Efficient Algorithms for Graphs with Few P-4's

Luitpold Babel

Ton Kloks

Jan Kratochvíl
Dieter Kratsch
Kaiko Müller

See next page for additional authors

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_fac_pubs
Part of the Computer Sciences Commons, and the Mathematics Commons

Repository Citation

Babel, Luitpold; Kloks, Ton; Kratochvíl, Jan; Kratsch, Dieter; Müller, Kaiko; and Olariu, Stephan, "Efficient Algorithms for Graphs with Few P-4's" (2001). Computer Science Faculty Publications. 104.
https://digitalcommons.odu.edu/computerscience_fac_pubs/104

Original Publication Citation

Babel, L., Kloks, T., Kratochvil, J., Kratsch, D., Muller, H., \& Olariu, S. (2001). Efficient algorithms for graphs with few P4's. Discrete Mathematics, 235(1-3), 29-51. doi:10.1016/s0012-365x(00)00258-2

Authors

Luitpold Babel, Ton Kloks, Jan Kratochvíl, Dieter Kratsch, Kaiko Müller, and Stephan Olariu

DISCRETE
MATHEMATICS

Efficient algorithms for graphs with few P_{4} 's

Luitpold Babel ${ }^{\mathrm{a}, *}$, Ton Kloks ${ }^{\mathrm{b}, 1}$, Jan Kratochvíl ${ }^{\mathrm{b}, 2}$, Dieter Kratsch ${ }^{\mathrm{c}}$, Haiko Müller ${ }^{\mathrm{c}}$, Stephan Olariu ${ }^{\text {d }}$
${ }^{\text {a }}$ Zentrum Mathematik, Technische Universität München, 80290 München, Germany
${ }^{\mathrm{b}}$ DIMATIA, Charles University, 11800 Praha 1, Czech Republic
${ }^{\mathrm{c}}$ Friedrich-Schiller-Universität Jena, Fakultät für Mathematik und Informatik, 07740 Jena, Germany
${ }^{\mathrm{d}}$ Department of Computer Science, Old Dominion University, Norfolk, VA 23529, USA

Abstract

We show that a large variety of NP-complete problems can be solved efficiently for graphs with 'few' P_{4} 's. We consider domination problems (domination, total domination, independent domination, connected domination and dominating clique), the Steiner tree problem, the vertex ranking problem, the pathwidth problem, the path cover number problem, the hamiltonian circuit problem, the list coloring problem and the precoloring extension problem. We show that all these problems can be solved in linear time for the class of ($q, q-4$)-graphs, for every fixed q. These are graphs for which no set of at most q vertices induces more than $q-4$ different P_{4} 's. (c) 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

Motivated by a number of practical applications (see, e.g., [17]), the classes of (q, t)-graphs have been introduced in [3] in order to capture local density properties of a graph. Specifically, in a (q, t)-graph no set of at most q vertices induces more than t distinct P_{4} 's. In particular, the $(q, q-4)$-graphs extend and generalize the well known and intensively studied cographs and several classes of graphs with few P_{4} 's, as e.g. P_{4}-sparse graphs and P_{4}-extendible graphs for which many NP-complete graph problems can be solved by linear time algorithms [7,10,15,17]. Note that the cographs are precisely the $(4,0)$-graphs, the P_{4}-sparse graphs are the $(5,1)$-graphs and the C_{5}-free P_{4}-extendible graphs coincide with the $(6,2)$-graphs.

It was shown in [1] that the weighted versions of the clique and independent set problem and the chromatic number and clique cover problem, can all be solved in

[^0]linear time for $(q, q-4)$-graphs, for fixed q. In a later paper [2], it was shown that also the treewidth and minimum fill-in problem can be solved in linear time for these classes of graphs. These results are due to a unique tree representation of the primeval decomposition, introduced by Jamison and Olariu [16]. It turns out that, in case of $(q, q-4)$-graphs for fixed q, the problems mentioned above can be solved efficiently for the subgraphs corresponding to the leaves of this tree (the p-components), and that the graph parameters for the subgraphs corresponding to internal nodes can be computed from the corresponding parameters of the children of the node.

In this work, we show that a large variety of problems can be solved efficiently for ($q, q-4$)-graphs. We consider various domination problems, the vertex ranking problem, the Steiner tree problem, pathwidth, vertex ranking, path cover and hamiltonicity, and also the listcoloring and precoloring extension problems. We show that all these problems can be solved in linear time for the class of ($q, q-4$)-graphs, for every fixed q, using a dynamic programming technique on the primeval tree decomposition.
In [15] it was shown that the path cover number can be computed and hamiltonicity can be decided in linear time for P_{4}-sparse and P_{4}-extendible graphs. We extend these results by showing that path cover and hamiltonicity can be solved in linear time for ($q, q-4$)-graphs for every fixed q, thereby settling an open problem mentioned in [15].

We organized this paper as follows. We start with some preliminaries on the primeval decomposition, the homogeneous decomposition and the class of ($q, q-4$)-graphs. Then we give for each of the problems some preliminaries, we show how the problem can be solved for the two basic operations disjoint union and disjoint sum and, finally, we present efficient algorithms for $(q, q-4)$-graphs. For some of the problems we show how homogeneous substitutions can be handled.

2. Preliminaries

In [16], Jamison and Olariu introduced the homogeneous decomposition of a graph, which extends the well-known modular decomposition (see, e.g., [22]). We use the primeval tree decomposition introduced in [16], and the characterization of the p-components of ($q, q-4$)-graphs given in [3] to solve a variety of problems for ($q, q-4$)-graphs.

As usual we denote by P_{k} a chordless path on k vertices (i.e. a P_{k} means an induced path).

Definition 1. A graph $G=(V, E)$ is p-connected if for every partition of V into nonempty subsets V_{1} and V_{2} there is a crossing P_{4}, that is, a P_{4} with vertices both in V_{1} and in V_{2}.

Definition 2. A maximal subset C of vertices such that $G[C]$ is p-connected is called a p-component of G.

It is easy to see (see, e.g., [16]) that each graph has a unique partition into p-components. The p-components are connected and closed under complementation, i.e., a p-component of G is also a p-component of \bar{G}.

Definition 3. A partition $\left(C_{1}, C_{2}\right)$ of a p-component C into nonempty subsets C_{1} and C_{2} is called a separation of C if every P_{4} with vertices both in C_{1} and in C_{2} has both midpoints in C_{1} and both endpoints in C_{2}.

A p-component C is called separable if there is a separation $\left(C_{1}, C_{2}\right)$ of C.

Definition 4. A subset M of V with $1 \leqslant|M| \leqslant|V|$ is called a module if each vertex outside is either adjacent to all vertices of M or to none of them. A module M is called a homogeneous set if $1<|M|<|V|$.

The graph obtained from a graph G by shrinking every maximal homogeneous set to one single vertex is called the characteristic graph of G.

A graph is called split graph if its vertex set splits (can be partitioned into) a clique K and an independent set S. One of the results of [16] (see also [1]) is the following.

Lemma 1. A p-connected graph G is separable if and only if its characteristic graph is a split graph.

Furthermore, in [16] it is shown that the separation $\left(C_{1}, C_{2}\right)$ of a separable p-component C is unique. Clearly, if (K, S) is the splitting of the characteristic graph of $G[C]$, then every module $M \subseteq C_{1}$ shrinks to a vertex in the clique K, and every module $M \subseteq$ C_{2} shrinks to a vertex in the independent set S.

We need the main result of [16], called the structure theorem.

Theorem 1. For an arbitrary graph G exactly one of the following conditions is satisfied:

- G is disconnected.
- \bar{G} is disconnected.
- There is a unique proper separable p-component H of G with separation $\left(H_{1}, H_{2}\right)$ such that every vertex outside H is adjacent to all vertices in H_{1} and to no vertex in H_{2}.
- G is p-connected.

2.1. The primeval decomposition

In order to define the primeval decomposition tree we introduce three graph operations each acting on two graphs G_{1} and G_{2}, corresponding with the first three cases of the structure theorem.

- For operation 0 , both G_{1} and G_{2} are arbitrary graphs. Operation 0 takes the disjoint union of G_{1} and G_{2}.
- For operation 1, both G_{1} and G_{2} are arbitrary. Operation 1 takes the disjoint sum of G_{1} and G_{2}, i.e., every vertex of G_{1} is made adjacent to every vertex of G_{2}.
- For operation $2, G_{1}$ is not arbitrary: G_{1} is a separable p-connected graph with separation $\left(V_{1}^{1}, V_{1}^{2}\right) . G_{2}$ is an arbitrary graph. Operation 2 makes every vertex of G_{2} adjacent to every vertex of V_{1}^{1} and to no vertex of V_{1}^{2}.

These operations suggest a tree representation for arbitrary graphs which is unique up to isomorphism. For our purposes it is more convenient to deal with a binary tree which can be constructed from the original tree in a straightforward way. The leaves of this rooted binary tree are exactly the p-components of the graph. The root corresponds with the input graph G. Internal nodes are labeled with integers $i \in\{0,1,2\}$ where an i-node means that the subgraph at this node is obtained by an i-operation applied to the two subgraphs corresponding to the two sons of the node.

2.2. The homogeneous decomposition

The homogeneous decomposition [16] involves, additionally, the homogeneous sets of the graph. Given the primeval tree, it constructs a new tree representation by loosely speaking - replacing homogeneous sets by single vertices. This substitution is reflected by a fourth operation. Let $G_{0}, H_{1}, \ldots, H_{k}$ be disjoint graphs and let $\left\{x_{1}, \ldots, x_{k}\right\}$ be a set of vertices of G_{0}. The graph G arises from $G_{0}, H_{1}, \ldots, H_{k}$ by means of a 3-operation if every vertex x_{i} in G_{0} is replaced by the graph H_{i} in the obvious way (i.e. all the edges between H_{i} and H_{j} are added if x_{i} and x_{j} are adjacent in G_{0}). In the resulting decomposition tree, the leftmost child of a 3-node represents the characteristic graph, the other children are the subtrees which represent the maximal homogeneous sets as illustrated in Fig. 1.

Baumann [4] developed linear time algorithms which compute the primeval and the homogeneous decomposition tree of an arbitrary graph. These algorithms depend

Fig. 1. A graph and the associated homogeneous decomposition tree.
strongly on known methods which compute the modular decomposition of a graph (see, e.g., [8]).

2.3. (q,q-4)-graphs

Babel and Olariu introduced the following classes of graphs [3].
Definition 5. A graph is a (q, t)-graph if no set of at most q vertices induces more than t distinct P_{4} 's.

Clearly, the (4,0)-graphs are exactly the cographs. A graph is called P_{4}-sparse if it has no induced subgraph isomorphic to one of seven p-connected graphs on five vertices and it turns out that the P_{4}-sparse graphs are exactly the $(5,1)$-graphs. A graph is called P_{4}-extendible if and only if it has no p-component with more than five vertices. (see [15]). Thus, the C_{5}-free P_{4}-extendible graphs are exactly the $(6,2)$-graphs.
The aim of this subsection is to recall the characterization of the p-components of ($q, q-4$)-graphs presented in [3].

Definition 6. A spider is a split graph consisting of a clique and an independent set of equal size at least two such that each vertex of the independent set has precisely one neighbor in the clique and each vertex of the clique has precisely one neighbor in the independent set, or it is the complement of such a graph.

Definition 7. A spider is thin if every vertex of the independent set has precisely one neighbor in the clique. A spider is thick if every vertex of the independent set is nonadjacent to precisely one vertex of the clique.

Notice that a P_{4} is both thick and thin and that this is the smallest spider.
The main reason for the linear time solvability of the various problems for ($q, q-4$)-graphs with fixed q is that the p-components are of a very specific type. This is reflected by the following characterization found by Babel and Olariu [1,3].

Theorem 2. Let G be p-connected.

1. If G is a $(5,1)$-graph then G is a spider.
2. If G is a $(7,3)$-graph then $|V|<7$ or G is a spider.
3. If G is $a(q, q-4)$-graph, $q=6$ or $q \geqslant 8$, then $|V|<q$.

3. Vertex ranking

In this section, we describe a linear time algorithm for the ranking problem on ($q, q-4$)-graphs for fixed q. This generalizes the early results of [24] for the ranking problem on cographs.

Definition 8. Let $G=(V, E)$ be a graph and let t be some integer. A (vertex) t-ranking is a numbering $c: V \rightarrow\{1, \ldots, t\}$ such that for every pair of vertices x and y with $c(x)=c(y)$ and for every path between x and y there is a vertex z on the path with $c(z)>c(x)$.
The (vertex) ranking number of G denoted by $\chi_{\mathrm{r}}(G)$ is the smallest value t for which the graph G admits a t-ranking.

Notice that a ranking is a proper coloring of the graph.
Definition 9. Let $G=(V, E)$ be a graph and let a and b be nonadjacent vertices of G. Then $S \subset V$ is an a, b-separator if the removal of S separates a and b in distinct connected components. If no proper subset of the a, b-separator S is itself an a, b-separator then S is a minimal a,b-separator. Finally, $S \subset V$ is a minimal separator of G if S is a minimal a, b-separator for some nonadjacent vertices a and b of G.

The following lemma appeared first in [9].
Lemma 2. If G is a complete graph on n vertices, $\chi_{\mathrm{r}}(G)=n$. Otherwise,

$$
\chi_{\mathrm{r}}(G)=\min _{S}\left(|S|+\max _{C} \chi_{\mathrm{r}}(C)\right),
$$

where the minimum is taken over all minimal separators S and the maximum is taken over all components C of $G-S$.

A graph H is a supergraph of a graph G if H has the same vertex set as G and the edge set of G is a subset of the edge set of H. A graph G is chordal if each cycle of G of length greater than 3 has a chord, i.e. an edge joining two non consecutive vertices of the cycle. A graph H is a triangulation of a graph G if H is a chordal supergraph of G. A triangulation H of G is P_{4}-free if H has no P_{4} as induced subgraph, i.e. H is a cograph.

We denote by $\omega(G)$ the clique number of the graph G, i.e. the maximum cardinality of a clique of G. For most of our proofs in this section we will make use of the following result presented in [23].

Theorem 3. For any graph G,

$$
\chi_{\mathrm{r}}(G)=\min \left\{\omega(H) \mid H \text { is a } P_{4} \text {-free triangulation of } G\right\} .
$$

First, we consider the disjoint union and the disjoint sum of two graphs.
Lemma 3. Let G be the disjoint union of G_{1} and G_{2}. Then

$$
\chi_{\mathrm{r}}(G)=\max \left(\chi_{\mathrm{r}}\left(G_{1}\right), \chi_{\mathrm{r}}\left(G_{2}\right)\right) .
$$

Lemma 4. Let G be the disjoint sum of $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$

$$
\chi_{\mathrm{r}}(G)=\min \left(\chi_{\mathrm{r}}\left(G_{1}\right)+\left|V_{2}\right|, \chi_{\mathrm{r}}\left(G_{2}\right)+\left|V_{1}\right|\right) .
$$

Proof. Consider a P_{4}-free triangulation H of G. If two vertices of V_{1} are not adjacent in H and two vertices of V_{2} are not adjacent in H then we obtain a chordless cycle of length 4 , which is a contradiction since H is chordal. Hence, either V_{1} or V_{2} induces a complete subgraph in H. This proves the lemma.

Given the primeval decomposition tree of a ($q, q-4$)-graph, we start computing the ranking numbers of the leaves of the tree. By Theorem 2 these leaves are either spiders or graphs of bounded size (with less than q vertices). If the graph is a spider, then the ranking number can be determined using the following lemma given in [24].

Lemma 5. Let G be a split graph with clique K and independent set S such that every vertex of K has at least one neighbor in S. Then $\chi_{\mathrm{r}}(G)=|K|+1$.

If the leaf corresponds to a graph of bounded size, we can simply list all P_{4}-free triangulations in constant time, and look for the one that minimizes the clique number.
Now, we consider an internal vertex of the primeval tree. If the label of this vertex is a 0 -operation, the ranking number of the subgraph can be determined from the ranking number of the two sons using Lemma 3. If the label is a 1 -operation, we can use Lemma 4.

In the rest of this section we concentrate on the type 2-operation. Hence, we assume that the graph G is obtained from a separable p-connected graph $G_{1}=\left(V_{1}, E_{1}\right)$ with separation $\left(V_{1}^{1}, V_{1}^{2}\right)$ and a graph $G_{2}=\left(V_{2}, E_{2}\right)$ by making every vertex of G_{2} adjacent to every vertex of V_{1}^{1}. Since G_{1} is a p-component, G_{1} is either a spider or a graph with less than q vertices of which the characteristic is a split graph by Theorem 2 and Lemma 1.

3.1. G_{1} is a spider

First, consider the case where G_{1} is a spider. Let K be the clique and S be the independent set of G_{1}. Then the separation of G_{1} is (K, S).

Lemma 6. If $V_{2} \neq \emptyset$ then $\chi_{\mathrm{r}}(G)=\chi_{\mathrm{r}}\left(G_{2}\right)+|K|$.
Proof. Label the vertices of G_{2} by an optimal ranking with $1, \ldots, \chi_{\mathrm{r}}\left(G_{2}\right)$. Label the vertices of K with $\chi_{\mathrm{r}}\left(G_{2}\right)+1, \ldots, \chi_{\mathrm{r}}\left(G_{2}\right)+|K|$. Finally, label all vertices of S with 1 . This is a ranking of G implying $\chi_{\mathrm{r}}(G) \leqslant \chi_{\mathrm{r}}\left(G_{2}\right)+|K|$.
Now we show $\chi_{\mathrm{r}}(G) \geqslant \chi_{\mathrm{r}}\left(G_{2}\right)+|K|$. Consider a P_{4}-free triangulation H of G. Then the subgraph H_{2} of H induced by V_{2} is a P_{4}-free triangulation of G_{2}. Hence, $\omega(H) \geqslant \omega\left(H_{2}\right)+|K| \geqslant \chi_{\mathrm{r}}\left(G_{2}\right)+|K|$. This proves the lemma.

3.2. $\left|V_{1}\right|<q$ and the characteristic of G_{1} is a split graph

We consider two types of triangulations of G. First, we consider those P_{4}-free triangulations H_{1} of G_{1} for which V_{1}^{1} is a clique. Let G^{*} be the graph obtained from G by making a clique of V_{1}^{1}. Let H_{2} be a P_{4}-free triangulation of G_{2}. Notice that the 2-operation of H_{1} and H_{2} in this case is always a P_{4}-free triangulation of G. Hence

$$
\chi_{\mathrm{r}}\left(G^{*}\right)=\min _{H_{1}} \max \left(\omega\left(H_{1}\right), \chi_{\mathrm{r}}\left(G_{2}\right)+\left|V_{1}^{1}\right|\right),
$$

where the minimum is taken over all P_{4}-free triangulations H_{1} of G_{1} for which V_{1}^{1} is a clique.
Now, consider the case of a P_{4}-free triangulation H where V_{1}^{1} is not a clique. Let x and y be the two nonadjacent vertices of $H\left[V_{1}^{1}\right]$. Then x and y belong to a maximal homogeneous set $X \subseteq V_{1}^{1}$ of G, since the characteristic graph of $G_{1}\left[V_{1}^{1}\right]$ is complete. Let $S_{X}=V_{1}^{2} \cap N(X)$.
Notice that every minimal x, y-separator of H contains at least the common neighbours of x and y in H. Since in a chordal graph every minimal separator must be a clique (see, e.g., [11]) we see that $\left(V_{1}^{1} \backslash X\right) \cup S_{X} \cup V_{2}$ must be a clique in H. If we make $\left(V_{1}^{1} \backslash X\right) \cup S_{X} \cup V_{2}$ into a clique, and X into a chordal cograph with minimum clique number, it follows that the only P_{4} 's left in the graph must have vertices in $V_{1}^{2} \backslash S_{X}$ and $V_{1}^{1} \backslash X$, where $V_{1}^{1} \backslash X$ is a clique. Hence, to obtain the optimal clique number of this type we have to determine the ranking number of every graph $G_{1}\left[\left(V_{1}^{1} \backslash X\right) \cup\left(V_{1}^{2} \backslash S_{X}\right)\right]$ with $V_{1}^{1} \backslash X$ turned into a clique, for every maximal homogeneous set $X \subseteq V_{1}^{1}$ of G_{1}. Since G_{1} has at most q vertices this can be done in constant time.

Hence we obtain the following result.
Theorem 4. For every integer $q \geqslant 4$, there is a linear time algorithm to determine the vertex ranking number of a ($q, q-4$)-graph.

4. Pathwidth

We show that the pathwidth problem can be solved in polynomial time for (q, $q-4)$-graphs for every fixed q. Note that the pathwidth problem remains NP-complete for starlike graphs [12] and that the characteristic of each starlike graph is a split graph.

Definition 10. A path-decomposition of G is a sequence $\left[X_{1}, X_{2}, \ldots, X_{\ell}\right]$ of subsets of vertices, such that

- every vertex appears in some subset,
- the endvertices of every edge appear in some common subset, and
- for every vertex x, the subsets containing x appear consecutively in the sequence.

The pathwidth of a graph equals the minimum width of a path-decomposition, where the width of a path-decomposition is the maximum size of a subset minus one.

A graph G is an interval graph if it is an intersection graph of a collection of intervals of the real line. Interval graphs form a subclass of the class of chordal graphs (see also [11]). We make use of the well known result (see, e.g., [5]) that the pathwidth of a graph G is equal to the smallest clique number of any interval supergraph of G decreased by one.

We consider the disjoint union and disjoint sum.

Lemma 7. Let G be the disjoint union of G_{1} and G_{2}. Then

$$
\operatorname{pw}(G)=\max \left(\operatorname{pw}\left(G_{1}\right), \operatorname{pw}\left(G_{2}\right)\right)
$$

Lemma 8. Let G be the disjoint sum of $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$. Then

$$
\operatorname{pw}(G)=\min \left(\operatorname{pw}\left(G_{1}\right)+\left|V_{2}\right|, \operatorname{pw}\left(G_{2}\right)+\left|V_{1}\right|\right)
$$

Proof. Let H be an interval supergraph of G. Hence, either V_{1} or V_{2} is a clique in H. Suppose V_{2} is a clique in H. Then $\omega(H)=\omega\left(H\left[V_{1}\right]\right)+\left|V_{2}\right|$. Since $H\left[V_{1}\right]$ is an interval supergraph of G_{1} we obtain $\omega(H) \geqslant \operatorname{pw}\left(G_{1}\right)+1+\left|V_{2}\right|$. Taking an interval supergraph H_{1} of G_{1} with $\omega\left(H_{1}\right)=\operatorname{pw}\left(G_{1}\right)+1$ and making V_{2} a clique we obtain an interval supergraph H of G with $\omega(H)=\operatorname{pw}\left(G_{1}\right)+1+\left|V_{2}\right|$.

Analogously $\omega(H) \geqslant \operatorname{pw}\left(G_{2}\right)+\left|V_{1}\right|$ for each interval supergraph H of G, where V_{1} is a clique of H, and there is an interval supergraph H for which equality holds.

For ($q, q-4$)-graphs we start again with the primeval tree. First, we compute the pathwidth of the leaves. These leaves are either spiders or graphs of bounded size. If the graph is of bounded size, we can simply try all interval supergraphs to find the pathwidth. The following lemma leads to formulas for the pathwidth of spiders. For a proof of this lemma see [19].

Lemma 9. Let G be a split graph with maximum size clique K. Then the pathwidth is either $|K|$ or $|K|-1$. The pathwidth is $|K|-1$ if and only if there are vertices x and y in K with $N(x) \cap N(y) \subseteq K$.

The following corollary takes care of those leaves that are spiders.
Corollary 1. If G is a thin spider with $|K|>1$ then $\operatorname{pw}(G)=|K|-1$. If G is a thick spider with $|K|>2$ then $\operatorname{pw}(G)=|K|$.

Now, we can concentrate on the type 2-operation. We assume that the graph G is obtained from a separable p-connected graph $G_{1}=\left(V_{1}, E_{1}\right)$ with separation $\left(V_{1}^{1}, V_{1}^{2}\right)$ and a graph $G_{2}=\left(V_{2}, E_{2}\right)$ by making every vertex of G_{2} adjacent to every vertex of V_{1}^{1}.

Since G_{1} is a p-component, G_{1} is either a spider or a graph with less than q vertices of which the characteristic is a split graph (Theorem 2 and Lemma 1).

4.1. G_{1} is a spider

First, we consider the case where G_{1} is a spider. Let K be the clique and S be the independent set of G_{1}. Thus, (K, S) is the separation of G_{1}.

Lemma 10. If $V_{2} \neq \emptyset$ then $\operatorname{pw}(G)=\operatorname{pw}\left(G_{2}\right)+|K|$.
Proof. Let H be an interval supergraph of G. Then $\omega(H) \geqslant \omega\left(H\left[K \cup V_{2}\right]\right) \geqslant \operatorname{pw}\left(G_{2}\right)+$ $1+|K|$. Thus, $\operatorname{pw}(G) \geqslant \operatorname{pw}\left(G_{2}\right)+|K|$.
We show that there is a path-decomposition of G of width $\operatorname{pw}\left(G_{2}\right)+|K|$. Take a path-decomposition $\left[X_{1}, X_{2}, \ldots, X_{\ell}\right]$ of G_{2} with width $\mathrm{pw}\left(G_{2}\right)$. Let $S=\left\{s_{1}, s_{2}, \ldots, s_{q}\right\}$. Then $\left[X_{1} \cup K, X_{2} \cup K, \ldots, X_{\ell} \cup K,\left\{s_{1}\right\} \cup K,\left\{s_{2}\right\} \cup K, \ldots,\left\{s_{q}\right\} \cup K\right]$ is path-decomposition of G and its width is $\operatorname{pw}\left(G_{2}\right)+|K|$.

4.2. $\left|V_{1}\right|<q$ and the characteristic of G_{1} is a split graph

Let $\left(V_{1}^{1}, V_{1}^{2}\right)$ be the separation of G_{1}. We consider two cases. First, we consider triangulations of G into an interval graph where V_{1}^{1} is a clique.

4.2.1. Triangulations with V_{1}^{1} a clique

Let G^{*} be the graph obtained from G by making a clique of V_{1}^{1}. By Lemma 8, an optimal path-decomposition of $G^{*}\left[V_{2} \cup V_{1}^{1}\right]$ can be made by adding V_{1}^{1} to every subset of an optimal path-decomposition for G_{2}.
We claim that G^{*} has an optimal path-decomposition in which all subsets containing a vertex of G_{2} occur consecutively. Let $\mathscr{P}=\left[X_{1}, X_{2}, \ldots, X_{\ell}\right]$ be an optimal path-decomposition of G^{*} without this property. Let X_{i} be the leftmost and X_{k} be the rightmost subset containing a vertex of G_{2}. For $j=i, \ldots, k$ let $Y_{j}=X_{j} \backslash V_{2}$ and $Z_{j}=X_{j} \backslash V_{1}^{2}$. Then $\mathscr{P}^{\prime}=\left[X_{1}, \ldots, X_{i-1}, Y_{i}, \ldots, Y_{k}, Z_{i}, \ldots, Z_{k}, X_{k+1}, \ldots, X_{\ell}\right]$ is a path decomposition such that width $\left(\mathscr{P}^{\prime}\right) \leqslant$ width (\mathscr{P}) since $V_{1}^{1} \subseteq Z_{j}$ for $j=i, \ldots, k$. This proves the claim.
Therefore, the algorithm to compute the pathwidth of G^{*} works as follows. Compute all possible path-decompositions for $G^{*}\left[V_{1}\right]$. We can of course restrict to those path-decompositions with subsequent subsets not equal; hence, the set of all possible path-decompositions of $G^{*}\left[V_{1}\right]$ is bounded by a constant depending only on q.
Let $\mathscr{P}=\left[X_{1}, \ldots, X_{\ell}\right]$ be such a path-decomposition. Add $X_{0}=X_{\ell+1}=\emptyset$. Consider the subsequence X_{i}, \ldots, X_{j} of subsets that contain the clique V_{1}^{1} and determine the minimum of $\left|\left(X_{s} \cap X_{s+1}\right) \backslash V_{1}^{1}\right|$ for $s=i-1, \ldots, j$. Let the minimum cardinality be attained for $\left(X_{t} \cap X_{t+1}\right) \backslash V_{1}^{1}$. Then a path-decomposition for G^{*} can be obtained by making an optimal path-decomposition for G_{2}, adding $V_{1}^{1} \cup\left(X_{t} \cap X_{t+1}\right)$ to every subset and putting this sequence of subsets between X_{t} and X_{t+1} in the path-decomposition \mathscr{P}. Then the width of this path-decomposition is max $\left(\operatorname{width}(\mathscr{P}), \operatorname{pw}\left(G_{2}\right)+\left|V_{1}^{1} \cup\left(X_{t} \cap X_{t+1}\right)\right|\right)$.

Consequently, the pathwidth of G^{*} can be computed in linear time.

4.2.2. Triangulations with V_{1}^{1} not a clique

Now, consider the case where V_{1}^{1} is not a clique in an optimal interval supergraph H of G. Then there is a maximal homogeneous set X of $G_{1}\left[V_{1}^{1}\right]$ with vertices x and y that are nonadjacent in H. The common neighbors of x and y must form a clique in H. Hence, in H, $\left(V_{1}^{1}-X\right) \cup S_{X} \cup V_{2}$ is a clique, where S_{X} is the set of all those vertices of V_{1}^{2} which are adjacent to a vertex in X (and thus to all vertices of X) in G.

Hence, an optimal path-decomposition for $G\left[V_{1}^{1} \cup S_{X} \cup V_{2}\right]$ with clique $\left(V_{1}^{1}-X\right) \cup$ $S_{X} \cup V_{2}$ consists of an optimal path-decomposition of $G[X]$ with $S_{X} \cup V_{2} \cup\left(V_{1}^{1}-X\right)$ added to every subset. Since $|X|<q$, an optimal path-decomposition of $G[X]$ can be found in constant time.
If $\left|V_{2}\right|<q$ then the graph G has at most $2 q-2$ vertices, thus its pathwidth can be determined in constant time. Otherwise, the optimal width of a path-decomposition of G for which the maximal module X of $G\left[V_{1}^{1}\right]$ is not a clique is equal to the optimal width of a path-decomposition of $G\left[V_{1}^{1} \cup S_{X} \cup V_{2}\right]$ with clique $\left(V_{1}^{1}-X\right) \cup S_{X} \cup V_{2}$. This is a consequence of the fact that a subset $\left(V_{1}^{1}-X\right) \cup\left(S-S_{X}\right)$ can be added to the latter path-decomposition without increasing its width, since $\left|V_{2}\right|-1 \geqslant q-1$.

Varying over all possible maximal modules X of $G_{1}\left[V_{1}^{1}\right]$ we obtain the smallest width of a path-decomposition of G in this case.

Theorem 5. For every integer $q \geqslant 4$, there exists a linear time algorithm to compute the pathwidth for ($q, q-4$)-graphs.

5. Path cover and hamiltonicity

In this section, we show how to decide hamiltonicity and how to compute the path cover number of a $(q, q-4)$-graph for fixed q in linear time. This extends the corresponding results of [15] on P_{4}-sparse and P_{4}-extendible graphs.

Definition 11. A family P_{1}, \ldots, P_{k} of paths in G is called a path cover of G if every vertex of G is contained in exactly one of these paths. The path cover number $\pi(G)$ of G is the minimum cardinality of a path cover of G.

First, we consider the disjoint union and the disjoint sum of two graphs.
Lemma 11 (Hochstättler [15]). Let G be the disjoint union of G_{1} and G_{2}. Then $\pi(G)=\pi\left(G_{1}\right)+\pi\left(G_{2}\right)$.

Lemma 12. Let G be the disjoint sum of G_{1} and G_{2}. Let $m=\max \left(\pi\left(G_{1}\right)-\left|V_{2}\right|\right.$, $\left.\pi\left(G_{2}\right)-\left|V_{1}\right|\right)$. Then G is hamiltonian if and only if $m \leqslant 0$. The path cover number satisfies $\pi(G)=\max (1, m)$.

Proof. Assume G is hamiltonian. Consider a hamiltonian cycle of G. It induces a path cover P_{1}, \ldots, P_{ℓ} for G_{1} and a path cover Q_{1}, \ldots, Q_{ℓ} for G_{2}. Then clearly $\pi\left(G_{1}\right) \leqslant \ell \leqslant\left|V_{2}\right|$ and $\pi\left(G_{2}\right) \leqslant \ell \leqslant\left|V_{1}\right|$. Hence $m \leqslant 0$.
For the remaining parts of the proof we refer to Lemma 3 in [15].
Notice that the hamiltonian circuit problem is NP-complete for split graphs [11, p. 155].
Now we consider spiders.
Lemma 13 (Hochstättler [15]). Let G be a spider with clique K. If G is a thin spider then $\pi(G)=\left\lceil\frac{1}{2}|K|\right\rceil$. If G is a thick spider with $|K|>2$ then G is hamiltonian.

We concentrate on the type 2 -operation. We assume that the graph G is obtained from a separable p-connected graph $G_{1}=\left(V_{1}, E_{1}\right)$ with separation $\left(V_{1}^{1}, V_{1}^{2}\right)$ and a graph $G_{2}=\left(V_{2}, E_{2}\right)$ by making every vertex of G_{2} adjacent to every vertex of V_{1}^{1}. Since G_{1} is a p-component, G_{1} is either a spider or a graph with less than q vertices of which the characteristic is a split graph (Theorem 2 and Lemma 1).

5.1. G_{1} is a spider

We can refer one more time to [15]. Let the clique of G_{1} be K.
Lemma 14. If G_{1} is a thin spider then

$$
\pi(G)=\pi\left(G_{2}\right)+\max \left(0,\left\lceil\frac{1}{2}|K|\right\rceil-\pi\left(G_{2}\right)\right)
$$

and if G_{1} is a thick spider with $|K|>2$ then $\pi(G)=\pi\left(G_{2}\right)$.

5.2. $\left|V_{1}\right|<q$ and the characteristic of G_{1} is a split graph

Any path cover P_{1}, \ldots, P_{ℓ} of G contains a path cover of G_{2} of size j with $\pi\left(G_{2}\right) \leqslant j \leqslant\left|V_{2}\right|$, which can be obtained by removing all vertices of G_{1}. Consider the paths containing vertices of G_{1} and G_{2} in any path cover of G. These are at most q paths since $\left|V_{1}\right|<q$. Removing all vertices in V_{1}^{1} from these paths, we obtain at most $2 q$ subpaths in G_{2}.
By the above observations we may shrink all subpaths of G_{2} in a path of a path cover of G into a single vertex. Therefore, we consider graphs H_{j} which are obtained by a 2 -operation of G_{1} with separation $\left(V_{1}^{1}, V_{1}^{2}\right)$ and an empty graph on j vertices.

Clearly, $\pi(G)$ can be computed in constant time if $\left|V_{2}\right| \leqslant 2 q$. Thus, we may assume $2 q<\left|V_{2}\right|$. Then $\pi(G)$ can be obtained by computing the path cover number of all graphs H_{j} for which either $\pi\left(G_{2}\right) \leqslant j \leqslant 2 q$, if $\pi\left(G_{2}\right) \leqslant 2 q$, or only for $H_{2 q}$, if $2 q>\pi\left(G_{2}\right)$. These values can be computed in constant time since there are at most $2 q$ graphs H_{j} and each of these graphs has at most $3 q$ vertices.

Now, $\pi(G)=\min \left\{\pi\left(H_{j}\right): \pi\left(G_{2}\right) \leqslant j \leqslant 2 q\right\}$ if $\pi\left(G_{2}\right) \leqslant 2 q$ and $\pi(G)=\pi\left(H_{2 q}\right)+$ $\pi\left(G_{2}\right)-2 q$ if $2 q>\pi\left(G_{2}\right)$.

Hamiltonicity can be checked in a similar manner. Thus, we obtain the following result.

Theorem 6. For every integer $q \geqslant 4$, there exists a linear time algorithm to decide whether a ($q, q-4)$-graph is hamiltonian and to determine its path cover number.

6. Independent domination

In the following sections, we demonstrate that various domination problems can be solved very efficiently on ($q, q-4$)-graphs.

Definition 12. A set D of vertices is a dominating set if every vertex in $V \backslash D$ has a neighbor in D.

The minimum dominating set problem asks to determine a dominating set of smallest cardinality. In the weighted version, each vertex v of the graph is assigned a nonnegative weight $w(v)$ and the problem is to find a dominating set of smallest total weight.

In many applications (see, e.g., $[13,14]$) dominating sets are subject to additional constraints. In particular, one is frequently interested in dominating sets which are either independent or cliques or induce connected subgraphs. The parameters $\gamma_{\mathrm{i}}(G), \gamma_{\mathrm{cl}}(G)$, and $\gamma_{\mathrm{c}}(G)$ denote, respectively, the independent domination number, the dominating clique number, and the connected domination number, that is, the smallest weight of an independent, complete, and connected dominating set in G.

In this section, we show how the independent domination problem can be solved using the homogeneous decomposition of a graph. The following lemma is obvious.

Lemma 15. If G is the disjoint union of graphs G_{1} and G_{2} then

$$
\gamma_{\mathrm{i}}(G)=\gamma_{\mathrm{i}}\left(G_{1}\right)+\gamma_{\mathrm{i}}\left(G_{2}\right)
$$

Lemma 16. Let G be the disjoint sum of graphs G_{1} and G_{2}. Then

$$
\gamma_{\mathrm{i}}(G)=\min \left(\gamma_{\mathrm{i}}\left(G_{1}\right), \gamma_{\mathrm{i}}\left(G_{2}\right)\right)
$$

Proof. An independent dominating set in G contains vertices from exactly one of the subgraphs G_{i}.

Now, we consider a 3-operation. Let H be a homogeneous set in G. We denote by $N(H)$ the set of all neighbors of vertices from H. If an independent dominating set contains no vertices from $N(H)$ then it must consist of an independent dominating set in H and an independent dominating set in $G \backslash(H \cup N(H))$. On the other hand,
if it contains a vertex from $N(H)$ then it does not contain a vertex from H. This observation implies that $\gamma_{\mathrm{i}}(G)=\gamma_{\mathrm{i}}\left(G_{H}\right)$, where G_{H} denotes the graph obtained from G by replacing H by a single vertex of weight $\gamma_{i}(H)$.

Hence, if G arises by a 3 -operation involving homogeneous sets H_{1}, \ldots, H_{k}, then it suffices to solve the problem on the characteristic graph of G. Naturally, the weight of the vertex representing the homogeneous set H is $\gamma_{i}(H)$.

Assume that G arises by a 2 -operation. Then G consists of a separable p-component G_{1} and of a subgraph G_{2} outside G_{1} which is adjacent to G_{1} as stipulated in Theorem 1. By Lemma 1, the characteristic graph of G is a split graph. If the weights of all vertices representing homogeneous sets are already known, then we can easily solve the problem for G. For that purpose, denote the vertices of the clique by y_{1}, \ldots, y_{r} and the vertices of the independent set by $z_{0}, z_{1}, \ldots, z_{s}$. The vertex z_{0} represents the homogeneous set G_{2} and, by convention, belongs to the independent set. If an independent dominating set in the split graph contains a vertex from the clique, say y_{i}, then it must contain all vertices from the independent set that are nonadjacent to y_{i}. If an independent dominating set contains no vertex from the clique then it must contain all vertices from the independent set. This shows the following statement.

Lemma 17. Let G be a split graph with clique $K=\left\{y_{1}, \ldots, y_{r}\right\}$ and independent set $S=\left\{z_{0}, \ldots, z_{s}\right\}$. Then

$$
\gamma_{\mathrm{i}}(G)=\min \left(\sum_{j=0}^{s} w\left(z_{j}\right) ; \min _{1 \leqslant i \leqslant r}\left(w\left(y_{i}\right)+\sum_{z_{j} \notin N\left(y_{i}\right)} w\left(z_{j}\right)\right)\right) .
$$

We now restrict to weighted ($q, q-4$)-graphs. If G contains fewer than q vertices, for some fixed q, then $\gamma_{\mathrm{i}}(G)$ can be determined in constant time. If G is a spider then we can apply Lemma 17. This immediately implies the following result.

Theorem 7. For every integer $q \geqslant 4$, the independent domination number of a ($q, q-4)$-graph can be computed in linear time.

7. Connected and clique domination

We now consider the problem of finding a smallest weight connected dominating set. If G is the disjoint union of G_{1} and G_{2} then no connected dominating set exists. This is indicated by writing $\gamma_{\mathrm{c}}(G)=\infty$.

Lemma 18. Let G be the disjoint sum of G_{1} and G_{2}. Then

$$
\gamma_{\mathrm{c}}(G)=\min _{i=1,2}\left(\gamma_{\mathrm{c}}\left(G_{i}\right) ; w_{\min }\left(G_{1}\right)+w_{\min }\left(G_{2}\right)\right),
$$

where $w_{\min }\left(G_{i}\right)$ denotes the smallest weight of a vertex from G_{i}.

Proof. A smallest weight connected dominating set in G consists either of a smallest weight connected dominating set in one of the subgraphs G_{i} or it consists of precisely two vertices from different subgraphs G_{1} and G_{2}.

Consider the problem of finding a dominating clique. If G is the disjoint union of two graphs G_{1} and G_{2} then no dominating clique exists. Hence, $\gamma_{\mathrm{cl}}(G)=\infty$.

If G is the disjoint sum of G_{1} and G_{2} then either a dominating clique is a clique in one of the two subgraphs, or two vertices, one from each subgraph.

Assume that G arises by a 3 -operation involving the homogeneous sets H_{1}, \ldots, H_{k}. Consider an arbitrary set H_{i}. Clearly, any connected dominating set in G must contain at least one vertex from $N\left(H_{i}\right)$. Therefore, a smallest weight connected dominating set contains at most one vertex from H_{i} and, if this is the case, this vertex has smallest weight in H_{i}. Hence, we can restrict the problem to the characteristic graph of G. Naturally, the vertex which represents H_{i} has weight $w_{\min }\left(H_{i}\right)$.
The same idea applies if G arises by a 2 -operation. We can restrict our attention to the characteristic graph which now is a split graph.

It is easy to verify that the minimum dominating clique problem can be treated in a quite analogous manner. In case of a 2 - or a 3 -operation we have to find a dominating clique in the characteristic graph. Hence, for the computation of $\gamma_{\mathrm{cl}}(G)$ we can adopt the ideas used to determine $\gamma_{c}(G)$.
We have shown that the weighted independent dominating set problem can be solved very easily when restricted to split graphs. However, it is known that the connected dominating set problem is NP-complete for split graphs [20] which also implies the NP-completeness of the minimum dominating clique problem on split graphs (see also [13]).

Hence, in the case of a 2-node, we cannot obtain $\gamma_{\mathrm{c}}(G)$ and $\gamma_{\mathrm{cl}}(G)$ as easily as this was possible for $\gamma_{i}(G)$. Here, it is still an open problem to compute these parameters for the characteristic graph of G. Nevertheless, the problems are easy to solve for ($q, q-4$)-graphs.

We consider the leaves of the primeval decomposition of a ($q, q-4$)-graph. If G contains fewer than q nodes, the parameters $\gamma_{\mathrm{cl}}(G)$ and $\gamma_{\mathrm{c}}(G)$ can be determined in constant time.
Assume that G is a spider. Denote the vertices of the clique by y_{1}, \ldots, y_{r} and the vertices of the independent set by z_{1}, \ldots, z_{r}, such that y_{i} is adjacent (resp. nonadjacent) to z_{i} if G is a thin (resp. thick) spider.

Lemma 19. If G is a thin spider then

$$
\gamma_{\mathrm{cl}}(G)=\gamma_{\mathrm{c}}(G)=\sum_{i=1}^{r} w\left(y_{i}\right) .
$$

If G is a thick spider then

$$
\gamma_{\mathrm{cl}}(G)=\gamma_{\mathrm{c}}(G)=\min _{1 \leqslant i<j \leqslant r}\left(w\left(y_{i}\right)+w\left(y_{j}\right)\right) .
$$

Proof. If G is a thin spider then the clique is the only minimal connected dominating set. If G is a thick spider then a minimal connected dominating set must consist of two vertices from the clique.

Now, we consider a 2 -operation. If G_{1} is a spider then the characteristic of G is a spider plus one additional vertex which is adjacent precisely to the vertices of the clique. In this case, $\gamma_{\mathrm{cl}}(G)$ and $\gamma_{\mathrm{c}}(G)$ are computed in the same way as in the previous lemma. If G_{1} has less than q vertices then the characteristic of G has at most q vertices. Hence, we can compute $\gamma_{\mathrm{cl}}(G)$ and $\gamma_{\mathrm{c}}(G)$ in constant time.

This provides the next result.
Theorem 8. For every integer $q \geqslant 4$, the connected domination number and the dominating clique number of a $(q, q-4)$-graph can be computed in linear time.

8. Domination and total domination

A further problem which has attracted considerable attention in recent years is the minimum total dominating set problem (see, e.g., $[6,21]$). The task involves finding a dominating set which contains no isolated vertices. We denote by $\gamma(G)$ and $\gamma_{\mathrm{t}}(G)$, respectively, the domination number and the total domination number, that is, the smallest weight of a dominating set and of a total dominating set in G.

Lemma 20. Let G be the disjoint union of G_{1} and G_{2}. Then

$$
\gamma(G)=\gamma\left(G_{1}\right)+\gamma\left(G_{2}\right)
$$

Lemma 21. Let G be the disjoint sum of G_{1} and G_{2}. Then

$$
\gamma(G)=\min _{i=1,2}\left(\gamma\left(G_{i}\right), w_{\min }\left(G_{1}\right)+w_{\min }\left(G_{2}\right)\right) .
$$

For $\gamma_{\mathrm{t}}(G)$ we obtain analogous results.
Let now H be a homogeneous set in G. If a minimum dominating set D in G contains no vertices from $N(H)$ then it consists of dominating sets in H and in $G \backslash(H \cup N(H))$. If D contains a vertex from $N(H)$ then at most one vertex from H belongs to D and this vertex has smallest weight. Hence, we have

$$
\gamma(G)=\min \left(\gamma(H)+\gamma(G \backslash(H \cup N(H))) ; \gamma\left(G_{H}\right)\right),
$$

where G_{H} is the graph which arises from G by replacing H by an independent set of size two with one vertex having smallest weight in H and the other vertex having weight ∞ (the second vertex guarantees that a vertex from $N(H)$ must belong to a minimum dominating set). An analogous equality holds for $\gamma_{\mathrm{t}}(G)$, however, in G_{H} it suffices to replace H by one vertex of smallest weight. Since a total dominating set D contains no isolated vertices, it is clear that at least one vertex from $N(H)$ must belong to D.

Let G arise by a 2 -operation with a separable p-component G_{1} with separation $\left(V_{1}^{1}, V_{1}^{2}\right)$ and a subgraph G_{2} outside G_{1} which is adjacent to all vertices of V_{1}^{1} and to no vertex of V_{1}^{2}. By the previous arguments, we obtain

$$
\gamma(G)=\min \left(\gamma\left(G_{2}\right)+\gamma\left(G\left[V_{1}^{2}\right]\right) ; \gamma\left(G_{G_{2}}\right)\right)
$$

Note that both the total dominating set problem and the dominating set problem are NP-complete for split graphs [20].

We assume that a $(q, q-4)$-graph G is given along with its primeval decomposition tree. If G corresponds to a leaf and if G has fewer than q vertices then both $\gamma(G)$ and $\gamma_{\mathrm{t}}(G)$ can be determined in constant time (we write $\gamma_{\mathrm{t}}(G)=\infty$ in case G contains no total dominating set).

Lemma 22. If G is a thin spider then

$$
\gamma(G)=\sum_{i=1}^{r} \min \left(w\left(y_{i}\right) ; w\left(z_{i}\right)\right) \quad \text { and } \quad \gamma_{\mathrm{t}}(G)=\sum_{i=1}^{r} w\left(y_{i}\right)
$$

If G is a thick spider then

$$
\gamma(G)=\min _{1 \leqslant j<k \leqslant r}\left(\sum_{i=1}^{r} w\left(z_{i}\right) ; w\left(y_{j}\right)+w\left(y_{k}\right) ; w\left(y_{j}\right)+w\left(z_{j}\right)\right)
$$

and

$$
\gamma_{\mathrm{t}}(G)=\min _{1 \leqslant j<k \leqslant r}\left(w\left(y_{j}\right)+w\left(y_{k}\right)\right)
$$

Consider a 2-operation. Since G is a $(q, q-4)$-graph it follows that G_{1} has fewer than q vertices or is a spider. In the first case, both $\gamma\left(G\left[V_{1}^{2}\right]\right)$ and $\gamma\left(G_{G_{2}}\right)$ can be computed in constant time since $G\left[V_{1}^{2}\right]$ and $G_{G_{2}}$ have at most $q+1$ vertices. If G_{1} is a spider then

$$
\gamma\left(G\left[V_{1}^{2}\right]\right)=\sum_{i=1}^{r} w\left(z_{i}\right)
$$

If G_{1} is a thin spider then

$$
\gamma\left(G_{G_{2}}\right)=\min _{1 \leqslant i \leqslant r}\left(w\left(y_{i}\right)+\sum_{j \neq i} \min \left(w\left(y_{j}\right) ; w\left(z_{j}\right)\right)\right) .
$$

If G_{1} is a thick spider then

$$
\gamma\left(G_{G_{2}}\right)=\min _{1 \leqslant i<j \leqslant r}\left(w\left(y_{i}\right)+w\left(y_{j}\right) ; w\left(y_{i}\right)+w\left(z_{i}\right)\right)
$$

Similarly, if G_{1} is a thin spider then we obtain

$$
\gamma_{\mathrm{t}}(G)=\sum_{i=1}^{r} w\left(y_{i}\right)
$$

and, if G_{1} is a thick spider

$$
\gamma_{\mathrm{t}}(G)=\min _{1 \leqslant i<j \leqslant r}\left(w\left(y_{i}\right)+w\left(y_{j}\right)\right) .
$$

The previous considerations immediately imply the following statement.

Theorem 9. For every integer $q \geqslant 4$, the domination number and the total domination number of $a(q, q-4)$-graph can be computed in linear time.

9. Steiner tree

The Steiner tree problem bears some similarity to the minimum connected dominating set problem.

Definition 13. Given a set T of target vertices in a graph $G=(V, E)$, a set S is called a set of Steiner vertices if $G[S \cup T]$ is connected.

We are interested in finding a smallest set S of Steiner vertices. Naturally, the weighted version of the problem asks for a set S of smallest total weight. Such a set S is usually called a Steiner set.

Lemma 23. Let G be the disjoint union of G_{1} and G_{2}. If G_{1} and G_{2} both contain vertices of the target set T then, obviously, no Steiner set S exists. If all vertices of T belong to one of the subgraphs, say G_{i}, then S is completely contained in G_{i}.

Hence, in case of a disjoint union, we can restrict the problem to one of the subgraphs.

Lemma 24. Let G be the disjoint sum of G_{1} and G_{2}. We distinguish two cases:

1. If G_{1} and G_{2} both contain vertices of T, then T induces a connected graph, and so $S=\emptyset$.
2. If all vertices from T belong to some subgraph G_{i} then either S is completely contained in G_{i} or S contains precisely one vertex, namely a vertex of smallest weight, outside of G_{i}.

Hence, in case G is the disjoint sum of two graphs, we solve the problem restricted to G_{i} and determine a vertex with smallest weight outside G_{i}. The Steiner set S is the one of the two resulting sets which has minimum weight.
Let H be a homogeneous set in G. We consider three cases. First, assume that $T \subseteq H$ holds. In this case, S is completely contained in H or consists of one vertex of smallest weight in $N(H)$.

Next, assume that $T \cap H=\emptyset$. Now, S contains at most one vertex from H and, if this is the case, this vertex has smallest weight. Hence, we can restrict the problem to the graph obtained from G by replacing H by some vertex of smallest weight in H. Clearly, a Steiner set in the new graph is also a Steiner set in the original graph.

Finally, assume that $T \cap H \neq \emptyset$ and $T \nsubseteq H$. It is an easy observation that S contains no vertices from H (if no vertex from T belongs to $N(H)$ then at least one vertex from $N(H)$ must belong to S). This shows that, as before, it suffices to study the graph where H is replaced by a single vertex which represents the set $T \cap H$. A Steiner set in the latter graph is again a Steiner set in the original graph.

Hence, if G arises by a 2 - or 3 -operation with homogeneous sets H_{1}, \ldots, H_{k} then we have to check whether $T \subseteq H_{i}$ holds for some $i \in\{1, \ldots, k\}$. In this case, we compute a Steiner set in the subgraph H_{i} and determine a set containing a single vertex of smallest weight from $N\left(H_{i}\right)$. By the previous arguments, S is the set with smaller weight. Otherwise, we have to compute a Steiner set in the characteristic graph of G where each homogeneous set H_{i} with $T \cap H_{i}=\emptyset$ is represented by one of its vertices of smallest weight. The vertices representing sets H_{j} with $T \cap H_{j} \neq \emptyset$ belong to the new set T^{\prime} of target vertices, together with the vertices from T which belong to none of the homogeneous sets.

Note that the Steiner tree problem remains NP-complete when restricted to split graphs [25].

In order to solve the problem for $(q, q-4)$-graphs we first have to show that the problem can be solved efficiently when restricted to the graphs corresponding to the leaves of the primeval decomposition tree.

Let G be such a graph. If G has less than q vertices then the problem can be solved in constant time. Assume that G is a thin spider. If $|T|=1$ then, clearly, $S=\emptyset$. Therefore, assume that $|T| \geqslant 2$. If a vertex z_{i} from the independent set of the spider belongs to T and if y_{i} is not in T then y_{i} must belong to S. This fact suffices to construct the Steiner set S.

Now, let G be a thick spider and $|T| \geqslant 2$. If at least two vertices y_{i} and y_{j} of the clique belong to T then T induces a connected graph and $S=\emptyset$. If only one vertex y_{i} of the clique belongs to T then we have to consider two cases. If z_{i} is not in T then T is connected and $S=\emptyset$. If z_{i} belongs to T then S must contain one vertex from the clique with smallest weight. Finally, if no vertex from the clique belongs to T then again we have two cases. If all vertices from the independent set are in T then S consists of two vertices from the clique having smallest weights. Otherwise, write $T=\left\{z_{1}, \ldots, z_{k}\right\}$. Then S either contains only one vertex, namely a vertex of smallest weight from $\left\{y_{k+1}, \ldots, y_{r}\right\}$, or it contains two vertices of smallest weight from $\left\{y_{1}, \ldots, y_{k}\right\}$.

If G is the result of a 2 -operation then the characteristic of G either has at most q vertices or is isomorphic to a spider with one additional vertex adjacent precisely to the clique. In the first case, we can solve the problem in constant time, in the second case we proceed analogously as above.

These observations imply that a Steiner set can be found efficiently.

Theorem 10. For every integer $q \geqslant 4$, the Steiner tree problem for a ($q, q-4$)-graph can be solved in linear time.

10. List coloring

The problem is NP-complete for cographs [18]. However, if we restrict the number of colors in the union of the lists by a constant then it can be seen that the problem is linear time solvable for $(q, q-4)$-graphs for fixed q.

Definition 14. Given a graph $G=(V, E)$ and for every vertex u, a list $L(u)$ of admissible colors for this vertex, G is called L-list colorable if vertices of G can be assigned colors from their lists so that adjacent vertices receive different colors.

Let G be a graph and let L be a list assignment such that $\left|\bigcup_{u \in V} L(u)\right|=k$ is a constant. Let $\mathscr{S}(G)$ be the set of subsets of $\bigcup_{u \in V} L(u)$ such that $S \in \mathscr{S}(G)$ iff G has an L-list coloring which uses exactly the colors of S. As $\bigcup_{u \in V} L(u)$ has 2^{k} subsets, $\mathscr{S}(G)$ can attain at most $2^{2^{k}}$ values, which is still a constant number with respect to the input size (of G). Obviously, G is L-list colorable iff $\mathscr{S}(G) \neq \emptyset$.

Lemma 25. Let G be the disjoint union of G_{1} and G_{2}. Then $\mathscr{S}(G)=\{A \cup B: A \in$ $\left.\mathscr{S}\left(G_{1}\right), B \in \mathscr{P}\left(G_{2}\right)\right\}$.

Lemma 26. Let G be the disjoint sum of G_{1} and G_{2}. Then $\mathscr{S}(G)=\{A \cup B: A \in$ $\left.\mathscr{S}\left(G_{1}\right), B \in \mathscr{S}\left(G_{2}\right), A \cap B=\emptyset\right\}$.

We further consider the type-2 operation. Let G be obtained from a separable p-connected graph G_{1} with separation $\left(V_{1}^{1}, V_{1}^{2}\right)$ and from a graph G_{2} by making every vertex of V_{1}^{1} adjacent to every vertex of G_{2}. We set

$$
\mathscr{T}\left(G_{1}\right)=\left\{(A, B): \exists L \text {-coloring } f \text { s.t. } A=f\left(V_{1}^{1}\right) \text { and } B=f\left(V_{1}^{2}\right)\right\} .
$$

Lemma 27. $\mathscr{S}(G)=\left\{A \cup B \cup C:(A, B) \in \mathscr{T}\left(G_{1}\right), C \in \mathscr{S}\left(G_{2}\right), A \cap C=\emptyset\right\}$.
Then $\mathscr{S}(G)$ can be computed in constant time from $\mathscr{T}\left(G_{1}\right)$ and $\mathscr{S}\left(G_{2}\right)$ and it only remains to show how $\mathscr{T}\left(G_{1}\right)$ can be computed in linear time.
$\left|V_{1}\right|<q$: We simply consider all possible L-list colorings of G_{1} (there are at most k^{q} of them) and so $\mathscr{T}\left(G_{1}\right)$ can be computed in constant time.
G_{1} is a spider: Since in any coloring of a spider the vertices of the clique part have to be colored by mutually distinct colors, G_{1} is not list colorable if $\left|V_{1}\right|>2 k$. In such a case we output that G is not L-list colorable. If $\left|V_{1}\right| \leqslant 2 k, G_{1}$ is of constant size and we can again compute $\mathscr{T}\left(G_{1}\right)$ in constant time by brute force.

We summarize our results on list colorings in the following theorem.
Theorem 11. For fixed integers k and q, k-List-Coloring restricted to ($q, q-4$)-graphs is solvable in linear time.

11. Precoloring extension

The restricted variant precolor extension is also solvable in polynomial time, even if the total number of colors in each list is unbounded.
Precoloring extension is a special case of list-coloring where lists of admissible colors are either one-element (such vertices are precolored) or equal $L(u)$ (being the set of all colors for such vertices u). We may assume that the precoloring is legal, i.e., no two vertices precolored by the same color are adjacent. If k is the total number of colors, the problem is referred to as k-PrExt. Note that not all k colors are necessarily used on the precolored vertices. We will show that k-PrExt can be solved in polynomial time on ($q, q-4$)-graphs even if k is not constant but rather part of the input. Towards this end we denote by $\operatorname{Pr}(G)$ the set of colors used on precolored vertices, $\operatorname{pre}(G)=|\operatorname{Pr}(G)|$ the number of colors used on the precolored vertices, and by $p(G)$ the minimum number of additional colors needed for a precoloring extension.

So G is feasible for k-PrExt iff $p(G) \leqslant k-\operatorname{pre}(G)$.
Lemma 28. Let G be the disjoint union of G_{1} and G_{2}. Then

$$
p(G)=\max \left\{p\left(G_{1}\right)-\left|\operatorname{Pr}\left(G_{2}\right) \backslash \operatorname{Pr}\left(G_{1}\right)\right|, p\left(G_{2}\right)-\left|\operatorname{Pr}\left(G_{1}\right) \backslash \operatorname{Pr}\left(G_{2}\right)\right|, 0\right\} .
$$

Lemma 29. Let G be the disjoint sum of G_{1} and G_{2}. Then $p(G)=p\left(G_{1}\right)+p\left(G_{2}\right)$.
We further consider the type-2 operation. Let G be obtained from a separable p-connected graph G_{1} with separation $\left(V_{1}^{1}, V_{1}^{2}\right)$ and from a graph G_{2} by making every vertex of V_{1}^{1} adjacent to every vertex of G_{2}.
G_{1} is small: We try all possible precoloring extensions of G_{1} using the colors of the precoloring of G_{1} and variable colors for the extension. For each such coloring f we determine the minimum number of additional colors needed for extending the coloring to G. We know that G_{2} itself needs $p\left(G_{2}\right)$ new colors and that these have to be different from all colors used on V_{1}^{1}.

1. Use as many colors of $\operatorname{Pr}\left(G_{2}\right) \backslash \operatorname{Pr}\left(G_{1}\right)$ as possible on the variable colors that are used on V_{1}^{2} only.
2. Unify as many as possible of the remaining variable colors used only on V_{1}^{2} with the new colors used on G_{2}.
3. The remaining variable colors on G_{1} and new colors on G_{2} have to be mutually different.

Let the total number of new colors be $p_{f}(G)$. Then $p(G)=\min _{f} p_{f}(G)$ can be computed in time linear in $p\left(G_{2}\right)$.
G_{1} is a spider: Unlike the case of list colorings with bounded number of colors, in this case the size of G_{1} is not bounded. Consider an optimal coloring of G. Since $G\left[V_{1}^{1}\right]$ is a complete graph, the $p\left(G_{2}\right)$ new colors on G_{2} and the $p_{11}=\left|V_{1}^{1}\right|-\operatorname{pre}\left(G\left[V_{1}^{1}\right]\right)$ colors on unprecolored vertices of $G\left[V_{1}^{1}\right]$ must be all different, and different from colors in $\operatorname{Pr}\left(G_{2}\right) \cup \operatorname{Pr}\left(G\left[V_{1}^{1}\right]\right)$. We can color G and determine $p(G)$ by the following procedure:

1. Use as many colors of $\operatorname{Pr}\left(G\left[V_{1}^{2}\right]\right) \backslash \operatorname{Pr}\left(G\left[V_{1}^{1}\right]\right)$ as possible on the p_{11} unprecolored vertices of $G\left[V_{1}^{1}\right]$;
2. Use the remaining colors of $\operatorname{Pr}\left(G\left[V_{1}^{2}\right]\right)-\operatorname{Pr}\left(G\left[V_{1}^{1}\right]\right)$ (if there are any left) as the new colors on G_{2};
3. Use fresh new colors for colors needed on G_{2} and for vertices of $G\left[V_{1}^{1}\right]$ which were not colored in Steps 1 and 2;
4. Color the unprecolored vertices $G\left[V_{1}^{2}\right]$ using colors used on $G\left[V_{1}^{1}\right]$.

We clearly get an optimal coloring since each of the Steps $1-4$ uses the minimum possible number of new colors.

Claim. In Step 4 we can color all vertices of $G\left[V_{1}^{2}\right]$ since each such vertex is nonadjacent to at least one vertex of $G\left[V_{1}^{1}\right]$ and the color of any such vertex can be used.

Claim. Step 1 can be performed in polynomial time. Consider the bipartite graph H induced in G_{1} by unprecolored vertices of V_{1}^{1} and by precolored vertices of V_{1}^{2}, vertices precolored by the same color being unified into a single vertex representing that color. Then the maximum number of colors of $\operatorname{Pr}\left(G\left[V_{1}^{2}\right]\right)$ which can be used on V_{1}^{1} is the size of a maximum matching in \bar{H}, the bipartite complement of H, and this can be computed in polynomial time.

Note that the preceding claim applies to any split graph G_{1}. However, it uses a bipartite matching algorithm and as such it is not known to be linear. The special structure of spiders can be used to prove linearity.

If G_{1} is a thick spider then \bar{H} has maximum degree at most 1 and so the size of a maximum matching is simply the number of edges of this graph.
Let G_{1} be a thin spider. Then H is a bipartite graph whose vertices in $H\left[V_{1}^{1}\right]$ have degrees $\leqslant 1$. If the other part of $H, \operatorname{Pr}\left(G\left[V_{1}^{2}\right]\right)$, contains a vertex (color) adjacent to all vertices of $H\left[V_{1}^{1}\right]$ then this color cannot be used on V_{1}^{1} and H is a star plus isolated vertices (on the side of colors). In this case, the size of a maximum matching is either p_{11} or $\left|\operatorname{Pr}\left(G\left[V_{1}^{2}\right]\right)\right|-1$, whichever is smaller. It is easy to see that \bar{H} contains a full matching (of size $\left|\operatorname{Pr}\left(G\left[V_{1}^{2}\right]\right)\right|$ or p_{11}) otherwise.
We summarize our results on precoloring extensions in the following theorem.
Theorem 12. For fixed integer q, k-PrExt restricted to ($q, q-4$)-graphs is solvable in polynomial time.

References

[1] L. Babel, On the P_{4}-structure of graphs, Habilitationsschrift, Zentrum Mathematik, Technische Universität München, 1997.
[2] L. Babel, Triangulating graphs with few $P_{4}^{\prime} \mathrm{s}$, Discrete Appl. Math. 89 (1998) 45-57.
[3] L. Babel, S. Olariu, On the structure of graphs with few P_{4} 's, Discrete Appl. Math. 84 (1998) 1-13.
[4] S. Baumann, A linear algorithm for the homogeneous decomposition of graphs, Report No. M-9615, Zentrum Mathematik, Technische Universität München, 1996.
[5] H. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theoret. Comput. Sci. 209 (1998) 1-45.
[6] D.G. Corneil, L.K. Stewart, Dominating sets in perfect graphs, Discrete Math. 86 (1990) 145-164.
[7] B. Courcelle, J.A. Makowski, U. Rotics, Linear time solvable optimization problems on certain structured graph families, Proceedings of the 24th International Workshop on Graph-Theoretic Concepts in Computer Science, WG’98, Lecture Notes in Computer Science, Vol. 1517, Springer, Berlin, 1998, pp. 1-16.
[8] E. Dahlhaus, J. Gustedt, R. McConnell, Efficient and practical modular decomposition, Proceedings of the eighth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA, 1997, pp. 26-35.
[9] J.S. Deogun, T. Kloks, D. Kratsch, H. Müller, On vertex ranking for permutation and other graphs, Proceedings of the 11th Annual Symposium on Theoretical Aspects of Computer Science, STACS '94, Lecture Notes in Computer Science, Vol. 775, Springer, Berlin, 1994, pp. 747-758.
[10] V. Giakoumakis, J. Vanherpe, On extended P_{4}-reducible and extended P_{4}-sparse graphs, Theoret. Comput. Sci. 180 (1997) 269-286.
[11] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
[12] J. Gustedt, On the pathwidth of chordal graphs, Discrete Appl. Math. 45 (1993) 233-248.
[13] T. Haynes, S. Hedetniemi, P. Slater (Eds.), Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.
[14] S. Hedetniemi, R. Laskar, in: Topics on Domination, Annals of Discrete Mathematics, Vol. 48, North-Holland, Amsterdam, 1991.
[15] W. Hochstättler, G. Tinhofer, Hamiltonicity in graphs with few P_{4} 's, Computing 54 (1995) 213-225.
[16] B. Jamison, S. Olariu, p-components and the homogeneous decomposition of graphs, SIAM J. Discrete Math. 8 (1995) 448-463.
[17] B. Jamison, S. Olariu, Linear time optimization algorithms for P_{4}-sparse graphs, Discrete Appl. Math. 61 (1995) 155-175.
[18] K. Jansen, P. Scheffler, Generalized coloring for tree-like graphs, Discrete Appl. Math. 75 (1997) 135-155.
[19] T. Kloks, in: Treewidth-Computations and Approximations, Lecture Notes in Computer Science, Vol. 842, Springer, Berlin, 1994.
[20] R.C. Laskar, J. Pfaff, Domination and Irredundance in Split Graphs, Technical Report 430, Department of Mathematical Sciences, Clemson University, 1983.
[21] R. Laskar, J. Pfaff, S.M. Hedetniemi, S.T. Hedetniemi, On the algorithmic complexity of total domination, SIAM J. Algebraic Discrete Math. 5 (1984) 420-425.
[22] R.H. Möhring, Algorithmic aspects of comparability graphs and interval graphs, in: I. Rival (Ed.), Graphs and Orders, Dordrecht, Holland, 1985.
[23] A. Parra, P. Scheffler, Characterizations and algorithmic applications of chordal embeddings, Discrete Appl. Math. 79 (1997) 171-188.
[24] P. Scheffler, Node ranking and searching on graphs (abstract), in: U. Faigle, C. Hoede (Eds.), Third Twente Workshop on Graphs and Combinatorial Optimization, Memorandum No. 1132, Faculty of Applied Mathematics, University of Twente, The Netherlands, 1993.
[25] K. White, M. Farber, W. Pulleyblank, Steiner trees, connected domination and strongly chordal graphs, Networks 15 (1985) 109-124.

[^0]: * Corresponding author. Tel.: +49-89-289-28203; fax: +49-89-289-25150.

 E-mail addresses: babel@mathematik.tu-muenchen.de (L. Babel), kloks@kam.ms.mff.cuni.cz, honza@kam. ms.mff.cuni.cz (T. Kloks), kratsch@minet.uni-jena.de (D. Kratsch), hm@minet.uni-jena.de (H. Müller).
 ${ }^{1}$ Supported in part by Czech Grant GAČR 201/99/0242.
 ${ }^{2}$ Supported in part by Czech Research Grant GAUK 1999/158.

