KU)il + 1) 4.L PA -+- lifil . I! K,(l) - 1 II, 

where 

pn2 = i/ K,((t - x)~; x)il. 

The proof of the theorem is now an immediate consequence of Lemma 2.1 
and Lemma 2.2. 

The following two special cases of the operators defined by (1.6) are of 
interest. 

EXAMPLE 2.4. If w(x) = 1, then the orthonormal sequence {P,(x)} is the 
sequence of Legendre polynomials. In this case g(x, t) = 1 and Z can be any 
closed subinterval of (0, 1). 

Using [lo, p. 481 it can be shown that pLkn = hkn and pkn is given by 

P-Lsn = a1 - YkJ-1(PxYkn))-2 

(w, P. 3521). 
Thus, in this case K, is defined by 
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where 

1 + Yli 2n 

Estimates for y:A,2n can be found in [lo, p, 1221. 

EXAMPLE 2.5. If H,(X) = (1 - x2)lj2, then the orthonormal sequence is 
the sequence, {u,(x)}, of Chebyshev polynomials of the second kind. In this 
case s(x) = 2(x(1 - x))lj2. Elementary computations show that (1.3) is 
satisfied if Z is any closed subinterval of {x: 1 x - 4. / < (21j2 - 1)/2}. 

For this case, the Cotes numbers, h,, , are given by ([lo, p. 3531) 

Alin L -L- sin2 
t 

/z-k-l 
n+1 II + 1 -77 I 1 

and 

[ 
1 + cos 

i 
n-k-l 

n+1 = )I .Ylin = 
2 

= cos2 
i 

n--k-l 
2(n + 1) * ’ 1 

k = 1, 2,. . . , II. 

ln this example the operator K, defined by (1.6) takes a particularly 
convenient form. 

The operator (1.6) is essentially a discrete version of the convolution 
operator 

where 

L,,(J; x) = 1 f(r) R,(t - s) dt, 0 < x sig 1, (2.6) 
- 0 

and 

*l 
I 

R,(t) dt = 1, I? = 1) 2, 3,. , , . 
-1 

Approximation in the space f.,[O, I] via (2.6) is to be considered in [6]; 
(2.6) is close to the method fl, of Bojanic [l] and DeVore [3, Chap. 61. 
DeVore has shown that fl, is optimal in a certain sense. 

We can attain optimality for a version of our discrete operators, using a 
constant weight (Legendre polynomials). Specifically, let IV(X) - 1 be our 
weight function on [--I, I] and let {P,(x)} be the associated orthonormal 
Legendre polynomials. For 0 < x < 1, let W(X) = 242x - 1) = 2 and 



318 SWETITS AND WOOD 

Q,(X) = P,(2x - 1) be the shifted Legendre polynomials. Hence {Qn(~y)J 
is orthonormal on [0, I] with weight M.(X) -12 2. For each n = 1, 2,..., let 
Xln. < x27, cx ’ ..’ < xnn be the zeros of QJx) and let A,, , k -= 1, 2 ,..., II, 
be the associated Cotes numbers (recall Example (2.4). Let 0 < qn < OI~,~-~ 
be the two smallest positive zeros of PJx) for each IZ = 2, 3,... . Notice that 
0 >a -a,, L-2 -a&-1 are the two largest negative zeros of P&X). Define, 
for n = 2, 3,... and -1 5; t .< 1. 

where C, ;- 0 is chosen so that 

i’ R,ct) dt =~: I, Iz :-= 2, 3 ,... 
1 

Hence (recall example 2.4), 

where Yk,zn = 2xk,2n - 1, k =.= 1, 2 ,..., 2n. 
Therefore, for n = 2, 3 ,..., 

liC, = (A-2n,2n + L,,2n ) Y2n + G-(2n-1),2n-1 f h2n--1.2~~1) Em-1 r 

where yanPi denotes the value of 

at t = 01~~~~~ , i = 0, 1. 
Let I8 = {x: 0 < S < .X < I - 6 < 1). For 

n = 2, 3,..., define 
I? x~l, and 

(2.7) 

Thus &(A X) is a positive linear operator from C[O, l] to C(&) and KJf, X) 
is an algebraic polynomial of degree <4n - 8. 
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LEMMA 2.6. For x E I8 and all n su$iciently large, 

where C6 > 0 is a constant. 

Proof. We follow the lines of the proof of Lemma 2.1. By Gauss qua- 
drature, for x E I6 , 

Hence 

&Al, x> = ; 2 ~k,BnM.%,“n - -4 
k=l 

1 1 = - j 2R,(t - s-) dt 
2 0 

1-X 

= .I~, R,(t) dt. 

K,(l, x) - 1 = sl-’ (R,(t) - R,(t)) dt 
--2: 

- j-z R,(t) dt - j1 R,(t) At 
-1 1-x 

=- j-I R,(t) dt - j’ R,(t) dt 
-1 1-X 

= Jz + J3. 
Since x E Ia , 

< & j--l t4R,(t) dt. 
1 

Using the fact that degree of Rn(t) is 4n - 8 and [3, proof of Theorem 6.21, 
we find a constant MI > 0 such that 

A similar estimate holds for 1 J3 (. Hence there is a constant Ci, > 0 such that 



Let c,(t) zm t’, i 0, I, 2. The optimal operators of Dekore [3, p. 1711 are 
defined as follows. 

A sequence of positive, algebraic, polynomial operators L,, is said to be 
optimal on [c, d], if& maps Cl/. b] into C[c, d] and for i 0. ! 

11 ci - L,,(C,)! 0(x’)) 

while for ez , 

I e2 - Ln(CB)j; 0(/z-‘). 

THEOREM 2.7. Operutors (2.7) are optimal OM I,, --= {.Y: 0 -C 6 ~-< s .-Z 
1 - 6 < 1). 

Proof. We have 

11 K,,(e,) - r,, : =~~ o(r’) 

by Lemma 2.6. Let x E Z, . Then 

(2.8) 

By Lemma 2.6, there is a positive constant M,(6), such that 

Next, since R,(t) is even, 

+1--S 
: J, .:: 

I! tRn(t 
-2 

) dt / :m= 1 I” tR,(t) dt -I- i’-g t&(t) dt / 
-a - 0 

=y 1 -- Lx tR,(t) c/t + I’--’ tR,(t) dt ( 
0 
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and, as in Lemma 2.6, this last integral can be estimated by 

where Mz > 0 is a constant. Hence 

j K,(e, ) s) - .Y 1 < Jfp 

for a positive constant M3(8) if x E I, . 
Finally, for x E Is , 

1 K,(e2 , x) - x2 j < j Kn(e2 , x) - x2Kn(eo , x); 

--i / r2(K,(eo , x) - l)[ 

by Lemma 2.6, for some constant M,(S). 
Now 

= 
.c 

’ (P - x2) R,(t - x) dt 
0 

s 

1-X 
z [(t + x)~ - x2] R,(t) dt 

--z 

s 

1-X 
= (t’ + 2tx) R,(t) dt. 

--31 

Thus 

I &de2 - x2eo , x)1 < 1 j--rc PR,(t) dt 1 + 1 2x 1;:’ tR,(t) dt I. 

As above, for a constant M,(6), 

I s 1-z 
2x 

--a: 
tR,(t) dt 1 < y 

and 

(2.9) 
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for some positive constant M, , as in [3, proof of Theorem 6.21. Thus, for 
XEb> 

for a positive constant M,(6). Optimality of (2.7) follows from (2.8) (2.9), 
and (2.10). 

Saturation and related topics for (2.7) have been discussed in [7]. 
It is possible to modify (1.6) so as to obtain the estimate of Theorem 2.3, 

minus the term Ilfil/n2, on all of [0, I]. 
Let g denote the linear map which takes [0, l] onto I. Then g-l maps I onto 

[0, l] and [0, I] onto a larger interval, say [c, d]. For f~ C[O, I] define 
f(x) = f(O), c .< x < 0 and f(x) = f(l), 1 < x < d. Then fo g-l E C[O, l] 
and we define the projection P, from C[O, l] to the constants by P,(h) = h(O) 
for h E C[O, 11. Let OL = P,(f. g-l) = fo g-l(O) and define the linear operator 

Lz(f, 4 = MfO g-l - a, g(x)> t 01, O<x<l. (2.11) 

THEOREM 2.8. For f~ C[O, l] and defined us above on [c, d] = g-l[O, I], 
0 < x < I, and all n sujiciently large, 

where TI is a positive constant which depends only on the choice of the weight 
function w and w(f, .) denotes the modulus of continuity off on [0, 11. 

Proof. Let x E [0, 11. Since g(x) EI and f 0 g-l - 01 E C[O, I], using 
Theorem 2.3, (I .6), and the definition off on [c, d], we obtain 

I L(J; 4 - f(x)1 = I U.f’~ g-l - % g(x)) - (fo g-Y&N - Q 

i 
1 <cpJJ fog-'-a,, ) t 

c2 IIf O $1 - a: II [O, 11 

= QJ (.L A) + C2 Iif $’ - 01 /I Io, Il, (2.12) 

where w(f, .) is the modulus of continuity off on [0, I]. 
By [4, Corollary 3.11 and [ll], 

llf O 8-l - 01 IlrOJl < GPJ(f~ g-l, I), 

where C, > 0 is a constant. 

(2.13) 

Theorem 2.8 follows from (2.12), (2.13), the definition off, and properties 
of the modulus of continuity. 

Notice that (2.11) is discrete but is not a positive operator. 
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