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RESEARCH ARTICLE
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Yanjie Yang1, Hailan Chen2, Michael G. Kong1,2,3*

1 Centre for Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an
Jiaotong University, Xi’an, China, 2 Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk,
United States of America, 3 Department of Electrical and Computer Engineering, Old Dominion University,
Norfolk, United States of America

* dehuixu@hotmail.com (DX); mkong@odu.edu (MGK)

Abstract
Reactive oxygen and nitrogen species produced by cold atmospheric plasma (CAP) are

considered to be the most important species for biomedical applications, including cancer

treatment. However, it is not known which species exert the greatest biological effects, and

the nature of their interactions with tumor cells remains ill-defined. These questions were

addressed in the present study by exposing human mesenchymal stromal and LP-1 cells to

reactive oxygen and nitrogen species produced by CAP and evaluating cell viability. Super-

oxide anion (O2
−) and hydrogen peroxide (H2O2) were the two major species present in

plasma, but their respective concentrations were not sufficient to cause cell death when

used in isolation; however, in the presence of iron, both species enhanced the cell death-in-

ducing effects of plasma. We propose that iron containing proteins in cells catalyze O2
− and

H2O2 into the highly reactive OH radical that can induce cell death. The results demonstrate

how reactive species are transferred to liquid and converted into the OH radical to mediate

cytotoxicity and provide mechanistic insight into the molecular mechanisms underlying

tumor cell death by plasma treatment.

Introduction
Cold atmospheric plasma (CAP), an ionized gas, has many biological applications including
wound healing, surgical procedures, disinfection, and even cancer treatment[1–5]. Dielectric
barrier discharge (DBD) and the plasma jet are two methods for producing CAP; both generate
various kinds of reactive oxygen and nitrogen species (ROS and RNS, respectively), including
hydroxyl radical (OH), hydrogen peroxide (H2O2), ozone (O3), atomic oxygen (O), superoxide
anion (O2

−), nitric oxide (NO), and peroxynitrite anion (ONOO−) [6], which are considered as
the most biologically relevant components of plasma. Reactive species composition in CAP can
be altered by regulating the voltage, frequency, working and feeding gases, and humidity.
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While many studies have shown that CAP is an efficient disinfectant and can also kill normal
as well as tumor cells [7–9], it remains unclear which reactive species are chiefly responsible for
these biological effects.

Since tissues and cells are immersed in liquid, studies have mostly focused on the interaction
of the plasma with a liquid medium. ROS and RNS undergo conversion into different types of
reactive species when transferred from gas to liquid phase. Our previous work showed that O2

−

and H2O2 can permeate in distilled water to a greater extent than other species and may inter-
act with cellular components [10]. Computer simulations have shown that OH, HO2, and
H2O2 can travel deep into a liquid layer to reach biomolecules [11], and that O2

−, ONOO−,
NO3

−, O3, H2O2, and HNOX are the predominant species generated after treatment of a 50–
400 μM thick water layer with a DBD plasma device [12]. Another study that measured O2

−

and OH using the spin trapping compound CYPMPO and detected the signal by electron spin
resonance (ESR) spectrometry showed that O2

− and OH density varied according to plasma jet
settings, although the range of concentrations was not reported [13]. OH radicals in 3 ml of
aqueous solution produced by atmospheric-pressure He plasma jet measured using tere-
phthalic acid (TA) as a spin trapping compound were present at a concentration of 3.3 uM
[14]. The concentration of OH and O2

− in various ionic solutions was about 1–10 μM after a
3 min Ar plasma treatment, as measured by ESR [15]. However, there is no information about
whether these species can interact with biomolecules in liquid medium during plasma
treatment.

The present study investigated this question in human mesenchymal stromal cells (MSCs)
and LP-1 myeloma tumor cells exposed to CAP generated by a plasma jet. The results demon-
strate that O2

− and H2O2 are the two major reactive species in liquid but are present at concen-
trations that are insufficient to cause cell death; this was ultimately induced by the OH radical
generated in situ upon exposure of cells to O2

− and H2O2 in the plasma. These findings provide
insight into the molecular mechanisms underlying plasma-induced tumor cell death, and may
also provide a basis for generating a more powerful plasma enriched with particular reactive
species for biological applications such as cancer treatment.

Materials and Methods

Plasma generation and characterization
CAP was generated by a plasma jet system consisting of a 1 mm powered electrode enclosed in
a quartz tube, with a grounded outer electrode wrapped around a 6.0 mm diameter dielectric
tube (Fig 1). The system also included a gas flow controller, high-voltage power supply, oscillo-
scope, and plasma jet. A gas flow of 2 slm for He/Ar was used at voltages of 10 kHz/8 kV for
He and 10 kHz/10 kV for Ar. The detailed experimental setup is shown in S1 Fig.

Cell culture
Human MSCs and LP-1 cells [16] were cultured in Roswell Park Memorial Institute (RPMI)
1640 medium supplemented with 10% fetal calf serum, 100 U/ml penicillin, 50 µg/ml strepto-
mycin, and 2 mM L-glutamine (all from Hyclone, Logan, UT, USA), in an atmosphere of 5%
CO2 at 37°C. MSCs were trypsinized and refreshed weekly and only cells from nine or fewer
passages were used in the experiments.

Plasma treatment
Normally, cells were cultured in a 24 well plate in 300 ul RPMI1640 medium at a concentration
of 2 × 105 cells. For cell viability assay, MSC cells were cultured in a 96 well plate in 100 ul

OH Regeneration in PlasmaMedicine

PLOS ONE | DOI:10.1371/journal.pone.0128205 June 5, 2015 2 / 14



RPMI1640 medium at a concentration of 1 × 105 cells. Luminescence was measured 24 h after
plasma treatment by directly adding 100 ul of Cell-Titer-Glo reagent into the cells, which could
avoid trypsinization of MSC cells and losing some un-adherent cells after plasma treatment.

Reagents
Radical scavengers were purchased from Sigma (St. Louis, MO, USA) [17]. The scavengers
used were as follows: sodium pyruvate (10 mM) for H2O2 [18]; mannitol (50 mM) for OH
[18]; carboxy-PTIO (100 μM) for NO [18]; trolox (100 μM) for peroxyl radical (ROO•) [19];
uric acid (100 μM) for O3 and ONOO

—[18, 20]; sodium azide (1 mM) for singlet oxygen (1O2)
[18]; and tiron (10 mM) for O2

– [21]. These are specific scavengers with little cross-reactivity
to other ROS and are widely used for investigating the function of particular ROS [17]. Fe(III)-
ethylenediaminetetraacetic acid (EDTA; 1 μM) was purchased from Tokyo Chemical Industry
Co. Ltd. (Tokyo, Japan). Apo- and holo-ferritin were purchased from MP Biomedicals (Santa
Ana, CA, USA).

Cell viability assay
MSCs were seeded in RPMI1640 medium in 96 well optical plates at a concentration of
105cells/100 ul well. After plasma treatment for 30 s, or 1 or 2 min, cells were grown for further

Fig 1. Schematic illustration of the plasma jet used in this study.

doi:10.1371/journal.pone.0128205.g001
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24 h. Cell viability was assessed using the CellTiter-Glo assay (Promega, Madison, WI, USA)
according to the manufacturer’s instructions. CellTiter-Glo measures luminescence to quantify
the level of ATP, which is positively correlated with cell viability. Briefly, 100 ul reagent were
added to 100 ul cells and the mixture was lysed by placing on an orbital shaker for 2 min, fol-
lowed by a 10 min incubation at room temperature. Luminescence was measured with a micro-
plate reader (Varioskan Flash; Thermo Scientific, Waltham, MA, USA).

Observation of morphological changes by microscopy
Cell morphological changes after plasma treatment were examined and imaged using an IX51
inverted phase contrast light microscope (Olympus, Tokyo, Japan). MSCs were normally ad-
herent, with a polygonal shape; dying cells became shrunken and rounded, and detached from
the plate.

Flow cytometry for analysis of apoptosis
Cells were washed twice with Dulbecco’s Phosphate-Buffered Saline without calcium and mag-
nesium (Ca2+/Mg2+-free DPBS; Corning, NY, USA) containing 0.5% bovine serum albumin
and resuspended in 50 μl of 1× binding buffer (0.01 M Hepes/NaOH (pH 7.4), 0.14 M NaCl
and 2.5 mM CaCl2) with 2.0 μl annexin V-fluorescein isothiocyanate (FITC) and 2.0 ul propi-
dium iodide (PI) (Becton Dickinson, Franklin Lakes, NJ, USA) and incubated in the dark at
room temperature for 15 min. An additional 400 μl of binding buffer were added and fluores-
cence was analyzed on an Accuri C6 flow cytometry (Becton Dickinson).

H2O2 assay
H2O2 level was measured using the Amplex Red Hydrogen Peroxide Assay Kit (Invitrogen,
Carlsbad, CA, USA). A working solution of 100 μMAmplex Red reagent and 0.2 U/ml horse-
radish peroxidase (HRP) was prepared beforehand. An H2O2 standard curve was generated
with freshly prepared H2O2 (Invitrogen) concentrations ranging from 0 to 40 μM. A 50 μl vol-
ume of Amplex Red reagent/HRP working solution was added to each microplate well contain-
ing standards, controls, and samples (in a volume of 50 μl). The mixture was incubated at
room temperature for 30 min while shielded from light. The H2O2 concentration was detected
using a microplate reader (Thermo Scientific Varioskan Flash) at excitation and emission
wavelengths of 530–560 nm and ~590 nm, respectively.

Western blotting
Cell pellets were lysed in lysis buffer containing 50 mM Tris, 150 mMNaCl, 1% Nonidet P40,
and 0.25% sodium deoxycholate. Cell debris was removed by centrifugation for 5 min at
14,000 rpm before sample buffer was added. After boiling, samples were separated by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to polyvinyli-
dene difluoride membranes (Bio-Rad, Hercules, CA, USA), which were blocked with PBS con-
taining 5% low-fat milk and 0.1% Tween 20. Membranes were probed with antibodies against
human ferritin heavy chain (FTH1) (1:1000) and β-actin (1:1000) (Cell Signaling Technology,
Danvers, MA, USA). Membranes were washed with PBS containing 0.1% Tween 20 (PBST) for
30 min and then incubated with HRP-conjugated goat anti-rabbit IgG (1:2000 for FTHI) and
anti-mouse IgG (1:2000 for β-actin) for 30 min at room temperature. Membranes were washed
in PBST and imaged using a ChemiDoc-It 510 system (UVP, Upland, CA, USA).

OH Regeneration in PlasmaMedicine
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Coomassie Blue staining
Holo- and apo-transferrin were dissolved at concentrations of 0.1 mg/ml in 300 μl Ca2+/Mg2+-free
DPBS and treated with Ar plasma for 2 or 8 min. Buffer was added and the samples were boiled,
then separated by 12% SDS-PAGE and stained with Coomassie Blue for 20 min, followed by de-
staining for 1 h.

Transfection of MSCs with pre-microRNA (miR)-200b
MSCs were cultured in a 6 well plate at 5 × 105 cells/well in 2 ml RPMI1640 medium. Cells
were transfected with pre-miR-200b (50 nM) using Lipofectamine 2000 (both from Invitrogen)
according to the manufacturer’s instructions. Cells transfected with scrambled RNA oligonu-
cleotide served as a control. Cells were harvested 48 h after transfection for western blot analy-
sis. For the cell viability assay, cells were cultured in a 96 well plate at 105 cells/well in 100 ul
RPMI1640 medium and transfected with pre-miR-200b (50 nM) and scrambled control
miRNA. After 24 h, cells were treated with Ar plasma for 20 s and cell viability was assessed
with the CellTiter-Glo assay 24 h and 48 h later.

Statistical analysis
All experimental conditions were prepared in triplicate and experiments were repeated at least
three times. Data are presented as mean ± SD. Differences between groups were evaluated
using the Mann-Whitney U test. P< 0.05 was considered statistically significant.

Results and Discussion
A 2 slm gas flow was used to produce CAP by plasma jet. Two types of plasma—He + H2O and
Ar—were tested. He + H2O plasma was produced at 10 kHz/8kV with 1% H2O in He gas (1.5
slm dry He gas with 0.5 slm humid He gas), while Ar plasma was produced at 10 kHz/10 kV.
The distance between the plasma jet and liquid was fixed at 1.5 cm. The 2 slm of plasma gas
flow resulted in slight evaporation of the 300 μl volume of medium in the 24 well plate, which
was reduced by about 5 μl after plasma treatment for 2 min (data not shown). Next, MSCs cul-
tured in 100 ul RPMI1640 medium in a 96 well plate were treated with plasma for various
times (10, 30, 60, and 120 s) and cell viability was measured after 24 h. He + H2O and Ar plas-
ma induced MSC apoptosis in a time-dependent manner (Fig 2A); this was accompanied by
morphological changes after 120 s of plasma treatment, with cells gradually shrinking and be-
coming rounded (Fig 2B). A time series detection by flow cytometry of annexin-V and PI-
stained cells showed that the number of annexin-V+ cells gradually increased over 24 h follow-
ing a 60 s Ar plasma treatment (Fig 2C).

To evaluate the interaction between plasma and liquid, a computer simulation was used to
calculate the distribution of different radicals in liquid water with the following set
of equations.

@ci
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þ @Gi

@x
¼ @ci

@t
� @
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ðDi;aq
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� @
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X
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@2V
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P
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εH2O

; E ¼ � @V
@x

8>>>>>>><
>>>>>>>:

The boundary conditions and parameters of this model were described in our previous
work [22]. Among the variety of radicals in the plasma gas phase, certain species were
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transferred further than others: while most disappeared or were converted into other species at
a depth of 1 mm, O2

− and H2O2 reached depths of up to 2 mm (Fig 3A).
When scavengers for particular species were added in order to exclude the effect of the par-

ticular ROS and RNS generated during the process of plasma treatment, we first confirmed
that these scavengers are non-toxic to cells at the working concentrations used in the assays
(data not shown). The results showed that depletion of O2

− or H2O2, but not of other species
such as OH, NO, ROO•, O3, ONOO−, or 1O2, annihilated the effects of plasma treatment, as
seen by the changes in cell viability (Fig 3B) and cell morphology (Fig 3C). These results indi-
cate that O2

− and H2O2 were the predominant species for induction of apoptosis generated by
plasma treatment. Moreover, when 500–600 μl of culture medium were added to each well
(yielding a depth of about 3 mm in a 24 well plate), the plasma treatment induced little or no
cell death (data not shown).

Fig 2. Cell death induced by He + H2O and Ar plasma. (A) Viability of MSCs 24 h after treatment with
plasma for the indicated times. (B) Morphological changes in MSCs 24 h after treatment with plasma for 120
s. Ar gas flow without discharge was used as control. (C) Time course of MSC cell apoptosis by flow
cytometry after Ar plasma treatment for 60 s.

doi:10.1371/journal.pone.0128205.g002

Fig 3. Plasma-induced cell death is reversed by reactive species scavengers. (A) Computer simulation
of the distribution of various species in liquid. (B, C) MSC viability and morphological changes 24 h after
treatment with He + H2O plasma for 60 s in the presence of various scavengers.

doi:10.1371/journal.pone.0128205.g003
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To determine which of O2
− or H2O2 induces the greatest biological effect, cells treated with

H2O2 with or without plasma were compared. H2O2 alone induced cell death at concentrations
of 50–100 μM (Fig 4A). Only H2O2 concentrations> 100 μM caused morphological changes
after 24 h (Fig 4D). H2O2 production was then measured after plasma treatment for different
times. The concentration of H2O2 after a 60 s He + H2O plasma treatment was< 20 μM, sug-
gesting that the H2O2 radical in itself is insufficient for inducing cell death (Fig 4B); H2O2 was
completely abolished by treatment with an H2O2 scavenger, showing that scavenger could be a
useful method to determine the effect of H2O2 (Fig 4C).

Because there is no O2
− reagent, cells treated with O2

− with or without plasma could not be
compared. We therefore attempted to separate O2

− from H2O2 by applying a bias voltage, since
O2

− is electronegative and is attracted by a positive voltage, as summarized in Fig 5.
The basic equations were the same as those previously described. Given the dielectric layer

at the bottom, the charge conservation equation was included to calculate the effect of charge
accumulation.

@rdish

@t
þr � Jdish ¼ 0

Jdish ¼ sdishE

8<
:

Fig 4. Contribution of H2O2 to plasma-induced cell death. (A) Viability of MSCs treated with different
concentrations of H2O2 for 24 h. (B) H2O2 concentration measured by the hydrogen peroxide assay after He
+H2O and Ar plasma treatment for the indicated times. (C) H2O2 concentration measured relative to the
control (20 μMH2O2 solution) after adding H2O2 scavenger. (D) Morphological changes in MSCs treated with
indicated H2O2 concentrations for 24 h.

doi:10.1371/journal.pone.0128205.g004

Fig 5. A schematic diagram for applying a bias voltage.

doi:10.1371/journal.pone.0128205.g005
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The Poisson equation for the dielectric area was also applied.

@2V
@x2

¼
�
P

rnet

εH2O

� rdish

εdish

; E ¼ � @V
@x

8>>><
>>>:

The simulation showed that the penetration depth of O2
− was increased by applying a +20

V bias voltage, while that of H2O2 also increased slightly (Fig 6A). As a neutral species, H2O2

should theoretically be unaffected by a bias voltage. The slight increase observed for H2O2 was
presumed to be caused by O2

−. As stated in our previous work [22], only H2O2, HO2, and O2
−

can exist at a depth of 1 mm; the reactions are as follows.

O�
2 þHþ!97:9%

HO2

O�
2 þH2O!

2:28%
HO2 þ OH�

2HO2!
86:2%

H2O2 þ O2

Fig 6. Contribution of O2− and H2O2 in plasma-induced cell death. (A) The O2
− and H2O2 distribution in

liquid determined after applying a +20 V bias voltage by computer simulation. Broken and the solid lines
represent concentrations of O2

− and H2O2, before and after voltage application, respectively,. (B)
Experimental setup for application of bias voltage. A and B indicate cover node and bias voltage,
respectively. (C) MSCs treated with He + H2O or Ar plasma for 60 s while applying a +20 V bias voltage. The
histogram displays the diameter of the cell death area relative to the control. *P < 0.05.

doi:10.1371/journal.pone.0128205.g006
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Applying a bias voltage increased the penetration depth of O2
−, which may have been partly

converted to H2O2, thereby increasing its concentration.
The experimental setup for testing the above simulation is shown in Fig 6B. Several sizes for

the cover (A) and bias voltage node (B) were tested, and diameters of 1.5 and 5 mm, respective-
ly, were ultimately used. Based on the simulation, the penetration of O2

− was predicted to be
deeper and cover a broader area. Indeed, after applying a bias voltage of +20 V, the area of cell
death cell was increased significantly by a 60 s He + H2O or Ar plasma treatment (Fig 6C). Fur-
thermore, to exclude the effect of H2O2, a scavenger was added to the medium before the bias
voltage was applied. Although O2

− penetration was still deeper and covered a larger area, in the
absence of H2O2, the area of cell death was unchanged (data not shown). These results demon-
strate that H2O2 and O2

− are the major reactive species that induce cell death. However, each
species alone was insufficient to produce this effect, suggesting that a synergistic interaction
occurs.

The suggestion of OH radical production being catalyzed by iron [23] has been experimen-
tally validated by the discovery of several Fenton-like reactions [24–26]. In the iron-catalyzed
Haber–Weiss reaction, OH is produced from H2O2 and O2

− radicals [26].

H2O2 þ O�
2!

Fe2þ=Fe3þ
OH� þ �OHþ O2

It is now widely acknowledged that the Haber–Weiss reaction does not occur in the absence
of metal catalysts [27]; the reaction has been directly observed in the gas phase in the presence
of iron [28].

We set out to determine whether the Haber–Weiss reaction occurs in a plasma-treated cell
system. Findings from previous studies suggested that plasma treatment could provide both
H2O2 and O2

− species at μM concentrations. Cells typically express several iron proteins such
as ferroportin [29, 30], lactoferrin receptor [31], transferrin [32, 33], divalent metal transporter
1 [34, 35], and ferritin [36, 37], among others. These proteins could conceivably catalyze H2O2

and O2
− radicals into a highly reactive OH radical that has more potent biological effects.

To test this hypothesis, transferrin—which is known as holo- or apo-transferrin depending
on whether it is or is not bound to iron, respectively—was examined. Both forms of the protein
(0.1 mg/ml in 300 μl PBS solution) were treated with Ar plasma and protein degradation was
assessed by gel electrophoresis. After an 8 min plasma treatment, holo- but not apo-transferrin
showed significant degradation (Fig 7A), suggesting that the presence of iron resulted in the ca-
talysis of the Haber–Weiss reaction, thereby enhancing the effects of the plasma. It has been re-
ported that the superoxide anion may also induces the release of ferrous iron from transferrin
[38], further facilitating the Haber-Weiss reaction and consequent OH formation. Ferritin ex-
pression was then knocked down with miR-200b [39] and cells were examined for their sensi-
tivity to plasma treatment; the sequences of miR-200b and the complementary site in the
FTH1 gene are shown in Fig 7B. Cell viability was decreased by knockdown of FTH1 gene ex-
pression (Fig 7C). After 24 h of transfection, cells were treated with Ar or He + H2O plasma
(data not shown) for 20 s followed by a 24 h incubation. The downregulation of ferritin expres-
sion by miR-200b as compared to the control transfection was confirmed by western blotting
(Fig 7D), and was associated with a decrease in cell sensitivity to Ar plasma treatment (Fig 7E).
These data suggest that iron proteins act as catalysts that transform H2O2 and O2

− into the
highly reactive OH radical, which then induces cell death.

Iron was added in the form of Fe(III)-EDTA to the plasma-treated cell system to enhance
OH production and consequently cell death. To circumvent the possibility that the penetration
of iron-catalyzed OH would not be sufficiently deep to affect MSCs given their adherence, an
LP-1 cell suspension [16] was used in this experiment. To increase the probability of
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interaction between OH and LP-1 cells, the cells were treated with He + H2O or Ar plasma for
20 s at a relatively high concentration (5 × 106/ml). Fe(III)-EDTA (1 μM) had no effect on cell
viability by itself, but enhanced plasma-induced cell death (Fig 8A). This was confirmed by
flow cytometry in which apoptotic cells were visualized by annexin V-FITC and PI staining
(Fig 8B).

Fig 7. Decreased sensitivity to plasma by knockdown of iron protein expression. (A) Gel
electrophoresis of holo- and apo-transferrin treated with Ar plasma for 2 or 8 min. (B) Sequences of miR-200b
and the complementary site in the FTH1 gene. (C) Viability of MSCs transfected with control miRNA or miR-
200b for 24 or 48 h. (D) FTH1 expression in MSCs transfected for 48 h, as determined by western blotting. (E)
Viability of transfected MSCs 24 h after 20 s of Ar plasma treatment. *P < 0.05. Lipo indicates that only the
transfection agent (Lipofectamine 2000) was added to cells.

doi:10.1371/journal.pone.0128205.g007

Fig 8. Iron enhances plasma-induced cell death. (A) Viability and (B) apoptosis of LP-1 cells 24 h after a
20-s He + H2O or Ar plasma treatment in the presence of Fe(III)-EDTA. *P < 0.05.

doi:10.1371/journal.pone.0128205.g008
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CAP can produce various reactive species such as the OH radical, which is the most highly
reactive and can damage most macromolecules including DNA, proteins, lipids, or polysaccha-
rides. OH is 100 fold more potent than H2O2 and O2

− and can affect molecules located a few
nanometers from its site of generation [40]. However, given its high reactivity, OH has an ex-
tremely short half-life (in the nanosecond range). Thus, although CAP can generate OH radi-
cals at μM concentrations, these species are unlikely to reach cells and cause damage to
biomolecules; this can only be achieved by long-lived H2O2 species [41, 42]. As such, it is de-
batable whether plasma medicine constitutes nothing more than H2O2 treatment. The present
study showed for the first time that two major reactive species—H2O2 and O2

−—can penetrate
to a depth that is sufficient to reach cells; we also propose a novel model of in situ generation of
OH, which acts as the final effector causing cellular damage (Fig 9). This model can explain
why treating cells with H2O2 or O2

− scavengers can reverse the biological effects of plasma
treatment while treatment with an OH scavenger had little effect. The model also highlights
the synergy between H2O2 and O2

− at relatively low concentrations (compared to their respec-
tive lethal doses). Under physiological conditions, H2O2 and O2

− concentrations are rarely
low—estimates for O2

− within the mitochondrial matrix are in the range 10–200 pM [43]—
and therefore the iron-catalyzed Haber-Weiss reaction has a negligible effect on cells. However,
in a plasma-treated cell system, the plasma provides high levels of both H2O2 and O2

−, with
iron-catalyzed OH production thereby greatly influencing cell viability. These findings provide
a basis for achieving optimal biological effects by plasma treatment using this in situmecha-
nism for OH generation.

Conclusion
In conclusion, the present study demonstrated for the first time by biological experiments that
H2O2 and O2

− are the two major reactive species that are produced by plasma treatment. Given
that the concentration of either species is insufficient to induce cell death, we propose that the
OH radical generated in situ of the cells by the Haber–Weiss reaction ultimately causes cell
damage and death.

Fig 9. Model for a plasma-treated cell system and the mechanism of in situOH generation.

doi:10.1371/journal.pone.0128205.g009
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Supporting Information
S1 Fig. Experimental setup for plasma treatment. The apparatus consisted of a gas flow con-
troller, high-voltage power supply, oscilloscope, and plasma jet.
(TIF)
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