
Old Dominion University
ODU Digital Commons

Mathematics & Statistics Faculty Publications Mathematics & Statistics

1997

An Invariance Property of Common Statistical
Tests
N. Rao Chaganty
Old Dominion University

A. K. Vaish

Follow this and additional works at: https://digitalcommons.odu.edu/mathstat_fac_pubs

Part of the Algebra Commons, and the Applied Mathematics Commons

This Article is brought to you for free and open access by the Mathematics & Statistics at ODU Digital Commons. It has been accepted for inclusion in
Mathematics & Statistics Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

Repository Citation
Chaganty, N. Rao and Vaish, A. K., "An Invariance Property of Common Statistical Tests" (1997). Mathematics & Statistics Faculty
Publications. 90.
https://digitalcommons.odu.edu/mathstat_fac_pubs/90

Original Publication Citation
Chaganty, N. R., & Vaish, A. K. (1997). An invariance property of common statistical tests. Linear Algebra and Its Applications, 264,
421-437. doi:10.1016/s0024-3795(97)00032-3

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mathstat_fac_pubs?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mathstat?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mathstat_fac_pubs?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/175?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mathstat_fac_pubs/90?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


NORTH. I K ) U J d ~  

An Invariance Property of Common Statistical Tests* 

N. Rao Chaganty  

Department of Mathematics & Statistics 
Old Dominion University 
Norfolk, Virginia 23529 

and 

A. K. Vaish 

Department of Mathematics 
University of North Carolina 
Charlotte, NotCh Carolina 28223 

Submitted by George P. H. Styan 

ABSTRACT 

Let A be a symmetric matrix and B be a nonnegative definite (nnd) matrix. We 
obtain a characterization of the class of nnd solutions ~ for the matrix equation 
A ~ A  = B. We then use the characterization to obtain all possible covariance struc- 
tures under which the distributions of many common test statistics remain invariant, 
that is, the distributions remain the same except for a scale factor. Applications 
include a complete characterization of covariance structures such that the chi- 
squaredness and independence of quadratic forms in ANOVA problems is preserved. 
The basic matrix theoretic theorem itself is useful in other characterizing problems in 
linear algebra. © 1997 Elsevier Science Inc. 
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1. INTRODUCTION 

N. RAO CHAGANTY AND A. K. VAISH 

Many common statistical tests make the assumption that samples are 
taken independent from one or more normal populations. Much research has 
been done on the effect of nonnormality on these tests; see [14] for an 
exposition. Typically, this part of the robustness literature makes the assump- 
tion of mutual independence of the observations. While the independence 
assumption may be approximately valid, due to the choice of experimental 
designs, clearly the case of dependence between the observations is of 
practical as well as aesthetic interest. One can even argue that in practical 
applications, observations are frequently not independent and the physical 
systems responsible for generation of the observations automatically intro- 
duce some dependence among the observations. It is then clear that the 
statistical interest should be to determine if procedures valid under the 
independence assumption continue to remain valid with only a simple adjust- 
ment when independence assumption is violated. It is our goal to consider 
this issue in the context of several common statistical problems. 

Much prior literature exists in this general area; in particular, see [1, 2, 5], 
[7-11], [18-20], [23], and [25]. The emphasis in these articles is on examining 
the effect of specific dependence structures, whereas our goal is to obtain a 
simpler characterization of the covariance structures under which the usual 
procedures remain valid with possibly a scale factor adjustment. 

The organization of this paper is as follows. In Section 2 we obtain a 
characterization of the class of nnd solutions ~ for the consistent matlSX 
equation A ~ A  = B where A is a symmetric matrix and B is a nnd matrix. 
This result is of independent interest; in addition, we apply it to some 
characterization problems in the theory of generalized inverses of matrices. 
The characterization problem (Theorem 2.1) treated in Section 2 has in fact 
been considered by several authors; see [6] and [13]. However, we take a 
different approach and obtain a simpler and minimal representation of the 
class of all nnd solutions to the aforementioned matrix equation. 

In Section 3 we use Theorem 2.1 to characterize the class of covariance 
matrices such that the distributions of common test statistics remain invari- 
ant. For example, let y ~ N,( ~e,  ~),  that is, the distribution of the vector of 
observations y is multivariate normal of dimension n with mean vector/~e 
and covariance matrix ~,  where e' = ( 1 , . . . ,  1). Let 

= e ' y  and s 2 =  y ' [ I -  ( l / n ) e e ' ] y  
n n - 1  

be the sample mean and sample variance of the vector y, where I is the 
identity matrix. In this paper we show that (n - 1)s 2 ~ d x 2 ( n  - 1) and ~ is 
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independent of s 2 if and only if 

1 - c  ) 
~ = d  I ee' 

n 
for some d > 0  and c > / 0 ,  

that is, the observations are equicorrelated. Also we show that the usual 
two-sample t-statistic has a t-distribution if the observations in one sample 
are positively equicorrelated and the observations in the other sample are 
negatively equicorrelated with the same correlation in absolute value. Other 
results in the paper include characterization of covariance matrices such that 
the independence and ehi-squaredness of the quadratic forms occurring in 
ANOVA problems is preserved. 

The following general notation and conventions will be used throughout 
the paper. A random variable having a noncentral chi-square distribution with 
ra degrees of freedom and noncentrality parameter ~ is denoted by x~(m; ~), 
a random variable having a t-distribution with m degrees of freedom is 
denoted by t(m), and a random variable having an F-distribution with 
(m 1, m 2) degrees of freedom is denoted by F ( m  1, m2). We write x ~ y to 
mean that both x and y have the same probability distribution. The column 
space, null space, rank, trace, and transpose of the matrix A are denoted by 

~tv(A), .~A),  r(A), tr(A), and g ,  respectively. Also, A + and A- denote the 
Moore-Penrose inverse and ordinary g-inverse of A, respectively. We will use 
the definition contained in [16, Table 1, p. 67] concerning nonnegative 
definiteness of matrices. All nnd matrices are assumed to be symmetric. The 
vector e represents a vector of ones of order n × 1, whereas e m denotes a 
vector of ones of order m × 1. Similarly, I represents the identity matrix of 
order n × n whereas I m denotes the identity matrix of order ra × ra. We will 
denote a vector and a matrix of zeros of appropriate orders by 0 and O 
respectively. Also, diag(d I . . . .  , d n) denotes a digital matrix of order n × n 
with d i as the ith diagonal element. 

2. SOME RESULTS IN LINEAR ALGEBRA 

This section contains a characterization of the class of all nnd solutions to 
a general matrix equation that occurs in statistical distribution theory. We 
begin this section with an elementary but an important lemma. Lemma 2.1 
below is simply a multivariate analogue of the problem of finding the 
restrictions on the coefficients of a quadratic equation f (  x ) = ax 2 + 2bx + c 
such that f ( x )  >1 0 for all x. It plays a crucial role in the proof of our main 
Theorem 2.1 of this section. The lemma is also useful in quadratic program- 
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ming problems where  the objective is to minimize the multivariate quadratic 
loss function. 

• LEMMA 2.1. Let A be a symmetric matrix and b be a vector in ~n. Let 
c be a real number, In order that 

f ( x )  = x'Ax + 2 x ' b  + c >1 0 foratl  x ~ ~R" (2.1)  

it is necessary and sufficient that 

(1) b ~.Je'(A), 
(2) A be nnd, and 
(3) c - b ' A - b  >1 0. In particular, i f  c = O, then (2.1) holds i f  andonly i f  

b = 0 .  

Proof. Let  A be a symmetr ic  matrix of  rank k. Using the spectral value 
decomposit ion,  we can write A = T A T ' ,  where  T is the orthogonal matrix 
and A = diag(A 1 . . . . .  A k, 0 . . . . .  0) with A~ 4 : 0  for i = 1 . . . . .  k. I t  is easy to 
see that (2.1) is equivalent to 

y ' A y + 2 y ' m + c > / 0  for all y ~ R " ,  (9.2) 

where y = T ' x  and m = T ' b .  Let  y = (Yl . . . . .  Yn)' and m = ( m  1 . . . . .  mn~. 
Then  (2.2) can be rewrit ten as 

x,y~+2 y,m,+c>lO for  all y l  . . . . .  yn~gt. (2.3) 
i = 1  i = 1  

I t  is very simple to show that (2.3) holds if  and only if 

(a) m s = 0 f o r i > k ,  
(b) A~ >~ 0 for all i, and 

k 2 - 1  (c) c - E~lm~A~ >/0.  

Clearly, (a) holds if and only if m ~.Jtr(A),  which is equivalent to (1); (b) is 
equivalent to (2); and (c) is equivalent to 

c - m ' A - m  /> 0 ,  ( 2 . 4 )  

which is same as (3), since A - =  T ' A - T .  I f  c = 0, then (2.1) holds if  and 
only if b ~.~tr(A) and b ' A - b  = 0, or  equivalently b = 0. This completes  the 
p roof  of  the lemma.  • 
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We are now in a position to state the main theorem of this section. The 
matrix equation (2.5) occurs in statistical distribution theory and is well 
known to statisticians. Since the pioneering work of Professor C. R. Rao [16, 
17], several authors have obtained characterizations of the class of all solu- 
tions ~ to the matrix equation (2.5). However, in statistical theory, ~ ,  being 
a covariance matrix, is always nnd. Therefore, it is of natural interest to obtain 
characterizations of the subclass of nnd solutions to the matrix equation (2.5), 
as well as other matrix equations of this type; see [6, 13] and references 
contained therein. In Theorem 2,1, we obtain a characterization of the class 
of nnd solutions ~ to the matrix equation (2.5). The statistical applications of 
Theorem 2.1 concerning invariance properties of some univariate test statis- 
tics are discussed in Section 3. Other applications of our theorems in this 
section for multivariate test statistics are in [24]. 

THEOREM 2.1. Let A be a symmetric matrix and B be a nnd matrix 
such that 

A ~ A  = B (2.5) 

is a consistent equation. Let QA = (I - A÷A). Then the class of all nnd ~'s 
satisfying (2.5) is given by 

= A+BA+ + QA U + UQ A - QAUQA (2.6) 

where U is a symmetric matrix satisfying the following two conditions: 

(a) .,d"(AUQA) ___.Jg(B). 

(b) vd--efQAUQA -- QAUAB-AUQA /s nnd. 

If  QAUQA is null matrix, then T, given by (2.6) is a nnd solution for (2.5)/f  
and only if UQA = O. 

Proof. It follows from Theorem 2.3.2 of [17] that the equation (2.5) is 
consistent if and only if AA-BA-A = B for any g-inverse A- of A; in which 
case, the general solution is given by (2.6) where U is an arbitrary matrix. 
Therefore, our problem reduces to characterizing the class of all U's such that 

given by (2.6) is a nnd matrix. Without loss of generality we can assume 
that U is symmetric; otherwise we can replace U by U* = (U + U' ) /2 .  Note 
that U and U* generate the same ~.  We can rewrite the matrix ~ in (2.6) as 

= A + B A + +  QA U + UQA - -  QAUQA 

= A + B A + +  QAUA+A + A+AUQA + QAUQA . (2 .7)  
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Since A is symmetric, we have A+A = AA + and .4LV(A+A) =~'(A).  Let 
x = x 1 + x 2 be the orthogonal decomposition of x where x I ~atV(A+A) and 
x 2 ~M'(QA). It is easy to see that 

if and only if 

x'Xx/> 0 Vx ~ ~n  (2.8) 

x'~A+BA+xI + 2x'lUx 2 + x~Ux 2 >t 0 Vx 1 ~MC(A) Vx 2 E~V(QA). 

(2.9) 

Since (2.5) is a consistent equation, we have AA+BA+A = B. Therefore, 
from (2.9) we get that X is nnd if and only if 

v 'Bv + 2v'AUQAw + W'QAUQAw >/ 0 Vv E ~n  VW E ~}~n. (2.10) 

By Lemma 2.1 it follows that (2.10) holds if and only if the following two 
conditions are satisfied: 

(1) AUQAw ~¢a~'(B), Vw E ~n  
(2) W'QAUQAw -- W'QAUAB-AUQAw >~ 0 Vw ~ ~ n. 

It is easy to see that condition (1) is equivalent to (a) and condition (2) is 
equivalent to (b). If  QAUQA is a null matrix, then by Lemma 2.1 and (2.10) 
we have that ~ is nnd if and only if AUQAW = 0 for w ~ ~R n or equivalently 
AUQA is a null matrix. Hence UQA = UQA - QAUQA = (I - QA)UQA = 
A÷AUQA = O, since we have assumed that QAUQA is a null matrix, This 
proves the last assertion of the theorem. • 

REMARK 2.1. Khatri and Mitra [13, Lemma 2.1] gave an alternative 
characterization of the class of nnd solutions ~ to (2.5). But our representa- 
tion of the class of all nnd solutions ~ in Theorem 2.1 is minimal in the sense 
that two symmetric matrices U 1 and U 2 generate the same ~ if and only if 
QAU1 = QAU2. Also, from the proof of the above theorem it follows that the 
class of all positive definite (positive semidefinite) ~ 's  satisfying (2.5) is 
obtained by choosing U such that V is positive definite (positive semidefinite) 
matrix. In the case where QAU = O, the only nnd solution ~ = A+BA + is 
positive definite or positive semidefinite according as B is a positive definite 
or positive semidefinite matrix. 
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As an important application of Theorem 2.1 we obtain below an elegant 
characterization of the class of all nnd g-inverses of the centering matrix, 
A* = I - ( l /n)ee ' .  Sharpe and Styan [21] studied the problem of characteri- 
zation of the class of all g-inverses of the centering matrix and obtained an 
expression similar to (2.11). See Equation (29) in their paper [21]. However, 
they did not characterize the subclass of symmetric nnd g-inverses of the 
centering matrix. Corollary 2.1 below shows that the subclass of symmetric 
nnd g-inverses of the centering matrix can be obtained by choosing the vector 
a occurring in the expression (2.11) so that the inequality (2.12) is satisfied[ 

COROLLARY 2.1. The class of all nnd g-inverses, ~ , ,  of the centering 
matrix A* is given by 

1 ?t 
= A* + -- (ea'  + ae') - - -ee'  (2.11) 

n n 

where ~{ = (a 1 . . . . .  a n) is such that 

1 ~ (ai _ ~)2 ~< ~ (2.12) 
h i =  1 

and ~ = (a 'e) /n  is the mean of the components of the vector a. 

Proof. The proof follows easily from Theorem 2.1. 

REMARK 2.2. The representation of the class fin by matrices ]£ given by 
(2.11) is minimal in the sense that the ordered n-tuple {a I . . . . .  a,,} satisfying 
(2.12) uniquely determines a nnd g-inverse of A*. 

REMARK 2.3. It is easy to show that n - 2 of the eigenvalues of ]£ given 
by (2.11) are one and the other two eigenvalues are the solutions of the 
following quadratic equation: 

) A 2 -  A ( I + ~ )  + ~ - - -  (a i _ ~ ) 2  = 0. 
h i =  l 

(2.13) 

We can show that both the roots of the equation (2.13) are nonnegative if and 
only if the condition (2.12) is satisfied. Thus, we have an alternative proof of 
Corollary 2.1. 
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REMARK 2.4. A different characterization of the class fin is in [11], 
However, our characterization is useful in that it provides an easy method of 
generating a ~ in the class ~',. All we need to do is to choose a set 
{a I . . . . .  a n} of n numbers and, if the inequality (2.12) is not satisfied by the 
ai's, then translate them by an appropriate constant. Recall that translation of 
a set of numbers increases the mean but does not change the variance. 

REMARK 2.5. Note that for d > 0, the class of nnd matrices ~ satisfying 
the equation A* ~A* = dA* is simply given ~d, ~ = {d~ : ~ ~ ~',}. 

We can use Theorem 2.1 to obtain a characterization of the class of nnd 
g-inverses of a nnd matrix A. Note that in Example 2.1, condition (a) is 
trivially satisfied, since B = A. 

EXAMPLE 2.1. Let A be a nnd matrix and let QA = (I - A+A). Then the 
class of all nnd g-inverses of the matrix A is given by 

= A + +  QA U + U Q A  -- Q A U Q A  (2.14) 

where U is a symmetric matrix such that 

V = Q A U Q A  -- Q A U A U Q A  (2.15) 

is a nnd matrix. If QAUQA = O then UQA = QA U = O, and in this special 
case ~ = A ÷. 

Let us now look at the case where A and B can be expressed as linear 
combinations of k orthogonal and idempotent matrices. The following lemma 
is needed in the proofs of Theorems 2.2 and 3.4, and it is stated without a 
proof. 

LEMMA 2.2. Let Ax,A 2 . . . . .  A k be symmetric, idempotent matrices 
such that A,Aj = O for all i ~ j .  Let A = ~ = I A ,  and let B = T~=lc, A, 

where c, > 0 for all 1 <~ i <~ k. Then A ~ A  = B if and only if 

= /e ,A,  if i = j ,  
A ~ A j  (2.16) 

0 if i ~ j .  

Furthermore, .~f(A) = ~ ( B ) .  
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The next theorem is a special case of Theorem 2.1, and it is useful to 
study the invariance properties of common statistical tests for dependent 
observations. We state the theorem without a proof, since it follows easily 
from Lemma 2.2 and Theorem 2.1. 

THEOnEM 2.2. Let A 1, A 2 . . . . .  A k and B be as in Lemma 2.2. Suppose 
that k = A*, E i ~  1Ai where A* is the centering matrix. Then the class of all 
nnd matrix solutions for  the equation 

A* = B ( 2 . 1 7 )  

is given by 

= B + --(ea' + ae') - --ee' (2.18) 
n n 

where a is an arbitrary vector satisfying 

1 ~ a'Aia 
- ( 2 . 1 0 )  
n i =1  ei 

3. STATISTICAL APPLICATIONS 

In this section we present some statistical applications of the theorems of 
Section 2. The applications are concerned with the problem of characterizing 
the class of all covariance matrices such that the distributions of common test 
statistics remain invariant, that is, the distributions are preserved except for a 
scale factor. We begin with the following lemma concerning the distributions 
of quadratic forms in normal variables with a nnd covariance matrix. 

LEMMA 3.1. Let z ~ Nn(tt, ~ )  where ~ is a nnd matrix. Let A and B 
be nnd matrices of  order n × n, and a be a vector in ~" .  Then: 

(1) z'Az ~ x2(r(A); p~Ait) i f  and o n l y / f A ~ A  = A. 
(2) z'Az and z 'Bz  are independent i f  and only i f  A ~ B  = O. 
(3) z 'a  and z 'Bz  are independent i f  and only i f  B ~ a  = 0. 

Proof. From Styan [22, Theorem 4] we have z'Az ~ xZ(r(A); ~AI t )  if 
and only if the following conditions are satisfied: (i) r(A) = tr(A~),  (ii) 
~ A ~ A ~  = ~A]~, and (iii) ~ A ~ A E  = I~'A~. It follows from the Lemma 
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in Khatri [12] that these three conditions are equivalent to A~:A = A. This 
completes the proof of (1). We can deduce (2) and (3) from Theorem 3 in 
[15] as special cases, after noting that when both A and B are nnd we have 
~ A ] ~ B ~ :  = O i f f A ~ B  = O a n d  ~ B : Z a  = 0 i f f B ] ~ a  = 0 .  • 

The next three examples and Theorem 3.1 are simple consequences of the 
results in Section 2 and l_emma 3.1. 

EXAMPLE 3.1. Let z ~ Nn(I.t, ~ )  where ~ is a nnd matrix. Let A be a 
nnd matrix of  order n × n. By Lemma 3.1(1), we have 

z'Az ~ x 2 ( r ( A ) ;  I~A~) (3.1) 

if and only if A]~A = A. Therefore, for a given nnd matrix A, the class of all 
nnd ~ ' s  for which (3.1) holds is given by Example 2.1. 

EXAMPLE 3.2. In Example 3.1, z'Az ~ d x 2 ( r ( A ) ;  8)  if and only if 
A X A  = dA where d > 0 and 8 = (1/d) l~ 'A~.  Thus, we can use Theorem 
2.1 to obtain a complete characterization of the covariance matrices ~ such 
that z'Az ~ d x 2 ( r ( A ) ;  B). 

EXAMPLE 3.3. Let y ~ Nn( bee, ~ )  where be is a constant and ~ is a nnd 
matrix. Let s 2 be the sample variance of the vector y. Then for any d > 0, 
we have (n - 1)s z ~ d x Z ( n  - 1) if and only if X ~ ~d, ,. 

THEOREM 3.1. Let Yl ~ Nnl( /z lenl ,~l)  and Y2 ~ Nn~(be2enz,~z) 
where be1, be2 are constants and ~1, ~2 are nnd matrices. Assume that Yl is 
independent o f  y~. Let  s~ and s~ be the sample variances o f  the vectors Yl 
and Y2, respectively. Then f o r  c > O, we  have that z 2 SillS2 is distributed as 
cF(n  1 - 1, n 2 - 1) if  and only i f  t ,  1 E ~cd, ,~ and I, 2 ~ ~ ,  ,~ f o r  some 
constant d > O. 

Proof. Since s~ and s~ are independent, it follows from the results 
contained in [4] that 2 ~ cF(n  1 - 1, n 2 s i l l s  2 is distributed as - 1) if and only if 
(n 1 - 1)s~ ~ c d x 2 ( n ~  - 1) and (n 2 - 1)s~ ~ d x 2 ( n 2  - 1). The theorem 
now follows from Example 3.3. • 

We now characterize the class of covariance matrices such that the mean 
and variance are independent for a normal sample of  dependent observations. 
Theorem 3.2 below shows that the sample variance is distributed as chi-square 
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except for a constant and is independent of the sample mean if and only if the 
observations are equicorrelated, that is, the correlation is the same between 
each pair of observations. 

THEOREM 3.2. Let y ~ Nn(/ze, ]~) where  ix is a constant and ~ is a 
nnd matrix. Let  ~t and s 2 be the mean and variance o f  the vector y. Then 
(n - 1)s 2 ~ d x 2 ( n  - 1), and ~ is independent  o f  s ~ i f  and only i f  

1 - -  C ee t) ~ = d l  
n 

f o r  some c >~ 0 and d >  O. 

Proof. For any d > 0, we have (n - 1)s 2 ~ d x 2 ( n  - 1) if and only if 
~ ffd,, (see Example 3.3). From Lemma 3.1 (3), ff and s 2 are indepen- 

dent if and only if 

(, loo) e o (3.2) 

It is easy to check that ~ ~ ~d,,  and satisfies (3.2) if and only if 

I - ! e e ' ) a  = O. (3.3) 
n 

Now, (3.3) holds if and only i f a  = ce where c = ~ >t 0. Therefore (n - 1)s 2 
~ d x 2 ( n  - 1) and s 2 is independent of ~ if and only if 

= d  I -  ee' + n ( e a ' + a e ' ) -  e e '  

1 - c  ) 
= d I ee' (3.4) 

n 

where c >/0. This completes the proof of the theorem. 

Our next result is concerned with an invariance property of the two 
sample t-test. Theorem 3.3 below shows that the commonly used two sample 
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t-statistic has a t-distribution if one of  the samples is positively equicorrelated 
and the other  is negatively equicorrelated so that  the correlation is the same 
in absolute value in both  the samples. 

THEOREM 3.3. Let  y,  ~ N,,,( ].£1enl , 1£1 ) and Yz ~ N,2( ixze,~, 1£2) 

where tt  1, Ix 2 are constants and 1£1, 1£2 are nnd  matrices. Suppose that Yl 
-- 8 2  and y~ are independently distributed. Let  Yl, 1 and Y2, s~ be the mean and 

2 = [(nl _ 1)s12 + variance o f  the two vectors Yl and Y2, respectively. Let  Sp 
(n 2 - 1 ) s~] / (n  1 + n2 - 2) be the pooled sample variance. Then 

- - ( g ,  - 

1 1 
Sp - -  + - -  

n 1 n 2 

~ t ( n  1 + n 2 - 2) (3.5)  

/f 

1£1 = d ( I . ,  + f lene' .~ ) and 1£ 2 = d(I , ,  2 - B e . e ' n ~  ) (3.6)  

f o r  some constants d and ~ such that d > 0 and - 1 / n  I < ~ < 1 / n  2. 

Proof. It  follows from the p roof  of  Theo rem 3.2 that for any d > 0, 
(n~ - 1)s~ is distributed as dx2(n~ - 1) and s~ is independent  of  ~ if and 
only if 

1 - c i ) 
1£i = d In, ni en e'n~ (3.7)  

where  c i >t 0 for i = 1, 2. Thus for cl, c 2 > 0, we have 

( Y l  -- 5 2 )  -- ( ~ l  -- ~ 2 )  

v/ Cl C2 
Sp ~ + 

n 1 n 2 

~ t ( n ,  + - 2  - 2 )  ( 3 . s )  

if the 1£~'s are given by (3.7) for i = 1, 2. Now for (3.5) to hold we require 

c 1 c 2 1 1 
-- + + -- (3.9) 
n 1 n 2 n 1 n 2 
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or equivalently, 

- ( 1  - C l )  1 - c 2 

n I n 2 

- -  = 13 (say). (3.10) 

Since c 1, c 2 > 0, we have - 1 / n  1 </3 < 1 /n  2. The theorem now follows 
from (3.7), (3.8), and (3.10). • 

We need the following version of Cochran's theorem for the distribution 
of quadratic forms in normal variables with nnd covariance matrix. A slightly 
different version and new version of Cochran's theorem using partial ordering 
among symmetric matrices instead of the usual rank additivity condition are 
available in [22] and [3]. Theorem 3.4 is useful for deriving the invariance 
properties of the quadratic forms in ANOVA models. 

THEOREM 3.4. Let A1, A z . . . . .  A k by symmetric and idempotent matri- 
ces of  order n × n such that A,Aj = O for  all i # j .  Let A = E ~ A ,  and 
B = ~,~= lciAi where c i > 0 for  1 <~ i <~ k. Let y ~ N,(I~, ~ )  where ~ is a 
nnd matrix. Let Qi --- y'A~y for  1 <~ i <<. k. Then the quadratic forms Q~ are 
pairwise independent and distributed as c i x2(  r(A~); t~), 8 i = ( 1 / c i ) ~ A ~ ,  
for  1 <<. i <~ k if  and on ly / f  A]~A = B. 

Proof. From Example 3.2 and Lemma 3.1(2), the Qi's are pairwise 
independent and distributed as c i x2(r(Ai);  ~i) for 1 ~< i ~< k if and only if 

= [c iA i if i = j ,  
A i~Aj  (3.11) 

if i ~ j .  

The theorem now follows from Lemma 2.2. 

In the next theorem we obtain an invariance property of the distribution 
of quadratic forms in an ANOVA table. 

THEOREM 3.5. Let Ax, A 2 . . . . .  /k k be symmetric and idempotent matri- 
ces of  order n × n such that A,Aj = O for  all i ~ j .  Let ~ffilA, = A* and 
B = Y'.~= lc~Ai, where A* /s the centering matrix and c~ > 0 for  1 <~ i <<. k. 
Let y ~ N,(Ix, ~ )  where ~ is a nnd matrix. Let Qi = y'A~y for  1 <~ i <~ k. 
Then the quadratic forms Qi are pairwise independent and distributed as 
c ,x~(r(A, ) ;  t}~), t~, = (1/c,) l /A,l~,  for  1 <<. i <~ k if  and only i f  ~ is of  the 
form (2.18) where a is an arbitrary vector satisfying (2.19). 
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Proof. From Theorem 3.4, we get that Qi's are pairwise independent 
and distributed as c i xZ(r(Ai);Bi)  for 1 ~< i ~< k if and only if A*~A* = B. 
Theorem 3.5 now follows from Theorem 9 .̀9 .̀ • 

REMARK 3.1. Note that in the case where p, = tze where /z is some 
constant, the Q,'s defined in Theorem 3.5 are pairwise independent and 
distributed as c i x 2 ( r ( A i ) )  for 1 ~< i ~< k if and only if A* ]£A* = B. 

As another simple application of the results of Section 2, we get the 
following characterization of the covariance matrices such that the null 
distribution of the quadratic forms in one way ANOVA remains invariant. 

THEOREM 3.6. Consider the one way ANOVA model 

y~j = tz~ + ~ j ,  j = 1 . . . . .  n~ and i = 1 . . . . .  g. (3.19,) 

L e t  I~' = (o~11 . . . . .  O°ln 1 . . . . .  O°g 1 . . . . .  O~gng ) and n = Eig=lni. Assume that 
~ N,,(O,~) where If, is a nnd matrix. Let ~ .= ~,~'=lyij/n, and ~.. = 

~,~= ~,~'- 1 y, J n .  Let SSR = ~ =  in,( ~ . -  ~.. )~ and SSE = ~g= l~j"--1( Yij - -  

Fj,.) -2 be the ireatment and the er;'or sum of  squares, respectively. Then, under 
the hypothesis tz i = tz for  1 <<, i <~ g, one has 

(a) SSR ~ d x Z ( g -  1), 
(b) SSE ~ d x 2 ( n  - g), 
(c) SSR is independent of  SSE 

if  and only i f  If, ~ ~'d, ~ for  some constant d > O. 

Proof. Let y '  = ( Y l l  . . . . .  Y l n  1 . . . . .  Y g l  . . . . .  y g , )  and /z i = / z  for 1 ~< i 
~< g; then we have y ~ Nn(txe, If,). Note that y 'A*y = SSR + SSE. It fol- 
lows from Remark 3.1 and Theorem 3.5 with k = 9, and c 1 = c 2 = d > 0 
that (a), (b), and (c) hold if and only if A* ~A* = dA*, which is true if and 
only if ~ ~ CWd, ,1. This completes the proof of  Theorem 3.6. • 

The next theorem is concerned with the invariance property of the null 
distribution of the quadratic forms in a one way ANOVA model. Here we 
assume that observations within each treatment are correlated but observa- 
tions between different treatments are uncorrelated. Theorem 3.7 shows that 
the quadratic forms for testing the equality of  g means are independent and 
have chi-square distributions if and only if all the observations are uncorre- 
lated when g is greater than or equal to 3. The case g = 2 was already 
considered in Theorem 3.3. 
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TrIEOREM 3.7. Consider the one way  A N O V A  model as in Theorem 3.6. 
Let ~'i = (8il . . . . .  si,,) and n = E~=ln i. Assume that ei 's  are independent 

and e, ~ N,,(0, ]~,) where  the ~ , ' s  are nnd  matrices f o r  1 <~ i <<, g. I f  g >1 3, 
under  the hypothesis txi = tx f o r  1 <~ i <~ g, we  have (a), (b), and (c) o f  
Theorem 3.6 i f  and o n l y / f  ]~, = d I , ,  f o r  1 <~ i <<, g and f o r  some d > O. 

Proof. Let  y '  = (Y l l  . . . . .  Yl,~ . . . . .  Ygl . . . . .  yg%). Then, under the hy- 
potlaesis/x i = / ~  for 1 ~< i ~< g, we have y ~ N,(/~e, ]~) where ~ = ~g__ 1 ]~i 
with • denoting the direct sum of ]~i's. By Theorem 3.6, we have (a), (b), 
and (c) if and only if ~ ~ ffd, n for some d > 0, that is, 

]~ = d  I -  ee' + - - ( e a ' + a e ' )  - ee' (3.13) 
n 

for some vector a ~ ~R" satisfying the inequality (2.12). Let o)k denote the 
(j, k)th element of ~.  Since the e~'s are uncorrelated, we require 

~k  = d[a j  + a k -  (7t + 1)] = 0  for l <~j <~ n 1, nl + l <<, k <<, n, 

(3.14) 

for 

j = n  1 + 1 . . . .  , n  l + n  z, k =  1 , . . . , n ~ , n  1 + n  2 +  1 . . . .  , n .  

Since g >/3, we have n > n I + n2, and it is easy to check that (3.14) holds if 
and only if a = e. Therefore, from (3.13), we get X = dI  and hence 
~i = d I , ,  for 1 ~< i ~< g. This completes the proof of the theorem. • 

4. SUMMARY AND CONCLUSIONS 

The most widely used statistical methods are concerned with drawing 
inference for the parameters of the normal populations. In these problems 
the distribution of the test statistics are derived under the assumption that the 
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observations are independent and identically distributed. While the indepen- 
dence assumption may be approximately valid, due to the choice of the 
experimental designs, exploring the problem of dependence between the 
observations is of practical as well as aesthetic interest. In this paper, we have 
characterized the class of covariance structures such that the distributions of 
the common test statistics remain invariant, that is, the distributions remain 
the same except for a scale factor. We have shown that in most cases the 
covariance structure must be equicorrelated for the distribution of the test 
statistics to remain invariant. 

We are grateful to Professor G. P. H. Styan for  providing us with some 
important reprints. We wish to thank Professor D. N. Naik for  encouraging us 
to work on this paper. 

REFERENCES 

1 W. Albers, Testing the mean of a normal population under dependence, Ann. 
Statist. 6:1337-1344 (1978). 

2 M. Ali, Distribution of Student's ratio for correlated observations, Statist. Hefte 
14:350-356 (1973). 

3 J.K. Baksalary, J. Hauke, and G. P. H. Styan, On some distributional properties 
of quadratic forms in normal variables and on some associated matrix partial 
orderings, in Multivariate Analysis and Its Applications (T. W. Anderson, K. T. 
Fang, and I. Olkin, Eds.), IMS Lecture Notes Monogr. Ser. 24, Inst. of 
Mathematical Statistics, Hayward, Calif., 1994, pp. 111-121. 

4 B. Baldessari, Remarque sur le rapport de combinaisons lineaires de X 2, Publ. 
Inst. Statist. Univ. Paris 14:393-406 (1965). 

5 S. Basu and A. DasGupta, Robustness of standard confidence intervals for 
location parameters under departure from normality, Ann. Statist. 23:1433-1442 
(1995). 

6 P. Bhimasankaram and D. Majumdar, Hermitian and nonnegative definite solu- 
tions of some matrix equations connected with distribution of quadratic forms, 
Sankhy~ Ser. A 42:272-282 (1980). 

7 J. L. Gastwirth and H. Rubin, Effect of dependence on the level of some 
one-sample tests, J. Amer. Statist. Assoc. 66:816-820 (1971). 

8 P.J. Huber, Robust Statistics, Wiley, New York 1981. 
9 D. R. Jensen, Misspecified location and scale--I, Student's test, ]. Statist. 

Comput. Simulation 32:115-118 (1989). 
10 D. R. Jensen, Misspecified location and scale--II. Independence of ~ and s 2, 

]. Statist. Comput. Simulation 32:119-121 (1989). 
11 D. R. Jensen, Misspecified location and scale--III. The use of s 2, J. Statist. 

Comput. Simulation 32:121-124 (1989). 



INVARIANCE OF STATISTICAL TESTS 437 

12 C.G. Khatri, A remark on the necessary and sufficient conditions for a quadratic 
from to be distributed as chi-squared, Biometrika 65:239-240 (1978). 

13 C. G. Khatri and S. K. Mitra, Hermitian and nonnegative definite solutions of 
linear matrix equations, SIAM J. Appl. Math. 31:579-585 (1976). 

14 E.L. Lehmann, Theory of Point Estimation, Wiley, New York, 1983. 
15 S. B. Provost, On Craig's theorem and its generalizations, J. Statist. Plann. 

Inference 53:311-321 (1996). 
16 C.R. Rao, Linear Statistical Inference and Its Applications, Wiley, New York, 

1989. 
17 C.R. Rao and S. K. Mitra, Generalized Inverse of Matrices and Its Applications, 

Wiley, New York 1971. 
18 I. Scarowsky, Quadratic Forms in Normal Variables, Unpublished MSc Thesis, 

Dept. of Mathematics, McGill Univ., Montreal, 1973. 
19 S.R. Searle, Linear Models, Wiley, New York, 1971. 
20 D.N. Shanbhag, On the independence of quadratic forms, J. Roy. Statist. Soc. 

Ser. B 28:582-583 (1966). 
21 G.E. Sharpe and G. P. H. Styan, Circuit duality and the general network inverse, 

IEEE Trans. Circuit Theory CT-12(1):22-27 (1965). 
22 G . P . H .  Styan, Notes on the distribution of quadratic forms in singular normal 

variables, Biometrika 57:567-572 (1970). 
23 J .w. Tukey, A survey of sampling from contaminated distributions, in Contribu- 

tions to Probability and Statistics (I. Olkin, Ed.), Stanford U. P., Stanford, Calif., 
1960. 

24 A. K. Vaish, Invariance Properties of Statistical Tests for Dependent Observa- 
tions, Unpublished Ph.D. Dissertation, Dept. of Mathematics & Statistics, Old 
Dominion Univ., Norfolk, Va., 1994. 

25 J.E. Walsh, Concerning the effect of intraclass correlation on certain significance 
tests, Ann. Math. Statist. 18:88-96 (1947). 

Received 30 January 1995;final manuscript accepted 25 January 1997 


	Old Dominion University
	ODU Digital Commons
	1997

	An Invariance Property of Common Statistical Tests
	N. Rao Chaganty
	A. K. Vaish
	Repository Citation
	Original Publication Citation


	PII: S0024-3795(97)00032-3

