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1. INTRODUCTION

In the second week of July the four authors sat together in the
Mathematical Institute in Erlangen to discuss various problems on approx-
imation and got stuck on a problem of finite dimensional discrete linear
approximation. For the second named author it is one of her research
areas, and a recent exchange with the third named author fostered the
discussion. But before we get into detail, we have to introduce the
necessary notation.

n Ž .Let R be the n-dimensional Euclidean space of column vectors. The
n 5 5 Ž n < < p.1r pp-norm of a vector x in R is denoted by x [ Ý x forp is1 i

5 5 < <1 F p - ` and by x [ max x for p s `. For convenience, we` 1F iF n i
5 5 5 5 nuse ? as the 2-norm ? . For a subspace UU of R , the problem of best2

l -approximation of a vector x in R n by elements of UU is to find a vectorp
uU in UU such that

5 U 5 5 5x y u s min x y u : u g UU . 1� 4 Ž .p p

Ž .Let P x be the set of all best l -approximants of x in UU; i.e.,UU , p p

U 5 U 5 5 5P x [ u g UU : x y u s min x y u .Ž . p p½ 5UU , p
ugUU

Then P is called the metric projection from R n to UU with respect to theUU , p
p-norm.

For 1 - p - `, P defines a continuous point-valued mapping be-UU , p
cause of the strict convexity of the norm, while for p s 1 or p s `, it is in

n Ž .general set-valued; i.e., for x g R , P x might contain infinitely manyUU , p
Ž .elements. In fact, P x is a closed convex polytope. In this case, theUU , p

metric projection P is Lipschitz continuous as a set-valued mappingUU , p
with respect to the Hausdorff metric; i.e., there exists a positive constant g
Ž . Ž w x.depending only on UU such that cf. 17

5 5 nH P x , P y F g ? x y y for x , y g R , p s 1 or `; 2Ž . Ž . Ž .Ž .UU , p UU , p

here

H S , S [ max max dist x , S , max dist y , SŽ . Ž . Ž .½ 51 2 2 1
xgS ygS1 2

Ž .denotes the Hausdorff distance of the sets S and S and dist x, S [1 2 i
�5 5 4min x y ¨ : ¨ g S the distance from the point x to the set S . Conse-i i

Ž . Ž Ž ..quently, if P x or P x contains exactly one element for every xUU , 1 UU , `
n Ž .in R , then the metric projection P or P is point-valued andUU , 1 UU , `

Ž n n.Lipschitz continuous as a mapping from R to R .
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Ž . Ž .Since P x with p s 1 or ` is a compact convex set for each x, itUU , p
Ž .follows from 2 that one can use the Steiner point selector to get a

Ž w x .Lipschitz continuous selection for P cf. 2 and references therein .UU , p
Ž nRecall that a mapping s : R ª UU is called a selection for P ifUU , p
Ž . Ž . n .s x g P x for x g R . However, the Steiner point selector requiresUU , p

Ž .information on the whole set P x ; thus it is not a practical way toUU , p
construct a Lipschitz continuous selection for P . The most intensivelyUU , p
investigated selection for P is the strict best approximation, denoted byUU , `

sba, that can be defined as the limit of P as p ª `:UU , p

sba x [ lim P x for x g R n . 3Ž . Ž . Ž .UU , p
pª`

The strict best approximation was introduced by Rice as the best of best
Ž .approximations. The limit 3 was first proved by Descloux and was

w xrediscovered later by Mityagin 19 . For the computation of the strict best
w xapproximation, see 9, 1, 3 . Even though sba was believed to be a

continuous mapping, a formal proof based on generalized inverses first
w x w x Ž .appeared in 10 ; another proof can be found in 5 . The limit 3 gives an

Ž .easy description of sba x , but it does not reveal much about the proper-
w xties and structure of strict best approximation. Recently, Finzel 6 used

Plucker-Grassmann coordinates to give a complete structural description¨
of sba. As a consequence, she proved that R n can be subdivided into
finitely many polyhedral cones where on each of them sba is a linear
mapping and, hence, sba is Lipschitz continuous. For further properties

w xand references on strict best approximation, see 6, 13 .
The selection for P corresponding to sba is the natural best approxi-UU , 1

mation, denoted by nba, which is defined by the limit of P as p ª 1q
UU , p

w x15 :
nba x [ lim P x for x g R n . 4Ž . Ž . Ž .UU , pqpª1

w x Ž .qLanders and Rogge 15 proved that for each x, lim P x existspª 1 UU , p
Ž Ž . . w xi.e., nba x is well-defined . Independently, Fischer 8 also proved the

w xexistence of this limit. In addition, Landers and Rogge 15 characterized
Ž .nba x as the unique solution of the following minimization problem:

n
n< < < <min x y u ? log x y u : u g P x for x g R . 5Ž . Ž .Ý i i i i UU , 1½ 5

is1

We should point out that in 1921, Jackson already established the limit
Ž . Ž . wrelation 4 for the median corresponding to the case dim UU s 1 . See 4,

x7 for more references on the natural best approximation. However, the
Ž .objective function in 5 is not a differentiable function and, hence, there is

no standard approach for studying stability properties, in our case, Lip-
schitz continuity.
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Our approach to establish the Lipschitz continuity of sba and nba,
without studying the structure of the mappings directly, is to prove the
uniform Lipschitz continuity of P with respect to 1 - p - `, which isUU , p
the main aim of the paper. The result is summarized in the following
theorem.

THEOREM 1. Let UU be a linear subspace of R n. Then there exists a
positï e constant l such that

n5 5P x y P y F l ? x y y , for x , y g R , 1 - p - `. 6Ž . Ž . Ž .UU , p UU , p

As a consequence, the strict best approximation sba and the natural best
approximation nba are Lipschitz continuous selections for P and P ,UU , ` UU , 1
respectï ely.

w xThe theorem was conjectured in 15 in connection with a general
discussion on best approximation in polyhedral spaces, which was moti-

w xvated by the paper of Holmes and Kripke 12 on smoothness of best
w xapproximation in Banach spaces. In 12 , Holmes and Kripke proved that

Ž .P is Lipschitz continuous for each p g 1, ` . Their proof was given forUU , p
Ž .L T , m with a nonatomic measure m on a compact Hausdorff space T ,p

and because of that, they had to restrict their arguments to 2 - p - `. But
for R n endowed with p-norms, their proof holds true for 1 - p - 2 as
well. That is, for 1 - p - `,

n5 5P x y P y F l ? x y y , for x , y g R , 7Ž . Ž . Ž .UU , p UU , p p

where l is some positive constant depending on UU and p only.p
Ž . Ž .Technically, 6 is an improvement of 7 . The improvement comes from

the analysis of the Jacobian of P , which led us to the followingUU , p
theorem about matrix inequalities.

THEOREM 2. Let B be an n = n matrix. Then there exists a positï e
constant l such that

5 5 5 q 5 mWBy F l ? BB WBy for y g R and W s diag w , . . . , wŽ .1 n

with w G 0, 8Ž .i

q Ž .where B is the pseudo-in̈ erse of B and diag w , . . . , w the diagonal matrix1 n
whose ith diagonal entry is w .i

� m4If we define UU to be the column space of B; i.e., UU [ By: y g R ,
Ž .then 8 can be interpreted as follows: the norm of a scaled vector in UU is

uniformly bounded by the norm of the orthogonal projection of the scaled
w xvector to UU. Hoffman’s error bound, see 11 , for approximate solutions of
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Ž .linear inequalities and equalities turns out to be the key in establishing 8 .
The reason is that the set generated by scaling vectors in UU is a union of
finitely many polyhedral sets. In addition, we can even give an explicit

Ž .estimate of l in 6 in terms of submatrices of any matrix whose columns
form an orthonormal basis of UU. For further applications of Hoffman’s
error bound in connection with best approximation in polyhedral spaces

w xsee 17 .
The paper is organized as follows. Section 2 is devoted to the study of

Ž .the matrix inequality 8 and its ramifications. In Section 3, we establish an
Ž .estimate of the Jacobian of P based on 8 . Then we give two proofs ofUU , p

Theorem 1: one is self-contained and another is a simpler proof based on
Lipschitz continuity of P proved by Holmes and Kripke.UU , p

To conclude this section we introduce commonly used notations in this
Ž . Žpaper. For a matrix A or a vector x and an index set J, we define A orJ

. Ž . Žx to be the matrix or the vector consisting of rows of A or componentsJ
. Ž .of x whose corresponding indices are in J. In particular, A or xi i

Ž . Ž .represents the ith row or ith component of A or x . For an index set
� 4 c � 4J ; 1, . . . , n , let J [ 1, . . . , n _ J be the complement of J. The dot

n ² : n nproduct in R is denoted by x, y s Ý x y for x, y g R . For anis1 i i
5 5 �5 5 mn = m matrix B, its spectral norm is defined by B [ max By : y g R

5 5 4with y F 1 . The k = k identity matrix is denoted by I and sometimesk
we also use I as the identity matrix if there is no confusion about its
dimension. For the relative interior of a subset K of R n, we will use the

Ž . nsymbol ri K . Finally, a subset K of R is called a polyhedral set if it is an
intersection of finitely many closed half-spaces.

2. HOFFMAN’S ERROR BOUND AND MATRIX
INEQUALITY

As preparation of the proof of Theorem 2 we formulate and prove four
lemmas.

LEMMA 3. Let B be an n = m matrix. Then
² q : n mx y BB x , By s 0 for x g R , y g R . 9Ž .

Proof. It is well known that Bqx is the least norm solution of the
following least squares problem:

1 25 5min x y By . 10Ž .2mygR

Ž . T ŽBy a characterization for an optimal solution of 10 , we have B x y
q .BB x s 0, which implies

q T q n m² : ² :x y BB x , By s B x y BB x , y s 0 for x g R , y g R .Ž .
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LEMMA 4. Suppose that B is an n = m matrix, D a symmetric positï e
semidefinite matrix, and y g R m. If BBqDBy s 0, then DBy s 0.

q Ž .Proof. Let u s By and x s Du. Then BB x s 0. By 9 in Lemma 3,
we have

T ² : ² : ² q :u Du s Du , u s x , By s x y BB x , By s 0.

Since D is symmetric and positive semidefinite, there exists a matrix Q
T 5 5 2 Tsuch that D s Q Q. Thus, Qu s u Du s 0; i.e., Qu s 0. So DBy s

T Ž .Du s Q Qu s 0.

LEMMA 5. If X is a subset of R n, then the set

VV [ Wx : x g X and W s diag w , . . . , w with w G 0 11� 4Ž . Ž .1 n i

is a union of finitely many con¨ex polyhedral sets.

Ž . � 4Proof. For any e s e , . . . , e with e g y1, 0, 1 , define the octant1 n i
Ž .corresponding to e , denoted by Oct e , as

Oct e [ x g R n : e x G 0 for e / 0, and x s 0 for e s 0 .� 4Ž . i i i i i

Let

n� 4II [ e s e , . . . , e g y1, 0, 1 : X l ri Oct e / B .Ž . Ž .� 4X 1 n

First we claim that

VV ; Oct e . 12Ž . Ž .D
egIIX

Ž . Ž . Ž Ž . Ž ..Let x g X and define e s sign x , where sign x s sign x , . . . , sign x .1 n
Then

Oct e s Wx : W s diag w , . . . , w with w G 0 .� 4Ž . Ž .1 n i

w Ž .xMoreover, x g X l ri Oct e . So e g II , which impliesX

VV s Wx : W s diag w , . . . , w with w G 0 ; Oct e ,� 4Ž . Ž .D D1 n i
xgX egIIX

Ž .proving 12 .
Ž .Next we prove that Oct e ; VV for e g II . Let e g II . Then thereX X
Ž . Ž w Ž .xexists x g X such that sign x s e . Note that x g ri Oct e if and only if
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Ž . . Ž .sign x s e . Let ¨ g Oct e . Define

¨ rx if x / 0i i iw si ½ 0 if x s 0.i

Ž . Ž .Since sign ¨ s e s sign x when ¨ / 0, we have w G 0 for 1 F i F n.i i i i i
Ž .Note that ¨ s w x for 1 F i F n; i.e., ¨ s Wx with W s diag w , . . . , w .i i i 1 n

So ¨ g VV and therefore,

VV s Wx : W s diag w , . . . , w with w G 0 > Oct e .� 4Ž . Ž .D D1 n i
xgX egIIX

Ž .Since Oct e is a convex polyhedral set and II finite, VV is a union ofX
finitely many convex polyhedral sets.

Ž .LEMMA 6 A Variation of Hoffman’s Error Bound . Let X be a polyhe-
n � 4dral subset of R and S [ x g X : Ax s b . Then there exists a positï e

Ž .constant l depending only on X and A such that

5 5dist x , S F l ? Ax y b for x g X . 13Ž . Ž .

Proof. Since X is a convex polyhedral set, there exist a matrix C and a
� n 4vector d such that X s x g R : Cx F d . Then by Hoffman’s error bound

w xfor approximate solutions of systems of linear inequalities 11 , there exists
a positive constant l such that

n5 5dist x , S F l ? Ax y b q Cx y d for x g R , 14Ž . Ž . Ž .Ž .q

� 4where z denotes the vector whose ith component is max z , 0 . Note thatq i
Ž . Ž . Ž .x g X if and only if Cx y d s 0. Thus, 13 follows from 14 .q

Proof of Theorem 2. We claim that for an n = m matrix B there exists
a positive constant l such that

5 5 5 q 5 mWBy F l ? BB WBy for y g R and W s diag w , . . . , wŽ .1 n

with w G 0. 15Ž .i

� m4Let X [ By: y g R and

VV [ Wx : x g X and W s diag w , . . . , w with w G 0 .� 4Ž .1 n i

Then by Lemma 5 the set VV is a union of finitely many convex polyhedral
� 4sets V , V , . . . , V ; i.e.,1 2 k

k

VV s V .D i
is1
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By Lemma 6, there exist positive constants l such thati

5 q 5dist ¨ , S F l ? BB ¨ for ¨ g V , 16Ž . Ž .i i i

where

S [ z g V : BBqz s 0 .� 4i i

Let z g S . Since z g V ; VV , there exist y g R m and a diagonal matrixi i
Ž .W s diag w , . . . , w with w G 0 such that z s WBy. Since z g S , we1 n i i

have BBqWBy s BBqz s 0. Since W is symmetric and positive semidefi-
� 4nite, it follows from Lemma 4 that z s W By s 0. Therefore, S s 0 andi

Ž . 5 5 Ž .dist ¨ , S s ¨ . The inequality 16 actually readsi

5 5 5 q 5¨ F l ? BB ¨ for ¨ g V . 17Ž .i i

� 4Setting l [ max l : 1 F i F k , we obtaini

5 5 5 q 5¨ F l ? BB ¨ for ¨ g VV . 18Ž .
By the definition of VV , we know that the inequality in Theorem 2 holds.

Remark. If we allow a bigger motion of the subset X than multiplica-
tion with a positive diagonal matrix, then Theorem 2 does not hold any
more. To be precise, let D be a symmetric positive semidefinite matrix,

� m4 � q 4X [ DBy: y g R , and S [ x g X : BB x s 0 . Then, by Lemma 5,
� 4 Ž .S s 0 . It follows from Lemma 6 that there exists a positive constant l D

such that

5 q 5dist x , S F l D ? BB x for x g X ;Ž . Ž .
i.e.,

5 5 5 q 5 mDBy F l D ? BB DBy for y g R . 19Ž . Ž .
Ž . Ž .Thus, in the light of Theorem 2, one might expect that the l D in 19 are

uniformly bounded for all symmetric positive semidefinite matrices. How-
Ž . Ž .ever, the following example shows that the l D in 19 are not uniformly

bounded with respect to all symmetric positive semidefinite matrices.

1Let n s 2, m s 1, y s 1 g R, B s , pr4 - a - pr2,ž /1

'2cos a ysin a w 0Q s , W s , w s ,ž / ž /sin a cos a 0 0 sin a y cos a

and D s QT WQ. Then Q is the orthogonal matrix that represents rotation
by the angle a and D s QT WQ is a symmetric positive semidefinite
matrix. By matrix multiplications, we obtain

ycos aT 'DBy s Q WQBy s 2 .ž /sin a
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1q T y1 TŽ . Ž .Since B s B B B s 1 1 , we can compute2

1 sin a y cos aqBB DBy s .ž /sin a y cos a'2

So

'5 5DBy 2
l D G s . 20Ž . Ž .q5 5BB DBy sin a y cos a

Ž . Ž .qTherefore, l D is unbounded as a ª pr4 . As a consequence, Theo-
rem 2 fails to be true if we allow W to be an arbitrary symmetric positive
semidefinite matrix.

COROLLARY 7. Let Q be an n = m matrix with rank m. Then there exists
a positï e constant g such that

5 5 5 T 5 mWQy F g ? Q WQy for y g R and W s diag w , . . . , wŽ .1 n

with w G 0. 21Ž .i

Proof. Since the columns of Q are linearly independent, Qqs
Ž T .y1 TQ Q Q . Thus, by Theorem 2, there exists a positive constant l such
that

y1T T5 5WQy F l ? Q Q Q Q WQyŽ .
for y g R m and W s diag w , . . . , w with w G 0.Ž .1 n i

5 Ž T .y1 5 5 Ž T .y1 5 5 5Since Q Q Q z F Q Q Q ? z , the above inequality implies

5 5 5 T 5WQy F g ? Q WQy

for y g R m and W s diag w , . . . , w with w G 0,Ž .1 n i

T y15 Ž . 5where g s l Q Q Q .

Remark. By using explicit estimates of Lipschitz constants for feasible
solutions of a system of linear equalities and inequalities, we can get
explicit estimates of l in Theorem 2 and g in Corollary 7. For illustration
purpose, we derive the following estimate for g ,

T5 5 5 5WQy F g ? Q WQy

for y g R m and W s diag w , . . . , w with w G 0, 22Ž . Ž .1 n i
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where

y1
cI yQ Qnym J J

g [ max : Q is a nonsingular m = m matrix .Jy1½ 5ž /J 0 QJ

� m4 Ž .Let X [ Qy: y g R and let VV , Oct e , II be defined as in the proofX
Ž .of Lemma 5. Let e s e , . . . , e g II and consider the following system1 n X

of equalities and inequalities,

QT x s b and Ax F 0, 23Ž .

where b g R m and

yIJq

IJyA s ,
IJ0� 0yIJ0

� 4 � 4I is the n = n identity matrix, J [ i: e s 1 , J [ i: e s y1 , andq i y i
� 4 Ž Ž . . Ž .J [ i: e s 0 . Note that Ax F 0 if and only if x g Oct e . Let S b be0 i

Ž . w xthe solution set of 23 . By the remark on page 34 in 18 , we have

X 5 X 5 X mH S b , S b F g ? b y b for b , b g R , 24Ž . Ž . Ž .Ž . ˜

where

y1
A AJ J

g [ max : is a nonsingular n = n matrix .˜ T T½ 5ž / ž /J Q Q

Ž . T X Ž X. � 4 ŽFor any x g Oct e , let b s Q x and b s 0. Then S b s 0 by Lemma
q Ž T .y1 T . Ž . Ž .4 and Q s Q Q Q and x g S b . So 24 implies

5 5 X 5 X 5 5 T 5x F H S b , S b F g ? b y b s g ? Q xŽ . Ž .Ž . ˜ ˜
for x g Oct e , e g II . 25Ž . Ž .X

Ž .Since the rows of A are rows of I or yI, let D s diag d , . . . , d beJ 1 n
such that d s "1 andi

cIA JJ
D s ,TT ž /ž / QQ
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� 4where J is some index subset of 1, . . . , n . Since D is an orthogonal
matrix, we have

y1y1
A AJ Js DT Tž / ž /ž /Q Q

y1y1
I 0cI nymJs s T TTž / ž /cQ QQ J J

y1 y1
cI yQ QcI Q nym J Jnym Js s ,y1ž /0 Q ž /0 QJ J

where the third equality holds since we only exchange columns of the
matrix

y1
cIJ

,Tž /Q

5 5 5 T 5the fourth one follows from B s B , and the last equality is derived
I Q cny m J Ž .from the calculation of the inverse of . Thus, 25 is equivalent tož /0 Q J

Ž .22 .

3. UNIFORM LIPSCHITZ CONTINUITY OF BEST
l -APPROXIMATIONp

For x g R n, consider the best l -approximation problem of findingp
Ž . nP x in a subspace UU of R such thatUU , p

5 5x y P x s min x y u : u g UU , 1 - p - `.� 4Ž . pUU , p p

As we pointed out in the Introduction, Holmes and Kripke actually proved
Ž .that for each p g 1, ` , there exists a positive constant l such thatp

n5 5P x y P y F l ? x y y for x , y g R . 26Ž . Ž . Ž .pUU , p UU , p pp

Ž .We want to show that l in 26 is uniformly bounded for 1 - p - `. Wep
start with an estimate on the Jacobian of the metric projection P .UU , p

THEOREM 8. Let UU be a subspace of R n. Then there exists a positï e
constant g such that

= P x F g for 1 - p - `, x g DD , 27Ž . Ž .x UU , p p
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where

DD [ x g R n : x y P x / 0 for 1 F i F n . 28Ž . Ž .Ž .½ 5p UU , p i

� 1 m4Proof. Let U be a matrix whose columns u , . . . , u form an or-
n Ž .thonormal basis of a subspace UU of R . Since P x is unique for eachUU , p

1 - p - `, there exists a unique vector

t xŽ .1, p
..t x sŽ .p .� 0t xŽ .m , p

such that
m

kP x s t x u s Ut x . 29Ž . Ž . Ž . Ž .ÝUU , p k , p p
ks1

Let the function f : R n = R m ª R be defined byp

pm1
kf x , t [ x y t u . 30Ž . Ž .Ýp kp ks1 p

Then for each fixed x, the gradient of f with respect to t has to be zerop
Ž . Ž Ž .. Ž .at t x ; i.e., = f x, t x s 0. Thus, for any given x, t x is the uniquep t p p p

solution of the following system of nonlinear equations:

py1n m m
k k ix y t u sign x y t u u s 0, for 1 F i F m.Ý Ý Ýr k r r k r rž /

rs1 ks1 ks1

31Ž .

Ž .Let x g DD . Then = f x, t is continuously differentiable with respect top t p
Ž . Ž Ž ..x, t in a neighborhood of x, t x . In fact,p

py22 n m f x , tŽ .p k i js p y 1 x y t u u u , for 1 F i , j F m ,Ž . Ý Ýr k r r r t  ti j rs1 ks1

32Ž .

and

py22 m f x , tŽ .p k is 1 y p x y t u u , for 1 F i F m , 1 F j F n.Ž . Ýj k j j t  xi j ks1

33Ž .
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Equivalently, we have the following matrix representations of the Jaco-
2 Ž . 2 Ž .bians = f x, t and = f x, t , respectively,t t p t x p

=2 f x , t s p y 1 U T WU in R m= m , 34Ž . Ž . Ž .t t p

=2 f x , t s 1 y p U T W in R m= n , 35Ž . Ž . Ž .t x p

Ž . < m k < py2where W s diag w , . . . , w and w [ x y Ý t u . Since w ) 01 n i i ks1 k i i
2Ž . Ž Ž .. Ž Ž .. Ž .for x, t in a neighborhood OO x, t x of x, t x , the Jacobian = f x, tp p t t p

Ž Ž ..is a positive definite matrix and continuous in OO x, t x with respect top
Ž .x, t . By the implicit function theorem, t is a differentiable function of xp

Ž .in a neighborhood OO x of x. Moreover,
y12 2= t x s y = f x , t x = f x , t xŽ . Ž . Ž .Ž . Ž .x p t t p p t x p p

y1 y1T T T Tw xs y p y 1 U WU 1 y p U W s U WU U W . 36Ž . Ž . Ž .
Ž . Ž .The gradient is an m = n matrix whose i, j th entry is  t x r x . Thus,i, p j

we obtain

T
= t x zŽ .T x p

= t x s = t x s supŽ . Ž .x p x p 5 5zz/0

T T 5 5= t x U WUy WUyŽ .x ps sup s sup F g , 37Ž .T T5 5 5 5U WUy U WUyy/0 y/0

where the first equality follows from the definition of the norm of an
adjoint matrix, the second one is by the definition of the spectral norm, the
third one follows from the nonsingularity of U T WU, the fourth is derived

Ž .from 36 , and finally, the last inequality follows from Corollary 7. Since
Ž . Ž . Ž . Ž .P x s Ut x , by the chain rule, we get = P x s U = t x forUU , p p x UU , p x p
Ž . 5 5x g OO x . Since U s 1,

5 5= P x s U = t x F U ? = t x s = t x F g ,Ž . Ž . Ž . Ž .x UU , p x p x p x p

Ž .where g is independent of x g DD and p g 1, ` .p

Ž .Remark. It follows from the remark after Corollary 7 and 37 that if U
is an n = m matrix whose columns form an orthonormal basis of UU, then

= P x F g for x g DD , 38Ž . Ž .x UU , p p

where

y1
cI yU Unym J J

g [ max : U is a nonsingular m = m matrix .Jy1½ 5ž /J 0 UJ
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Proof of Theorem 1. Now we are ready to prove Theorem 1: If UU is a
subspace of R n, then there exists a positive constant l such that

n5 5P x y P y F l ? x y y for x , y g R , 1 - p - `. 39Ž . Ž . Ž .UU , p UU , p

Ž .We prove the theorem by induction. Obviously, if dim UU s 0, then 39
Ž .holds. We make the inductive hypothesis that 39 holds for any n and any

subspace UU of dimension less than m. Now assume that UU is an m-dimen-
sional subspace of R n.

� 4Let J [ j: there exists u g UU such that u / 0 and let u g UU. Thenj
� 4u s 0 for i f J. If UU [ u : u g UU denotes the restriction of UU to the Ji J J

w Ž .x Ž .components, P x s P x . Therefore, if there exists a positiveUU , p J UU , p JJ

constant l such that

n5 5P x y P y F l ? x y y for x , y g R , 1 - p - `,Ž . Ž .UU , p J UU , p J J JJ J

Ž .then 39 holds. Thus we may replace UU by UU and assume that thereJ
exists u g UU such that u / 0 for 1 F i F n.i

Ž i. � 4 Ž i. ŽLet UU [ u g UU: u s 0 , 1 F i F n. Then dim UU - dim UU sincei
Ž i. .UU _ UU / B . By our inductive hypothesis, there exists a positive constant

b such that

n5 5Ž i. Ž i.P x y P y F b ? x y y for x , y g R , 1 - p - `.Ž . Ž .UU , p UU , p

40Ž .

Define

nDD [ x g R : x y P x / 0 for 1 F i F n ,Ž .� 4p UU , p i

and for 1 F i F n

nDD [ x g R : x y P x s 0 .Ž .� 4p , i UU , p i

Ž .By Theorem 8, there exists a positive constant g such that 27 holds. Then
it follows that

5 5P x y P y F g ? x y y ,Ž . Ž .UU , p UU , p

whenever 1 - p - ` and x , y g DD with u x q 1 y u y g DDŽ .p p

for 0 F u F 1. 41Ž .

This proves the desired estimate locally on DD with the global Lipschitzp
Ž .constant g . To prove 39 , i.e., to prove Lipschitz continuity of the metric

projection on R n uniformly with respect to 1 - p - `, we first have to
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Ž .investigate the behavior of P x for x g DD , 1 F i F n. Let U be anUU , p p, i
Ž . mn = m matrix whose columns form a basis of UU and let t x g R bep

such that

P x s Ut x . 42Ž . Ž . Ž .UU , p p

Then, for x g DD , we havep, i

U t x s P x s x . 43Ž . Ž . Ž .i p UU , p ii

Since there exists u g UU such that u / 0, U has to be a nonzero row. Leti i

y1T T ˜t s U U U x and t s t x y t . 44Ž . Ž .Ž .p i i i i p p p

Then

˜U t s U t x y U t s x y x s 0. 45Ž . Ž .i p i p i p i i

˜ Ž i. Ž i.That is, Ut g UU . Moreover, for any u g UU ,p

x y Ut y u s x y Ut q u G x y P xŽ .Ž . Ž .p p UU , pp p p

˜s x y Ut y Ut .Ž .p p p

Thus,

˜Ž i.P x y Ut s Ut . 46Ž .Ž .UU , p p p

Ž . Ž . Ž .It follows from 42 , the second equality in 44 , and 46 that

Ž i.P x s Ut q P x y Ut . 47Ž . Ž .Ž .UU , p p UU , p p

Ž .From the above identity and the first equality in 44 we derive the
Ž . Ž i.following explicit representation of P x in terms of P :UU , p UU , p

y1 y1T T T T
Ž i.P x s UU U U x q P x y UU U U xŽ . Ž . Ž .ž /UU , p i i i i UU , p i i i i

for x g DD . 48Ž .p , i

Ž . Ž .It follows from 40 and 48 that there is a positive constant h, indepen-
dent of 1 - p - `, such that

5 5P x y P y F h ? x y y for x , y g DD , 1 F i F n. 49Ž . Ž . Ž .UU , p UU , p p , i

� 4Let l [ max h, g . We claim that

n5 5P x y P y F l ? x y y for x , y g R , 1 - p - `, 50Ž . Ž . Ž .UU , p UU , p

which will complete the proof.
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n u Ž .For x, y g R , define x s u y q 1 y u x and

u u5 5u [ max u : 0 F u F 1, P x y P x F l ? x y x . 51Ž . Ž . Ž .½ 50 UU , p UU , p

Ž .If u s 1, then 50 holds. Assume to the contrary that 0 F u - 1. We0 0
discuss two cases. First assume that there is u - u F 1 such that xu g DD0 1 p

Ž .for u - u - u . Then, by the continuity of P and 41 , we obtain0 1 UU , p

u u0 1P x y P xŽ . Ž .UU , p UU , p

u u0 1s lim lim P x y P xŽ . Ž .UU , p UU , pq yu ªu u ªu0 0 1 1

u u u u0 1 0 15 5 5F lim lim g ? x y x F l ? I x y x .
q yu ªu u ªu0 0 1 1

Otherwise,

n1
ux : u - u - u q l DD / B for k s 1, 2, . . . .D0 0 p , i½ 5 ž /k is1

Therefore an index i exists such that

1
ux : u - u - u q l DD / B for k s 1, 2, . . . .0 0 p , i½ 5k

As a consequence, there exist 1 ) u ) u ) ??? u ) ??? G u such that1 2 k 0
xuk g DD andp, i

lim xuk s xu 0 .
kª`

Ž .By 49 and the continuity of P we derive thatUU , p

u u u u0 1 k 1P x y P x s lim P x y P xŽ . Ž . Ž . Ž .UU , p UU , p UU , p UU , p
kª`

5 uk u1 5 5 u 0 u1 5F lim h ? x y x F l ? x y x .
kª`

So, in both cases, we have

u1P x y P xŽ . Ž .UU , p UU , p

u u u1 0 0F P x y P x q P x y P xŽ . Ž . Ž . Ž .UU , p UU , p UU , p UU , p

5 u1 u 0 5 5 u 0 5 5 u1 5F l ? x y x q l ? x y x s l ? x y x . 52Ž .

By the definition of u , we must have u G u , a contradiction to the0 0 1
Ž .choice of u . So u s 1 and 50 holds.1 0
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Ž .Remark A Second Proof of Theorem 1 . Note that our proof of
Theorem 1 is self-contained. There is a shorter proof of Theorem 1 by

Ž .making use of the estimate 26 of Holmes and Kripke. Let UU be an
m-dimensional subspace of R n and let

DD [ x g R n : x y P x / 0 for 1 F i F n .Ž .Ž .½ 5p UU , p i

Define
J [ i: z / 0 for some z g UU H . 53Ž .� 4i

� 4Note that i g 1, . . . , n _ J if and only if e g UU. Hence we get thei
representation

� 4 nUU s u g UU : u s 0 for i f J [ u g R : u s 0 for i g J� 4i i

and, for x g R n,

x for i f J ,i
P x s 54Ž . Ž .iUU , p ½ P x for i g J .Ž .UU , p JJ i

� 4Thus, it suffices to prove Theorem 1 for UU [ u : u g UU . However, byJ J
Ž .H Ž H.the definition of J, UU s UU , containing a vector z such that z / 0J J i

for i g J. Replacing UU by UU, we may assume that for each i the subspaceJ
UU H contains a vector z such that z / 0. Under this assumption we willi
show that the complement of DD is a set of measure zero.p

Let T be the continuous bijection of R n defined byp

1rŽ py1. n< <T y s sign y y for y g R .Ž . Ž .p i ii

� n 4 nLet H [ x g R : x s 0 be a coordinate hyperplane in R . By thei i
Kolmogorov characterization of best approximations, the kernel of PUU , p
Ž . Ž .the so-called metric complement of UU , denoted by ker P , is exactlyUU , p
Ž H.T UU .p
Since there exists z g UU H _H , the dimension of the linear subspacei
H H Ž H .UU lH is less than dim UU s n y m. So T UU lH is a manifold ofi p i

Ž . Ž H .dimension less than n y m and UU q T UU lH is a manifold ofp i
Ž H .dimension less than n. Therefore, UU q T UU lH has measure zero inp i

R n. Note that
n

n nR _ DD s x g R : x y P x s 0Ž .� 4Dp UU , p i
is1

n

s ker P l H q UUŽ .� 4D UU , p i
is1

n n
H Hs T UU l T H q UU s T UU lH q UU .Ž . Ž . � 4Ž .½ 5D Dp p i p i

is1 is1

Consequently, R n _ DD is a set of measure zero.p
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By Theorem 8, the Jacobian = P of the Lipschitz mapping P isx UU , p UU , p
bounded by g almost everywhere in R n. By a well-known characterization

Ž w x.of Lipschitz continuous functions cf. 20, Sect. 2.2.1, Chap. VI , we obtain

n5 5P x y P y F g ? x y y for x , y g R , 1 - p - `.Ž . Ž .UU , p UU , p

One advantage of the second proof is that it leads to an explicit estimate
Ž . Ž .of an upper bound for l in 26 . Let J be defined as in 53 and let Q bep

an n = m matrix whose columns form an orthonormal basis of UU . ThenJ
from the above proof and the remark after Theorem 8, we obtain

n5 5P x y P y F g ? x y y for x , y g R , 1 - p - `,Ž . Ž .UU , p J UU , p JJ J

55Ž .

where

y1
cI yQ Qnym J J

g [ max : Q is a nonsinglar m = m matrix .Jy1½ 5ž /0 QJ J

Ž . Ž .By 54 and 55 we obtain

n5 5P x y P y F g ? x y y for x , y g R , 1 - p - `. 56Ž . Ž . Ž .UU , p UU , p
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