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Implementation and Assessment of Virtual Reality Experiment in 

the Undergraduate Thermo-fluids laboratory 

 

Abstract 

Results are presented from an NSF supported project that is geared towards advancing the 

development and use of virtual reality (VR) laboratories, designed to emulate the learning 

environment of physical laboratories. As part of this project, an experiment in the undergraduate 

thermo-fluids laboratory course titled “Jet Impact Force” was transformed into a 3-D virtual 

reality experiment using the widely used MAYA
R
 and VIRTOOLS 

R 
software. In order to 

facilitate students’ interactions with the newly created 3-D interactive, immersive and 

stereoscopic virtual laboratory environment, the human computer interfaces (HCI) were 

programmed and incorporated in the simulation software. Two immersion levels were included 

in the VR experiment to assess their impact on student learning. The first one namely the desk-

top virtual reality (DTVR) used a computer and a 3-D TV for display while the CAVE virtual 

reality (CVR) employed a computer in conjunction with a three-wall CAVE (acronym for Cave 

Automatic Virtual Environment) for visualizing the  simulation. The above said VR experiment 

was embedded in the thermo-fluids laboratory course in the mechanical engineering curriculum 

at Old Dominion University (ODU) so that it could be used in the supplementation mode for the 

pre-lab practice sessions prior to the physical experiment sessions. To test the efficacy of this 

supplementation pedagogy for enhancement of student learning, both quantitative (quiz) as well 

as qualitative (direct observation and student survey) assessment instruments were used. Of the 

three objectives set for this study two, namely the development and implementation of VR 

experiment and the assessment of impact of immersion levels on student learning were fully 

achieved. Assessment results also showed that the “CVR” module resulted in a higher level of 

student learning when compared with the “DTVR” module. The third objective, namely the 

assessment of the VR experiment in enhancing student learning in the supplementation mode 

was met only partially since the quantitative and qualitative assessments produced divergent 

results. The statistical analysis of the quiz scores of the “experimental” group, consisting of 

students who used the VR experiment for supplementation, and the “control” group (without 

supplementation) showed that the supplementation produced improvements in student learning 

that were statistically insignificant. In contrast the direct observation of both the “experimental” 

and the “control” groups during the physical experiment pointed to student learning gains for the 

“experimental” group. Student surveys showed generally positive disposition of students towards 

the newly introduced VR experiment. 

 

 

P
age 25.724.2



Introduction 

Computer-based immersive visualization in recent years has become an important catalyst in the 

development of virtual reality (VR) laboratories that hold considerable promise for becoming a 

powerful teaching and learning tool in engineering education. The fiscal realities of the shrinking 

resources coupled with escalating cost of modernizing engineering laboratories have prompted 

educators to investigate innovative ways in which VR labs can be used for laboratory instruction. 

Maturation of digital technologies and their sharply declining costs has put cyberinfrastructure 

applications such as virtual reality-based undergraduate engineering labs within the reach of 

many cash strapped engineering institutions. Although virtual reality labs can potentially be used 

in the several educational settings, one application explored in this paper for which VR labs are 

eminently suited involves using them for supplementation of physical laboratories. Students in 

this modality use the VR lab for pre-lab practice sessions prior to conducting a physical 

experiment. This application is expected to enhance students’ knowledge of physical experiment, 

pertaining to objectives, procedure and data collection. Over the years it has been authors’ 

experience that many students in laboratory courses come to physical lab sessions without 

adequate preparation, often not knowing even the main objective of the experiment. This is 

despite instructions to students to review the details of experiments from the lab book provided 

to all students in the course.  Due to their highly visual and immersive nature VR labs are 

expected to remedy this situation and improve students’ preparedness for the physical lab 

sessions. Students’ exposure to an experiment in both physical and virtual domains is expected to 

reinforce students’ learning. Since majority of current engineering students are technology savvy 

visual learners 
[1]

, the highly visual nature of the VR labs is also expected to make students’ lab 

experience engaging and exciting. There is considerable published literature that documents 

student learning gains from the supplementation of classroom instruction with the modern 

technology tools 
[2]

. The authors of the present paper have also demonstrated that 

supplementation of the engineering lecture and lab courses with web-based visualization and 

simulation modules produces student learning gains 
[3-6]

, a conclusion also reached by others 
[7-9]

 

and highlighted in the NSF’s Fostering Learning in the Networked World 
[10] 

. 

Literature review  

Engineering is an applied field that requires hands-on skills. The current educational practice is 

to provide hands-on experience primarily through bench-type experiments in physical 

laboratories. In order to gain acceptance as a tool for laboratory instruction a virtual experiment 

at the very last must include: (a) hands-on activities (interactivity), and (b) a realistic simulation 

of the experiment in a laboratory like environment (immersion). It should be noted that bench-

type physical experiments have drawbacks of high capital cost, limited (one time) exposure to 

experiments and limited students’ interaction with experiments due to large student group sizes. 

As a result student learning does not always reach expected levels 
[11-12]

. Bourne has stated that 

student learning achieved through online virtual experiments may be comparable to learning 

achieved through bench-type physical experiments 
[13]

. The virtual reality experiments do not 
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have some of the drawbacks of bench-type experiments mentioned earlier. However, creation of 

life-like virtual reality laboratories rivaling physical laboratories in providing students hands-on 

experience still remains a daunting task due to technical as well as perceptual challenges. 

Application of virtual labs for providing hands-on experience in laboratory courses has lagged 

because engineering professors generally view physical laboratories as the primary means of 

providing students the hands-on experience for engineering practice. As a result many of them 

are averse to using simulated virtual experiments. Students may also prefer using physical labs 

instead of virtual labs 
[14]

 due to equating of the term “virtual” with the term “non-real”. 

However, it should be pointed out that the definition of “hands-on experience” itself is changing 

as the industry is increasingly relying on computer simulations and virtual reality 
[15]

, and as a 

result the term hands-on experience does not necessarily imply dealing only with physical 

hardware. Instead “hands-on experience” can also be realized in the virtual domain, using 

computers, the internet and virtual reality tools. Some industry leaders as well as education 

leaders have suggested that computer modeling and visualization should be used in the 

interactive mode to promote students’ hands-on skills now being demanded by industry 
[16-17].

 

Virtual laboratories can be broadly classified into four categories 
[18]

, namely recreative 

(simulation without interactivity), interactive, immersive/interactive, and collaborative. At the 

bottom of the hierarchy shown in Fig.1 are the recreative virtual labs that are merely a simulation 

of a physical phenomenon or an experiment, visualized on a computer screen. These simulations 

are used primarily for demonstration of complex physical phenomena. Ability to interact with the 

simulation is not provided to users who just view the simulated phenomenon passively. 

Interactive virtual labs attempt to replicate physical experiment on a computer screen generally 

in two-dimensions. They provide the interactivity feature that allows users to input data and 

receive responses from a simulation which changes dynamically as a result of changing input 

setting such as opening or closing of a valve in a pipeline.  A large percentage of virtual labs 

reported in the literature belong to this category 
[19-24]

, spanning practically every field of 

engineering. Immersive interactive virtual labs represent improvement over interactive virtual 

labs since they provide both interactivity as well as immersion, in three-dimensions. The 3-D 

immersion gives users a sense of presence in a simulated laboratory environment, mimicking 

what one would experience during a physical experiment in a laboratory. Investigators in the 

fields of science, medicine and engineering have developed a number of immersive experiments 

(in the virtual domain) for educational purposes
 [25-29]

. Web-based collaborative experiments use 

online collaboration of computers to allow users to: a) perform experiment as a team whose 

members are geographically distributed, or b) share real time data in scientific experiment which 

is being conducted at a central location. These labs have also been called collaboratories 
[30]

. 

Application of these online collaborative labs to engineering education is still in its infancy. 

However, their potential for use in distance engineering education programs is substantial and 

needs to be explored. The web-based game technology and social network media such as 

“Second life” have advanced rapidly in recent years to allow geographically distributed users to 

either play games collaboratively or to enable their avatars to interact with one another on the 
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web. The Collaborative Web Technologies (CWT) have evolved to the extent that they can be 

also applied to develop collaborative engineering laboratories for web-based engineering 

programs.  

Immersive and 

Collaborative Virtual 

Labs

Immersive Virtual Labs

Interactive Virtual Labs

Recreation of Physical Phenomenon (Simulation and Visualization)

 

Figure1. Classification of virtual laboratories 

 

Objectives and Scope of the Present Work 

The literature review of virtual labs presented in the previous section indicates that the state of 

the art has advanced considerably in recent years. However despite recent developments, the 

research in this field has yet to be translated into strategies that would make virtual reality 

laboratories an integral part of engineering education. The present study is a step in that 

direction. The overarching goal of this study is to advance the development and use of virtual 

reality laboratories that will closely emulate the learning environment of physical engineering 

laboratories. In this pilot study, a 3-D virtual reality experiment emulating a physical experiment 

titled “Jet Impact Force” in the thermo-fluids laboratory course in the mechanical engineering 

curriculum has been developed, implemented and assessed. The VR experiment is used in the 

supplementation mode for pre-lab practice sessions to help prepare students for the physical 

experiment. Two virtual reality environments with different level of immersion have been 

developed and assessed. In the desk-top virtual reality (DTVR), a desk-top computer is coupled 

with a 3-D TV while in the CAVE virtual reality (CVR), a computer is coupled with a three wall 

“CAVE” to create laboratory like 3-D immersive environments for conducting virtual pre-lab 

practice sessions. Both virtual reality versions were implemented and assessed to gage student 

learning gain, due to pre-lab practice sessions. The assessment section in this paper presents the 

“experimental design” and the statistical analysis of collected data to determine the impact of this 

VR experiment on student learning. 
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In summary the main goals of this study are: 

 

(a) Development and implementation of a virtual reality experiment in the thermo-fluids 

laboratory course, 

(b) Quantitative as well as qualitative assessment of the VR experiment as a supplementation 

tool in the lab course, and 

(c) Assessment of impact of different levels of immersion (“DTVR” vs. “CVR”) on student 

learning. 

 

 

Broader Impacts on Engineering Education 

 

The broader impacts of this study relate to educational process in higher education. The project is 

currently geared towards assessment of the virtual reality experiment used in the practice runs 

prior to physical laboratory sessions. Pedagogical results and lessons learned from this project 

are expected to advance the application of VR labs to other educational settings. The VR lab 

development effort and its effectiveness in enhancing student learning is expected to pave 

foundation for development of hybrid labs consisting of an optimal mix of physical and virtual 

experiments. Due to their cost effectiveness, inherent flexibility and the ability to provide hands-

on experience in both physical and virtual domains, the hybrid labs have the potential of 

revitalizing engineering education infrastructure for the new globally competitive knowledge-

based economy. In the other educational setting namely distance learning, virtual reality 

experiments of the type discussed here are expected to become building blocks for development 

of virtual reality labs enabling more advanced distance learning web-based programs that would 

reach a more diverse non-traditional student base. It is interesting to note that Gross has 

identified difficulty in providing laboratory experience on the web as the principal reason for 

paucity of distance learning undergraduate programs
 [31]

. This project also advances the learning 

environment in engineering schools through incorporation of exciting and user friendly modern 

technology-based instructional tools, such as VR labs, that are more in tune with current 

engineering students’ visual learning style
 [1]

 in the modern digital age. 

 

Thermo-fluids Laboratory Experiment 
 

In this junior level laboratory (ME 305), the “Jet Impact Force on Vanes” has been chosen for 

the physical-to-virtual reality experiment transformation. The experiment shown in Fig. 2 

involves determination of jet impact force arising from reversal of a jet after hitting a vane. The 

equation  represents the relationship between force (F), mass flow rate ( ) and type of 

vane (C). Water from a storage tank is pumped through a nozzle to create a jet directed towards a 

vane mounted on a pivoted arm on which a known jockey weight can slide. The deflected beam 

due to the impact of the jet is returned to its balanced (horizontal) position by sliding a jokey 

weight on the spring loaded pivoted arm. The balance position is achieved when the moment of 

the jokey weight about the pivot point equals the moment of the jet force (F). This results in a 

reading of jokey weight displacement L in mm, and determination of force F. The mass flow rate 

( ) is measured by determining the time required to collect a given mass of water in a tank. The 

water collection tank is also mounted on one end of another pivoted arm whose opposite end 
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carries a weight holder. First the collection tank is filled with water until the collection tank 

balances the weight holder. At that point an additional known weight is mounted on the weight 

holder to cause the pivoted arm to go out of balance. The time required to fill in additional water 

so that the pivoted arm is returned to its balance position is recorded. The ratio of additional 

mass of collected water and time required gives the mass flow rate. The experiment is then 

repeated for several flow rates and two other types of vanes. From recorded values of F and  

data, values of C and n are determined. A 3-D virtual reality model of this experiment has been 

developed and embedded in the ME 305 laboratory course (Fig. 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Physical Set-up    3-D Virtual Reality Model 

 

Figure 2: Physical set-up and the 3-D virtual reality experiment 

 

 

Mapping of Physical Experiment into a Virtual Reality Experiment 

 

The physical to virtual domain mapping process is shown in Fig. 3. The first step in the mapping 

process attempts to capture the essence of the physical experiment by preserving geometrical 

details and by ensuring that student generated activities follow a sequence similar to the physical 

experiment. Minimally, the characteristics to be replicated in the virtual domain should be able to 

demonstrate the physics of the experiment. These steps are followed by modeling and simulation 

of the phenomenon and identification of the method of data generation for recreation of the 

phenomenon in the virtual domain. Since perfect (one-to-one) mapping of a physical 

phenomenon into virtual domain is not possible, certain activities in an experiment may have to 

be modeled and simulated. In present study empirical data was used to create all student 

generated activities in the virtual domain. Data outside of expected activities in an experiment, 

such as fix a connection or touch the fluid to get a kinesthetic internal calibration for viscosity, 

were not considered. The second step involves creating a static 3-D CAD model of the physical 

set-up using the  software. This provides the user the ability to view the experimental set-

up from any perspective by rotating the virtual model on a computer screen. This is analogous to 

a student viewing a non-operating physical system by going around it. The third step involves 
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making the 3-D virtual model interactive as well as stereoscopic, using the software 

. After completion of this step students can interact with the software using a 

keyboard or a mouse and observe the animation on a 3-D computer monitor screen. Creating two 

stereoscopic images of the virtual model, one each for the left eye and the right eye, lays the 

foundation for increased immersion at later stages. In the fourth step hand-held interface devices 

such as a game controller is programmed and evaluated for their suitability for serving as the 

interface between user and the VR software for both desk-top as well as “CAVE” immersive 

environments. This step results in a compelling combination of virtual reality software and 

associated interfacial devices which enables students to experience a high level of immersion 

while performing various tasks related to experiment. 

 
 

Figure 3: Steps in physical-to-virtual mapping process 

 

Immersion 
 

The “Jet Impact Force” experiment has been implemented for two levels of immersion. In the 

desk-top virtual reality (DTVR) implementation, a 3-D TV display (screen size 55”) is connected 

to a desk-top computer for running the simulation software and using 3-D glasses to help 

students visualize the virtual 3-D model in a stereoscopic view. The human-computer interfaces 

(HCI) have been created to facilitate student interaction with the DTVR system through 

employment of a key board and mouse, and a game controller. Students have used a game 

controller during the pre-lab practice sessions to interact with the simulation software. It should 

be emphasized that a 3-D TV display represents a one plane or one wall projection system. In 

contrast a “CAVE” represents a higher level immersive virtual reality environment where digital 

projectors are directed to three, four, five or six walls of a room sized cube. In the present case, a 

three wall “CAVE” projection system located in the Engineering and Computational Sciences 

Building (ECSB) at the Old Dominion University campus was used by students for the pre-lab 

practice sessions. The same HCI namely a game controller was used by students to interact with 

the simulation projected on the “CAVE” walls. Due to its intrinsic nature, a “CAVE” provides a 

higher level of immersion giving a feeling to students as if they are part of a laboratory 

environment. In order to accomplish this, other lab equipment’s were also incorporated in the 

simulation so that the “Jet Impact Force” experiment can be viewed as part of a simulated 

laboratory environment.   
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Quantitative and Qualitative Assessment 

 

Overview and Hypothesis used in Assessment 

MAE 305 Thermo-Fluids Lab, Fall semester, 2011 course had three sections and was 

used for implementation and assessment of the VR experiment.  Each section is then partitioned 

into three student groups, each with five or six students that rotate over a number of laboratory 

experiments per week.  One particular laboratory experiment, “Jet Impact Force” in each section 

was implemented with three different learning settings – (1) physical experiment only, (2) prior 

desktop virtual reality (DTVR) practice and posterior physical experiment, and (3) prior CAVE 

virtual reality (CVR) practice and posterior physical experiment – to investigate corresponding 

students learning effectiveness achieved through these modules.  Measures of evaluating students 

learning effectiveness consist of both quantitative (quiz scores) and qualitative (survey and direct 

observation) outcomes.  Since current engineering students at Old Dominion University are 

attuned to interactive visualization due to their familiarity with computers and video gaming, the 

hypothesis is that either “DTVR” or “CVR”  would supplement and enhance student learning 

above and beyond levels achieved through conventional physical experiment only mode. 

 

Assessment Experimental Design 

The Intact Group method was used to assess the impact of different modules on student 

learning. 
[32]

 Among three learning settings, “physical experiment only” mode was set as a 

“control” group, and the remaining two “DTVR” and “CAVE” modules were set as 

“experimental” treatment groups.  The “control” group consisted of students who did not have 

access to either “DTVR” or “CAVE” modules.  Learning of the subject matter in the “control” 

group prior to the physical experiment was achieved mainly through the lab book provided to all 

students. Students in the “experimental” groups supplemented their learning with “DTVR” or 

“CAVE” modules.  A pre-assessment survey containing self-reported questions on student 

learning style (i.e., self-learner, group-learner, interactive-learner, structured-learner, etc.) and 

computer literacy (i.e., intermediated, advanced, level of daily utilization of computer and typical 

utilization category, etc.) was conducted.  Collected data on student learning style and level of 

computer literacy were used to balance each group with similar proportion of students in each 

learning style and computer literacy level so that assessment can be performed unskewed from 

particular learning style and computer literacy level bias. 

 

Quantitative Assessment – Statistical Experimental Design 

To objectively determine whether the implemented modules had contributed to enhanced 

students' learning compared to the pre-implementation condition, i.e., was there any difference in 

the mean scores of quizzes under “Without Module” (=control group) and “With Module” 
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(=experimental group) settings, course outcomes were collected and statistically analyzed.  

Instead of simply comparing the arithmetic means of outcomes and subsequent visual display of 

graphs, which is limited to the descriptive statistics on per-event sample data and seldom 

provides any population-level intrinsicality and reproducibility (=true module effectiveness), 

standard statistical analysis methodology in form of experimental designs was applied to make 

an objective and correct inference about the module effectiveness. 

As a preliminary step, quantitative student outcome dataset, quiz scores, from three 

groups (one “control/Without Module” and two “experimental/With Module”) were evaluated by 

using a median-based one-way, pairwise nonparametric statistics, Wilcoxon Rank Sum statistics 
[33]

 to test the hypotheses on central tendency and dispersion at 95% level of confidence (α 

=0.05). 

 

H0:  µ~ [Quiz{Without Module}] = µ~ [Course Outcomes{With Module}] 

Ha:  µ~ [Course Outcomes{Without Module}] < µ~ [Course Outcomes{With Module}] 

or > µ~ [Course Outcomes{With Module}] 

 

At 95% confidence level, if Wilcoxon Rank Sum p-value is less than 0.05, then a 

conclusion can be made that there is a significant difference between the central tendency of the 

course outcome/quiz score at their population levels, or mean scores of the student performance 

under “Without Module” (=control) and “With Module” (=experimental) settings are different 

To compare contribution of “Without Module” (=control) and “With Module” 

(=experimental) settings toward enhancing students’ learning effectiveness, standard RCB 

(Randomized Complete Block) design 
[34]

 is used to construct control treatment levels (“Without 

Module” and “With Module). All analyses are conducted by using SAS/STAT Statistical 

Analysis System 
[35]

 available on the ODU LIONS SunGRID HPC computing cluster. Statistical 

analysis was performed on quiz scores from three groups (one “control/Without Module” and 

two “DTVR” and “CAVE” experimental/With Module”) using the Statistical Analysis System 

(SAS).  To ensure objectivity, a blinded analysis was conducted without identifying “control”, 

“DTVR” and “CAVE” groups.  Instead, generic group identifications of “Batch 1,” “Batch 

2”and“Batch 3” were used during the analysis. 

The conclusions pertaining to module effectiveness (in form of quiz score only) in 

enhancing student learning are summarized in Table 1.  As reported in the table, the difference in 

module effectiveness (in form of quiz score only) between “Batch 1” and “Batch 2” is 

statistically insignificant, indicating the magnitudes of student learning enhancement achieved by 

“Batch 1” and “Batch 2”modules for the Jet Impact Force experiment in MAE 305 Thermo-

Fluids Lab, Fall semester, 2011 were equivalent.  The difference in module effectiveness (in 

form of quiz score) between “Batch 1” and “Batch 3” is also statistically insignificant, indicating 
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the magnitudes of student learning enhancement achieved by “Batch 1” and “Batch 3”modules 

as being equivalent. 

However, the difference in module effectiveness (in form of quiz score only) between 

“Batch 2” and “Batch 3” is statistically significant, indicating the magnitudes of student learning 

enhancement achieved by “Batch 3” is significantly greater  that by “Batch 2”module.  Since the 

central tendency of “Batch 1” is statistically equal to those of “Batch 2” and “Batch 3” modules, 

this singular difference between “Batch 2” and “Batch 3” needs to be taken with caution, and 

further analysis on demographic factors should be conducted before arriving to a final 

conclusion.  It should be also pointed out that this analysis represents student outcomes from 

only one semester.  Additional and composite analyses by using more semester trials would 

provide more clear and reproducible picture of module effectiveness toward enhancing student 

learning 

 

Table 1.  Test Statistics and p-values for Quiz Score Comparison (α=0.05),  

One-way, Pairwise Nonparametric Wilcoxon Rank Sum Test, 

Jet Impact Force experiment in MAE 305 Thermo-Fluids Lab, Fall Semester, 

2011 (n=39) 

 

Batch 1 

(Mean 

score)in 

percent 

(n=17) 

Batch 2 

(Mean 

score)in 

percent 

(n=17) 

Batch 3 

(Mean 

score)in 

percent 

(n=15) 

p-value Remark 

Batch 1 

vs. Batch 2 
17.8 17.2  0.4375 

Not 

Significant 

Batch 1 

vs. Batch 3 
14.1  19.2 0.0637 

Not 

Significant 

Batch 2 

vs. Batch 3 
 13.8 19.5 0.0421 Significant 

 

Qualitative Assessment- Direct Observation 

Assessment can be quantitative or qualitative 
[36]

.  Both methods have been used in this 

assessment study.   For qualitative assessment, direct observation and survey were conducted on 

both “control” and “experimental” student groups.  
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Qualitative direct observations were made on all three groups from each section while 

conducting the “Jet Impact Force” experiment.  Direct observation was made on overall 

familiarity with the experimental procedure as well as two observatory components of (1) 

Balancing Jockey Weight over the Beam, and (2) Mass Flow Rate Determination during the 

experiment based on the Likert scale of 1 to 5 as shown in Table 2.  Additional motion and group 

kinetic data were collected.  Time lapse measurement was made for the first trial of the 

experiment procedure, immediately followed by circling the observed Likert scale (listed in the 

Table 2) of student familiarity to the observatory component.  Rationale is that after first trial, 

students would become familiarized with procedure regardless of which module (i.e., Physical, 

“DTVR” and “CAVE”) they belong to, and observing effect of such applicable module treatment 

would become difficult.  Rating of “Overall familiarity with the experimental procedure” was 

made right after the third trial of the experiment.  Rationale is that students become quite familiar 

with the procedure by the third trial and yet the observer would still be able to detect the subtle 

differences contributed by different treatments.  After the third trial, observing effect of such 

applicable treatments would become difficult. 

 

Table 2.  Qualitative Direct Observations,  

Jet Impact Force experiment in MAE 305 Thermo-Fluids Lab, Fall Semester, 

2011 (n=39) 

No clue, does not 

appear to have 

any knowledge 

of the required 

procedure 

 

Appear 

recognizing 

elements of the 

required 

procedure with a 

high level of 

hesitation and 

guess 

Reasonable 

understanding of 

the procedure, 

with a level of 

hesitation and 

guess 

 

Fair 

understanding of 

the procedure, 

with a hint of 

trial and error to 

perform the 

required 

procedure 

No guess or 

hesitation, fully 

understand and 

able to perform 

the required 

procedure with 

certaintlimuRy78 

 

Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 

 

By nature, all students in a group conducting the physical experiment will be involved 

with varying levels of engagement. Beta students are more “passive” (or mildly aloof in the 

worst sense) in their involvement level compared to alpha students who are actively involved in 

observed activities 
[37]

. Non- responsive category refers to students who do not respond at all to 

the newly introduced treatment. Alpha students are likely to proactively accept and use the new 

paradigm than Beta students. Thus measuring Alpha-Beta student kinetic would provide an 

insight on different levels of effectiveness of virtual module to the proactive vs. passive 

recipients. If the ratio of Alpha students in a group is larger than typical 10-15% composition, it 
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would indicate that the module was effective enough so that a significant Beta to Alpha 

conversion had occurred before the physical experiment. Thus observing the transition of Beta 

students into Alpha students during the physical experiment would be a good indicator that 

virtual module was effective enough to boost Beta students’ confidence and facilitate them to 

become more “active” for the specific physical experiment. The learning mode of Beta students 

tends to stay “passive” in traditional learning.  

During the direct observation, additional comments on group kinetics including Alpha vs. 

Beta Student interactions were recorded to further understand student response to the virtual 

modules by capturing followings; 

i) Ratio of Alpha- vs. Beta-students in the group, i.e., 2 Alpha and 4 Beta, etc. 

ii) Level of interaction/discussion between Alpha- vs. Alpha-, Alpha- vs. Beta-, and 

Beta- vs. Beta-students, i.e., do Beta-students point out/correct procedural 

mistake(s) made by Alpha-student? 

iii) Gradual change, if there is any, in Alpha- vs. Beta-students ratio in the group at 

the later part of the experiment. 

Table 3 summarizes findings from the direct observation.  For the “Balancing Jockey 

Weight over the Beam” observatory component, Likert scales of both “DTVR” and “CAVE” are 

scored higher than the scale of the “Physical only” group.  The same tendency prevailed in the 

“Mass Flow Rate Determination” observatory component.  Measured time lapse data also 

indicate a similar tendency.  Correspondingly, based on Likert scale aggregates, students in the 

“DTVR” and the “CAVE” modules appeared more familiar with experiment procedures than 

students in the “Physical only” module.  Alpha vs. Beta student group kinetics show that the 

“DTVR” and the “CAVE” modules in general have more Alpha students in its group 

composition, implying the number of students familiar with the experiment procedure via 

“DTVR” or “CAVE” is larger than that of the “Physical only” module.   Interaction among 

group member and the level of involvement were also observed to be higher in the “DTVR” and 

the “CAVE” modules compared to the “Physical only” module. 
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Table 3.  Summary of Qualitative Direct Observations, Jet Impact Force experiment in 

MAE 305 Thermo-Fluids Lab, Fall Semester, 2011 

(Likert scale 1 to 5 with number one and five signifying “not familiar” and “very 

familiar,” respectively 

 

(1) Balancing Jockey Weight over the Beam (n=39) 

 

 Likert Scale Time Lapse (sec) Group Kinetics Comments 

Physical #1 3 16.3 
1 alpha, 3 beta, 2 

non-responsive 
High hesitation  

Physical #2 2 17.2 
1 alpha, rest are 

non-responsive 

Not much  

interest 

Physical #3 1 27.5 2 alpha, 3 beta 

High hesitation, 

low interaction 

among 

DTVR #1 4 8.3 
No alpha-beta 

group observed 

Good interaction 

among group 

members 

DTVR #2 4 6.3 

No alpha-beta 

group except one 

stayed passive 

Good interaction 

among group 

members 

DTVR #3 4 13.0 

2 alpha, 3 beta, 

one stayed 

passive 

High interest in 

alpha group, 

good interaction 

CAVE #1 4 6.6 3 alpha, 3 beta 
Alpha group 

driven 

CAVE #2 4 10.5 1 alpha, 4 beta 
Excellent group 

involvement 

CAVE #3 3 22.2 2 alpha, 3 beta, 

Group 

involvement 

moderate to high 
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Table 3.  Summary of Qualitative Direct Observations, Jet Impact Force experiment in 

(continued) MAE 305 Thermo-Fluids Lab, Fall Semester, 2011 

(Likert scale 1 to 5 with number one and five signifying “not familiar” and “very 

familiar,” respectively) 

 

(2) Mass Flow Rate Determination (n=39) 

 

 Likert Scale Time Lapse (sec) Group Kinetics Comments 

Physical #1 2 19.8 
1 alpha, 3 beta, 2 

non-responsive 
High hesitation  

Physical #2 2 29.2 
1 alpha, rest are 

non-responsive 

Not much  

interest 

Physical #3 2 32.9 2 alpha, 3 beta 

High hesitation, 

low interaction 

among 

DTVR #1 3 20.9 
No alpha-beta 

group observed 

Good interaction 

among group 

members 

DTVR #2 4 15.7 

No alpha-beta 

group except one 

stayed passive 

Good interaction 

among group 

members 

DTVR #3 4 20.6 

2 alpha, 3 beta, 

one stayed 

passive 

High interest in 

alpha group, 

good interaction 

CAVE #1 4 30.3 3 alpha, 3 beta 
Alpha group 

driven 

CAVE #2 4 23.2 1 alpha, 4 beta 
Excellent group 

involvement 

CAVE #3 2 17.9 2 alpha, 3 beta, 

Group 

involvement 

moderate to high 

 

 

Qualitative assessment – Student surveys 

 

At the end of the semester, students in both “control” and “experimental” groups were given a 

survey form containing a series of questions framed to capture qualitative feedback from 
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students concerning various aspects of the experimental modules namely – (i) effectiveness, (ii) 

usability and (iii) future applicability. The survey form used the Likert scale 1 to 5 with number 

one and number five signifying strong disagreement and strong agreement respectively with a 

posed question. The purpose of this qualitative assessment is two-fold: (a) to gage students 

perception (positive or negative) concerning the use of “DTVR” and “CAVE” for 

supplementation of in class learning, and (b) to use students comments and suggestions for 

further improvement of implemented modules. Table 4 shows the survey results for both 

“DTVR” and “CAVE” modules in form of average rating for each of the six questions posed in 

the survey form. The first question pertains to the effectiveness of the modules in preparing 

students for the actual physical experiment session. Average ratings of 4.21 for the “DTVR” 

module and 4.08 for the “CAVE” module indicate that students are generally in agreement with 

the posed question, and consider the modules to be effective in enhancing their understanding of 

experimental procedure. Students’ responses were generally favorable for all questions except 

the second question which relates to enhancement of student understanding of theoretical basis 

for relationship between the jet impact force and mass flow rate. 

 

Table 4:  Student Survey Results (n=39) 

 

No. Questions 
Average Rating 

"DTVR" Group "CAVE" Group 

1 

The pre-lab 3D simulation was helpful in 

understanding activities involved in experimental 

procedure, and was effective in preparing me for the 

actual physical experiment session. 

4.21 4.08 

2 

The pre-lab 3D simulation enhanced my 

understanding of theoretical basis for relationship 

between the jet impact force and mass flow rate. 

3.71 3.15 

3 
The pre-lab 3D simulation exposed me to 

information not really available in lab manual. 
4.07 3.69 

4 The pre-lab 3D simulation was user-friendly 4.00 4.15 

5 
The time allocated for reviewing the pre-lab 3D 

simulation was adequate. 
4.43 4.31 

6 

The pre-lab 3D simulation and visual effects, 

replicated the actual physical experiment well. More 

visualization modules should be developed for other 

physical experiments in the laboratory. 

4.64 4.00 

 

Conclusions 

 

Three goals were set for this project: (a) development and incorporation of virtual reality 

experiment in an engineering laboratory course; (b) comparison of impact of various levels of 

immersion in the VR experiment on student learning and (c) comprehensive assessment of 

student learning gains due to supplementation of the physical experiment with the two versions 
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of VR experiment. All three goals were achieved either fully or partially, as indicated by 

quantitative as well as qualitative assessment instruments used in the study. As discussed earlier, 

the virtual reality experiment was successfully developed and embedded in the thermo-fluids 

laboratory course during the Fall 2011 semester. The second objective related to assessment of 

effects of different levels of immersion on student learning and it was also successfully achieved. 

The quiz results indicated that students using the “CVR” module for pre-lab practice runs learned 

better compared to students who used the “DTVR” module for practice runs. The student 

learning gain as measured by the quiz scores was statistically significant, and indicated that the 

“CVR” module with three wall projection system represented a better learning environment 

compared to the “DTVR” module.  

 

In order to address the student learning achieved through supplementation of the physical 

experiment with virtual pre-lab practice sessions (third goal), both quantitative as well as 

qualitative assessment instruments were used. Analysis of quiz results indicated there was no 

statistically significant improvement in student learning due to either “DTVR” or “CVR” 

supplementation as compared to the “control” group. It is interesting to note that the mean quiz 

score for the “CVR” group increased by about 15 percent over the “control” group mean quiz 

score. However, the analysis showed that this improvement was statistically insignificant. The 

“direct observation” assessment did indicate that students who used either the “DTVR” or the 

“CVR” supplementation: (a) were better prepared for the physical experiment; (b) made fewer 

mistakes; (c) showed better collaboration among group members and (d) completed key 

measurement activities in shorter time span as compared to students in the “control” group. The 

student surveys for the “DTVR” and the “CVR” also corroborated the conclusion in (a). One of 

the reasons for lack of statistically significant student learning gains, gaged through quiz scores, 

may possibly be attributed to differences in demographic profiles of students belonging to 

“control” and “experimental” groups. For instance, differences in cumulative GPA for the two 

groups would make it difficult to interpret the data for student learning gain. Since demographic 

data were not available to authors, further investigation should also account for differences in 

demographic profiles, if any. The author plans to continue to assess the VR experiment in the 

coming semesters to collect more data and to see if any statistically significant differences in the 

outcomes are observed. The author would also like to put forth the argument that for assessing 

the impact of interventions or new treatments in laboratory courses, “direct observation”, though 

a qualitative measure can also be an indicator of the success of new treatments or educational 

strategies of the type discussed here. This is because the “direct observation” rubric used in this 

study is a mix of qualitative as well as quantitative measures such as time lapse data that tends to 

capture the level of students preparedness reasonably well. 

 

In summary, this paper makes contributions in two areas, namely the development of virtual 

reality labs for engineering laboratory courses and assessment of the pedagogy which involves 

using the VR experiment for supplementation of physical laboratory experiments. Although 

ABET outcomes were not directly addressed, one outcome namely “Can use modern engineering 

techniques, skills and tools necessary for engineering practice?” is relevant and directly related to 

the project discussed here. Since most engineers use both physical as well as virtual 

environments in engineering practice, students’ exposure to both physical and virtual reality 

experiments is likely to inculcate in them, the importance of both methods for observing and 

analyzing an engineering phenomenon.  
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