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Eyes wide open: Pupil size as a proxy for inhibition
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Abstract A core assumption underlying competitive-
network models of word recognition is that in order for a word
to be recognized, the representations of competing ortho-
graphically similar words must be inhibited. This inhibitory
mechanism is revealed in the masked-priming lexical-decision
task (LDT) when responses to orthographically similar word
prime–target pairs are slower than orthographically different
word prime–target pairs (i.e., inhibitory priming). In English,
however, behavioral evidence for inhibitory priming has been
mixed. In the present study, we utilized a physiological corre-
late of cognitive effort never before used in the masked-
priming LDT, pupil size, to replicate and extend behavioral
demonstrations of inhibitory effects (i.e., Nakayama, Sears, &
Lupker, Journal of Experimental Psychology: Human
Perception and Performance, 34, 1236–1260, 2008, Exp. 1).
Previous research had suggested that pupil size is a reliable
indicator of cognitive load, making it a promising index of
lexical inhibition. Our pupillometric data replicated and ex-
tended previous behavioral findings, in that inhibition was
obtained for orthographically similar word prime–target pairs.
However, our response time data provided only a partial rep-
lication of Nakayama et al. Journal of Experimental
Psychology: Human Perception and Performance, 34,
1236–1260, 2008. These results provide converging lines of
evidence that inhibition operates in word recognition and that

pupillometry is a useful addition to word recognition re-
searchers’ toolbox.

Keywords Masked priming . Pupillometry .Word
recognition . Orthographic priming . Lexical decision

A viable model of visual word recognition should specify not
only what internal representation subserves lexical access, but
also how these representations interact with one another.
According to competitive-network models of visual word rec-
ognition (e.g., the dual-route cascaded model—Coltheart,
Rastle, Perry, Langdon, & Ziegler, 2001; the self-organising
lexical acquisition and recognition model—Davis, 1999; spa-
tial coding model–Davis, 2010; the multiple-read-out mod-
el—Grainger & Jacobs, 1996; and the interactive-activation
model—McClelland & Rumelhart, 1981), similar orthograph-
ic representations (traditionally operationalized as words that
are one letter different, while preserving total length and letter
position; i.e., substitution neighbors (Coltheart et al. 1977))
modulate word recognition through a complex process of fa-
cilitative and inhibitory interactions (Davis, 2003; Lupker &
Davis, 2009). For example, presentation of the word blur ac-
tivates the feature, letter, and lexical representations consistent
with blur, while also partially activating lexical representa-
tions of orthographically similar words, such as blue.
Activated lexical representations are typically thought to com-
pete as a function of frequency via lateral inhibition, with
higher-frequency words acting as stronger competitors by
imparting higher levels of inhibition on their competitors.
The word representation with the most activation Bbeats
down^ its orthographically similar neighbors, resulting in
the winner’s activation level reaching a threshold, and thus
being recognized.
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A paradigm widely used to examine this putative inhibitory
mechanism is the masked-priming lexical-decision task (LDT;
see Grainger, 2008, for a review). In this task, a briefly present-
ed (~60-ms) prime in lowercase letters is preceded by a
premask (####) and is followed by a word or nonword target
in uppercase letters. The target generally remains on the screen
until participants make a speeded word–nonword decision.
Because the prime appears for such a short duration and is
forward- and backward-masked, the masked-priming proce-
dure purportedly taps nonstrategic/automatic lexical processing
(but see Bodner & Masson, 1997, for an alternative account).

Within the framework of competitive-network models, per-
formance in the masked-priming LDT is the result of facilita-
tory and inhibitory interactions (Lupker & Davis, 2009). The
logic is that presentation of the prime leads to the activation of
the prime itself, if it has a lexical entry, as well as of lexical
representations that are orthographically similar to the prime.
This preactivation influences response times (RTs) to the target.
If the target is orthographically similar to the prime, its repre-
sentation is preactivated, allowing the target a head start toward
selection. If there are no strong competitors, the preactivated
target will reach the recognition threshold faster than it would
have otherwise. By contrast, if one or more items create strong
competition for the target, the target’s representation is
inhibited; in this situation, the target must overcome the inhi-
bition in addition to attaining the activation level needed to
meet the recognition threshold. In this way, the presence of
competitors can delay target recognition, resulting in inhibitory
priming (e.g., Lupker & Davis, 2009). Although word primes
are more likely to produce strong competitors than nonword
primes (in part because nonwords do not have their own lexical
entries), inhibitory priming is not guaranteed with word primes.

The behavioral evidence of inhibitory priming has been
mixed. In English, the first demonstrations of inhibitory prim-
ing were provided by Forster, Davis, Schoknecht, and Carter
(1987, Exp. 5) and Davis and Lupker (2006) with substitution
neighbors; however, the finding of inhibitory priming has been
difficult to replicate, calling into question the veracity of an
inhibitory mechanism operating in visual word recognition.
For instance, Forster (1987) and Forster and Veres (1998).
using seven- to eight-letter words, showed either facilitation
or null effects for similar word primes, and not the expected
inhibitory effect.1 Furthermore, Zimmerman and Gomez
(2012, Exp. 1). using Davis and Lupker’s (2006) stimuli, failed
to demonstrate inhibitory priming using the standard masked-
priming paradigm; the expected effect was found only when
long (64-ms) and short (48-ms) duration primes were
intermixed within the same block, thereby suggesting that

attention may moderate inhibitory priming in the masked-
priming paradigm. Nevertheless, other investigators have
succeeded in obtaining inhibitory priming using different
English-language stimulus sets, insofar as the stimuli are short
in length (four to five letters) and have dense neighborhoods
(e.g., Morris & Still, 2012; Nakayama, Sears, & Lupker, 2008).
In sum, the literature shows that inhibitory priming is not al-
ways found when it is expected. Although competitive-
network models can accommodate both the presence and ab-
sence of behavioral inhibitory priming, it seems that inhibitory
priming should be reliably obtained when strong competitors
are used. Therefore, in light of the assumption that lexical in-
hibition plays a key role in word recognition and in
competitive-network models, researchers should continue
working to resolve these disparate findings. One avenue for
further investigation is to use an alternative dependent measure.

Pupillometry

Most studies to date have assessed lexical competition in the
masked-priming LDT using response latencies—which pro-
vide a summative index of processing from perception until
the behavioral response (cf. Massol, Grainger, Dufau, &
Holcomb, 2010). Given the somewhat elusive nature of inhib-
itory priming in the masked-priming LDT using the standard
behavioral measure, the focus of this study will be to examine
a physiological measure not yet utilized in the masked-
priming paradigm—pupillometry (i.e., the measurement of
pupil diameter). Although pupillometry has been used by ex-
perimental psychologists as an indirect measure of psycholog-
ical processing for over half a century, recently there has been
a resurgence of interest in its use (see Laeng, Sirois, &
Gredebäck, 2012, for a review). Although the pupillary re-
sponse is most commonly modulated by low-level processes
(e.g., pupillary light reflex and accommodation), it is also
affected by phasic, task-specific cognitive processing (e.g.,
cognitive effort; Beatty & Lucero-Wagoner, 2000;
Goldwater, 1972). The pupillary response evoked by cogni-
tive effort has been used to examine many higher-level mental
processes, including word recognition (e.g., Kuchinke, Võ,
Hofmann, & Jacobs, 2007; Papesh & Goldinger, 2012).

The increases in pupil size as a function of cognitive effort
are generally no more than 0.5 mm, with the pupillary re-
sponse occurring in as little as 200 ms following stimulus
onset and terminating when processing is completed—the pu-
pillary response typically reaches its peak between 500 and 1,
000 ms after a behavioral response (Beatty & Lucero-
Wagoner, 2000). This small, fast, and involuntary increase in
pupil diameter due to phasic (effortful) processing is called the
task-evoked pupillary response (TEPR; Beatty, 1982). In the
domain of word recognition, one factor thought to modulate
the ease of lexical access is word frequency. In behavioral

1 There is some controversy, however, regarding the interpretation of
these findings. It could be that greater letter overlap between the prime–
target pairs serves to increase sublexical facilitation, which in turn ob-
scures behavioral measures of inhibition (De Moor, Van der Herten, &
Verguts, 2007).
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tasks, high-frequency words engender shorter latencies (and
fewer errors) than low-frequency words—called the word fre-
quency effect (see Monsell, 1991, for a review). The typical
explanation for this phenomenon is that high-frequency words
are more entrenched in memory (i.e., have more robust mental
representations), and thus are easier to process than low-
frequency words. Bolstering this claim, Kuchinke et al.
(2007) examined the TEPRs of high- and low-frequency
words varying in valence, in a single-presentation LDT. A
pupillary word frequency effect was obtained whereby low-
frequency words engendered larger peak pupil dilations than
did high-frequency words. Similarly, Papesh and Goldinger
(2012) found that low-frequency words produced larger
TEPRs than high-frequency words in a modified delayed-
naming task. The aforementioned studies thus provide support
for the utility of pupillometry in examining the cognitive effort
involved in word recognition.

Given the productivity of traditional behavioral measures like
RTs and error rates and the growing body of event-related po-
tential (ERP) and fMRI studies, one might wonder how
pupillometric data could add anything of value to word recogni-
tion research. Generally speaking, we see pupillometry as a rel-
atively low-cost physiological measure that can be obtained
from any commercial eyetracker. As such, it has some advan-
tages over RTs and error rates. One advantage is that data can be
collected continuously, allowing for a more detailed, fine-
grained (temporal) analysis of the effects occurring throughout
a task (see Duñabeitia & Costa, 2014; Papesh & Goldinger,
2012). Furthermore, collecting pupillometric data does not re-
quire overt responses. This is especially useful when the acqui-
sition of overt responses is not possible—for example, in prever-
bal infants (e.g., Hochmann & Papeo, 2014) or in neurological
patients suffering from language impairments (e.g., Laeng et al.,
2012). It is also useful in situations in which overt responses
could contaminate another source of data (e.g., ERP and skin-
conductance responses). Thus, pupil size may provide a more
sensitive index of the underlying psychological mechanisms.

Papesh and Goldinger (2012) have provided a good exam-
ple of how pupillometric data can be informative beyond RTs
and error rates. They utilized a modified delayed-naming task
in their experiment. After a target word was presented, the
participant had to wait 250 to 2,000 ms until a tone was played
before making a response. The tone dictated what response the
participant should give. On 80 % of the trials, participants
simply named the target; the other 20 % were catch trials,
during which participants were signaled to say blah instead
of naming the target word. The purpose of the study was to
examine the effects of word frequency on speech planning.
RTs, error rates, and pupillary data were recorded. On standard
naming trials, a frequency effect was observed in both the RTs
and the pupil data (larger TEPRs for low-frequency than for
high-frequency words). By contrast, on catch trials, frequency
effects were observed only in the pupillary data. The RT

frequency effect on catch trials had been found before (e.g.,
Goldinger, Azuma, Abramson, & Jain, 1997). therefore,
Papesh andGoldinger’s RT results might have been interpreted
as a conceptual failure to replicate. But the presence of a pu-
pillary frequency effect on those catch trials suggests that in the
latter experiment, the RT data lacked sensitivity or were ob-
scured in some way by the delayed-naming task. Therefore,
the pupil data provided a secondary measure for examining
processing during the catch trials. In the present experiment,
however, the advantages of collecting pupillary data go be-
yond increased sensitivity to frequency effects, to the ability
to measure processes that RTs cannot measure. Specifically,
pupil data can be collected before, during, and after a
response has been made. By design, the RT is recorded at the
time the response occurs and is, therefore, seldom able to
capture effects that occur postresponse.2 In their experiment,
Papesh and Goldinger found that pupillary frequency effects
continued after task completion; these data suggest that low-
frequency words demand cognitive resources for an extended
period of time (Papesh & Goldinger, 2012, p.762).

As is illustrated in Papesh and Goldinger (2012). TEPRs
can provide data that RTs cannot. For the purpose of the pres-
ent experiment, TEPRs have another advantage, in that they
seem to be a more selective measure of later-stage processing.
For example, Kuchinke et al. (2007) used an LDT to examine
the effects of frequency and emotional valance on word rec-
ognition. RT data revealed a frequency effect as well as an
effect of emotional valance—faster responses to positive and
negative than to neutral words. The main effects were quali-
fied by an interaction whereby valance effects were larger for
low-frequency words. The pupillary data also revealed a fre-
quency effect, but no statistically significant effect of valence,
and no interaction. Kuchinke et al. posited that this dissocia-
tion arose due to valence affecting a very early stage of pro-
cessing to which the pupil is not sensitive. RTs, at least in the
LDT, index both early and late processes (e.g., Balota &
Chumbley, 1984; Balota & Spieler, 1999). it is possible that
the pupillary response, on the other hand, is sensitive to a
decisional stage, associated with lexical selection difficulty.

To date, the use of pupillometry in word recognition has
been sparse. Nevertheless, pupillometry appears to be a prom-
ising tool for word recognition researchers, particularly those
who are interested in inhibitory processes. Evidence from a
variety of experiments suggests that inhibition results from pro-
cessing difficulty at the lexical stage. For example, using the
standard masked-priming task, Zimmerman and Gomez (2012,
Exp.1) examined the distribution of RTs for similar prime–tar-
get pairs and observed that the magnitude of the inhibitory
effect was greatest at later quantiles. Given that inhibition arises

2 Masson and Kliegl (2013) examined how trial history (i.e., how difficult
or easy previous trials were) moderated the additivity and interactivity of
word frequency and stimulus quality in semantic priming.
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at later quantiles, a decisional component is strongly implicated
in the effect. Similarly, examination of participants’ eye move-
ments during normal reading has revealed that inhibitory pro-
cesses might reflect processing difficulty manifested as misper-
ception of the target word as an orthographic neighbor. That is,
words with higher-frequency neighbors are more likely to show
more total time spent on the target word, spillover, and regres-
sions back to the target word, (e.g., Perea & Pollatsek, 1998;
Slattery, 2009; but cf. Sears et al., 2006). Finally, examining
ERPs, Massol et al. (2010) found that the N400 component (a
negative-going deflection that peaks around 400 ms posttarget
and indexes processing difficulty) is sensitive to lexical inhibi-
tion, whereas an earlier component associated with orthograph-
ic overalp between the prime and target (i.e., the N250) is not.

Given the TEPR’s locus, pupillometry might prove to be a
fruitful method to examine inhibitory processes operating in
word recognition. Previous research has already established
pupil sensitivity to word frequency, but what about ortho-
graphic similarity? In this article, we examine the pupil’s sen-
sitivity to inhibitory effects purported to arise from ortho-
graphically similar words in the masked-priming LDT. We
hypothesize that targets preceded by orthographically similar
word primes will be more difficult to process due to inhibitory
processes associated with the selection of the appropriate lex-
ical candidate. This selection difficulty should result in longer
RTs and larger pupil sizes on trials with orthographically sim-
ilar word primes and targets than in an orthographically dis-
similar control condition.

The present study

In the experiment that follows, we utilized pupillometry, in
addition to recording behavioral responses (RTs and error
rates), to examine inhibitory priming in the masked-priming
LDT. Our rationale for collecting RTs and pupil size was sim-
ple: We wanted to be able to compare the sensitivities of the
two measures to inhibitory priming. Given the equivocal RT
findings in the literature, the addition of pupillometry also
allowed us to have a second dependent measure to assess
inhibitory priming. Finally, this experiment would provide
the first examination of the sensitivity of pupillometry to in-
hibitory processes in the masked-priming LDT.

Classic substitution neighbors were used to examine inhibi-
tory priming; these stimuli were a logical choice, given they have
been the stimuli most used to examine such inhibitory effects.
We adopted a within-item design, which manipulated primes
and held targets constant across similar and different conditions.
The stimuli used herein were adopted from Nakayama et al.
(2008, Exp. 1). who manipulated relative word frequency and
orthographic similarity between the prime and target.

Although the main objectives of this experiment were to
replicate the inhibitory neighbor effect and to examine pupil
sensitivity to inhibition resulting from orthographic similarity,

relative word frequency was also manipulated. If word fre-
quency influences how effectively a prime competes with the
target for recognition, then inhibitory priming should be affect-
ed by the relative prime–target frequency. On the basis of the
assumptions governing competitive-network models, low-
frequency targets preceded by high-frequency neighbor primes
should be more likely to produce inhibitory priming than low-
frequency neighbor primes (e.g., Segui &Grainger, 1990). The
rationale was that because high-frequency primes are at a
higher level of baseline activation than low-frequency primes,
they act as stronger competitors. One should then observe an
interaction between frequency and prime similarity. In English,
at least, the observation of this interaction appears to be mod-
erated by prime neighborhood size—that is, primes with dense
neighborhoods should elicit inhibitory priming, regardless of
the target’s own frequency (Nakayama et al., 2008). Because
the interaction between orthographic similarity and relative
prime–target frequency is a theoretically important aspect of
inhibitory priming, we manipulated relative prime–target fre-
quency while recording pupil size and RTs concomitantly. Can
pupillometry provide a more nuanced examination of lexical
inhibition than RTs alone? We examine this question herein.

Method

Participants

Seventy-six3 Iowa State University undergraduates participat-
ed for course credit. All participants were native speakers of
English and had corrected-to-normal vision.

Stimuli

Forty pairs of substitution neighbor word targets were adopted
from Nakayama et al. (2008, Exp. 1).4 All of their word

3 The number of participants is unusually high for a masked-priming
experiment, but it is pertinent to note that Nakayama, Sears, and Lupker
(2008, Exp. 1) also utilized a large sample size (n=60). Moreover, when
replicating a past finding, it is recommended that a larger sample size be
utilized to ensure adequate power (e.g., Brandt et al., 2014).
4 On the basis of the stimulus list provided in their appendix, three words
appear to have been reused across conditions in Nakayama et al. (2008,
Exp. 1). Barkwas listed as a neighbor prime for the high-frequency target
back and as an unrelated prime for the high-frequency target like. Fork
was listed as a low-frequencyword target and as a similar neighbor for the
nonword target fock. Finally, well was listed as similar prime for the low-
frequency word target bell and as a different prime for mace. In our
design, this reuse of items would cause some primes to be presented more
than once to the same participant. To avoid this, we replaced the repeated
stimuli with words that possessed similar characteristics, to ensure that no
primes or targets appearedmore than once in each list. Torn replaced bark
as the different word prime for the high-frequency word like; dock re-
placed fork as the similar neighbor prime for the nonword target fock; and
bulk replaced well as the different prime for mace.
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stimuli were four letters in length and had a dense neighbor-
hood (M=9.8). Furthermore, each member of their word pairs
served as either a prime or target, depending on the condition.
Each of the word pairs consisted of a high-frequency word
(Kučera & Francis, 1967, mean frequency=529.2) and a low-
frequency word (Kučera & Francis, 1967, mean frequency=
14.6). In their substitution neighbor conditions, if a high-
frequency word was designated as a target, a low-frequency
neighbor served as the prime, and vice versa. In their different
conditions, high-frequency word targets were paired with or-
thographically different (all letters different)primes of lower
normative frequency (Kučera & Francis, 1967, mean frequen-
cy=14.5) but similar neighborhood size (M=9.9); similarly,
low-frequency targets were paired with orthographically dif-
ferent primes of higher normative frequency (Kučera &
Francis, 1967, mean frequency=535.1) but similar neighbor-
hood size (M=7.8). This resulted in four different prime–tar-
get conditions: a high-frequency neighbor prime–low-fre-
quency target condition; a high-frequency different prime–
low-frequency target condition; a low-frequency neighbor
prime–high-frequency target condition; and a low-frequency
different prime–high-frequency target condition. Four
counterbalanced lists were created so that these stimuli could
be presented in each of the conditions without repeating any
items (as a prime or target) for an individual participant. For
example, one list would contain cold–CORD (high-frequency
neighbor prime–low-frequency target condition), another list
rest–CORD (high-frequency different prime–low-frequency
target condition), another list cord–COLD (low-frequency
neighbor prime–high-frequency target condition), and the fi-
nal listmaze–COLD (low-frequency different prime–high-fre-
quency target condition). The English Lexicon Project data-
base (Balota et al., 2007) was used to ensure that all word
stimuli had high accuracy rates (96.9 % for low-frequency
targets and 95.6 % for high-frequency targets).

Forty nonword targets were constructed in a similar manner
to the selection of word targets. All nonword targets were four
letters in length and had a dense neighborhood (M=9.8).
Nonword targets were paired with a neighbor word prime
(Kučera & Francis, 1967, mean frequency=22.1; mean neigh-
borhood size=10) and a different word prime (Kučera &
Francis, 1967, mean frequency=22.9; mean neighborhood
size=10). Two counterbalanced lists were created for the non-
word targets.

Apparatus and procedure

Testing occurred individually under normal indoor lighting
conditions. A chin and forehead rest maintained head position
during the experiment. One computer presented the stimuli via
E-Prime 2.0 software (Psychology Software Tools, Pittsburgh,
PA), while another recorded the eyetracking data. Data were
collected using a Sensomotoric Instruments (SMI; Teltow,

Germany) RED 500 remote eyetracker, which recorded the
horizontal and vertical coordinates of the participants’ pupils
(measured in millimeters) at a sampling rate of 500 Hz. Data
were sampled binocularly, but only data from the left eye were
used. An E-Prime response box recorded participants’ RTs.

Stimuli were presented on a 22-in. thin-film transistor Dell
monitor with a resolution of 1,680×1,050 pixel and refresh
rate of 60 Hz. Participants were seated at a distance of 70 cm
from the monitor. All stimuli appeared in the center of the
screen in black print (Arial font, size 24) on a white back-
ground. This ensured that any changes in pupil diameter could
not be attributed to luminance.

Before the experiment, participants were briefly familiar-
ized with the eyetracker and the procedure. A 9-point calibra-
tion grid was used to ensure gaze accuracy during the exper-
iment. The experiment began with the presentation of a fixa-
tion stimulus in the center of the screen for 1,500 ms. The trial
then progressed as follows: (1)a forward mask was presented
for 500 ms (####); (2)the prime in lowercase letters was pre-
sented for 40 ms; and (3)the target in uppercase letters was
presented until response. Participants indicated, by pressing
one of two buttons, whether the target was a word or a non-
word. The next trial began after a 3,000-ms interval. This long
intertrial interval attenuated the possibility of pupil dilation
effects carrying over from the previous trial. The trial order
was randomized for each participant. Prior to the experiment
proper, participants engaged in ten practice trials. No stimuli
used in the practice trials were utilized in the experiment
proper.

Results

The data from participants with overall error rates greater than
30 % were excluded from further analysis (n=3); participants
with missing pupil data greater than 6 % were also removed
(n=5). All excluded participants were replaced with addition-
al participants in order to maintain complete counterbalancing
across all experiment lists. Therefore, the analyses described
herein include data from 76 participants.

Awidely used analytic technique in psycholinguistics is to
aggregate trial-level data onto subject (F1) and item (F2) levels
and conduct separate analyses of variance (ANOVAs) to en-
sure that both sources of variance (subjects and items) are
treated as random, and not fixed, factors. Obtaining reliable
effects in both analyses meets the F1 ×F2 criterion
(Raaijmakers, Schrijnemakers, & Gremmen, 1999). An alter-
native analytic technique gaining traction within the psycho-
linguistic community is linear mixed modeling (LMM; some-
times called hierarchical linear modeling or multilevel
modeling). Mixed models offer many advantages over the
traditional F1 and F2 tests. Specifically, LMMs can model
item and subject random effects simultaneously, are highly
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flexible (both categorical and continuous predictors can be
utilized), and are purported to be more robust/powerful than
ANOVA (Hoffman & Rovine, 2007; Locker, Hoffman, &
Bovaird, 2007). For our primary analyses, we fit separate
LMMs with subjects and items as crossed random effects on
the trial level, unaggregated correct RTs, and baseline-
corrected pupil diameters using PROC MIXED in SAS
Version 9.3. For error rates, we utilized generalized linear
models using PROC GLIMMEX in SAS Version 9.3.
Degrees of freedom were estimated using the Satterthwaite
approximation. Before the RT and baseline-corrected pupil
diameter analyses took place, all incorrect responses (5 %)
and RTs less than 200 ms and greater than 2,000 ms (2 %)
were excluded. All analyses were performed on untrans-
formed data (log and reciprocal [–1/RT] transformations pro-
duced similar results). As is most often the case in masked
priming, the data from words and nonwords were analyzed
separately.

Behavioral data

Word targets To determine the appropriate random-effects
structure, we began with a maximum model (Barr, Levy,
Scheepers, & Tily, 2013). including the fixed factors frequen-
cy (high vs. low) and similarity (similar vs. different) and their
interaction, and random slopes and intercepts by subjects and
by items. The model was progressively simplified by exclud-
ing each random factor if the more complex model did not fit
the data better. For the response latency analysis, the final
model included fixed effects of frequency and similarity, the
interaction between the two variables, random frequency and
similarity slopes (and their interaction), and intercepts by sub-
jects and random intercepts by items:

RT e Frequency * Similarity

þ Frequency * Similarity Subjectjð Þ þ 1 Itemjð Þ :

Mean RTs and error rates are shown in Table 1. The main
effect of frequency was significant, with longer response la-
tencies for low-frequency than for high-frequency targets,

F(1, 71.7)=32.02, p<.0001.We also found a significant effect
of similarity, with similar prime–target pairs producing longer
latencies than different prime–target pairs, F(1, 146)=4.33,
p= .04. The interaction between frequency and similarity
was significant, F(1, 146)=3.84, p= .05. Simple-effects anal-
yses indicated an inhibitory effect for low-frequency targets,
t(2017.6)=2.87, p=.004, but not for high-frequency targets,
t(1971)=0.08, p=.94.

The accuracy data were tested with a generalized linear
model using a binominal distribution. The final model includ-
ed two fixed effects (frequency and similarity) as well as the
interaction between the two variables, and random frequency
and similarity slopes and intercepts by subjects and random
intercepts by items:

ACC e Frequency * Similarity

þ Frequency þ Similarity Subjectjð Þ þ 1 Itemjð Þ:

Frequency was the only factor that had an effect on accu-
racy, F(1, 94.49)=8.76, p=.004. High-frequency targets were
responded to more accurately (had fewer errors) than low-
frequency targets. No other effects were significant, both Fs
<0.05.

Nonword targets RTs and accuracy for nonword targets were
examined with the same models used above. For the analysis
of response latencies, the final model included the fixed effect
of similarity, along with random intercepts and slopes by sub-
jects and random intercepts by items:

RT e Similarity þ Similarity Subjectjð Þ þ 1 Itemjð Þ:

We found no significant difference between similar and
different prime–nonword target pairs, F(1, 444.13)=0.44,
p=.51. The error analysis did not reveal any difference be-
tween the similar and different conditions, F(1, 3078)=3.07,
p=.08.

Pupil data

When an artifact (e.g., blinks) or any other interruption ap-
pears in the data stream during pupil monitoring, the SMI
RED 500 automatically fills in the pupil diameter with the last
valid pupil value. In some instances, however, data were miss-
ing (i.e., due to uneven trial lengths). When this occurred, the
missing data were linearly interpolated. The missing pupil
data were not systematically distributed, and none of the par-
ticipants whose data were retained had more than 6 %missing
data. The average pupil diameter 200 ms prior to the onset of
the prime served as the baseline for each trial. To calculate the
baseline-corrected peak pupil diameter, we took the baseline
and subtracted it from the max pupil trace that occurred be-
tween prime onset and the end of the trial. All pupil analyses

Table 1 Mean response latencies (in milliseconds) and error rates (in
percentages) for targets as a function of frequency and prime relatedness

Response Latency Percent Error

Condition High
Freq.

Low
Freq.

Nonword High
Freq.

Low
Freq.

Nonword

Similar 619 (22) 748 (22) 831 (23) 1 (1) 7 (1) 11 (1)

Different 618 (22) 708 (22) 837 (23) 2 (1) 6 (1) 9 (1)

Difference –1 –40 6 1 –1 –2

Standard errors are shown in parentheses
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were performed on the trial-level baseline-corrected peak pu-
pil diameters.

Word targets The final model used to analyze the mean
baseline-corrected pupil diameter included two fixed effects
(frequency and similarity) as well as the interaction, with ran-
dom slopes, for the effect of frequency, and intercepts by sub-
jects:

Max e Frequency * Similarity þ Similarity Subjectjð Þ:

The pupillary analysis indicated that low-frequency words
had a greater peak pupil diameter (0.92 mmd), than high-
frequency words (0.87 mmd), F(1, 75.01)=6.28, p=.01.
Furthermore, similar prime–target pairs had a greater peak
pupil diameter (0.93 mmd) than different stimuli (0.87 mmd),
F(1, 74.7)=4.30, p=.04. The interaction between frequency
and similarity was not significant, F(1, 2734)=0.04, p=.85.
The pupillary inhibitory effects were statistically equivalent
for high- and low-frequency targets (0.06 mmd and
0.05 mmd, respectively).

Because this experiment presents the first use of
pupillometric data from the masked-priming LDT, we believe
it will be valuable to further examine how pupil diameter
changes over time. Figure 1 presents the continuous average
baseline-corrected pupillary waveforms obtained in this ex-
periment. These data differ from those analyzed, in that the
continuous graph represents the average pupil dilation in each

condition at specific points in time. The pupillary data associ-
ated with similar and different prime–target pairs for low-
frequency targets appear in the top panel, and pupillary data
for the high-frequency targets appear in the lower panel. It is
clear from the data presented in the two panels that the average
pupil diameters run parallel to the results from our peak pupil
diameter analyses: Low-frequency targets were associated
with greater average pupil diameters than high-frequency tar-
gets, and similar prime–target word pairs were associated with
numerically greater average pupil diameters than different
prime–target word pairs (low-frequency similar M=
0.14 mmd, low-frequency different M=0.11 mmd, high-
frequency similar M=0.10 mmd, high-frequency different
M=0.09 mmd). For both low- and high-frequency targets,
the similar condition produced an extended period of in-
creased pupil diameter in comparison to the different condi-
tion; this difference became stable approximately 1,500 ms
post-target-onset. Although differences did seem to emerge
at the start of the time course, we believe that this is a spurious
effect. It is generally assumed that the effects of lexical pro-
cessing in the TEPR do not emerge until 200–300 ms after
stimulus onset, with the peak not being reached until 500–1,
000 ms postresponse (Kuchinke et al., 2007; Papesh &
Goldinger, 2012). Therefore, we would not expect any sys-
tematic effects to emergewithin the first 300ms. Likewise, the
RTs we obtained in this experiment led us to expect pupil
dilations to peak 1,100–1,600 ms after target onset for high-
frequency targets and 1,200–1,700 ms after target onset for

Fig. 1 Grand-mean averaged baseline-corrected pupil diameters (in millimeters) for low-frequency targets preceded by similar and different primes (top
panel) and for high-frequency targets preceded by similar and different primes (bottom panel)
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low-frequency targets. Finally, it may seem odd that high-
frequency targets in the different condition appear to have a
higher average peak than the similar targets. However, it is
important to note that the different condition peaks earlier and
constricts more quickly than the similar condition. The
protracted period of increased pupil dilation associated with
the similar condition suggests that that condition is more dif-
ficult than the different condition. As can be seen from the
pupillary waveforms, this is warranted, as the pupillary wave-
forms peak after a response is made.

Nonword targets Baseline-corrected peak pupil diameters
were examined with the samemodel used for the word targets.
The final model included the fixed effect of similarity and
random by-subjects intercepts:

RT e Similarity þ 1 Subjectjð Þ:

No significant effect of similarity was apparent, t<0.50.

Discussion

To date, the available literature regarding inhibitory priming
using English stimuli has been mixed; studies have shown all
possible effects (i.e., facilitatory, inhibitory, and null priming
effects; see, e.g., Davis & Lupker, 2006; Forster, 1987; Forster
& Veres, 1998; Morris & Still, 2012; Nakayama et al., 2008).
In the present experiment, we assessed the inhibitory priming
elicited by substitution neighbors in the masked-priming LDT
using standard behavioral measures (i.e., RTs and error rates),
as well as pupillometry—a measure known to index cognitive
effort. By utilizing a physiological measure of cognitive effort,
we hoped to provide another avenue for examining the inhib-
itory effects assumed in competitive-network models, as well
as to provide evidence for the utility of pupillometry in the
masked-priming task.

To summarize, the behavioral data partially replicated
Nakayama et al. (2008, Exp. 1). We observed an interaction
between target frequency and orthographic similarity.
Specifically, an inhibitory RT effect was found for low-
frequency targets preceded by high-frequency neighbor
primes (40 ms), but not for high-frequency targets preceded
by low-frequency neighbor primes (–1 ms). This result is con-
sistent with assumptions about word frequency and lexical
inhibition in competitive-network models. The pupillary re-
sults revealed a frequency effect (Kuchinke et al., 2007;
Papesh & Goldinger, 2012) and, more importantly, a general
inhibitory effect for orthographically similar targets.
Interestingly, our analysis of peak pupil diameter revealed that
the magnitudes of the pupillary inhibitory effect were similar
for both low- and high-frequency targets. Therefore, the

pupillary data provide a conceptual replication of Nakayama
et al.’s Experiment 1 results.

Given these results, two important questions remain: Why
did we find an interaction in the RT data between target
frequency and orthographic similarity, when Nakayama
et al. (2008, Exp. 1) did not, and why do our RT and pupillary
data diverge? One potential reason for the discrepancy be-
tween our behavioral results and Nakayama et al.’s is a differ-
ence in prime stimulus onset asynchronies (SOAs): We used
an SOA of 40 ms, whereas they used an SOA of 50 ms. Like
Nakayama et al., Davis and Lupker (2006, Exp. 1) used a 57-
ms prime SOA and also found no interaction between ortho-
graphic similarity and frequency, although the priming effects
appeared numerically greater for low-frequency targets.5

Previous behavioral findings have indicated that inhibitory
effects tend to increase with prime exposure duration (e.g.,
De Moor et al., 2007; Grainger, 1992). De Moor et al., for
example, utilized an incremental-priming paradigm (Jacobs,
Grainger, & Ferrand, 1995) to examine inhibitory priming at
different prime SOAs and found that employing a prime du-
ration of 57 ms instead of 43 ms increased the amount of
inhibitory priming by 40 ms. One might tentatively assume,
therefore, that our brief prime exposure duration was not suf-
ficient for low-frequency neighbor primes to interfere with
target processing.

Another tenable explanation for the difference between our
study and Nakayama et al. (2008, Exp. 1) is the pace of our
experiment. To ensure that pupils returned to baseline before
the start of the next trial, a long interstimulus interval (i.e., 3,
000 ms) was utilized. This resulted in slower responses, over-
all, than in Nakayama et al. (2008, Exp. 1). The slower re-
sponses may reflect a difference in participants’ attention to
the prime, whereby our participants may have been slower to
engage attention on most trials. When attention is not focused
on the prime, masked-priming effects can be diminished (see,
e.g., Naccache, Blandin, & Dehaene, 2002; but see also
Zimmerman & Gomez, 2012). If our participants allocated
less attention to prime processing, this would disadvantage
processing more for low-frequency than for high-frequency
primes. This could have had the undesired consequence of
attenuating inhibitory priming for the low-frequency prime–
high-frequency target pairs in our experiment.

Although the explanations above are possible, it is also
important to consider how the pupillary data might inform
our interpretation of the RT data. Pupillary changes in this
experiment were thought to index the cognitive difficulty that
arises when more than one competing lexical entry is activat-
ed. Because only one lexical entry can be selected, the other

5 Davis and Lupker (2006) analyzed word and nonword primes together,
so it is possible that they could have found an interaction if they had
analyzed the word prime trials separately. However, Zimmerman and
Gomez (2012) utilized Davis and Lupker’s word prime stimuli and found
no evidence of an interaction.
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competitors must be inhibited. We saw evidence of these in-
hibitory effects for both high- and low-frequency neighbor
targets, and the effects were similar in magnitude. If the pu-
pillary data reflect lexical inhibition, then, it would be inaccu-
rate to say that low-frequency neighbor primes were not inter-
fering with target processing—the tentative explanation for
the behavioral differences between our results and
Nakayama et al.’s (2008, Exp. 1). Instead, it seems plausible
that the inhibition in the low-frequency prime–high-frequency
target conditionswas simply not detectable in the RT data with
our prime SOA. It is not uncommon for RT and pupillometric
data to diverge (e.g., Kuchinke et al., 2007; Papesh &
Goldinger, 2012). The present results bring forth the intrigu-
ing possibility that pupillometry might be more sensitive than
RTs to inhibition operating in the masked-priming paradigm.

Although we did not manipulate the prime SOA in this
experiment, the primary difference between our experiment
and Nakayama et al.’s (2008) Experiment 1 was prime SOA.
It also happens that the behavioral results differed such that
our RTs appeared to be less sensitive to inhibition than those
obtained by Nakayama et al. With this in mind, it is possible
that the LDT is sensitive to prime SOA, whereas the pupil is
less so (since the pupil data mirror the RTs of Nakayama et al.,
2008). If, as Kuchinke et al. (2007) suggested, the pupil is not
sensitive to early processes in the LDT, our results may indi-
cate that prime SOA has an early impact on the LDT and on
the subsequent RT data. Furthermore, those early effects could
obscure the RT data such that lexical inhibition was more
difficult to detect. A high-frequency word prime, for example,
is already at a higher level of baseline activation; thus, a short
prime SOA might not hinder its ability to be an effective
competitor. Low-frequency words, however, are at a lower
level of baseline activation, and thus a short SOA renders
the low-frequency word prime inadequate to induce priming.
Our hypothesis that the pupil is less sensitive to prime SOA
than RTs could easily be tested by manipulating SOA in a
similar masked-priming experiment.

Up to this point, we have simply referred to lexical inhibi-
tion in a relatively generic sense. A more detailed analysis
may be warranted, though. Nakayama et al. (2008) suggested
that prime neighborhood size, in addition to orthographic sim-
ilarity and relative word frequency, is a critical factor in lexical
inhibition. To examine this possibility, Nakayama et al. (Exp.
3) manipulated prime neighborhood size as well as relative
prime–target frequency. When prime neighborhoods were
large, similar amounts of inhibition were obtained in condi-
tions with low-frequency and high-frequency primes. By con-
trast, when prime neighborhoods were sparse, inhibition was
only obtained with high-frequency primes. These findings
suggest that prime neighborhood size modulates the magni-
tude of inhibitory priming. Considering the role of prime
neighborhood size in lexical inhibition and our pupillometric
results, it is quite possible that our pupillary data reflect

inhibition associated specifically with prime neighborhood
size. This hypothesis could be tested by manipulating prime
neighborhood size similar to how Nakayama et al. did in their
Experiment 3. In that test, it would be important to also ma-
nipulate the relative prime–target frequency, to test for the
possibility that pupil dilation is simply insensitive to relative
prime–target frequency.

Conclusion

Previous studies have shown that the size of the pupil is influ-
enced by lexical factors such as word frequency (e.g.,
Kuchinke et al., 2007; Papesh & Goldinger, 2012). Herein,
we have shown for the first time the sensitivity of the pupil to
the cognitive effort associated with competitive interactions
induced by orthographically similar words primes in the
masked-priming LDT. Previous failures to replicate the
inhibitory-priming effect have cast doubt on the existence of
an inhibitory mechanism operating in visual word recognition.
Our results (both behavioral and physiological) bolster this
basic assumption that underlies competitive-network models.
That is, when a word is preceded by an orthographically sim-
ilar word prime, inhibitory processes occur that allow word
identification to take place; this process occurs at a later, lex-
ical stage of processing and requires mental effort.
Furthermore, our results highlight the value of using both
behavioral and physiological measures, such as pupillometry,
to examinemasked-priming effects. Our pupil and RT data did
not perfectly converge; we believe this is because
pupillometry may be more sensitive to inhibitory effects than
are RTs. Because of this, it might be fruitful to use
pupillometry to reexamine studies that have failed to find in-
hibitory priming between word primes and targets (e.g.,
Forster, 1987; Forster & Veres, 1998). In sum, researchers
wanting to examine factors that might influence a later stage
of processing should consider placing pupillometry into their
methodological toolboxes. These results show that
pupillometric data provide a viable avenue for investigating
orthographic masked-priming effects.
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