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ON THE RADIUS OF CONVERGENCE OF INTERCONNECTED
ANALYTIC NONLINEAR INPUT-OUTPUT SYSTEMS∗

MAKHIN THITSA† AND W. STEVEN GRAY‡

Abstract. A complete analysis is presented of the radii of convergence of the parallel, product,
cascade and feedback interconnections of analytic nonlinear input-output systems represented as
Fliess operators. Such operators are described by convergent functional series, which are indexed by
words over a noncommutative alphabet. Their generating series are therefore specified in terms of
noncommutative formal power series. Given growth conditions for the coefficients of the generating
series for the subsystems, the radius of convergence of each interconnected system is computed
assuming the subsystems are either all locally convergent or all globally convergent. In the process
of deriving the radius of convergence for the feedback connection, it is shown definitively that local
convergence is preserved under feedback. This had been an open problem in the literature until
recently.

Key words. nonlinear systems, formal power series, Chen–Fliess series, real-analytic functionals
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1. Introduction. Most complex systems found in applications can be viewed
as a collection of interconnected subsystems. Generally, an interconnection is said
to be well-posed when the output signal and every internal signal is uniquely defined
on some interval [t0, t0 + T ], T > 0 for a given class of inputs, for example, the
set of Lebesgue measurable functions Lp[t0, t0 + T ]. Sometimes additional properties
like causality, continuity, and regularity are also included as part of the definition of
well-posedness [4, 34]. If one or more subsystems is nonlinear, a variety of sufficient
conditions are available to ensure that an interconnected system is well-posed [1, 2, 31].

This paper focuses on a class of analytic nonlinear input-output systems known as
Fliess operators [11, 12, 13]. Such operators are described by functional series, which
are indexed by words over a noncommutative alphabet. Their generating series are
therefore specified in terms of noncommutative formal power series. It is known that
the parallel, product, and cascade connections as shown in Figure 1(a)–(c) are well-
posed in the sense that any two locally convergent Fliess operators interconnected in
such a manner always yield another locally convergent Fliess operator [17]. Recently,
it was shown in [14, 29] that the feedback connection as shown in Figure 1(d) also
preserves local convergence. It is also known that a notion of global convergence
is preserved under the parallel and product connections but not in general by the
cascade or feedback connection [7, 8, 16].

The goal of this paper is to pursue a much finer analysis of the situation by in-
troducing the notion of the radius of convergence for a given interconnection. This
concept will describe in some sense the largest class of admissible input that an in-
terconnected system of Fliess operators can accept and still remain well-posed (i.e.,
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Fig. 1. Four basic system interconnections.

convergent). Lower bounds for this radius of convergence are available in [32] for the
product connection and in [17] for the cascade and self-excited feedback connections
(i.e., when u = 0). But it will be shown in this paper, by computing the exact radius
of convergence in each instance, that these bounds are in general very conservative.
It should be noted that the unity feedback interconnection, which at first inspection
does not appear to be of the form shown in Figure 1(d) since the identity map, I,
in the feedback path is not realizable by a Fliess operator, can in fact be treated as
a special case of the analysis to be presented. These results first appeared in [18].
They have special significance when feedback is viewed in the context of Hopf al-
gebras [14, 15]. Two classes of interconnections will be considered individually, one
where the subsystems are all locally convergent and the other where they are all glob-
ally convergent. In every case, it will be shown precisely what additional benefits one
gains by having globally convergent subsystems. For example, in a unity feedback
system, this will effectively double the radius of convergence of the closed-loop sys-
tem when compared to the case where only locally convergent subsystems are present.
Finally, specific examples for which the radius of convergence is achieved are provided
for each interconnection.

The paper is organized as follows. In the next section, various mathematical
preliminaries are introduced to establish the notation, to more precisely frame the
problems of interest, and to introduce the main analysis tools. Then sections 3 through
6 present, respectively, the radius of convergence analysis for the parallel, product,
cascade, and feedback connections. The conclusions of the paper are summarized in
the final section, and some directions for future research are proposed.

2. Preliminaries. A finite nonempty set of noncommuting symbolsX = {x0, x1,
. . . , xm} is called an alphabet. Each element of X is called a letter, and any finite se-
quence of letters from X , η = xi1 · · ·xik , is called a word over X . The length of η, |η|,
is the number of letters in η, while |η|xi

is the number of times the letter xi appears in

η. The set of all words with length k is denoted by Xk. The set of all words including
the empty word, ∅, is designated by X∗. It forms a monoid under catenation. Any
mapping c : X∗ → R

� is called a formal power series. The value of c at η ∈ X∗ is
written as (c, η) and called the coefficient of η in c. Typically, c is represented as the
formal sum c =

∑
η∈X∗(c, η)η. Given a subset L ⊆ X∗, the characteristic series of
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L is defined by char(L) =
∑

η∈L η. The notation c ≤ d means that the component
series satisfy (ci, η) ≤ (di, η) for all η ∈ X∗ and i = 1, 2, . . . , �. The collection of all
formal power series over X is denoted by R

�〈〈X〉〉. It forms an associative R-algebra
under the catenation (Cauchy) product and a commutative and associative R-algebra
under the shuffle product, that is, the R-bilinear mapping R〈〈X〉〉×R〈〈X〉〉 → R〈〈X〉〉
uniquely specified by the shuffle product of two words

(xiη) �� (xjξ) = xi(η �� (xjξ)) + xj((xiη) �� ξ)

and η �� ∅ = η for all η, ξ ∈ X∗ with (c �� d)i := ci �� di, 1 ≤ i ≤ � when c, d ∈ R
�〈〈X〉〉

[11].

2.1. Fliess operators and their convergence. One can formally associate
with any series c ∈ R

�〈〈X〉〉 a causal m-input, �-output operator, Fc, in the following
manner. Let p ≥ 1 and t0 < t1 be given. For a Lebesgue measurable function
u : [t0, t1] → R

m, define ‖u‖p = max{‖ui‖p : 1 ≤ i ≤ m}, where ‖ui‖p is the usual
Lp-norm for a measurable real-valued function, ui, defined on [t0, t1]. Let Lm

p [t0, t1]
denote the set of all measurable functions defined on [t0, t1] having a finite ‖ · ‖p norm
and Bm

p (R)[t0, t1] := {u ∈ Lm
p [t0, t1] : ‖u‖p ≤ R}. Assume C[t0, t1] is the subset

of continuous functions in Lm
1 [t0, t1]. Define iteratively for each η ∈ X∗ the map

Eη : Lm
1 [t0, t1] → C[t0, t1] by setting E∅[u] = 1 and letting

Exiη̄[u](t, t0) =

∫ t

t0

ui(τ)Eη̄ [u](τ, t0) dτ,

where xi ∈ X , η̄ ∈ X∗, and u0 = 1. The input-output operator corresponding to c is
the Fliess operator

(1) Fc[u](t) =
∑
η∈X∗

(c, η)Eη[u](t, t0)

[11, 12, 13]. If there exists real numbers Kc,Mc > 0 such that

(2) |(c, η)| := max
i

|(ci, η)| ≤ KcM
|η|
c |η|!, η ∈ X∗,

then Fc constitutes a well-defined mapping from Bm
p (R)[t0, t0+T ] into B�

q(S)[t0, t0+
T ] for sufficiently small R, T > 0, where the numbers p, q ∈ [1,∞] are conjugate
exponents, i.e., 1/p + 1/q = 1 [19]. The set of all such locally convergent series is
denoted by R

�
LC〈〈X〉〉. In particular, when p = 1 it was shown in [5, 6] that the series

(1) converges uniformly and absolutely on [0, T ] if

(3) max{R, T } < 1

Mc(m+ 1)
.

A similar conclusion can be drawn when p = ∞ provided RT < 1/Mc(m + 1) [11,
21, 32]. In either case, it is important in applications to identify the smallest possible
geometric growth constant, Mc, in order to avoid over restricting the domain of Fc.
So let π : R�

LC〈〈X〉〉 → R
+∪ {0} take each series c to the infimum of all Mc satisfying

(2). Therefore, R�
LC〈〈X〉〉 can be partitioned into equivalence classes, and the number

1/Mc(m + 1) will be referred to as the radius of convergence for the class π−1(Mc).
This is in contrast to the usual situation where a radius of convergence is assigned to
individual series [24]. In practice, it is not difficult to estimate the minimal Mc for
many series, in which case the radius of convergence for π−1(Mc) provides an easily
computed lower bound for the radius of convergence of c in the usual sense. Finally,
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when c satisfies the more stringent growth condition

(4) |(c, η)| ≤ KcM
|η|
c , η ∈ X∗,

the series (1) defines an operator from the extended space Lm
p,e(t0) into C[t0,∞), where

Lm
p,e(t0) := {u : [t0,∞) → R

m : u[t0,t1] ∈ Lm
p [t0, t1] ∀t1 ∈ (t0,∞)}

and u[t0, t1] denotes the restriction of u to [t0, t1] [19]. The set of all such globally
convergent series is designated by R

�
GC〈〈X〉〉. Henceforth, given any locally or globally

convergent c, Mc will always denote the smallest possible geometric growth constant
satisfying (2) or (4), respectively.

2.2. State space realization of a Fliess operator. A Fliess operator Fc

defined on Bm
p (R)[t0, t0 + T ] is said to be realized by a state space realization when

there exists a system of n differential equations and � output functions

ż = g0(z) +

m∑
i=1

gi(z)ui, z(t0) = z0,(5a)

y = h(z),(5b)

where each gi is an analytic vector field expressed in local coordinates on some neigh-
borhood W of z0 and h is an analytic function on W such that (5a) has a well-defined
solution z(t), t ∈ [t0, t0 + T ] on W for any given input u ∈ Bm

p (R)[t0, t0 + T ] and
Fc[u](t) = h(z(t)), t ∈ [t0, t0 + T ] [11, 12, 13, 19, 21]. Let G = {g0, g1, . . . , gm}.
It is well known that Fc is realizable if and only if c ∈ R

�
LC〈〈X〉〉 has finite Lie

rank [12, 13, 21, 23, 28]. In this case, the generating series c is related to the realiza-
tion (G, h, z0) by (c, η) = Lgηh(z0), η ∈ X∗, where the iterated Lie derivatives are
defined by

Lgηh = Lgi1
· · ·Lgik

h, η = xik · · ·xi1 ∈ X∗

with Lgi : h �→ ∂h/∂z · gi and L∅h = h.

2.3. The composition product. The cascade connection of two Fliess oper-
ators as depicted in Figure 1(c) was shown by Ferfera in [7, 8] to always yield an
input-output system having a Fliess operator representation. To describe its gener-
ating series explicitly, let d ∈ R

m〈〈X〉〉 and define the family of mappings

Dxi : R〈〈X〉〉 → R〈〈X〉〉 : e �→ x0(di �� e),

where i = 0, 1, . . . ,m and d0 := 1. Assume D∅ is the identity map on R〈〈X〉〉. Such
maps can be composed in the obvious way so that Dxixj := DxiDxj provides an R-
algebra which is isomorphic to the usual R-algebra on R〈〈X〉〉 under the catenation
product. The composition product of a word η ∈ X∗ and a series d ∈ R

m〈〈X〉〉 is
defined as

(xikxik−1
· · ·xi1︸ ︷︷ ︸

η

) ◦ d = Dxik
Dxik−1

· · ·Dxi1
(1) = Dη(1).

For any c ∈ R
�〈〈X〉〉 the definition is extended linearly as

c ◦ d =
∑
η∈X∗

(c, η) η ◦ d.

In this case, for any c ∈ R
�〈〈X〉〉 and d ∈ R

m〈〈X〉〉 the identity Fc ◦ Fd = Fc◦d
is satisfied. It is known in general that the composition product is associative and
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distributive to the left over the shuffle product. For any c ∈ R
m〈〈X〉〉, the mapping

d �→ c ◦ d is a contraction on R
m〈〈X〉〉 with the ultrametric dist : (c, d) �→ σord(c−d),

where σ is any real number 0 < σ < 1 [7, 17]. (The order of a series c, ord(c), is taken
as the length of the shortest word in the support of c.) The following theorem states
that local convergence is preserved under composition.

Theorem 1 (see [17]). Suppose c ∈ R
�
LC〈〈X〉〉 and d ∈ R

m
LC〈〈X〉〉 with growth

constants Kc,Mc > 0 and Kd,Md > 0, respectively. Then c ◦ d ∈ R
�
LC〈〈X〉〉. Specifi-

cally,

|(c ◦ d, ν)| ≤ Kc((φ(mKd) + 1)M)|ν|(|ν|+ 1)!, ν ∈ X∗,

where φ(x) := x/2 +
√
x2/4 + x and M = max{Mc,Md}.

In light of (3) and the theorem above, a lower bound on the radius of convergence
for Fc◦d is 1/(φ(mKd)+1)M(m+1). It should be noted that no example has been pre-
sented to date for which the radius of convergence corresponds exactly to this bound.
Thus, there is some suspicion that this result is conservative. In addition, if c and d are
globally convergent, one would expect this stronger property to produce a correspond-
ingly larger radius of convergence. But no such analysis is available in the literature.

2.4. The feedback product. Consider two Fliess operators interconnected to
form a feedback system as shown in Figure 1(d). The output y must satisfy the
feedback equation y = Fc[u + Fd[y]] for every admissible input u. It was shown
in [17, 20] that there always exist a unique generating series e so that y = Fe[u]. In
this case, the feedback equation becomes equivalent to Fe[u] = Fc[u + Fd◦e[u]]. The
feedback product of c and d is thus defined as c@d = e. Specifically, e is the unique
fixed point of the contractive iterated map

S̃ : ei �→ ei+1 = c◦̃(d ◦ ei),
where ◦̃ denotes the modified composition product. That is, the product

c◦̃d =
∑
η∈X∗

(c, η) η◦̃d,

where η◦̃d = D̃η(1) with

D̃xi : R〈〈X〉〉 → R〈〈X〉〉 : e �→ xie+ x0(di �� e)

and d0 := 0 [17]. Therefore, e = c@d satisfies the fixed point equation e = c◦̃(d ◦ e).
In the case of a unity feedback system, denoted by c@δ, this equation reduces to
e = c◦̃e. The output of a self-excited feedback loop is described by the fixed point
e ∈ R

m[[X0]], X0 := {x0}, of the contractive iterated map

S : ei �→ ei+1 = (c ◦ d) ◦ ei.
Therefore, e is the solution of the equation e = (c ◦ d) ◦ e. In the case of a unity
feedback system (or equivalently, if c ◦ d is redefined as c), this equation reduces to
e = c ◦ e. The next theorem states that local convergence of a self-excited system is
preserved.

Theorem 2 (see [17]). Let c ∈ R
m
LC〈〈X〉〉 with growth constants Kc ≥ 1 and

Mc > 0. If e ∈ R
m[[X0]] satisfies e = c ◦ e, then

|(e, xn
0 )| ≤ Kcφg ((mKc(2 + φg) + 1)Mc)

nsn n!, n ≥ 0,

where φg is the golden ratio, s0 := 1/φg, and sn+1 = B(Cn) :=
∑n

k=0

(
n
k

)
Ck, that

is, sn+1, n ≥ 0 is the binomial transformation of the Catalan integer sequence, Cn,
n ≥ 0.
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Table 1

Selected integer sequences from the OEIS.

Sequence OEIS number n = 0, 1, 2, . . .

Cn A000108 1, 1, 2, 5, 14, 42, 132, 429, 1430, . . .

sn+1 A007317 1, 2, 5, 15, 51, 188, 731, 2950, . . .

b̄n (Ex. 2) A052820 1, 2, 9, 62, 572, 6604, 91526, . . .

b̄n (Ex. 3) A000110 1, 2, 5, 15, 52, 203, 877, 4140, . . .

ēn (Ex. 5) A112487 1, 2, 10, 82, 938, 13778, 247210, . . .

ēn (Ex. 9) A000629 1, 2, 6, 26, 150, 1082, 9366, 94586, . . .

The sequence sn+1, n ≥ 0 is integer sequence number A007317 in the Online
Encyclopedia of Integer Sequences (OEIS) [27]. See Table 1 for its first few entries.
The asymptotics of Cn, n ≥ 0 and sn+1, n ≥ 0 are known to be, respectively,

Cn ∼ 1√
πn3

4n, sn ∼
√
5

8
√
πn3

5n.

Therefore, it follows for the single-input, single-output case that

|(e, xn
0 )| ≤ (β(Kc)Mc)

n n!, n ≥ 0,

where β(Kc) := Kc(10 + 5φg) + 5 for Kc ≥ 1. From (3) with R = m = 0, Fe[0]
is guaranteed to converge on at least the interval [0, 1/β(Kc)Mc). But again no
example has been presented to date for which this interval corresponds exactly to
the interval of convergence. Moreover, a version of Theorem 2 tailored to the case
where c ∈ R

m
GC〈〈X〉〉 should intuitively yield a larger interval of convergence for the

closed-loop system. No analysis presently exists for such a problem.

3. The parallel connection. The analysis begins with the parallel connection
shown in Figure 1(a). It is assumed throughout that m > 0 in order that the inter-
connection be well-defined. The main technical result that is needed to accomplish
the analysis is the following theorem from complex analysis.

Theorem 3 (see [33]). Let f(z) =
∑

n≥0 anz
n/n! be a function which is analytic

at the origin of the complex plane. Suppose z0 is a singularity of f having smallest
modulus. Then for any ε > 0, there exists an integer N ≥ 0 such that for all n > N ,
|an| < (1/|z0|+ ε)nn!. Furthermore, for infinitely many n, |an| > (1/|z0| − ε)nn!.

The essence of this theorem is that the real number 1/ |z0| is the minimum geomet-
ric growth constant for the coefficients of the Taylor series of f at z = 0. Specifically,
one can always introduce a K > 0, if necessary, so that |an| ≤ K(1/ |z0|)nn!, n ≥ 0,
and no number smaller than 1/ |z0| has this property. The next lemma applies this
theorem and provides the crucial insight into determining the radius of convergence
of the parallel connection. The following definition is also used.

Definition 1. A series c̄ ∈ R
�
LC〈〈X〉〉 is said to be locally maximal with growth

constants Kc,Mc > 0 if each component of (c̄, η) is KcM
|η|
c |η|!, η ∈ X∗. A series

c̄ ∈ R
�
GC〈〈X〉〉 is said to be globally maximal with growth constants Kc,Mc > 0 if

each component of (c̄, η) is KcM
|η|
c , η ∈ X∗.

Lemma 1. Suppose X = {x0, x1, . . . , xm}. Let c̄, d̄ ∈ R
�
LC〈〈X〉〉 be locally maxi-

mal series with growth constants Kc,Mc > 0 and Kd,Md > 0, respectively. If b̄ = c̄+d̄,
then the sequence (b̄i, x

k
0), k ≥ 0 has the exponential generating function

f(x0) :=
∞∑
k=0

(b̄i, x
k
0)
xk
0

k!
=

Kc

1−Mcx0
+

Kd

1−Mdx0
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for any i = 1, 2, . . . , �. Moreover, the smallest possible geometric growth constant for
b̄ is Mb = max{Mc,Md}.

Proof. There is no loss of generality in assuming � = 1. Observe for any ν ∈ Xn,
n ≥ 0 that

(b̄, ν) = (c̄, ν) + (d̄, ν) = (KcM
n
c +KdM

n
d )n!.

Furthermore, (b̄, ν) = (b̄, xn
0 ), n ≥ 0. The key observation is that f(t) is the zero-input

response of Fb̄. That is,
(6)

f(t) =

∞∑
k=0

(b̄i, x
k
0)
tk

k!
= Fb̄[0](t) =

∞∑
k=0

KcM
k
c t

k +

∞∑
k=0

KdM
k
d t

k =
Kd

1−Mct
+

Kd

1−Mdt
.

Since f is analytic at the origin, by Theorem 3 the smallest geometric growth con-
stant for the sequence (b̄, xn

0 ), n ≥ 0 and thus for the entire formal power series b̄
is determined by the location of any singularity nearest to the origin in the complex
plane, say x′

0. Specifically, Mb = 1/|x′
0|, where it is easily verified from (6) that

x′
0 = 1/max{Mc,Md}. This proves the lemma.

The following theorem describes the radius of convergence of the parallel connec-
tion of two locally convergent Fliess operators.

Theorem 4. Suppose X = {x0, x1, . . . , xm}. Let c, d ∈ R
�
LC〈〈X〉〉 with growth

constants Kc,Mc > 0 and Kd,Md > 0, respectively. If b = c+ d, then

(7) |(b, ν)| ≤ KbM
|ν|
b |ν|!, ν ∈ X∗

for some Kb > 0, where Mb = max{Mc,Md}. Furthermore, no smaller geometric
growth constant can satisfy (7), and thus the radius of convergence is 1/Mb(m+ 1).

Proof. First observe that for all ν ∈ X∗ and i = 1, 2, . . . , �

|(c+ d, ν)| ≤ |(c, ν)| + |(d, ν)| ≤ (c̄i, ν) + (d̄i, ν) = (b̄i, ν),

where c̄, d̄, and b̄ are defined as in Lemma 1. In light of this lemma (b̄i, ν) ≤
KbM

|ν|
b |ν|!, ν ∈ X∗ for some Kb > 0. Furthermore, (b̄i, x

n
0 ), n ≥ 0 is growing exactly

at this rate. Thus, no smaller geometric growth constant is possible, and the theorem
is proved.

For the parallel connection of two globally convergent series, it is trivial to show
that global convergence is preserved. Thus, the radius of convergence in this case is
taken to be infinity.

4. The product connection. The radius of convergence of the product con-
nection of two locally convergent Fliess operators is calculated next. The following
lemma is essential.

Lemma 2. Suppose X = {x0, x1, . . . , xm}. Let c̄, d̄ ∈ R
�
LC〈〈X〉〉 be locally max-

imal series with growth constants Kc,Mc > 0 and Kd,Md > 0, respectively. If
b̄ = c̄ �� d̄, then the sequence (b̄i, x

k
0), k ≥ 0 has the exponential generating function

f(x0) =
KcKd

(1−Mcx0)(1−Mdx0)

for any i = 1, 2, . . . , �. Moreover, the smallest possible geometric growth constant for
b̄ is Mb = max{Mc,Md}.

□ 

□ 
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Proof. There is no loss of generality in assuming � = 1. Observe for any ν ∈ Xn,
n ≥ 0 that

(b̄, ν) =

n∑
j=0

∑
η∈Xj

ξ∈Xn−j

(c̄, η)(d̄, ξ)(η �� ξ, ν) =

n∑
j=0

KcM
j
c j! KdM

n−j
d (n− j)!

∑
η∈Xj

ξ∈Xn−j

(η �� ξ, ν)

=
n∑

j=0

KcM
j
c j! KdM

n−j
d (n− j)!

(
n

j

)
= KcKd

⎡
⎣ n∑
j=0

M j
cM

n−j
d

⎤
⎦n!.

Therefore, b̄ and the sequence (b̄, xn
0 ), n ≥ 0 will have the same minimal growth

constants. Observe that f is the zero-input response of Fb̄. Specifically,

f(t) =
∞∑
k=0

(b̄i, x
k
0)
tk

k!
= Fb̄[0](t) =

∞∑
k=0

KcM
k
c t

k
∞∑
k=0

KdM
k
d t

k =
KcKd

(1 −Mct)(1 −Mdt)
.

Since f is analytic at the origin, Theorem 3 gives the smallest geometric growth
constant Mb = 1/|x′

0|, where x′
0 = 1/max{Mc,Md}. This proves the lemma.

Now a main result for the product connection is presented below.
Theorem 5. Suppose X = {x0, x1, . . . , xm}. Let c, d ∈ R

�
LC〈〈X〉〉 with growth

constants Kc,Mc > 0 and Kd,Md > 0, respectively. If b = c �� d, then

(8) |(b, ν)| ≤ KbM
|ν|
b |ν|!, ν ∈ X∗

for some Kb > 0, where Mb = max{Mc,Md}. Furthermore, no smaller geometric
growth constant can satisfy (8), and thus the radius of convergence is 1/Mb(m+ 1).

Proof. Assume � = 1 without loss of generality. Observe that for all ν ∈ X∗

|(c �� d, ν)| ≤
n∑

j=0

∑
η∈Xj

ξ∈Xn−j

|(c, η)||(d, ξ)|(η �� ξ, ν)

≤
n∑

j=0

∑
η∈Xj

ξ∈Xn−j

(c̄, η)(d̄, ξ)(η �� ξ, ν) = (b̄, ν),

where c̄, d̄, and b̄ are defined as in Lemma 2. A direct application of this lemma gives

(b̄i, ν) ≤ KbM
|ν|
b |ν|!, ν ∈ X∗ for some Kb > 0. Furthermore, (b̄, xn

0 ), n ≥ 0 is growing
exactly at this rate. Thus, no smaller geometric growth constant is possible, and the
theorem is proved.

An interesting observation is that the exponential generating functions in Lem-
mas 1 and 2 have identical sets of singularities. Therefore, for locally convergent
subsystems, the two interconnections have the same radii of convergence. In addi-
tion, Mb as defined in Theorem 5 reduces to the geometric growth constant given
in [32, p. 23], where it is assumed that Mc = Md. Its minimality, however, was not
addressed there. The following theorem states that global convergence is preserved
under the product connection. Therefore, its radius of convergence is taken as infinity.

Theorem 6. Suppose c, d ∈ R
�
GC〈〈X〉〉 with growth constants Kc,Mc > 0 and

Kd,Md > 0, respectively. Then c �� d ∈ R
�
GC〈〈X〉〉. Specifically,

|(c �� d, ν)| ≤ KcKd(Mc +Md)
|ν|, ν ∈ X∗.

□ 

□ 
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Proof. Observe for any ν ∈ X∗ that

|(c �� d, ν)| =

∣∣∣∣∣∣∣∣
|ν|∑
j=0

∑
η∈Xj

ξ∈X|ν|−j

(c, η)(d, ξ)(η �� ξ, ν)

∣∣∣∣∣∣∣∣ ≤
|ν|∑
i=0

∑
η∈Xj

ξ∈X|ν|−j

KcM
j
c KdM

|ν|−j
d (η �� ξ, ν)

= KcKd

|ν|∑
j=0

M j
cM

|ν|−j
d

(
ν

j

)
= KcKd(Mc +Md)

|ν|.

5. The cascade connection. The analysis of the cascade connection is sub-
stantially more complex as compared to that for the parallel and product connec-
tions. Therefore, the cases of locally convergent subsystems and globally convergent
subsystems will be considered in separate subsections. In several places, state space
realizations will be employed to simplify the analysis, but they are not essential for
establishing the main claims. See [29, 30] for an alternative approach.

5.1. Locally convergent subsystems. In contrast to the previous sections,
the main result is presented first and then the machinery needed for the proof is
developed afterwards.

Theorem 7. Suppose X = {x0, x1, . . . , xm}. Let c ∈ R
�
LC〈〈X〉〉 and d ∈

R
m
LC〈〈X〉〉 with growth constants Kc,Mc > 0 and Kd,Md > 0, respectively. If b = c◦d,

then

(9) |(b, ν)| ≤ KbM
|ν|
b |ν|!, ν ∈ X∗

for some Kb > 0, where

Mb =
Md

1−mKdW
(

1
mKd

exp
(

Mc−Md

mKdMc

))
and W denotes the Lambert W -function, namely, the inverse of the function g(z) =
z exp(z) [3]. Furthermore, no smaller geometric growth constant can satisfy (9), and
thus the radius of convergence is

1

Md(m+ 1)

[
1−mKdW

(
1

mKd
exp

(
Mc −Md

mKdMc

))]
.

The following three lemmas are prerequisites for the proof of this theorem.
Lemma 3. Suppose X = {x0, x1, . . . , xm}. Let c̄ ∈ R

�
LC〈〈X〉〉 and d̄ ∈ R

m
LC〈〈X〉〉

be locally maximal series with growth constants Kc,Mc > 0 and Kd,Md > 0, respec-
tively. Then each component of the series b̄ = c̄ ◦ d̄ has coefficients satisfying

0 < (b̄i, η) ≤
(
b̄i, x

|η|
0

)
, η ∈ X∗, i = 1, 2, . . . , �.

Proof. First a state space realization for the input-output map Fc̄i : u �→ yi,
i = 1, 2, . . . , � will be synthesized using the identity

char(Xk) =
char(X) �� k

k!
, k ≥ 0.

Observe

c̄i = Kc

∞∑
k=0

Mk
c k! char(X

k) = Kc

∞∑
k=0

Mk
c char(X) �� k,

□ 
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and thus

Fc̄i = Kc

∞∑
k=0

Mk
c Fchar(X) �� k = Kc

∞∑
k=0

(
McFchar(X)

)k
=

Kc

1−McFchar(X)
.

Defining z1 = Fc̄i , it follows directly that

(10) ż1 =
Mc

Kc
z21

⎛
⎝1 +

m∑
j=1

uj

⎞
⎠ , z1(0) = Kc, yi = z1

realizes yi = Fc̄i [u]. A similar realization can be obtained for Fd̄i
in coordinate z2.

Since c̄i = c̄j and d̄i = d̄j for all i, j, setting each input of Fc̄ equal to the corresponding
output of Fd̄ gives a realization for the cascade system yi = F(c̄◦d̄)i [u], namely,

ż1 =
Mc

Kc
z21 (1 +mz2) , z1(0) = Kc,(11a)

ż2 =
Md

Kd
z22

⎛
⎝1 +

m∑
j=1

uj

⎞
⎠ , z2(0) = Kd,(11b)

yi = z1.(11c)

The Lie derivatives of h(z) = z1 with respect to the realization vector fields

g0(z) =

(
Mc

Kc
z21(1 +mz2)

Md

Kd
z22

)
, gj(z) =

(
0

Md

Kd
z22

)
,

where j = 1, 2, . . . ,m, are in terms of polynomials with positive coefficients. There-
fore, when evaluated at z0 = [Kc Kd]

T , it is immediate that 0 < (b̄i, η) = Lgηh(z0),
η ∈ X∗. To prove the remaining inequality in the lemma, let ηk = xn0

0 xj1x
n1
0 · · ·xjkx

nk
0 ,

ηk+1 = ηkxjk+1
x
nk+1

0 , and η̃k = ηkx
nk+1+1
0 , where 1 ≤ jl ≤ m. Noting that g0(z) =

gj(z) + g̃(z), where

g̃(z) =

(
Mc

Kc
z21(1 +mz2)

0

)
,

it follows for any k > 0 that

Lgη̃k
h(z0) = Lg

x
nk+1
0

Lg0Lgηk
h(z0) = Lg

x
nk+1
0

Lgj+g̃Lgηk
h(z0)

= Lgηk+1
h(z0) + Lg

x
nk+1
0

Lg̃Lgηk
h(z0).(12)

Clearly, the second term on the right-hand side of (12) is also a polynomial with
positive coefficients, and therefore

(13) Lgηk+1
h(z0) < Lgη̃k

h(z0), k > 0.

This inequality is used to complete the proof of the lemma. Specifically, it will be
shown by induction on k that

(14) (b̄i, ηk) = Lgηk
h(z0) ≤ Lg

x
|ηk|
0

h(z0) = (b̄i, x
|ηk|
0 ), k ≥ 0.
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The claim is trivially true when k = 0. Now, assume it is true up to some fixed k ≥ 0.
Using (13), it follows that

Lgηk+1
h(z0) < Lgη̃k

h(z0) < Lg
x
|η̃k|
0

h(z0) = Lg
x
|ηk+1|
0

h(z0).

Therefore, the claim is verified for all k ≥ 0, and the lemma is proved.
Lemma 4. Suppose X = {x0, x1, . . . , xm}. Let c̄ ∈ R

�
LC〈〈X〉〉 and d̄ ∈ R

m
LC〈〈X〉〉

be locally maximal series with growth constants Kc,Mc > 0 and Kd,Md > 0, respec-
tively. If b̄ = c̄ ◦ d̄, then
(15) |(b̄, ν)| ≤ KbM

|ν|
b |ν|!, ν ∈ X∗

for some Kb > 0, where

Mb =
Md

1−mKdW
(

1
mKd

exp
(

Mc−Md

mKdMc

)) .
Furthermore, no smaller geometric growth constant can satisfy (15).

Proof. A state space realization for the autonomous system F(c̄◦d̄)i [0], i = 1, 2, . . . , �
is clearly given by (11) with u = 0. The output equation is

y2i ÿi − 2yiẏi
2 − Md(Kcẏi −Mcy

2
i )

2

mKcKdMc
= 0

with yi(0) = Kc , ẏi(0) = KcMc(1 +mKd). It has the unique solution

(16) yi(t) =
Kc

1−Mct+ (mKdMc

Md
) ln(1−Mdt)

,

which is analytic at the origin. Clearly, yi is the exponential generating function
of the sequence (b̄i, x

n
0 ), n ≥ 0. Therefore, its smallest geometric growth constant

is determined by the location of any singularity nearest to the origin, specifically,
Mb = 1/|t′|, where it can be verified from (16) that

t′ =
1

Md

[
1−mKdW

(
1

mKd
exp

(
Mc −Md

mKdMc

))]
.

From Lemma 3, Mb must also be the smallest possible growth constant of the series
b̄, and the lemma is proved.

The following definition is needed in the proof of the next lemma.
Definition 2. Given any ξ ∈ X∗, the corresponding left-shift operator on X∗ is

defined as the mapping

ξ−1 : X∗ → R〈X〉 : ξ−1(η) =

{
η′ : if η = ξη′,
0 : otherwise.

For any c ∈ R
�〈〈X〉〉, ξ−1(c) :=

∑
η∈X∗(c, η)ξ−1(η). In addition, ξ−i(·) denotes the

left-shift operator ξ−1(·) applied i times.
Lemma 5. Let X = {x0, x1, . . . , xm} and c, d, c′, d′ ∈ R

�〈〈X〉〉 such that |c| ≤ c′

and |d| ≤ d′, where |c|i :=
∑

η∈X∗ |(ci, η)| η, i = 1, 2, . . . , �. Then it follows that
|c ◦ d| ≤ c′ ◦ d′.

Proof. First consider the special case where c = c′ = ξ ∈ X∗. The proof is
by induction on k = |ξ| − |ξ|x0 . Let ξk = xnk

0 xikx
nk−1

0 · · ·xi1x
n0
0 for k ≥ 0, where

□ 

□ 
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1 ≤ ij ≤ m. For k = 0, the claim is trivial since

|ξ0 ◦ d| = |xn0
0 ◦ d| = xn0

0 = xn0
0 ◦ d′ = ξ0 ◦ d′.

Assume now that |(ξk ◦ d, η)| ≤ (ξk ◦ d′, η) up to some fixed k ≥ 0. Observe that

ξk+1 ◦ d = x
nk+1+1
0 (dik+1

�� (ξk ◦ d))
(ξk+1 ◦ d, η) = (dik+1

�� (ξk ◦ d), x−(nk+1+1)
0 (η))

=

n∑
j=0

∑
α∈Xj

β∈Xn−j

(dik+1
, α)(ξk ◦ d, β)(α �� β, x

−(nk+1+1)
0 (η)),

where n := |x−(nk+1+1)
0 (η)| ≥ 0. Therefore,

|(ξk+1 ◦ d, η)| ≤
n∑

j=0

∑
α∈Xj

β∈Xn−j

∣∣(dik+1
, α)
∣∣ |(ξk ◦ d, β)| (α �� β, x

−(nk+1+1)
0 (η))

≤
n∑

j=0

∑
α∈Xj

β∈Xn−j

(d′ik+1
, α)(ξk ◦ d′, β)(α �� β, x

−(nk+1+1)
0 (η))

= (ξk+1 ◦ d′, η).
Thus, the inequality holds for all k ≥ 0. The general case then follows easily from the
left linearity of the composition product.

Proof of Theorem 7. Since |d| ≤ d̄, it follows from Lemma 5 that for any ν ∈ X∗

|(b, ν)| ≤
∑
η∈X∗

|(c, η)||(η ◦ d, ν)| ≤
∑
η∈X∗

KcM
|η|
c |η|! (η ◦ d̄, ν) = (b̄i, ν),

where b̄i = (c̄ ◦ d̄)i, i = 1, 2, . . . , �. In light of Lemma 4, the theorem is proved.
Example 1. Let X = {x0, x1} and c, d ∈ R〈〈X〉〉 such that M = Mc = Md. Then

from Theorem 7,

Mb =
M

1−KdW (1/Kd)
=

(
3

2
+Kd +O

(
1

Kd

))
M ≈ KdM

when Kd � 1. This is consistent with Theorem 1. On the other hand, if Kd = 1, then
Mb = (1−W (1))−1M = 2.3102M , which is less than the geometric growth constant
(φg + 1)M = 2.6180M given by Theorem 1.

It is known that if u is analytic at t = 0 with generating series cu, then y = Fc[u]
is also analytic at t = 0 [32], and its generating series is given by cy = c◦cu [17, 25, 26].
In this situation, the following corollary is useful for estimating a lower bound on the
interval of convergence for y.

Corollary 1. Suppose X = {x0, x1, . . . , xm} and X0 = {x0}. Let c ∈ R
�
LC〈〈X〉〉

with growth constants Kc,Mc > 0 and cu ∈ R
m
LC [[X0]] with growth constants Kcu,Mcu

> 0. Then, cy = c ◦ cu satisfies |(cy , xk
0)| ≤ KcyM

k
cyk!, k ≥ 0 for some Kcy > 0 and

Mcy =
Mcu

1−mKcuW
(

1
mKcu

exp
(

Mc−Mcu

mKcuMc

)) .
Thus, the interval of convergence for the output y = Fc[u] is at least as large as
T = 1/Mcy .

□ 

□ 
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Fig. 2. Output responses of the cascade system Fc̄◦d̄ to various analytic inputs in Example 2.

Example 2. SupposeX = {x0, x1} and b̄ = c̄◦d̄, where c̄, d̄ ∈ RLC〈〈X〉〉 are locally
maximal series with growth constants Kc,Mc > 0 and Kd,Md > 0, respectively. The
output of the cascade system Fc̄◦d̄ is described by the state space system (11). A
MATLAB generated zero-input response is shown in Figure 2 when Kc = 1, Mc = 2,
Kd = 3, and Md = 4. As expected from Lemma 4, the finite escape time of the output
is tesc = 1/Mb = 0.1028. The output responses corresponding to the analytic inputs
u1(t) = 1/1−t and u2(t) = 1/1−t2, each having growth constantsKcu = Mcu = 1, are
also shown in the figure. Their respective finite escape times are 0.08321 and 0.08377.
Here u1 has the shortest escape time since its generating series cu1 =

∑
k≥0 k!x

k
0

has all its coefficients growing at the maximum rate, whereas cu2 =
∑

≥0(2k)!x
2k
0

has all its odd coefficients equal to zero. By Corollary 1, any finite escape time
for the output corresponding to any analytic input with the given growth constants
Kcu ,Mcu must be at least as large as T = 1/Mcy = 0.05073. Finally, in the case
where Kc = Mc = Kd = Md = 1, the exponential generating function of the zero-
input response has coefficients b̄n, n ≥ 0, which are equivalent to the integer sequence
A052820 in the OEIS as shown in Table 1.

5.2. Globally convergent subsystems. In this section, the analysis to com-
pute the radius of convergence of the cascade connection of two globally convergent
Fliess operators is presented. The following theorem is the first of two main results.

Theorem 8. Suppose X = {x0, x1, . . . , xm}. Let c ∈ R
�
GC〈〈X〉〉 and d ∈

R
m
GC〈〈X〉〉 with growth constants Kc,Mc > 0 and Kd,Md > 0, respectively. As-

sume c̄ and d̄ are globally maximal series with the same growth constants as c and d,
respectively. If b = c ◦ d and b̄ = c̄ ◦ d̄, then

|(b, ν)| ≤ (b̄i, x
|ν|
0 ), ν ∈ X∗, i = 1, 2, . . . , �,

where the sequence (b̄i, x
k
0), k ≥ 0 has the exponential generating function

f(x0) = Kc exp

(
mKd exp(Mdx0) +Mdx0 −mKd

Md/Mc

)
.

In which case, the radius of convergence of b is infinity.

D 
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The following lemma is essential for proving this theorem.
Lemma 6. Suppose X = {x0, x1, . . . , xm}. Let c̄ ∈ R

�
GC〈〈X〉〉 and d̄ ∈ R

m
GC〈〈X〉〉

be globally maximal series with growth constants Kc,Mc > 0 and Kd,Md > 0, respec-
tively. If b̄ = c̄ ◦ d̄, then

0 < (b̄i, ν) ≤ (b̄i, x
|ν|
0 ), ν ∈ X∗,

and the sequence (b̄i, x
k
0), k ≥ 0 has the exponential generating function

f(x0) = Kc exp

(
mKd exp(Mdx0) +Mdx0 −mKd

Md/Mc

)

for any i = 1, 2, . . . , �.
Proof. As in the local case, a state space realization for the input-output map

Fc̄i : u �→ yi, i = 1, 2, . . . , �, is useful. Observe that

c̄i = Kc

∞∑
k=0

Mk
c char(Xk) = Kc

∞∑
k=0

Mk
c

k!
char(X) �� k,

and thus

Fc̄i = Kc

∞∑
k=0

Mk
c

k!
Fchar(X) �� k = Kc

∞∑
k=0

(
McFchar(X)

)k
k!

= Kc exp(McFchar(X)).

In which case, defining z1 = Fc̄i , it follows directly that

(17) ż1 = Mcz1

⎛
⎝1 +

m∑
j=1

uj

⎞
⎠ , z1(0) = Kc, yi = z1.

A similar realization can be obtained for Fd̄i
in coordinate z2. Setting each input of

Fc̄ equal to a corresponding output of Fd̄ gives the realization for the cascade system
yi = F(c̄◦d̄)i [u] as follows:

ż1 = Mcz1 (1 +mz2) , z1(0) = Kc,(18a)

ż2 = Mdz2

⎛
⎝1 +

m∑
j=1

uj

⎞
⎠ , z2(0) = Kd,(18b)

yi = z1.(18c)

The Lie derivatives of h(z) = z1 with respect to the vector fields

g0(z) =

(
Mcz1(1 +mz2)

Mdz2

)
, gj(z) =

(
0

Mdz2

)
,

where j = 1, 2, . . . ,m, are also in terms of polynomials with positive coefficients.
Therefore, when evaluated at z0 = [Kc Kd]

T , it is immediate that 0 < (b̄i, η) =
Lgηh(z0), η ∈ X∗. To prove the remaining inequality in the lemma, let ηk = xn0

0 xj1x
n1
0
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· · ·xjkx
nk
0 , ηk+1 = ηkxjk+1

x
nk+1

0 , and η̃k = ηkx
nk+1+1
0 , where 1 ≤ jl ≤ m. Noting that

g0(z) = gj(z) + g̃(z), where

g̃ =

(
Mcz1(1 +mz2)

0

)
,

the Lie derivative of h corresponding to the word η̃k for any k > 0 evaluated at
z = z0 is given by (12). Clearly, the second term on the right-hand side of (12) is a
polynomial with positive coefficients, and therefore (13) and (14) hold in the present
context as well. To determine the exponential generating function of (b̄i, x

k
0), k ≥ 0,

the zero-input response Fb̄[0] is computed from (18). The output equation is

(19) yiÿi − ẏ2i −Mdyi(ẏi −Mcyi) = 0

with yi(0) = Kc and ẏi(0) = McKc(1+mKd). Equation (19) has the unique solution

yi(t) = Kc exp

(
mKd exp(Mdt) +Mdt−mKd

Md/Mc

)
,

which is entire. This proves the lemma.
Proof of Theorem 8. From Lemma 5, it follows for any ν ∈ X∗ that

|(b, ν)| ≤
∑
η∈X∗

|(c, η)||(η ◦ d, ν)| ≤
∑
η∈X∗

KcM
|η|
c (η ◦ d̄, ν) = (b̄i, ν).

By Lemma 6, (b̄i, ν) is bounded by (b̄i, x
|ν|
0 ), which has the exponential generating

function f . Thus, the theorem is proved.
It is worth noting that the Bell numbers Bn have the exponential generating

function ee
x−1. Their asymptotic behavior is Bn ∼ n− 1

2 (λ(n))n+
1
2 eλ(n)−n−1, where

λ(n) = n/W (n). Thus, the Lambert W -function appears to also play a role in the
global problem. It is known that the Bell numbers play a central role in the con-
vergence analysis of function composition [9]. Most importantly, since the double
exponential appearing in Lemma 6 has no finite singularities, as appeared in the local
case, the following main result is immediate.

Theorem 9. The output of the cascade connection of two globally convergent
Fliess operators is always well-defined over any finite interval of time when u ∈
Lm
1,e(t0).

It is important to understand that this theorem is not saying that the cascade
system has a globally convergent generating series in the sense of (4). If this were
the case, then it would be possible to bound y(t) = Fc◦d[0] by a single exponential
function rather than a double exponential function (see [19, Theorem 3.1]). Thus,
the fastest possible growth rate for the coefficients of a cascade connection involv-
ing subsystems with globally convergent generating series falls somewhere strictly in
between the local growth condition (2) and the global growth condition (4). For ex-
ample, the Bell numbers, whose asymptotics behave similarly, satisfy the following
three limits: limn→∞ Bn/M

n = ∞ for M > 0, limn→∞ Bn/(n!)
s = ∞ for 0 < s < 1,

and limn→∞ Bn/n! = 0 [22, Theorem 9].

Example 3. Suppose X = {x0, x1} and b̄ = c̄ ◦ d̄ with c̄ =
∑

η∈X∗ KcM
|η|
c η

and d̄ =
∑

η∈X∗ KdM
|η|
d η. The output of the cascade system is described by (18). A

MATLAB generated zero-input response of this system is shown on a double logarith-
mic scale in Figure 3 when Kc = Mc = Kd = Md = 1. As expected from Lemma 6,
this plot asymptotically approaches that of ỹ(t) = t as t → ∞. Also in this case, the
coefficients b̄n, n ≥ 0 form the integer sequence A000110 in the OEIS as shown in
Table 1.

□ 

□ 
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Fig. 3. Zero-input response of the cascade system Fc̄◦d̄ in Example 3 on a double logarithmic
scale and the function ỹ(t) = t (dashed line).

6. The feedback connection. In this section, the radius of convergence is
computed for the feedback connection. It is by far the most difficult case. Again, the
local and global cases will be treated individually.

6.1. Locally convergent subsystems. The following theorem, which describes
the radius of convergence of the feedback connection of two locally convergent sub-
systems, is the main result of this section.

Theorem 10. Suppose X = {x0, x1, . . . , xm}. Let c, d ∈ R
m
LC〈〈X〉〉 with growth

constants Kc,Mc > 0 and Kd,Md > 0, respectively. If e = c@d, then

(20) |(e, η)| ≤ KeM
|η|
e |η|!, η ∈ X∗,

for some Ke > 0, where

(21) Me =
1∫ 1/Mc

0
W (exp(f(z)))

1+W (exp(f(z))) dz

and

(22) f(z) =
1−Mdz

mKd
+ ln

⎛
⎝ (1−Mcz)

KcMd
KdMc

mKd

⎞
⎠ .

Furthermore, no geometric growth constant smaller than Me can satisfy (20), and
thus the radius of convergence is 1/Me(m+ 1).

The following four lemmas and one theorem are needed for the proof.
Lemma 7. Suppose X = {x0, x1, . . . , xm}. Let c̄, d̄ ∈ R

m
LC〈〈X〉〉 be locally max-

imal series with growth constants Kc,Mc > 0 and Kd,Md > 0, respectively. Then
each component of the series ē = c̄@d̄ has coefficients satisfying

0 < (ēi, η) ≤
(
ēi, x

|η|
0

)
, η ∈ X∗, i = 1, 2, . . . ,m.
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Proof. Using (10) to realize Fc̄i and Fd̄i
, the closed-loop system yi = Fēi [u] is

realized by

ż1 =
Mc

Kc
z21

(
1 +mz2 +

m∑
i=1

ui

)
, z1(0) = Kc,(23a)

ż2 =
Md

Kd
z22 (1 +mz1) , z2(0) = Kd,(23b)

yi = z1.(23c)

The Lie derivatives of h(z) = z1 with respect to the realization vector fields

g0(z) =

( Mc

Kc
z21(1 +mz2)

Md

Kd
z22(1 +mz1)

)
, gi(z) =

(
Mc

Kc
z21
0

)
,

where i = 1, 2, . . . ,m, consist of polynomials with positive coefficients. Noting that
g0(z) = gi(z) + g̃(z), where

g̃(z) =

⎛
⎝ mMc

Kc
z21z2

Md

Kd
z22(1 +mz1)

⎞
⎠ ,

the rest of the proof follows exactly as in Lemma 3.
The following well known result from complex analysis is used in the proof of the

next lemma.
Theorem 11 (Pringsheim theorem [10]). Let f(z) =

∑
n≥0 anz

n/n! be a function
which is analytic at the origin of the complex plane with radius of convergence R. If
each an ≥ 0, then the point z = R is a singularity of f .

Lemma 8. Suppose X = {x0, x1, . . . , xm}. Let c̄, d̄ ∈ R
m
LC〈〈X〉〉 be locally maxi-

mal series with growth constants Kc,Mc > 0 and Kd,Md > 0, respectively. Then the
zero-input response of the closed-loop system Fc̄@d̄ has a finite escape time given by

(24) tesc =

∫ 1/Mc

0

W (exp(f(z)))

1 +W (exp(f(z)))
dz,

where f is defined in (22). Furthermore, the coefficients of the generating series
ē = c̄@d̄ satisfy

(25) |(ē, η)| ≤ KeM
|η|
e |η|!, η ∈ X∗,

for some Ke > 0, where Me is defined in (21), and no geometric growth constant
smaller than Me can satisfy (25).

Proof. It was shown in the proof of Lemma 3 that Fc̄i = Kc/1 − McFchar(X),
i = 1, 2, . . . ,m. The proof is simpler, however, when a state space realization distinct
from (10) is used. Specifically, defining the state z1 = Fchar(X), Fc̄i has the realization

ż1 = 1 +

m∑
j=1

uj, z1(0) = 0, yi =
Kc

(1−Mcz1)
.

□ 
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In which case, the closed-loop system is realized by

ż1 = 1 +
mKd

1−Mdz2
+

m∑
j=1

uj, z1(0) = 0,

ż2 = 1 +
mKc

1−Mcz1
, z2(0) = 0,

yi =
Kc

1−Mcz1
.

To characterize the zero-input state response set uj = 0, j = 1, 2, . . . ,m, and observe
that

(26) z̈1 =
Md

mKd
(ż1 − 1)2

(
1 +

mKc

1−Mcz1

)
.

Letting v := ż1, (26) becomes

v

(v − 1)2
dv =

Md

mKd

(
1 +

mKc

1−Mcz1

)
dz1.

Integrating both sides of this expression gives

ln(v − 1)− 1

(v − 1)
= −f(z1),

where f is given in (22) and z1 < 1/Mc. Thus,

dz1
dt

= v =
W (exp(f(z1))) + 1

W (exp(f(z1)))
,

or in integral form ∫ z1(t)

0

W (exp(f(ζ)))

1 +W (exp(f(ζ)))
dζ = t

with z1(t) < 1/Mc. Since ż1(t) > 0 for all z1(t) ∈ [0, 1/Mc], z1 is invertible on that
interval. Therefore, z−1(1/Mc) is the only singularity of yi(t) = Kc/[1−Mcz1(t)] on
the real axis. However, by Lemma 7, yi(t) has only positive Taylor series coefficients.
Therefore, using Theorem 11, the singularity z−1(1/Mc) is a singularity nearest to
the origin, and thus yi has a finite escape time, namely,

tesc =

∫ 1/Mc

0

W (exp(f(ζ)))

1 +W (exp(f(ζ)))
dζ.

Since y(t) is the exponential generating function of the sequence (ē, xn
0 ), n ≥ 0, its

smallest geometric growth constant is given by Me = 1/tesc. Finally, from Lemma 7,
Me is the smallest possible geometric growth constant of the complete series ē, and
the lemma is proved.

Lemma 9. Let X = {x0, x1, . . . , xm} and c, d, c′, d′ ∈ R
�〈〈X〉〉 such that |c| ≤ c′

and |d| ≤ d′. Then it follows that |c◦̃d| ≤ c′◦̃d′.
Proof. The proof is similar to that for Lemma 5.

□ 

□ 
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Fig. 4. Output of the self-excited feedback system in Example 4.

Lemma 10. Suppose X = {x0, x1, . . . , xm}. Let c, c̄, d, d̄ ∈ R
m
LC〈〈X〉〉 with growth

constants Kc,Mc > 0 and Kd,Md > 0, respectively, and assume c̄, d̄ are locally max-
imal series. If e = c@d and ē = c̄@d̄, then |ei| ≤ ēi, i = 1, 2, . . . ,m.

Proof. Since the mapping e �→ c◦̃(d ◦ e) is a contraction, it follows that if ei(k) :=
c◦̃(d◦ei(k−1)), k ≥ 2 with ei(1) = 0, then ei = limk→∞ ei(k). Likewise, one can define
a sequence ēi(k) using c̄ and d̄. It will first be shown by induction that |ei(k)| ≤ ēi(k),
k ≥ 1. The k = 1 case is trivial. Assume the claim holds up to some fixed k ≥ 1.
Then, using Lemma 5, Lemma 9, and the induction hypothesis, for any η ∈ X∗

|(ei(k + 1), η)| = |((c◦̃(d ◦ e(k)))i, η)| ≤
∣∣∣∣∣∣
⎛
⎝∑

ξ∈X∗
(ci, ξ)(ξ◦̃(d ◦ e(k)))i, η

⎞
⎠
∣∣∣∣∣∣

≤
∑
ξ∈X∗

|(ci, ξ)| |((ξ◦̃(d ◦ e(k)))i, η)| ≤
∑
ξ∈X∗

KcM
|ξ|
c |ξ|! ((ξ◦̃(d̄ ◦ ē(k)))i, η)

= ((c̄◦̃(d̄ ◦ ē(k)))i, η) = (ēi(k + 1), η).

Thus, the initial claim is established. Next, by a property of the limit supremum,

lim sup
k→∞

|(ei(k), η)| ≤ lim sup
k→∞

(ēi(k), η).

Since each sequence converges, it follows that |ei| ≤ ēi.

Proof of Theorem 10. In Lemma 8, it was shown that |(ē, η)| ≤ KeM
|η|
e |η|!,

η ∈ X∗. Therefore, using Lemma 10, |(e, η)| ≤ |(ē, η)| ≤ KeM
|η|
e |η|!, η ∈ X∗. As

demonstrated in the proof of Lemma 8, c̄ and d̄ are the series for which each component
of the corresponding feedback generating series ē achieves exactly the growth rate

KeM
|η|
e |η|!. Thus, no smaller geometric growth constant is possible, and the theorem

is proved.
Example 4. Suppose X = {x0, x1}. Let ē = c̄@d̄, where c̄, d̄ ∈ R

�
LC〈〈X〉〉 are

locally maximal series with growth constants Kc = 1,Mc = 2,Kd = 3, and Md = 4.
Numerical integration of (24) for this case gives tesc = 0.0723. A MATLAB generated
solution of the corresponding system (23) with u = 0 is shown in Figure 4. As
expected, the finite escape time is tesc ≈ 0.0723, which is the radius of convergence.

□ 

□ 
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It will be shown next that the radius of convergence of a unity feedback system
can be obtained directly from Theorem 10. The following two lemmas simply estab-
lish that the radius of convergence of a unity feedback system is determined by its
zero-input response. The proofs are very similar to those which have already been
presented. A pleasant surprise is that for this special case, (21) has an explicit form.

Lemma 11. Suppose X = {x0, x1, . . . , xm}. Let c̄ ∈ R
m
LC〈〈X〉〉 be a locally

maximal series with growth constants Kc,Mc > 0. Then each component of the series
ē = c̄@δ satisfies

0 < (ēi, η) ≤
(
ēi, x

|η|
0

)
, η ∈ X∗, i = 1, 2, . . . ,m.

Proof. This proof is a variation of that for Lemma 7.
Lemma 12. Suppose X = {x0, x1, . . . , xm}. Let c, c̄ ∈ R

m
LC〈〈X〉〉 with growth

constants Kc,Mc > 0, and assume c̄ is a locally maximal series. If e = c@δ and
ē = c̄@δ, then |ei| ≤ ēi, i = 1, 2, . . . ,m.

Proof. The proof is similar to that of Lemma 10.
Corollary 2. Suppose X = {x0, x1, . . . , xm}. Let c ∈ R

m
LC〈〈X〉〉 with growth

constants Kc,Mc > 0. If e = c@δ, then

|(e, η)| ≤ Ke(α(Kc)Mc)
|η||η|!, η ∈ X∗,

for some Ke > 0, where

α(Kc) =
1

1−mKc ln
(
1 + 1

mKc

) .
Furthermore, no geometric growth constant smaller than α(Kc)Mc is possible, and
thus the radius of convergence is 1/α(Kc)Mc(m+ 1).

Proof. It has been established in all feedback connections considered that the
zero-input response determines the radius of convergence. Furthermore, it is easy to
show that the self-excited feedback equation e = c ◦ (d ◦ e) and the self-excited unity
feedback equation e = c ◦ e have the same solution when c = d. Thus, the smallest
possible geometric growth constant for c@δ can be computed by setting Kc = Kd and
Mc = Md in (21) and (22). In this case, it follows directly that

Me =
1∫ 1/Mc

0
1−Mdz

mKd+1−Mdz
dz

=
Mc

1−mKc ln
(
1 + 1

mKc

) .
It is worth noting that Corollary 2 first appeared in [18] and was proved by

entirely different means, specifically without the use of any state space models. In
addition, it is easy to show that α(Kc) < β(Kc) for all Kc ≥ 1 and β(Kc)/α(Kc) ≈ 9
for Kc � 1, where β(Kc) is defined in Theorem 2. Thus, Corollary 2 constitutes an
order of magnitude improvement over the lower bound on the radius of convergence
given in Theorem 2.

The following corollary is useful for the convergence analysis of unity feedback
systems having analytic inputs.

Corollary 3. Let c ∈ R
m
LC〈〈X〉〉 with growth constants Kc,Mc > 0, and assume

e = c@δ. If cu ∈ R
m
LC [[X0]] with growth constants Kcu ,Mcu > 0, then cy = e ◦ cu

satisfies

|(cy, xk
0)| ≤ KcyM

k
cyk!, k ≥ 0

D 

□ 

□ 
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Fig. 5. Outputs of the self-excited feedback system in Example 5.

for some Kcy > 0 and

Mcy =
Mcu

1−mKcuW
(

1
mKcu

exp
(

α(Kc)Mc−Mcu

mα(Kc)McKcu

)) .
Thus, the interval of convergence for the output y = Fcy [u] is at least as large as
T = 1/Mcy .

Proof. The proof is an immediate consequence of Corollaries 1 and 2.
Example 5. Let X = {x0, x1}. Suppose ē = c̄@δ, where c̄ ∈ R

�
LC〈〈X〉〉 is a locally

maximal series with growth constantsKc,Mc > 0. The output of the self-excited unity
feedback system is described by the solution of the state space system

ż =
Mc

Kc
(z2 + z3), z(0) = Kc, y = z.

MATLAB generated solutions of this system are shown in Figure 5 whenKc = Mc = 1
and when Kc = 4, Mc = 0.5. As expected from Corollary 2, the respective finite
escape times are tesc = 1/α(1) = 1 − ln(2) ≈ 0.3069 and tesc = 2/α(4) ≈ 0.2149.
Also, when Kc = Mc = 1, (ē, xn

0 ), n ≥ 0 has the exponential generating function

y(t) =

∞∑
n=0

(ē, xn
0 )

tn

n!
=

−1

1 +W (−2 exp(t− 2))
.

The coefficients (ē, xn
0 ), n ≥ 0 correspond to OEIS integer sequence A112487 as shown

in Table 1.
Example 6. Let X = {x0, x1} and consider the case where e = c@δ with c =∑

n≥0 n!x
n
1 . In comparison to the previous example, c has most of its coefficients equal

to zero. Therefore, it is likely that the output will be finite over a longer interval.
The output of the corresponding self-excited unity feedback system is described by
the solution of

ż = z3, z(0) = 1, y = z.

I= 

□ 
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Therefore, y(t) = 1/
√
1− 2t is finite up to t = 0.5, which is longer than the finite

escape time of tesc = 0.3069 obtained in the previous example.
Example 7. Consider the feedback system c@d with c = d =

∑
η∈X∗ |η|! η. The

output y of the feedback system with u = 0 is described by (23) withKc = Mc = Kd =
Md = 1. The output y, as computed by MATLAB, is numerically indistinguishable
from theKc = Mc = 1 case shown in Figure 5. This demonstrates that the self-excited
feedback connection of two identical Fliess operators reduces to the self-excited unity
feedback connection. Thus, the same radius of convergence and finite escape time are
obtained as in Example 5.

6.2. Globally convergent subsystems. The following theorem, which de-
scribes the radius of convergence of the feedback connection of two globally convergent
subsystems, is the main result of this section.

Theorem 12. Let X = {x0, x1, . . . , xm} and c, d ∈ R
m
GC〈〈X〉〉 with growth con-

stants Kc,Mc > 0 and Kd,Md > 0, respectively. If e = c@d, then

(27) |(e, η)| ≤ KeM
|η|
e |η|!, η ∈ X∗,

for some Ke > 0, where

(28) Me =
1∫∞

0
1

1+W (exp(f(z))) dz

and

(29) f(z) =
mKcMd

Mc
(exp(Mcz)− 1) +Mdz +mKd + ln(mKd).

Furthermore, no geometric growth constant smaller than Me can satisfy (27), and
thus the radius of convergence is 1/Me(m+ 1).

The following three lemmas are needed for the proof.
Lemma 13. Suppose X = {x0, x1, . . . , xm}. Let c̄, d̄ ∈ R

m
GC〈〈X〉〉 be globally

maximal series with growth constants Kc,Mc > 0 and Kd,Md > 0, respectively. Then
each component of the series ē = c̄@d̄ satisfies

0 < (ēi, η) ≤
(
ēi, x

|η|
0

)
, η ∈ X∗, i = 1, 2, . . . ,m.

Proof. The proof is similar to the proof of Lemma 7, except here the state space
realizations of Fc̄i and Fd̄i

given in (18) are employed so that the closed-loop system
yi = Fēi [u] is realized by

ż1 = Mcz1

(
1 +mz2 +

m∑
i=1

ui

)
, z1(0) = Kc,

ż2 = Mdz2 (1 +mz1) , z2(0) = Kd,

yi = z1.

Lemma 14. Suppose X = {x0, x1, . . . , xm}. Let c̄, d̄ ∈ R
m
GC〈〈X〉〉 be globally

maximal series with growth constants Kc,Mc > 0 and Kd,Md > 0, respectively. Then
the zero-input response of the closed-loop system Fc̄@d̄ has a finite escape time given
by

tesc =

∫ ∞

0

1

1 +W (exp(f(z)))
dz,

□ 
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where f is defined in (29). Furthermore, the coefficients of the generating series
ē = c̄@d̄ satisfy

(30) |(ē, η)| ≤ KeM
|η|
e |η|!, η ∈ X∗,

for some Ke > 0, where Me is defined in (28), and no geometric growth constant
smaller than Me can satisfy (30).

Proof. It was shown in the proof of Lemma 6 that Fc̄i = Kc exp(McFchar(X)),
i = 1, 2, . . . ,m. But again the proof is easier if a state space realization distinct from
(17) is used. Defining the state z1 = Fchar(X), Fc̄i is realized by

ż1 = 1 +

m∑
i=1

ui, z1(0) = 0, yi = Kc exp(Mcz1).

In this case, the closed-loop system has the realization

ż1 = 1 +mKd exp(Mdz2) +

m∑
i=1

ui, z1(0) = 0,(31a)

ż2 = 1 +mKc exp(Mcz1), z2(0) = 0,(31b)

yi = Kc exp(Mcz1).(31c)

To characterize the zero-input response, set ui = 0, i = 1, 2, . . . ,m, and observe that

(32) z̈1 = (ż1 − 1)Md(1 +mKc exp(Mcz1)).

Letting v := ż1, (32) becomes

v

(v − 1)
dv = Md (1 +mKc exp(Mcz1)) dz1.

Integrating both sides of this expression gives

v + ln(v − 1) = f(z1) + 1,

where f is given in (29). Thus,

dz1
dt

= v = W (exp(f(z1))) + 1,

or in integral form ∫ z1(t)

0

1

1 +W (exp(f(ζ)))
dζ = t.

Since ż1(t) > 0 for all z1(t) ∈ [0,∞), z1 is invertible on that interval. Thus, z1 has
only one singularity on the real axis, namely,

(33) t′ = lim
z1→∞

∫ z1

0

1

1 +W (exp(f(ζ)))
dζ,

which is also the only real singularity of yi(t) = Kc exp(Mcz1(t)). It is necessary
to show, however, that the limit in (33) exists. Let M = min{Mc,Md}, K =
min{Kc,Kd}, and f̃(z1) = mK(exp(Mz1)−1)+Mz1+mK+ln(mK). If Md > Mc, it
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is easy to see that f(z1) > f̃(z1) for all z1 ∈ [0,∞]. If Md < Mc, one can show for all

z1 ∈ [ ln(M/Mc)
M−Mc

,∞) that exp(Mz1)/M < exp(Mcz1)/Mc, which yields f(z1) > f̃(z1).
Consequently,

0 <
1

1 +W (exp(f(z1)))
<

1

1 +W (exp(f̃(z1)))
.

Now observe that in either case

(34) t′ =
∫ ln(M/Mc)

M−Mc

0

1

1 +W (exp(f(ζ)))
dζ +

∫ ∞

ln(M/Mc)
M−Mc

1

1 +W (exp(f(ζ)))
dζ.

However,

∫ ∞

ln(M/Mc)
M−Mc

1

1 +W (exp(f̃(ζ)))
dζ ≤

∫ ∞

0

1

1 +W (exp(f̃(ζ)))
dζ

(35)

= lim
z1→∞

− ln
(
1 +mKeMz1

)
+ ln

(
eMz1

)
+ ln(1 +mK)

M

=
1

M
ln

(
1 +

1

mK

)
< ∞.

Thus, the second integral in (34) is finite, while the first integral is also finite since
the integrand has no singularity over its finite interval of integration. Thus, the limit
in (33) exists when Mc �= Md. In the special case where Mc = Md, f(z1) ≥ f̃(z1)
for all z1 ∈ [0,∞). Hence, (33) is bounded by the right-hand side of (35), which
again is finite. Returning to the main argument, it follows from Lemma 13 that yi(t)
has only positive Taylor series coefficients. So from Theorem 11, the real number t′

is a singularity nearest to the origin. Thus, yi(t) must have a finite escape time at
tesc = t′. Since yi(t) is the exponential generating function of the sequence (ē, xn

0 ),
n ≥ 0, its smallest geometric growth constant is given by Me = 1/tesc. Finally, by
Lemma 13, Me is the smallest possible geometric growth constant of the complete
series ē, and the lemma is proved.

Lemma 15. Suppose X = {x0, x1, . . . , xm}. Let c, c̄, d, d̄ ∈ R
m
GC〈〈X〉〉 with growth

constants Kc,Mc > 0 and Kd,Md > 0, respectively, and assume c̄, d̄ are globally
maximal series. If e = c@d and ē = c̄@d̄, then |ei| ≤ ēi, i = 1, 2, . . . ,m.

Proof. The proof is perfectly analogous to that given for Lemma 10.

Proof of Theorem 12. By Lemma 14, |(ē, η)| ≤ KeM
|η|
e |η|!, η ∈ X∗. Using

Lemma 15, |(e, η)| ≤ KeM
|η|
e |η|!, η ∈ X∗. As demonstrated in the proof of Lemma 14,

c̄ and d̄ are the series for which each component of the corresponding feedback gener-

ating series ē achieves exactly the growth rate KeM
|η|
e |η|!. Thus, no smaller geometric

growth constant is possible, and the theorem is proved.
Example 8. Suppose X = {x0, x1}. Let ē = c̄@d̄, where c̄, d̄ ∈ R

m
GC〈〈X〉〉 are

globally maximal series with growth constants Kc = 1,Mc = 2,Kd = 3, and Md = 4.
Numerical integration of (28) for this case gives tesc = 0.1570. A MATLAB generated
solution of the corresponding system (31) is shown in Figure 6. As expected, the finite
escape time is tesc ≈ 0.1570, which is the radius of convergence.

For a unity feedback connection involving a globally convergent Fliess operator,
the analysis is perfectly analogous to the local case.

□ 

□ 

□ 
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Fig. 6. Output of the self-excited feedback system in Example 8.

Corollary 4. Let X = {x0, x1, . . . , xm} and c ∈ R
m
GC〈〈X〉〉 with growth con-

stants Kc,Mc > 0. If e = c@δ, then

(36) |(e, η)| ≤ Ke(γ(Kc)Mc)
|η||η|!, η ∈ X∗,

for some Ke > 0, where

γ(Kc) =
1

ln
(
1 + 1

mKc

) .
Furthermore, no geometric growth constant smaller than γ(Kc)Mc can satisfy (36),
and thus the radius of convergence is 1/γ(Kc)Mc(m+ 1).

Proof. Set Kc = Kd and Mc = Md in (28) and then evaluate directly.

Example 9. Suppose X = {x0, x1}. Let ē = c̄@δ with c̄ =
∑

η∈X∗ KcM
|η|
c η.

From Corollary 4 it follows that Me = γ(Kc)Mc. The output of the self-excited unity
feedback system is described by the solution of the state space system

ż = Mc(z + z2), z(0) = Kc, y = z.

MATLAB generated solutions of this system are shown in Figure 7 whenKc = Mc = 1
and when Kc = 4, Mc = 0.5. As expected, the respective finite escape times are
tesc = 1/γ(1) = ln(2) ≈ 0.6931 and tesc = 2/γ(4) ≈ 0.4463. Note that these escape
times are in fact about twice that of the respective cases in Example 5. In light of
the expansions about Kc = ∞,

α(Kc) =
4

3
+ 2Kc +O

(
1

Kc

)
, γ(Kc) =

1

2
+Kc +O

(
1

Kc

)
,

the radius of convergence for the global case is always about twice that for the local
case when Kc � 1. Also, when Kc = Mc = 1, the sequence (ē, xn

0 ), n > 0 has the
exponential generating function

y(t) =

∞∑
n=0

(ē, xn
0 )

tn

n!
=

exp(t)

2− exp(t)
.

□ 
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Fig. 7. Outputs of the self-excited feedback system in Example 9.

The sequence (ē, xn
0 ), n ≥ 0 corresponds to OEIS integer sequence A000629 as shown

in Table 1.
Example 10. Suppose X = {x0, x1} and consider the case where e = c@δ with

c =
∑

n≥0 xn
1 . The series c has the same growth constants Kc = Mc = 1 as in

Example 9 except most of its coefficients are zero. Thus, the zero-input response
is expected to be finite over a longer interval. The output of the self-excited unity
feedback system is described by the solution of

ż = z2, z(0) = 1, y = z.

Therefore, y(t) = 1/(1− t) is finite up to t = 1, which exceeds the finite escape time
of tesc = 0.6931 in the previous example.

Example 11. Consider a feedback interconnection involving the globally con-
vergent series c = x1 and d =

∑
k≥0 x

k
1 . This example first appeared in [16] to

demonstrate that global convergence is not preserved under feedback. Here a lower
bound is computed for the radius of convergence of the closed-loop system. Observe
that Fc@d has the state space realization

ż1 = z1z2, z1(0) = 1,

ż2 = z1 + u, z2(0) = 0,

y = z2.

Setting u = 0, y satisfies the initial value problem ÿ − ẏy = 0, y(0) = 0, ẏ(0) = 1,
which has the solution

y(t) =
√
2 tan

(
t√
2

)
=
∑
k≥1

(−1)k−12k(22k−1)
B2k

k

t2k−1

(2k − 1)!

= t+
t3

3!
+ 4

t5

5!
+ 34

t7

7!
+ 496

t9

9!
+ · · ·

for 0 ≤ t < π/
√
2 = tesc, where Bk denotes the kth Bernoulli number. Setting

Kc = Mc = Kd = Md = 1, the interval of convergence should be at least as long as

I= 
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Table 2

Radii of convergence for the four elementary system connections.

Connection c, d ∈ R
�
LC〈〈X〉〉 c, d ∈ R

�
GC〈〈X〉〉

parallel 1
max{Mc,Md}(m+1)

∞ (GC)

product 1
max{Mc,Md}(m+1)

∞ (GC)

cascade

(� = m for d)
1

Md(m+1)

[
1 − mKdW

(
1

mKd
exp

(
Mc−Md
mKdMc

))]
∞

feedback

(� = m)

1
(m+1)

∫ 1/Mc
0

W (exp(f(z)))
1+W (exp(f(z)))

dz

f(z) =
1−Mdz

mKd
+ ln

(
(1−Mcz)

KcMd
KdMc

mKd

)
1

(m+1)

∫∞
0

1
1+W (exp(f(z)))

dz

f(z) =
mKcMd

Mc
(exp(Mcz) − 1) + Mdz

+ mKd + ln(mKd)

unity feedback

(� = m)
1

Mc(m+1)

[
1 − mKc ln

(
1 + 1

mKc

)]
1

Mc(m+1)
ln
(
1 + 1

mKc

)

[0, 1/γ(1)) = [0, 0.6931). A MATLAB generated solution of this system has the finite
escape time tesc ≈ 2.2214 > 0.6931.

7. Conclusions and future research. The radii of convergence have been
computed for the four fundamental interconnections of two Fliess operators as sum-
marized in Table 2. It was found that the Lambert W -function plays a central role
in the analysis of the cascade and feedback connections. This suggests a possible re-
lationship to the combinatorics of rooted nonplanar labeled trees, where the Lambert
W -function also plays a prominent role [3, 10]. One could continue to investigate
the radius of convergence for other types of system interconnections, for example,
interconnections involving subsystems which have a mixture of locally convergent and
globally convergent generating series or mixtures of Fliess operators and static non-
linearities.
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Recherche Mathématique Avanceé, Strasbourg, France, submitted.

[16] W. S. Gray, H. Herencia-Zapana, L. A. Duffaut Espinosa, and O. R. González, Bilinear
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