
Old Dominion University
ODU Digital Commons
Electrical & Computer Engineering Theses &
Disssertations Electrical & Computer Engineering

Summer 2018

Model-Less Fuzzy Logic Control for the NASA
Modeling and Control for Agile Aircraft
Development Program
Keith A. Benjamin
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital Commons. It has been accepted for
inclusion in Electrical & Computer Engineering Theses & Disssertations by an authorized administrator of ODU Digital Commons. For more
information, please contact digitalcommons@odu.edu.

Recommended Citation
Benjamin, Keith A.. "Model-Less Fuzzy Logic Control for the NASA Modeling and Control for Agile Aircraft Development Program"
(2018). Master of Science (MS), thesis, Electrical/Computer Engineering, Old Dominion University, DOI: 10.25777/8e62-nc73
https://digitalcommons.odu.edu/ece_etds/36

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fece_etds%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece?utm_source=digitalcommons.odu.edu%2Fece_etds%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.odu.edu%2Fece_etds%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds/36?utm_source=digitalcommons.odu.edu%2Fece_etds%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

MODEL-LESS FUZZY LOGIC CONTROL FOR THE NASA

MODELING AND CONTROL FOR AGILE AIRCRAFT

DEVELOPMENT PROGRAM

by

Keith A. Benjamin
B.S. Computer Engineering 2016, Old Dominion University

A Thesis Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

ELECTRICAL AND COMPUTER ENGINEERING

OLD DOMINION UNIVERSITY
August 2018

Approved by:

Oscar R. González (Director)

W. Steven Gray (Member)

Dimitrie C. Popescu (Member)

ABSTRACT

MODEL-LESS FUZZY LOGIC CONTROL FOR THE NASA MODELING
AND CONTROL FOR AGILE AIRCRAFT DEVELOPMENT PROGRAM

Keith A. Benjamin
Old Dominion University, 2018

Director: Dr. Oscar R. González

The NASA Modeling and Control for Agile Aircraft Development (MCAAD) program

seeks to develop new ways to control unknown aircraft to make the aircraft development cycle

more efficient. More specifically, there is a desire to control an aircraft with an unknown

mathematical model using only first principles of flight. In other words, rather than using

a rigorously developed mathematical model combined with wind-tunnel tests, a controller

is sought which would allow one to bypass the development of a rigorous mathematical

model and enter wind-tunnel testing more directly. This paper presents the design of a fuzzy

PID controller, governed by a fuzzy supervisory system which incorporates knowledge of

first principles of flight, to control a model-less aircraft’s pitch dynamics in a free-to-pitch

wind-tunnel environment. This hybrid structure is implemented using a PID controller

constructed from independent fuzzy inference systems and augmented in real time by a

supervisory system also constructed of independent fuzzy inference systems. Experimental

results of the pitch control performance and real-time adaptivity capabilities are presented

for both aerodynamically stable and unstable aircraft models.

iii

Copyright, 2018, by Keith A. Benjamin, All Rights Reserved.

iv

ACKNOWLEDGMENTS

This work was partially supported by the NASA Langley Research Center under Cooper-

ative Agreements NNL09AA00A and 80LARC170004 (NIA Grants C15-2B00, Activity 2B51

and C15-2B00-ODURF, Activity 201017). The author would like to thank A. Mekky for his

support in developing the non-linear F-16 simulations used for developing and testing the

implemented controller and J. Brandon, M. Croom, and E. Viken and the rest of the NASA

Langley Research Center 12-ft Wind Tunnel team, whose guidance and support made the

development and testing of this experiment possible.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES. ix

Chapter

1. INTRODUCTION . 1
1.1 MOTIVATION . 1
1.2 PROBLEM DESCRIPTION . 2
1.3 OUTLINE . 3

2. BACKGROUND. 5
2.1 FUZZY LOGIC PRIMER . 5
2.2 APPLICATION . 12

3. METHODOLOGY. 14
3.1 OVERVIEW . 14
3.2 DESIGN . 14
3.3 CONTROL SYSTEM ARCHITECTURE . 15
3.4 CONTROLLER DESIGN . 17
3.5 SUPERVISOR DESIGN . 20
3.6 ADAPTIVITY . 22
3.7 BRINGING IT ALL TOGETHER . 23

4. SIMULATION. 24
4.1 OVERVIEW . 24
4.2 SIMULATION . 24
4.3 SIMULATION MODELS . 25
4.4 CONTROLLER EVALUATION . 29
4.5 EXPERIMENTATION HYPOTHESIS . 36

5. EXPERIMENTATION . 38
5.1 EXPERIMENTAL DATA COLLECTION . 38
5.2 PERFORMANCE CHARACTERISTICS . 42

6. SUPPLEMENTAL WORK . 47
6.1 MOTIVATION . 47
6.2 METHODOLOGY . 47
6.3 SIMULATION . 49

vi

Chapter Page

7. CONCLUSION . 54
7.1 OVERVIEW OF FINDINGS . 54
7.2 RESEARCH IMPLICATIONS . 54
7.3 SUMMARY . 54

REFERENCES . 56

APPENDICES

A. MATLAB CODE . 58
A.1 SIMULATION DRIVER . 58
A.2 INITIALIZATION . 63
A.3 LINEAR SIMULATION MODELS. 69
A.4 CUSTOM QUEUE CLASS . 72
A.5 DATA LOGGING CLASS . 74
A.6 FUZZY LOGIC CONTAINER CODE . 78
A.7 CONTROLLER CODE . 90
A.8 SUPERVISOR CODE . 99

VITA . 114

vii

LIST OF TABLES

Table Page

1. Simulation Configurations Table . 25

2. FLC Initialization Parameters . 26

3. Linear F16 Model Parameters . 27

4. F16 Linear Model 1 and F16 Non-Linear Model Controller Simulation Perfor-
mance Characteristics . 33

5. F16 Linear Model 2 Controller Simulation Performance Characteristics 35

6. Boeing 747 Linear Model Controller Simulation Performance Characteristics 37

7. Controller Initial Values . 42

8. Controller Output Adaptation Parameters . 50

9. Controller Input Adaptation Parameters . 50

10. Adaptive Controller Simulation Performance Characteristics 51

viii

LIST OF FIGURES

Figure Page

1. Model Plane on Free-to-Pitch Rig . 3

2. Example Input (Output) Membership Functions . 7

3. Example Membership Functions . 9

4. Output Distribution Functions – Singletons . 11

5. Example Output . 13

6. Conceptual Architecture of the Model-Less Fuzzy Logic Controller and Supervisor 15

7. Input Membership Functions . 17

8. Kp Rule-base Surface Representation . 21

9. Ki Rule-base Surface Representation . 21

10. Kd Rule-base Surface Representation . 22

11. Simulink Simulation Diagram . 25

12. Fuzzy Logic and PID Controller Response to Linear F16 Model 1 30

13. Controller Performance Comparison Based on Instantaneous RMS Error for Lin-
ear Models . 30

14. Fuzzy Logic and PID Controller Response to Non-Linear F16 Model 31

15. Non-Linear F16 Model Controller Performance Comparison Based on Instanta-
neous RMS Error . 31

16. PID Performance on Non-Linear Plant Demonstrating Tracking During Long
Duration Doublets . 32

17. F16 Linear Model 1 and Non-Linear F16 Model Controller Performance Compar-
ison Based on Instantaneous RMS Error . 34

18. Fuzzy logic and PID response to the F16 Linear Model 2 . 34

19. Fuzzy logic and PID response to the Boeing 747 Linear Model 36

20. Hardware Stack . 39

ix

Figure Page

21. Run-time Program Flowchart . 40

22. LEX Aircraft Configuration . 42

23. Stock Aircraft Response to Doublet Input (Open Loop) . 43

24. Stock Aircraft Response to Doublet Input (Closed Loop) . 44

25. Stock Aircraft Initial Self-Tuning Time Frame . 44

26. LEX Aircraft Response to Doublet Input (Open Loop) . 45

27. LEX Aircraft Response to Doublet Input (Closed Loop) . 46

28. Input Adaptation Algorithm . 48

29. Output Adaptation Algorithm. 49

30. F16 Linear Model 1 and Non-Linear F16 Model Fuzzy Logic Controller Response
With Adaptive Routines . 52

31. F16 Linear Model 1 and Non-Linear F16 Model Controller Performance with
Adaptivity Comparison Based on Instantaneous RMS Error 52

32. Fuzzy Logic and Linear PID Controller Response to Non-Linear F16 Model with
Adaptivity Simulation Shown . 53

33. Simulated Performance Comparison Based on Instantaneous RMS Error 53

1

CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

Historically, the time from aircraft design to implementation is protracted due to the

iterative nature of design analysis and testing [1]. In this process, mathematical approxi-

mations are made to form an aerodynamic model of a theoretical aircraft design and are

used to develop a flight control system [2]. After simulated analysis, an aircraft model is

constructed for use in a wind tunnel for further development and refinement of the math-

ematical model [3]. Lessons learned from wind-tunnel experimentation are used to tune

the mathematical models, making them more accurate in order to further refine the control

system. This process is repeated until sufficient confidence is gained with the theoretical

models to move to full-scale testing and production [1].

Computational fluid dynamics (CFD), finite-element (FE) models, and other model-

ing and simulation techniques are common approaches to the aircraft design flow [4, 5].

These approach aircraft design through a robust, albeit incomplete, understanding of the

mathematical underpinnings of aerodynamics and fluid dynamics. However, even though

modern modeling and simulation offers an increasingly complete simulation environment,

wind-tunnel testing of scaled models is still required in order to fully validate an aerody-

namic model [2,3]. Thus, an iterative process, whereby wind-tunnel experiments are followed

by CFD model refinement, is used to update mathematical models. This process is repeated

until sufficient confidence in the CFD models is achieved such that they closely match wind-

tunnel experimental dynamics [1]. This is, however, not without its own limitations. For

example, a full six degree-of-freedom (6-DOF) mathematical model cannot be validated in a

wind tunnel, as this would require an aircraft suspended in mid-air and operating under its

own power. Instead, lower order degrees of freedom are investigated independently by fixing

the degrees-of-freedom not under investigation. In this way, a sufficiently large amount of

the stable flight envelope is exercised to assure confidence such that full-scale aircraft test

flights may commence. [2]

A more streamlined approach calls for the use of a generalized controller, tuned not for

2

performance but stable flight.1 Ideally, such a controller would be tuned solely against first

principles of flight so that it would apply to the broadest class of aircraft. This would provide

a method to control a new aircraft design in a wind-tunnel environment with minimal a priori

knowledge yet still obtain accurate mathematical models. In this way, a scaled model can be

exercised throughout the entire flight envelope while performing System Identification (SID)

in order to obtain accurate CFD model parameters for further off-line development, thereby

shortening development time [6, 7].

The path to achieve this goal requires a degree of adaptability in order to maintain

stable flight. Model Reference Adaptive Control (MRAC) [8], model-less control utilizing

on-line SID [9], and machine learning [10] are a few approaches which have been tried with

various degrees of success. These approaches suffer from three main detractors: 1) a baseline

model must be supplied a priori, 2) solution convergence is slow with 8.5 seconds being a

representation of fast convergence [11] and 3) stable convergence is not necessarily guaranteed

due to unpredictable in-situ aircraft conditions.

Therefore, a controller capable of stable control without the need for a baseline model,

off-line pre-tuning, and minimal a priori aircraft specifications;2 stable control achievement

at least as fast as [11]; and some measure of guaranteed convergence would be of great value

in shortening aircraft development time.

1.2 PROBLEM DESCRIPTION

The focus of this study is to develop a One Degree-of-Freedom (1-DOF) fuzzy logic pitch

controller capable of tracking the pitch command of an aircraft with unknown dynamics.

The controller must meet the following specifications:

1. Use only first principles of flight for controller development. More specifically, a basic

understanding of free-body mechanics. Control limits are assumed known.

2. The controller must track pitch commands in a 1-DOF wind-tunnel experiment. Ad-

equate tracking will be considered achieved when the instantaneous root-mean-square

error converges to a value less than five degrees.

3. Controller adaptivity convergence must occur in less than 8.5 seconds.3

1For the purposes of this experiment, stable flight is determined to be any time the aircraft’s change-in-
pitch converges within a pre-determined flight envelope.

2For example, control surface and actuator limits.
3A literature search found this to be a high performance benchmark for adaptive aircraft. [11]

3

FIG. 1: Model Plane on Free-to-Pitch Rig

4. Stability must be achieved for differing linear and nonlinear plants in simulation with-

out controller pre-tuning.

Given the abstract nature of the design requirements, fuzzy logic control is selected as the

proposed control solution for its ability to handle both nonlinear and abstract control regimes

providing mathematical machinery which allows for the embedding of expert knowledge.

Thus, control is obtained using a qualitative approach similar to a pilot rather than the

quantitative approach required of classic control methodologies.

This controller uses only expert knowledge and a basic understanding of flight principles to

adapt in real time to a new airplane model. A two-part hybrid fuzzy logic controller approach

comprised of a separate supervisor and controller was adopted under the assumptions that

the aircraft is controllable and the aircraft obeys the standard 6-DOF equations-of-motion

(EOM). The controller was evaluated in the NASA Langley 12-foot wind tunnel using a

scaled model of an Aero L-59 Super Albatros. A free-to-pitch One Degree-of-Freedom (1-

DOF) rig, as shown in Fig. 1, was obtained by locking the longitudinal and vertical axes

so that only rotation about the lateral axis is obtained. This aircraft was treated as a

“black-box” with unknown aerodynamics.

1.3 OUTLINE

Chapter 2 provides a brief background to fuzzy inference systems, their design, and imple-

mentation. Standard fuzzy logic terminology and apparatus necessary for the understanding

4

of this approach will be introduced using a simple example. Chapter 3 describes the con-

troller developed in this study. Chapter 4 discusses the simulation of multiple aircraft models

in a virtual environment. Chapter 5 discusses the controller’s performance by analyzing data

collected during wind-tunnel experimentation. Chapter 6 reviews the implications of this

work and future research pathways. The paper will be concluded in Chapter 7.

5

CHAPTER 2

BACKGROUND

2.1 FUZZY LOGIC PRIMER

A thorough treatment of the theory, design, and implementation of fuzzy inference sys-

tems is beyond the scope of this paper. However, this is to serve as a brief review of the

fuzzy logic topics used in this study. This chapter reviews the topics of fuzzy logic systems

used in this work, while leaving further study of the topic to the reader.

2.1.1 TERMINOLOGY

- Fuzzy

A qualitative value rooted in conceptual ideas and abstract constructs used to approx-

imate a crisp value.

- Crisp

A quantitative value rooted in mathematical ideas carrying specific values represented

by real or complex numbers.1

- Universe-of-Discourse

The set of values over which an input or output is valid. This includes real or complex

numbers, a finite set of integers, a closed-infinite set, or any other group of values.

Continuity is not required.

- Linguistic Values and Variables

Abstract terms used to describe the value of an input or output. A useful example

is human height. To say one is tall or short is not concretely descriptive. Suppose

a poll is conducted whereby it is determined that a short person is 5 feet in height

and a tall person is 7 feet in height. What does this say about the person who is

6 feet tall? Would this person be average height? Suppose further that it is known

that 85 percent of the population is between 5 feet 4 inches and 5 feet 10 inches tall.

1Complex numbers are not required in this experiment but are included here for completeness.

6

Statistically speaking, one would correctly determine that an average person is in this

range of values, but using merely the concrete definition of short equals 5 feet in height

and tall equals 7 feet in height, one would determine average height to be 6 feet tall.

Humans intuitively correct for these ambiguities with continuous observation of the

environment and use terms like short, tall, small, big, little, large, etc. to describe ranges

of values meant only to be loose approximations. These constitute the descriptive terms

of a fuzzy logic system; they are linguistic variables. A linguistic value is the numerical

value associated with a linguistic variable. In this case tall equals 7 feet, average equals

5 feet 10 inches, and short equals 5 feet tall.

- Membership Function

A distribution function which maps linguistic values to crisp values.

- Fuzzification

The conversion of crisp values into fuzzy values.

- Defuzzification

The conversion of fuzzy values into crisp values.

- Rule-base

A set of IF-THEN rules used to map input values to output values as part of the

inference system.

- Inference system

“The system which emulates the expert’s decision making in interpreting and applying

knowledge about how best to control the plant.” [12]

2.1.2 UNIVERSE-OF-DISCOURSE

The universe-of-discourse effectively carries the same meaning as a mathematical set and

is typically referred to by scripted variables, such as U . In terms of control, this directly

relates to the set of operating values for an input or output. For example, the elevator of

an aircraft has physical limits of operation, say ±30 deg. The universe-of-discourse for this

parameter is therefore U ⊆ [−30, 30] . It is important to note, however, that a complete

fuzzy inference system will have a universe-of-discourse for each input and output – all of

which are independent. Additionally, there is no requirement that a universe-of-discourse be

a finite set; any set of real or complex numbers is valid.

7

FIG. 2: Example Input (Output) Membership Functions

2.1.3 MEMBERSHIP FUNCTIONS

Membership functions, also known as distribution functions and confidence functions, are

a way of representing the degree to which one may be confident that a value is represented

by a linguistic variable. Linguistic variables are named using conceptual ideas like “positive

small” or “negative big” and are assigned to individual membership functions. The degree-

of-membership is the confidence one has that the input/output value being evaluated belongs

to a represented membership function. Note that the name distribution function is some-

what unfortunate as it might lead one to relate these functions to probabilistic distribution

functions. This is, however, not the case as there is no requirement for the integral of a given

function to equal 1; hence the name membership function, which is an attempt to communi-

cate a degree of membership. Consequently, membership function, distribution function, and

confidence function are used interchangeably and are not probability distributions.

For example, Fig. 2 represents a normalized fuzzy set – all distribution functions for an

input/output over a universe-of-discourse. Take the distribution function 5 to represent the

linguistic value “positive small” and the distribution function 6 to represent the linguistic

value “positive medium,” supposing this represents a fuzzy set for an input. Now suppose

that an input value of 0.25 is to be evaluated. By visual inspection, one will notice that

one can be approximately 80% confident that the input value represents a positive small

number, approximately 20% certain the value belongs to membership function 4, but may

8

be absolutely sure that it does not belong to any other membership function.

Many different membership functions exist but only four are used in this work, triangle,

z, s, and singleton, with one additional function, Gaussian, used in examples. Membership

functions are defined below as used in the Matlab R© Fuzzy Logic Toolbox TM. [13] The triangle

membership function is defined in (1).

ftri(x; a, b, c) =


0, x ≤ a
x−a
b−a , z ≤ x ≤ b
c−x
c−b , b ≤ x ≤ c

0, c ≤ x

(1)

The z membership function is defined in (2).

fz(x; a, b) =


1, x ≤ a

1− 2
(
x−a
b−a

)2
, a ≤ x ≤ a+b

2

2
(
x−b
b−a

)2
, a+b

2
≤ x ≤ b

0, x ≥ b

(2)

The s membership function is defined in (3).

fs(x; a, b) =


0, x ≤ a

2
(
x−a
b−a

)2
, a ≤ x ≤ a+b

2

1− 2
(
x−b
b−1

)2
, a+b

2
≤ x ≤ b

1, x ≥ b

(3)

The Gaussian membership function is defined in (4).

fgauss(x;σ, c) = exp

{
−(x− c)2

2σ2

}
(4)

The singleton function, pertaining only to outputs, is defined in (5).

fsingleton(x; a) =

{
1, x = a

0, otherwise
(5)

These point values of 1, which characterize the Takagi-Sugeno type fuzzy system, can be

distributed anywhere in the fuzzy output space. Instead of harnessing the concept of degree-

of-certainty, these systems require different techniques, discussed in Sec. 2.1.6, to develop

output values.

9

FIG. 3: Example Membership Functions

2.1.4 FUZZIFICATION

Fuzzification is the method by which an input value is converted to a fuzzy value – a

quantified value is converted to a qualified value. Take the height example of Sec. 2.1.1,

three different heights are examined: 5 feet, 6 feet, and 6.5 feet. To develop this example

further, consider the membership function distribution in Fig. 3, where the fuzzy set, the

distribution functions associated with an input variable, is defined axiomatically as:

1. SHORT ≡ fz(x; 5, 5.5)

2. AVERAGE ≡ fgauss(x; 0.15, 5.7)

3. TALL ≡ fs(x; 5.9, 7)

An explanation of the fuzzification process follows using the inputs 5 feet, 6 feet, and 6.5

feet.

Input: 5 Feet

To evaluate the input of 5 feet to the fuzzy set, each distribution function is individually

evaluated. The SHORT membership function will evaluate to 1, indicating that there is

100% confidence that someone who is 5 feet tall is SHORT, which matches the axiomatic

10

system description. Similarly, the AVERAGE and TALL membership functions will eval-

uate to 0, implying that one may be completely confident that someone who is 5 feet tall is

neither AVERAGE nor TALL.

- SHORT: f1 ≡ fz|x=5 = 1.0 ≡ 100%

- AVERAGE: f2 ≡ fgauss|x=5 = 0.0 ≡ 0%

- TALL: f3 ≡ fs|x=5 = 0.0 ≡ 0%

Input: 6 Feet

Continuing the example, evaluating the fuzzy set at 6 feet yields the following:

- SHORT: f1 ≡ fz|x=6 = 0.0 ≡ 0%

- AVERAGE: f2 ≡ fgauss|x=6 = 0.1353 ≡ 13.53%

- TALL: f3 ≡ fs|x=6 = 0.0165 ≡ 1.65%

Graphically, from Fig. 3, it is seen that one who is 6 feet tall ought to be on the high side

of the AVERAGE distribution and the low side of the TALL distribution. Additionally,

the evaluation of the system ought to yield a higher confidence that this person would be

AVERAGE rather than TALL, which is precisely what is seen. One may be completely

confident that a 6 foot individual is not SHORT, but only partially confident as to the

person’s AVERAGE or TALL classification. Interestingly, it is possible, as in this case, that

one may not be particularly confident at all as to one’s height classification.

Input: 6.5 Feet

Lastly, consider one who is 6.5 feet tall. Colloquially, one may suggest a classification of

TALL. Evaluation of the distribution functions yields the following results:

- SHORT: f1 ≡ fz|x=6.5 = 0.0 ≡ 0%

- AVERAGE: f2 ≡ fgauss|x=6.5 = 0.0 ≡ 0%

- TALL: f3 ≡ fs|x=6.5 = 0.5868 ≡ 58.68%

Thus, it is determined that though someone who is 6.5 feet tall is not TALL, since they are

less than 7 feet tall, intuition will say that the person is indeed TALL because they are of

11

FIG. 4: Output Distribution Functions – Singletons

neither AVERAGE nor SHORT height. It should be noted that by changing membership

function type, location, parameters, and quantity, different classification outputs may be

obtained.

2.1.5 THE RULE-BASE AND INFERENCE SYSTEMS

This simple, one dimensional example yields a very simplistic rule-base – IF-THEN state-

ments are used by the inference system to infer the output response. For this example,

singletons, Fig. 4, will be used such that the output −1 will mean SHORT, 0 will mean

AVERAGE, and 1 will mean TALL. Therefore, the rules, µi, for the system are:

µ1 = IF SHORT THEN SHORT

µ2 = IF AVERAGE THEN AVERAGE

µ3 = IF TALL THEN TALL

Inference occurs by determining the amount each rule contributes to the final output. For

example, evaluating an input of 5.43 for each input membership function results in the

following confidence value from each rule:

µ1|x=5.43 = 0.0392

µ2|x=5.43 = 0.1979

µ3|x=5.43 = 0

12

These values represent the confidence with which each rule contributes to the output. In

other words, each membership function will evaluate to a single fuzzy number during fuzzi-

fication. Since every membership function should be assigned to one or more rules, the

confidence of a membership function is the confidence in the rule to which it is associated.

Complex situations, such as rules utilizing more than one membership function, are beyond

the scope of this example. Their use, however, is a natural extension of this membership

function to rule mapping.

2.1.6 DEFUZZIFICATION

The fuzzification and inference processes described in Sections 2.1.4 and 2.1.5 resulted in

numerous outputs with values ranging from 0 to 1 – one output for each rule. Defuzzification

is the process by which these results are converted to a single, usable, crisp output.

Numerous algorithms are available; however, the one appropriate for this study, center-

of-gravity, is a simple sum of the products of each rule and its associated output value

divided by the sum of the confidence levels. A Takagi-Sugeno system is characterized as a

fuzzy inference system using singleton outputs and center-of-gravity defuzzification. [12] The

formula presented in (6) describes the defuzzification process mathematically where ycrisp is

the crisp output, µi is a specific inference rule, and yi is the output singleton associated with

the given rule.

ycrisp =
Σn
i=1µiyi

Σn
i=1µi

(6)

Fig. 5 demonstrates the selection capability of this system graphically. The output val-

ues of the fuzzy inference system, the output of (6), lie along the blue line labeled Output

Surface. The classification regions are defined by the dominant confidence function at a

particular input in Fig. 3. This makes sense in the simple example presented but may be

more complicated based on a specific system configuration. As this line enters the various

classification regions, the associated classification becomes SHORT, AVERAGE, or TALL

as appropriate. In this example, all input values less than 5.38 ft are designated as SHORT,

all inputs greater than or equal to 6.07 ft are classified as TALL, and all others are AVER-

AGE. The Fuzzy Output crossover points lie at ±0.5 due to the even distribution of output

singletons, Fig. 4, and the center-of-gravity defuzzification function, (6).

2.2 APPLICATION

The example presented in this chapter is a simple system which demonstrates the ability

of fuzzy logic to make classification decisions. This example is meant merely to describe the

13

FIG. 5: Example Output

operation and implementation of fuzzy logic as far simpler techniques could have been used

for this manner of classification. What is presented, however, is the ability of fuzzy logic to

incorporate expert knowledge in a relational system to provide a quantified output based on

quantified inputs using qualified connections.

The classification example provides one of three outputs, SHORT, AVERAGE, and TALL

for a range of inputs, namely (−∞,∞). The power of the fuzzy logic system, however, is

not limited to merely three outputs; an infinite range of values can be produced based on

the system design. Next, a fuzzy logic controller will be presented for aircraft pitch control

using the same techniques presented here.

14

CHAPTER 3

METHODOLOGY

3.1 OVERVIEW

The goal for this controller was to obtain stable flight for a general class of aircraft based

on a fundamental understanding of first principles-of-flight, rather than tuning a controller

to a mathematical model. To achieve this, design and verification was carried out in three

phases: development, simulation, and experimentation. The design phase, Chapter 3, focuses

on developing a fuzzy logic control system for linear and non-linear models. The simulation

phase, Chapter 4, focuses on refining the controller structure to increase performance and

expanding its capability to a wider range of linear and non-linear models. Finally, the

experimentation phase, Chapter 5, puts the proposed design into a real-world wind-tunnel

application.

3.2 DESIGN

In the design phase, parameter and actuator limits for each model were considered as

boundary values for simulation. This motivated an architecture, Section 3.3, constructed

around fuzzy logic systems that are inherently bounded by design, support performance

evaluation, and aid fault detection for conditions such as controller input-output saturation

and ineffective control. Fig. 6 depicts the system architecture comprised of a controller and

supervisor built from fuzzy logic controllers.

A single generic fuzzy inference system, Section 3.3.1, applicable to all desired control

points was created in order to ease system development and integration. Specifically, it

provides a uniform input/output interface as a means of simplifying programmatic design

and future usability in other projects. Additionally, it reduces the run-time memory space

via code reuse and aids computational efficiency, a necessity for meeting design requirement

3 of Section 3.3.

The proposed controller was simulated using four different plants: two linear F-16 models

[14,15], a linear Boeing 747 model [16], and a non-linear F-16 model [14,17]. The models are

presented in detail in Section 4.3. These simulations were utilized to develop a fuzzy logic

15

FIG. 6: Conceptual Architecture of the Model-Less Fuzzy Logic Controller and Supervisor

controller architecture capable of meeting stability performance specifications for a 1-DOF

plant.

3.3 CONTROL SYSTEM ARCHITECTURE

In this project, fuzzy inference systems convert pilot experience into crisp control out-

puts through a series of fuzzification and defuzzification techniques. The overall controller

architecture consists of two fuzzy subsystems: a fuzzy PID controller and fuzzy supervisor,

each composed of three individual fuzzy inference systems (FIS). The controller FISs are

shown as P.FLC, I.FLC, D.FLC in Fig. 6, while the supervisor FISs are shown as P.FLC,

I.FLC, D.FLC within the Supervisor block. The MATLAB R© Fuzzy Logic Toolbox was used

to generate and implement all FISs.

A PID style controller design was chosen due to its proven closed-loop performance

characteristics. The PID functionality was performed with three separate fuzzy logic systems,

one corresponding to each of the classical proportional, integral, and derivative control paths.

The magnitudes of these paths were scaled by the gains Kp, Ki, and Kd, shown as triangular

blocks in Fig. 6. Controller output gains were updated in real time by a fuzzy supervisor

subsystem.

The supervisor is composed of three separate FISs, each mapped one-to-one to a PID

controller output gain. That is, each FIS internal to the supervisor is specifically constructed

to adapt its associated PID gain to reduce the errors (8)-(10) found in Sec. 3.4.

16

The FISs of the PID and supervisor subsystems were created using a single generalized

FIS designed for application to any two input, one output system. Section 3.3.1 presents a

Takagi-Sugeno type FIS with normalized inputs and outputs useful for the creation of the

PID and supervisor subsystems. Section 3.4.1 describes the PID subsystem and Section 3.5.1

describes the supervisor subsystem.

3.3.1 GENERAL FUZZY INFERENCE SYSTEM

A general fuzzy inference system was created using seven membership functions for each of

the two inputs and one output. The input membership functions were placed on a normalized

universe-of-discourse, [−1, 1], as shown in Fig. 7, which allowed easy scaling of inputs using

external multiplication [12]. Membership functions 2 through 6 were symmetric triangle

distribution functions with centers evenly spaced at{
−2

3
,−1

3
, 0,

1

3
,
2

3

}
,

respectively, and widths set such that the outer endpoints of each membership function were

coincident with the center of the adjacent membership function. These overlaps served to

prevent dead–zones from appearing at the output by allowing smooth transitions between

adjacent firing rules.

The outer two membership functions, 1 and 7, were z and s distribution functions, re-

spectively. Unlike the triangle membership functions, which yielded a degree-of-membership

of 0 at ±∞, these gave a degree-of-membership of 1 when an input saturated. Generating a

non-zero value during saturation allows the controller to create a meaningful output. With-

out this capability, (6) would produce a zero output since no distribution functions would

be firing. Saturation of a z distribution function occurred on the interval {(−∞,−1] while

the s distribution function saturated on the interval [1,∞)}.
As per Takagi-Sugeno type systems, the output membership functions were singletons

rather than distributions. Their outputs were selected to take the same normalized locations

as did the centers of the input membership functions; that is, the outputs are located at[
−1,−2

3
,−1

3
, 0,

1

3
,
2

3
, 1

]
.

A uniform distribution of membership functions, spanning negative and positive values, was

chosen to facilitate application to a general class of aircraft. Each supervisor output had a

scaling weight initially selected during the simulation phase of the development and identified

as a reasonable starting location to begin adaptive control.

17

FIG. 7: Input Membership Functions

The controller’s response depended on its rule-base definitions but was fine tuned by

adjusting its output gains via the supervisor. The rule-bases, which mapped inputs to

outputs were uniquely applied to each FIS. Sections 3.4 and 3.5 outline the structure of the

forty-nine rules necessary to fully define each FIS’s input-output relationships.

3.4 CONTROLLER DESIGN

The fuzzy logic control system was developed to track pitch angle commands. Pitch angle

command tracking assumes that:

1. Measurements of the controlled angle are available,

2. The limits of operation for the controlled angle are known, and

3. The angular limits on the control surfaces are known.

Pitch angle, defined as the angle between an aircraft’s longitudinal axis and the ground,

is controlled via elevator deflection commands [7]. Intuitively, from a pilot’s perspective,

a small change in elevator angle should induce a small change in pitch angle. Likewise,

large, fast, and slow elevator changes should result in large, fast, and slow pitch angle

responses, respectively, taking an aircraft centric approach. Additionally, performance was

characterized using the concepts of quick and accurate where quick is the speed of the

18

aircraft’s response and accurate is satisfaction of the aircraft’s final pitch error taking a pilot

centric approach.

Translating the nebulous concepts above into concrete, quantifiable ideas required the

identification of some mathematical constraints. Therefore, tracking accuracy was specified

by selecting a reference model that defined the desired transient and steady-state error

characteristics. The primary purpose of the reference command filter was to prevent large

derivative terms from saturating outputs, but it also established instantaneous tracking

performance while maintaining the spirit of a model-less approach by making no assumptions

of the aircraft’s mathematical model. The selected reference-model was

θref(s) =
6.25

s2 + 4.25s+ 6.25
θcmd(s), (7)

a second-order transfer function in the s-domain with a natural frequency ωn = 2.5 rad/s and

damping ratio ζ = 0.85, where quickness of the system is determined by ωn. Additionally,

this transfer function produced a settling time Tsettle = 1.68s and an overshoot %OS = 0.63

percent.

The reference model (7) was discretized for a sampled-data system running at 50 Hz. For

accuracy, the goal for the controller was to reduce the following errors: tracking error (8),

change in error (9), and the integral of the error (10), where Ts = 1
50

s is the sample period,

k = 0, 1, 2, . . . were the sample instants, and the integrator’s initial condition was zero.

θerror(kTs) = θref(kTs)− θmeas(kTs), (8)

θ∆ error(kTs) = θerror(kTs)− θerror((k − 1)Ts), (9)

θ∑ error(kTs) = Ts

k∑
n=1

θerror(kTs). (10)

3.4.1 PID OVERVIEW

A parallel fuzzy PID controller was developed using the general FIS template described

in Section 3.3.1 with one FIS created for each PID control path. The inputs to the three

channels of the fuzzy PID controller were θerror(kTs), θ∑ error(kTs), and θ∆error(kTs) for the

proportional, integral, and derivative paths, respectively. The inputs to each controller FIS

were scaled by 1/θlim, where θlim was the assumed given pitch limit of the aircraft.

The PID subsystem FISs have been restricted to single-input single-output systems by

holding one of the inputs constant. This created a linear mapping where the output is the

negative of the input. This negation was a result of the sign convention used for aircraft

19

equations of motion [14]. This served to scale the response of each controller path and assign

the correct output elevator angular position, δe. More specifically, the body axis aircraft

model defines negative δe as an elevator position pitched toward the top of the aircraft.

Based on (8), a negative error means the current pitch exceeds the desired pitch, so the

elevator must move in the positive, that is the downward, direction in order to correct the

error. However, these linear mappings required the oversight of the supervisor outputs as

they did not constitute a PID controller in the strictest sense.

The PID structure was only fully implemented when the fuzzy controller was combined

with the supervisor described in Section 3.5.1. When combined with the supervisor described

in Section 3.5.1, the three fuzzy PID controller output channels were scaled by the weights set

by the supervisor: Kp, Ki, and Kd. The weighted outputs were summed to create the control

output to the elevators for θ control. To prevent over-driving the actuators, the final control

output was limited to [min(δe),max(δe)], where δelim denotes the angular displacement limit

of the aircraft’s elevators.

20

3.5 SUPERVISOR DESIGN

3.5.1 OVERVIEW

The supervisor consisted of three FISs of the design presented in Section 3.3.1 to control

the proportional, integral, and derivative output gains in the fuzzy PID subsystem. Each

FIS took θerror and θ∆error as inputs with 1/max(θerror) and 1/max (θ∆error) as input nor-

malizing factors, where max(θerror) was the difference between the upper and lower θ limits.

The weight max(θ∆error) was set to four times max(θerror) as a general starting location for

simulation and wind-tunnel testing. This did not change during simulation or wind-tunnel

experiments.

The supervisor rule-bases were developed so as to specifically accentuate different features

of the separate PID constructs given the aircraft’s performance with respect to θerror and

θ∆error . For example, the supervisory FIS associated with integral PID action is set to output

larger values when θerror is small in order to reduce steady-state error. Each rule-base is

described Sections 3.5.2–3.5.4.

3.5.2 PROPORTIONAL SUPERVISION

The proportional input-output rule-base mapping is shown in Fig. 8. The given distribu-

tion increased the proportional gain of the controller when either θerror or θ∆error was small

and reduced it when both θerror and θ∆error were large. This allowed the controller to respond

to conditions when θerror was large and unchanging by increasing proportional gain, while

a situation where θerror and θ∆error were large and in the same direction results in a small

change because the system is already moving toward θerror = 0. Additionally, the system

responded to θerror and θ∆error being large in opposite directions, driving θerror → ±∞, by

driving outputs in a direction opposite to the current trend so that θerror → 0. Proportional

gains were high near zero so that the system was able to quickly respond to step input

changes.

3.5.3 INTEGRAL SUPERVISION

The integral input-output rule-base mapping is shown in Fig. 9. To reduce the steady

state error, the rule-base output is maximum when θerror is small. Large θerror also demands a

maximum output in order to return the system to steady-state quickly. Note that when θerror

and θ∆error are small, the distributions of Fig. 8 and Fig. 9 reinforce one another to create a

21

FIG. 8: Kp Rule-base Surface Representation

FIG. 9: Ki Rule-base Surface Representation

stronger control action; however, their outer ranges differ in order to specifically tailor the

output response. The low points near (±0.5,±0.5) help to prevent integrator windup by

limiting its operating region and allow the proportional and derivative supervisory systems

to operate as the primary actors. Should those be insufficient to maintain control, the system

inputs will naturally gravitate to a region where the integral supervisor has more control.

22

FIG. 10: Kd Rule-base Surface Representation

3.5.4 DERIVATIVE SUPERVISION

Finally, the derivative input-output rule-base mapping is shown in Fig. 10. This distribu-

tion was proposed in [18] based on the results presented in [19] as a way to prevent oscillation

and over-saturation. Oscillations are suppressed by increasing rate feedback as the rate mag-

nitude increases toward θ∆error = ±1. Over-saturation is achieved by minimizing the number

of points where the output is maximal.

The magnitudes of the supervisor output channels were scaled by considering the function

of the individual FISs. Since the proportional supervisor system is setting the proportional

gain of the fuzzy PID controller, its output scale was set to δelim = max |δe| so that the

controller could access the full range of δe values. The scaling factors for the derivative and

integral channels were chosen as fractions or multiples of elevator angular position limit,

δelim ; these are given in Chapters 4 and 5.

3.6 ADAPTIVITY

The unknown nature of the system indicates that some amount of adaptivity was required.

Thus, a supervisory fuzzy logic system is constructed to auto-tune the fuzzy controller pa-

rameters so that it could meet the control system specifications. Equations (8) and (9) were

used as inputs to the supervisor with the goal of driving θerror(kTs)→ 0 and θ∆error(kTs)→ 0

as k → ∞. Intuitive principles were employed for adaptivity, for example, the presence of

23

steady-state error requires either more or less control input in order to minimize error. These

have been programmed implicitly into the rule-bases of the fuzzy inference systems.

Presented here is a different type of adaptivity than is typically presented. Rather than

using a series of algorithms or techniques to converge to an operating point, the presuppo-

sition was made that if an aircraft is controllable, then its operating point exists within the

confines of the combined fuzzy logic controllers of the proposed system. Stated another way,

the combination of the proposed supervisor-controller system generates a six-dimensional

operating space wherein it is assumed that, if the aircraft is stabilizable, stable pitch control

exists and is reachable.1 Section 6 discusses additional work in adaptation, not empirically

tested, designed to provide better performance.

3.7 BRINGING IT ALL TOGETHER

The presented controller is an amalgamation of a number of control strategies: PID

control, fuzzy logic control, and supervision. Sections 3.2–3.6 serve to answer the practical

question of how the controller operates, but this section seeks to answer what the controller

does during each sample period.

Recall Fig. 6. A command θcmd is issued and filtered through a reference model to generate

commands which, if tracked perfectly, will provide a desirable rise-time and overshoot. This

signal is compared with the measured pitch, θmeas to develop the error signal, θerror.

The error signal, θerror is then processed to obtain the difference, θ∆error, and cumulative

sum, θΣerror. These signals are then supplied to the PID and supervisor subsections of the

controller.

The supervisor normalizes the input signals θerror and θ∆error which are then supplied to

the proportional, integral, and derivative portions of the supervisor. The outputs of these

supervisor modules are supplied to the PID controller to become the output scaling gains.

Similarly, the PID subsection normalizes its inputs and passes those values to the pro-

portional, integral, and derivative sections of the controller. The PID subsection outputs,

now scaled by the supervisor’s supplied output scaling gains, are summed to create a control

output. Not shown in Fig. 6 is a final block which limits the control outputs so as not to

overdrive the physical actuators.

1Reachability here describes the ability to maintain an aircraft’s stability by keeping it within the confines
of the stable flight envelope.

24

CHAPTER 4

SIMULATION

4.1 OVERVIEW

Simulation is an important part of this project since wind-tunnel experimentation will be

limited to a single aircraft with limited aerodynamic variations. The virtual environment,

however, allows one to perform any number of control schemes to get a sense of techniques

that merit implementation. Additionally, development iterations are quickened as the bounds

of time may also be simulated and the cost of virtual testing is negligible compared to wind-

tunnel operating costs.

Four models were chosen for the simulation environment to both match the wind-tunnel

unit-under-test (UUT) and gauge performance in dissimilar aircraft. Using an Aero L-59

Super Albatros as the wind-tunnel UUT, models for the F16 Fighting Falcon were chosen

as like aircraft. Simulation was performed using two different linear models, trimmed at

different operation points, and a full 6 degree-of-freedom (6-DOF) non-linear model. A

Boeing 747 linear model was chosen as a dissimilar aircraft. Each model was simulated with

both a simple PID controller and the proposed FLC for comparison. One PID controller was

selected for use in simulation of the non-linear model as a comparison. It is understood that

this is not a wholly appropriate approach since no attempt at gain scheduling at multiple

operating points was made, but it is expected to have an operational range over which

some comparison may be made. A controller’s ability to track input pitch commands and

reach a steady-state condition while remaining within the flight envelope was the primary

performance consideration.

4.2 SIMULATION

The simulation environment was created using Matlab in which various models and con-

trollers could be easily switched. A diagram of the closed-loop pitch simulation can be seen

in Fig. 11. Working from left to right, a simple doublet command routine is employed as

the system input due to its historical use in simulation. [20] Commands were filtered by the

discretized reference model in (7) to produce a command sequence with more manageable

25

FIG. 11: Simulink Simulation Diagram

TABLE 1: Simulation Configurations Table

F16 Model Boeing 747

Controller
Linear-1 FLC Linear-2 FLC Non-Linear FLC FLC

Linear-1 PID Linear-2 PID Non-Linear PID PID

rise times and minimize large control commands induced by the sharp differentials created

by true step commands. One of the two controllers and one of the four plants were switched

in for the appropriate simulation according to the configuration list in Table 1. A saturation

block was placed in-line to simulate the real physical travel limits of an aircraft elevator. 1

4.3 SIMULATION MODELS

Three linear models were used for simulation. Two F16 models trimmed about different

operation points were used to study controller performance on similar models with different

characteristics. A third model, a Boeing 747, was used to study controller performance to a

wider set of aircraft, namely comparing an agile fighter aircraft to a transport aircraft.

A =

[
0 1
c̄Sq̄

IyCma

c̄Sq̄
IyCmq

]
B =

[
0
c̄Sq̄

IyCme

]

C =

[
1 0

0 1

]
D =

[
0

0

] (11)

The generalized model in (11) presents a reduced order model for the state-space repre-

sentation ẋ = Ax + bu, y = Cx + du where c̄ is the mean aerodynamic chord length, q̄ is

1The analog-to-digital converter (ADC) and digital-to-analog converter (DAC) in Fig. 11 have no signif-
icance in simulation because inputs and outputs were not quantized. They are included for completeness as
their presence is necessary in wind-tunnel experiments.

26

TABLE 2: FLC Initialization Parameters

Experiment Parameter Value

δelim 40 deg

θlim 25 deg

max |θerror| 50 deg

max |θ∆error | 100 deg

Supervisor Proportional Output Scale 40

Supervisor Integral Output Scale 10

Supervisor Derivative Output Scale 640

dynamic pressure, S is the area of the wing, Iy is the pitching moment of inertia, Cma is the

pitching moment coefficient contribution due to the angle-of-attack (α), Cmq is the pitching

moment coefficient contribution due to pitch rate (q), and Cme is the pitching moment coef-

ficient contribution due to elevator deflection (δe). [21] The input u , δe where δe is aircraft

elevator angular position in degrees, x , [α, α̇]T where α is the aircraft’s angle of attack and

α̇ is the first derivative of α.

The four-state models in (14) and (16) represent a second F16 model and a Boeing 747

model, respectively. They take the states x , [∆u, α, q, θ]T where θ is the pitch angle and

q is the pitch rate. For the purposes of this study, α ≡ θ, as testing was performed in

a wind tunnel in which α = θ as a constrained parameter and all future references to α

will be discussed at θ. These simulations were utilized to develop a fuzzy logic controller

architecture capable of meeting stability performance specifications for a 1-DOF plant. The

FLC initialization parameters are provided in Table 2. Lastly, the continuous linear models

in (12)-(16) were discretized, not shown, with a zero-order-hold equivalent of Ts = 0.02 sec.

Linear F16 Model 1 The reduced order model in (11) is described more specifically by

the state-space system in (12) obtained by substituting the values in Table 3. [21]

The model used the linearized parameters Cma, Cmq, and Cme for an equilibrium point

of α = θ = 0 deg, V = 600 ft/s, and h = 25 000 ft. The parameters for (12) and equilib-

rium points are provided in Table 3. [21] Note that the values for Cma, Cmq, and Cme are

dimensionless.

27

TABLE 3: Linear F16 Model Parameters

Parameter Value
Iy 55 814 slug · ft
c̄ 11.32 ft
S 300 ft2

q̄ 192.21 psf
Cma −0.0376
Cmq −0.0584
Cme −0.6073
α 0 deg
δe 0 deg
V 600 ft/s
h 25000 ft

A =

[
0 1

−0.4403 −0.6830

]
B =

[
0

−7.1030

]

C =

[
1 0

0 1

]
D =

[
0

0

] (12)

The plant is controllable due to its full-rank controllability matrix. Extracting θ from (12)

yields the transfer function (13) with two stable poles at s = −0.3415± 0.5689i.

Hθ(s) =
−7.103

s2 + 0.683s+ 0.4403
(13)

28

Linear F16 Model 2 The four-state model in (14) was taken from [15, p. 128]. This

represents a model linearized about an operating point where δe = 0 deg and velocity V =

203.87 ft/s.

A =


−0.0507 −3.861 0 −32.2

−0.00117 −0.5164 1 0

−0.000129 1.4168 −0.4932 0

0 0 1 0

 B =


0

−0.0717

−1.645

0



C =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 D =


0

0

0

0



(14)

The plant is controllable due to its full-rank controllability matrix. Extract-

ing θ from (14) yields the transfer function (15) with four poles at s =

{−1.7036, 0.7310, − 0.0438± 0.2066i}.

Hsys(s) =
−0.0717s3 − 1.684s2 − 0.08519s− 0.06168

s4 + 1.06s3 − 1.115s2 − 0.0658s− 0.05552
(15)

Linear Boeing 747 Model The four-state model in (16) was taken from [16, p. 92].

This represents a model linearized about an operating point where δe = 0 deg and velocity

V = 278.67 ft/s.

A =


−0.0188 11.5959 0 −32.2

−0.0007 −0.5357 1 0

0.000048 −0.4944 −0.4935 0

0 0 1 0

 B =


0

0

−0.5632

0



C =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 D =


0

0

0

0



(16)

The plant is controllable due to its full-rank controllability matrix. Extract-

ing θ from (16) yields the transfer function (17) with four poles at s =

{−0.5221± 0.7029i, − 0.0019± 0.1250i}.

29

Hsys(s) =
−0.5632s2 − 0.01059s− 0.01269

s4 + 1.048s3 + 0.7862s2 + 0.01926s+ 0.01197
(17)

Non-Linear F16 Model The non-linear F16 model is a 6-DOF model based the

equations-of-motion and parameters presented in [14, 17]. Model dynamics are solved via

a fourth order Runge-Kutta method.

Simple PID Controller A simple PID controller was used for performance comparison.

It is understood that PID is fully capable of controlling a linear plant very accurately. The

transfer function in (18) was used as the PID controller for all linear models. The lack of

a derivative term in (18) is due to the desire to use the simplest controller possible which

yielded an adequate response. Since performance was adequate using only proportional and

integral terms, the derivative term is left out to avoid complications due to large derivative

inputs.

HPID(s) =
−0.5s+ 0.05

s
(18)

4.4 CONTROLLER EVALUATION

Controller performance is measured as a factor of how fast the controller demonstrates a

convergence to zero in the instantaneous root mean square error (19), where k is the sample

index. So long as error, the base of the exponent term in the radicand, has a tendency to

decrease over time, then as k →∞, RMSerror(kTs)→ 0.

RMSerror(kTs) =

√
1

k
Σk
i=0 (θref (i)− θmeas(i))2 (19)

The four combinations of F16 Linear Model 1 and F16 Non-Linear models and controllers

in Table 1 are presented along with a graphical representation of the actual simulation and

the instantaneous RMS error. Summaries of the F16 Linear Model 2 and Boeing 747 follow.

F16 Linear Model 1 and Non-Linear Model In the linear simulations, the linear F16

model presented in (12) was placed in the plant section of Fig. 11, and separate simulation

runs were conducted with either the linear PID or fuzzy logic controller (FLC) placed in

the controller section. Fig. 12 depicts the side-by-side comparison of the PID and FLC

performance along with the input command reference which the controllers are meant to

track where the initial command and pitch are both θref = θmeas = 0 deg.

30

FIG. 12: Fuzzy Logic and PID Controller Response to Linear F16 Model 1

FIG. 13: Controller Performance Comparison Based on Instantaneous RMS Error for Linear
Models

This graphic clearly depicts the superiority of the FLC with respect to steady-state

time and tracking the reference command transient yet apparently lacking in overshoot and

steady-state error. Fig. 13 shows the RMS performance of the two controllers. As one might

expect, the PID controller is able to track commands with a decreasing RMS error over time.

31

FIG. 14: Fuzzy Logic and PID Controller Response to Non-Linear F16 Model

FIG. 15: Non-Linear F16 Model Controller Performance Comparison Based on Instantaneous
RMS Error

The FLC RMS error begins to accumulate commands distant from the equilibrium condition

due to the general constraints placed on the controller. This limitation is not considered

significant here because RMS error performance increases in non-linear simulations. Specific

performance numbers can be found in Table 4.

32

FIG. 16: PID Performance on Non-Linear Plant Demonstrating Tracking During Long Du-
ration Doublets

The performance differences of the non-linear simulations are, as expected, considerably

different. Long period simulations, Fig. 16, confirmed the ability of the PID controller to

track the reference input and are substantiated by the apparent monotonic decrease of RMS

error, Fig 15. It is not considered as an acceptable in situ controller due to the large overshoot

at all command changes, but its simulation is provided here for continuity and comparison.

Specific performance numbers can be found in Table 4.

The previous simulations used a static controller with preset bounds and no adaptivity.

This resulted, as expected, in a fuzzy logic controller of better performance to a non-linear

plant than that of a linear PID controller due to its inherent non-linearity; yet steady-state

error still remained. Specific performance numbers can be found in Table 4 where overshoot,

undershoot, and rise-time are calculated using the standard definitions and steady-state error

is calculated at the last sample instance for a time period.

F16 Linear Model 2 The simulation present in Fig. 18 was performed using the same

input criteria as the F16 Linear Model 1 and F16 Non-Linear model. Specific performance

characteristics are presented in Table 5 for comparison. It is interesting to note that the

FLC model performs quite poorly; large overshoot and sustained oscillations appear to nearly

grow unbounded during the interval 60 sec ≤ t < 80 sec, but it recovers at the last moment.

However, once this time period passed, the FLC controller performed with overshoot and

33

TABLE 4: F16 Linear Model 1 and F16 Non-Linear Model Controller Simulation Perfor-
mance Characteristics

Time Period (sec)

0-20 20-40 40-60 60-80 80-100 100-120

F
16

L
in

ea
r

1
P

ID

Over(under)shoot (%) 15.37 14.77 13.24 15.01 13.13 14.03

Rise Time (sec) 1.30 1.34 1.44 1.34 1.38 1.44

Steady-State Error (deg) -0.13 0.37 -0.19 0.21 -0.37 0.01

F
16

L
in

ea
r

1
F

L
C Over(under)shoot (%) -11.98 -12.23 -12.54 -12.01 -12.21 -12.23

Rise Time (sec) 4.58 1.44 1.32 4.58 1.06 4.48

Steady-State Error (deg) -0.78 0.96 -0.04 1.64 0.66 2.62

F
16

N
on

-L
in

ea
r

P
ID

Over(under)shoot (%) 596.12 123.19 76.44 53.33 67.82 50.92

Rise Time (sec) 0.56 1.52 1.68 1.86 1.64 1.86

Steady-State Error (deg) 4.91 -0.74 0.29 -0.56 0.29 -0.34

F
16

N
on

-L
in

ea
r

F
L

C Over(under)shoot (%) 130.65 9.13 10.71 3.35 6.18 3.27

Rise Time (sec) 0.36 0.62 0.58 0.62 0.54 0.58

Steady-State Error (deg) -0.00 -0.01 0.01 -0.00 0.01 0.01

34

FIG. 17: F16 Linear Model 1 and Non-Linear F16 Model Controller Performance Comparison
Based on Instantaneous RMS Error

FIG. 18: Fuzzy logic and PID response to the F16 Linear Model 2

steady-state performance comparable to that of the PID controller but with a longer rise

time.

35

TABLE 5: F16 Linear Model 2 Controller Simulation Performance Characteristics

Time Period (sec)

0-20 20-40 40-60 60-80 80-100 100-120

F
16

L
in

ea
r

2
P

ID

Over(under)shoot (%) 53.26 53.30 53.41 53.31 53.40 53.30

Rise Time (sec) 0.20 0.18 0.18 0.20 0.20 0.20

Steady-State Error (deg) 0.11 -0.11 -0.02 -0.19 -0.12 -0.28

F
16

L
in

ea
r

2
F

L
C Over(under)shoot (%) 134.30 146.48 192.46 299.62 83.64 76.22

Rise Time (sec) 0.90 0.78 0.58 0.86 1.44 0.80

Steady-State Error (deg) 0.10 0.20 -0.73 1.70 -0.29 0.33

36

FIG. 19: Fuzzy logic and PID response to the Boeing 747 Linear Model

Boeing 747 Linear Model The simulation present in Fig. 19 was performed using the

same input criteria as the F16 Linear Model 1 and F16 Non-Linear model. Specific per-

formance characteristics are presented in Table 6 for comparison. The FLC controller in

this simulation performs quite well with regard to overshoot but suffers steady-state error

compared to the PID controller.

4.5 EXPERIMENTATION HYPOTHESIS

From the simulations presented, particularly the non-linear model simulations, one should

expect the fuzzy logic control scheme to work well. Overshoot is expected to diminish

over time; rise time should match the command reference within an order of magnitude,

and steady-state error should be negligible. One should also expect to tune the controller

and supervisor initialization parameters corresponding to the maximum control boundaries

of the supervisor and controller based on data gathered during experimentation. More

specifically, the output scaling gains from the supervisor will likely need adjustment to

obtain the performance requirements as defined in Section 1.2.

37

TABLE 6: Boeing 747 Linear Model Controller Simulation Performance Characteristics

Time Period (sec)

0-20 20-40 40-60 60-80 80-100 100-120
B

74
7

L
in

ea
r

P
ID

Over(under)shoot (%) 65.24 65.25 65.36 65.37 65.52 65.42

Rise Time (sec) 0.30 0.30 0.30 0.30 0.28 0.30

Steady-State Error (deg) 0.10 -0.15 0.11 -0.33 0.10 -0.49

B
74

7
L

in
ea

r
F

L
C Over(under)shoot (%) 8.06 9.26 26.93 19.42 47.80 28.96

Rise Time (sec) 1.52 1.48 1.42 1.46 1.40 1.44

Steady-State Error (deg) 0.12 -0.38 0.56 -0.85 1.04 -1.35

38

CHAPTER 5

EXPERIMENTATION

5.1 EXPERIMENTAL DATA COLLECTION

5.1.1 EXPERIMENTAL APPARATUS

The performance of the model-less fuzzy logic control system was tested with two different

aircraft model configurations, a known stable stock configuration and a known unstable

Leading Edge Extension (LEX) configuration, to demonstrate its ability to control aircraft

with significantly different aerodynamics. The model under test was a commercially available

scaled model of the Aero L-59 Super Albatros. The model was operated in the 12-foot wind-

tunnel located at the NASA Langley Research Center in Hampton, VA. The pitch control

configuration, shown in Fig. 1, was obtained by fixing the model such that only 1-DOF

was obtained. The stock configuration was comprised of the standard L-59 model aircraft

outfitted with control actuators and micro-controller stack affixed to a sting providing Free-

to-Pitch functionality. The LEX configuration was obtained by attaching aluminum leading

edge extensions, as shown in Fig. 22. This aircraft is capable of differential elevator movement

through independent articulation, control servos, and instrumentation; however, they were

controlled as a single unit in this experiment.

The aircraft was instrumented with US Digital MA3 12-bit PWM Magnetic Encoders [22]

filtered with a Krohn-Hite Model 3364 4-pole Butterworth filter [23], using a cutoff frequency

of 10 Hz, to measure pitch. Control surface movement was accomplished using an Arduino

DUE micro-controller [24], Seeed Technology W5200 Ethernet shield [25], and SparkFun

Ludus Protoshield Wireless motor shield [26] stack attached to Futaba S9650 [27] digital

servo motors. Elevator feedback measurement was accomplished via US Digital MA3 12-bit

PWM Magnetic Encoders connected to the control surfaces.

The Arduino DUE micro-controller served as an interface between the primary control

program run on an external computer via Matlab and the servo motors and the angle position

sensors. Fig. 20 shows the controller hardware stack where the Arduino Stack region is

taken as a single unit to which the digital encoders and servos connect. Each sample period

39

FIG. 20: Hardware Stack

follows the programmatic flow depicted in Fig. 21 where the Matlab program read the current

elevator angle measure from the micro-controller, read the current pitch angle measurement

from the Butterworth filter, calculated the control output, issued the control command to

the micro-controller, and logged data from the sample period of off-line analysis. Fixed-point

to floating-point conversions were handled where appropriate by the Matlab program.

The entire experiment was driven by a proprietary Matlab program developed by NASA

Langley. This program set up all appropriate interface requirements for the data acquisition

interfaces, generated the experiment control commands, and connected to the application

program interface of the controller. The flowchart depicted in Fig. 21 depicts the run-time

procedural loop.

5.1.2 EXPERIMENTAL PROCEDURE

The experimental procedures are as follows:

1. Setup

(a) Install aircraft.

40

FIG. 21: Run-time Program Flowchart

(b) Ensure hard stops are placed such that the aircraft cannot exceed its expected

pitch limits.

(c) Install instrumentation.

(d) Check sensor connectivity by reading sample data through a dummy Matlab in-

terface.

(e) Check actuator connectivity by issuing dummy commands to the servo motors.

(f) Calibrate servo motors.

i. Repeatedly issue port elevator commands until the chord line of the elevator

is collinear with the chord line of the horizontal stabilizer.

ii. Record data as δe = 0 deg.

41

iii. Using a block with a 30 deg angle mounted on the ventral side horizontal

stabilizer, repeatedly issue port elevator commands until the elevator is flush

with block.

iv. Record data as δe = 30 deg.

v. Repeat Step 1(f)iii with the block mounted on the dorsal side of the horizontal

stabilizer.

vi. Record data as δe = −30 deg.

vii. Repeat Steps 1(f)iii–1(f)vi with a 45 deg block.

viii. Repeat Steps 1(f)iii–1(f)vii for the starboard elevator.

(g) Input calibration values into the control sequence to map control values to actual

elevator commands.

(h) Verify calibration by issuing control commands in degrees and verifying accuracy

with calibration blocks.

2. Experimental Run

(a) Generate command sequence.

(b) Set wind-tunnel airspeed as a function of dynamic pressure, q.

(c) With the wind-tunnel at the desired q, run program.

(d) At program conclusion, save the Matlab workspace data for post analysis and

archival purposes.

(e) Determine any necessary program changes.

(f) Update control algorithms as necessary.

(g) Repeat Steps 2a–2f as necessary.

(h) Set wind-tunnel q = 0.

Open-loop runs were performed by issuing a series of sequential step commands over a

large portion of the flight envelope. Open-loop runs were conducted to verify stability or

instability of a configuration prior to closed-loop runs in order to draw performance compar-

isons. Open-loop and closed-loop mathematical characterization of the plant configurations

are not a goal of this study and were not performed.

42

TABLE 7: Controller Initial Values

Experiment Parameter Value

δelim 40 deg

θlim 25 deg

max |θerror| 50 deg

max |θ∆error | 100 deg

Supervisor Proportional Output Scale 40

Supervisor Integral Output Scale 10

Supervisor Derivative Output Scale 800

5.2 PERFORMANCE CHARACTERISTICS

The proposed controller was tested on both the stock aircraft configuration, Fig. 1, and

the LEX aircraft configuration, Fig. 22. Both configurations were tested under open-loop

and closed-loop conditions to compare controller effectiveness. Controller initialization pa-

rameters for the runs shown here are provided in Table 7.

The stock configuration received doublet commands for both open-loop and closed-loop

test runs. In the open-loop case, pretest calibration was performed to find the steady-state

trim condition of the aircraft, that is, elevator commands δe ∈ [−10 deg, 10 deg] were issued,

the aircraft was allowed to reach a steady-state operating point, and the pitch angle was

FIG. 22: LEX Aircraft Configuration

43

FIG. 23: Stock Aircraft Response to Doublet Input (Open Loop)

recorded; this is the steady-state trim value. These values were then used to command

open-loop pitch by issuing the appropriate elevator command associated with desired pitch;

these values were only used for open-loop testing. Fig. 23 shows the open-loop response of

the stock configuration. The open-loop aircraft is unable to maintain trim near θ = 10 deg,

overshoot is present during transitions, and steady-state error is noted over the interval

(5 s < t < 15 s).

The closed-loop stock configuration was tested with a series of doublet commands in the

range [−10 deg, 10 deg] as θcmd. These commands were filtered to generate θref . Fig. 24 shows

the performance of the controller with no plant knowledge. The instantaneous RMS error

given in (19) has been overlain to show the RMS error asymptotically approaching zero.

Observe that the closed-loop controller maintains trim at θ = 10 deg with no oscillations

or overshoot. The overshoots at step changes have been eliminated and steady-state error

approaches θerror → 0 asymptotically.

The period of initial learning is shown in Fig. 25. During this time frame, the controller’s

initial output of δe = 0 deg caused the aircraft to pitch down to −13 deg. At t = 0.5 s, the

controller’s FIS structures have recovered and began corrective action by t = 1 s.

The LEX aircraft configuration is shown in Fig. 22. Aluminum sheets were added to

the leading edge of the wings to create aerodynamic instability by shifting the aircraft’s

aerodynamic center forward with respect to its center of mass. Open-loop LEX configuration

testing was performed by sweeping the elevator angle in step commands over the range

44

FIG. 24: Stock Aircraft Response to Doublet Input (Closed Loop)

FIG. 25: Stock Aircraft Initial Self-Tuning Time Frame

δe ∈ [−10 deg, 10 deg]. Fig. 26 shows the uncontrollable nature of this configuration where

the pitch response is maintained above θ = 10 deg for δecmd
< 2 deg at which point it sharply

transitioned to θ = −35 deg.

The closed-loop response of the LEX configuration shown in Fig. 27 demonstrates control

recovery. While control performance does not match the stock closed-loop response, stable

45

FIG. 26: LEX Aircraft Response to Doublet Input (Open Loop)

flight, the goal of this study, has been achieved. Note that θcmd = 5 deg contains slow oscil-

latory convergence. This is evidenced graphically in the reduction of oscillation amplitude

peak values over time.

Initial parameters pertaining to the sensitivity of the supervisory system required manual

adjustments between test runs to achieve the results presented here. The initial parameters

were set based on simulation performance. To reduce the steady-state error in wind-tunnel

experiments, the supervisor’s scaling factor for the integral path was increased from 1
24

to 1
4

of

the scaling factor of the proportional path. These fixed parameters represent the maximum

gains available for the system to create a range of possible values for the controller to choose.

This resulted in the characteristic performance presented above and points to how to improve

the controller in the future, for example, adding adaptive subroutines to adapt the scaling

weights, which were fixed, based on detected performance.

46

FIG. 27: LEX Aircraft Response to Doublet Input (Closed Loop)

47

CHAPTER 6

SUPPLEMENTAL WORK

6.1 MOTIVATION

The technique presented thus far is helpful under the conditions presented. However,

visual analysis of Figs. 14 and 27 alone are enough to suggest a need to further refine

the presented technique. Thus, the adaptivity theory was expanded to incorporate on-line

tuning of the FLC. This was done by tracking the operating point within the six-dimensional

structure of a normalized FLC and adjusting the dimensional boundaries according to certain

criteria. In general, a given system input or output is allowed to operate near its boundary

for a limited period of time, but if it is operating near the boundary too often, there the

controller is in danger of operating in saturation.

6.2 METHODOLOGY

If, in general, one needs to make supervisor-controller adjustments based on the six-

dimensional operating point, the question becomes, “When, where, and how often are these

changes to be made?” In short, adjustments should be made when “error along a given

supervisor or controller path is too great,” where the “operating point is too close to or

exceeds a boundary,” and “not too often.”

The adaptivity routines are applied uniformly to all inputs and outputs. Fig. 28 depicts

the decision flow for input adaptation. Specifically, if an input is within a certain percentage

of the boundary of the associated FLC, then an accumulator increments up to a certain

threshold, with credit given when within the normal range, where the normal range is defined

as a certain percentage of the total range. For example, if an input registers 15 consecutive

boundary excursions followed by three normal range values, the final accumulator value for

this time would be 12 – assuming an initial accumulator value of zero. This is to allow brief

excursions near the controller’s operating boundary, but long-term excursions occur when,

presumably, the controller is ill-conditioned for the plant; thus, adjustment is required. Once

the threshold is exceeded, the boundary is increased by a specific multiplier. Additionally,

in this model, inputs completely outside the input boundary prompted an immediate change

so that out-of-range values may be handled.

48

FIG. 28: Input Adaptation Algorithm

The output adaptation algorithm depicted in Fig. 29 utilizes a similar boundary detection

scheme as the inputs. Here it is assumed that the output performance is strictly coupled to

the output range of the supervisor-controller combination related to a certain PID control

path. Specifically, Error Magnitude in Fig. 29 relates to θerror for the proportional path,

θ̇error for the derivative path, and Σ(θerror) for the integral path and a change along the

respective control path effects change in the associated output.

Specifically, if the specific error or average error over a given sample window exceeds a

certain threshold, a series of decisions is made. First, a check is performed to make sure that

the controller has not been updated too recently; this is accomplished using a stand-down

counter which decrements every sample period after a change in addition to an accumulator

which keeps track of the number of recent error excursions.

Once a change event is initiated, the mode of the error is determined. If the operating

point of the controller is within a certain distance of, or over the boundary, the error is likely

due to an aggressive controller regime, so the output boundaries are reduced in order to

reduce the magnitude of the outputs. Conversely, if the controller is operating within the

49

FIG. 29: Output Adaptation Algorithm

normal region, then the boundaries must be expanded to provide more control authority.

6.3 SIMULATION

Simulation of the adaptation algorithms was performed using the same analysis technique

described in Chapter 4 while the adaptive controller was used to control both a linear and

non-linear F16 model plant. The adaptation parameters described in the previous section

are given in Tables 8 and 9.

Surprisingly, the adaptive supervisor-controller structure performed substantially better

against a non-linear plant than a linear plant. Fig. 30 shows ringing throughout the entire

50

TABLE 8: Controller Output Adaptation Parameters

Output

Kp Ki Kd

Counter 10 10 10

Stand-down 25 50 25

Increase Multiplier 2 1.5 4

Decrease Multiplier 0.5 0.67 0.25

Boundary Region 25% 25% 25%

Window Size 20 20 20

Error Threshold 5 25 5

Avg. Error Threshold 15 15 15

TABLE 9: Controller Input Adaptation Parameters

Input

P I D Kp Ki Kd

Counter 10 10 10 10 10 10

Increase Multiplier 2 1.5 4 2 1.5 4

Decrease Multiplier 0.5 0.67 0.25 0.5 0.67 0.25

Boundary Region 25% 25% 25% 25% 25% 25%

linear simulation, with the largest amount during the first 20 seconds. This oscillation was

quickly damped but was not completely eliminated and contributed to the larger RMS error

shown in Fig. 31 over the non-linear simulation.

However, against the non-linear plant, the adaptive routines corrected rather directly

to a final suitable condition. It is true that approximately 18-percent overshoot occured

at each transition; however, steady-state error is effectively zero, Table 10, and met the

design criteria for stability. Lastly, a comparison is given in Figs. 32 and 33 showing the

performance of all non-linear controllers against one another.

51

TABLE 10: Adaptive Controller Simulation Performance Characteristics

Time Period (sec)

0-20 20-40 40-60 60-80 80-100 100-120
L

in
ea

r
F

L
C

A
d
ap

ti
ve Overshoot(%) 224.79 119.52 51.22 43.12 45.48 40.68

Rise Time(sec) 7.50 7.22 7.32 7.30 7.38 7.32

Steady-State(deg) 5.47 -0.24 0.09 -0.10 0.04 -0.08

N
on

L
in

ea
r

F
L

C
A

d
ap

ti
ve Overshoot(%) 238.16 26.10 0.94 31.69 4.54 33.03

Rise Time(sec) 0.26 3.50 1.36 2.86 1.26 2.24

Steady-State(deg) -0.78 0.05 -0.24 -0.08 -0.06 -0.01

52

FIG. 30: F16 Linear Model 1 and Non-Linear F16 Model Fuzzy Logic Controller Response
With Adaptive Routines

FIG. 31: F16 Linear Model 1 and Non-Linear F16 Model Controller Performance with
Adaptivity Comparison Based on Instantaneous RMS Error

53

FIG. 32: Fuzzy Logic and Linear PID Controller Response to Non-Linear F16 Model with
Adaptivity Simulation Shown

FIG. 33: Simulated Performance Comparison Based on Instantaneous RMS Error

54

CHAPTER 7

CONCLUSION

7.1 OVERVIEW OF FINDINGS

In general, the proposed control scheme operated well and met the primary design goal of

creating stable flight for an unknown plant of a certain type – a fixed-wing aircraft obeying the

standard aerodynamic equations of motion. Without further augmentation, this technique

appears to be quite useful for control of open-loop stable plants but suffers from performance

degradation for open-loop unstable plants. However, when used as a tool to provide stability

for the development of robust plant models via SID in order to yield more powerful control

schemes, its usefulness is apparent in the reduction of development time gained.

The primary lesson to be learned is that while general success was obtained, it would

be foolish to consider this technique fully mature. The performance change from stable to

unstable plants alone is enough to demonstrate that the static fuzzy logic controller presented

is probably not robust enough to handle a wide variety of unstable plants. Additionally, the

need to tune scaling gains proves that, in order to make this technique available for a wider

variety of plants, on-line adaptive routines could be utilized to great effect.

7.2 RESEARCH IMPLICATIONS

Traditionally, classical and modern control methodologies are rooted in mathematical

models, and for good reason. Accurate mathematical models allow design and simulation

iterations to evolve in systematic progressions without costly manufacturing or risky real

world testing. Furthermore, mathematics provides the analysis tools to understand how

those design and simulation iterations point to desired results in the form of tools like trend-

lines. Yet, in certain circumstances this approach may itself be too costly if only a quick

general answer is required or if the time to develop models requires too many hours.

Conversely, the presented approach demonstrates that it is possible to create a real-

world solution which abstracts mathematical models, allows for stable control of a plant,

and supplies a qualified result which may be used to obtain a further quantified result.

Furthermore, by utilizing wind-tunnel data logging and control systems, the development of

mathematical models via SID can be automated, resulting in lower overall prototyping cost.

55

7.3 SUMMARY

In this paper, a fuzzy logic controller was developed for the Modeling and Control for Agile

Aircraft Development Program. The proposed controller required no a priori mathematical

aircraft model, and only a second-order reference model was used for response shaping.

Control was obtained by creating a fuzzy inference system such that general expert knowledge

was embedded in the input-output space of the FIS to sufficiently cover the operational flight

envelope.

Real-time adjustments were performed by a supervisory system created with a second

set of FISs. This subsystem proved to adapt to unknown aircraft configurations to control

both aerodynamically stable and unstable aircraft configurations semi-autonomously. While

certain parameters required tuning to set up parameters for the beginning of an experimental

run, this yielded the necessary intuition required to fully automate parameter tuning in future

systems.

Wind-tunnel tests with this control design were performed using a one-degree-of-freedom

test apparatus for an L-59 model aircraft at the NASA Langley Research Center 12-ft wind-

tunnel. The results showed the usefulness and capability of the proposed controller. The

controller operated based on general first principles-of-flight, tracked an input command

within an RMS error less than 5 deg, converged in under 8.5 sec, and achieved the notion of

stability described in this work.

The proposed controller will be extended to multiple degree-of-freedom aircraft experi-

ments, and additional adaptivity systems will be added. While the specific purpose of this

experiment was to create a controller using abstract concepts of aircraft dynamics, future

work is necessary to understand mathematically the range of aircraft classes for which this

approach is applicable and what performance may be achieved.

56

REFERENCES

[1] D. J. Diston, Computational Modelling and Simulation of Aircraft and the Environment

Platform Kinematics and Synthetic Environment, pp. 1–24. Hoboken, NJ, USA: Wiley,

2009.

[2] C. B. de Mendonça, E. T. da Silva, M. Curvo, and L. G. Trabasso, “Model-based flight

testing,” J. Aircraft, vol. 50, pp. 176–186, 2013.

[3] S. Nagai and H. Iijima, “Uncertainty identification of supersonic wind tunnel testing,”

J. Aircraft, vol. 48, Mar. 2011.

[4] A. Abbas-Bayoumi and K. Becker, “An industrial view on numerical simulation for

aircraft aerodynamic design,” J. Math. Ind., vol. 1, Dec. 2011.

[5] S. L. Kukreja, “Data-driven model development for the supersonic semispan transport,”

AIAA J., vol. 51, pp. 1333–1341, Jun. 2013.

[6] A. Mekky and O. R. González, “LQ control for the NASA learn-to-fly free-to-roll

project,” in 2016 IEEE Nat. Aerospace and Electron. Conf. (NAECON) and Ohio In-

novation Summit (OIS), pp. 173–178, Jul. 2016.

[7] E. Morelli, “Real-time global nonlinear aerodynamic modeling for learn-to-fly,” in AIAA

Atmospheric Flight Mechanics Conf., AIAA SciTech Forum, Jan. 2016.

[8] D. Choe and J.-H. Kim, “Pitch autopilot design using model-following adaptive sliding

mode control,” J. Guidance, Control, and Dynamics, vol. 25, pp. 826–829, Jul. 2002.

[9] I. Rusnak, A. Guez, I. Bar-Kana, and M. Steinberg, “Online identification and control

of linearized aircraft dynamics,” IEEE Aerosp. Electron. Syst. Mag., vol. 7, pp. 56–60,

Jul. 1992.

[10] H.-J. Rong, S. Han, and G.-S. Zhao, “Adaptive fuzzy control of aircraft wing-rock

motion,” Appl. Soft Computing J., vol. 14, pp. 181–193, Jan. 2014.

[11] K. Lu and Y. Xia, “Adaptive attitude tracking control for rigid spacecraft with finite-

time convergence,” Automatica, vol. 49, pp. 3591–3599, Dec. 2013.

[12] K. M. Passino and S. Yurkovich, Fuzzy Control. Boston, MA, USA: Addison-Wesley

Longman, Inc., 1997.

57

[13] “Fuzzy logic toolbox, user’s guide,” 2017a. The MathWorks, Natick, MA, USA.

[14] V. Klein and E. Morelli, Aircraft System Identification: Theory and Practice. AIAA

education series, Reston, VA: Amer. Inst. of Aeronautics and Astronautics, 2006.

[15] B. Friedland, Control System Design: An Introduction to State-Space Methods. Dover

Publications, 2012.

[16] C. Rohrs, J. Melsa, and D. Schultz, Linear Control System. McGraw-Hill, 1993.

[17] L. Nguyen, M. Ogburn, W. Gilbert, K. S. Kibler, P. W. Brown, and P. L. Deal, “Simula-

tor study of stall/post-stall characteristics of a fighter airplane with relaxed longitudinal

static stability,” Tech. Paper 1538, NASA, Dec. 1979.

[18] N. Beygi, M. Beigy, and M. Siahi, “Design of fuzzy self-tuning PID controller for pitch

control system of aircraft autopilot,” CoRR, vol. abs/1510.02588, Oct. 2015.

[19] Y. Ma, Y. Liu, and C. Wang, “Design of parameters self-tuning fuzzy PID control

for dc motor,” in 2010 The 2nd Int. Conf. Ind. Mechatronics and Automation, vol. 2,

pp. 345–348, May 2010.

[20] E. Morelli, “Flight test maneuvers for efficient aerodynamic modeling,” J. Aircraft,

vol. 49, pp. 1857–1867, Nov. 2012.

[21] Y. Huo, “Model of F-16 fighter aircraft.” University of Southern California, 2018.

[22] US Digital, MA3 Miniature Absolute Magnetic Shaft Encoder, Aug. 2016.

[23] Krohn-Hite Corporation, 0.1Hz to 200kHz Four Channel 4–Pole Filter, Feb. 2016.

[24] Arduino, Arduino DUE, 2018.

[25] Seeed Technology, W5200 Ethernet Shield, 2017.

[26] SparkFun Electronics, SparkFun Ludus Protoshield Wireless, 2017.

[27] Hobbico, Futaba S9650 Digital Mini Servo. Hobbico, Jun. 2003.

58

APPENDIX A

MATLAB CODE

A.1 SIMULATION DRIVER

The following code is the primary linear model simulation driver. It requires the relative

path packages and is capable of running all linear simulations given appropriate parameters.

1 % Primary Simulat ion Driver

2 c l e a r ; c l e a r ;

3 c l c ;

4 p r o f i l e on ;

5

6 addpath (’ .\ Plants ’) ;

7 addpath (’ .\ Tools ’) ;

8 addpath (’ .\ Functions ’) ;

9 addpath (’ . . \ . . \Mekky\F2P F16 ’) ;

10 addpath (’ . . \ . . \Mekky\F 16 cont ro l ’) ;

11

12 warning (’ o f f ’ , ’ Fuzzy : e v a l f i s : InputOutOfRange ’) ;

13

14 %% Simulat ion In format ion

15 STEPTIME = 0 . 0 2 ;

16 STOPTIME = 20 ;

17

18 AMPLITUDE = 1 ;

19 x cg = . 3 ;

20

21 X cg = [0 . 3] ;

22 Amplitude = [1] ;

23 PERIOD = 2 ;

24 %% Create Input Commands

25 InputCommand ;

26

27 U = ze ro s (numel (X cg) , numel (alphaCommand)) ;

28

29 f o r plantID = 1 :3

30 f o r c t r l I D = 1 :2

31 %% Cal l Plant

32 i f plantID == 1

33 PlantF16 1 ;

34 e l s e i f plantID == 2

35 PlantF16 2 ;

36 e l s e i f plantID == 3

37 Plant747 ;

59

38 end

39

40 %% Cal l C o n t r o l l e r

41 i f c t r l I D == 1

42 ctr lname = ’PID ’ ;

43 e l s e i f c t r l I D == 2

44 ctr lname = ’FLC ’ ;

45 end

46

47 %% Set Adapt iv i ty

48 d i sab l eAdapt i v i t y = 1 ;

49 p r e s e t s = 0 ;

50

51 i f d i s ab l eAdapt i v i ty == 1

52 adaptName = ’NO Adapt ’ ;

53 e l s e

54 adaptName = ’ Adapt ’ ;

55 end

56 %% Generate PID Systems

57 i f strcmp (name , ’F16−1 ’)

58 Kp = . 5 ;

59 Ki = . 0 5 ;

60 Kd = 0 ;

61 alphaPID = pid(−Kp, −Ki , −Kd, . 0 2 , . 0 2) ;

62 e l s e i f strcmp (name , ’F16−2 ’)

63 Kp = . 5 ;

64 Ki = . 0 5 ;

65 Kd = 0 ;

66 alphaPID = pid(−Kp, −Ki , −Kd, . 0 2 , . 0 2) ;

67 e l s e i f strcmp (name , ’ B747 ’)

68 Kp = . 5 ;

69 Ki = . 0 5 ;

70 Kd = 0 ;

71 alphaPID = pid(−Kp, −Ki , −Kd, . 0 2 , . 0 2) ;

72 end

73

74 sysPID = ss (alphaPID) ;

75

76 Ysave = ze ro s (numel (X cg) , numel (alphaCommand)) ;

77 %%

78 f o r xIndex = 1 : numel (X cg)

79 f o r aIndex = 1 : numel (Amplitude)

80 x cg = X cg (xIndex) ;

81 AMPLITUDE = Amplitude (aIndex) ;

82

83 %% Cal l C o n t r o l l e r

84 INITIALIZATION ;

85

86 %% Create Simulat ion Var i ab l e s

87 X = ze ro s (s i z e (sys . a , 2) , numel (alphaCommand) +1) ;

88 Xref = ze ro s (s i z e (sysRef . a , 2) , numel (alphaCommand) +1) ;

89

60

90 Y = ze ro s (s i z e (sys . c , 1) , numel (alphaCommand)) ;

91 Yref = ze ro s (s i z e (sysRef . c , 1) , numel (alphaCommand)) ;

92

93 XPID = ze ro s (s i z e (sysPID . a , 2) , numel (alphaCommand) +1) ;

94 YPID = ze ro s (s i z e (sysPID . c , 2) , numel (alphaCommand)) ;

95

96 Posit ion Output = ze ro s (1 , numel (alphaCommand)) ;

97 Veloc ity Output = ze ro s (1 , numel (alphaCommand)) ;

98 Accel Output = ze ro s (1 , numel (alphaCommand)) ;

99 ErrorCorrect ion Output = ze ro s (1 , numel (alphaCommand)) ;

100

101 alphaError = ze ro s (1 , numel (alphaCommand)) ;

102 dAlphaError = ze ro s (1 , numel (alphaCommand)) ;

103 d2Alpha = ze ro s (1 , numel (alphaCommand)) ;

104

105 FFTSize = 2ˆnextpow2 ((1/STEPTIME) /2) +1;

106 AlphaFFT Output = ze ro s (numel (alphaCommand) , FFTSize) ;

107 ElevFFT Output = ze ro s (numel (alphaCommand) , FFTSize) ;

108 FFT FFT Output = ze ro s (numel (alphaCommand) , FFTSize) ;

109

110 check = 0 ;

111

112 th r e sho ld = exp (−1/16 .∗ [0 : 32]) ;

113 ARRPrev = 0 ;

114 %% Star t S imulat ion Clock

115 t i c ;

116

117 %% Primary Simulat ion Loop

118 f o r index = 1 : numel (alphaCommand)

119 i f f l o o r ((index /numel (alphaCommand)) ∗100) > check

120 f p r i n t f (’ . ’) ;

121 check = check + 10 ;

122 end

123

124 % Calcu la te Error

125 t ry

126 alphaError (index) = . . .

127 Yref (1 , index−1) − X(alphaLoc , index) ;

128 catch

129 alphaError (index) = . . .

130 Yref (1 , index) − X(alphaLoc , index) ;

131 end

132

133 t ry

134 dAlphaError (index) = . . .

135 Yref (2 , index−1) − X(alphaDotLoc , index) ;

136 catch

137 dAlphaError (index) = . . .

138 Yref (2 , index) − X(alphaDotLoc , index) ;

139 end

140

141 i f strcmp (ctrlname , ’FLC ’)

61

142 MainContro l ler . setSampleTime (STEPTIME) ;

143 MainSupervisor . super (. . .

144 MainControl ler , . . .

145 X(alphaLoc , index) , . . .

146 X(alphaDotLoc , index) , . . .

147 alphaCommand(index) , . . .

148 STEPTIME, . . .

149 0) ;

150

151 U(xIndex , index) = MainContro l ler . c o n t r o l (. . .

152 MainSupervisor , . . .

153 X(alphaLoc , index) , . . .

154 X(alphaDotLoc , index) , . . .

155 V) ;

156 e l s e i f strcmp (ctrlname , ’PID ’)

157 XPID(index +1) = sysPID . a ∗ XPID(index) . . .

158 + sysPID . b . . .

159 ∗ (Xref (alphaLoc , index)−X(alphaLoc , index)) ;

160 YPID(index) = sysPID . c ∗ XPID(index) . . .

161 + sysPID . d . . .

162 ∗ (Xref (alphaLoc , index)−X(alphaLoc , index)) ;

163 U(index) = YPID(index) ;

164 end

165

166 % Limit ing Elevator Rate

167 t ry

168 min(max((U(index) − U(index)−1) . . .

169 / STEPTIME, −RATELIMIT) , RATELIMIT) ;

170 catch

171 end

172

173 % Limit ing Elevator Pos i t i on

174 U(index) = min (. . .

175 max (. . .

176 U(index) , −POSITIONLIMIT∗180/ p i) , . . .

177 POSITIONLIMIT∗180/ p i) ;

178

179 % Calcu la te Reference Model

180 Xref (: , index +1) = sysRef . a ∗ Xref (: , index) . . .

181 + sysRef . b ∗ alphaCommand(index) ;

182 Yref (: , index) = sysRef . c ∗ Xref (: , index) . . .

183 + sysRef . d ∗ alphaCommand(index) ;

184

185 % Simulate Plant

186 i f strcmp (name , ’F16−1 ’)

187 U(index) = U(index) /(p i) ;

188 X(: , index +1) = . . .

189 sys . a ∗ X(: , index) + sys . b ∗ U(index) ;

190 Y(: , index) = . . .

191 sys . c ∗ X(: , index) + sys . d ∗ U(index) ;

192

193 i f strcmp (ctrlname , ’PID ’)

62

194 Y(: , index) = Y(: , index) / p i ;

195 end

196

197 % Simulate Plant

198 e l s e i f strcmp (name , ’F16−2 ’)

199 U(index) = U(index) ∗180/ p i ;

200 X(: , index +1) = . . .

201 sys . a ∗ X(: , index) + sys . b ∗ U(index) ;

202 Y(: , index) = . . .

203 sys . c ∗ X(: , index) + sys . d ∗ U(index) ;

204

205 i f strcmp (ctrlname , ’PID ’)

206 U(index) = U(index) ∗ pi /180 ;

207 Y(: , index) = Y(: , index) . / p i ;

208 end

209

210 e l s e i f strcmp (name , ’ B747 ’)

211 U(index) = U(index) ∗180/ p i ;

212 X(: , index +1) = sys . a ∗ X(: , index) + sys . b ∗ U(index) ;

213 Y(: , index) = sys . c ∗ X(: , index) + sys . d ∗ U(index) ;

214

215 i f strcmp (ctrlname , ’PID ’)

216 U(index) = U(index) ∗ pi /180 ;

217 Y(: , index) = Y(: , index) . / p i ;

218 end

219 end

220 end

221 f p r i n t f (’ \n ’) ;

222

223 %% Stop Simulat ion Clock

224 toc ;

225

226 end

227 Ysave (xIndex , :)=Y(alphaLoc , :) ;

228 end

229

230 s a v e F i l e = s p r i n t f (’%s %s %s ’ , name , ctrlname , adaptName) ;

231 s a v e F i l e = s t r r e p (saveF i l e , ’− ’ , ’ ’) ;

232 eva l ([’ Ysave ’ s a v e F i l e ’=Ysave ; ’]) ;

233 eva l ([’U ’ s a v e F i l e ’=U; ’]) ;

234 save (saveF i l e , s p r i n t f (’ Ysave %s ’ , s a v e F i l e) , . . .

235 s p r i n t f (’U %s ’ , s a v e F i l e) , ’ Yref ’) ;

236

237 end

238 end

239 %% Plot Simulat ion

240 SimPlots ;

63

A.2 INITIALIZATION

The following code is the primary constructor for all controller and supervisor com-

ponents. Settable options include specifications for gain pre-initialization and activating

adaptive algorithms.

1 warning (’ o f f ’ , ’ Fuzzy : e v a l f i s : InputOutOfRange ’) ;

2

3 % I n i t i a l i z e C o n t r o l l e r Var i ab l e s

4 CTRL errorGain = 1 ;

5 CTRL positGain = 1 ;

6 CTRL velocGain = 1 ;

7 CTRL accelGain = 1 ;

8

9 alphaLimit = 25 ;

10 e l evL imi t = 40 ; % Sets +− e l e v a t o r l i m i t

11 l owe rOf f s e t = 0 ; % l i m i t = −e l evL imi t + lowe rOf f s e t

12 upperOf f se t = −10; % l i m i t = e l e v + upperOf f se t

13

14 i f d i s ab l eAdapt i v i ty == 1

15 % s e t nonzero to d i s a b l e autogain adjustment changing

16 di sab leGainSense = 1 ;

17

18 % t h i s means i n d i v i d u a l I /O ga ins must be e s t a b l i s h e d

19 % f o r a l l FLCs below

20 % (0 = Enable | 1 = Disab le)

21 %

22 % NOTE: This does not d i s a b l e the o r i g i n a l s u p e r v i s o r

23 % gain adjustment techn iques that c o n t r o l the

24 % c o n t r o l l e r output ga ins . This w i l l (en/ d i s) ab l e

25 % the automatic d e t e c t i o n o f FLC I /O ga ins based on

26 % e v a l u t a t i o n with in 10% of an FLC I /O boundary or

27 % f o r out o f bounds eva lua t i on

28 e l s e

29 di sab leGainSense = 0 ;

30 end

31

32 windtunnel = 0 ; % s e t nonzero f o r windtunnel usage

33 % (0 = Simulat ion | 1 = Windtunnel Usage)

34

35 e r ro rL im i t = 2∗ alphaLimit ;

36 errorChangeLimit = 4∗ e r ro rL im i t ;

37

38 zeta = 0 . 8 5 ;

39 wn = 2 . 5 ;

40 r e f e r enceFunc t i on = [zeta , wn] ;

41 dt = 0 . 0 2 ;

42

43 ssAnalyzeTime = 1 ; % sec −> Window length f o r d e t e c t i n g Steady−State

44 s s S e n s i t i v i t y = . 1 ; % deg −> S e n s i t i v i t y th r e sho ld below which the system i s

45 % cons ide r ed in steady s t a t e i f the sample amplitude spread

64

46 % i s maintained f o r the ssAnalyeTime window

47

48 % FIS I n i t a l i z a t i o n s

49 FISStruct = s t r u c t (. . .

50 ’ d i s t r i b u t i o n ’ , {} , . . .

51 ’ over lap ’ , {} , . . .

52 ’ inputRange1 ’ , {} , . . .

53 ’ inputRange2 ’ , {} , . . .

54 ’ outputRange ’ , {} , . . .

55 ’MFs ’ , {} , . . .

56 ’ inputType ’ , {} , . . .

57 ’ outputType ’ , {} , . . .

58 ’ENABLE’ , { } . . .

59) ;

60 CTRL A E = FISStruct ;

61 CTRL AI EI = FISStruct ;

62 CTRL AD ED = FISStruct ;

63 SUPER Kp = FISStruct ;

64 SUPER Ki = FISStruct ;

65 SUPER Kd = FISStruct ;

66

67 % CAREFUL: no e r r o r check ing i s performed on FIS parameters . Heed opt ion

68 % comments on CTRL A E

69 CTRL A E(1) . d i s t r i b u t i o n = ’ l i n e a r ’ ; % l i n e a r , square , cube , quad , pent

70

71 % 1 −> 200 (100 means 100 percent over lap with adjacent l e g

72 CTRL A E(1) . over lap = 100 ;

73 i f d i sab leGainSense == 0

74 CTRL A E(1) . inputRange1 = 1 ; % Only p o s i t i v e numbers

75 CTRL A E(1) . inputRange2 = 1 ; % Only p o s i t i v e numbers

76

77 CTRL A E(1) . outputRange = 1 ; % Only p o s i t i v e numbers

78 e l s e

79 CTRL A E(1) . inputRange1 = alphaLimit ; % Only p o s i t i v e numbers

80 CTRL A E(1) . inputRange2 = alphaLimit ; % Only p o s i t i v e numbers

81

82 i f strcmp (name , ’F16−1 ’)

83 CTRL A E(1) . outputRange = 1 ; % Only p o s i t i v e numbers

84 e l s e i f strcmp (name , ’F16−2 ’)

85 CTRL A E(1) . outputRange = 1 ; % Only p o s i t i v e numbers

86 e l s e i f strcmp (name , ’ B747 ’)

87 CTRL A E(1) . outputRange = 2 ; % Only p o s i t i v e numbers

88 end

89 end

90

91 CTRL A E(1) .MFs = 7 ; % DO NOT CHANGE

92 CTRL A E(1) . inputType = ’ t r im f ’ ; % tr imf , constant

93 CTRL A E(1) . outputType = ’ constant ’ ; %tr imf , constant

94 CTRL A E(1) .ENABLE = 1 ; % 1−>ON | 0−>OFF

95

96 %%

97 CTRL AI EI (1) . d i s t r i b u t i o n = ’ l i n e a r ’ ;

65

98 CTRL AI EI (1) . over lap = 100 ;

99 i f d i sab leGainSense == 0

100 CTRL AI EI (1) . inputRange1 = 1 ;

101 CTRL AI EI (1) . inputRange2 = 1 ;

102

103 CTRL AI EI (1) . outputRange = 1 ;

104 e l s e

105 CTRL AI EI (1) . inputRange1 = alphaLimit ;

106 CTRL AI EI (1) . inputRange2 = alphaLimit ;

107

108 i f strcmp (name , ’F16−1 ’)

109 CTRL AI EI (1) . outputRange = 1 ;

110 e l s e i f strcmp (name , ’F16−2 ’)

111 CTRL AI EI (1) . outputRange = 1 ;

112 e l s e i f strcmp (name , ’ B747 ’)

113 CTRL AI EI (1) . outputRange = 1 . 5 ;

114 end

115 end

116 CTRL AI EI (1) .MFs = 7 ; % DO NOT CHANGE

117 CTRL AI EI (1) . inputType = ’ t r imf ’ ;

118 CTRL AI EI (1) . outputType = ’ constant ’ ;

119 CTRL AI EI (1) .ENABLE = 1 ; % 1−>ON | 0−>OFF

120

121 %%

122 CTRL AD ED(1) . d i s t r i b u t i o n = ’ l i n e a r ’ ;

123 CTRL AD ED(1) . over lap = 100 ;

124 i f d i sab leGainSense == 0

125 CTRL AD ED(1) . inputRange1 = 1 ;

126 CTRL AD ED(1) . inputRange2 = 1 ;

127

128 CTRL AD ED(1) . outputRange = 1 ;

129 e l s e

130 CTRL AD ED(1) . inputRange1 = alphaLimit ;

131 CTRL AD ED(1) . inputRange2 = alphaLimit ;

132

133 i f strcmp (name , ’F16−1 ’)

134 CTRL AD ED(1) . outputRange = 1 ;

135 e l s e i f strcmp (name , ’F16−2 ’)

136 CTRL AD ED(1) . outputRange = 1 ;

137 e l s e i f strcmp (name , ’ B747 ’)

138 CTRL AD ED(1) . outputRange = 2 ;

139 end

140 end

141

142 CTRL AD ED(1) .MFs = 7 ; % DO NOT CHANGE

143 CTRL AD ED(1) . inputType = ’ t r imf ’ ;

144 CTRL AD ED(1) . outputType = ’ constant ’ ;

145 CTRL AD ED(1) .ENABLE = 1 ; % 1−>ON | 0−>OFF

146

147 %%

148 SUPER Kp(1) . d i s t r i b u t i o n = ’ l i n e a r ’ ;

149 SUPER Kp(1) . over lap = 100 ;

66

150 i f d i sab leGainSense == 0

151 SUPER Kp(1) . inputRange1 = 1 ;

152 SUPER Kp(1) . inputRange2 = 1 ;

153 SUPER Kp(1) . outputRange = 1 ;

154 e l s e

155 SUPER Kp(1) . inputRange1 = er ro rL im i t ;

156 SUPER Kp(1) . inputRange2 = errorChangeLimit ;

157

158 i f strcmp (name , ’F16−1 ’)

159 i f p r e s e t s == 0

160 SUPER Kp(1) . outputRange = e l evL imi t ;

161 e l s e

162 SUPER Kp(1) . outputRange = e l evL imi t ;

163 end

164

165 e l s e i f strcmp (name , ’F16−2 ’)

166 i f p r e s e t s == 0

167 SUPER Kp(1) . outputRange = e l evL imi t ∗ pi /180 ;

168 e l s e

169 SUPER Kp(1) . outputRange = 2 ;

170 end

171

172 e l s e i f strcmp (name , ’ B747 ’)

173 i f p r e s e t s == 0

174 SUPER Kp(1) . outputRange = e l evL imi t ∗ pi /180 ;

175 e l s e

176 SUPER Kp(1) . outputRange = 3 . 7 7 1 3 ;

177 end

178 end

179 end

180 SUPER Kp(1) .MFs = 7 ; % DO NOT CHANGE

181 SUPER Kp(1) . inputType = ’ t r im f ’ ;

182 SUPER Kp(1) . outputType = ’ constant ’ ;

183 SUPER Kp(1) .ENABLE = 1 ; % 1−>ON | 0−>OFF

184

185 %%

186 SUPER Ki(1) . d i s t r i b u t i o n = ’ l i n e a r ’ ;

187 SUPER Ki(1) . over lap = 100 ;

188 i f d i sab leGainSense == 0

189 SUPER Ki(1) . inputRange1 = 1 ;

190 SUPER Ki(1) . inputRange2 = 1 ;

191 SUPER Ki(1) . outputRange = 1 ;

192 e l s e

193 SUPER Ki(1) . inputRange1 = er ro rL im i t ;

194 SUPER Ki(1) . inputRange2 = errorChangeLimit ;

195

196 i f strcmp (name , ’F16−1 ’)

197 i f p r e s e t s == 0

198 SUPER Ki(1) . outputRange = e l evL imi t /2ˆ2 ;

199 e l s e

200 SUPER Ki(1) . outputRange = e l evL imi t /2ˆ2 ;

201 end

67

202

203 e l s e i f strcmp (name , ’F16−2 ’)

204 i f p r e s e t s == 0

205 SUPER Ki(1) . outputRange = e l evL imi t /2ˆ2∗ pi /180 ;

206 e l s e

207 SUPER Ki(1) . outputRange = 1 . 5 ;

208 end

209

210 e l s e i f strcmp (name , ’ B747 ’)

211 i f p r e s e t s == 0

212 SUPER Ki(1) . outputRange = e l evL imi t /2ˆ2∗ pi /180 ;

213 e l s e

214 SUPER Ki(1) . outputRange = 1 . 5 ;

215 end

216 end

217

218 end

219 SUPER Ki(1) .MFs = 7 ; % DO NOT CHANGE

220 SUPER Ki(1) . inputType = ’ t r im f ’ ;

221 SUPER Ki(1) . outputType = ’ constant ’ ;

222 SUPER Ki(1) .ENABLE = 1 ; % 1−>ON | 0−>OFF

223

224 %%

225 SUPER Kd(1) . d i s t r i b u t i o n = ’ l i n e a r ’ ;

226 SUPER Kd(1) . over lap = 100 ;

227 i f d i sab leGainSense == 0

228 SUPER Kd(1) . inputRange1 = 1 ;

229 SUPER Kd(1) . inputRange2 = 1 ;

230 SUPER Kd(1) . outputRange = 1 ;

231 e l s e

232 SUPER Kd(1) . inputRange1 = er ro rL im i t ;

233 SUPER Kd(1) . inputRange2 = errorChangeLimit ;

234 i f strcmp (name , ’F16−1 ’)

235 i f p r e s e t s == 0

236 SUPER Kd(1) . outputRange = e l evL imi t ∗2ˆ4 ;

237 e l s e

238 SUPER Kd(1) . outputRange = e l evL imi t ∗2ˆ4 ;

239 end

240

241 e l s e i f strcmp (name , ’F16−2 ’)

242 i f p r e s e t s == 0

243 SUPER Kd(1) . outputRange = e l evL imi t ∗2ˆ2∗ pi /180 ;

244 e l s e

245 SUPER Kd(1) . outputRange = 6 . 7 0 4 8 ;

246 end

247

248 e l s e i f strcmp (name , ’ B747 ’)

249 i f p r e s e t s == 0

250 SUPER Kd(1) . outputRange = e l evL imi t ∗2ˆ2∗ pi /180 ;

251 e l s e

252 SUPER Kd(1) . outputRange = 273 . 3817 ;

253 end

68

254 end

255 end

256 SUPER Kd(1) .MFs = 7 ; % DO NOT CHANGE

257 SUPER Kd(1) . inputType = ’ t r im f ’ ;

258 SUPER Kd(1) . outputType = ’ constant ’ ;

259 SUPER Kd(1) .ENABLE = 1 ; % 1−>ON | 0−>OFF

260

261 %%

262 c t r l F I S = [CTRL A E, CTRL AI EI , CTRL AD ED] ;

263 superFIS = [SUPER Kp, SUPER Ki , SUPER Kd] ;

264

265 MainSupervisor = Superv i so r (. . .

266 1 , . 0 5 , . . .

267 ssAnalyzeTime , s s S e n s i t i v i t y , . . .

268 dt , . . .

269 alphaLimit , . . .

270 e levLimit , . . .

271 r e f e r enceFunct ion , . . .

272 superFIS , . . .

273 disableGainSense , . . .

274 windtunnel) ;

275

276 MainContro l ler = C o n t r o l l e r (. . .

277 CTRL errorGain , . . .

278 CTRL positGain , . . .

279 CTRL velocGain , . . .

280 CTRL accelGain , . . .

281 alphaLimit , . . .

282 e levLimit , . . .

283 l owerOf f s e t , . . .

284 upperOffset , . . .

285 c t r lFIS , . . .

286 disableGainSense , . . .

287 windtunnel) ;

288 MainDataLog = DataLog () ;

69

A.3 LINEAR SIMULATION MODELS

A.3.1 F16 LINEAR MODEL 1

The following code initializes the continuous-time and discrete-time F16 Linear Model

1. [21]

1 %% Linear F16−1 Model

2 name = ’F16−1 ’ ;

3

4 h = 25000;

5 V = 600 ;

6 rho = (2 .377 e−3)∗(1−(.703 e−5)∗h) ˆ 4 . 1 4 ;

7

8 POSITIONLIMIT = 25 ; % (deg)

9 RATELIMIT = POSITIONLIMIT∗4 ; % (deg/ s)

10

11 % Convert to Radians

12 POSITIONLIMIT = POSITIONLIMIT ∗ (p i /180) ; % (rad)

13 RATELIMIT = RATELIMIT ∗ (p i /180) ; % (rad / s)

14

15 % Inco rpo ra t i on o f a d d i t i o n a l models f o r s imu la t i on

16 Iy = 55814 ; % slug−f t

17 cBar = 1 1 . 3 2 ; % f t

18 S = 300 ; % f t ˆ2

19 qBar = (1/2) ∗ rho∗Vˆ2 ;

20

21 % Set I n i t i a l F l i gh t CM Input Parameters

22 a l p h a I n i t i a l = 0 ; % (deg)

23 e l e v I n i t i a l = 0 ; % (deg)

24

25 % Set SS Locat ion f o r Alpha/AlphaDot

26 alphaLoc = 1 ;

27 alphaDotLoc = 2 ;

28

29 % F16 State−space R e a l i z a t i o n −> E. More l l i ’ s System I d e n t i f i c a t i o n Book

30 syms Cma Cmq Cme;

31 sysA = [. . .

32 0 1 ; . . .

33 (cBar∗S∗qBar) / Iy ∗Cma (cBar∗S∗qBar) / Iy ∗Cmq] ;

34 sysB = [. . .

35 0 , . . .

36 (cBar∗S∗qBar) / Iy ∗Cme] . ’ ;

37 sysC = [. . .

38 1 0 ; . . . % Alpha (rad)

39 0 1] ; % AlphaDot (rad/ s)

40 sysD = [0 0] ’ ;

41

42 %% Actuator Model

43 sysAct = t f ([−3.028 1 3 0 . 8] , [1 10 .26 1 3 2 . 5]) ;

70

44

45 %% Reca l cu la t e Plant with Current Pi tch ing Moment C o e f f i c i e n t s

46 % I /O’ s f o r F16 Aero Lin are (deg)

47 [Cma, Cme, Cmq] = F16 Aero Lin (V, a l p h a I n i t i a l , 0 , 0 , 0 , 0 , . . .

48 e l e v I n i t i a l , 0 , 0 , 0 , 0 , x cg) ;

49

50 % Convert p i t ch ing moments to rad

51 Cma = Cma ∗ 180/ p i ;

52 Cme = Cme ∗ 180/ p i ;

53 Cmq = Cmq ∗ 180/ p i ;

54

55 sysCT = ss (eva l (sysA) , eva l (sysB) , sysC , sysD) ;

56 sysCT . OutputName={ ’ Alpha ’ , ’ AlphaDot ’ } ;

57 sysCT . InputName = { ’Command ’ } ;

58 sysCT . StateName={ ’ Alpha ’ , ’ AlphaDot ’ } ;

59

60 sys = c2d (sysCT , STEPTIME) ;

A.3.2 F16 LINEAR MODEL 2

The following code initializes the continuous-time and discrete-time F16 Linear Model

2. [15, p. 128]

1 %% Linear F16−2 Model

2 name = ’F16−2 ’ ;

3 V=203.867;

4

5 sysA = [. . .

6 −0.0507 −3.861 0 − 3 2 . 2 ; . . .

7 −0.00117 −.5164 1 0 ; . . .

8 −.000129 1 .4168 −.4932 0 ; . . .

9 0 0 1 0] ;

10 sysB = [0 −.0717 −1.645 0] ’ ;

11 sysC = [. . .

12 1 0 0 0 ; . . .

13 0 1 0 0 ; . . .

14 0 0 1 0 ; . . .

15 0 0 0 1] ;

16 sysD = 0 ;

17

18 POSITIONLIMIT = 25 ;

19 RATELIMIT = POSITIONLIMIT∗16 ;

20

21 % Set I n i t i a l F l i gh t CM Input Parameters

22 a l p h a I n i t i a l = 0 ;

23 e l e v I n i t i a l = 0 ;

24

25 % Set SS Locat ion f o r Alpha/AlphaDot

26 alphaLoc = 2 ;

27 alphaDotLoc = 3 ;

28

71

29 %% Estab l i sh State−Space Model

30 sysCT = (s s (sysA , sysB , sysC , sysD)) ;

31

32 %% Actuator Model

33 sysAct = t f ([−3.028 1 3 0 . 8] , [1 10 .26 1 3 2 . 5]) ;

34

35 sys = c2d (sysCT , STEPTIME) ;

A.3.3 BOEING 747 LINEAR MODEL

The following code initializes the continuous-time and discrete-time Boeing 747 Linear

Model. [16, p. 92]

1 %% Linear 747 Model

2 name = ’ B747 ’ ;

3 V=278.667;

4

5 POSITIONLIMIT = 15 ;

6 RATELIMIT = POSITIONLIMIT∗4 ;

7

8 %Inco rpo ra t i on o f a d d i t i o n a l models f o r s imu la t i on

9 sysA = [. . .

10 −.0188 11.5959 0 .0 − 3 2 . 2 ; . . .

11 −.0007 −.5357 1 .0 0 . 0 ; . . .

12 .000048 −.4944 −.4935 0 . 0 ; . . .

13 0 0 .0 1 .0 0 . 0] ;

14 sysB = [0 0 −.5632 0] ’ ;

15 sysC = [. . .

16 1 0 0 0 ; . . .

17 0 1 0 0 ; . . .

18 0 0 1 0 ; . . .

19 0 0 0 1] ;

20 sysD = 0 ;

21

22 % Set I n i t i a l F l i gh t CM Input Parameters

23 a l p h a I n i t i a l = 0 ;

24 e l e v I n i t i a l = 0 ;

25

26 % Set SS Locat ion f o r Alpha/AlphaDot

27 alphaLoc = 2 ;

28 alphaDotLoc = 3 ;

29

30 %% Estab l i sh State−Space Model

31 sysCT = ss (sysA , sysB , sysC , sysD) ;

32 sys = c2d (sysCT , STEPTIME) ;

72

A.4 CUSTOM QUEUE CLASS

The following code is a simple queue class useful for maintaining running statistics. The

queue size is set upon instantiation. The queue is implemented with First-In-First-Out

(FIFO) methodology where the lowest queue index represents the oldest value.

1 c l a s s d e f CustomQueue < handle

2 p r o p e r t i e s

3 data

4 maximum

5 minimum

6 spread

7 s i z e

8 l a s t

9 prev ious

10 dc

11 average

12 change

13 windowMean

14 end

15

16 methods

17 f unc t i on obj = CustomQueue (s i z e)

18 obj . data = ze ro s (1 , s i z e) ;

19 obj . maximum = 0 ;

20 obj . minimum = 0 ;

21 obj . spread = 0 ;

22 obj . s i z e = s i z e ;

23 obj . l a s t = 0 ;

24 obj . p rev ious = 0 ;

25 obj . dc = 0 ;

26 obj . average = 0 ;

27 obj . change = 0 ;

28 obj . windowMean = 0 ;

29 end

30

31 f unc t i on Reset (obj)

32 obj . data = ze ro s (1 , obj . s i z e) ;

33 obj . maximum = 0 ;

34 obj . minimum = 0 ;

35 obj . spread = 0 ;

36 obj . l a s t = 0 ;

37 obj . p rev ious = 0 ;

38 obj . dc = 0 ;

39 obj . average = 0 ;

40 obj . change = 0 ;

41 obj . windowMean = 0 ;

42 end

43

44 f unc t i on Push (obj , data)

45 obj . data = [obj . data (2 : end) data] ;

73

46 obj . maximum = max(obj . data) ;

47 obj . minimum = min (obj . data) ;

48 obj . spread = obj . maximum − obj . minimum ;

49 obj . p rev ious = obj . l a s t ;

50 obj . l a s t = data ;

51 obj . dc = obj . spread / obj . s i z e ;

52 obj . average = mean(obj . data) ;

53 obj . change = obj . l a s t − obj . p rev ious ;

54 obj . windowMean = . . .

55 mean(obj . data (end , end−min(l ength (obj . data)−1, 20))) ;

56 end

57 end

58 end

74

A.5 DATA LOGGING CLASS

The following code is a container class useful for storing run-time data. It was designed

to maintain a snapshot of the current system state for each sample period.

1 c l a s s d e f DataLog < handle

2 p r o p e r t i e s

3 alpha

4 alphaDot

5 alphaDotDot

6 dE

7

8 alphaRef

9 alphaDotRef

10 alphaDotDotRef

11

12 alphaError

13 alphaDotError

14

15 Kp

16 Ki

17 Kd

18

19 POutput

20 DOutput

21 IOutput

22

23 PGain

24 DGain

25 IGain

26

27 ctr lOutput

28

29 e r r o r I n t e g r a t i o n

30 e r r o r Dot In t eg ra t i o n

31 e r ro rDotDot Integrat ion

32 errorSum

33

34 e r r o r D i f f e r e n t i a t i o n

35 e r r o r D o t D i f f e r e n t i a t i o n

36 errorChange

37

38 time

39

40 alphaCommand

41

42 KpOutputGain

43 KiOutputGain

44 KdOutputGain

45 AEOutputGain

46 AI EIOutputGain

47 AD EDOutputGain

75

48 end

49

50 methods

51 f unc t i on obj = DataLog ()

52 obj . alpha = 0 ;

53 obj . alphaDot = 0 ;

54 obj . alphaDotDot = 0 ;

55 obj . dE = [0 , 0] ;

56

57 obj . alphaRef = 0 ;

58 obj . alphaDotRef = 0 ;

59 obj . alphaDotDotRef = 0 ;

60

61 obj . a lphaError = 0 ;

62 obj . alphaDotError = 0 ;

63

64 obj .Kp = 0 ;

65 obj . Ki = 0 ;

66 obj .Kd = 0 ;

67

68 obj . POutput = 0 ;

69 obj . DOutput = 0 ;

70 obj . IOutput = 0 ;

71

72 obj . PGain = 0 ;

73 obj . DGain = 0 ;

74 obj . IGain = 0 ;

75

76 obj . ctr lOutput = 0 ;

77

78 obj . e r r o r I n t e g r a t i o n = 0 ;

79 obj . e r r o rDo t In t eg ra t i on = 0 ;

80 obj . e r ro rDotDot Integrat ion = 0 ;

81 obj . errorSum = 0 ;

82

83 obj . e r r o r D i f f e r e n t i a t i o n = 0 ;

84 obj . e r r o r D o t D i f f e r e n t i a t i o n = 0 ;

85 obj . errorChange = 0 ;

86

87 obj . time = 0 ;

88

89 obj . alphaCommand = 0 ;

90

91 obj . KpOutputGain = 0 ;

92 obj . KiOutputGain = 0 ;

93 obj . KdOutputGain = 0 ;

94 obj . AEOutputGain = 0 ;

95 obj . AI EIOutputGain = 0 ;

96 obj . AD EDOutputGain = 0 ;

97 end

98

99 f unc t i on LogData (obj , SUPERVISOR, CONTROLLER, time , dE)

76

100 obj . alpha (end + 1) = SUPERVISOR. a lphaHistory . l a s t ;

101 obj . alphaDot (end + 1) = SUPERVISOR. alphaDotHistory . l a s t ;

102 obj . alphaDotDot (end + 1) = SUPERVISOR. alphaDotDotHistory . l a s t ;

103

104 obj . dE(end + 1 , :) = dE ;

105

106 obj . alphaRef (end + 1) = SUPERVISOR. sysRefDTY (1 , end) ;

107 obj . alphaDotRef (end + 1) = SUPERVISOR. sysRefDTY (2 , end) ;

108 obj . alphaDotDotRef (end + 1) = SUPERVISOR. sysRefDTY (3 , end) ;

109

110 obj . a lphaError (end + 1) = SUPERVISOR. alphaError . l a s t ;

111 obj . alphaDotError (end + 1) = SUPERVISOR. alphaDotError . l a s t ;

112

113 obj .Kp(end + 1) = CONTROLLER.Kp. l a s t ;

114 obj . Ki (end + 1) = CONTROLLER. Ki . l a s t ;

115 obj .Kd(end + 1) = abs (CONTROLLER.Kd. l a s t) ;

116

117 obj . POutput (end + 1) = CONTROLLER. POutput . l a s t ;

118 obj . IOutput (end + 1) = CONTROLLER. IOutput . l a s t ;

119 obj . DOutput (end + 1) = CONTROLLER. DOutput . l a s t ;

120

121 obj . PGain (end + 1) = CONTROLLER.Kp. l a s t ;

122 obj . IGain (end + 1) = CONTROLLER. Ki . l a s t ;

123 obj . DGain(end + 1) = CONTROLLER.Kd. l a s t ;

124

125 obj . ctr lOutput (end + 1) = CONTROLLER. ctr lOutput . l a s t ;

126

127 obj . e r r o r I n t e g r a t i o n (end + 1) = . . .

128 SUPERVISOR. e r r o r I n t e g r a t o r . l a s t ;

129 obj . e r r o rDo t In t eg ra t i on (end + 1) = . . .

130 SUPERVISOR. e r r o rDot In t eg ra to r . l a s t ;

131 obj . e r ro rDotDot Integrat ion (end + 1) = . . .

132 SUPERVISOR. er rorDotDot Integrator . l a s t ;

133 obj . errorSum (end + 1) = SUPERVISOR. errorSum . l a s t ;

134

135 obj . e r r o r D i f f e r e n t i a t i o n (end + 1) = . . .

136 SUPERVISOR. e r r o r D i f f e r e n t i a t o r . l a s t ;

137 obj . e r r o r D o t D i f f e r e n t i a t i o n (end + 1) = . . .

138 SUPERVISOR. e r r o r D o t D i f f e r e n t i a t o r . l a s t ;

139 obj . errorChange (end + 1) = SUPERVISOR. errorChange . l a s t ;

140

141 obj . time (end + 1) = time ;

142

143 obj . alphaCommand(end + 1) = . . .

144 SUPERVISOR. alphaCommandHistory . l a s t ;

145

146 obj . KpOutputGain (end + 1) = SUPERVISOR.Kp. outputGain . l a s t ;

147 obj . KiOutputGain (end + 1) = SUPERVISOR. Ki . outputGain . l a s t ;

148 obj . KdOutputGain (end + 1) = SUPERVISOR.Kd. outputGain . l a s t ;

149 obj . AEOutputGain (end + 1) = CONTROLLER. A E . outputGain . l a s t ;

150 obj . AI EIOutputGain (end + 1) = . . .

151 CONTROLLER. AI EI . outputGain . l a s t ;

77

152 obj . AD EDOutputGain(end + 1) = . . .

153 CONTROLLER.AD ED. outputGain . l a s t ;

154 end

155 end

156 end

78

A.6 FUZZY LOGIC CONTAINER CODE

A.6.1 FUZZY LOGIC CONTAINER CLASS

The following class code defines a wrapper for a two-input one-output fuzzy logic system.

1 c l a s s d e f FIS 2X1 < handle

2 p r o p e r t i e s

3 % I /O Gains

4 input1Gain

5 input2Gain

6 outputGain

7

8 % FLC Parameters

9 input1Name

10 input2Name

11 outputName

12

13 input1MFNum

14 input2MFNum

15 outputMFNum

16

17 input1MFType

18 input2MFType

19 outputMFType

20

21 input1Overlap

22 input2Overlap

23 outputOverlap

24

25 % Fuzzy Logic C o n t r o l l e r

26 FLC

27 LUT

28

29 absRange

30 absRangeSize

31

32 NAME

33 ENABLE

34 IRR

35

36 boundaryCount1

37 boundaryCount2

38 di sab leGainSense

39

40 a lphas

41 ga ins

42 end

43

44 methods

45 % Constructor

79

46 f unc t i on obj = FIS 2X1 (. . .

47 nameIn1 , gainIn1 , mfNumIn1 , mfTypeIn1 , over lapIn1 , . . .

48 nameIn2 , gainIn2 , mfNumIn2 , mfTypeIn2 , over lapIn2 , . . .

49 nameOut , gainOut , mfOutNum, mfTypeOut , overlapOut , . . .

50 o r i e n t a t i o n , d i s t r i b u t i o n , NAME, ENABLE, . . .

51 disableGainSense , vara rg in)

52 obj . d i sab leGainSense=disab leGainSense ;

53 obj . input1Name = nameIn1 ;

54 obj . input2Name = nameIn2 ;

55 obj . outputName = nameOut ;

56

57 obj . input1Gain = gainIn1 ;

58 obj . input2Gain = gainIn2 ;

59 obj . outputGain = CustomQueue (100) ;

60 obj . outputGain . Push (gainOut) ;

61

62 obj . input1MFNum = mfNumIn1 ;

63 obj . input2MFNum = mfNumIn2 ;

64 obj . outputMFNum = mfOutNum ;

65

66 obj . input1MFType = mfTypeIn1 ;

67 obj . input2MFType = mfTypeIn2 ;

68 obj . outputMFType = mfTypeOut ;

69

70 obj . input1Overlap = over lapIn1 ;

71 obj . input2Overlap = over lapIn2 ;

72 obj . outputOverlap = overlapOut ;

73

74 obj .NAME = NAME;

75

76 INMF = { . . .

77 obj . input1Name , obj . input1MFNum , obj . input1MFType , . . .

78 obj . input1Overlap , [−1 1] ; . . .

79 obj . input2Name , obj . input2MFNum , obj . input2MFType , . . .

80 obj . input2Overlap , [−1 1] } ;

81

82 OUTMF = { . . .

83 obj . outputName , obj . outputMFNum , obj . outputMFType , . . .

84 obj . outputOverlap , [−1 1] } ;

85

86 i f narg in == 18

87 obj .FLC = obj . Fuzzy (. . .

88 ’INMF ’ , INMF , . . .

89 ’OUTMF’ , OUTMF, . . .

90 ’TYPE’ , ’ sugeno ’ , . . .

91 ’ORIENTATION ’ , o r i e n t a t i o n , . . .

92 ’CENTERS’ , d i s t r i b u t i o n , . . .

93 ’VERBOSE’ , 1) ;

94 e l s e

95 TYPE = ’ sugeno ’ ;

96 f o r index = 1 : narg in

97 t ry

80

98 switch vararg in { index }
99 case ’TYPE’

100 TYPE = vararg in { index + 1} ;

101 otherw i se

102 end

103 catch

104 end

105 end

106

107

108 obj .FLC = obj . Fuzzy (. . .

109 ’INMF ’ , INMF , . . .

110 ’OUTMF’ , OUTMF, . . .

111 ’TYPE’ , TYPE, . . .

112 ’ORIENTATION ’ , o r i e n t a t i o n , . . .

113 ’CENTERS’ , d i s t r i b u t i o n , . . .

114 ’VERBOSE’ , 1 , . . .

115 vararg in { :}) ;

116 end

117

118 obj . absRange = [−1 : 0 .01 : 1] ;

119 obj . absRangeSize = length (obj . absRange) ;

120

121 obj .ENABLE = 1 ; % Force enable to c a l c u l a t e LUT

122 obj .ENABLE = ENABLE; % User opt ion ENABLE/DISABLE

123

124 obj . IRR = ze ro s (2 , 49) ;

125 obj . boundaryCount1 = 0 ;

126 obj . boundaryCount2 = 0 ;

127

128 obj . a lphas = −25 : . 1 : 25 ;

129 obj . ga in s = ze ro s (1 , l ength (obj . a lphas)) ;

130 end

131

132 % FIS Evaluat ion

133 output = evalFLC (obj , Input1 , Input2 , CONTROLLER, vararg in)

134

135 PushGain (obj , ga in)

136 LUT Calc (obj)

137

138 output = Lookup (obj , Input1 , Input2)

139 output = Fuzzy (obj , va ra rg in)

140 output = mfGen(obj , Number , PrimaryType)

141 output = ruleGen (obj , X, vararg in)

142 output = outputMatrix (obj , X, vara rg in)

143 output = ru leSpace (obj , va rarg in)

144 output = g e n e r a t e f i s (obj , FIS TYPE , FIS INPUT , . . .

145 FIS OUTPUT, vararg in)

146 end

147 end

81

A.6.2 FUZZY LOGIC EVALUATOR

The following code provides an evaluation interface for the fuzzy logic system to simplify

wider system integration.

1 f unc t i on output = evalFLC (obj , Input1 , Input2 , CONTROLLER, vararg in)

2 % I d e n t i f y boundary ope ra t i on s and expand i f nece s sa ry

3 countThreshold = 10 ;

4 s e n s i t i v i t y = 0 . 2 5 ;

5

6 switch obj .NAME

7 case ’A E ’

8 m u l t i p l i e r = 2 ;

9 case ’ AI EI ’

10 m u l t i p l i e r = 1 . 5 ;

11 case ’AD ED ’

12 m u l t i p l i e r = 4 ;

13

14 case ’Kp ’

15 m u l t i p l i e r = 2 ;

16 case ’ Ki ’

17 m u l t i p l i e r = 1 . 5 ;

18 case ’Kd ’

19 m u l t i p l i e r = 4 ;

20 otherw i se

21 m u l t i p l i e r = 1 ;

22 end

23

24 i f obj . d i sab leGainSense == 0

25 i f abs (Input1 − obj . input1Gain) / obj . input1Gain < s e n s i t i v i t y . . .

26 | | abs (Input1)>obj . input1Gain

27 obj . boundaryCount1 = obj . boundaryCount1 + 1 ;

28 i f obj . boundaryCount1 > countThreshold

29 obj . input1Gain = obj . input1Gain ∗ m u l t i p l i e r ;

30 f p r i n t f (’ I n c r e a s i n g Input1 Boundary in %s to %1.2 f \n ’ , . . .

31 obj .NAME, obj . input1Gain) ;

32 e l s e i f abs (Input1)>obj . input1Gain

33 obj . input1Gain = 1/ abs (Input1) ;

34 end

35 e l s e

36 i f obj . boundaryCount1 > 0

37 obj . boundaryCount1 = obj . boundaryCount1 − 1 ;

38 end

39 end

40

41 i f abs (Input2 − obj . input2Gain) / obj . input2Gain < s e n s i t i v i t y . . .

42 | | abs (Input2)>obj . input2Gain

43 obj . boundaryCount2 = obj . boundaryCount2 + 1 ;

44 i f obj . boundaryCount2 > countThreshold

45 obj . input2Gain = obj . input2Gain ∗ m u l t i p l i e r ;

46 f p r i n t f (’ I n c r e a s i n g Input2 Boundary in %s to %1.2 f \n ’ , . . .

47 obj .NAME, obj . input2Gain) ;

82

48 e l s e i f abs (Input2)>obj . input2Gain

49 obj . input2Gain = 1/ abs (Input2) ;

50 end

51 e l s e

52 i f obj . boundaryCount2 > 0

53 obj . boundaryCount2 = obj . boundaryCount2 − 1 ;

54 end

55 end

56 end

57

58 % Evaluate

59 [output , temp] = e v a l f i s (. . .

60 [Input1 / obj . input1Gain , Input2 / obj . input2Gain] , obj .FLC) ;

61

62 % I d e n t i f y output boundary ope ra t i on s and expand i f nece s sa ry

63 i f abs (output − obj . outputGain . l a s t) / obj . outputGain . l a s t < s e n s i t i v i t y . . .

64 && CONTROLLER. ctr lOutput . l a s t . . .

65 < (CONTROLLER. e l evL imi t + CONTROLLER. upperOf f se t) ∗0 .9 . . .

66 && CONTROLLER. ctr lOutput . l a s t . . .

67 > (−CONTROLLER. e l evL imi t + CONTROLLER. l owe rO f f s e t) ∗0 .9

68 obj . outputGain . Push (obj . outputGain . l a s t ∗ m u l t i p l i e r) ;

69 f p r i n t f (’ I n c r e a s i n g Output Boundary in %s to %1.2 f \n ’ , . . .

70 obj .NAME, obj . outputGain . l a s t) ;

71 end

72

73 switch obj .NAME

74

75 otherw i se

76 output s ca l e = 1 ;

77 end

78

79 output = output ∗ obj . outputGain . l a s t ∗ obj .ENABLE ∗ output s ca l e ;

80

81 % Store input r u l e c a l c u l a t i o n s

82 obj . IRR = obj . IRR + temp ’ ;

83 end

A.6.3 FUZZY LOGIC CONSTRUCTOR

The following code is useful for constructing the fuzzy logic system. It contains low-level

instantiation as well as option specification for creating a wide variety of systems.

1 f unc t i on [varargout] = Fuzzy (obj , va ra rg in)

2 %Creates a Fuzzy I n f e r e n c e System based on supp l i ed inputs

3 %% Primary Fuzzy I n f e r e n c e System

4 % Vers ion : 0 . 1

5 % Date : 07 Apr i l 2016

6 % Author : Keith Benjamin

7 %

8 %

9 %

83

10 % Inputs

11 % − INMF {name , #MFs, type , %over lap , n−d range }
12 % − OUTMF {name , #MFs, type , %over lap , n−d range }
13 % − Step = ’ double ’ < range

14 % − ’LUT’ to c a l c u l a t e LUT

15

16 INMF = { . . .

17 ’ alphaCommandError ’ , 15 , ’ t r im f ’ , 1 . 5 , [−1 1] ; . . .

18 ’ a lpha ’ , 15 , ’ t r im f ’ , 1 . 5 , [−1 1] ; . . .

19 ’ alphaDot ’ , 15 , ’ t r im f ’ , 1 . 5 , [−1 1] ; . . .

20 } ;

21 OUTMF = { ’ u ’ , 15 , ’ constant ’ , 1 . 5 , [−1 1] } ;

22 Step = 0 . 2 ;

23 LUT = −1;

24 TYPE = ’ sugeno ’ ;

25

26 i f narg in ˜= 0

27 f o r index = 1 : narg in

28 t ry

29 switch vararg in { index }
30 case ’STEP ’

31 Step = vararg in { index +1};
32 case ’INMF ’

33 INMF = vararg in { index +1};
34 case ’OUTMF’

35 OUTMF = vararg in { index +1};
36 case ’LUT ’

37 LUT = 0 ;

38 case ’TYPE’

39 TYPE = vararg in { index +1};
40 otherw i se

41 end

42 catch

43 end

44 end

45 end

46

47 %% 3x1 FLC System D e f i n i t i o n

48 warning (’ o f f ’ , ’MATLAB: co lon : nonIntegerIndex ’) ; % Suppress warnings

49 inputFunct ions = INMF(: , [1 : 2 , 4 : 5]) ;

50

51 f o r index = 1 : s i z e (INMF, 1)

52 eva l (s p r i n t f (’%sMF = obj . mfGen(INMF{%d , 2} , INMF{%d , 3}) ; ’ , . . .

53 INMF{ index , 1} , index , index)) ;

54

55 i f index == 1

56 inputFunct ions { index , 2} = eva l (s p r i n t f (’%sMF ’ , INMF{ index , 1})) ;

57 e l s e

58 inputFunct ions { index , 2} = eva l (s p r i n t f (’%sMF ’ , INMF{ index , 1})) ;

59 end

60

61 end

84

62

63 % Def ine output membership f u n c t i o n s

64 outputFunctions = OUTMF(: , [1 : 2 , 4 : 5]) ;

65 f o r index = 1 : s i z e (OUTMF, 1)

66 eva l (s p r i n t f (’%sMF = obj . mfGen(OUTMF{%d , 2} , OUTMF{%d , 3}) ; ’ , . . .

67 OUTMF{ index , 1} , index , index)) ;

68

69 i f index == 1

70 outputFunctions { index , 2} = eva l (s p r i n t f (’%sMF ’ , OUTMF{ index , 1})) ;

71 e l s e

72 outputFunctions { index , 2} = eva l (s p r i n t f (’%sMF ’ , OUTMF{ index , 1})) ;

73 end

74 end

75

76 % Generate FIS us ing ’ g e n e r a t e f i s ’

77 f p r i n t f (’ Generating the f o l l o w i n g FIS\n ’)

78 f p r i n t f (’ Fuzzy I n f e r e n c e Type : %s \n ’ , TYPE) ;

79 f p r i n t f (’ \ t Inputs :\ t%d\n ’ , s i z e (INMF, 1)) ;

80 t r a c k e r = 1 ;

81 f o r index = 1 : s i z e (INMF, 1)

82 f p r i n t f (’ \ t \ t Input %d − MFs: %d\ tPrimary Type : %s \ t \ tOverlap : %0.2 f \ tRange : [%d %d]\n ’

, . . .

83 index , INMF{ index , 2} , INMF{ index , 3} , . . .

84 INMF{ index , 4} , INMF{ index , 5}) ;

85 t r a c k e r = t r a c k e r ∗ INMF{ index , 2} ;

86 end

87

88 f p r i n t f (’ \n\ tOutputs :\ t%d\n ’ , s i z e (OUTMF, 1)) ;

89 f o r index = 1 : s i z e (OUTMF, 1)

90 f p r i n t f (’ \ t \ tOutput %d − MFs: %d\ tPrimary Type : %s \ t \ tOverlap : %0.2 f \ tRange : [%d %d]\n ’

, . . .

91 index , OUTMF{ index , 2} , OUTMF{ index , 3} , . . .

92 OUTMF{ index , 4} , OUTMF{ index , 5}) ;

93 end

94 f p r i n t f (’ \n\ tRule Num:\ t%d\n\n ’ , t r a c k e r) ;

95

96

97 FLC = obj . g e n e r a t e f i s (. . .

98 TYPE, . . .

99 inputFunct ions , . . .

100 outputFunctions , . . .

101 vararg in { : } . . .

102) ;

103

104 %% Construct 3x1 FLCLUT

105 i f LUT ˜= −1

106 f p r i n t f (’ Generating Lookup Table with Breakpoint Step Div i s o r : %0.3 f \n ’ , Step) ;

107 [FLCLUT, LUTSize] = calcLUT (inputFunct ions , FLC, ’STEP ’ , Step) ;

108 FLCLUT = s i n g l e (reshape (FLCLUT, LUTSize)) ;

109

110 end

111

85

112 f o r index = 1 : nargout

113 switch index

114 case 1

115 varargout {1} = FLC;

116 case 2

117 varargout {2} = FLCLUT;

118 otherw i se

119 end

120 end

121 end

A.6.4 MEMBERSHIP FUNCTION GENERATOR

The following code is useful for describing, in detail, input and output membership func-

tions.

1 f unc t i on [output args] = . . .

2 g e n e r a t e f i s (obj , FIS TYPE , FIS INPUT , FIS OUTPUT, vararg in)

3 %g e n e r a t e f i s Creates a new Fuzzy I n f e r e n c e System with normal ized I /O

4 % FIS TYPE => Fuzzy Logic TYPE − (’ mamdani ’ , ’ sugeno ’) d e f a u l t : ’ sugeno ’

5 % FIS INPUT => Ce l l Array o f Format {Name, [Labe ls ; MFTYPE]}
6 %

7 % Vers ion : 0 . 1

8 % Date : 04 March 2016

9 % Author : Keith Benjamin

10 %

11 % Notes : Current ly only supports tr imf , zmf , smf inputs and constant

12 % outputs .

13 % Mamdani systems not supported .

14

15 %% System Parameters

16 % Set De fau l t s

17 i f strcmp (FIS TYPE , ’ sugeno ’)

18 RANGE = [−1 1] ;

19 AND = ’ prod ’ ;

20 OR = ’ probor ’ ;

21 ORIENTATION = ’ l e f t ’ ;

22 IMP = ’ prod ’ ;

23 AGG = ’max ’ ;

24 DEFUZZ = ’ wtaver ’ ;

25 RULES = −1;

26 FIS CENTERS = ’ l i n e a r ’ ;

27 e l s e i f strcmp (FIS TYPE , ’mamdani ’)

28 RANGE = [−1 1] ;

29 AND = ’ min ’ ;

30 OR = ’max ’ ;

31 ORIENTATION = ’ l e f t ’ ;

32 IMP = ’ min ’ ;

33 AGG = ’max ’ ;

34 DEFUZZ = ’ c en t ro id ’ ;

35 RULES = −1;

86

36 FIS CENTERS = ’ l i n e a r ’ ;

37 e l s e

38 e r r o r (’Type must be (sugeno | mamdani) ’)

39 end

40

41 % Overr ide appropr ia t e system parameters based on supp l i ed opt ions

42 f o r index = 4 : narg in

43 t ry

44 switch vararg in { index }
45 case ’ORIENTATION ’

46 ORIENTATION = vararg in { index +1};
47 % case ’TYPE’

48 % FIS TYPE = vararg in { index +1};
49 case ’RANGE’

50 RANGE = vararg in { index +1};
51 case ’AND’

52 AND = vararg in { index +1};
53 case ’OR’

54 OR = vararg in { index +1};
55 case ’IMP ’

56 IMP = vararg in { index +1};
57 case ’AGG’

58 AGG = vararg in { index +1};
59 case ’DEFUZZ ’

60 DEFUZZ = vararg in { index +1};
61 case ’RULES ’

62 RULES = vararg in { index +1};
63 case ’CENTERS’

64 FIS CENTERS = vararg in { index +1};
65 otherw i se

66 end

67 catch

68 end

69 end

70

71 %% Create New Fuzzy I n f e r e n c e System

72 f l c = newf i s (’ f l c ’ , FIS TYPE , AND, OR, IMP, AGG, DEFUZZ) ;

73

74 i f ˜ isempty (FIS INPUT)

75 % Add d e f a u l t range to input parameter i f mis s ing

76 i f ˜(s i z e (FIS INPUT , 2) == 4)

77 temp = c e l l (s i z e (FIS INPUT , 1) , s i z e (FIS INPUT , 2) + 1) ;

78 f o r index = 1 : s i z e (FIS INPUT , 1)

79 temp (index , :) = [FIS INPUT(index , :) , RANGE] ;

80 end

81 e l s e

82 temp = FIS INPUT ;

83 end

84

85 % Add inputs to FIS

86 f l c = batchAdd (f l c , ’ input ’ , temp , FIS CENTERS) ;

87 end

87

88

89 i f ˜ isempty (FIS OUTPUT)

90 % Add d e f a u l t range to output parameter i f mis s ing

91 i f ˜(s i z e (FIS OUTPUT, 2) == 4)

92 f o r index = 1 : s i z e (FIS OUTPUT, 1)

93 temp = {FIS OUTPUT{ index , :} , RANGE} ;

94 end

95 e l s e

96 temp = FIS OUTPUT;

97 end

98

99 % Add output to FIS

100 f l c = batchAdd (f l c , ’ output ’ , temp , FIS CENTERS) ;

101 end

102

103 % c l e a r temp ;

104 i f RULES ˜= −1

105 % Add Rules from custom Rules Matrix

106 f l c = addrule (f l c , RULES) ;

107 e l s e

108 % Add auto−generated ru l eba s e

109 f l c = addrule (f l c , obj . ruleGen (g e t f i s (f l c , ’ inmfs ’) , . . .

110 ’ORIENTATION ’ , ORIENTATION)) ;

111 end

112

113 % Return Fuzzy Logic System

114 output args = f l c ;

115 end

116

117 f unc t i on back = batchAdd (f l c , FIS TYPE , FIS INPUT , FIS CENTERS)

118 %% Add Input Membership Functions

119

120 f o r index input = 1 : s i z e (FIS INPUT)

121 % Create Fuzzy Logic I /O

122 RANGE = FIS INPUT{ index input , 4} ;

123

124 % Add new input

125 f l c = addvar (. . .

126 f l c , . . .

127 char (FIS TYPE) , . . .

128 char (FIS INPUT(index input)) , . . .

129 RANGE. . .

130) ;

131

132 mfNumber = s i z e (FIS INPUT{ index input , 2} , 2) ;

133

134 i f strcmp (FIS CENTERS, ’ l i n e a r ’)

135 normalizedMFCenters = l i n s p a c e (−1 , 1 , mfNumber) ;

136 e l s e i f strcmp (FIS CENTERS, ’ square ’) ;

137 normalizedMFCenters = l i n s p a c e (−1 , 1 , mfNumber) ;

138 temp = s ign (normalizedMFCenters) ;

139 normalizedMFCenters = normalizedMFCenters . ˆ 2 ;

88

140 normalizedMFCenters = normalizedMFCenters .∗ temp ;

141 e l s e i f strcmp (FIS CENTERS, ’ cube ’) ;

142 normalizedMFCenters = l i n s p a c e (−1 , 1 , mfNumber) . ˆ 3 ;

143 e l s e i f strcmp (FIS CENTERS, ’ quad ’) ;

144 normalizedMFCenters = l i n s p a c e (−1 , 1 , mfNumber) ;

145 temp = s ign (normalizedMFCenters) ;

146 normalizedMFCenters = normalizedMFCenters . ˆ 4 ;

147 normalizedMFCenters = normalizedMFCenters .∗ temp ;

148 e l s e i f strcmp (FIS CENTERS, ’ pent ’) ;

149 normalizedMFCenters = l i n s p a c e (−1 , 1 , mfNumber) ;

150 temp = s ign (normalizedMFCenters) ;

151 normalizedMFCenters = normalizedMFCenters . ˆ 5 ;

152 normalizedMFCenters = normalizedMFCenters .∗ temp ;

153 e l s e

154 e r r o r (’ FIS cente r d i s t r i b u t i o n must be de f ined . ’) ;

155 end

156

157 mfCenter = normalizedMFCenters ∗ max(abs (RANGE)) ;

158 OVERLAP = FIS INPUT{ index input , 3} ;

159

160 % Add Membership Functions

161 f o r index mf = 1 : mfNumber

162 % Calcu la te Le f t | Right | Center po in t s −> r equ i r ed f o r t r im f

163 % Center used f o r Constant FIS OUTPUT l o c a t i o n f o r Sugeno systems

164 t ry

165 mfRight = ((mfCenter (index mf+1) − mfCenter (index mf)) /2) ;

166 catch

167 mfRight = ((mfCenter (index mf−1) − mfCenter (index mf)) /2) ;

168 end

169

170 t ry

171 mfLeft = ((mfCenter (index mf−1) − mfCenter (index mf)) /2) ;

172 catch

173 mfLeft = ((mfCenter (index mf+1) − mfCenter (index mf)) /2) ;

174 end

175

176 %TODO pass MF over lapp ing to here from higher f u n c t i o n s

177 % Set t ing Le f t / Right Membership Function bounds

178 % mfCenter

179 % mfLeft

180 % mfRight

181 % OVERLAP

182 % index mf

183 % mfCenter (index mf)

184 % (mfCenter (index mf)) + (mfLeft ∗ (1 + OVERLAP/100))

185

186 temp = min ([abs (mfLeft∗ (1 + OVERLAP/100)) . . .

187 abs (mfRight∗ (1 + OVERLAP/100))]) ;

188 mfLeft = mfCenter (index mf) − temp ;

189 mfRight = mfCenter (index mf) + temp ;

190

191 % Adds appropr ia te membership func t i on based on FIS INPUT c r i t e r i a

89

192 switch char (FIS INPUT{ index input , 2} (2 , index mf))

193 case ’ t r im f ’

194 f l c = addmf (. . .

195 f l c , . . .

196 FIS TYPE , . . .

197 index input , . . .

198 char (FIS INPUT{ index input , 2} (1 , index mf)) , . . .

199 char (FIS INPUT{ index input , 2} (2 , index mf)) , . . .

200 [mfLeft , mfCenter (index mf) , mfRight] . . .

201) ;

202 case ’ zmf ’

203 f l c = addmf (. . .

204 f l c , . . .

205 FIS TYPE , . . .

206 index input , . . .

207 char (FIS INPUT{ index input , 2} (1 , index mf)) , . . .

208 char (FIS INPUT{ index input , 2} (2 , index mf)) , . . .

209 [mfCenter (index mf) , mfRight] . . .

210) ;

211 case ’ smf ’

212 f l c = addmf (. . .

213 f l c , . . .

214 FIS TYPE , . . .

215 index input , . . .

216 char (FIS INPUT{ index input , 2} (1 , index mf)) , . . .

217 char (FIS INPUT{ index input , 2} (2 , index mf)) , . . .

218 [mfLeft , mfCenter (index mf)] . . .

219) ;

220 case ’ constant ’

221 f l c = addmf (f l c , . . .

222 FIS TYPE , . . .

223 index input , . . .

224 char (FIS INPUT{ index input , 2} (1 , index mf)) , . . .

225 char (FIS INPUT{ index input , 2} (2 , index mf)) , . . .

226 mfCenter (index mf) . . .

227) ;

228 end

229 end

230 end

231

232 % Return updated Fuzzy Logic System

233 back = f l c ;

234

235 end

90

A.7 CONTROLLER CODE

A.7.1 CONTROLLER CLASS

The following code describes the controller class. This class covers the entire controller

section of the system architecture.

1 c l a s s d e f C o n t r o l l e r < handle

2 %CONTROLLER Advanced Data St ruc ture f o r a i r c r a f t c o n t r o l l e r

3 % Def ines a 3−Level P a r a l l e l Fuzzy Logic C o n t r o l l e r with i n t e r n a l

4 % i n t e g r a t i o n and AlphaDotDot e s t imat ion .

5 p r o p e r t i e s

6 POutput

7 DOutput

8 errOutput

9 IOutput

10 trmOutput

11 ctr lOutput

12

13 % Fuzzy Logic C o n t r o l l e r s

14 errorFLC

15 velocFLC

16 accelFLC

17 positFLC

18

19 c o n t r o l l e r I n d e x

20

21 % Fuzzy Logic Output Gains

22 errorGain

23 DGain

24 IGain

25 PGain

26

27 % C o n t r o l l e r Trim

28 tr im

29 t r i m c a l c u l a t e d

30 t r im ga in

31

32 % C o n t r o l l e r D i r e c t i on

33 s y s D i r e c t i o n

34 e r r D i r e c t i o n

35 v e l D i r e c t i o n

36 accD i r e c t i on

37 posDi r ec t i on

38

39 sampleTime

40

41 % A i r c r a f t Parameters

42 alphaLimit

43 alphaDotLimit

91

44

45 a lpha dot

46 a lpha dot dot

47

48 e l evL imi t

49 l owe rOf f s e t

50 upperOf f se t

51

52 Kp

53 Ki

54 Kd

55

56 A E

57 AD ED

58 AI EI

59

60 AirspeedKp

61 AirspeedKi

62 AirspeedKd

63

64 di sab leGainSense

65 windtunnel

66

67 PIDX

68 PIDY

69 sysPID

70 end

71

72

73

74 % %%%

75 % %%%

76 % Publ ic Methods

77 % %%%

78 % %%%

79 methods (Access = pub l i c)

80 % %%%

81 % Constructor

82 % %%%

83 f unc t i on obj = C o n t r o l l e r (errorGain , PGain , DGain , IGain , . . .

84 alphaLimit , e l evLimit , l owerOf f s e t , upperOffset , . . .

85 c t r lFIS , d i sableGainSense , windtunnel)

86 % Fuzzy Logic Output Gains

87 % C o n t r o l l e r D i r e c t i o n s

88 obj . windtunnel = windtunnel ;

89 obj . d i sab leGainSense = disab leGainSense ;

90 obj . DOutput = CustomQueue (3) ;

91

92 obj . IOutput = CustomQueue (3) ;

93 obj . POutput = CustomQueue (3) ;

94

95 obj . ctr lOutput = CustomQueue (3) ;

92

96

97 obj . s y s D i r e c t i o n = 1 ;

98 obj . e r r D i r e c t i o n = −1;

99 obj . v e l D i r e c t i o n = −1;

100 obj . a c cD i r e c t i on = −1;

101 obj . po sD i r e c t i on = −1;

102

103 obj . DGain = DGain ;

104 obj . IGain = IGain ;

105 obj . PGain = PGain ;

106

107 obj . a lphaLimit = alphaLimit ;

108 obj . alphaDotLimit = 4 ∗ alphaLimit ;

109

110 % Fuzzy Logic C o n t r o l l e r s I n i t i a l i z a t i o n

111 obj . I n i t i a l i z e F L C (c t r l F I S) ;

112

113 % C o n t r o l l e r Trim

114 obj . tr im = . . .

115 c o n t a i n e r s .Map(’KeyType ’ , ’ double ’ , ’ ValueType ’ , ’ double ’) ;

116 obj . t r i m c a l c u l a t e d = . . .

117 c o n t a i n e r s .Map(. . .

118 s i n g l e (a lphaLimit) , s i n g l e (z e r o s (1 , l ength (alphaLimit)))) ;

119 obj . t r im ga in = . . .

120 c o n t a i n e r s .Map(’KeyType ’ , ’ double ’ , ’ ValueType ’ , ’ double ’) ;

121

122 obj . c o n t r o l l e r I n d e x = 1 ;

123

124 obj . a lpha dot = CustomQueue (3) ;

125 obj . a lpha dot dot = CustomQueue (3) ;

126

127 obj . e l evL imi t = e l evL imi t ;

128 obj . l owe rOf f s e t = lowe rOf f s e t ;

129 obj . upperOf f se t = upperOf f se t ;

130

131

132 obj .Kp = CustomQueue (3) ;

133 obj . Ki = CustomQueue (3) ;

134 obj .Kd = CustomQueue (3) ;

135

136 obj . AirspeedKp = p o l y f i t ([1 50 300 600] , [1 . 75 . 5] , 2) ;

137 obj . AirspeedKi = p o l y f i t ([1 5 0 300 600] , [2 1 . 5 1] , 2) ;

138 obj . AirspeedKd = p o l y f i t ([1 50 300 600] , [2 1 . 5 1] , 2) ;

139

140

141 obj .PIDX = 0 ;

142 obj .PIDY = 0 ;

143 obj . sysPID = . . .

144 e v a l i n (’ base ’ , ’ s s (pidtune (sys (alphaLoc) , ’ ’ PI ’ ’)) ’) ;

145 end

146

147 % %%%

93

148 % Set Sample Time I n t e r v a l

149 % %%%

150 f unc t i on setSampleTime (obj , i n t e r v a l)

151 obj . sampleTime = i n t e r v a l ;

152 end

153

154 % %%%

155 % Set New Trim Condit ion and Ca lcu la te Estimated Trim Values

156 % %%%

157 s to r ed = setTrim (obj , alpha)

158

159 % %%%

160 % Generate Control Output

161 % %%%

162 output = c o n t r o l (obj , SUPERVISOR, alpha , alphaDot , Speed)

163 output = Error2 (obj , SUPERVISOR, Speed)

164 output = testPID (obj , SUPERVISOR)

165 % %%%

166 % Reset C o n t r o l l e r Gains

167 % %%%

168 ResetGains (obj)

169 end

170

171

172 % %%%

173 % %%%

174 % Protected Methods

175 % %%%

176 % %%%

177 methods (Access = protec ted)

178 % %%%

179 % AlphaDotDot Estimator

180 % %%%

181 AlphaDotDotEst (obj , alphaDot)

182

183 % %%%

184 % I n i t i a l i z e Fuzzy Logic C o n t r o l l e r s

185 % %%%

186 I n i t i a l i z e F L C (obj , params)

187 end

188 end

A.7.2 ESTIMATOR – α̈

The following code estimates angle-of-attack acceleration.

1 % %%

2 % AlphaDotDot Estimator

3 % %%

4 f unc t i on AlphaDotDotEst (obj , alphaDot)

5 obj . a lpha dot . Push (alphaDot) ;

6 obj . a lpha dot dot (obj . c o n t r o l l e r I n d e x + 1) = . . .

94

7 (−obj . a lpha dot . data (3) . . .

8 + 4 ∗ obj . a lpha dot . data (2) . . .

9 − 3 ∗ obj . a lpha dot . data (1)) . . .

10 / (2 ∗ obj . sampleTime) ;

11 end

A.7.3 CONTROL SELECTION

The following code selects the control regime – either PID or FLC. Both may be used

during simulation; however, only Error2 is useful in real-world experimentation.

1 % %%

2 % Generate Control Output

3 % %%

4 f unc t i on output = . . .

5 c o n t r o l (obj , SUPERVISOR, alpha , alphaDot , Speed)

6

7 % output = obj . Error2 (SUPERVISOR, Speed) ;

8 output = obj . testPID (SUPERVISOR. alphaError . l a s t) ;

9 end

A.7.4 FUZZY LOGIC INITIALIZER

The following code initializes the fuzzy logic systems embedded in the supervisor.

1 % %%

2 % I n i t i a l i z e Fuzzy Logic C o n t r o l l e r s

3 % %%

4 f unc t i on I n i t i a l i z e F L C (obj , params)

5 params A E = params (1) ;

6 params AI EI = params (2) ;

7 params AD ED = params (3) ;

8

9 NB = 1 ;

10 NM = 2 ;

11 NS = 3 ;

12 ZO = 4 ;

13 PS = 5 ;

14 PM = 6 ;

15 PB = 7 ;

16 temp1 = c e l l (7 , 1) ;

17 temp1 (:) = {1 : 7} ;

18 temp1 = ce l l 2mat (temp1) ;

19

20 temp2 = temp1 ’ ;

21

22 a e = [

23 PB PB PB PB PB PB PB ;

24 PM PM PM PM PM PM PM ;

25 PS PS PS PS PS PS PS ;

95

26 ZO ZO ZO ZO ZO ZO ZO ;

27 NS NS NS NS NS NS NS ;

28 NM NM NM NM NM NM NM ;

29 NB NB NB NB NB NB NB

30] ;

31

32 r u l e = [temp1 (:) temp2 (:) a e (:) ones (49 ,2)] ;

33

34 obj . A E = FIS 2X1 (. . .

35 ’ e ’ , params A E . inputRange1 , params A E .MFs, . . .

36 params A E . inputType , params A E . over lap , . . .

37 ’ ec ’ , params A E . inputRange2 , params A E .MFs, . . .

38 params A E . inputType , params A E . over lap , . . .

39 ’ u ’ , params A E . outputRange , params A E .MFs, . . .

40 params A E . outputType , params A E . over lap , . . .

41 ’ l e f t ’ , . . .

42 params A E . d i s t r i b u t i o n , . . .

43 ’A E ’ , . . .

44 params A E .ENABLE, obj . d i sableGainSense , . . .

45 ’RULES ’ , r u l e) ;

46

47 ad ed = [

48 PB PB PB PB PB PB PB ;

49 PM PM PM PM PM PM PM ;

50 PS PS PS PS PS PS PS ;

51 ZO ZO ZO ZO ZO ZO ZO ;

52 NS NS NS NS NS NS NS ;

53 NM NM NM NM NM NM NM ;

54 NB NB NB NB NB NB NB

55] ;

56

57 r u l e = [temp1 (:) temp2 (:) ad ed (:) ones (49 ,2)] ;

58

59 obj .AD ED = FIS 2X1 (. . .

60 ’ e ’ , params AD ED . inputRange1 , params AD ED .MFs, . . .

61 params AD ED . inputType , params AD ED . over lap , . . .

62 ’ ec ’ , params AD ED . inputRange2 , params AD ED .MFs, . . .

63 params AD ED . inputType , params AD ED . over lap , . . .

64 ’ u ’ , params AD ED . outputRange , params AD ED .MFs, . . .

65 params AD ED . outputType , params AD ED . over lap , . . .

66 ’ l e f t ’ , . . .

67 params AD ED . d i s t r i b u t i o n , . . .

68 ’AD ED ’ , . . .

69 params AD ED .ENABLE, obj . d i sableGainSense , . . .

70 ’RULES ’ , r u l e) ;

71

72 a i e i = [

73 PB PB PB PB PB PB PB ;

74 PM PM PM PM PM PM PM ;

75 PS PS PS PS PS PS PS ;

76 ZO ZO ZO ZO ZO ZO ZO ;

77 NS NS NS NS NS NS NS ;

96

78 NM NM NM NM NM NM NM ;

79 NB NB NB NB NB NB NB

80] ;

81

82 r u l e = [temp1 (:) temp2 (:) a i e i (:) ones (49 ,2)] ;

83

84 obj . AI EI = FIS 2X1 (. . .

85 ’ e ’ , params AI EI . inputRange1 , params AI EI .MFs, . . .

86 params AI EI . inputType , params AI EI . over lap , . . .

87 ’ ec ’ , params AI EI . inputRange2 , params AI EI .MFs, . . .

88 params AI EI . inputType , params AI EI . over lap , . . .

89 ’ u ’ , params AI EI . outputRange , params AI EI .MFs, . . .

90 params AI EI . outputType , params AI EI . over lap , . . .

91 ’ l e f t ’ , . . .

92 params AI EI . d i s t r i b u t i o n , . . .

93 ’ AI EI ’ , . . .

94 params AI EI .ENABLE, obj . d i sableGainSense , . . .

95 ’RULES ’ , r u l e) ;

96 end

A.7.5 FUZZY LOGIC CONTROLLER

The following code implements the fuzzy logic control regime.

1 f unc t i on output = Error2 (obj , SUPERVISOR, Speed)

2 % Estab l i sh i n d i v i d u a l c o n t r o l arguments

3 obj . POutput . Push (. . .

4 obj .Kp. l a s t ∗ . . .

5 po lyva l (obj . AirspeedKp , Speed) ∗ . . .

6 obj . A E . evalFLC (0 , SUPERVISOR. alphaError . l a s t , obj)) ;

7

8 obj . DOutput . Push (. . .

9 obj .Kd. l a s t ∗ . . .

10 po lyva l (obj . AirspeedKd , Speed) ∗ . . .

11 obj .AD ED. evalFLC (0 , SUPERVISOR. errorChange . l a s t , obj)) ;

12

13 obj . IOutput . Push (. . .

14 obj . Ki . l a s t ∗ . . .

15 po lyva l (obj . AirspeedKi , Speed) ∗ . . .

16 obj . AI EI . evalFLC (0 , SUPERVISOR. e r r o r I n t e g r a t o r . l a s t , obj)) ;

17

18 % Assemble output c o n t r o l va lue

19 obj . ctr lOutput . Push (1 . . .

20 ∗ (obj . POutput . l a s t . . .

21 + obj . DOutput . l a s t . . .

22 + obj . IOutput . l a s t . . .

23)) ;

24

25 obj . ctr lOutput . Push (. . .

26 min(. . .

27 max(obj . ctr lOutput . l a s t , −obj . e l evL imi t+obj . l owe rOf f s e t) , . . .

28 obj . e l evL imi t+obj . upperOf f se t) . . .

97

29) ;

30

31 output = obj . ctr lOutput . l a s t ;

32 obj . c o n t r o l l e r I n d e x = obj . c o n t r o l l e r I n d e x + 1 ;

33 end

A.7.6 GAIN CLEARING

The following code is useful for reseting gain parameters at run-time, if desired.

1 % %%

2 % Reset C o n t r o l l e r Gains

3 % %%

4 f unc t i on ResetGains (obj)

5 obj . accelFLC . PushGain (obj . acce lGain) ;

6 obj . velocFLC . PushGain (obj . ve locGain) ;

7 obj . errorFLC . PushGain (obj . e rrorGain) ;

8 end

A.7.7 SET TRIM CONDITION

The following code is useful for recalling stored trim conditions, if desired.

1 % %%

2 % Set New Trim Condit ion and Ca lcu la te Estimated Trim Values

3 % %%

4 f unc t i on s to r ed = setTrim (obj , alpha)

5 ALPHA = round (alpha , 1 , ’ dec imal ’) ; % Use 0 .1 degree r e s o l u t i o n

6

7 % Average new trim value with prev ious va lue otherw i se s t o r e new value

8 i f isKey (obj . trim , ALPHA)

9 temp = obj . tr im (ALPHA) ;

10 remove (obj . trim , ALPHA) ; % Old key must be removed f i r s t

11 obj . tr im (ALPHA) = (temp + obj . ctr lOutput . l a s t) / 2 ;

12 updated = 1 ;

13 e l s e

14 obj . tr im (ALPHA) = obj . ctr lOutput . l a s t ;

15 updated = 1 ;

16 end

17

18 % I n t e r p o l a t e / Extrapo late tr im va lue s f o r the e n t i r e f l i g h t enve lope

19 i f updated == 1

20 polyX = ce l l2mat (obj . tr im . keys) ;

21 polyY = ce l l2mat (obj . tr im . va lue s) ;

22 calcX = ce l l 2mat (obj . t r i m c a l c u l a t e d . keys) ;

23

24 i f obj . tr im . l ength ˜= 1

25 % I n t e r p o l a t e us ing a cubic func t i on − nece s sa ry f o r ze ro c r o s s i n g

26 calcY = int e rp1 (polyX , polyY , calcX , ’ pchip ’ , ’ extrap ’) ;

27

28 % Set s a t u r a t i o n po in t s to the f i r s t and l a s t ac tua l detec ted trim

98

29 % values . Without th i s , tr im es t imate s out s id e the p r e v i o u s l y

30 % measured area can cause i n s t a b i l i t y

31 lowerStop = f i n d (calcX < polyX (1) , 1 , ’ l a s t ’) ;

32 upperStart = f i n d (calcX > polyX (end) , 1 , ’ f i r s t ’) ;

33

34 calcY (1 : lowerStop) = polyY (1) ;

35 calcY (upperStart : end) = polyY (end) ;

36 e l s e

37 calcY = ones (1 , l ength (calcX)) ∗ polyY ;

38 end

39

40 obj . t r i m c a l c u l a t e d = c o n t a i n e r s .Map(calcX , calcY) ;

41 end

42

43 s to r ed = updated ;

44 end

A.7.8 PID CONTROLLER

The following code implements the PID control regime.

1 f unc t i on output = testPID (obj , e r r o r)

2 % Estab l i sh i n d i v i d u a l c o n t r o l arguments

3 obj .PIDX = obj . sysPID . a ∗ obj .PIDX + obj . sysPID . b ∗ e r r o r ;

4 obj .PIDY = obj . sysPID . c ∗ obj .PIDX + obj . sysPID . d ∗ e r r o r ;

5

6 output = obj .PIDY;

7 end

99

A.8 SUPERVISOR CODE

A.8.1 SUPERVISOR CLASS

The following code describes the supervisor class. This class covers the entire supervisor

section of the system architecture.

1 c l a s s d e f Superv i so r < handle

2 p r o p e r t i e s

3 f f t S e n s i t i v i t y

4 f f tLength

5 ssLength

6

7 % Used by FFT

8 ve lFreq

9 accFreq

10 errFreq

11

12 % Threshold f o r SteadyState Detect ion

13 s t e a d y S t a t e S e n s i t i v i t y

14

15 % Parameter His tory Queue

16 a lphaHistory

17 alphaDotHistory

18 alphaDotDotHistory

19 alphaCommandHistory

20

21 % Error His tory Queues

22 alphaError

23 alphaDotError

24 alphaDotDotError

25

26 % SteadyState I n d i c a t o r

27 s s Tr i gg e r

28

29 % C o n t r o l l e r Gain Adjustment FLCs

30 positGainFLC

31 velocGainFLC

32 accelGainFLC

33 errorGainFLC

34

35 % Var iab l e s f o r Reference Model Ca l cu l a t i on

36 sysRefCT

37 sysRefDT

38

39 sysRefCTX

40 sysRefCTY

41

42 sysRefDTX

43 sysRefDTY

100

44

45 sysRefLUT

46 sysRefLUTx

47 sysRefTime

48

49 % I n t e g r a t o r Queues

50 e r r o r I n t e g r a t o r

51 e r r o rDot In t eg ra to r

52 e r rorDotDot Integrator

53

54 % D i f f e r e n t i a t o r Queues

55 e r r o r D i f f e r e n t i a t o r

56 e r r o r D o t D i f f e r e n t i a t o r

57

58 % Sample Period o f System

59 samplePeriod

60 commandTime

61

62 referenceCommand

63 lastCommand

64

65 s u p e r F i l t e r

66

67 errorSum

68 errorChange

69

70 Kp

71 Ki

72 Kd

73

74 e r ro rL im i t

75 errorChangeLimit

76 e l evL imi t

77 e l e v H i s t o r y

78 e l evDotHis tory

79

80 t e s t e r

81 changeStanddown

82 dec r ea s eTr i gge r

83 di sab leGainSense

84 windtunnel

85 KiChangeStanddown

86 KpChangeStanddown

87 end

88

89 % %%%

90 % %%%

91 % Publ ic Methods

92 % %%%

93 % %%%

94 methods

95 % %%%

101

96 % Constructor

97 % %%%

98 f unc t i on obj = Superv i so r (f f tLength , f f t S e n s i t i v i t y , . . .

99 ssLength , s s S e n s i t i v i t y , samplePeriod , alphaLimit , . . .

100 e levLimit , r e f e r e n c e , superFIS , d i sableGainSense , . . .

101 windtunnel)

102

103 obj . windtunnel=windtunnel ;

104 obj . t e s t e r = p o l y f i t ([−(p i /180) ∗25 0 . . .

105 (p i /180) ∗25] , [−8 0 8] , 2) ;

106 obj . changeStanddown = 0 ;

107 obj . d i sab leGainSense = disab leGainSense ;

108

109 obj . samplePeriod = CustomQueue (2) ;

110 obj . commandTime = 0 ;

111 obj . e r r o rL im i t = 2∗ alphaLimit ;

112 obj . errorChangeLimit = 4∗ obj . e r r o rL im i t ;

113 obj . e l evL imi t = e l evL imi t ;

114

115 obj . f f tLength = f f tLength / samplePeriod ;

116 obj . ssLength = ssLength / samplePeriod ;

117 obj . f f t S e n s i t i v i t y = f f t S e n s i t i v i t y / samplePeriod ;

118

119 obj . s t e a d y S t a t e S e n s i t i v i t y = s s S e n s i t i v i t y ;

120

121 obj . a lphaHis tory = CustomQueue (obj . ssLength) ;

122 obj . a lphaDotHistory = CustomQueue (obj . ssLength) ;

123 obj . alphaDotDotHistory = CustomQueue (obj . ssLength) ;

124 obj . alphaCommandHistory = CustomQueue (obj . ssLength) ;

125

126 obj . a lphaError = CustomQueue (obj . ssLength) ;

127 obj . alphaDotError = CustomQueue (obj . ssLength) ;

128 obj . alphaDotDotError = CustomQueue (obj . ssLength) ;

129

130 obj . e l e v H i s t o r y = CustomQueue (obj . ssLength) ;

131 obj . e l evDotHis tory = CustomQueue (obj . ssLength) ;

132

133 obj . s sT r i g g e r = 0 ;

134

135 obj . ReferenceSetup (r e f e r e n c e (1) , r e f e r e n c e (2) , samplePeriod) ;

136

137 obj . e r r o r I n t e g r a t o r = CustomQueue (obj . ssLength) ;

138 obj . e r r o rDot In t eg ra to r = CustomQueue (obj . ssLength) ;

139 obj . e r ro rDotDot Integrator = CustomQueue (obj . ssLength) ;

140

141 obj . e r r o r D i f f e r e n t i a t o r = CustomQueue (obj . ssLength) ;

142 obj . e r r o r D o t D i f f e r e n t i a t o r = CustomQueue (obj . ssLength) ;

143

144 obj . referenceCommand = 0 ;

145 obj . lastCommand = [0 ; 0 ; 0 ;] ;

146

147 obj . errorSum = CustomQueue (5) ;

102

148 obj . errorChange = CustomQueue (5) ;

149

150 obj . I n i t i a l i z e F L C (superFIS) ;

151 obj . d e c r ea s eTr i gge r = 0 ;

152

153 obj . KiChangeStanddown = 0 ;

154 obj . KpChangeStanddown = 0 ;

155 end

156

157 % %%%

158 % Primary Superv i so r Dr iver

159 % %%%

160 super (obj , CONTROLLER, alpha , alphaDot , . . .

161 alphaCommand , sampleTime , e l e v a t o r)

162 end

163

164

165

166

167 % %%%

168 % %%%

169 % Private Methods

170 % %%%

171 % %%%

172 methods (Access = p r i v a t e)

173 % %%%

174 % Store Var iab le H i s t o r i e s in Queue

175 % %%%

176 S t o r e H i s t o r i e s (obj , alpha , alphaDot , alphaCommand , e l e v a t o r)

177

178 % %%%

179 % C o n t r o l l e r Output Gain Updates

180 % %%%

181 GainUpdates (obj , CONTROLLER, ˜ , ˜)

182

183 % %%%

184 % Error Ca l cu l a t i on

185 % %%%

186 Calcu la teErro r (obj , alpha , alphaDot)

187

188 % %%%

189 % New Command Detect ion

190 % %%%

191 NewCommand(obj , CONTROLLER)

192

193 % %%%

194 % Steady State Detector

195 % %%%

196 SteadyState (obj , CONTROLLER, alpha)

197

198 % %%%

199 % Frequency Suppressor

103

200 % %%%

201 output = FreqSuppress (obj , s i g n a l)

202

203 % %%%

204 % Reference Ca l cu l a t i on

205 % %%%

206 Refe r enceCa l cu l a t i on (obj , alphaCommand)

207

208 % %%%

209 % Reference Model Setup

210 % %%%

211 ReferenceSetup (obj , zeta , wn, samplePeriod)

212

213 % %%%

214 % Error / Error Dot I n t e g r a t o r

215 % %%%

216 I n t e g r a t e (obj , CONTROLLER)

217

218 % %%%

219 % Error / Error Dot D i f f e r e n t i a t o r

220 % %%%

221 D i f f e r e n t i a t e (obj)

222

223 % %%%

224 % Append ZERO to end o f I n t e g r a t o r Chain (r e s e t s I n t e g r a t o r)

225 % %%%

226 Z e r o I n t e g r a t o r s (obj)

227

228 % %%%

229 % I n i t i a l i z e Fuzzy Logic C o n t r o l l e r s

230 % %%%

231 I n i t i a l i z e F L C (obj , params)

232 end

233 end

104

A.8.2 SUPERVISOR DRIVER

The following code is the primary supervisor abstraction layer. It calls all necessary

supervisory actions when called.

1 % %%

2 % Primary Superv i so r Dr iver

3 % %%

4 f unc t i on super (obj , CONTROLLER, alpha , alphaDot , . . .

5 alphaCommand , sampleTime , e l e v a t o r)

6 obj . samplePeriod . Push (sampleTime) ;

7

8 i f obj . windtunnel == 0

9 obj . samplePeriod . Push (obj . samplePeriod . l a s t + 0 . 0 2) ;

10 end

11

12 i f obj . alphaCommandHistory . l a s t ˜= obj . alphaCommandHistory . prev ious

13 obj . referenceCommand = . . .

14 obj . alphaCommandHistory . l a s t . . .

15 −obj . alphaCommandHistory . prev ious ;

16 obj . lastCommand = obj . sysRefDTY (: , end) ;

17 obj . commandTime = obj . samplePeriod . l a s t ;

18 end

19

20 % Store H i s t o r i e s

21 obj . S t o r e H i s t o r i e s (alpha , alphaDot , alphaCommand , e l e v a t o r) ;

22

23 % Calcu la te Reference Model

24 obj . Re f e r enceCa l cu la t i on (alphaCommand) ;

25

26 % Calcu la te Alpha (Dot) Error

27 obj . Ca l cu la t eErro r (alpha , alphaDot) ;

28

29 % D i f f e r e n t i a t e Alpha (Dot) Error

30 obj . D i f f e r e n t i a t e () ;

31

32 % I n t e g r a t e Alpha (Dot) Error

33 obj . I n t e g r a t e (CONTROLLER) ;

34

35 % Detect New Input Command

36 obj .NewCommand() ;

37

38 % Steady State Detect ion

39 obj . SteadyState (CONTROLLER, alpha) ;

40

41 % Update C o n t r o l l e r Output Gains

42 obj . GainUpdates (CONTROLLER, alpha , alphaDot)

43

44 end

105

A.8.3 ERROR CALCULATOR

The following code calculates and stores the current error state of the system.

1 % %%

2 % Error Ca l cu l a t i on

3 % %%

4 f unc t i on Ca lcu la teErro r (obj , alpha , alphaDot)

5 obj . a lphaError . Push (obj . sysRefDTY (1 , end) − alpha) ;

6 obj . alphaDotError . Push (obj . sysRefDTY (2 , end) − alphaDot) ;

7 obj . alphaDotDotError . Push (obj . sysRefDTY (3 , end) . . .

8 − obj . alphaDotDotHistory . l a s t) ;

9 end

A.8.4 DIFFERENTIATOR

The following code computes and stores the discrete derivative, finite-difference, of system

parameters.

1 % %%

2 % Error / Error Dot D i f f e r e n t i a t o r

3 % %%

4 f unc t i on D i f f e r e n t i a t e (obj)

5 temp = (obj . a lphaError . l a s t − obj . a lphaError . p rev ious) . . .

6 / obj . samplePeriod . spread ;

7 obj . e r r o r D i f f e r e n t i a t o r . Push (temp) ;

8

9 temp = (obj . alphaDotError . l a s t − obj . alphaDotError . p rev ious) . . .

10 / obj . samplePeriod . spread ;

11 obj . e r r o r D o t D i f f e r e n t i a t o r . Push (temp) ;

12

13 obj . errorChange . Push (obj . a lphaError . l a s t − obj . a lphaError . p rev ious) ;

14 end

A.8.5 GAIN UPDATER

The following code computes the output gains distributed to the controller output scaling

gains.

1 % %%

2 % C o n t r o l l e r Output Gain Updates

3 % %%

4 f unc t i on GainUpdates (obj , CONTROLLER, ˜ , ˜)

5 i f obj . d i sab leGainSense == 0

6 i f ((abs (obj . a lphaError . l a s t) > 5) . . .

7 | | (abs (obj . a lphaError . windowMean) > 15)) . . .

8 && obj . KpChangeStanddown == 0

9 obj . KpChangeStanddown = 25 ;

10

11 i f CONTROLLER. ctr lOutput . l a s t . . .

106

12 > (CONTROLLER. e l evL imi t + CONTROLLER. upperOf f se t) ∗ 0 .9 . . .

13 && CONTROLLER. ctr lOutput . l a s t . . .

14 < (−CONTROLLER. e l evL imi t + CONTROLLER. l owe rOf f s e t) ∗ 0 .9

15

16 obj .Kp. outputGain . Push (obj .Kp. outputGain . l a s t ∗ . 9 5) ;

17 f p r i n t f (’ Decreas ing Superv i so r Output Kp Gains to %1.4 f \n ’ , . . .

18 obj .Kp. outputGain . l a s t) ;

19 e l s e i f CONTROLLER. ctr lOutput . l a s t . . .

20 < (CONTROLLER. e l evL imi t + CONTROLLER. upperOf f se t) ∗ 0 .9 . . .

21 && CONTROLLER. ctr lOutput . l a s t . . .

22 > (−CONTROLLER. e l evL imi t + CONTROLLER. l owe rOf f s e t) ∗ 0 .9

23 obj .Kp. outputGain . Push (obj .Kp. outputGain . l a s t ∗ 1 . 0 5) ;

24 f p r i n t f (’ I n c r e a s i n g Superv i so r Output Kp Gains to %1.4 f \n ’ , . . .

25 obj .Kp. outputGain . l a s t) ;

26 end

27 e l s e

28 i f obj . KpChangeStanddown ˜= 0

29 obj . KpChangeStanddown = obj . KpChangeStanddown − 1 ;

30 end

31 end

32

33 i f ((abs (obj . e r r o r I n t e g r a t o r . l a s t) > 25) . . .

34 | | (abs (obj . e r r o r I n t e g r a t o r . windowMean) > 15)) . . .

35 && obj . KiChangeStanddown == 0

36 obj . KiChangeStanddown = 50 ;

37

38 i f CONTROLLER. ctr lOutput . l a s t . . .

39 > (CONTROLLER. e l evL imi t + CONTROLLER. upperOf f se t) ∗ 0 .9 . . .

40 | | CONTROLLER. ctr lOutput . l a s t . . .

41 < (−CONTROLLER. e l evL imi t + CONTROLLER. l owe rOf f s e t) ∗ 0 .9

42

43 obj . Ki . outputGain . Push (obj . Ki . outputGain . l a s t ∗ . 9 5) ;

44 f p r i n t f (’ Decreas ing Superv i so r Output Ki Gains to %1.4 f \n ’ , . . .

45 obj . Ki . outputGain . l a s t) ;

46 e l s e i f CONTROLLER. ctr lOutput . l a s t . . .

47 < (CONTROLLER. e l evL imi t + CONTROLLER. upperOf f se t) ∗ 0 .9 . . .

48 | | CONTROLLER. ctr lOutput . l a s t . . .

49 > (−CONTROLLER. e l evL imi t + CONTROLLER. l owe rOf f s e t) ∗ 0 .9

50 obj . Ki . outputGain . Push (obj . Ki . outputGain . l a s t ∗ 1 . 0 1) ;

51 f p r i n t f (’ I n c r e a s i n g Superv i so r Output Ki Gains to %1.4 f \n ’ , . . .

52 obj . Ki . outputGain . l a s t) ;

53 end

54 e l s e

55 i f obj . KiChangeStanddown ˜= 0

56 obj . KiChangeStanddown = obj . KiChangeStanddown − 1 ;

57 end

58 end

59

60 i f (abs (obj . alphaDotError . average) > 5 . . .

61 | | abs (obj . alphaDotError . windowMean) > 15) . . .

62 && obj . changeStanddown == 0

63 obj . changeStanddown = 25 ;

107

64

65 i f CONTROLLER. ctr lOutput . l a s t . . .

66 > (CONTROLLER. e l evL imi t + CONTROLLER. upperOf f se t) ∗ 0 .9 . . .

67 && CONTROLLER. ctr lOutput . l a s t . . .

68 < (−CONTROLLER. e l evL imi t + CONTROLLER. l owe rOf f s e t) ∗ 0 .9

69

70 obj .Kd. outputGain . Push (obj .Kd. outputGain . l a s t ∗ . 9 5) ;

71 f p r i n t f (’ Decreas ing Superv i so r Output Kd Gains to %1.4 f \n ’ , . . .

72 obj .Kd. outputGain . l a s t) ;

73 e l s e i f CONTROLLER. ctr lOutput . l a s t . . .

74 < (CONTROLLER. e l evL imi t + CONTROLLER. upperOf f se t) ∗ 0 .9 . . .

75 && CONTROLLER. ctr lOutput . l a s t . . .

76 > (−CONTROLLER. e l evL imi t + CONTROLLER. l owe rOf f s e t) ∗ 0 .9

77 obj .Kd. outputGain . Push (obj .Kd. outputGain . l a s t ∗ 1 . 0 5) ;

78 f p r i n t f (’ I n c r e a s i n g Superv i so r Output Kd Gains to %1.4 f \n ’ , . . .

79 obj .Kd. outputGain . l a s t) ;

80 end

81 e l s e

82 i f obj . changeStanddown ˜= 0

83 obj . changeStanddown = obj . changeStanddown − 1 ;

84 end

85 end

86 end

87

88 CONTROLLER.Kp. Push (. . .

89 abs (obj .Kp. evalFLC (. . .

90 obj . a lphaError . l a s t , . . .

91 obj . errorChange . l a s t , CONTROLLER, obj . a lphaHistory . change , . . .

92 obj . e l e v H i s t o r y . change , obj . a lphaHistory . l a s t))) ;

93

94 CONTROLLER. Ki . Push (. . .

95 abs (obj . Ki . evalFLC (. . .

96 obj . a lphaError . l a s t , . . .

97 obj . errorChange . l a s t , CONTROLLER))) ;

98

99 CONTROLLER.Kd. Push (. . .

100 abs (obj .Kd. evalFLC (. . .

101 obj . a lphaError . l a s t , . . .

102 obj . errorChange . l a s t , CONTROLLER, obj . a lphaDotHistory . change , . . .

103 obj . e l evDotHis tory . change , obj . a lphaHistory . l a s t))) ;

104 end

A.8.6 FUZZY LOGIC INITIALIZER

The following code initializes the fuzzy logic systems embedded in the supervisor.

1 % %%

2 % I n i t i a l i z e Fuzzy Logic C o n t r o l l e r s

3 % %%

4 f unc t i on I n i t i a l i z e F L C (obj , params)

5 params Kp = params (1) ;

6 params Ki = params (2) ;

108

7 params Kd = params (3) ;

8

9 NB = 1 ;

10 NM = 2 ;

11 NS = 3 ;

12 ZO = 4 ;

13 PS = 5 ;

14 PM = 6 ;

15 PB = 7 ;

16 temp1 = c e l l (7 , 1) ;

17 temp1 (:) = {1 : 7} ;

18 temp1 = ce l l 2mat (temp1) ;

19

20 temp2 = temp1 ’ ;

21

22 %% Kd Options

23 KdRule = [% Or i g ina l

24 PS NM NB NB NB NM PS ;

25 PS NS NB NM NM NS PS ;

26 ZO NS NM NM NS NS ZO ;

27 ZO NS NS NS NS NS ZO ;

28 ZO NS ZO ZO ZO ZO PS ;

29 PB NS PS PS PS PS PB ;

30 PB PM PM PM PS PS PM

31] ;

32

33 %% Kp Options

34 KpRule = [% Or i g ina l

35 ZO PS PM PB PM PS ZO ;

36 PS PS PM PB PM PS PS ;

37 PM PM PM PB PM PM PM ;

38 PB PB PB PB PB PB PB ;

39 PM PM PM PB PM PM PM ;

40 PS PS PM PB PM PS PS ;

41 ZO PS PM PB PM PS ZO

42] ;

43

44 %% DO NOT CHANGE THESE RULES

45 KiRule = [

46 PB PB PB PB PB PB PB ;

47 PB PM PM PB PM PM PB ;

48 PB PM PS PB PS PM PB ;

49 PB PB PB PB PB PB PB ;

50 PB PM PS PB PS PM PB ;

51 PB PM PM PB PM PM PB ;

52 PB PB PB PB PB PB PB

53] ;

54

55 KpRule = [temp1 (:) temp2 (:) KpRule (:) ones (49 ,2)] ;

56 KiRule = [temp1 (:) temp2 (:) KiRule (:) ones (49 ,2)] ;

57 KdRule = [temp1 (:) temp2 (:) KdRule (:) ones (49 ,2)] ;

58

109

59 obj .Kp = FIS 2X1 (. . .

60 ’ e ’ , params Kp . inputRange1 , params Kp .MFs, . . .

61 params Kp . inputType , params Kp . over lap , . . .

62 ’ ec ’ , params Kp . inputRange2 , params Kp .MFs, . . .

63 params Kp . inputType , params Kp . over lap , . . .

64 ’ u ’ , params Kp . outputRange , params Kp .MFs, . . .

65 params Kp . outputType , params Kp . over lap , . . .

66 ’ l e f t ’ , . . .

67 params Kp . d i s t r i b u t i o n , . . .

68 ’Kp ’ , . . .

69 params Kp .ENABLE, obj . d i sableGainSense , . . .

70 ’RULES ’ , KpRule) ;

71

72 obj . Ki = FIS 2X1 (. . .

73 ’ e ’ , params Ki . inputRange1 , params Ki .MFs, . . .

74 params Ki . inputType , params Ki . over lap , . . .

75 ’ ec ’ , params Ki . inputRange2 , params Ki .MFs, . . .

76 params Ki . inputType , params Ki . over lap , . . .

77 ’ u ’ , params Ki . outputRange , params Ki .MFs, . . .

78 params Ki . outputType , params Ki . over lap , . . .

79 ’ l e f t ’ , . . .

80 params Ki . d i s t r i b u t i o n , . . .

81 ’ Ki ’ , . . .

82 params Ki .ENABLE, obj . d i sableGainSense , . . .

83 ’RULES ’ , KiRule) ;

84

85 obj .Kd = FIS 2X1 (. . .

86 ’ e ’ , params Kd . inputRange1 , params Kd .MFs, . . .

87 params Kd . inputType , params Kd . over lap , . . .

88 ’ ec ’ , params Kd . inputRange2 , params Kd .MFs, . . .

89 params Kd . inputType , params Kd . over lap , . . .

90 ’ u ’ , params Kd . outputRange , params Kd .MFs, . . .

91 params Kd . outputType , params Kd . over lap , . . .

92 ’ l e f t ’ , . . .

93 params Kd . d i s t r i b u t i o n , . . .

94 ’Kd ’ , . . .

95 params Kd .ENABLE, obj . d i sableGainSense , . . .

96 ’RULES ’ , KdRule) ;

97 end

A.8.7 INTEGRATOR

The following code computes and stores the discrete integral, right Riemann sum, for

system parameters.

1 % %%

2 % Error / Error Dot I n t e g r a t o r

3 % %%

4 f unc t i on I n t e g r a t e (obj , CONTROLLER)

5 temp = obj . e r r o r I n t e g r a t o r . l a s t . . .

6 + obj . a lphaError . l a s t ∗ obj . samplePeriod . spread ;

110

7

8 i f (CONTROLLER. ctr lOutput . l a s t . . .

9 < (CONTROLLER. e l evL imi t + CONTROLLER. upperOf f se t) ∗0 . 9)

10 i f (CONTROLLER. ctr lOutput . l a s t . . .

11 > (−CONTROLLER. e l evL imi t + CONTROLLER. l owe rOf f s e t) ∗0 . 9)

12 obj . e r r o r I n t e g r a t o r . Push (temp) ;

13 end

14 e l s e

15 f p r i n t f (’ R e s t r i c t i n g i n t e g r a t o r \n ’) ;

16 i f (temp <= obj . e r r o r I n t e g r a t o r . l a s t)

17 obj . e r r o r I n t e g r a t o r . Push (temp) ;

18 e l s e

19 obj . e r r o r I n t e g r a t o r . Push (obj . e r r o r I n t e g r a t o r . l a s t) ;

20 end

21 end

22

23 temp = obj . e r r o rDot In t eg ra to r . l a s t . . .

24 + obj . alphaDotError . l a s t ∗ obj . samplePeriod . spread ;

25 obj . e r r o rDot In t eg ra to r . Push (temp) ;

26

27 temp = obj . e r ro rDotDot Integrator . l a s t . . .

28 + obj . alphaDotDotError . l a s t ∗ obj . samplePeriod . spread ;

29 obj . e r ro rDotDot Integrator . Push (temp) ;

30

31 obj . errorSum . Push (obj . a lphaError . l a s t + obj . a lphaError . p rev ious) ;

32 end

A.8.8 NEW INPUT COMMAND DETECTION

The following code detects new input commands regardless of the filter state.

1 % %%

2 % New Command Detect ion

3 % %%

4 f unc t i on NewCommand(obj)

5 i f obj . alphaCommandHistory . p rev ious ˜= . . .

6 obj . alphaCommandHistory . l a s t ;

7 f p r i n t f (’New Command (Alpha−> %1.2 f) Detected at Time : %1.2 f \n ’ , . . .

8 obj . alphaCommandHistory . l a s t , obj . samplePeriod . l a s t) ;

9

10 % Reset Appropriate Data S t ruc tu r e s

11 obj . s sT r i gg e r = 0 ;

12 obj . d e c r ea s eTr i gge r = 0 ;

13

14 obj . changeStanddown = 150 ;

15 obj . KiChangeStanddown = 75 ;

16 end

17 end

111

A.8.9 REFERENCE COMMAND FILTER

The following code filters the input command. It is useful for mitigating large derivative

actions as well as establishing a performance tracking goal.

1 % %%

2 % Reference Ca l cu l a t i on

3 % %%

4 f unc t i on Re f e r enceCa l cu la t i on (obj , alphaCommand)

5 obj . sysRefDTX (: , end+1) = . . .

6 obj . sysRefDT . a ∗ obj . sysRefDTX (: , end) . . .

7 + obj . sysRefDT . b ∗ alphaCommand ;

8

9 obj . sysRefDTY (: , end+1) = . . .

10 obj . sysRefDT . c ∗ obj . sysRefDTX (: , end) . . .

11 + obj . sysRefDT . d ∗ alphaCommand ;

12 end

A.8.10 REFERENCE FILTER CONSTRUCTOR

The following code initializes the reference filter.

1 % %%

2 % Reference Model Setup

3 % %%

4 f unc t i on ReferenceSetup (obj , zeta , wn, samplePeriod)

5 WN = wn; % deg/ s

6

7 sys1 = t f ([WNˆ 2] , [1 2∗ ze ta ∗WN WNˆ 2]) ; %#ok

8 sys2 = t f ([WN̂ 2 0] , [1 2∗ ze ta ∗WN WNˆ 2]) ;

9 sys3 = t f ([WN̂ 2 0 0] , [1 2∗ ze ta ∗WN WNˆ 2]) ;

10

11 obj . sysRefCT = ss ([sys1 ; sys2 ; sys3]) ;

12 obj . sysRefCT . StateName = { ’ Alpha ’ ’ AlphaDot ’ } ;

13 obj . sysRefCT . StateUnit = { ’ deg ’ ’ deg/ s ’ } ;

14 obj . sysRefCT . InputName = ’ Alpha Command ’ ;

15 obj . sysRefCT . InputName = ’ Alpha Com ’ ;

16 obj . sysRefCT . OutputName = { ’ Alpha ’ ’ AlphaDot ’ ’ AlphaDotDot ’ } ;

17

18 obj . sysRefDT = c2d (obj . sysRefCT , samplePeriod) ;

19

20 obj . sysRefCTX = ze ro s (2 , 1) ;

21 obj . sysRefCTY = ze ro s (3 , 1) ;

22 obj . sysRefDTX = ze ro s (2 , 1) ;

23 obj . sysRefDTY = ze ro s (3 , 1) ;

24

25 [obj . sysRefLUT , obj . sysRefTime , obj . sysRefLUTx] = step (obj . sysRefDT) ;

26 obj . sysRefLUT = obj . sysRefLUT . ’ ;

27 end

112

A.8.11 STEADY STATE DETECTION

The following code detects when the system is operating in the steady-state. Steady-state

limits are set externally.

1 % %%

2 % Steady State Detector

3 % %%

4 f unc t i on SteadyState (obj , CONTROLLER, alpha)

5 i f obj . alphaCommandHistory . spread < obj . s t e a d y S t a t e S e n s i t i v i t y

6 i f obj . a lphaDotHistory . spread < obj . s t e a d y S t a t e S e n s i t i v i t y

7 i f abs (obj . a lphaError . l a s t) < obj . s t e a d y S t a t e S e n s i t i v i t y

8 obj . s sT r i g g e r = 1 ;

9

10 s to r ed = CONTROLLER. setTrim (alpha) ;

11

12 i f s t o r ed == 1

13 f p r i n t f (’ \ t \ tSaving Trim : %1.4 f to Alpha : %1.1 f and Time Index : %1.2 f s \n ’ ,

. . .

14 CONTROLLER. ctr lOutput . l a s t , . . .

15 round (alpha , 1 , ’ dec imal ’) , . . .

16 (CONTROLLER. c o n t r o l l e r I n d e x + 1) . . .

17 ∗ obj . samplePeriod . spread) ;

18 end

19 end

20 end

21 end

22 end

A.8.12 HISTORY STORAGE

The following code is a convenience function useful for storing system state parameter

histories.

1 % %%

2 % Store Var iab le H i s t o r i e s in Queue

3 % %%

4 f unc t i on S t o r e H i s t o r i e s (obj , alpha , alphaDot , alphaCommand , e l e v a t o r)

5 obj . a lphaHistory . Push (alpha) ;

6 obj . a lphaDotHistory . Push (alphaDot) ;

7 obj . alphaCommandHistory . Push (alphaCommand) ;

8

9 obj . alphaDotDotHistory . Push (. . .

10 (obj . a lphaDotHistory . prev ious − obj . a lphaDotHistory . l a s t) . . .

11 / obj . samplePeriod . spread) ;

12

13 obj . e l e v H i s t o r y . Push (e l e v a t o r) ;

14 obj . e l evDotHis tory . Push (obj . e l e v H i s t o r y . change) ;

15 end

113

A.8.13 INTEGRATOR RESET

The following code is useful in resetting the integrator state, if desired. This may be

necessary in conditions where integrator wind-up is detected.

1 % %%

2 % Append ZERO to end o f I n t e g r a t o r Chain (r e s e t s I n t e g r a t o r)

3 % %%

4 f unc t i on Z e r o I n t e g r a t o r s (obj)

5 obj . e r r o r I n t e g r a t o r . Reset () ;

6 obj . e r r o rDot In t eg ra to r . Reset () ;

7 obj . e r ro rDotDot Integrator . Reset () ;

8 end

114

VITA

Keith A. Benjamin

Department of Electrical and Computer Engineering

Old Dominion University

Norfolk, VA 23529

Keith Benjamin was born in California, USA in 1984. He received a B.S. degree in

Computer Engineering from Old Dominion University in 2016. His studies have focused on

Control Theory.

He is currently a Firmware Engineer with Micron Technology where he develops and

maintains Non-Volatile Dual In-Line Memory Modules (NVDIMM) for enterprise data-center

applications. He is an eight year United States Navy veteran.

EDUCATION

Bachelor of Science in Computer Engineering, May 2016, Old Dominion University

PROFESSIONAL EXPERIENCE

• Micron Technology, Feb. 2018 – Present

Firmware Engineer Primary duties include the development and maintenance of

firmware for Non-Volatile Dual In-line Memory Module (NVDIMM) enterprise server

application.

• Tek Fusion Global, Inc., Sep. 2016 – Feb. 2018

Electrical Engineer Primary duties include the development and maintenance of

avionics equipment for light helicopter and small fixed-wing military aircraft.

ACADEMIC HONORS

• Tau Beta Pi Engineering Honor Society

Typeset using LATEX.

	Old Dominion University
	ODU Digital Commons
	Summer 2018

	Model-Less Fuzzy Logic Control for the NASA Modeling and Control for Agile Aircraft Development Program
	Keith A. Benjamin
	Recommended Citation

	tmp.1538571154.pdf.BpDUD

