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1. INTRODUCTION

In the second week of July the four authors sat together in the
Mathematical Institute in Erlangen to discuss various problems on approx-
imation and got stuck on a problem of finite dimensional discrete linear
approximation. For the second named author it is one of her research
areas, and a recent exchange with the third named author fostered the
discussion. But before we get into detail, we have to introduce the
necessary notation.

Let R" be the n-dimensional (Euclidean) space of column vectors. The
p-norm of a vector x in R" is denoted by |lx|l, == (X/_,|x,|")/? for
1 <p <»and by [xl]. = max,_;_,lx;| for p = . For convenience, we
use || - || as the 2-norm || - ||,. For a subspace U of R”, the problem of best
[ -approximation of a vector x in R" by elements of U is to find a vector
u* in U such that

||x—u*||p=min{IIx—ullp:ueU}. (1)
Let I, ,(x) be the set of all best /,-approximants of x in U; i.e.,
My, (x) = {w* € U:llx = u¥ll, = min|lx - ul, ).

Then 11 , is called the metric projection from R" to U with respect to the
p-norm.

For 1 <p <, Il , defines a continuous point-valued mapping be-
cause of the strict convexity of the norm, while for p = 1 or p = o, itis in
general set-valued; i.e., for x € R”, Hu,p(x) might contain infinitely many
elements. In fact, Hu,p(x) is a closed convex polytope. In this case, the
metric projection Il , is Lipschitz continuous as a set-valued mapping
with respect to the Hausdorff metric; i.e., there exists a positive constant -y
(depending only on U) such that (cf. [17])

H(Iy ,(x), Iy ,(y)) <y-llx =yl forx,yeR" p=1lore=; (2)
here

H(S,.,S,) = max{ max dist(x, S,), max dist(y, Sl)}
XES,; YES,

denotes the Hausdorff distance of the sets S; and S, and dist(x, S,) ==
min{|lx — vll: v € §,} the distance from the point x to the set S,. Conse-
quently, if II, (x) (or II, .(x)) contains exactly one element for every x
in R", then the metric projection II,, (or Il .) is point-valued and
Lipschitz continuous (as a mapping from R” to R").
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Since II, ,(x) (with p = 1 or =) is a compact convex set for each x, it
follows from (2) that one can use the Steiner point selector to get a
Lipschitz continuous selection for I , (cf. [2] and references therein).
(Recall that a mapping o: R" - U is called a selection for Iy, if
o(x) € Il (x) for x € R".) However, the Steiner point selector requires
information on the whole set HU’p(x); thus it is not a practical way to
construct a Lipschitz continuous selection for II ,. The most intensively
investigated selection for I, . is the strict best approximation, denoted by
sba, that can be defined as the limit of II, , as p — o

sba(x) := IJi_r)anU,p(x) for x € R". (3)

The strict best approximation was introduced by Rice as the best of best
approximations. The limit (3) was first proved by Descloux and was
rediscovered later by Mityagin [19]. For the computation of the strict best
approximation, see [9, 1, 3]. Even though sba was believed to be a
continuous mapping, a formal proof based on generalized inverses first
appeared in [10]; another proof can be found in [5]. The limit (3) gives an
easy description of sha(x), but it does not reveal much about the proper-
ties and structure of strict best approximation. Recently, Finzel [6] used
Plticker-Grassmann coordinates to give a complete structural description
of sba. As a consequence, she proved that R" can be subdivided into
finitely many polyhedral cones where on each of them sba is a linear
mapping and, hence, sba is Lipschitz continuous. For further properties
and references on strict best approximation, see [6, 13].

The selection for II, ; corresponding to sba is the natural best approxi-
mation, denoted by nba, which is defined by the limit of I1, , as p — 1*
[15]:

nba(x) = Iim+HU1p(x) for x € R". (4)

Landers and Rogge [15] proved that for each x, lim,_, . Tl ,(x) exists
(i.e., nba(x) is well-defined). Independently, Fischer [8] also proved the
existence of this limit. In addition, Landers and Rogge [15] characterized
nba(x) as the unique solution of the following minimization problem:

n
min{ Y |x; — w;l - loglx; — u,l: u € I, 4(x) forx € R". (5)
i=1

We should point out that in 1921, Jackson already established the limit
relation (4) for the median (corresponding to the case dim U = 1). See [4,
7] for more references on the natural best approximation. However, the
objective function in (5) is not a differentiable function and, hence, there is
no standard approach for studying stability properties, in our case, Lip-
schitz continuity.
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Our approach to establish the Lipschitz continuity of sha and nba,
without studying the structure of the mappings directly, is to prove the
uniform Lipschitz continuity of II, , with respect to 1 <p < o, which is
the main aim of the paper. The result is summarized in the following
theorem.

THEOREM 1. Let U be a linear subspace of R". Then there exists a
positive constant A such that

Ty ,(x) =Ty ()| < A-llx =yl forx,y €R" 1 <p <. (6)

As a consequence, the strict best approximation sba and the natural best
approximation nba are Lipschitz continuous selections for 11, ,, and 1l 4,
respectively.

The theorem was conjectured in [15] in connection with a general
discussion on best approximation in polyhedral spaces, which was moti-
vated by the paper of Holmes and Kripke [12] on smoothness of best
approximation in Banach spaces. In [12], Holmes and Kripke proved that
1 , is Lipschitz continuous for each p € (1, ). Their proof was given for
L,,(T, w) with a nonatomic measure w on a compact Hausdorff space T,
and because of that, they had to restrict their arguments to 2 < p < 0. But
for R" endowed with p-norms, their proof holds true for 1 <p < 2 as
well. That is, for 1 < p < o,

||Huyp(x) —Huyp(y)” s)\p-IIx—yII, for x,y € R", (7)

where A, is some positive constant depending on U and p only.

Technically, (6) is an improvement of (7). The improvement comes from
the analysis of the Jacobian of II, ,, which led us to the following
theorem about matrix inequalities.

THEOREM 2. Let B be an n X n matrix. Then there exists a positive
constant A such that

IWByll < A-IIBB*WByl  fory € R™ and W = diag(w,. ..., w,)
withw; > 0, (8)

where B is the pseudo-inverse of B and diag(w, . ..,w,) the diagonal matrix
whose ith diagonal entry is w;,.

If we define U to be the column space of B; i.e., U :={By: y € R™},
then (8) can be interpreted as follows: the norm of a scaled vector in U is
uniformly bounded by the norm of the orthogonal projection of the scaled
vector to U. Hoffman’s error bound, see [11], for approximate solutions of
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linear inequalities and equalities turns out to be the key in establishing (8).
The reason is that the set generated by scaling vectors in U is a union of
finitely many polyhedral sets. In addition, we can even give an explicit
estimate of A in (6) in terms of submatrices of any matrix whose columns
form an orthonormal basis of U. For further applications of Hoffman’s
error bound in connection with best approximation in polyhedral spaces
see [17].

The paper is organized as follows. Section 2 is devoted to the study of
the matrix inequality (8) and its ramifications. In Section 3, we establish an
estimate of the Jacobian of II, , based on (8). Then we give two proofs of
Theorem 1: one is self-contained and another is a simpler proof based on
Lipschitz continuity of I, , proved by Holmes and Kripke.

To conclude this section we introduce commonly used notations in this
paper. For a matrix A (or a vector x) and an index set J, we define A4, (or
x;) to be the matrix (or the vector) consisting of rows of A4 (or components
of x) whose corresponding indices are in J. In particular, A4, (or x;)
represents the ith row (or ith component) of A4 (or x). For an index set
Jc{l,...,n}, let J¢:=={1,...,n}\J be the complement of J. The dot
product in R” is denoted by (x,y) = X! ,x;y; for x,y € R". For an
n X m matrix B, its spectral norm is defined by || Bl :== max{||By|: y € R™
with ||yl < 1}. The k X k identity matrix is denoted by I, and sometimes
we also use I as the identity matrix if there is no confusion about its
dimension. For the relative interior of a subset K of R”, we will use the
symbol ri(K). Finally, a subset K of R” is called a polyhedral set if it is an
intersection of finitely many closed half-spaces.

2. HOFFMAN’S ERROR BOUND AND MATRIX
INEQUALITY

As preparation of the proof of Theorem 2 we formulate and prove four
lemmas.

LEMMA 3. Let B be an n X m matrix. Then
(x —BB"x,By) =0 forx € R", y € R™. 9)
Proof. 1t is well known that B*x is the least norm solution of the
following least squares problem:
min 3llx — Byll*. (10)
yeR™
By a characterization for an optimal solution of (10), we have BT(x —
BB*x) = 0, which implies
<x—BB+x,By>=<BT(x—BB+x),y> =0 forxeR",yeR™. 1
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LEMMA 4. Suppose that B is an n X m matrix, D a symmetric positive
semidefinite matrix, and y € R™. If BB*DBy = 0, then DBy = 0.

Proof. Let u = By and x = Du. Then BB*x = 0. By (9) in Lemma 3,
we have

u'Du = {Du,uy = {x,By) = {x — BB*x, By) = 0.
Since D is symmetric and positive semidefinite, there exists a matrix Q

such that D = Q7Q. Thus, |Qull* = u"Du = 0; i.e., Qu = 0. So DBy =
Du=0"(Qu)=0. 1

LEMMA 5. If X is a subset of R", then the set
V= {Wx: x € Xand W = diag(wy,...,w,) withw;, > 0} (11)

is a union of finitely many convex polyhedral sets.

Proof. For any € = (e,,..., €,) with ¢ € {—1,0,1}, define the octant
corresponding to e, denoted by Oct(e), as

Oct(e) = {x € R": gx; >0  fore # 0,and x;, = 0 for ¢ = 0}.
Let
Iy={e=(e.....¢) €{-1,0,1)": X nri[Oct(e)] # 2}
First we claim that

Vc U Oct(e). (12)

esly

Let x € X and define € = sign(x), where sign(x) = (sign(x,), ..., sign(x,)).
Then

Oct(€) = {Wx: W = diag(wy, ..., w,) with w; > 0}.
Moreover, x € X N ri[Oct(e)]. So € € 1, which implies

V= U {wx: W =diag(w,,...,w,) withw, > 0} ¢ |J Oct(e),

xeX ee IX

proving (12).
Next we prove that Oct(e) c V for e € . Let € € 1. Then there
exists x € X such that sign(x) = €. (Note that x € ri[Oct(e)] if and only if
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sign(x) = €.) Let v € Oct(e). Define

v;/x; ifx; #0

YiT o if x, = 0.

Since sign(v;) = € = sign(x;) when v; # 0, we have w; > 0 for 1 <i < n.
Note that v, = w;x, for 1 <i < n; i.e.,, v = Wx with W = diagw, ..., w,).
So v € V and therefore,

V= U {(wx: W =diag(w,,...,w,) withw, > 0} > |J Oct(e).

xeX ecly

Since Oct(e) is a convex polyhedral set and 1, finite, V is a union of
finitely many convex polyhedral sets. |

LEMMA 6 (A Variation of Hoffman’s Error Bound). Let X be a polyhe-
dral subset of R" and S == {x € X: Ax = b}. Then there exists a positive
constant A (depending only on X and A) such that

dist(x,S) < A-|lAx — bl forx € X. (13)
Proof.  Since X is a convex polyhedral set, there exist a matrix C and a
vector d such that X = {x € R": Cx < d}. Then by Hoffman’s error bound

for approximate solutions of systems of linear inequalities [11], there exists
a positive constant A such that

dist(x,8) < A-(l4x = bl +[(Cx = d),|) forx e R", (14)

where z, denotes the vector whose ith component is max{z;, 0}. Note that
x € X if and only if (Cx — d), = 0. Thus, (13) follows from (14). 1

Proof of Theorem 2. \We claim that for an n X m matrix B there exists
a positive constant A such that

IWByll < A-IIBB*WBy|l  for y € R™ and W = diag(wy,...,w,)
with w; > 0. (15)
Let X :={By: y € R™} and
V= {Wx: x € X and W = diag(wy, ..., w,) with w; > 0}.

Then by Lemma 5 the set V is a union of finitely many convex polyhedral
sets (V,V,,..., Vi) ie.,

<
Il
ic-
=
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By Lemma 6, there exist positive constants A; such that
dist(v,S;) < A;-lIBB*vll  forov eV, (16)
where
S;={ze€V;:BB*z =0}.
Let z € §,. Since z € V; C V, there exist y € R™ and a diagonal matrix
W = diag(w,, ...,w,) with w; > 0 such that z = WBy. Since z € §;, we
have BB*WBy = BB*z = 0. Since W is symmetric and positive semidefi-

nite, it follows from Lemma 4 that z = WBy = 0. Therefore, S; = {0} and
dist(v, S;) = |lvll. The inequality (16) actually reads

loll < A;-IBBToll  forov e V. (17)
Setting A == max{A;: 1 <i < k}, we obtain

loll < A-lIBBToll  forveV. (18)
By the definition of V , we know that the inequality in Theorem 2 holds. I

Remark. If we allow a bigger motion of the subset X than multiplica-
tion with a positive diagonal matrix, then Theorem 2 does not hold any
more. To be precise, let D be a symmetric positive semidefinite matrix,
X ={DBy: y € R™}, and S :={x € X: BB*x = 0}. Then, by Lemma 5,
S = {0}. It follows from Lemma 6 that there exists a positive constant A(D)
such that

dist(x,S) < A(D) -[|BB*x|  forx € X;
i.e.,

IDBy|l < AM(D) - ||BB* DBy|| for y e R™. (19)
Thus, in the light of Theorem 2, one might expect that the A(D) in (19) are
uniformly bounded for all symmetric positive semidefinite matrices. How-

ever, the following example shows that the A(D) in (19) are not uniformly
bounded with respect to all symmetric positive semidefinite matrices.

1

Letn=2,m=l,y=1e[R,B=(1),77/4<oz<7-r/2,
V2

0= [cose —sina), W=(W 0)’ W= ,
SIN @ — COS «

sinae  CoS & 0 O
and D = QTWQ. Then Q is the orthogonal matrix that represents rotation
by the angle « and D = QTWQ is a symmetric positive semidefinite
matrix. By matrix multiplications, we obtain

— COS
DBy = Q"WQBy = \/E( .in a“).
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Since B*= (B'B)"'B” = }(11), we can compute

1
BB*DBy = —(
Ny

sin @ — coS «
sina —cos a )’

So

I DBy || V2
MD) 2 o = — -
IBB*DBy||  sin a — cos a

(20)

Therefore, A(D) is unbounded as « — (7r/4)*. As a consequence, Theo-
rem 2 fails to be true if we allow W to be an arbitrary symmetric positive
semidefinite matrix.

COROLLARY 7. Let Q be an n X m matrix with rank m. Then there exists
a positive constant vy such that
IWoyll < y-11Q"WQyll  fory € R™ and W = diag(w,, ..., w,)
withw; > 0. (21)

Proof. Since the columns of Q are linearly independent, Q*=
(QTQ) Q7. Thus, by Theorem 2, there exists a positive constant A such
that

Iwoyl < - o(0"0) 0" woy |
for y € R™ and W = diag(w,,...,w,) withw, > 0.

Since [|Q(QTQ) z|| < I0(QTQ) | - || zll, the above inequality implies

WOyl < v- 10" Wyl
for y € R” and W = diag(w,,...,w,) withw; > 0,

where y = AlQ(QTO) I 1

Remark. By using explicit estimates of Lipschitz constants for feasible
solutions of a system of linear equalities and inequalities, we can get
explicit estimates of A in Theorem 2 and y in Corollary 7. For illustration
purpose, we derive the following estimate for vy,

WOyl < 7 - 10" Woyll
for y € R™ and W = diag(w,,...,w,) withw; > 0, (22)
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: Q; isanonsingular m X m matrix ).

0 0!

(Inm _QJ"Q;1

v = max{

Let X :=={Qy: y € R™} and let V,Oct(e), I, be defined as in the proof
of Lemma 5. Let € = (e, ..., €,) € 1, and consider the following system
of equalities and inequalities,

Q'x=b and  Ax <0, (23)

where b € R™ and

_[J+

I]

A = ) ’

I,

_Ifo
I is the n X n identity matrix, J,=={i: ¢, = 1}, J_=={i: ¢ = —1}, and

Jy = {i: ¢, = 0}. (Note that Ax < 0 if and only if x € Oct(e).) Let S(b) be
the solution set of (23). By the remark on page 34 in [18], we have

H(S(b),S(b)) <7vy-llb =0 for b,b' € R™, (24)
where
- A\ (45 ) )
Y = max T : + | isanonsingular n X n matrix ; .
J 0 0

For any x € Oct(e), let b = Q"x and b' = 0. Then S(b') = {0} (by Lemma
4and Q"= (QTQ) Q") and x € S(b). So (24) implies

Ixll < H(S(b),S(b)) <F-llb— bl =75-11Q"xl
for x € Oct(e), e € 1. (25)

Since the rows of A4; are rows of I or —I, let D = diag(d,, ..., d,) be
such that d;, = +1 and
1,
= o]’

Aj
D QT
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where J is some index subset of {1,...,n}. Since D is an orthogonal
matrix, we have

) e
0 0
TR e O TR o
Mot |\ e of
_ In—m Q]C - _ In—m _Q]‘Q]_l
0 o 0 ot '

where the third equality holds since we only exchange columns of the

matrix
I c
QT

the fourth one follows from ||B|| = [|B]|, and the last equality is derived

. . I, _ D e
from the calculation of the inverse of ( " QQ’ .
J

(22).

-1

Thus, (25) is equivalent to

3. UNIFORM LIPSCHITZ CONTINUITY OF BEST
[,-APPROXIMATION

For x € R", consider the best / -approximation problem of finding
ITy ,(x) in a subspace U of R" such that

||x—HU’p(x)||p=min{||x—u||p:ueU}, 1<p<.

As we pointed out in the Introduction, Holmes and Kripke actually proved
that for each p € (1, ), there exists a positive constant A, such that

|y ,(x) =y (M), <A, -lx=yl, forx,yeR". (26)

We want to show that A, in (26) is uniformly bounded for 1 < p < . We
start with an estimate on the Jacobian of the metric projection II .

THEOREM 8. Let U be a subspace of R". Then there exists a positive
constant vy such that

[V.IIy (x)| <y forl<p<w» xeD, (27)
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where

D, = <xER":(x—HU'p(x))i#0 forlsiSn}. (28)

Proof. Let U be a matrix whose columns {u*,...,u™} form an or-
thonormal basis of a subspace U of R”. Since HU,p(x) is unique for each
1 < p < «, there exists a unique vector

tl,p(x)
1,(x) = ;
tm,p(‘x)
such that
Hu,p(x) = kgltk,p(x)uk = Utp(x). (29)

Let the function f,: R" X R™ — R be defined by

m p

x— Y tuf

k=1

(30)

1
fp(x’t) ::; ,

Then for each fixed x, the gradient of f, with respect to ¢ has to be zero
at t,(x); i.e., V,f,(x,¢,(x)) = 0. Thus, for any given x, ¢,(x) is the unique
solution of the following system of nonlinear equations:

)»

p—1 m
sign(x,— Ztkuf)u’,=0, forl <i <m.
r=1

k=1
(31)

Let X € D,. Then V,f,(x,¢) is continuously differentiable with respect to
(x, 1) in a neighborhood of (%, 7,(%)). In fact,

m

k

X — E tkur
k=1

&Zf x,t n m p-2 L.
LD oy |x - S| ww, fori<igem,
5tlﬁfj r=1 k=1
(32)
and
aZ x,t m P2 .
; 0X; k=1

(33)
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Equivalently, we have the following matrix representations of the Jaco-
bians V,7f,(x, ) and V} f,(x, ), respectively,

Vif,(x,t) =(p—1HU'WU  inR"™"™, (34)
Vtifp(x,t) =1 -pu'w in R™*", (35)
where W = diag(w,,...,w,) and w, = |x, — Xy t,u’|”"% Since w, > 0

for (x, ¢) in a neighborhood O(X, 7,(%)) of (%, ¢,(X)), the Jacoblan Vif, (x 1)
is a positive definite matrix and continuous in O(%, 7,(¥)) with respect to
(x,1). By the implicit function theorem, ¢, is a differentiable function of x
in a neighborhood O(x) of x. Moreover,

Vo, (x) = = [V2f, (2. 1,(x))] VAL (2 1,(x))

—[(p = )UTWU] A - p)UTW = [UTWU] 'UTW. (36)

The gradient is an m X n matrix whose (i, j)th entry is d¢, (x)/dx;. Thus,
we obtain

v, ’
Iyl =, o] | = s w
_ o ) v Wy
_iig p||UTWUy|| i#om_ (37)

where the first equality follows from the definition of the norm of an
adjoint matrix, the second one is by the definition of the spectral norm, the
third one follows from the nonsingularity of U” WU, the fourth is derived
from (36), and finally, the last inequality follows from Corollary 7. Since

Iy ,(x) = Ut,(x), by the chain rule, we get VIl (x) = UV,,(x) for
X € O(x) Since Ul = 1,

[0ty (D) [ = [UVet, (D) | < IO Vet () | = [V, (D) | <,
where vy is independent of ¥ € D, and p € (1,). 1

Remark. 1t follows from the remark after Corollary 7 and (37) that if U
is an n X m matrix whose columns form an orthonormal basis of U, then

[V, I, ,(%¥)| <y forxeD, (38)
where
— In—m _UCL/vj_l . . .
Y := max ., : U, is a nonsingular m X m matrix ) .
7 0 U;
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Proof of Theorem 1. Now we are ready to prove Theorem 1: If U is a
subspace of R”, then there exists a positive constant A such that

[Ty ,(x) =Ty (»)][<A-llx =yl forx,y e R",1<p <o (39)

We prove the theorem by induction. Obviously, if dim U = 0, then (39)
holds. We make the inductive hypothesis that (39) holds for any »n and any
subspace U of dimension less than m. Now assume that U is an m-dimen-
sional subspace of R".

Let J = {j: there exists u € U such that u; # 0} and let u € U. Then
u; =0fori & J. If U, == {u,: u € U} denotes the restriction of U to the J
components, [T, ,(x)];, = Iy ,(x,). Therefore, if there exists a positive
constant A such that

Iy, () = My, ,(v) || < A-llx, =yl forx,y € R", 1 <p <o,

then (39) holds. Thus we may replace U by U, and assume that there
exists u € U such that u; # 0 for 1 <i < n.

Let U :={yu e U: u; =0}, 1 <i<n. Then dimU® < dimU (since
U\ U® = ). By our inductive hypothesis, there exists a positive constant
B such that

[Ty (x) = Myo (¥)||<B-llx =yl  forx,yeR" 1<p <o
(40)
Define

D,=={reR"[x—T, (x)],#0 forl<ix<n},

P i

andforl <i<n

D, = {x e R": [x — Iy ,(x)],=0}.

Pt

By Theorem 8, there exists a positive constant y such that (27) holds. Then
it follows that

[Ty, (x) = Ty ,(») [ < v-llx =yl
whenever 1 <p < and x,y € D, with x + (1 — 6)y €D,
for0<6<1. (41)

This proves the desired estimate locally on D, with the global Lipschitz
constant y. To prove (39), i.e., to prove Lipschitz continuity of the metric
projection on R" uniformly with respect to 1 < p < o, we first have to
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investigate the behavior of I1, (x) for x €D, ;, 1 <i <n. Let U be an
n X m matrix whose columns form a basis of U and let tp(x) e R™ be
such that

HU'p(x) = Utp(x). (42)
Then, for x € D, ;, we have
Uty(x) = [Ty ()], = x;. (43)
Since there exists u € U such that u; # 0, U; has to be a nonzero row. Let
L,=U"(UU") 'x; and T, =1,(x) —1, (44)
Then
l]itp = l]itp(x) - (Jzzp =X X = 0. (45)

That is, Uz, € U®. Moreover, for any u € U®,
[(x = 0g,) = ul, =[x = (U7, + w)[, =[x = 10y ,(x)],

=l(x = vi,) = Uz,
Thus,
My ,(x = UL,) = Ul,. (46)
It follows from (42), the second equality in (44), and (46) that
My (x) = Ui, + Mo ,(x - UL,). (47)

From the above identity and the first equality in (44) we derive the
following explicit representation of HU’p(x) in terms of Iy ,:

Iy ,(x) = UUT(UUT) " x; + Hyo,(x - UGT(GUT) 'x))
forx €D, ;. (48)

It follows from (40) and (48) that there is a positive constant n, indepen-
dent of 1 < p < o, such that

[Ty (x) =Ty (»)| <n-llx=yll  forx,yeD,, 1<i<n. (49)
Let A := max{n, y}. We claim that
||Hu‘p(x) — HU]p(y)” < A-lx =yl forx,y e R",1 <p <, (50)

which will complete the proof.
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For x,y € R", define x’ = 0y + (1 — 6)x and
0o = max{0:0 < 0< 1, ||y ,(x*) = Ty ,(x)] < A-lx’ = xll}. (52)

If 6, =1, then (50) holds. Assume to the contrary that 0 < 6, < 1. We
discuss two cases. First assume that there is 6, < 6, < 1such that x’ € D,
for 6, < 6 < 6,. Then, by the continuity of IT;, , and (41), we obtain

|y p(x%) =y ,(x™)

= lim _lim [Ty ,(x%) = I, (%)

50_’ 05 51_’ 01

< lim lim y-llx% — xP% < A~ | xf — x|,
60— 05 6,— 67

Otherwise,

n

1
{x9:00<0<00+—}ﬁ # fork=1,2,....

k

D,
1

i=

Therefore an index i exists such that
o 1
X:6°<6<0°+E NnD,,#4d fork=1,2,....

As a consequence, there exist 1 > 6, > 6, > --- 6, > --- = 6, such that
x% € D, ; and

lim x% = x%.

k— o
By (49) and the continuity of II,, , we derive that
1Ty, (x%) =TIy, (x™) Jim [Ty, ,(x%) = Ty, ,(x™)

lim - [[x% — x%| < A -[[x% — x%].
k—

IA

So, in both cases, we have
[Ty, (x%) = Ty ,(x) |
S”Hva(xel) N HU,P(XQO)” +||HU~p(x90) B HUYP(X)”
< A-llxf —x%] 4+ A lx% — x| = A |[x% — x]|. (52)

By the definition of 6,, we must have 6, > 6,, a contradiction to the
choice of 6,. So 6, = 1 and (50) holds. 1
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Remark (A Second Proof of Theorem 1). Note that our proof of
Theorem 1 is self-contained. There is a shorter proof of Theorem 1 by
making use of the estimate (26) of Holmes and Kripke. Let U be an
m-dimensional subspace of R" and let

D, = {xeR" (x— 1 (x)),#0 forl<i<n).

Define
J={irz;#0 forsomeze U"'}. (53)

Note that i € {1,...,n}\J if and only if ¢, € U. Hence we get the
representation

U={ueU:uy=0 forigJ}e{ueRu=0 foriel}
and, for x € R”,
X; fori & J,

My p(x); = [Huj,p(x])]i forielJ. (54)

Thus, it suffices to prove Theorem 1 for U, == {u,: u € U}. However, by
the definition of J, (U,)* = (U *),, containing a vector z such that z; # 0
for i € J. Replacing U, by U, we may assume that for each i the subspace
U+ contains a vector z such that z;, # 0. Under this assumption we will
show that the complement of D, is a set of measure zero.

Let 7, be the continuous bijection of R" defined by

[T,()], = sign(y)ly,["*~P  fory e R".

Let H;:={x € R": x, = 0} be a coordinate hyperplane in R". By the
Kolmogorov characterization of best approximations, the kernel of II ,
(the so-called metric complement of U), denoted by ker(Ily ,), is exactly
T,(U ™).

pSince there exists z € U+ \H,, the dimension of the linear subspace
U* NH, is less than dimU*=n — m. So T,(U~* NH,) is a manifold of
dimension less than (n —m) and U + T,(U* NH,) is a manifold of
dimension less than n. Therefore, U + 7,(U * NH,) has measure zero in
R". Note that

R"\D, = U {reR": [x - I ,(x)], =0}

i

{[ker(11, ) N H;] + U}

Il
C=s LC: lC:

| {[TP(UL) N T,(H)| + U} = Ln) {T,(U* nH,)) + V).

Consequently, R" \ D, is a set of measure zero.
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By Theorem 8, the Jacobian V,II, , of the Lipschitz mapping II , is
bounded by y almost everywhere in R”. By a well-known characterization
of Lipschitz continuous functions (cf. [20, Sect. 2.2.1, Chap. VI]), we obtain

[Ty ,(x) =My ,(»)|[<y-llx—yl  forx,yeR" 1<p <o |

One advantage of the second proof is that it leads to an explicit estimate
of an upper bound for A, in (26). Let J be defined as in (53) and let O be
an n X m matrix whose columns form an orthonormal basis of U,. Then
from the above proof and the remark after Theorem 8, we obtain

Iy, ,(x,) = My, ,(r) [ <F-lx =yl forx,y R 1<p <,
(55)

where

7 = max 0 . : Qy is a nonsinglar m X m matrix
T 7

By (54) and (55) we obtain

Ty (%) =Ty ()| <¥-llx =yl forx,y eR",1<p <o (56)

REFERENCES

1. N. N. Abdelmalek, Computing the strict Chebyshev solution of overdetermined linear
equations, Math. Comp. 31 (1977), 974-983.

2. F. Deutsch, W. Li, and S.-H. Park, Characterizations of continuous and Lipschitz
continuous metric selections in normed linear spaces, J. Approx. Theory 58 (1989),
297-314.

3. C. S. Duris and M. G. Temple, A finite step algorithm for determining the “strict” best
approximation, SIAM J. Numer. Anal. 10 (1973), 690-699.

4. A. Egger and R. Huotari, Polya properties in R”, Numer. Funct. Anal. Optim. 13 (1992),
123-128.

5. M. Finzel, On the continuity of the strict approximation, Rend. Circ. Mat. Palermo (2)
Suppl. 33 (1993), 301-310.

6. M. Finzel, Linear approximation in I3, J. Approx. Theory 76 (1994), 326—350.

7. M. Finzel, Best linear approximation in /,(n), East J. Approx. 2 (1996), 1-30.

8. J. Fischer, The convergence of the best discrete linear L, approximation as p — 1,
J. Approx. Theory 39 (1983), 374-385.

9. R. Fletcher, J. A. Grant, and M. D. Hebden, Linear minimax approximation as the limit
of best L ,-approximation, SIAM J. Numer. Anal. 11 (1974), 123-136.

10. D. Flores de Chela, Approximations in the [, norm and the generalized inverse, Linear
Algebra Appl. 42 (1982), 3-28.



12.

13.

14.

15.

16.

17.

18.

19.

20.

HOFFMAN’S ERROR BOUNDS 201

. A. J. Hoffman, Approximate solutions of systems of linear inequalities, J. Res. Nat. Bur.
Standards 49 (1952), 263-265.

R. Holmes and B. Kripke, Smoothness of approximation, Michigan Math. J. 15 (1968),
225-248.

R. Huotari and W. Li, The continuity of metric projection in L(n), the Pdlya algorithm,
the strict best approximation, and tubularity of convex sets, J. Math. Anal. Appl. 182
(1994), 836-856.

D. Jackson, Note on the median of a set of numbers, Bull. Amer. Math. Soc. 27 (1921),
160-164.

D. Landers and L. Rogge, Natural choice of L,-approximants, J. Approx. Theory 33
(1981), 268-280.

W. Li, Best approximations in polyhedral spaces and linear programs, in “‘Approximation
Theory” (G. Anastassiou, Ed.), pp. 393-400, Lecture Notes in Pure and Applied Mathe-
matics, Vol. 138, Dekker, New York, 1992.

W. Li, A. J. Hoffman’s theorem and metric projections in polyhedral spaces, J. Approx.
Theory 75 (1993), 107-111.

W. Li, The sharp Lipschitz constants for feasible and optimal solutions of a perturbed
linear program, Linear Algebra Appl. 187 (1993), 15-40.

B. S. Mityagin, Extremal points of a family of convex functions, Siberian Math. J. 6 (1965),
556-563.

E. M. Stein, Singular integrals and differentiability properties of functions, in “Princeton
Math. Ser.,” Vol. 30, Princeton Univ. Press, Princeton, NJ, 1970.



	Old Dominion University
	ODU Digital Commons
	1997

	Hoffman’s Error Bounds and Uniform Lipschitz Continuity of Best l(p) -Approximations
	H. Berens
	M. Finzel
	W. Li
	Y. Xu
	Repository Citation
	Original Publication Citation


	Hoffman's Error Bounds and Uniform Lipschitz Continuity of Best lp-Approximations

