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Abstract

The substitution composition of two disjoint graphs G1 and G2 is obtained by first removing a vertex x from G2 and then
making every vertex in G1 adjacent to all neighbours of x in G2. Let F be a family of graphs defined by a set Z of forbidden
configurations. Giakoumakis [V. Giakoumakis, On the closure of graphs under substitution, Discrete Mathematics 177 (1997)
83–97] proved that F∗, the closure under substitution of F , can be characterized by a set Z∗ of forbidden configurations —
the minimal prime extensions of Z . He also showed that Z∗ is not necessarily a finite set. Since substitution preserves many of
the properties of the composed graphs, an important problem is the following: find necessary and sufficient conditions for the
finiteness of Z∗. Giakoumakis [V. Giakoumakis, On the closure of graphs under substitution, Discrete Mathematics 177 (1997)
83–97] presented a sufficient condition for the finiteness of Z∗ and a simple method for enumerating all its elements. Since then,
many other researchers have studied various classes of graphs for which the substitution closure can be characterized by a finite set
of forbidden configurations.

The main contribution of this paper is to completely solve the above problem by characterizing all classes of graphs having a
finite number of minimal prime extensions. We then go on to point out a simple way for generating an infinite number of minimal
prime extensions for all the other classes of F∗.
c© 2006 Elsevier B.V. All rights reserved.

Keywords: Graph theory; Graph decompositions; Modular decomposition

1. Motivation

The substitution composition of graphs has been widely used by researchers in the study of both theoretical as
well as practical problems; we refer the interested reader to Brandstädt et al. [4] for a comprehensive discussion. The
appeal of the substitution composition is, most certainly, due to the fact that it preserves many of the properties of the
composed graphs. For example, Lovász [12] relied on the well known fact that substitution preserves perfection1 in
order to prove that a graph is perfect if and only if its complement is. We recall that the famous Strong Perfect Graph
Conjecture (SPGC, for short) introduced by Berge [1] in 1961 was recently answered in the affirmative becoming the

∗ Corresponding author. Tel.: +1 757 683 4417; fax: +1 804 683 4900.
E-mail addresses: Vassilis.Giakoumakis@u-picardie.fr (V. Giakoumakis), olariu@cs.odu.edu (S. Olariu).

1 For the definition of perfect graphs see Berge [2] or Brandstädt et al. [4].
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Strong Perfect Graph Theorem. We refer the reader to Chvàtal’s web page [8] for a detailed survey and to Chudnovsky
et al. [7] for the proof of the Strong Perfect Graph Theorem.

Let F be a family of graphs defined by a set Z of forbidden configurations and let F∗ be the closure of F
under substitution.

Problem 1. Find a forbidden induced subgraph characterization of F∗.
Giakoumakis [10] proved that:

1. F∗ can be characterized by a set Z∗of forbidden configurations;
2. Z∗ is not necessarily a finite set;
3. If no graph Z of Z contains a module of more than two vertices then Z∗ is finite.

Problem 2. Find necessary and sufficient conditions for Z∗ to be finite.
Various researchers investigated Problem 2 and many sufficient conditions have been presented [5,6,10,11,13,16,

17]. These, and other similar papers, give forbidden subgraph characterizations of the closure under substitution of
various classes of graphs. It is worth noting that such characterizations are very likely to lead to efficient graph
optimization algorithms. Indeed, for optimization problems including finding the weighted stability number (see [3]
and [9]) and the domination problem (see [15]), efficient solutions can be found when dealing with hereditary classes
of graphs.

The main contribution of this paper is to offer a complete answer to Problem 2 by characterizing all classes of
graphs defined by a finite set of forbidden configurations, whose closure under substitution can also be defined by a
finite number of forbidden subgraphs. For all the other classes of F∗ we give a simple way for generating an infinite
number of minimal prime extensions.

2. Notation and previous results

The main goal of this section is to establish notation and terminology and to review a number of known results that
will be needed in the subsequent sections of the paper.

2.1. Notation and terminology

For terms not defined here the reader is referred to [2] and [4]. All the graphs in this work are finite, with no loops
nor multiple edges. Given a graph G = (V, E), the set V of its vertices will also be denoted by V (G); similarly, the
set E of its edges will be denoted by E(G). We also write n = |V | and m = |E | to denote the cardinality of V and E .

Let x be a vertex of graph G. The neighborhood of x will be denoted by N (x); we let degree(x) stand for | N (x) |.
The subgraph of G induced by V (G) − {x} will be denoted by G \ x .

If N (x) = V (G) − {x}, x is said to be a universal vertex of G. The graph induced by a set X ⊆ V will be denoted
by [X ]; [X ] is a proper induced subgraph of G if X is strictly contained in V (G). We shall let NG(X) stand for the
set of vertices in V (G) − X adjacent to at least one vertex of X .

The set X is said to be stable (resp. complete) if the graph [X ] is edgeless (resp. fully connected). A stable (resp.
complete) set of r vertices is denoted by Sr (resp. Kr ). The edgeless graph of r vertices will be denoted by Or . The
graph induced by V (G) − X is also written as G \ X and the graph induced by V (G) − {x} where x a vertex of G,
will be written as G \ x . A vertex x is total, indifferent or partial with respect to X if it is, respectively, adjacent to
all, to none or to some but not all of the vertices of X . A set of vertices Y is total (or universal) with respect to X if
every vertex of Y is adjacent to all the vertices of X ; Y is indifferent with respect to X if no vertex of Y is adjacent to
a vertex of X ; finally, Y is partial with respect to X if at least one of the vertices of Y is partial with respect to X .

We shall write Pk (resp. Ck) to denote a chordless path (resp. cycle) on k vertices. The complementary graph of a
chordless path is referred to as a co-path. A 2K2 is the complementary graph of a C4. When no confusion is possible,
we shall use the notation Pk to design also the set of vertices of the chordless chain Pk .

The notation G1 ∼ G2 signifies that the graph G1 is isomorphic to the graph G2.
Let Z be a set of graphs. A graph G is said to be Z-free if G contains no induced subgraph isomorphic to a graph

of Z . A set of graphs F is Z-free if every graph of F is Z-free.
A set M ⊆ V (G) is called a module if every vertex of G outside M is adjacent to all vertices of M or to none

of them. The empty set, V (G) and the singletons are trivial modules. A graph G that contains only trivial modules
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Fig. 1. The minimal prime extensions of a C3.

is termed prime or indecomposable. A module M that is a strict subset of V (G) and contains at least two vertices is
said to be non-trivial or a homogeneous set.2 A graph that contains a non-trivial module is said to be substitution-
decomposable or, simply, decomposable.

Let M be a module of a graph G. M is said to be a strong module if for every non-trivial module M ′ of G either
M ∩ M ′

= ∅ or one of M and M ′ is included in the other. The decomposition of a graph into its modules was
discovered independently by researchers in many seemingly unrelated areas. We refer the reader to Brandstädt et al.
[4] for a comprehensive discussion and further references.

The modular decomposition of a graph G is a form of decomposition that associates with G a unique decomposition
tree T (G). The set of leaves of T (G) is the set V (G). The set of leaves associated with a subtree of T (G) rooted at a
node f of T (G) is leaves( f ). It is well known that for each internal node f of T (G) different from its root, leaves( f )

forms a strong module of G and that {leaves( f )} is the set of all strong modules of G. An internal node f is labeled
P , S, or N to denote respectively, parallel, series or neighbourhood modules. The subgraph induced in G by a parallel
module is disconnected, the one induced by a series module is connected and has a disconnected complement; and,
finally, the one induced by a neighbourhood module is connected both in the graph and the complement.

Let f1, . . . , fk be the set of children of f in T (G) and let H be the subgraph of G whose vertex-set consists of
one vertex from each module leaves( fi ), i = 1, . . . , k. Clearly, H is an edgeless graph whenever f is a P-node, a
complete graph whenever f is an S-node, and a prime graph whenever f is an N -node.

Due to its vast array of practical applications the problem of finding efficient algorithms (both sequentially and
parallel) for the modular decomposition and for the construction of the corresponding decomposition tree has received
a great deal of attention in the recent literature. We refer the reader to the excellent web page [18] for a very informative
synopsis of research in this area.

Definition 2.1. Let G be a graph. The graph G ′ is a minimal prime extension of G if the following conditions are
satisfied:

• G ′ is prime,
• G ′ contains an induced subgraph isomorphic to G, and
• G ′ is minimal with respect to set inclusion and primality.

In other words, if G ′ is a minimal prime extension of G, no proper prime induced subgraph of G ′ contains an
induced subgraph isomorphic to G. Observe that if G itself is prime then G ′ coincides with G.

Notation 2.2. Let G be a graph and let Ext(G) denote the set of minimal prime extensions of G.
Let F be a family of graphs defined by a set Z of forbidden configurations. Giakoumakis [10] proved the following

result:

Lemma 2.3 ([10]). The closure F∗ of F under substitution is defined by a set Z∗ of forbidden configurations which
is the union of the sets Ext(Z) where Z is a graph of Z .

2.2. Known results

We begin by recalling two results concerning minimal prime extensions of various classes of graphs that we shall
need in the following sections.

Theorem 2.4 ([13]). The substitution composition of C3-free graphs is defined by the three forbidden configurations
depicted in Fig. 1.

2 We warn the reader that in the sequel of this paper ‘homogeneous set’ and ‘non-trivial module’ will be regarded as synonyms and used
interchangeably.
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Theorem 2.5 ([16]). If every nontrivial module of a graph G induces a subgraph of a P4 then the set of all minimal
prime extensions of G is finite.

Notation 2.6. A graph whose every nontrivial module induces a subgraph of a P4 is called P4-homogeneous. We
prefer this terminology to that of a simple graph used in [16], in order to avoid any possible confusion with the
meaning of the term ‘simple’ used in other contexts in graph theory.

An interesting procedure proposed by Zverovich [14] generating prime extensions of a graph G is the Reducing
Pseudopath Method. We recall its definition using the notation of [14].

Definition 2.7. Let G be an induced subgraph of a graph H and let W be a homogeneous set of G. We define
a reducing W -pseudopath in H as a sequence R = (u1, u2, . . . , ut ), with t ≥ 1, of pairwise distinct vertices of
V (H) \ V (G) satisfying the following conditions:

1. u1 is partial with respect to W ;
2. ∀ i = 2, . . . , t , either ui is adjacent to ui−1 and indifferent with respect to W ∪ {u1, . . . , ui−2} or ui is total with

respect to W ∪ {u1, . . . , ui−2} and non-adjacent to ui−1 (when i = 2, {u1, u2, . . . , ui−2} = ∅);
3. ∀ i = 1, . . . , t −1, vertex ui is total with respect to N (W ) in G and indifferent with respect to V (G)− N (W )−W

and either ut is non-adjacent to a vertex of N (W ) or ut is adjacent to a vertex of V (G) − NG(W ).

We refer the reader to Fig. 2 in Section 3.2 for an illustration of a reducing W -pseudopath.

Theorem 2.8 ([14]). Let H be a prime extension of its induced subgraph G and let W be a homogeneous set of G.
Then there exists a reducing W -pseudopath with respect to every induced copy of G in H.

The remainder of the paper is organized as follows: in Section 3 we give two methods for constructing a minimal
prime extension of a graph G. In Section 4 we discuss necessary and sufficient conditions for finiteness of Ext(G).
Finally, Section 5 offers concluding remarks and ideas for possible extensions of the results presented in this paper.

3. Two basic constructions

The main goal of this section is to introduce two basic constructions that provide the framework for our main result
given in Section 4. Both these constructions build minimal prime extensions of a decomposable graph.

3.1. Constructing the basic extension of a decomposable graph

Let G = (V, E) be a connected graph and let T (G) be the corresponding modular decomposition tree.

Notation 3.1. Let π(G) = {H1, . . . , Hl} be the partition of V obtained by the following equivalence relation R on
V : for vertices x and y in V we write x Ry if and only if x and y have the same parent in T (G).

Throughout the remainder of this section we shall assume that G is not prime.

Remark 3.2. If G is decomposable, at least one of the Hi ’s in π(G) is a non-trivial module of G.

Notation 3.3. Let ρ(G) = {M1, . . . , Mk} be the subset of π(G) consisting of all the non-trivial modules in G. Thus,
for i = 1, 2, . . . , k, every Mi is a non-trivial module in G .

Remark 3.4. Let f (Mi ) be the parent in T (G) of the vertices of Mi ∈ρ(G). Obviously if Mi is stable then f (Mi ) is
a P-node, if Mi is a complete set then f (Mi ) is an S-node and if Mi induces a prime graph then f (Mi ) is an N -node.
Furthermore, if Mi = leaves( f (Mi )) then Mi is a strong nontrivial module of G, minimal with respect to set inclusion.
In particular, this case occurs whenever f (Mi ) is an N -node (i.e. if f (Mi ) is an N -node then Mi = leaves( f (Mi ))).
It is worth noting that since G is connected, every vertex of module Mi ∈ ρ(G) has a neighbour in V − Mi .

Let us associate with every module Mi of ρ(G) a set V ′

i of new vertices (i.e. V ′

i ∩ V = ∅, V ′

i ∩ V ′

j = ∅,
i, j = 1, . . . , k, i 6= j ) and a set E ′

i of edges connecting the vertices of Mi with the vertices of V ′

i in the following
manner:

1. if Mi is a stable set or a complete set {x1, . . . , xr } then V ′

i = {y1, . . . , yr−1} and E ′

i is the set of edges x j y j ,

j = 1, . . . , r − 1.
2. If Mi induces in G a prime graph then V ′

i is a singleton {y} and E ′

i is the edge yx where x is a vertex of Mi .
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Let G ′ be the graph whose vertex set is V ∪ V ′, where V ′
= V ′

1 ∪ · · · ∪ V ′

k and whose edge set is E ∪ E ′, where
E ′

= E ′

1 ∪ · · · ∪ E ′

k . Clearly V ′ is a stable set in G ′ and each vertex of this set has exactly one neighbour in G ′, this
neighbour being its own ‘private’ neighbour.

We propose to show that G ′ is a minimal prime extension of G. For this purpose, however, we need the following
result:

Lemma 3.5. Let H be a connected graph, let x ∈ V (H) be a vertex of degree 1, and let M be a non-trivial module
of the graph H \ x containing the unique neighbour, say y, of x in H. If x is contained in a nontrivial module Q of H
then y is a universal vertex of H.

Proof. Suppose not. Since H is connected and since degree(x) = 1, the neighbourhood of any vertex of module Q
outside this module must be a singleton and, thus, N (Q) = {y}. Let Q1 be the set N (y) − Q and let Q2 be the set
of the remaining vertices of H . Then, no vertex of Q can be adjacent to a vertex of Q1 ∪ Q2. Since, by assumption,
Q2 6= ∅, the connectedness of H implies that Q1 6= ∅. Let z be a vertex of M different from y. If z ∈ Q \ x , every
vertex of Q1 would be adjacent to z and if z ∈ Q1∪Q2 any vertex of Q\x would be adjacent to z, a contradiction. �

Proposition 3.6. The graph G ′ is a prime graph.

Proof. Assume to the contrary that there exists a nontrivial module M in G ′.

Claim 1. M contains no vertices of V ′.

Proof. If M contains a vertex x of V ′ then by Lemma 3.5 the unique neighbour y of x in G ′ is a universal vertex of
G ′. Since every vertex of V ′ has his own private neighbour in G ′, it follows that V ′ contains only the vertex x . Let y
be the private neighbour of x and let f be the parent of y in T (G). Clearly, f is neither a P-node nor a N -node, for
otherwise y would not be universal in G, a contradiction. Consequently, f must be a S-node.

Assume first that f is the root of T (G). If f has a child that is an internal node or if f has more than two children
distinct from y that are leaves, then V ′ contains more than one vertex, a contradiction. It follows that f contains
exactly two children y and z, implying that G is prime, since it is isomorphic to a K2. It follows that V ′

= ∅, a
contradiction.

Thus, f cannot be the root of T (G). Since f is a S-node, the parent of f in T (G) is either a P-node or a S-node,
implying that y is not a universal vertex of G, a contradiction. �

Claim 1 guarantees that M is a nontrivial module of G. Let f be the least common ancestor in T (G) of all vertices
of M and let U = { f1, . . . , fr } be the set of children of f in T (G).

Claim 2. If leaves( fi ) ∩ M 6= ∅ then leaves( fi ) ⊂ M, fi ∈ U.

Proof. Indeed, if fi ∈ U is a leaf then we are done and if not, leaves( fi ) is a strong module of G and since by
definition M is not entirely contained into the set leaves( fi ), M strictly contains leaves( fi ) as claimed. �

Claim 3. No vertex of V ′ is adjacent to a vertex of M.

Proof. The result follows from the fact that every vertex of V ′ is of degree 1. �

Let U ′
⊆ U be the set of fi ∈ U such that leaves( fi ) ⊆ M . If fi ∈ U ′ is an internal node of T (G), then by

construction there must exist a vertex of V ′ adjacent to leaves( fi ), contradicting Claim 3. Hence, every fi ∈ U ′ is a
leaf of T (G) that is, M contains only vertices whose least common ancestor f in T (G) is a parent of all of them and,
thus, M is entirely contained into a module of ρ(G). Hence, there must exist a vertex of V ′ which distinguishes the
vertices of M, a contradiction. It follows that G ′ is a prime graph as claimed. �

Proposition 3.7. Every proper subgraph G ′′ of G ′ that contains G as induced subgraph is not prime.

Proof. Suppose not and consider an arbitrary vertex x of V (G ′) − V (G ′′). Clearly x is a vertex of V ′. Let M be the
module of ρ(G) containing the unique neighbour, say y, of x in G. If M induces a prime graph in G, then x is the
unique vertex in G ′ that is partial for M and consequently M is a module in G ′′, a contradiction.

If M is a stable or a complete set in G then the vertex y together with the vertex of M that has no neighbour in V ′

forms a nontrivial module in G ′′, a contradiction. �
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Proposition 3.8. If G ′ contains a subgraph H 6= G isomorphic to G by an isomorphism σ , then V (G) − V (H) is a
stable set whose vertices have degree 1 in G ′ and have a private neighbour in V (G) ∩ V (H).

Proof. Observe first that V (H) cannot be a subset of V ′ since | V ′
|<| V (H) | and, additionally, V ′ is a stable set

while H is connected. Thus, it must be that V (H) ∩ V (G) 6= ∅ and V (H) ∩ V ′
6= ∅. Let G1 be the graph induced by

V (H)∩ V (G). Write X = V (G)− V (H), Y = V (H)− V (G) and Z = V ′
−Y . It is obvious that G1 is not the empty

graph, X, Y 6= ∅,| X |=| Y | and Y ⊆ V ′. Let x be a vertex of Y and y its private neighbor in G1. By the definition
of G ′ there must be a nontrivial module M in G containing y. Moreover M is either a stable set or a complete set
or it induces a prime graph in G. We recall that if M is a stable or a complete set there is a vertex z of M having no
neighbour in V ′ while all the others vertices of M have their private neighbor in V ′. Let M ′

0 be a submodule of M
formed as follows:

1. if M is a stable or a complete set then M ′

0 contains z and all vertices of M having a neighbour in Y
2. if M induces a prime graph in G then M ′

0 = M .

Let Y0 be the subset of Y which is the neighborhood of M ′

0 in Y . Let M1 be the nontrivial module of H isomorphic
to M ′

0 by σ . It is clear that no vertex of M1 can belong to Y and consequently M1 is entirely contained in G1. Now,
if M1 is not an homogeneous set in G there must be a set of vertices X ′

1 outside M1 that distinguishes the vertices of
M1. Since M1 is a non- trivial module of H , X ′

1 must be a subset of X . Let M ′

1 be a maximal submodule of M1 in H .
Let µ = (M1, M ′

1), . . . , (Ml , M ′

l ) be the longest sequence of pair of sets in G1 such that for 0 ≤ i ≤ l and l ≥ 1 we
have:

1. Mi = σ(M ′

i−1)

2. Mi is a non trivial module of H
3. M ′

i is a maximal submodule of Mi which is a non trivial module of G
4. Ml is not a nontrivial module of G.

Let X i be the set of vertices of X that distinguishes the vertices of Mi i ∈ [1, l]. It is clear that if X i = ∅ then
Mi = M ′

i . Since M ′

0 6= ∅ (M ′

0 contains the vertex y) and M ′

0 is not an homogeneous set of H we deduce that
∀i, j ∈ [0, l], i 6= j Mi ∩ M j = ∅ and that l <| V (G1) |. It is easy to see also that if Mi is a stable or a complete
set then the number of edges between X i and Mi is at least | Mi − M ′

i |. Since | Y0 |=| M ′

0 | −1 whenever M ′

0 is a
stable or a complete set and | Y0 |= 1 whenever M ′

0 induces a prime graph, we can easily verify that the number of
edges between X1 ∪ · · · ∪ Xl and G1 is at least | Y0 |. Now, we proceed in an analogous way by considering the set
Y1 = Y − Y0, then the set Y2 = Y − Y1 and so on until obtaining Yr = Y − Yr−1 = ∅. Let X ′ be a minimal with
respect to set inclusion subset of X such that each vertex of X ′ ‘breaks’ a module of G1 during the previous process.
We can easily see that the number of edges between X ′ and G1 is at least | Y |.

Since G and H are isomorphic we have that | E(G1) | + | Y |=| E(G1) | + | X |. Putting together the facts that
G is connected, | X |=| Y | and the number of edges between X ′ and G1 is at least | Y |, we deduce that X ′

= X and
that X is a stable set whose every vertex is of degree 1 in G. It follows that since X ′ is a minimal subset of X whose
every vertex ‘breaks’ a non trivial module in G1, every vertex of X is of degree 1 in G ′ and has a private neighbour in
G1, as claimed. �

Theorem 3.9. The graph G ′ is a minimal prime extension of G.

Proof. If the only subgraph of G ′ which is isomorphic to G is the graph G itself, then by Proposition 3.7 we deduce
that G ′ is a minimal prime extension of G, as claimed. Assume then that there exists a subgraph H 6= G of G ′

which is isomorphic to G and let Q be a subgraph of G ′ which is prime and contains H . Write X = V (G) − V (H),
Y = V (H) − V (G) and Z = V ′

− Y . Let ρ1 = {M1, . . . , Ms} and ρ2 = {M ′

1, . . . , M ′
t } be a bipartition of ρ(H) such

that every module of ρ1 is a stable or a complete set and every module of ρ2 induces a prime graph in H . Clearly, the
set ρ(H) is isomorphic to the set ρ(G).

Letting R stand for the set V (Q) − V (H) we have R ⊆ X ∪ Z . Consider an arbitrary M in ρ(H). If M ∈ ρ1 then
since M is either a stable or a complete set, every pair of vertices in M forms a non-trivial module in H .

Consequently, since by Proposition 3.8 every vertex of M has at most one neighbour in R and this neighbour is
private, at least | M | −1 vertices of R are needed for ‘breaking’ every submodule of two vertices of M . If M ∈ ρ2 then
since M induces a prime graph in H , at least one vertex which is partial for M is needed for ‘breaking’ the module M in



80 V. Giakoumakis, S. Olariu / Theoretical Computer Science 370 (2007) 74–93

G ′. It follows that | R |≥
∑i=s

i=1(| Mi | −1)+ t . But since | X |=| Y | and | Y | + | Z |=| V ′
|=

∑i=s
i=1(| Mi | −1)+ t

we deduce that Q is precisely the graph G ′ and the result follows. �

Definition 3.10. The minimal prime extension G ′ of G described in this section, will be called henceforth the basic
extension of G and will be noted basic(G).

3.2. The path extension of a decomposable graph

The main goal of this subsection is to present a method for constructing an infinite number of minimal prime
extensions of a connected decomposable graph G satisfying the following condition: there exists a nontrivial module
M of size at least three in G such that [M], the subgraph of G induced by M , is connected and non-isomorphic to a
chordless path Pk, k ≥ 3. Importantly, this construction constitutes the framework for characterizing all cases where
a graph possesses an infinite number of minimal prime extensions.

Let us now recall the following result of Giakoumakis [10].

Proposition 3.11 ([10]). Q is a minimal prime extension of a graph G if, and only if, Q is a minimal prime extension
of G.

Corollary 3.12. A graph G has an infinite number of minimal prime extensions if, and only if, G has an infinite
number of minimal prime extensions.

Corollary 3.12 allows us to restrict ourselves to the case where G is a connected graph.
Assume now that G contains a nontrivial module M of at least three vertices such that [M] is connected and

distinct from a Pk, k ≥ 3. We may assume without loss of generality that M is maximal with respect to set inclusion,
connectivity and that [M] is not isomorphic to a chordless path. Let A be the neighbourhood of M in G and let B
stand for its neighbourhood in the complement of G. Since G is connected, it follows that A 6= ∅.

Consider the basic extension G ′
= basic(G) of G and denote by Q the set of vertices of V (basic(G))−V (G) such

that N (Q) ⊂ M and denote by D the vertices of V (basic(G)) − V (G) such that N (D) ⊂ (A ∪ B). Put differently, Q
is the set of new vertices that break the module M in G and any nontrivial module of [M], while D is the set of new
vertices that break any nontrivial module of [A ∪ B] in G. It is easy to see that Q ∪ D is stable and that every vertex
in Q ∪ D has exactly one neighbour in G and this neighbour is private in the sense defined above.

Finally, write DA = N (A) ∩ D and DB = N (B) ∩ D.

Lemma 3.13. [M ∪ Q] is a prime graph.

Proof. Assume not and let M ′ be a nontrivial module of [M ∪ Q]. Observe that M ′ is neither entirely contained in
Q (because every vertex of Q has exactly one neighbour in basic(G) which is in M and it is private) nor entirely
contained in M , for otherwise M ′ would be a module in basic(G), a contradiction.

It follows that M ′ contains vertices from both M and Q. Let x be a vertex of M ′
∩ Q and y its neighbour in M

(this neighbour is unique in [M ∪ Q]). Because basic(G) is prime, y belongs to a non-trivial module of [M ∪ Q] \ x ,
a contradiction. Notice that by Lemma 3.5, y must be a universal vertex of [M ∪ Q] and, consequently, Q must be a
singleton.

Let Q′ be the neighbourhood of y in [M]. Clearly, Q′ must be a singleton for otherwise Q′ would be a non-trivial
module in G ′. It follows that [M], which by assumption is different from a chordless chain, is isomorphic to a K2, a
contradiction. Thus, [M ∪ Q] is a prime graph, as claimed. �

Notation 3.14. Let G+ be the graph obtained from basic(G) in the following way: V (G+) = V (basic(G)) and
E(G+) = E(basic(G))∪{{x, y} | x ∈ Q, y ∈ A}. In other words, every vertex of Q is adjacent in G+ to every vertex
of A, which implies that M ∪ Q is a non-trivial module of G+.

Lemma 3.15. If M ∪ Q is not the unique nontrivial module of G+ then G+ contains exactly a second nontrivial
module formed involving vertices of M ∪ Q ∪ {w}, where w is a vertex of B.

Proof. Consider the subgraph H of G+ induced by (V (G+) \ (M ∪ Q)) ∪ {h}, where h is a vertex of the module
M ∪ Q. In other words, H is obtained by ‘contracting’ M ∪ Q to a single vertex. Observe that H is also a proper
subgraph of basic(G). If H is prime then there is nothing to prove since in this case the only non-trivial module in
G+ is the set M ∪ Q.
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Fig. 2. The path extension of a graph G = [M ∪ A ∪ B].

If H contains a nontrivial module {w, h} then, again, there is nothing to prove since w cannot be adjacent to h,
for otherwise it would be total for M and, consequently, M would not be maximal with respect to set inclusion, a
contradiction.

Finally, assume that H contains a module M ′ such that M ′
− {h} contains at least two vertices. Then, since no

vertex of M ∪ Q can distinguish the vertices of M ′
− {h} neither in G+ nor in basic(G), this set would be also a

nontrivial module of basic(G), a contradiction. �

Corollary 3.16. The subgraph H of basic(G) induced by {x, y} ∪ A ∪ B ∪ D where x ∈ M and y is the private
neighbour of x in Q, is a prime graph.

Proof. Let H ′ be the subgraph of G+ such that V (H ′) = V (H). Lemma 3.15 guarantees that H ′ contains at most
two non-trivial modules {x, y} and {x, y, w} where w is a vertex of B nonadjacent to {x, y}. Since in H the vertex y
has exactly one neighbour, namely x , the result follows. �

Notation 3.17. Let G ⊗ Pk be the graph obtained from G+ in the following way: V (G ⊗ Pk) − V ((G)+) induces a
chordless chain Pk = x1, . . . , xk such that

• x1 is adjacent to exactly one vertex of Q,
• every vertex of {x1, . . . , xk−1} is total with respect to A and adjacent to no vertices of M ∪ B ∪ D,
• no vertex in {x2, . . . , xk−1} is adjacent to a vertex of Q and,
• xk is adjacent to no vertices of G+.

The structure of G ⊗ Pk is illustrated in Fig. 2.

Proposition 3.18. The graph G ⊗ Pk is prime.

Proof. Since [M ∪ Q] is prime (see Lemma 3.13) and since x1 is partial with respect to M ∪ Q, this set cannot
be a module in G ⊗ Pk and this is the case as well whenever there exists the module M ∪ Q ∪ {w} described in
Lemma 3.15. It is easy to verify that the addition of the chain Pk to G+ does not create any nontrivial modules and,
hence, the resulting graph G ⊗ Pk must be prime, as claimed. �

Notation 3.19.

1. G∗ is a minimal prime extension of G contained, as an induced subgraph, in G ⊗ Pk ;
2. G∗ is said to be of type 1 if it contains Pk and of type 2 otherwise;
3. G1 is an induced subgraph of G∗ isomorphic to G by an isomorphism σ ;
4. (M1, A1, B1) denotes the partition of V (G1) for which M1, A1, B1 are isomorphic by σ to M, A, B, respectively.

Lemma 3.20. M1 ∩ D = ∅.
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Proof. Indeed, since the degree in G of every vertex in M is at least two and the degree in G ⊗ Pk of every vertex of
D is exactly one, no vertex of D can belong to M1. �

Proposition 3.21. M1 ∪ A1 is not entirely contained in Pk ∪ Q ∪ M.

Proof. Assume not; since [M1] is connected and distinct from a chordless chain, M1 is not entirely contained in
Pk ∪ Q and hence M1 ∩ M 6= ∅. Since every vertex of M is total with respect to A and indifferent with respect to
B ∪ D, the connectedness of G1 implies that B1 ∩ (B ∪ D) = ∅ and, consequently, V (G1) is entirely contained in
Pk ∪ Q ∪ M .

Since no vertex of Pk is adjacent to a vertex of M , no vertex of A1 can be in Pk and consequently A1 is entirely
contained in Q ∪ M.

Observe that in the graph [Pk ∪ Q ∪ M] every vertex x ∈ Q has either degree 1 or degree 2 precisely when x
is the unique vertex of Q adjacent to a vertex of Pk . Now, since the degree of every vertex of A in G is at least
| M | and since M contains, by assumption, at least three vertices, no vertex of A1 can be in Q. It follows that A1 is
entirely contained in M . Then, since M1 is total with respect to A1 and no vertex of Pk is adjacent to M we have that
M1 ∩ Pk = ∅. Therefore since M1 ∩ M 6= ∅, M1 contains vertices from M and Q. Furthermore, the connectedness of
[M1] together with the fact that M1 is not entirely contained in M (otherwise, A1 = ∅) implies that M1 ∩ Q 6= ∅ and
that the unique neighbour of every vertex x ∈ M1 ∩ Q belongs to M1. It follows that M1 cannot be total for A1 in G1,
a contradiction. �

Proposition 3.22. V (G∗) ∩ A 6= ∅ and V (G∗) ∩ Pk 6= ∅.

Proof. Assume first that V (G∗) ∩ A = ∅. Since no vertex in M ∪ Q ∪ Pk is adjacent to a vertex of B ∪ D and since
M1 is total with respect to A1, the connectedness of G1 and Proposition 3.21, combined, imply that V (G1) is entirely
contained in B ∪ DB . G1 is proper subgraph of G∗ and since by assumption V (G∗)∩ A = ∅, the connectedness of G∗

implies that V (G∗) is contained in B ∪ DB , which is in contradiction with the fact that basic(G) is a minimal prime
extension of G. It follows that V (G∗) ∩ A 6= ∅, as claimed.

Assume next that V (G∗) ∩ Pk = ∅. Since V (G∗) ∩ A 6= ∅, the set V (G∗) ∩ (M ∪ Q) must contain at most one
vertex; otherwise G∗ would contain a homogeneous set, a contradiction. It follows that G∗ is isomorphic to a proper
subgraph of basic(G), a contradiction. �

Lemma 3.23. If G∗ is of type 2 then the set Pk ∩ V (G∗) is

1. either a subchain P ′
= xi , xi+1, . . . , xk−1, xk with 1 < i < k of Pk

2. or P ′
∪ {x j } with 1 ≤ j < i − 1.

Proof. The conclusion follows immediately from Proposition 3.22 and the fact that the graph G∗ is prime. �

Proposition 3.24. If G∗ is of type 2 then T = V (G∗) ∩ (M ∪ Q) contains at most one vertex.

Proof. Assume to the contrary that | T |> 1. Since the vertices of T have the same neighbourhood in V (G∗) ∩ A and
since G∗ is a prime graph, there must exist a set T ′

⊆ V (G∗) containing T which is not a homogeneous set of G∗. It
is easy to see that T ′ and, consequently, G∗ must contain the whole chain Pk , a contradiction. �

In Lemma 3.15 we proved that in addition to the module M ∪ Q, the graph G+ may also contain the module
M ∪ Q ∪ {w} where w is a vertex of B (and hence nonadjacent to M), whose neighbourhood in G is the set A.

To simplify the notation, we shall let M ∪Q∪{w} refer to the set M ∪Q when w does not exist. Now, Notation 3.14,
Lemma 3.23 and Proposition 3.24, combined, suggest the following result.

Corollary 3.25. The set V (G∗) ∩ (Pk ∪ M ∪ Q ∪ {w}) equals either P ′, or P ′
∪ {x j }, or P ′

∪ {w}, or P ′
∪ {h} where

h is a vertex of M ∪ Q.

Proof. The conclusion follows directly by observing that we cannot have both w and h or both w and x j or both h
and x j in V (G∗) ∩ (Pk ∪ M ∪ Q), for otherwise the set of these two vertices would be a homogeneous set in G∗, a
contradiction. �

Notation 3.26. To simplify the notation, the set V (G∗) ∩ (Pk ∪ M ∪ Q ∪ {w}) will be denoted by P∗.
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At this point it is easy to verify the result below which turns out to be a valuable tool in some of the proofs in the
sequel of this section.

Lemma 3.27. Let X be a subset of G ⊗ Pk such that [X ] is connected and distinct from a chordless chain. Let X1 be
the set X ∩ Pk and let T be the set of vertices of Pk that are total with respect to X. If X1 6= ∅ then | T |≤ 2 and,
moreover:

1. | T |= 2 implies that [T ∪ X1] is isomorphic to a P3 = abc with a, c ∈ T
2. | T |= 1 implies that | X1 |= 1 or that X1 contains exactly two nonadjacent vertices.

Proposition 3.28. If G∗ is of type 2 then M1 ∩ P∗
= ∅.

Proof. Assume not. Since the graph [M1] is connected and non-isomorphic to a chordless chain, it cannot be entirely
contained in P∗. Write X1 = M1 ∩ P∗, X2 = M1 − X1, Y1 = A1 ∩ P∗ and Y2 = A1 − Y1.

Assume first that X2 ∩ B 6= ∅. Since the graph induced by M1 is connected, we have X2 ∩ A 6= ∅. Since P∗
−{xk}

is total with respect to A, xk is indifferent with respect to A, P∗ is indifferent for B ∪ D and M1 is indifferent for
B1, it follows that A1 ∩ P∗

= ∅ and A1 ∩ D = ∅. Consequently, A1 must be entirely contained in A − {X2 ∩ A}, a
contradiction.

Thus, X2 must be entirely contained in A. Since no vertex of P∗ is adjacent to a vertex of B ∪ D, it must be the
case that Y2 ∩ (B ∪ D) = ∅ and consequently Y2 must be entirely contained in A. This implies that Y1 6= ∅. Since, by
assumption, X1 6= ∅, Lemma 3.27 guarantees that | Y1 |≤ 2.

Assume that Y1 contains two vertices, say x and y. Now, Lemma 3.27 guarantees that these vertices are nonadjacent
and X1 is a singleton. Since no vertex of P∗ is adjacent to a vertex of B ∪ D and since X1 6= ∅, it must be that Y2 ⊂ A.
Since [M1] is not isomorphic to a chordless chain, X2 contains exactly two adjacent vertices, say z and t , that is, [M1]

is isomorphic to a C3.
Let θ stand for the number of edges of the graph induced by Y2 and let θ1 denote the number of edges of the graph

induced by A1. We have that θ1 = θ+ | Y2 | + | Y2 | (x and y are total with respect to Y2). But the number of edges of
[A] is at least θ+ | Y2 | + | Y2 | +1 (z and t are total with respect to Y2 and {z, t} is an edge of [X2]), a contradiction.
Hence, Y1 is a singleton and either X1 is a singleton or it contains two non-adjacent vertices. In either case, the set X2
must contain at least two vertices and hence | A1 |<| A |, a contradiction. �

Proposition 3.29. If G∗ is of type 2 then either M1 is entirely contained in A or M1 is entirely contained in B.

Proof. By Lemma 3.20 and Proposition 3.28, it must be the case that M1 is entirely contained in A ∪ B. Assume for
the sake of contradiction that X1, X2 6= ∅ where X1 = M1 ∩ A and X2 = M1 ∩ B. Since every vertex of P∗ is total
with respect to A and indifferent for B ∪ D, no vertex of A1 ∪ B1 can be in P∗ and, as a consequence, A1 ∪ B1 is
entirely contained in A ∪ B ∪ D.

Consider the proper subgraph H of basic(G) induced by {x, y} ∪ A ∪ B ∪ D where x is a vertex of M and y is the
private neighbour of x in Q. Since G1 is a subgraph of H and since by Corollary 3.16 H is prime, H must contain an
extension of G1, contradicting the fact that H is a proper subgraph of basic(G). �

Theorem 3.30. G∗ is of type 1.

Proof. Assume not. Clearly, we can write V (G∗) ⊆ A ∪ B ∪ D ∪ P∗. Let R be the set of vertices of G that are partial
with respect to M1 in V (G) − V (G1). Proposition 3.29 guarantees that every vertex of M is either total or indifferent
with respect to M1. Thus, it must be that R ∩ M = ∅ and, consequently, R ⊂ A ∪ B.

Let S ⊂ A ∪ B be the set of vertices that are total or indifferent with respect to M1 in the graph induced by
V (G) − V (G1). Let µ be a sequence of vertices µ = x0x1 · · · xs such that:

1. x0 is a vertex of M or a vertex of R ∪ S;
2. Every vertex of µ \ x0 belongs to A ∪ B;
3. xi = σ(xi−1), 1 ≤ i ≤ s;
4. µ is as long as possible with the above properties.

We shall call the path µ a special path. In this context, we denote by init(µ) the vertex x0 and by term(µ) the vertex
xs . If init(µ) is a vertex of M then µ will be a special path of type 1 and if init(µ) is a vertex of R ∪ S it will be a
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special path of type 2. Let Γ be the set of special paths in G. We denote by Γ 1 the set of special paths of type 1 and
by Γ 2 the set of special paths of type 2. Finally, we shall let µ(x) denote the special path to which vertex x belongs.

Let µ be a path of G. It is easy to see that:

1. σ(term(µ)) belongs to D ∪ P∗;
2. No two special paths µ1 and µ2 share common vertices and

σ(term(µ1)) 6= σ(term(µ2)).

Claim 1. Let x be a vertex of a special path µ distinct from term(µ) such that the neighbourhood of x in G is not a
stable set. Then neither the neighbourhood of σ(x) in G nor the neighbourhood of σ(term(µ)) in G1 can be stable
sets.

Proof. If σ(x) belongs to A the result is obvious since M belongs to G. Assume then that σ(x) belongs to B and
consider two adjacent vertices a and b of G which are adjacent to x . Since a and b are both in G, none of σ(a) and
σ(b) can be a vertex of D. Since none of the vertices of P∗ can be adjacent to σ(x) ∈ B, it follows that σ(a)σ (b) is
an edge of [A ∪ B] which proves that the neighbourhood of σ(x) in G is not a stable set, as claimed.

Finally, it is clear that the neighbourhood in G1 of σ(term(µ)) is not a stable set if and only if the neighbourhood
of x in G is not a stable set. �

In Corollary 3.25 it was shown that P∗ is formed by the subchain P ′
= xi , . . . , xk of Pk such that 1 < i < k and

possibly by a vertex of {x j , w, h} with x j ∈ Pk, j < i − 1, w ∈ B and h ∈ M ∪ Q. In the following, we shall assume
that P∗ is formed by the vertices of P ′

∪ {h} where h is a vertex of Q. It is an easy task to verify that the claimed
result of this theorem holds when considering all the other possibilities concerning P∗.

Let U = {M0, . . . , Mi , . . . , Mq} be the set satisfying the following conditions:

1. M0 = M ,
2. Mi = σ(Mi−1), i = 1, . . . , q ,
3. Mi ⊆ A ∪ B, i = 1, . . . , q ,
4. U is the largest set with respect to the above properties.

Property of U . Since M0 ∩ V (G∗) = ∅, it is easy to verify that for every choice of Mi and M j , 1 ≤ i 6= j ≤ q, in U ,
Mi ∩ M j = ∅.

Claim 2. Let x be a vertex of Mi ∈U , i = 0, . . . , q and let µ ∈ Γ 1 be the special path containing x . Then
σ(term(µ)) ∈ P∗.

Proof. The maximality of µ implies that σ(term(µ)) ∈ P∗
∪ D and since the neighbourhood of any vertex of M0 is

not a stable set, the result follows from Claim 1. �

Claim 3. Mq+1 = σ(Mq) contains vertices from P∗ and A ∪ B.

Proof. If not, by the previous claim σ(Mq) would be entirely contained in P∗ and, consequently, Mq would induce a
graph isomorphic to a chordless chain, a contradiction. �

The reader can easily verify the two following claims.

Claim 4. Let Mi be a set of U and X a set of vertices of G outside Mi . Then σ(X) is partial (resp. total, indifferent)
with respect to σ(Mi ) if and only if X is partial (resp. total, indifferent) with respect to Mi .

Claim 5. The number of partial (resp. total, indifferent) vertices of Mi ∈U in G is equal to the number of partial
(resp. total, indifferent ) vertices of Mi+1 ∈U in G1, i = 1, . . . , q − 1.

Let H = {H0, . . . , Hi , . . . , Hr } be a set satisfying the following properties.

1. H0 is a module of M ,
2. Hi = σ(Hi−1), i = 1, . . . , r ,
3. Hi ⊆ A ∪ B, i = 1, . . . , r ,
4. | Hi |> 1, and
5. H is the largest set with respect to the above properties.
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Claim 6. Let Hi , 1 ≤ i ≤ r , be a set inH and let x be a vertex of G which is partial with respect to Hi . The following
two conditions are satisfied:

1. Hi is either entirely contained in A or else entirely contained in B;
2. x belongs to a path µ of type 2, i.e. µ ∈ Γ 2.

Proof. The proof is by induction on i . By Proposition 3.29, M1 is entirely contained in A or is entirely contained in B
and, hence, every vertex of M is either total or indifferent with respect to M1 and, consequently, with respect to H1. It
follows that every partial vertex with respect to H1 in G belongs to R and hence the result holds for i = 1.

Assume that the result holds for Ht , 1 ≤ t < r , and consider Ht+1. If Ht+1 contains vertices from both A and B,
then every vertex of P∗ is partial with respect to this set in G1. By the induction hypothesis the set, say J , of partial
vertices with respect to Ht consists of vertices belonging to special paths in Γ 2. Since σ(J ) belongs to A∪ B∪ D∪ P∗,
it follows that every vertex y of P∗ must satisfy σ−1(y) ∈ J , contradicting Claim 2. Hence Ht+1 is entirely contained
in A or entirely contained in B, as claimed.

Consider now a vertex x of G which is partial for Ht+1. If x ∈ V (G1) ∩ V (G) then x ∈ Γ 2 for otherwise
σ−1(x) /∈ Γ 2, contradicting the induction hypothesis. If x ∈ V (G) − V (G1) which equals M ∪ R ∪ S then since M
is total or indifferent in G for Mt+1 and consequently for Ht+1, x must be a vertex of R ∪ S which belongs to Γ 2 as
claimed. �

Observation. Since the set H0 of H is not necessarily a nontrivial module of M0 = M, H0 can be M itself and,
consequently, Claim 6 holds for every set Mi of U .

Denote by Ω the set Ω = {σ(term(µ(x))) | x ∈ M}. Observe that by virtue of Claim 2, Ω is entirely contained in
P∗. Let Y be the set Mq+1 ∩ P∗, let T be the set of vertices of P∗ which are total with respect to Y and let Ω ′ be the
set Ω − (T ∪ Y ).

Assume first that M contains at least four vertices. By Lemma 3.27, if T 6= ∅, T ∪ Y contains at most three
vertices and, consequently, Ω ′

6= ∅. Let J be the set of partial vertices of Mq in G. By Claim 6, for x ∈ J we have
σ(term(µ(x))) /∈ Ω and the number of partial vertices of Mq+1 in G1 is at least | J | + | Ω ′

|, a contradiction.
Assume now that M contains fewer than four vertices. Since [M] is connected and distinct from a chordless path,

[M] must be isomorphic to a C3, say abc, induced, in the obvious way, by vertices a, b, and c. If Y contains two
adjacent vertices then T = ∅ and, consequently, | Ω ′

|= 1 which implies that the number of partial vertices of Mq+1
in G1 is at least | J | +1, a contradiction.

Hence Y contains exactly one vertex, say, a. Clearly if J = ∅ or if σ(J ) ⊆ P∗ then {b, c} is a module in G1 and,
consequently, in G∗ since there is no vertex of V (G1) that “breaks” the module {b, c}, a contradiction. Let b∗ and c∗

be, respectively, the vertices b∗
= σ(term(µ(b))) and c∗

= σ(term(µ(c))) which by Claim 2 belong to P∗. If at least
one of these vertices is not total with respect to abc, the number of partial vertices of abc in G1 is at least | J | +1, a
contradiction. Hence Y = {b∗, c∗

}.

Let θ = b0c0, b1c1, . . . , br cr be the longest sequence of edges in G such that b0 = b, c0 = c and bi = σ(bi−1),
ci = σ(ci−1), i = 1, . . . , r . In other words bi ∈ µ(bo) and ci ∈ µ(co), i = 1, . . . , r . Since by Claim 6 the set of
partial vertices of br cr in G belong to paths in Γ 2, and b∗ is nonadjacent to c∗ then either σ(br ) = b∗ or σ(cr ) = c∗

but not both.
Assume, without loss of generality, that σ(br ) = b∗ and write cr+1 = σ(cr ). Since br cr is an edge of G, it follows

that b∗cr+1 is an edge of G1 and so cr+1 belongs to A. Thus, c∗ distinguishes in G1 the vertices of {b∗, cr+1}. Let
I denote the set of partial vertices with respect to {br , cr } in G. By Claim 6 every vertex of I belongs to a path of
Γ 2. By Claim 2, c∗ /∈ σ(I ), a contradiction, since the number of partial vertices in G1 of {b∗, cr+1} is larger than the
number of partial vertices of {br , cr } in G. �

We are now in a position to state the main result of this section.

Theorem 3.31. Let G be a connected graph containing a maximal nontrivial module M such that [M] induces a
connected graph with at least three vertices non-isomorphic to a Pk, k ≥ 3. Then, the set of minimal prime extensions
Ext(G) of G is infinite.

Proof. The result follows from the fact that every prime extension of G obtained by the path construction G ⊗ Pk is
of type 1 and the fact that the chain Pk is of arbitrary length. �
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4. All minimal prime extensions: The finite and infinite cases

The main goal of this section is to characterize all classes of graphs whose closure under substitution closure can
be defined by a finite set of forbidden subgraphs. Our result will be obtained by an exhaustive examination of the
structure of non-trivial modules of a connected graph G. The cases that may arise are illustrated in the Fig. 3.

Theorem 4.1. Let G be a connected graph which is not P4-homogeneous and such that every module of G that
induces a connected graph is isomorphic to a chordless chain. If G is disconnected then it contains exactly two
connected components.

Proof. Suppose not. If G contains at least four components, say F1, F2, F3, and F4 then F1 ∪ F2 ∪ F3 is a module
in G whose induced graph is not isomorphic to a chordless chain since it contains a C3, a contradiction.

Assume, next, that G contains three connected components F1, F2 and F3. If two of these components, say F1
and F2, are not single vertices, then the module F1 ∪ F2 of G contains a C4, a contradiction. Hence two of these
components, say F2 and F3, are single vertices, while | F1 |> 2, for otherwise G would be P4-homogeneous, a
contradiction. It is easy to see now that the nontrivial module F1 ∪ F2 of G cannot be isomorphic to a chordless chain,
a contradiction. �

4.1. 2P4-homogeneous graphs

We shall now present a class of graphs whose set of minimal prime extensions is finite.

Definition 4.2. Let G be a connected graph which is not P4-homogeneous and having a universal vertex u. We shall
call G a pseudo-gem if G ′

= G \ u is a P4- homogeneous graph which is isomorphic to a subgraph of a chordless
chain.

The following result clarifies the structure of a pseudo-gem.

Lemma 4.3. Let G be a pseudo-gem and u a universal vertex of G, then G ′
= G \ u is one of the following types of

graphs:

1. G ′ is isomorphic to a chordless chain Pl , l ≥ 5;
2. G ′ is the disjoint union of two chordless chains Pl and Pt such that

• l = 1 and 3 ≤ t ≤ 4, or
• l = 2 and 2 ≤ t ≤ 4, or
• l = 3 and 1 ≤ t ≤ 4, or
• l = 4 and 1 ≤ t ≤ 4;

3. G ′ is isomorphic to an O3 or is the union of an O2 and a P2.

Proof. Indeed, since u is a universal vertex of G and G is not a P4-homogeneous graph, G ′ cannot be a subgraph
of a P4. Also, since G ′ is a P4-homogeneous graph isomorphic to a subgraph of a chordless chain, then either G ′ is
prime and, consequently, isomorphic to a chordless chain Pl , l ≥ 5 (Case 1 above) or every module of G ′ induces a
subgraph of a P4. The conclusion follows. �

Definition 4.4. Let G be a connected graph which is not P4-homogeneous such that G contains exactly two connected
components C1 and C2. Then, G and G are said to be 2P4-homogeneous graphs if [C1] and [C2] are subgraphs of a
chordless chain and one of the following conditions holds:

• G is isomorphic to a pseudo gem
• [C2] is isomorphic to a subgraph of a P4 and [C1] is a P4-homogeneous graph which is 2K2-free.

The following result clarifies the structure of a 2P4-homogeneous graph.

Lemma 4.5. Let G be a connected 2P4-homogeneous graph which is not isomorphic to a pseudo gem. Let C1 and C2
be the two connected components of G with [C2] a subgraph of a P4. Then

1. [C2] is isomorphic to a P4, P3 or a P2
2. [C1] is isomorphic to a P1 ∪ P3 or to a P1 ∪ P4 or to an O3 or to an O2 ∪ P2.
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Fig. 3. Illustration of the various cases that may occur for graph G and module M . For each case we indicate whether Ext(G) is finite or infinite.

Proof. Since G is not isomorphic to a pseudo gem, C2 is not a singleton and since [C2] is connected and isomorphic
to a subgraph of a P4, [C2] must be isomorphic to a P4 or to a P3 or to a P2 as claimed. Let us prove now the
second assertion of the lemma. Indeed, since [C1] is 2K2-free, [C1] cannot contain a subgraph isomorphic to either a
chordless chain Pl , l ≥ 5 or to the disjoint union of two chordless chains which are both distinct from a P1. Since also
G is not a P4-homogeneous graph, [C1] cannot be isomorphic to a chordless chain having at most 4 vertices. Finally,
since [C1] is a P4-homogeneous graph which is a subgraph of a chordless chain, [C1] is isomorphic to a P1 ∪ P3 or to
a P1 ∪ P4 or to an O2 ∪ P2 to an O3 as claimed. �

We shall prove now that the set of minimal prime extensions of a 2P4-homogeneous graph is finite. Before this we
need some preliminaries results.

Theorem 4.6 ([16]). If W is a nontrivial module of a graph G and W induces a subgraph of a P4 then in any minimal
prime extension of G there exists a W -pseudopath P having at most two vertices. Moreover

1. if [W ] is not isomorphic to a P4, P has exactly one vertex.
2. If W is isomorphic to a P4 abcd and P has two vertices, the first vertex of P is adjacent to the two middle vertices

b and c of [W ] and misses the two other vertices a and c.

Notation 4.7. Let Q be a minimal prime extension of its induced connected subgraph G and let W be a non trivial
module of G. A W -pseudopath Pk = (x1, . . . , xk) in Q will be called a strong pseudopath if there is no homogeneous
set W ′

⊆ W in the graph G ∪ Pk . In other words the vertex x1 ‘breaks’ any nontrivial module of [W ].

We can derive from Theorem 4.6 the following result:

Proposition 4.8. Let Q be a minimal prime extension of its induced connected subgraph G and let W be a nontrivial
module of G such that W induces a subgraph of a P4. Then there exists in Q a W -strong pseudopath P having at
most two vertices.

Proof. If W contains two or four vertices, the result is directly obtained from Theorem 4.6. Assume then that [W ]

is isomorphic to a P3 or to a P3. Let x1 be the first vertex of P which as we recall, is partial for W . If there exists
an homogeneous set W ′

⊆ W in the graph induced by G ∪ P , then W ′ has exactly two vertices. Consequently, by
Theorem 4.6 there must be a W ′ -pseudopath P ′ in Q. Clearly P ′ is a strong pseudopath and is also a W -pseudopath.
We can easily verify that no subset of W is an homogeneous set in the graph G ∪ P ′ and hence we are done. �

Proposition 4.9. Let Q be a minimal prime extension of its induced connected subgraph G and let W be a maximal
homogeneous set of G such that W induces a subgraph of a P4. If W is the unique maximal homogeneous set of G
then | V (Q) |<| V (G) + 2 |.
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Proof. Indeed, by Proposition 4.8 there exists in Q a W -strong pseudopath P having at most two vertices. Clearly
since M is the unique maximal homogeneous set in G the graph G ∪ P is prime. Since Q ∈ Ext(G), the result
follows. �

We are now in position to present the main theorem of this subsection.

Theorem 4.10. If G is a 2P4-homogeneous graph, then Ext(G) is a finite set.

Proof. Assume that G is connected and let E be the set of minimal prime extensions of G. Let C1 and C2 be the two
connected components of G and assume w.l.o.g. that [C2] is a subgraph of a P4.

Consider the bi-partition of E into the following sets:
1. E1 is the set of graphs belonging to Ext([C1])∩E ;
2. E2 is the set of graphs in E−E1.

Claim 1. E1 is finite.

Proof. Since, by assumption, [C1] is a P4-homogeneous graph, Theorem 2.5 guarantees that Ext([C1]) is finite and,
consequently, the same must hold for E1. �

Our next task is to prove that E2 is finite. We shall distinguish the two complementary cases: C2 is a singleton (i.e.
G is a pseudo gem) and C2 6= singleton.
Case 1 C2 is a singleton

Let Q be an arbitrary graph in E2. Let H be a subgraph of Q isomorphic to G and H ′
= H \ v where v is a

universal vertex of H . Since Q is prime there must be a subgraph Q′ in Q containing H ′ as induced subgraph such
that Q′

∈ Ext(H ′).

Claim 2. | V (Q) |≤| V (Q′) | + | V (G) |.

Proof. Assume first that the vertex v is not adjacent to all vertices of Q′. Then since v is adjacent to all vertices of H ′,
v is partial with respect to V (Q′). Since Q′ is a prime graph, the graph formed by Q′ and the vertex v is also prime and
consequently this graph is the graph Q. Assume now that the vertex v is total with respect to V (Q′) that is, V (Q′) is a
nontrivial module of the graph induced by V (Q′)∪{v}. Then by Theorem 2.8 there must be in Q a V (Q′)-pseudopath
P = y1, . . . , yr . Let P ′

= y1, . . . , ys , 1 ≤ s ≤ r be the longest sequence of vertices of P inducing a chordless chain.
We show now that s <| V (H ′) | +1. Assume the contrary, then since H ′ is isomorphic to a subgraph of a chordless
chain, P would contain a subgraph isomorphic to H ′. It follows that P together with the vertex v would form a prime
graph containing a minimal prime extension of H strictly contained in Q, a contradiction. We shall show now that P ′

is exactly P . Assume the contrary and consider the graph Q′′ induced by V (Q′) ∪ P ′
∪ ys+1. By the definition of P ′,

ys+1 is adjacent to all vertices of Q′ and all vertices of P ′
\ ys . We can easily verify that the subgraph of Q′′ formed

by the vertices of H ′ and the vertex ys+1, is isomorphic to G. Consequently, since Q′′ is a prime graph it contains
a minimal prime extension of G. Since Q′′ is a proper subgraph of Q (Q contains also the vertex v) we obtain a
contradiction. �

Since H ′ is a P4-homogeneous graph, by Theorem 2.8 Ext(H ′) is a finite set. Therefore since each minimal prime
extension of H is obtained from a graph of Ext(H ′) by adding at most s <| V (G) | +1 vertices, we deduce that
whenever G is isomorphic to a pseudo-gem, E2 is a finite set.
Case 2 C2 6= singleton

Let Q be an arbitrary graph in Ext(G) and G ′ be a subgraph of Q isomorphic to G. Denote by [C ′

1] and [C ′

2] the
subgraphs of G ′ isomorphic respectively to [C1] and [C2]. Clearly, there is a subgraph H1 in Q containing [C ′

1] as
proper subgraph such that H1 ∈ Ext[C ′

1].
In [17] all the minimal prime extensions for [C ′

1] are given. The reader can easily verify that there are 10 minimal
prime extensions whenever [C ′

1] ∼ O2 ∪ P2, 3 minimal prime extensions whenever [C ′

1] ∼ P1 ∪ P3 or [C ′

1] ∼ O3
and 9 minimal prime extensions whenever [C ′

1] ∼ P1 ∪ P4. Furthermore, there is exactly one of these minimal prime
extensions extensions whose number of vertices is | C ′

1 | +3 while the number of vertices of all others is | C ′

1 | +2.
Finally, there are exactly three of them having a universal vertex x with respect to [C ′

1]. In Fig. 4 of this paper we give
these three minimal prime extensions using the same notations as in [17].

It is easy to see now that we have the following result:
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Fig. 4. Three minimal prime extensions: A ∈ Ext(O3) = Ext(P1 ∪ P3), G5 ∈ Ext(O2 ∪ P2), L9 ∈ Ext(P1 ∪ P4).

Claim 3. | V (H1) |≤| C ′

1 | +3 and there is at most one vertex of H1 which is total with respect to C ′

1 and not adjacent
to any vertex of V (H1) − C ′

1.

Claim 4. If V (H1) is not an homogeneous set of the graph H1 ∪ [C ′

2], then | V (Q) |<| V (G) | +5.

Proof. Let M be a maximal nontrivial module of H1 ∪ [C ′

2]. If M is entirely contained in C ′

2, then since H1 is a
prime graph, M will be the unique maximal homogeneous set of H1 ∪ [C ′

2]. The result follows by Proposition 4.9
and Claim 3. Assume then that M is not entirely included in C ′

2. Then since H1 is a prime graph, there is exactly one
vertex of M , say x belonging to V (H1). Consequently M ′

= M − {x} is entirely contained in C ′

2. Since every vertex
of C ′

2 is total with respect to C ′

1 we deduce that x is adjacent to every vertex of C ′

1 which implies that H1 is isomorphic
to one of the graphs A, G5, L9 depicted in Fig. 4. Since the vertex x is not adjacent to any vertex of V (H1) − C ′

1, the
same holds for any vertex of M ′. Consequently the graph H ′

1 induced by {V (H1) ∪ {y}} − {x}, with y a vertex of M ′,
is isomorphic to H1. It follows that H ′

1 ∪ C ′

2 contains a unique maximal homogeneous set inducing a subgraph of a
P4 and the result follows by Proposition 4.9 and Claim 3. �

Assume now that V (H1) is a nontrivial module of [V (H1) ∪ C ′

2] which is the last case to be examined. By
Proposition 4.8 there is a C ′

2- strong pseudopath P in Q, having at most two vertices. If the last vertex of P , say
z, is partial with respect to V (H1) then the graph [V (H1) ∪ C ′

2] ∪ P is prime and consequently by Proposition 4.8
and Claim 3 we have that | V (Q) |<| V (G) | +5. Assume then that z is not partial with respect to V (H1) then since
the nonneighbourhood of C ′

2 in [V (H1) ∪ C ′

2] is the empty set, z cannot be total with respect to the set V (H1). It
follows that z is indifferent with respect to V (H1). Consequently, V (H1) is the unique maximal homogeneous set of
[V (H1) ∪ C ′

2] ∪ P . By Theorem 2.8 there must be in Q a V (H1)- pseudopath Rk = (x1, . . . , xk). Since V (H1) is the
unique maximal homogeneous set of [V (H1) ∪ C ′

2] ∪ P , we deduce that the graph [V (H1) ∪ C ′

2] ∪ P ∪ Rk is prime.
Our next task is to prove that k ≤ c, where c is a constant.
Let A = {A1, . . . , Al} be the largest set of chordless chains obtained from Rk in the following manner:

1. A1 is the longest chordless chain formed by consecutive vertices of Rk and having as first vertex x1.
2. Ai is the longest chordless chain formed by consecutive vertices of Rk \ A1 ∪ · · · ∪ Ai−1 and whose first vertex is

the first vertex of Rk \ A1 ∪ · · · ∪ Ai−1, 1 < i ≤ l.

Let ai be the first vertex and bi be the last vertex of Ai , i = 1, . . . , l. Clearly if Ai ∼ P1, ai = bi . If Ai ∼ Pr such
that r > 1 we shall note ci the last but one vertex of Ai , i = 1, . . . , l.

Claim 5. Ai , i = 1, . . . , l contains at most six vertices.

Proof. Assume on the contrary that there exists Ai ∈ A having more than six vertices, then Ai contains an induced
graph [C ′′

1 ] isomorphic to [C ′

1]. Since every vertex of Rk \ xk is total with respect to C ′

2, the graph [C ′′

1 ] ∪ [C ′

2] is
isomorphic to G. But since the graph Ai ∪ · · · ∪ Al ∪ P ∪ [C ′

2] is prime, it contains a subgraph isomorphic to G as
induced subgraph and is strictly contained in Q, we obtain a contradiction. �

We shall show now that l < 10. Assume the contrary and consider the set A′
= A \ A1 ∪ Al .

Claim 6. There are not in A′ three chains Ai , Ai+1, Ai+2, 1 < i < l − 3 such that each one is isomorphic to a P1.

Proof. If not, Ai , Ai+1, Ai+2 together with the first vertex of Ai+3 would induce a copath containing a subgraph
isomorphic to [C ′

2]. Since every vertex of this copath is total with respect to H1, the graph H1 ∪ Rk which is prime
and is strictly contained in Q, would contain an induced subgraph isomorphic to G, a contradiction. �
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Since by assumption l > 9, Claim 6 implies that there exists three chordless chains inA′, Ar ,As and At , r < s < t
such that none of them is isomorphic to a P1. Assume w.l.o.g. that s is as small as possible that is, there is no Ai ,
r < i < s which is not isomorphic to a P1. If s = r + 1 then the set of vertices {cr , br , cs, bs, bt } induces a subgraph
isomorphic to a P1 ∪ P4. If s > r + 1 then since by assumption s is as small as possible, As−1 is isomorphic to a P1.
It follows that the set of vertices {ar , as−1, cs, bs, bt } induces a subgraph isomorphic to a P1 ∪ P4. Consequently in
both cases there exists in Rk a subgraph isomorphic to [C ′

1]. It follows that the graph Rk ∪ [C ′

2] ∪ P which is prime
and is strictly contained in Q, contains an induced subgraph isomorphic to G a contradiction.

Since | V (H1) |≤| C ′

1 | +3 (Claim 3), P has at most 2 vertices (Proposition 4.9) and l < 10, it is easy to see now
that every minimal prime extension of G has | V (G) | +c vertices, where c is a constant and this completes the proof
of the theorem. �

4.2. The main theorem

Theorem 4.11. Given a decomposable graph G, Ext(G) is finite if and only if G is P4-homogeneous or a 2P4-
homogeneous graph.

Proof. The ‘if’ part follows from Theorem 2.5 and Theorem 4.10, combined.
We shall now turn to the ‘only if’ part. For this purpose, assume that G is connected and non-isomorphic to a

P4-homogeneous or to a 2P4-homogeneous graph. Our goal is to show that Ext(G) is an infinite set for the different
cases illustrated in Fig. 3.

If there exists a module M in G such that [M] is connected and nonisomorphic to a chordless chain Pk , k ≥ 3, the
conclusion follows from Theorem 3.31.

Assume, next, that every module M of G that induces a connected graph is isomorphic to a chordless chain Pk ,
k ≥ 1. If G is connected, then since G is not P4-homogeneous, it must contain a module M maximal with respect
to set inclusion and non-isomorphic to a chordless chain Pr with r > 2. By Theorem 3.31, Ext(G) is infinite and by
Proposition 3.11 this must also be the case for Ext(G).

Therefore, in the remainder of the proof we assume that

G is disconnected.

Recall that by Theorem 4.1, G contains exactly two connected components C1 and C2. We shall distinguish the
two complementary cases:
1. Neither C1 nor C2 induce a chordless chain in G.
2. At least one of C1 or C2 induces a chordless chain in G.

Case 1 Neither C1 nor C2 induce a chordless chain in G.
Let Q1 (resp. Q2) be the set of new vertices that need to be added to [C1] (resp. to [C2]) in order to obtain its basic

extension U1 (resp. U2).
We construct a connected graph H by joining U1 with U2 with a chordless chain Pr = x1x2 . . . xr with

r > 2 | V (G) |, and such that

• x1 is adjacent to all but one vertex of U1,
• xr is adjacent to all but one vertices of U2, and
• no vertex of {x2, . . . , xr−1] is adjacent to any vertex of V (U1) ∪ V (U2).

Clearly the graph H constructed above is prime and, therefore, it contains a minimal prime extension H ′ of G. We
claim that:

H ′ contains the whole chain Pr . (1)

In order to argue for (1) observe that neither U1 nor U2 can be an extension of G. Indeed, assume that one of U1 or U2,
say U1, is an extension of G and let F2, F1 be two vertex-disjoint subgraphs of U1 isomorphic, respectively, to [C2]

and to [C1]. Since [C2] is connected its vertex set cannot be entirely included in the stable set Q1. Therefore, since
there is no edge between [C2] and [C1] in G, we can easily deduce that F1 6= C1. Let F ′

2 be the set V (F2)∩C1 and let
F ′

1 be the set V (F1)∩ C1. By Proposition 3.8 F ′

2 is a stable set and every vertex of this set has his private neighbour in
F ′

1 which contradicts the fact that there is no edge between F1 and F2. Since neither [C1] nor [C2] is isomorphic to a
chordless chain, the vertex-set of any induced copy of [C1] in H ′ is formed by a subset of C1 and some of the vertices
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of the subchain P1 = x1 . . . xt , t < r/2 and the vertex set of any induced copy of [C2] in H ′ is formed by a subset of
C2 and some of the vertices of the subchain P2 = xz . . . xr with z > r/2. Since H ′ must be connected, it contains the
whole chain Pr . Since Pr has arbitrary length larger than | V (G) | the proof of (1) is complete.
Case 2 At least one of C1 or C2 induces a chordless chain in G.

Assume, without loss of generality, that C2 induces a chordless chain in G. Clearly, [C2] is isomorphic to a P1 or
to a P2 or to a P3 or to a P4.

Claim 1. If [C1] is not a P4-homogeneous graph then Ext(G) is an infinite set.

Proof. We shall prove that Ext(G) is an infinite set. Since by assumption [C1] is not a P4 - homogeneous graph, [C1]

is a disjoint union of a set of chordless chains R1, R2, . . . , Rl , l > 1. Assume w.l.o.g. that length(Ri−1) ≥ length(Ri ),
1 < i ≤ l. Consider now the graph R1 ∪ · · · ∪ Rl−1; clearly the set of vertices of this graph forms a nontrivial
module M inducing in [C1] a subgraph different from a subgraph of a P4. More precisely [M] is either isomorphic to
a chordless chain Pr , r > 4 or is the disjoint union of a set of chordless chains. It follows that M induces in [C1] a
connected graph different from a chordless chain and hence we can use our construction in Section 3.2 for obtaining
a graph H isomorphic to a path extension [C1] ⊗ Pk where Pk = x1...xk is a chordless path of k vertices. We assume
w.l.o.g. that Pk contains at least 4 vertices. Let H∗ be a minimal prime extension of [C1] contained in H .

Fact 1. If H contains a subgraph isomorphic to G, then Ext(G) is an infinite set.

Proof. Indeed, by Proposition 3.18 H is a prime graph and consequently H contains a minimal prime extension F of
G. We claim that F contains the whole chain Pk . Indeed, in Theorem 3.30 we proved that any minimal prime extension
of [C1] contained in H , contains the whole chain Pk . Since F contains a minimal prime extension of [C1] as induced
subgraph, F contains the whole chain Pk , as claimed. Now, since Pk is of arbitrary length, the result follows. �

Fact 2. If C2 is a singleton then Ext(G) is an infinite set.

Proof. Since in H the vertex xk is not adjacent to any vertex of [C1], H contains an induced subgraph isomorphic to
G. The result follows from Fact 1. �

We assume then in the following that H does not contain a subgraph isomorphic to G and that C2 is not isomorphic
to a P1. Let y be one of the extremities of the chordless chain [C2] and let Q be the graph whose vertex set is
V (H∗) ∪ C2 ∪ {v}, where v is a new vertex; the edge set of Q is E(Q) = E(H∗) ∪ E([C2]) ∪ {vz}, with z 6= xk, y.
In other words Q is obtained by adding edges between a new vertex v with all vertices of H∗ except the vertex xk and
all vertices of the chain [C2] except one of its extremities y.

It is easy to see that Q is a prime graph containing a subgraph isomorphic to G.
Let Q′ be a prime extension of G contained in Q. Let G ′ a subgraph of Q′ isomorphic to G, and let U1 and U2

be two subgraphs of G ′ isomorphic to [C1] and respectively to [C2]. Since we assumed that H does not contain a
subgraph isomorphic to G, G ′ is not a subgraph of H∗.

Fact 3. G ′ does not contain the vertex v.

Proof. Assume first that v belongs to U2 then since U1 contains more than two vertices and v misses at most two
vertices in Q, there would be an edge between U1 and U2, a contradiction. Assume now that v belongs to U1, then if
C2 contains more than two vertices there would be an edge between U1 and U2, a contradiction. Assume now that C2
contains exactly two vertices. Since there is no edge between U1 and U2, U2 would be formed by the two non adjacent
vertices xk and y which contradicts the connectedness of U2. Since we assumed that U2 is not isomorphic to a P1, we
deduce that G ′ does not contain the vertex v, as claimed. �

Fact 3 implies that since U1 is not isomorphic to a subgraph of a P4 and U1 is connected, U1 is entirely contained
in H∗.

Fact 4. Q′ contains H∗ as induced subgraph.

Proof. Assume the contrary, then since any subgraph of Q′ isomorphic to [C1] is contained in H∗, there must be
a subgraph H1 of Q′ strictly contained in H∗ which is connected, it contains a subgraph isomorphic to [C1] and is
maximal with respect to set inclusion and the above properties. The maximality of H1 implies that it contains the
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vertex xk for otherwise the neighbourhood of H1 in Q′ would be the vertex v and consequently V (H1) would be a
nontrivial module of Q′, a contradiction. Also, H1 can not be a prime graph for otherwise H∗ would not be a minimal
prime extension of [C1], a contradiction. Let W be a maximal nontrivial module of H1, then if W does not contain the
vertex xk , W would be a non trivial module of Q′, a contradiction. But since xk has a unique neighbour in H∗ which
is the vertex xk−1, W can not contain the vertex xk−1, for otherwise a neighbour of W in H1 would not be adjacent to
xk , a contradiction. It follows that the neighbourhood of W in H1 is the vertex xk−1. Now, W must be formed by xk
and exactly one other vertex, for otherwise W \ {xk} would be a non trivial module in Q′, a contradiction. Let z be the
second vertex of W . Since xk−1 is the neighbourhood of W in H1, z is either the vertex xk−2 or a vertex belonging to
the neighbourhood of M in [C1]. Assume first that z is the vertex xk−2, then the vertex xk−3 which distinguishes the
vertices xk−2 and xk does not belong to H1. It follows that since H1 contains more than three vertices ([C1] contains
at least four vertices), there must be a neighbour, say u, of xk−1 belonging to H1. The vertex u must belong to V (Rl)

which is the neighbourhood of M in [C1] and we obtain a contradiction since xk−2 would be also adjacent to u.
Consequently, z belongs to Rl . It follows that no vertex of M ∪ {x1, . . . , xk−2} belongs to H1 since each one of this
vertices is adjacent to z and not adjacent to xk . It is easy to see now that Rl cannot be isomorphic to a P1 for otherwise
the graph H1 would be isomorphic to a P3, a contradiction. Consequently, Rl contains at least two vertices and hence
since H1 is assumed to be connected, the only vertices of H that can belong to H1 are xk , xk−1, the vertices of Rl and
the vertex w which is the only vertex needed in the basic extension of [C1] for ‘breaking’ the nontrivial module V (Rl)

of [C1]. But since Rl contains at least two vertices, it is easy to see that M must contain at least four vertices and we
obtain a contradiction. �

Since H∗ contains the whole chain Pk which is of arbitrary length, we deduce that Ext(G) is an infinite set, as
claimed. �

Assume now that [C1] is a P4-homogeneous graph then since G is not a 2P4-homogeneous graph, [C2] cannot be
a singleton, for otherwise G would be a pseudo-gem, a contradiction. It follows that [C1] cannot be 2K2-free.

Let L be the shortest chordless chain containing [C1] as induced subgraph and G1 be the graph obtained by
adding all missing edges between L and [C2]. Let H be a prime graph containing G obtained by adding to G1 an
L-pseudopath Pk = x1, x2, . . . , xk , k ≥ 4 and k even, that satisfies:

1. for i = 1, . . . , k − 1, if i is odd then xi , xi+1 is an edge of H and if i is even then xi , xi+1 is a non edge of H
2. x1 is adjacent to all but one vertices of [C1]

3. the vertex xk is adjacent to [C2] as follows:
(a) If [C2] is isomorphic to a P2 = ab then xk is adjacent to a and not adjacent to b
(b) If [C2] is isomorphic to a P3 = abc with bc the unique edge of [C2], xk is adjacent to a and b and not adjacent

to c
(c) If [C2] is isomorphic to a P4 = abcd , xk is adjacent to the middle vertices b and c of [C2] and not adjacent to

a and d .

Clearly, since Pk is a L-pseudopath, every vertex of P \ xk is adjacent to every vertex of L ∪[C2], x2i+1 is adjacent
to any vertex x j , j < 2i , and x2i is not adjacent to any vertex x j , j < 2i − 1, i = 1, . . . , k

2 .

Claim 2. Pk is 2K2-free and there are not two nonadjacent vertices in Pk that are both adjacent to a vertex of [C1].

Proof. Indeed assume first that there exists a 2K2 in Pk . Let xr xs and xt xv be the two edges of this 2K2 then one of
r, s, say r and one of t, v, say t is odd and we obtain a contradiction since xr is adjacent to xt . Let x j and xl be two
nonadjacent vertices of Pk , then at least one of j, l, say j is even and consequently x j is not adjacent to any vertex of
Pk , a contradiction. �

Since H is a prime graph it contains a minimal prime extension H ′ of G ′. We claim that H ′ contains entirely the
L-pseudopath Pk . Indeed, since [C1] contains a 2K2 by Claim 2 there cannot be a subgraph of Pk isomorphic to [C1]

and hence [C1] is not entirely contained into Pk . From the other hand since [C2] contains two nonadjacent vertices,
Claim 2 implies that [C2] cannot be a subgraph of Pk . The reader can easily verify now that H ′ must contain the whole
pseudopath Pk . Since this pseudopath is of arbitrary length, we deduce the claimed result. �
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5. Concluding remarks

First of all we may observe that the proofs given in the previous section suggest a general method for enumerating
in the finite case all minimal prime extensions of a graph G. Consider for example the case where G has two connected
components, one being an isolated vertex and the second inducing a P4 (i.e. G is the complementary graph of a Gem).
It is easy to see that from the different cases examined in the proof of the Lemma 4.3, we can derive all extensions
of G.

It must be pointed out here that, since no general result had been available concerning the set of minimal prime
extensions in the finite case, it was necessary for obtaining this set to examine separately each particular case of
the graphs under consideration — see, for example, [6,17]. Hence, now it becomes interesting to enumerate by a
systematic way derived from the results given in this paper, all the minimal prime extensions in the finite case. If the
number of minimal prime extensions is large, instead of exhibiting all these extensions we could propose a simple
algorithm for it. In this way for instance, we could characterize all the new classes of perfect graphs which are the
substitution-composite of subclasses of P4-homogeneous and 2P4-homogeneous graphs already been showed to be
perfect.

It would also be interesting to search for different methods generating infinite sets of extensions which could be for
instance beneficial to a better understanding of the structure of prime graphs that, to this day, are not well understood.
Both of these directions are for us an exciting area for further work.
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