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Modeling the effects of doliolids on the plankton community
structure of the southeastern US continental shelf

A.G.Edward Haskell, Eileen E.Hofmann, Gustav-Adolf Paffenhöfer1 and
Peter G.Verity1

Center for Coastal Physical Oceanography, Old Dominion University, Norfolk,
VA 23529 and 1Skidaway Institute of Oceanography, 10 Ocean Science Circle,
Savannah, GA 31411, USA

Abstract. A model of the lower trophic levels that consists of a system of coupled ordinary differen-
tial equations was developed to investigate the time-dependent behavior of doliolid populations
associated with upwelling features on the outer southeastern US continental shelf. Model equations
describe the interactions of doliolids with two phytoplankton size fractions, five copepod develop-
mental stages and a detrital pool. Additional equations describe nitrate and ammonia. Model
dynamics are based primarily upon data obtained from field and laboratory experiments for south-
eastern US continental shelf plankton populations. Variations on a reference simulation, which
represents average upwelling conditions without doliolids, were carried out to determine the effect
of inclusion of doliolids, temperature and nutrient variations, and variations in ambient food concen-
trations on the basic plankton community structure. These simulations provide a measure of the role
of environmental versus biological interactions in structuring the planktonic food web on the south-
eastern US continental shelf. Simulations show that the copepod population is significantly reduced
when doliolids are present. This happens primarily as a result of direct predation of the doliolids on
copepod eggs and juveniles as opposed to an increase in competition for phytoplankton, the primary
food source. Additional simulations show that the cooler temperatures associated with the newly
upwelled water temporarily decrease the growth rates of the doliolids and copepods, bestowing an
even greater advantage on the rapidly reproducing doliolids.

Introduction

Stefánsson et al. (1971) first suggested that primary productivity on the outer
SouthEastern US continental Shelf (SEUSS) is affected by pulses of upwelled
nutrients from the waters below the Gulf Stream. Since that time, many studies
have examined the physical (e.g. Yoder et al., 1981; McClain and Atkinson, 1985;
Lee et al., 1991) and biological (e.g. Deibel, 1982a,b; Paffenhöfer et al., 1984;
Verity et al., 1993) aspects of upwelling of this region. Now it is well known that
Gulf Stream-induced upwelling provides a regular though intermittent source of
nitrate and other nutrients to the outer SEUSS (e.g. Atkinson et al., 1978; Yoder
et al., 1983; Paffenhöfer et al., 1987), through either cold-core Gulf Stream frontal
eddies or bottom intrusions of Gulf Stream water (e.g. Atkinson et al., 1987; Lee
et al., 1991; Verity et al., 1993); however, the two types of upwelling processes
differ in their spatial and temporal scales. The frontal eddies occur throughout
the year with a frequency of 2–14 days (Lee and Atkinson, 1983) and normally
exist for only a few days (Lee et al., 1991), while the bottom intrusions, primarily
during late winter and spring, occur every 14–40 days and may persist for up to 
6 weeks (Atkinson et al., 1984, 1987). These episodic upwelling and intrusion
events produce plankton blooms in the SEUSS waters (Atkinson et al., 1978;
Yoder et al., 1981).

This study is particularly concerned with bottom intrusions in a specific portion
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of the South Atlantic Bight. As the Gulf Stream flows northward past the South
Carolina coast, a bathymetric rise near 32°N, known as the Charleston Bump
(Figure 1), produces the Charleston Gyre, a cyclonic semi-permanent offshore
meander that resides over the slope (Brooks and Bane, 1978; McClain and Atkin-
son, 1985). The gyre persists long enough for complex interactions to develop
among phytoplankton, copepods and gelatinous zooplankton (Paffenhöfer et al.,
1995).

As the intruded waters age, the composition of the plankton population under-
goes species succession. Within the first 3–8 days following the initial upwelling
event, the small phytoplankton [<10 µm equivalent spherical diameter (ESD)]
show a rapid increase. After approximately a week, the larger phytoplankton
(>10 µm) become dominant. This is followed within 5–7 days by a bloom of
zooplankton. The dominant copepods of the gyre are the calanoid Paracalanus
sp. and the cyclopoid Oithona sp., and the vast majority of Thaliaceans, doliolid
tunicates, are Dolioletta gegenbauri (Paffenhöfer et al., 1995). The doliolids have
faster growth and reproduction rates than do copepods and, therefore, at times
they dominate the planktonic ecosystem of the SEUSS. This has implications for
nutrient and carbon cycling of this system, and for the fate of primary production
resulting from upwelling.

To examine the interactions of doliolid, copepod and phytoplankton popu-
lations on the outer SEUSS, a time-dependent numerical model was used to
analyze the biological interactions of the local plankton and the changes in the
community structure resulting from upwelling-induced environmental influences.

A.G.E.Haskell et al.
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Fig. 1. Location of the study area. The thick line signifies the path of the Gulf Stream. The thinner
line is the meander.



The model describes the time-dependent interactions between doliolids, two size
classes of phytoplankton, five life stages of copepods, nitrate, ammonia and a
detrital pool. The temperature and nitrogen content of the simulated ecosystem
were varied to simulate the occurrence of Gulf Stream-induced upwelling.

This study was designed to investigate the following research questions. (i)
What are the effects of temperature changes on the relative biomass density of
the doliolids and the copepods? (ii) What time scale is required, following an
upwelling event, for the doliolid populations to reach concentrations that produce
significant effects on the density of copepod biomass? (iii) What are the concen-
trations needed, of all plankton fractions, for the doliolids to produce significant
effects on the density of copepod biomass? (iv) Do the doliolids affect the cope-
pods directly (by direct predation) or indirectly (by consuming a large portion of
the food sources available for the copepods)? (v) How do the relative concen-
trations of small and large phytoplankton affect the doliolid/copepod population
structure?

Method

Original model components

The time-dependent model developed for this study is a modification of the one
developed by Hofmann and Ambler (1988) for the SEUSS waters. The model
originally consisted of 10 ordinary differential equations representing two size
classes of phytoplankton, nitrogen, ammonium, five size classes of zooplankton
(the copepod Paracalanus sp.) and a detrital term used for closure. All model
components are expressed in terms of µg N l–1. The terms in the equations that
were modified for the inclusion of doliolids are discussed in detail below. The
Appendix lists the original equations and the definitions of the terms in the equa-
tions are given in Tables A-I through A-III, as modified for this study. Details for
the original model components are found in Hofmann and Ambler (1988). A
schematic of the interactions of the time-dependent model is shown in Figure 2.

The phytoplankton are grouped into one of two size classes: larger than or
smaller than 10 µm [equations (A-1) and (A-2)]. Model terms for the phyto-
plankton include growth, cell death and zooplankton grazing. Parameterization
for the processes is in equations (A-2.1)–(A-2.7).

Phytoplankton loss is modeled by a linear term that represents the fraction of
the phytoplankton that is removed from the system each day. This term
represents all phytoplankton losses other than through copepod and doliolid
grazing, e.g. cell autolysis and sinking. Starting with an initial assumption of 0.1
day–1 for both phytoplankton size fractions, the value of the loss variable was
adjusted to produce concentrations similar to those observed on the SEUSS.

The copepods are grouped into five classes based on development stage: egg
through nauplius 2 stage (EggN2), nauplius 3 to nauplius 4 (N3N4), nauplius 5
to copepodite 3 (N5C3), copepodite 4 to copepodite 5 (C4C5), and adult
(Adult). The governing equations for the different copepod stages include
assimilation, excretion, egg production, molting and predation processes
[equations (A-3)–(A-5)].

Modeling effects of doliolids on the plankton community
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The primary source of nitrogen for the model ecosystem is nitrate. The nitrate
equation [equation (A-2.2)] consists of a loss to phytoplankton via nitrogen
uptake and an input term from upwelling events. The total nitrate input during a
single upwelling event is divided into equal time intervals based on the duration
of each event. The total amount of nitrate upwelled during a single event was
specified using a linear nitrate–temperature relationship of the form suggested by
Atkinson et al. (1984).

The other source of nitrogen in the system is ammonia. The ammonia equa-
tion [equation (A-2.3)] consists of loss to phytoplankton through ammonia
uptake, and increases from excretion and remineralization of fecal pellets from
both the copepods and doliolids.

A.G.E.Haskell et al.
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Fig. 2. Schematic of the biological components and interactions included in the model. See the text
for details.



The detrital component [equation (A-6)] increases as the zooplankton produce
fecal pellets and decreases as the doliolids ingest the floating fecal pellets. To
ensure mass conservation, a state variable was used to account for the nitrogen
that would be lost by advective and other biological processes.

Model modifications

Studies, e.g. Deibel (1982b) and Crocker et al. (1991), have shown that the Dolio-
letta gonozooids and phorozooids feed at similar rates and can, therefore, for the
purpose of this model, be treated as a single class.

Thus, the biomass density of the doliolids, D, over time (t) is determined by:

dD D—— = AE1——Pi2Fdol – bD·aDWb –
dt DT

DD·Pmax 11 – e–«(D – TD) 2 ·M(D,TD) – —— Nmax (1)
DT

specifying assimilated ingestion, excretion, predation by higher trophic levels and
natural mortality.

Doliolid ingestion

The doliolid, being a non-selective filter feeder, ingests particles at a rate, I,
depending on the concentration of the particles and the filtration rate of the
doliolid, which is expressed by the following equations:

I = ISP · J(SP,TSP) + ILP · K(LP,TLP) + IEggN2 + IDet (2)

where ISP is the ingestion rate of the small phytoplankton size fraction given by:

DISP = 1—— SP2Fdol (3)
DT

ILP is the ingestion rate of the large phytoplankton size fraction:

DILP = 1—— LP2Fdol (4)
DT

IEggN2 is the ingestion rate of the egg through nauplii 2 copepod size fraction:

DIEggN2 = 1—— EggN2 2 Fdol (5)
DT

IDet is the ingestion rate of the detrital fraction:

DIDet = 1—— Det2Fdol (6)
DT

Modeling effects of doliolids on the plankton community
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J and K are threshold functions, DT is the weight of an average doliolid and Fdol
is the clearance rate of the doliolids expressed as:

Fdol = Fdol
max e–0.01 LP (7)

where Fdol
max is the maximum flow of water through the doliolid body cavity. The

exponential term represents a decrease in flow due to clogging of the animal’s
filtering apparatus by the large phytoplankton class (Deibel, 1982b). The clear-
ance rate was formulated for 20°C and then modified to allow for temperature
dependence. Because there are currently no good estimates of the Q10 for the
doliolids, a Q10 of 3, assuming a ‘standard’ poikilothermic organism, was used for
this study. The clearance rate was multiplied by the factor 0.1189e0.107T, which
increases and decreases the rate of clearance exponentially above and below
20°C. Values and references for the parameters used in the doliolid equations are
listed in Table I.

The efficiency with which Dolioletta assimilates food was assumed to vary with
ingestion rate, similar to the approach used by Moisan and Hofmann (1996). The
assimilation efficiency AE can be expressed in terms of a maximum (AEmax) and
minimum (AEmin) value as:

AE = AEmin + 31AEmax – AEmin2e–It4 (8)

where the e-folding scale given by t is modified by the ingestion rate, I (Landry
et al., 1984). As higher food concentrations produce a higher ingestion rate, the
assimilation efficiency decreases toward the minimum value. Assimilated in-
gestion can be calculated by multiplying the ingestion rate and the assimilation
efficiency.

Doliolid excretion

The excretion rate, EX, for Dolioletta was obtained using a relationship suggested
by Omori and Ikeda (1984), and modified by Moisan and Hofmann (1996), that
relates body weight and temperature as:

EX = bD · aDWb (9)

where the effect of temperature, T, is included in the coefficients that modify the
doliolid dry weight, DW, and are expressed as:

a = 100.02438T – 0.1838 (10)

b = –0.01090T + 0.8918 (11)

b is a constant equaling 1.44 [µg (µl O2
–1)] that includes doliolid body weight (8.33

µg N), the respiratory quotient (0.97), the molecular weight of nitrogen (14.0 µg

A.G.E.Haskell et al.
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N µmol–1 N), doliolid dry weight (83.3 µg), liters of O2 consumed per mole of C
produced (22.4 µl O2 µmol–1 C) and the C:N molar ratio (4.2).

The ingestion, assimilation and excretion of the doliolids are dependent on the
effective food concentration (Figure 3).

Doliolid predation and natural mortality

Predation mortality, P, of Dolioletta ranges from zero below some threshold
concentration, TD, of the Dolioletta to a maximal predation rate, Pmax, given by:

DP = —— · Pmax 11 – e–«(D – TD)2 ·M(D,TD) (12)
DT

where the threshold function, M, is expressed as follows:

M(D,TD) = 0 for D < TD
(13)

M(D,TD) = 1 for D ≥ TD

Natural mortality, N, of Dolioletta is a linear function of the doliolid concen-
tration expressed as:

DN = —— Nmax (14)
DT

The maximum natural mortality rate, Nmax, is chosen such that the turnover time,
excluding predation pressures, is within the average Dolioletta lifespan of 29–41
days (Deibel, 1982a).

Modeling effects of doliolids on the plankton community
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Table I. Units, definitions, values and sources for the parameters used in the doliolid equations

Parameter Units Definition Value Source

I µg N l–1 s–1 Ingestion rate Variable Calculated
D µg N l–1 Dolioletta concentration Variable Calculated
DT µg N (dol–1) Weight of average doliolid 8.33 Mackas et al., 1991
DW µg (dol–1) Total dry weight of an average doliolid 83.3 Moisan, 1993
Fdol

max l s–1 Maximum filtration rate 1.678 3 10–6 Deibel, 1982a,b
AEmax None Maximum assimilation efficiency 0.95 Omori and Ikeda, 1984
AEmin None Minimum assimilation efficiency 0.70 Omori and Ikeda, 1984
t l s µg N–1 Assimilation efficiency curve constant 1.466 3 104 Estimated this study
Gd day–1 Fecal pellet remineralization rate 0.10 Moisan, 1993
rd None Fecal pellet sinking ratio 0.60 Calculated
RQ None Respiratory quotient 0.97 Omori and Ikeda, 1984
CN µg C µg N–1 Carbon to nitrogen ratio 3.60 Omori and Ikeda, 1984
Pmax µg N dol–1 s–1 Maximum predation rate 1.736 3 10–7 Estimated this study
« l µg N–1 Predation rate curve constant 0.06935 Estimated this study
TD µg N l–1 Minimum doliolid concentration for 1.0 Moisan, 1993

predation to occur
Nmax µg N dol–1 s–1 Maximum natural death rate 1.736 3 10–7 Moisan, 1993



Detrital components

The question of how to treat properly the detrital component of biological models
still lacks a definite answer. Many studies have looked at the size, sinking rate and
production rate of fecal pellets produced by different zooplankton species (e.g.
Pomeroy and Deibel, 1980; Bruland and Silver, 1981; Uye and Kaname, 1994).
The fate of smaller pellets has been addressed in detail by only a few studies (e.g.
Paffenhöfer and Knowles, 1979; Hofmann et al., 1981). Hofmann et al. (1981)
modeled the fate of fecal pellets produced by Paracalanus on the SEUSS and
found that the percentage of fecal pellets reaching the benthos was directly
related to the size of the fecal pellet, with only 0.3, 3 and 10% of the pellets
produced by the nauplii, copepodites and adults, respectively, reaching the sea
floor. These percentages are used in the model as the percentage of available fecal
material that is constantly removed from the system.

A.G.E.Haskell et al.
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Fig. 3. Relationship between the rate of doliolid ingestion, assimilation, excretion, assimilation
efficiency and effective food concentration (EPN) at 20°C.



Estimates of the percentage of doliolid fecal material reaching the benthos of
the southeastern shelf do not exist. However, Deibel (1990) estimated that
doliolid fecal pellets on the SEUSS would have a residence time in the water
column of 2 days or less under upwelling conditions. Using this residence time, a
clearance rate of 4.4 ml zooid–1 h–1 (Deibel, 1982b; Crocker et al., 1991; Tebeau
and Madin, 1994), and a high doliolid concentration of 2000 doliolids m–3, the
doliolids should only be able to ingest ~40% of the fecal pellets in the water
column (rd; Table I).

Along with the removal of fecal pellets via transport to the benthos, degradation
of the pellets by physical and biological processes also needed to be quantified.
The modeling study by Hofmann et al. (1981) indicated that the pellets produced
by the younger copepod stages were recycled in the water column, while the adult
copepod fecal pellet production accounted for most of the vertical transport. As
decomposition rates of sediment trap carbon ranged from 1 to 50% day–1 (Iseki et
al., 1980), values representing this range were chosen (Gi; in Table A-III). The fecal
pellet remineralization rate for the doliolids was estimated to be similar to that
used for the adult copepods because, although the doliolid fecal pellets are larger
than the copepod pellets, they are less tightly compacted (Deibel, 1990; Uye and
Kaname, 1994) and are more easily subjected to degradation.

Initial model analyses showed that the use of the detrital box, DET [equation
(A-6)], to account for the nitrogen that would be lost from the model ecosystem
through death, predation, advection, etc., resulted in an overabundance of
doliolids. To compensate for this, a state variable was used to account for the
nitrogen lost from the model ecosystem. To prevent unrealistic detrital concen-
trations from developing, the detrital component was flushed, at the beginning of
each upwelling event with a switching function N:

N(tm,inv) = 0 for MOD(tm,inv) ≠ 0
(15)

N(tm,inv) = 1 for MOD(tm,inv) = 0

where tm is the current time step value, inv is the number of time steps in each
upwelling event and MOD(tm,inv) is the remainder of tm/inv.

Data sets

The data sets needed for this modeling study consist of growth and ingestion rates
of Paracalanus and Dolioletta, growth and nitrogen uptake data for the resident
shelf phytoplankton, and nutrient and temperature data for the SEUSS ecosystem.
Data for the doliolid components were taken from unpublished studies performed
by G.-A.Paffenhöfer, from the Skidaway Institute of Oceanography, Savannah,
GA, on the genus Dolioletta, and from Deibel (1982a,b) and Paffenhöfer et al.
(1995). Copepod growth and ingestion rates were taken from Hofmann and
Ambler (1988), Paffenhöfer et al. (1995) and from unpublished data from
G.-A.Paffenhöfer. Growth and nitrogen uptake rates of the phytoplankton come
from Eppley et al. (1969) and Yoder et al. (1981, 1983, 1985). Nutrient and

Modeling effects of doliolids on the plankton community
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hydrographic data are available from many sources, e.g. Stefánsson et al. (1971),
Atkinson et al. (1984) and Hofmann and Ambler (1988).

Model implementation

The solutions for the previously described system of coupled ordinary differen-
tial equations were obtained using a fourth-order Runge–Kutta numerical model
with a time step of 5 min. The model was integrated forward in time until repeat-
able cycles were observed, which eliminated the effects of the initial conditions
on the model solutions. The total nitrogen in the model (including all losses not
recycled) was calculated at each time step to verify mass conservation.

Verification for all the simulation results was accomplished by comparing the
model solutions to criteria obtained from field and laboratory observations of the
individual biological components represented here.

The model was run forward in time with the temperature and nitrate variations
repeating every 40 days, until steady cycles in the plankton structure were
produced. A 40 day interval provides a sufficient period for the biological inter-
actions to come to equilibrium and roughly approximates the duration of bottom
intrusion events (Atkinson et al., 1984, 1987).

The purpose of the time-dependent biological model is to investigate the
effects of Gulf Stream intrusions on the biological populations of the SEUSS.
Therefore, the initial values were chosen to represent actual shelf water
conditions prior to these upwelling events, as discussed next.

Under conditions devoid of upwelled nutrients, the ambient nitrate concen-
trations in the outer SEUSS waters are usually <0.5 µM (e.g. Bishop et al., 1980;
Lee and Atkinson, 1983; Atkinson et al., 1987). An upwelling event can increase
the nitrate concentrations to a maximum of 10–15 µM within a period of 2 or 3
days (Yoder et al., 1983, 1985). To simulate this nitrate input, the total nitrate
supply to the model ecosystem was calculated using the nitrate–temperature
relationship, discussed previously, for subsurface Gulf Stream waters along the
SEUSS. The upwelling simulations described in the following section were
performed using an initial temperature of 18 or 20°C with a corresponding initial
nitrate concentration of ~8 or 5 µM, respectively, which was input over 2 days.
Ammonium concentrations in SEUSS waters are normally <0.1 µM (Yoder et al.,
1983, 1985). Thus, the initial ammonium concentration for all simulations was
assumed to be zero.

Both phytoplankton size fractions were initially set to 3 µg N l–1, which, assum-
ing a N:Chl a ratio of 6, corresponds to a chlorophyll (Chl) concentration of 1.0
µg Chl a l–1. This value is representative of Chl concentrations found on the outer
shelf during non-upwelling conditions (Yoder et al., 1983, 1985). The initial
concentration for the four non-adult copepod stages was set to zero and the
adults were set to 0.5 µg N l–1, which corresponds to nearly 500 animals m–3. This
is at the low end of observed copepod concentrations for the SEUSS (Paffen-
höfer et al., 1987, 1995). Initial doliolid concentrations were also set to either
zero, for simulations without doliolids, or to low observed concentrations for the
SEUSS, 0.42 µg N l–1, which is approximately equal to 50 zooids m–3.

A.G.E.Haskell et al.
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Simulation results

Reference simulation

The simulations (Table II) carried out to address the primary research questions
were compared to a reference simulation (Simulation 1; Table II), consisting of a
constant temperature of 20°C, an initial copepod concentration equivalent to 500
copepods m–3, initial equal phytoplankton size fractions totaling 1 mg Chl a m–3

and no doliolids. These values correspond to biological conditions in water in
newly upwelled bottom intrusions with temperatures between 18 and 20°C
(Yoder et al., 1983; Atkinson et al., 1987).

For the majority of the simulations, the temperature either remained at a
constant 20°C, representing an average temperature for the outer SEUSS, or
increased linearly from 18 to 25°C, representing the intrusion of cold subsurface
Gulf Stream water mixing with the warmer shelf water. The relative concentra-
tions of the two phytoplankton size fractions were adjusted by varying the phyto-
plankton loss rate, which determines transfers of phytoplankton to components
not explicitly included in this model, e.g. to protozoa which are not included.

Specific simulations

The model was used to establish the time evolution of phytoplankton and
copepod populations at a constant temperature of 20°C (Figure 4A–C). Five
cycles (200 days of simulation) were needed before repeated cycles were
observed in the simulated distributions. After reaching equilibrium, the time
development of the simulated variables showed the succession that has been
observed during outer SEUSS upwelling events. The details of the reference
simulation (Table II, Simulation 1; Figure 4A–C) are described in detail in
Hofmann and Ambler (1988), and are not discussed further here.

Addition of doliolids

The addition of doliolids (Simulation 2; Table II) changes the characteristics of
the time evolution of the plankton populations (Figure 4D–F). Following the
input of nitrate, the phytoplankton began their bloom, but the rapidly increasing

Modeling effects of doliolids on the plankton community
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Table II. Initial conditions for the model simulations. See the text for an explanation

Simulation Temperature Doliolids Copepods LP SP LP loss SP loss
(°C) (µg N l–1) (µg N l–1) (µg N l–1) (µg N l–1) (day–1) (day–1)

1 20 0.00 0.50 3.0 3.0 0.07 0.14
2 20 0.42 0.50 3.0 3.0 0.07 0.14
3 20 0.42 0.50 3.0 3.0 0.04 0.11
4 20 0.42 0.50 3.0 3.0 0.11 0.17
5 20 0.00 0.50 3.0 3.0 0.04 0.11
6 18–25 0.42 0.50 3.0 3.0 0.07 0.14

All simulations were run with a nitrate input of 5 µM, except for Simulation 6 which had a nitrate input
of 8 µM.
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number of doliolids (nearly 2000 m–3) with non-selective ingestion results in
about equal concentrations of small and large phytoplankton as opposed to the
dominance of the large phytoplankton in the reference simulation. The doliolids
did not, however, reach concentrations quickly enough to reduce significantly the
overall peak phytoplankton biomass of the bloom. The duration of the simulated
phytoplankton bloom was shortened from ~15 days in the reference scenario to
between 8 and 9 days (Figure 4A and B versus Figure 4D and E). The presence
of the doliolids inhibited the copepod production; the peak copepod biomass was
reduced by 47% and the second copepod cohort was reduced in comparison to
the second cohort in the reference scenario. The peak in doliolid biomass
occurred a little more than 5 days later than the maximum phytoplankton concen-
tration. Maximum simulated daily growth rates for the copepods, when doliolids
were present, fell slightly to 0.60 day–1, a decrease of 15%. The simulated daily
growth rates for the doliolids were 0.32 day–1, which falls within the 0.3–0.4 day–1

range that has been measured for these animals (G.-A.Paffenhöfer, unpublished).
The addition of doliolids increased the regenerated primary production, in

comparison to the reference simulation, while the cumulative new production
remained about the same (Table III). New production, at 54%, compared to 80%
in the reference simulation, still dominated and fell near the lower end of the range
observed for bottom intrusions (Yoder et al., 1985). The cumulative ammonium
excretion by the various life stages of the copepods in the model ecosystem fell in
response to the decreased numbers of copepods in the water column (Table III).
The doliolids produced more ammonium than did the copepods, which accounts
for the higher regenerated primary production relative to the reference case.

Biological parameters

Simulations with low loss rates (Simulation 3; Table II) and high loss rates (Simu-
lation 4; Table II) were carried out to investigate the effect of differing relative
concentrations of large and small phytoplankton on the copepod and doliolid
population biomass density (Figure 5). In general, high phytoplankton loss rates
produced a low biomass density of zooplankton, and vice versa. However, the
important effect of the low and high loss rates is to alter the relative concentra-
tions of the two phytoplankton size fractions (Figure 5E and H) relative to that
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Table III. Production values for the phytoplankton and excretion values for the copepods calculated
from the results of Simulations 1 and 2 (see Table II). All values are from the fifth 40-day cycle

Reference With doliolids

Phytoplankton
Cumulative new production (µg N l–1) 67.0 66.9
Cumulative regenerated production (µg N l–1) 15.6 57.5
% regenerated production of total production 18.9 46.2
% regenerated production supported by fecal pellet remineralization 14.5 20.6
Copepods
Cumulative NH4 excretion (µg N l–1) 13.4 9.2



of those with normal loss rates (Figure 5B). The effects of the different relative
phytoplankton concentrations on the zooplankton relative concentrations are
described below.

Low phytoplankton loss rates resulted in simulated doliolid abundances that
reached 3000 zooids m–3 (Figure 5E). The increased doliolids depressed the
copepod growth rates due to food competition and the adult copepods were
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Fig. 5. Steady-state simulated distributions attained for (A–C) normal phytoplankton loss rates
(Simulation 1); (D–F) low loss rate for both phytoplankton size fractions (Simulation 3); (G–I) high
loss rates for both phytoplankton size fractions (Simulation 4). See Table II for simulation conditions.
(A, D, G) Nitrate (——), ammonium (- - - -), total phytoplankton biomass (– – –) and total copepod
biomass (– - – -); (B, E, H) doliolid biomass (——), large phytoplankton size fraction (>10 µm)
(– – –), small phytoplankton size fraction (<10 µm) (- - - -) and total copepod biomass (– - – -);
(C, F, I) percentage of the total copepod biomass in each stage category.



unable to produce eggs to initiate new cohorts. The concentration of small phyto-
plankton allowed for maintenance of zooplankton populations, and as a result the
population age structure approached equilibrium values (Figure 5F). The amount
of time required for the phytoplankton to reach peak biomass was shortened to
6.8 days relative to 8.6 days in the reference simulation. High phytoplankton loss
rates resulted in doliolid concentrations that did not exceed 600 m–3. The doliolid
concentrations are reduced because of increased competition from the copepods
for the prime food source. Copepod growth rates, however, approached 0.69
day–1 and copepod concentrations were 20% greater than when the phyto-
plankton loss rates were low (Figure 5H).

To determine whether the reduction of copepods in the presence of doliolids
resulted from competition for phytoplankton food or removal of copepod eggs by
doliolid grazing, a simulation with low phytoplankton loss rates and no doliolids
was carried out (Simulation 5; Table II). The copepod biomass is reduced relative
to that in the reference simulation (Figure 6C and D versus Figure 6A and B);
however, the maximum percent biomass in the EggN2 stage, the only copepod life
stage that is directly preyed upon by the doliolids, was reduced by only 0.7% (Table
IV). The greatest change, 8%, appeared in the N5C3 stage. Thus, reducing the
simulated phytoplankton biomass reduced the copepod biomass, but did not
strongly affect the percentage of copepods in each life stage. The addition of
doliolids (Figure 6E and F) not only reduced the copepod biomass, but also reduced
the percentage of copepods in the EggN2 stage by almost 10% (Table IV). The
addition of doliolids also produced a decrease in the maximum concentration of
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Table IV. Maximum percentage (%) of total copepod biomass during a 40 day upwelling cycle for the
simulation without doliolids and with normal phytoplankton (Simulation 1). This value and the
magnitude of the percentage change from Simulation 1 (in parentheses) is shown for simulations
without doliolids and with low phytoplankton (Simulation 5) and with doliolids and normal
phytoplankton (Simulation 2), respectively. Similar calculations are presented for the percentage of
total copepod biomass at peak biomass

Maximum percentage (%) of total copepod biomass during 40 day cycle
———————————————————————————————–
Simulation 1 Simulation 5 Simulation 2

EggN2 13.0 12.9 (0.7) 11.9 (8.3)
N3N4 15.0 13.9 (7.6) 14.3 (5.0)
N5C3 20.4 18.7 (8.2) 21.7 (6.4)
C4C5 24.1 26.0 (7.9) 19.8 (17.8)
Adult 73.0 72.2 (1.1) 76.6 (4.9)

Percentage (%) of total copepod biomass at time of peak biomass
———————————————————————————————–
Simulation 1 Simulation 5 Simulation 2

EggN2 11.5 11.7 (2.0) 9.6 (16.0)
N3N4 12.2 11.1 (9.1) 11.2 (8.0)
N5C3 11.3 10.9 (3.6) 13.5 (20.0)
C4C5 17.0 17.8 (4.8) 19.6 (15.3)
Adult 48.1 48.6 (1.0) 46.1 (4.3)



the late copepodites and adult copepods by as much as 17% (Table IV). These
trends are more obvious for the population composition at peak copepod biomass.

Physical parameters

An additional simulation (Simulation 6; Table II), with a time-varying tempera-
ture profile, was carried out to examine the effects of temperature and nitrate on
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Fig. 6. Simulated time-dependent daily averaged steady-state distributions for (A, B) Simulation 1;
(C, D) Simulation 5; (E, F) Simulation 2. See Table II for simulation details. (A, C, E) Doliolid
biomass (——), large phytoplankton size fraction (>10 µm) (– – –), small phytoplankton size fraction
(<10 µm) (- - - -) and total copepod biomass (– - – -); (B, D, F) percentage of the total copepod biomass
in each stage category.



biological process in bottom intrusion waters (Figure 7D–F). In this scenario, the
quantity of nitrate introduced at the beginning of each upwelling cycle has been
calculated from the relationship determined by Atkinson et al. (1984).

Plankton growth rates, the relative biomass density of all the plankton concen-
trations, and the presence of the secondary peak in productivity were the prime
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Fig. 7. Simulated steady-state solution for (A–C) constant temperature of 20°C, nitrate input of 5 µM
over the first 2 days of the cycle (Simulation 1); (D–F) temperature profile shown in the top panel,
nitrate input of 8 µM (Simulation 6). See Table II for simulation details. (A, D) Nitrate (——), am-
monium (- - - -), total phytoplankton biomass (– – –) and total copepod biomass (– - – -); (B, E) doliolid
biomass (——), large phytoplankton size fraction (>10 µm) (– – –), small phytoplankton size fraction
(<10 µm) (- - - -) and total copepod biomass (– - – -); (C, F) percentage of the total copepod biomass
in each stage category.



differences from the reference simulation. At 18°C, the metabolic rates of the
plankton are reduced, with reductions in the maximum growth rates from 15%,
in the small phytoplankton, to over 60% in the copepods. The 70% increase in
nitrate, however, provides sufficient nutrients for the less preferred small phyto-
plankton size fraction to produce an intense bloom. The high doliolid concen-
tration, >3500 animals m–3, produces adequate ammonium to inhibit the
phytoplankton uptake of nitrate temporarily and to initiate a secondary phyto-
plankton and subsequent copepod bloom.

Detrital factors

The fecal pellet remineralization rates in the reference simulation ranged from
50% day–1 for the small copepod nauplii fecal pellets to 10% day–1 for the adult
copepod and doliolid pellets. To determine the effect of the remineralization rates
on the simulated plankton community structure, Simulation 2 (Table II) was
rerun with high and low remineralization rates. High and low rates were calcu-
lated by multiplying the initial remineralized rates (Tables A-III and I) by 1.50
and 0.50, respectively. Modifying the remineralization rates of the fecal pellets
did not appear to have a notable effect on the steady-state simulated solutions
(Figure 8A–C).

The same process was applied to the fecal pellet sinking rates. Simulation 2 was
modified to include high and low sinking rates (Figure 8D–F). As before, high
and low rates were calculated by multiplying the initial sinking rates (Tables A-
III and I) by 1.50 and 0.50, respectively. The higher sinking rates considerably
lowered the doliolid concentrations, while the lower sinking rates allowed the
doliolid numbers to increase. The greater abundance of the doliolids, when the
sinking rates were low, had a direct inverse effect on the copepod and phyto-
plankton populations.

Discussion

Comparison to observations

The time-dependent biological model presented in this study represents a food
web in which phytoplankton production is driven chiefly by nitrate uptake rather
than regenerated production from zooplankton excretion or fecal pellet reminer-
alization. Yoder et al. (1985) reported new primary production values of 50–97%
for bottom intrusion events in the SEUSS waters. However, during the advanced
stages of a simulated bottom intrusion event, new production fell to near zero
levels and there was a small increase in the <10 µm phytoplankton size fraction
that was supported entirely by regenerated production (cf. Figure 4). As not all
actual intrusions persist for the 40 days used in the model, many observations may
not encounter these conditions.

The time-dependent biological model only included two size fractions of
phytoplankton. While doliolids are not selective in their feeding behaviors, the
later copepod stages exhibit a preference for the >10 µm size fraction. Because
of this, it was necessary to increase the loss rate of the smaller phytoplankton
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size fraction, relative to the large size fraction, to reproduce observed biomass
densities (cf. Figure 4). This increased rate represents a loss that is currently not
included explicitly in the model. The addition of protozooplankton that can
graze small cells could produce the relative concentrations of the phytoplankton
size fractions observed on the southeastern shelf.

In the SEUSS waters, as intrusions develop, they can become dominated by
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Fig. 8. Simulated steady-state time-dependent distributions of varying fecal pellet remineralization
and sinking rates at 20°C for (A) normal remineralization rates (see Tables A-II, A-III and I); (B)
high remineralization rates (1.53 normal); (C) low remineralization rates (0.53 normal); (D) normal
sinking rates (see Tables A-II, A-III and I); (E) high sinking rates (1.53 normal); (F) low sinking rates
(0.53 normal). Symbols for all panels: doliolid biomass (——), large phytoplankton size fraction (>10
µm) (– – –), small phytoplankton size fraction (<10 µm) (- - - -) and total copepod biomass (– - – -).



large species of Rhizosolenia (>40 µm ESD), which cannot be grazed by most of
the stages of Paracalanus (Paffenhöfer and Knowles, 1978; Paffenhöfer, 1984a,b).
However, the model phytoplankton for the >10 µm size class is Thalassiosira (~12
µm ESD). Because of this, the model cannot adequately represent both of these
larger phytoplankton and, towards the end of the intrusion, will misrepresent the
large phytoplankton size fraction. The components included in the reference
simulation (cf. Figure 4A–C) do, however, adequately represent the major
features of Gulf Stream-induced upwelling onto the outer SEUSS.

The presence of doliolids in the outer SEUSS waters greatly alters the plank-
ton populations observed when doliolids do not exert a strong presence (cf. Figure
4). The results of the simulations presented in this study suggest that these doliolid
blooms impact the energy flow of the SEUSS ecosystem by sequestering phyto-
plankton biomass and converting it into tunicate biomass and fecal material.

The maximum simulated growth rates of the copepods (almost 0.70 day–1) are
somewhat higher than those typically observed in the field or laboratory (0.4–0.6
day–1) (G.-A.Paffenhöfer, unpublished). Part of this discrepancy might be attrib-
uted to the fact that growth occurs instantaneously. Appropriate time lags from
ingestion to reproduction, if present, would most likely inhibit the observed
simulated growth rates as growth would be determined by the cumulative
phytoplankton concentration over a given time span rather than based on
instantaneous values.

Direct effects of doliolids on copepods

Paffenhöfer et al. (1995) found that when large doliolids were present in concen-
trations of 600 m–3 or more, the doliolids were inversely correlated with copepod
concentrations in the water column. Two possible reasons for this inverse biomass
relationship between copepods and doliolids are (i) the doliolid ingestion of
copepod eggs and nauplii and (ii) the removal, by the doliolids, of the food source
for the copepods.

During Simulation 2 (cf. Figure 4D–F), the Chl a concentrations do not fall
below 0.5 µg l–1 throughout the steady-state upwelling event. At this level, Para-
calanus should have been able to maintain its population and to reproduce at at
least near half of its maximal rate (Checkley, 1980b). Thus, food concentration
was most likely not severely limiting the copepod growth. Paffenhöfer et al.
(1995) performed a gut content analyses on doliolids taken near the Charleston
Gyre in January 1990, and found that almost 15% of the doliolid fecal pellets and
12% of the doliolids themselves contained one or more copepod eggs.

The simulations show that the presence of doliolids produces a larger decrease
in copepod eggs than does a decrease in the food supply to the copepods (cf.
Figure 6). These results imply that, while the doliolids inhibit the growth of the
copepods through food competition, the direct effect of ingesting the copepod
eggs has an equal if not greater effect than the reduction of the food source.
Paffenhöfer et al. (1995) made this hypothesis based on observations from the
Charleston Gyre.

Currently, there are no published numbers on doliolid ingestion rates of
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copepod eggs. Experimental validation of the doliolid predation rates on the eggs
and nauplii of the copepods would provide useful data for this model.

Physical processes

The temperature of the upwelled water in bottom intrusion events generally
ranges from 16 to 20°C (Atkinson et al., 1987). These events can be identified as
masses of cold subsurface water as they move onshore and alongshore. In the
absence of wind mixing, the temperature of the intrusions does not change sharply
over the lifetime of the event. If wind mixing does occur while the intruded waters
are over the shallow shelf, then warming of the intrusion can occur as the surface
water mixes with the subsurface intrusion. Since the upwelled water is on the shelf
as a separate water mass, it is probable that phytoplankton develop fairly
uniformly within this water. This can lead to the formation of a plankton patch in
the nutrient-rich intrusion (Yoder et al., 1981; Atkinson et al., 1987).

The simulated distributions (cf. Figure 7) show that both the temperature and
quantity of the introduced nutrients are important factors in determining the
response of the zooplankton to the intrusions of the subsurface Gulf Stream
water onto the outer SEUSS. While the cooler temperatures seen immediately
following an upwelling event decrease the metabolic rates of the zooplankton,
allowing the phytoplankton to utilize fully the newly input nutrients, increased
grazing at the higher temperatures of the resident shelf waters directly affects the
relative concentration of the two phytoplankton size fractions and thus alters the
species composition of the zooplankton community. The decreased growth rates
of the doliolids and copepods associated with the newly upwelled water bestow
an even greater advantage to the rapidly reproducing doliolids.

Detrital factors

The formulations for the detrital factors in the ecosystem model include fecal
pellet remineralization rates and fecal pellet sinking rates. As only 15–20% of the
regenerated production is supported by fecal pellet remineralization, and regen-
erated production is only 15–20% of the total production, fecal pellet remineral-
ization accounts for only 2–4% of the total primary production.

In contrast to fecal pellet remineralization rates, the sinking rates of the fecal
pellets, and thus the rate of removal of a potential food source for the doliolids,
does produce visible differences in the simulated distributions (cf. Figure 8D–F).
The model is most sensitive to the sinking rates of the doliolid, in comparison to
the copepod, fecal matter, as the doliolids produce >50% of all the fecal material
in the water column. This occurs because doliolids ingest detritus at the same rate
as phytoplankton and copepod eggs. Near the end of an upwelling cycle, fecal
pellet mass, in the model system, can be >10% of the total phytoplankton biomass
and can be five times greater than the total copepod biomass. Although there is
currently no experimental evidence to support this, detritus could represent a
significant portion of the diet of the doliolids, especially when food of high quality
is available only in low concentrations.
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Deibel (1990) has shown that the sinking rate of doliolid fecal pellets is strongly
dependent on the doliolid diet. In order for the model to produce solutions that
corresponded with observations, the doliolids were assumed to ingest 40% of the
fecal material in the water column. The remaining 60% thus leaves the model
ecosystem. There is the possibility that the excess fecal material could provide a
significant food source to the benthic ecosystem of the outer SEUSS; however,
since the outer shelf is flushed with an average periodicity of 14 days, it is pos-
sible that most of the material is advected seaward, leaving the outer shelf. Accur-
ate production and remineralization rates of doliolid fecal pellets would increase
the validity of the detrital component of ecosystem models such as the one used
in this study.

Along with the removal of fecal pellets by transport to the benthos, degrad-
ation of the pellets by physical and biological processes also needs to be quanti-
fied. Recycled ammonium could possibly be a significant source of nitrogen in the
late stages of a bottom intrusion. The rates at which ammonium is regenerated
by bacterial decomposition of fecal pellets in the outer SEUSS waters, and their
possible importance to the ecosystem, are currently not well known. The model-
ing study by Hofmann et al. (1981) indicated that the younger copepod stages
produced the most fecal pellets, but that these pellets were not transported to the
sea floor and were recycled in the water column. The current model simulations
indicate that the fecal pellet remineralization rate does not have a large effect on
the resulting plankton community structure (cf. Figure 8A–C).

Because of the high asexual fecundity and growth rates of the doliolids, each
mature oozoid, i.e. a nurse with a chain, can produce literally hundreds of gono-
zooids in a period of several days, much shorter than the 2–4 weeks of the gener-
ation times of the other SEUSS zooplankton. The frequent flushing of the shelf
with subsurface Gulf Stream water during the winter and spring can potentially
maintain a temporally new community that is often dominated by the rapidly
responding doliolids (Deibel, 1985). During these periods, one would expect
regularly to encounter high concentrations of all the life stages of the doliolids
along with a decrease in the other net zooplankton.

While a limited number of models currently include gelatinous zooplankton
(e.g. Andersen and Nival, 1988; Moisan and Hofmann, 1996), the exclusion of
these organisms from models of ecosystems where gelatinous zooplankton repre-
sent a significant portion of the zooplankton biomass could misrepresent the flow
of matter and energy through the planktonic food webs (Hamner et al., 1975;
Deibel, 1982a). The ability of a large (1–8 mm) zooplankter to feed directly on
food as small as 2 µm represents a short trophic link in the classic food chain and
could be an efficient pathway by which energy is moved from lower to higher
trophic levels (Crocker et al., 1991). Gelatinous zooplankton are preyed upon,
regularly or occasionally, by over 100 fish species; thus, they are not a trophic dead
end as was previously believed (Kashkina, 1986).

The source of doliolids in the bottom intrusions remains unresolved. Deibel
(1985) and Paffenhöfer et al. (1995) mention frequent occurrences of doliolids on
the southeastern shelf during winter and spring, and possibly year round. The
extremely high fecundity of the doliolids means that only a few nurses or
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phorozooids are needed to start a bloom (Deibel 1985). Deibel (1985) also stated
that his observations did not support the theory that the doliolids are advected
into the shelf waters from the Gulf Stream, which is in contrast to the thinking of
Paffenhöfer et al. (1995), who theorized that since Thaliacean (doliolid) occur-
rences are mostly episodic in nature, they do not occur continuously on the
SEUSS throughout the year, and thus are most likely imported via the Florida
current from the Gulf of Mexico. The response times and growth rates of the
doliolids seen in the model, without a definitive source, could support either
theory. Adding advective inputs to the model could help to resolve this issue.

It should be pointed out that doliolids grow from ~1 to 10 mm, with body size
exhibiting a strong control on filtration and excretion rates. This model,
however, simplifies the doliolid life history by representing gonozooids and
phorozooids as a single size-averaged class. Smaller doliolids would not be able
to ingest copepod eggs and would be able to compete with the copepods only
through indirect methods. The inclusion of a juvenile doliolid class would shift
some of the doliolid biomass to the small size fraction, potentially reducing the
ingestion of copepod eggs and thus moving some of the biomass from the
doliolids back into the copepods.

Implications and future direction

The simulation results shown in this study approximate the observed biological
processes for the waters affected by the Charleston Gyre, notwithstanding that
the model currently represents only a part of the SEUSS food web. While, by def-
inition, all models provide a truncated version of the real world, additional
components can be added to try to compensate for this inherent limitation. For
the system considered in this study, the addition of two planktonic components,
cyclopoid copepods and protozooplankton, would be desirable.

Cyclopoid copepods would provide a species with feeding and breeding habits
that differ from calanoid copepods. The ability of the cyclopoid copepods to hold
onto the eggs during the initial development could prevent doliolids from ingest-
ing the same proportion as of calanoid eggs, which could result in greater concen-
trations of the cyclopoids.

Protozooplankton, especially ciliates, are an integral part of the SEUSS water
column. The exclusion of bacteria and protozoa from the model could explain why
the small phytoplankton size class needed a higher death rate than the large phyto-
plankton class to produce the phytoplankton composition observed in SEUSS
waters. Ingestion by ciliates could equal or exceed that of doliolids. Microzoo-
plankton, if included in the model dynamics, would most likely lower the f-ratio of
all the scenarios and would lower the contribution of ammonium by the doliolids.

The simulations show that, when present, doliolids can reach maximum
concentrations 5–7 days after the onset of an upwelling-induced phytoplankton
bloom and their presence results in a rapid decrease in copepod concentrations,
with the doliolids eventually displacing the copepods. This clearly suggests that
the doliolids can have a major effect on nutrient and carbon cycles on the south-
eastern shelf and are deserving of future study, experimentally and theoretically.
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Appendix: Model equations and parameters as given in Hofmann and
Ambler (1988). Modifications for doliolids are enclosed in braces, i.e. {}

dLP PmI Chl NO3 NH4——– = ——— —— 3————– s + ————– 4 LP – dLPLP
dt Ik + I C kn + NO3 ka + NH4

(A-1)
5 Wi,1LP D

– ∑ ———– Imi 1 1 – e–giEPNi 2 ZNi 5 – —— LP ·Fdol ·K 1LP,TLP 2 6
i = 3 EPNi DT

dSP PmI Chl NO3 NH4——– = ——— —— 3————– s + ————– 4 SP – dSPSP
dt Ik + I C kn + NO3 ka + NH4

(A-2)
5 Wi,2SP D

– ∑ ———– Imi 1 1 – e–giEPNi 2 ZNi 5 – —— SP ·Fdol ·J 1 SP,TSP 2 6
i = 2 EPNi DT

C
Pm = 12µ – 12 ——– (A-2.1)

Chl

µ = 1.850(1.048)T (A-2.1.1)

dNO3
2 PmI Chl NO3 S0/L during upwelling events

——– = – ∑ 3——— —— ————– s 4 Pj +5 (A-2.2)
dt j = 1 Ik + I C kn + NO3 0 during all other times

t – 6
sin 1——2 p for 6 < t < 18

24I(t) = I0 5 (A-2.2.1)
0 for t < 6 or t > 18

NO3 1µg l–12 = 14.01(38.21 – 1.67T) (A-2.2.2)

s = e–bNH4 (A-2.2.3)

dNH4
2 PmI Chl NH4

5

——– = – ∑ 3——— —— ————– 4Pj + ∑ 1hi + ni EPNi2ZNidt j = 1 Ik + I C ka + NH4 i = 2

5

+ ∑ Gi 11 – ci211 – ri2Imi11 – e–giEPNi2ZNi (A-2.3)
i = 2

5+ bD ·aDWb + Gd 11 – AE211 – rd2D6

EPNi = Wi,SPSP + Wi,LPLP · H1LP,TCOP,i2 (A-2.4)

H1LP,TCOP2 = 0 for LP < TCOP (A-2.5)
H1LP,TCOP2 = 1 for LP ≥ TCOP

J1SP,TSP2 = 0 for SP < TSP (A-2.6)
J1SP,TSP2 = 1 for SP ≥ TSP

K1LP,TLP2 = 0 for LP < TLP (A-2.7)
K1LP,TLP2 = 1 for LP ≥ TLP
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dZN1 MpZN1 D
———= fEm 11 – e–l(I5 – E0)2ZN5 – Dm1,2ZN1 – 1————2ZN15– —— ZN1 · Fdol6 (A-3)

dt k1 + ZN1 DT

dZNi——— = ciImi 11 – e–giEPNi2ZNi – (hi + niEPNi)ZNidt (A-4)
MpZNi+ Dmi–1,i 11 – e–Li–1EPNi–12ZNi – Dmi,i+1 11 – e–LiEPNi2ZNi – 1————2ZNiki + ZNi

dZN5——— = c5Im5 11 – e–g5EPN52ZN5 – (h5 + n5EPN5)ZN5 – fEm 11 – e–l(I5 – E0)2ZN5dt (A-5)
MpZN5+ Dm4,5 11 – e–L4EPN42ZN5 – 1————–2 ZN5k5 + ZN5

Di(T) = 1/[432DRi(T + 2.97)–2.25] for i = 1, 2, 3, 4 (A-5.1)

dDET 5

——— = ∑ 11 – Gi211 – ci2ri11 – e–giEPNi2ZNidt i = 2
(A-6)5+ 11 – Gd2rd11 – AE2I – DET · N1tm,inv26
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Table A-I. Units, definitions, values and sources for the parameters used in the phytoplankton and nutrient
equations for bottom intrusions and frontal eddies (frontal eddy values, where different, are given in parentheses)

Parameter Units Definition Value Source

LP µg N l–1 Concentration of large phytoplankton size class Variable Calculated
SP µg N l–1 Concentration of small phytoplankton size class Variable Calculated
Pm mg C mg–1 Maximum assimilation number Variable Eppley, 1972

Chl a h–1

I E m–2 h–1 Light intensity Variable Calculated
I0 E m–2 h–1 Maximum light intensity 4.0 Yoder et al., 1983,

1985
Ik E m–2 h–1 Light intensity half-saturation constant 1.11 (1.98) Yoder et al., 1983
Chl C–1 mg Chl a Chlorophyll a:carbon ratio 0.025 Yoder et al., 1983

mg–1 C
NO3 µg N l–1 Nitrate concentration Variable Calculated
NH4 µg N l–1 Ammonium concentration Variable Calculated
kn µg N NO3 concentration at half-maximum uptake rate 21.7 (0.0) Hofmann and

Ambler, 1988
ka µg N NH4 concentration at half-maximum uptake rate 0.658 (0.0) Hofmann and

Ambler, 1988
s None NH4 inhibition of NO3 uptake Variable Calculated
dSP day–1 Natural death rate of the small phytoplankton 0.138 Estimated this

size fraction study
dLP day–1 Natural death rate of the large phytoplankton 0.068 Estimated this

size fraction study
TCOP µg N l–1 Copepod feeding threshold on the large See Table Frost, 1975

phytoplankton fraction A-III
TLP µg N l–1 Doliolid feeding threshold on both 0.12 Estimated this 

phytoplankton fractions study
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Table A-III. Values for the parameters used in the copepod equations where different values are
needed for different copepod size fractions. Units and sources are listed in either Table A-I or A-II

Parameter ZN2 ZN3 ZN4 ZN5

WSP 1.0 0.33 0.103 0.085
WLP 0.0 1.0 1.0 1.0
Dm 0.321 0.193 0.365 –
DR 8.32 13.85 7.35
L 1.119 1.102 1.118 –
Im 1.096 1.326 1.702 1.872
h 0.3942 0.2613 0.1134 0.1339
n 0.0062 0.0034 0.0010 0.0005
g 0.236 0.160 0.096 0.080
Gi 0.5 0.4 0.2 0.1
TCOP – 0.051 0.404 0.880
BW 0.0104 0.0509 0.403 0.880
ri 0.003 0.03 0.10 0.10

Table A-II. Units, definitions, values and sources for the parameters used in the copepod equations

Parameter Units Definition Value Source

ZNi µg N l–1 Concentration of size fraction Variable Calculated
f None Sex ratio (fraction of females) 0.85 Checkley, 1980a
Em day–1 Maximum egg production 0.5 Landry, 1983
l day–1 Egg production rate constant 1.848 Landry, 1983
Wi None Selectivity coefficient See Table A-III Ambler, 1986
Dmi,j day–1 Maximum development rate See Table A-III G.-A.Paffenhöfer,

unpublished
DR None Ratio of minimum development See Table A-III Checkley, 1980b

time:egg development time @ 20°C
L l µg N–1 Development rate constant See Table A-III G.-A.Paffenhöfer,

unpublished
c None Assimilation efficiency Variable Calculated
Imi day–1 Maximum ingestion rate See Table A-III Vanderploeg

et al., 1984
h day–1 Excretion rate constant See Table A-III Paffenhöfer

and Gardner, 1984
n µg N–1 Excretion rate constant See Table A-III Paffenhöfer

and Gardner, 1984
g l µg N–1 Ingestion rate curve constant See Table A-III Vanderploeg

et al., 1984
Mp µg N l–1 Maximum predation rate Variable Hofmann and

Ambler, 1988
Gi day–1 Fecal pellet remineralization rate See Table A-III Hofmann and

Ambler, 1988
ki µg N l–1 Half-maximum predation rate 0.005 Hofmann and

Ambler, 1988
BW µg N Body weight See Table A-III Paffenhöfer, 1984b
ri None Fecal pellet sinking ratio See Table A-III Hofmann and

Ambler, 1988
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