All Minimal Prime Extensions of Hereditary Classes of Graphs

Vassilis Giakoumakis
Stephan Olariu
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_fac_pubs
Part of the Theory and Algorithms Commons

Repository Citation

Giakoumakis, Vassilis and Olariu, Stephan, "All Minimal Prime Extensions of Hereditary Classes of Graphs" (2007). Computer Science Faculty Publications. 102.
https://digitalcommons.odu.edu/computerscience_fac_pubs/102

Original Publication Citation

Giakoumakis, V., \& Olariu, S. (2007). All minimal prime extensions of hereditary classes of graphs. Theoretical Computer Science, 370(1-3), 74-93. doi:10.1016/j.tcs.2006.10.024

All minimal prime extensions of hereditary classes of graphs

Vassilis Giakoumakis ${ }^{\text {a }}$, Stephan Olariu ${ }^{\mathrm{b}, *}$
${ }^{\text {a }}$ Laria, Université d'Amiens, France
${ }^{\text {b }}$ Department of Computer Science, Old Dominion University, VA 23529-0162 Norfolk, United States

Received 15 January 2003; received in revised form 23 December 2005; accepted 9 October 2006
Communicated by O.H. Ibarra

Abstract

The substitution composition of two disjoint graphs G_{1} and G_{2} is obtained by first removing a vertex x from G_{2} and then making every vertex in G_{1} adjacent to all neighbours of x in G_{2}. Let \mathcal{F} be a family of graphs defined by a set \mathcal{Z} of forbidden configurations. Giakoumakis [V. Giakoumakis, On the closure of graphs under substitution, Discrete Mathematics 177 (1997) 83-97] proved that \mathcal{F}^{*}, the closure under substitution of F, can be characterized by a set \mathcal{Z}^{*} of forbidden configurations the minimal prime extensions of \mathcal{Z}. He also showed that \mathcal{Z}^{*} is not necessarily a finite set. Since substitution preserves many of the properties of the composed graphs, an important problem is the following: find necessary and sufficient conditions for the finiteness of \mathcal{Z}^{*}. Giakoumakis [V. Giakoumakis, On the closure of graphs under substitution, Discrete Mathematics 177 (1997) 83-97] presented a sufficient condition for the finiteness of \mathcal{Z}^{*} and a simple method for enumerating all its elements. Since then, many other researchers have studied various classes of graphs for which the substitution closure can be characterized by a finite set of forbidden configurations.

The main contribution of this paper is to completely solve the above problem by characterizing all classes of graphs having a finite number of minimal prime extensions. We then go on to point out a simple way for generating an infinite number of minimal prime extensions for all the other classes of \mathcal{F}^{*}.

© 2006 Elsevier B.V. All rights reserved.
Keywords: Graph theory; Graph decompositions; Modular decomposition

1. Motivation

The substitution composition of graphs has been widely used by researchers in the study of both theoretical as well as practical problems; we refer the interested reader to Brandstädt et al. [4] for a comprehensive discussion. The appeal of the substitution composition is, most certainly, due to the fact that it preserves many of the properties of the composed graphs. For example, Lovász [12] relied on the well known fact that substitution preserves perfection ${ }^{1}$ in order to prove that a graph is perfect if and only if its complement is. We recall that the famous Strong Perfect Graph Conjecture (SPGC, for short) introduced by Berge [1] in 1961 was recently answered in the affirmative becoming the

[^0]Strong Perfect Graph Theorem. We refer the reader to Chvàtal's web page [8] for a detailed survey and to Chudnovsky et al. [7] for the proof of the Strong Perfect Graph Theorem.

Let \mathcal{F} be a family of graphs defined by a set \mathcal{Z} of forbidden configurations and let \mathcal{F}^{*} be the closure of \mathcal{F} under substitution.

Problem 1. Find a forbidden induced subgraph characterization of \mathcal{F}^{*}. Giakoumakis [10] proved that:

1. \mathcal{F}^{*} can be characterized by a set \mathcal{Z}^{*} of forbidden configurations;
2. \mathcal{Z}^{*} is not necessarily a finite set;
3. If no graph Z of \mathcal{Z} contains a module of more than two vertices then \mathcal{Z}^{*} is finite.

Problem 2. Find necessary and sufficient conditions for \mathcal{Z}^{*} to be finite.
Various researchers investigated Problem 2 and many sufficient conditions have been presented $[5,6,10,11,13,16$, 17]. These, and other similar papers, give forbidden subgraph characterizations of the closure under substitution of various classes of graphs. It is worth noting that such characterizations are very likely to lead to efficient graph optimization algorithms. Indeed, for optimization problems including finding the weighted stability number (see [3] and [9]) and the domination problem (see [15]), efficient solutions can be found when dealing with hereditary classes of graphs.

The main contribution of this paper is to offer a complete answer to Problem 2 by characterizing all classes of graphs defined by a finite set of forbidden configurations, whose closure under substitution can also be defined by a finite number of forbidden subgraphs. For all the other classes of \mathcal{F}^{*} we give a simple way for generating an infinite number of minimal prime extensions.

2. Notation and previous results

The main goal of this section is to establish notation and terminology and to review a number of known results that will be needed in the subsequent sections of the paper.

2.1. Notation and terminology

For terms not defined here the reader is referred to [2] and [4]. All the graphs in this work are finite, with no loops nor multiple edges. Given a graph $G=(V, E)$, the set V of its vertices will also be denoted by $V(G)$; similarly, the set E of its edges will be denoted by $E(G)$. We also write $n=|V|$ and $m=|E|$ to denote the cardinality of V and E.

Let x be a vertex of graph G. The neighborhood of x will be denoted by $N(x)$; we let $\operatorname{degree}(x)$ stand for $|N(x)|$. The subgraph of G induced by $V(G)-\{x\}$ will be denoted by $G \backslash x$.

If $N(x)=V(G)-\{x\}, x$ is said to be a universal vertex of G. The graph induced by a set $X \subseteq V$ will be denoted by $[X] ;[X]$ is a proper induced subgraph of G if X is strictly contained in $V(G)$. We shall let $N_{G}(X)$ stand for the set of vertices in $V(G)-X$ adjacent to at least one vertex of X.

The set X is said to be stable (resp. complete) if the graph $[X]$ is edgeless (resp. fully connected). A stable (resp. complete) set of r vertices is denoted by S_{r} (resp. K_{r}). The edgeless graph of r vertices will be denoted by O_{r}. The graph induced by $V(G)-X$ is also written as $G \backslash X$ and the graph induced by $V(G)-\{x\}$ where x a vertex of G, will be written as $G \backslash x$. A vertex x is total, indifferent or partial with respect to X if it is, respectively, adjacent to all, to none or to some but not all of the vertices of X. A set of vertices Y is total (or universal) with respect to X if every vertex of Y is adjacent to all the vertices of $X ; Y$ is indifferent with respect to X if no vertex of Y is adjacent to a vertex of X; finally, Y is partial with respect to X if at least one of the vertices of Y is partial with respect to X.

We shall write P_{k} (resp. C_{k}) to denote a chordless path (resp. cycle) on k vertices. The complementary graph of a chordless path is referred to as a co-path. A $2 K_{2}$ is the complementary graph of a C_{4}. When no confusion is possible, we shall use the notation P_{k} to design also the set of vertices of the chordless chain P_{k}.

The notation $G_{1} \sim G_{2}$ signifies that the graph G_{1} is isomorphic to the graph G_{2}.
Let \mathcal{Z} be a set of graphs. A graph G is said to be \mathcal{Z}-free if G contains no induced subgraph isomorphic to a graph of \mathcal{Z}. A set of graphs \mathcal{F} is \mathcal{Z}-free if every graph of \mathcal{F} is \mathcal{Z}-free.

A set $M \subseteq V(G)$ is called a module if every vertex of G outside M is adjacent to all vertices of M or to none of them. The empty set, $V(G)$ and the singletons are trivial modules. A graph G that contains only trivial modules

Fig. 1. The minimal prime extensions of a C_{3}.
is termed prime or indecomposable. A module M that is a strict subset of $V(G)$ and contains at least two vertices is said to be non-trivial or a homogeneous set. ${ }^{2}$ A graph that contains a non-trivial module is said to be substitutiondecomposable or, simply, decomposable.

Let M be a module of a graph $G . M$ is said to be a strong module if for every non-trivial module M^{\prime} of G either $M \cap M^{\prime}=\emptyset$ or one of M and M^{\prime} is included in the other. The decomposition of a graph into its modules was discovered independently by researchers in many seemingly unrelated areas. We refer the reader to Brandstädt et al. [4] for a comprehensive discussion and further references.

The modular decomposition of a graph G is a form of decomposition that associates with G a unique decomposition tree $T(G)$. The set of leaves of $T(G)$ is the set $V(G)$. The set of leaves associated with a subtree of $T(G)$ rooted at a node f of $T(G)$ is leaves (f). It is well known that for each internal node f of $T(G)$ different from its root, leaves (f) forms a strong module of G and that $\{$ leaves $(f)\}$ is the set of all strong modules of G. An internal node f is labeled P, S, or N to denote respectively, parallel, series or neighbourhood modules. The subgraph induced in G by a parallel module is disconnected, the one induced by a series module is connected and has a disconnected complement; and, finally, the one induced by a neighbourhood module is connected both in the graph and the complement.

Let f_{1}, \ldots, f_{k} be the set of children of f in $T(G)$ and let H be the subgraph of G whose vertex-set consists of one vertex from each module leaves $\left(f_{i}\right), i=1, \ldots, k$. Clearly, H is an edgeless graph whenever f is a P-node, a complete graph whenever f is an S-node, and a prime graph whenever f is an N-node.

Due to its vast array of practical applications the problem of finding efficient algorithms (both sequentially and parallel) for the modular decomposition and for the construction of the corresponding decomposition tree has received a great deal of attention in the recent literature. We refer the reader to the excellent web page [18] for a very informative synopsis of research in this area.

Definition 2.1. Let G be a graph. The graph G^{\prime} is a minimal prime extension of G if the following conditions are satisfied:

- G^{\prime} is prime,
- G^{\prime} contains an induced subgraph isomorphic to G, and
- G^{\prime} is minimal with respect to set inclusion and primality.

In other words, if G^{\prime} is a minimal prime extension of G, no proper prime induced subgraph of G^{\prime} contains an induced subgraph isomorphic to G. Observe that if G itself is prime then G^{\prime} coincides with G.

Notation 2.2. Let G be a graph and let $\operatorname{Ext}(G)$ denote the set of minimal prime extensions of G.
Let \mathcal{F} be a family of graphs defined by a set \mathcal{Z} of forbidden configurations. Giakoumakis [10] proved the following result:

Lemma 2.3 ([10]). The closure \mathcal{F}^{*} of \mathcal{F} under substitution is defined by a set \mathcal{Z}^{*} of forbidden configurations which is the union of the sets $\operatorname{Ext}(Z)$ where Z is a graph of \mathcal{Z}.

2.2. Known results

We begin by recalling two results concerning minimal prime extensions of various classes of graphs that we shall need in the following sections.

Theorem 2.4 ([13]). The substitution composition of C_{3}-free graphs is defined by the three forbidden configurations depicted in Fig. 1.

[^1]Theorem 2.5 ([16]). If every nontrivial module of a graph G induces a subgraph of a P_{4} then the set of all minimal prime extensions of G is finite.

Notation 2.6. A graph whose every nontrivial module induces a subgraph of a P_{4} is called P_{4}-homogeneous. We prefer this terminology to that of a simple graph used in [16], in order to avoid any possible confusion with the meaning of the term 'simple' used in other contexts in graph theory.

An interesting procedure proposed by Zverovich [14] generating prime extensions of a graph G is the Reducing Pseudopath Method. We recall its definition using the notation of [14].

Definition 2.7. Let G be an induced subgraph of a graph H and let W be a homogeneous set of G. We define a reducing W-pseudopath in H as a sequence $R=\left(u_{1}, u_{2}, \ldots, u_{t}\right)$, with $t \geq 1$, of pairwise distinct vertices of $V(H) \backslash V(G)$ satisfying the following conditions:

1. u_{1} is partial with respect to W;
2. $\forall i=2, \ldots, t$, either u_{i} is adjacent to u_{i-1} and indifferent with respect to $W \cup\left\{u_{1}, \ldots, u_{i-2}\right\}$ or u_{i} is total with respect to $W \cup\left\{u_{1}, \ldots, u_{i-2}\right\}$ and non-adjacent to u_{i-1} (when $i=2,\left\{u_{1}, u_{2}, \ldots, u_{i-2}\right\}=\emptyset$);
3. $\forall i=1, \ldots, t-1$, vertex u_{i} is total with respect to $N(W)$ in G and indifferent with respect to $V(G)-N(W)-W$ and either u_{t} is non-adjacent to a vertex of $N(W)$ or u_{t} is adjacent to a vertex of $V(G)-N_{G}(W)$.

We refer the reader to Fig. 2 in Section 3.2 for an illustration of a reducing W-pseudopath.
Theorem 2.8 ([14]). Let H be a prime extension of its induced subgraph G and let W be a homogeneous set of G. Then there exists a reducing W-pseudopath with respect to every induced copy of G in H.

The remainder of the paper is organized as follows: in Section 3 we give two methods for constructing a minimal prime extension of a graph G. In Section 4 we discuss necessary and sufficient conditions for finiteness of $\operatorname{Ext}(G)$. Finally, Section 5 offers concluding remarks and ideas for possible extensions of the results presented in this paper.

3. Two basic constructions

The main goal of this section is to introduce two basic constructions that provide the framework for our main result given in Section 4. Both these constructions build minimal prime extensions of a decomposable graph.

3.1. Constructing the basic extension of a decomposable graph

Let $G=(V, E)$ be a connected graph and let $T(G)$ be the corresponding modular decomposition tree.
Notation 3.1. Let $\pi(G)=\left\{H_{1}, \ldots, H_{l}\right\}$ be the partition of V obtained by the following equivalence relation R on V : for vertices x and y in V we write $x R y$ if and only if x and y have the same parent in $T(G)$.

Throughout the remainder of this section we shall assume that G is not prime.
Remark 3.2. If G is decomposable, at least one of the H_{i} 's in $\pi(G)$ is a non-trivial module of G.
Notation 3.3. Let $\rho(G)=\left\{M_{1}, \ldots, M_{k}\right\}$ be the subset of $\pi(G)$ consisting of all the non-trivial modules in G. Thus, for $i=1,2, \ldots, k$, every M_{i} is a non-trivial module in G.

Remark 3.4. Let $f\left(M_{i}\right)$ be the parent in $T(G)$ of the vertices of $M_{i} \in \rho(G)$. Obviously if M_{i} is stable then $f\left(M_{i}\right)$ is a P-node, if M_{i} is a complete set then $f\left(M_{i}\right)$ is an S-node and if M_{i} induces a prime graph then $f\left(M_{i}\right)$ is an N-node. Furthermore, if $M_{i}=$ leaves $\left(f\left(M_{i}\right)\right)$ then M_{i} is a strong nontrivial module of G, minimal with respect to set inclusion. In particular, this case occurs whenever $f\left(M_{i}\right)$ is an N-node (i.e. if $f\left(M_{i}\right)$ is an N-node then $M_{i}=\operatorname{leaves}\left(f\left(M_{i}\right)\right)$). It is worth noting that since G is connected, every vertex of module $M_{i} \in \rho(G)$ has a neighbour in $V-M_{i}$.

Let us associate with every module M_{i} of $\rho(G)$ a set V_{i}^{\prime} of new vertices (i.e. $V_{i}^{\prime} \cap V=\emptyset, V_{i}^{\prime} \cap V_{j}^{\prime}=\emptyset$, $i, j=1, \ldots, k, i \neq j)$ and a set E_{i}^{\prime} of edges connecting the vertices of M_{i} with the vertices of V_{i}^{\prime} in the following manner:

1. if M_{i} is a stable set or a complete set $\left\{x_{1}, \ldots, x_{r}\right\}$ then $V_{i}^{\prime}=\left\{y_{1}, \ldots, y_{r-1}\right\}$ and E_{i}^{\prime} is the set of edges $x_{j} y_{j}$, $j=1, \ldots, r-1$.
2. If M_{i} induces in G a prime graph then V_{i}^{\prime} is a singleton $\{y\}$ and E_{i}^{\prime} is the edge $y x$ where x is a vertex of M_{i}.

Let G^{\prime} be the graph whose vertex set is $V \cup V^{\prime}$, where $V^{\prime}=V_{1}^{\prime} \cup \cdots \cup V_{k}^{\prime}$ and whose edge set is $E \cup E^{\prime}$, where $E^{\prime}=E_{1}^{\prime} \cup \cdots \cup E_{k}^{\prime}$. Clearly V^{\prime} is a stable set in G^{\prime} and each vertex of this set has exactly one neighbour in G^{\prime}, this neighbour being its own 'private' neighbour.

We propose to show that G^{\prime} is a minimal prime extension of G. For this purpose, however, we need the following result:

Lemma 3.5. Let H be a connected graph, let $x \in V(H)$ be a vertex of degree 1 , and let M be a non-trivial module of the graph $H \backslash x$ containing the unique neighbour, say y, of x in H. If x is contained in a nontrivial module Q of H then y is a universal vertex of H.

Proof. Suppose not. Since H is connected and since degree $(x)=1$, the neighbourhood of any vertex of module Q outside this module must be a singleton and, thus, $N(Q)=\{y\}$. Let Q_{1} be the set $N(y)-Q$ and let Q_{2} be the set of the remaining vertices of H. Then, no vertex of Q can be adjacent to a vertex of $Q_{1} \cup Q_{2}$. Since, by assumption, $Q_{2} \neq \emptyset$, the connectedness of H implies that $Q_{1} \neq \emptyset$. Let z be a vertex of M different from y. If $z \in Q \backslash x$, every vertex of Q_{1} would be adjacent to z and if $z \in Q_{1} \cup Q_{2}$ any vertex of $Q \backslash x$ would be adjacent to z, a contradiction.

Proposition 3.6. The graph G^{\prime} is a prime graph.
Proof. Assume to the contrary that there exists a nontrivial module M in G^{\prime}.
Claim 1. M contains no vertices of V^{\prime}.
Proof. If M contains a vertex x of V^{\prime} then by Lemma 3.5 the unique neighbour y of x in G^{\prime} is a universal vertex of G^{\prime}. Since every vertex of V^{\prime} has his own private neighbour in G^{\prime}, it follows that V^{\prime} contains only the vertex x. Let y be the private neighbour of x and let f be the parent of y in $T(G)$. Clearly, f is neither a P-node nor a N-node, for otherwise y would not be universal in G, a contradiction. Consequently, f must be a S-node.

Assume first that f is the root of $T(G)$. If f has a child that is an internal node or if f has more than two children distinct from y that are leaves, then V^{\prime} contains more than one vertex, a contradiction. It follows that f contains exactly two children y and z, implying that G is prime, since it is isomorphic to a K_{2}. It follows that $V^{\prime}=\emptyset$, a contradiction.

Thus, f cannot be the root of $T(G)$. Since f is a S-node, the parent of f in $T(G)$ is either a P-node or a S-node, implying that y is not a universal vertex of G, a contradiction.

Claim 1 guarantees that M is a nontrivial module of G. Let f be the least common ancestor in $T(G)$ of all vertices of M and let $U=\left\{f_{1}, \ldots, f_{r}\right\}$ be the set of children of f in $T(G)$.

Claim 2. If leaves $\left(f_{i}\right) \cap M \neq \emptyset$ then leaves $\left(f_{i}\right) \subset M$, $f_{i} \in U$.
Proof. Indeed, if $f_{i} \in U$ is a leaf then we are done and if not, leaves $\left(f_{i}\right)$ is a strong module of G and since by definition M is not entirely contained into the set leaves $\left(f_{i}\right), M$ strictly contains leaves $\left(f_{i}\right)$ as claimed.

Claim 3. No vertex of V^{\prime} is adjacent to a vertex of M.
Proof. The result follows from the fact that every vertex of V^{\prime} is of degree 1 .
Let $U^{\prime} \subseteq U$ be the set of $f_{i} \in U$ such that leaves $\left(f_{i}\right) \subseteq M$. If $f_{i} \in U^{\prime}$ is an internal node of $T(G)$, then by construction there must exist a vertex of V^{\prime} adjacent to leaves $\left(f_{i}\right)$, contradicting Claim 3. Hence, every $f_{i} \in U^{\prime}$ is a leaf of $T(G)$ that is, M contains only vertices whose least common ancestor f in $T(G)$ is a parent of all of them and, thus, M is entirely contained into a module of $\rho(G)$. Hence, there must exist a vertex of V^{\prime} which distinguishes the vertices of M, a contradiction. It follows that G^{\prime} is a prime graph as claimed.
Proposition 3.7. Every proper subgraph $G^{\prime \prime}$ of G^{\prime} that contains G as induced subgraph is not prime.
Proof. Suppose not and consider an arbitrary vertex x of $V\left(G^{\prime}\right)-V\left(G^{\prime \prime}\right)$. Clearly x is a vertex of V^{\prime}. Let M be the module of $\rho(G)$ containing the unique neighbour, say y, of x in G. If M induces a prime graph in G, then x is the unique vertex in G^{\prime} that is partial for M and consequently M is a module in $G^{\prime \prime}$, a contradiction.

If M is a stable or a complete set in G then the vertex y together with the vertex of M that has no neighbour in V^{\prime} forms a nontrivial module in $G^{\prime \prime}$, a contradiction.

Proposition 3.8. If G^{\prime} contains a subgraph $H \neq G$ isomorphic to G by an isomorphism σ, then $V(G)-V(H)$ is a stable set whose vertices have degree 1 in G^{\prime} and have a private neighbour in $V(G) \cap V(H)$.

Proof. Observe first that $V(H)$ cannot be a subset of V^{\prime} since $\left|V^{\prime}\right|<|V(H)|$ and, additionally, V^{\prime} is a stable set while H is connected. Thus, it must be that $V(H) \cap V(G) \neq \emptyset$ and $V(H) \cap V^{\prime} \neq \emptyset$. Let G_{1} be the graph induced by $V(H) \cap V(G)$. Write $X=V(G)-V(H), Y=V(H)-V(G)$ and $Z=V^{\prime}-Y$. It is obvious that G_{1} is not the empty graph, $X, Y \neq \emptyset,|X|=|Y|$ and $Y \subseteq V^{\prime}$. Let x be a vertex of Y and y its private neighbor in G_{1}. By the definition of G^{\prime} there must be a nontrivial module M in G containing y. Moreover M is either a stable set or a complete set or it induces a prime graph in G. We recall that if M is a stable or a complete set there is a vertex z of M having no neighbour in V^{\prime} while all the others vertices of M have their private neighbor in V^{\prime}. Let M_{0}^{\prime} be a submodule of M formed as follows:

1. if M is a stable or a complete set then M_{0}^{\prime} contains z and all vertices of M having a neighbour in Y
2. if M induces a prime graph in G then $M_{0}^{\prime}=M$.

Let Y_{0} be the subset of Y which is the neighborhood of M_{0}^{\prime} in Y. Let M_{1} be the nontrivial module of H isomorphic to M_{0}^{\prime} by σ. It is clear that no vertex of M_{1} can belong to Y and consequently M_{1} is entirely contained in G_{1}. Now, if M_{1} is not an homogeneous set in G there must be a set of vertices X_{1}^{\prime} outside M_{1} that distinguishes the vertices of M_{1}. Since M_{1} is a non- trivial module of H, X_{1}^{\prime} must be a subset of X. Let M_{1}^{\prime} be a maximal submodule of M_{1} in H. Let $\mu=\left(M_{1}, M_{1}^{\prime}\right), \ldots,\left(M_{l}, M_{l}^{\prime}\right)$ be the longest sequence of pair of sets in G_{1} such that for $0 \leq i \leq l$ and $l \geq 1$ we have:

1. $M_{i}=\sigma\left(M_{i-1}^{\prime}\right)$
2. M_{i} is a non trivial module of H
3. M_{i}^{\prime} is a maximal submodule of M_{i} which is a non trivial module of G
4. M_{l} is not a nontrivial module of G.

Let X_{i} be the set of vertices of X that distinguishes the vertices of $M_{i} i \in[1, l]$. It is clear that if $X_{i}=\emptyset$ then $M_{i}=M_{i}^{\prime}$. Since $M_{0}^{\prime} \neq \emptyset\left(M_{0}^{\prime}\right.$ contains the vertex $\left.y\right)$ and M_{0}^{\prime} is not an homogeneous set of H we deduce that $\forall i, j \in[0, l], i \neq j M_{i} \cap M_{j}=\emptyset$ and that $l<\left|V\left(G_{1}\right)\right|$. It is easy to see also that if M_{i} is a stable or a complete set then the number of edges between X_{i} and M_{i} is at least $\left|M_{i}-M_{i}^{\prime}\right|$. Since $\left|Y_{0}\right|=\left|M_{0}^{\prime}\right|-1$ whenever M_{0}^{\prime} is a stable or a complete set and $\left|Y_{0}\right|=1$ whenever M_{0}^{\prime} induces a prime graph, we can easily verify that the number of edges between $X_{1} \cup \cdots \cup X_{l}$ and G_{1} is at least $\left|Y_{0}\right|$. Now, we proceed in an analogous way by considering the set $Y_{1}=Y-Y_{0}$, then the set $Y_{2}=Y-Y_{1}$ and so on until obtaining $Y_{r}=Y-Y_{r-1}=\emptyset$. Let X^{\prime} be a minimal with respect to set inclusion subset of X such that each vertex of X^{\prime} 'breaks' a module of G_{1} during the previous process. We can easily see that the number of edges between X^{\prime} and G_{1} is at least $|Y|$.

Since G and H are isomorphic we have that $\left|E\left(G_{1}\right)\right|+|Y|=\left|E\left(G_{1}\right)\right|+|X|$. Putting together the facts that G is connected, $|X|=|Y|$ and the number of edges between X^{\prime} and G_{1} is at least $|Y|$, we deduce that $X^{\prime}=X$ and that X is a stable set whose every vertex is of degree 1 in G. It follows that since X^{\prime} is a minimal subset of X whose every vertex 'breaks' a non trivial module in G_{1}, every vertex of X is of degree 1 in G^{\prime} and has a private neighbour in G_{1}, as claimed.

Theorem 3.9. The graph G^{\prime} is a minimal prime extension of G.
Proof. If the only subgraph of G^{\prime} which is isomorphic to G is the graph G itself, then by Proposition 3.7 we deduce that G^{\prime} is a minimal prime extension of G, as claimed. Assume then that there exists a subgraph $H \neq G$ of G^{\prime} which is isomorphic to G and let Q be a subgraph of G^{\prime} which is prime and contains H. Write $X=V(G)-V(H)$, $Y=V(H)-V(G)$ and $Z=V^{\prime}-Y$. Let $\rho_{1}=\left\{M_{1}, \ldots, M_{s}\right\}$ and $\rho_{2}=\left\{M_{1}^{\prime}, \ldots, M_{t}^{\prime}\right\}$ be a bipartition of $\rho(H)$ such that every module of ρ_{1} is a stable or a complete set and every module of ρ_{2} induces a prime graph in H. Clearly, the set $\rho(H)$ is isomorphic to the set $\rho(G)$.

Letting R stand for the set $V(Q)-V(H)$ we have $R \subseteq X \cup Z$. Consider an arbitrary M in $\rho(H)$. If $M \in \rho_{1}$ then since M is either a stable or a complete set, every pair of vertices in M forms a non-trivial module in H.

Consequently, since by Proposition 3.8 every vertex of M has at most one neighbour in R and this neighbour is private, at least $|M|-1$ vertices of R are needed for 'breaking' every submodule of two vertices of M. If $M \in \rho_{2}$ then since M induces a prime graph in H, at least one vertex which is partial for M is needed for 'breaking' the module M in
G^{\prime}. It follows that $|R| \geq \sum_{i=1}^{i=s}\left(\left|M_{i}\right|-1\right)+t$. But since $|X|=|Y|$ and $|Y|+|Z|=\left|V^{\prime}\right|=\sum_{i=1}^{i=s}\left(\left|M_{i}\right|-1\right)+t$ we deduce that Q is precisely the graph G^{\prime} and the result follows.

Definition 3.10. The minimal prime extension G^{\prime} of G described in this section, will be called henceforth the basic extension of G and will be noted $\operatorname{basic}(G)$.

3.2. The path extension of a decomposable graph

The main goal of this subsection is to present a method for constructing an infinite number of minimal prime extensions of a connected decomposable graph G satisfying the following condition: there exists a nontrivial module M of size at least three in G such that [M], the subgraph of G induced by M, is connected and non-isomorphic to a chordless path $P_{k}, k \geq 3$. Importantly, this construction constitutes the framework for characterizing all cases where a graph possesses an infinite number of minimal prime extensions.

Let us now recall the following result of Giakoumakis [10].
Proposition 3.11 ([10]). Q is a minimal prime extension of a graph G if, and only if, \bar{Q} is a minimal prime extension of \bar{G}.
Corollary 3.12. A graph G has an infinite number of minimal prime extensions if, and only if, \bar{G} has an infinite number of minimal prime extensions.

Corollary 3.12 allows us to restrict ourselves to the case where G is a connected graph.
Assume now that G contains a nontrivial module M of at least three vertices such that [M] is connected and distinct from a $P_{k}, k \geq 3$. We may assume without loss of generality that M is maximal with respect to set inclusion, connectivity and that $[M]$ is not isomorphic to a chordless path. Let A be the neighbourhood of M in G and let B stand for its neighbourhood in the complement of G. Since G is connected, it follows that $\mathrm{A} \neq \emptyset$.

Consider the basic extension $G^{\prime}=\operatorname{basic}(G)$ of G and denote by Q the set of vertices of $V(\operatorname{basic}(G))-V(G)$ such that $N(Q) \subset M$ and denote by D the vertices of $V(\operatorname{basic}(G))-V(G)$ such that $N(D) \subset(A \cup B)$. Put differently, Q is the set of new vertices that break the module M in G and any nontrivial module of [M], while D is the set of new vertices that break any nontrivial module of $[A \cup B]$ in G. It is easy to see that $Q \cup D$ is stable and that every vertex in $Q \cup D$ has exactly one neighbour in G and this neighbour is private in the sense defined above.

Finally, write $D_{A}=N(A) \cap D$ and $D_{B}=N(B) \cap D$.
Lemma 3.13. $[M \cup Q]$ is a prime graph.
Proof. Assume not and let M^{\prime} be a nontrivial module of $[M \cup Q]$. Observe that M^{\prime} is neither entirely contained in Q (because every vertex of Q has exactly one neighbour in $\operatorname{basic}(G)$ which is in M and it is private) nor entirely contained in M, for otherwise M^{\prime} would be a module in $\operatorname{basic}(G)$, a contradiction.

It follows that M^{\prime} contains vertices from both M and Q. Let x be a vertex of $M^{\prime} \cap Q$ and y its neighbour in M (this neighbour is unique in $[M \cup Q]$). Because $\operatorname{basic}(G)$ is prime, y belongs to a non-trivial module of $[M \cup Q] \backslash x$, a contradiction. Notice that by Lemma 3.5, y must be a universal vertex of $[M \cup Q]$ and, consequently, Q must be a singleton.

Let Q^{\prime} be the neighbourhood of y in $[M]$. Clearly, Q^{\prime} must be a singleton for otherwise Q^{\prime} would be a non-trivial module in G^{\prime}. It follows that [M], which by assumption is different from a chordless chain, is isomorphic to a K_{2}, a contradiction. Thus, $[M \cup Q]$ is a prime graph, as claimed.
Notation 3.14. Let G^{+}be the graph obtained from $\operatorname{basic}(G)$ in the following way: $V\left(G^{+}\right)=V(\operatorname{basic}(G))$ and $E\left(G^{+}\right)=E(\operatorname{basic}(G)) \cup\{\{x, y\} \mid x \in Q, y \in A\}$. In other words, every vertex of Q is adjacent in G^{+}to every vertex of A, which implies that $M \cup Q$ is a non-trivial module of G^{+}.

Lemma 3.15. If $M \cup Q$ is not the unique nontrivial module of G^{+}then G^{+}contains exactly a second nontrivial module formed involving vertices of $M \cup Q \cup\{w\}$, where w is a vertex of B.
Proof. Consider the subgraph H of G^{+}induced by $\left(V\left(G^{+}\right) \backslash(M \cup Q)\right) \cup\{h\}$, where h is a vertex of the module $M \cup Q$. In other words, H is obtained by 'contracting' $M \cup Q$ to a single vertex. Observe that H is also a proper subgraph of $\operatorname{basic}(G)$. If H is prime then there is nothing to prove since in this case the only non-trivial module in G^{+}is the set $M \cup Q$.

Fig. 2. The path extension of a graph $G=[M \cup A \cup B]$.
If H contains a nontrivial module $\{w, h\}$ then, again, there is nothing to prove since w cannot be adjacent to h, for otherwise it would be total for M and, consequently, M would not be maximal with respect to set inclusion, a contradiction.

Finally, assume that H contains a module M^{\prime} such that $M^{\prime}-\{h\}$ contains at least two vertices. Then, since no vertex of $M \cup Q$ can distinguish the vertices of $M^{\prime}-\{h\}$ neither in G^{+}nor in $\operatorname{basic}(G)$, this set would be also a nontrivial module of $\operatorname{basic}(G)$, a contradiction.

Corollary 3.16. The subgraph H of basic (G) induced by $\{x, y\} \cup A \cup B \cup D$ where $x \in M$ and y is the private neighbour of x in Q, is a prime graph.
Proof. Let H^{\prime} be the subgraph of G^{+}such that $V\left(H^{\prime}\right)=V(H)$. Lemma 3.15 guarantees that H^{\prime} contains at most two non-trivial modules $\{x, y\}$ and $\{x, y, w\}$ where w is a vertex of B nonadjacent to $\{x, y\}$. Since in H the vertex y has exactly one neighbour, namely x, the result follows.

Notation 3.17. Let $G \otimes P_{k}$ be the graph obtained from G^{+}in the following way: $V\left(G \otimes P_{k}\right)-V\left((G)^{+}\right)$induces a chordless chain $P_{k}=x_{1}, \ldots, x_{k}$ such that

- x_{1} is adjacent to exactly one vertex of Q,
- every vertex of $\left\{x_{1}, \ldots, x_{k-1}\right\}$ is total with respect to A and adjacent to no vertices of $M \cup B \cup D$,
- no vertex in $\left\{x_{2}, \ldots, x_{k-1}\right\}$ is adjacent to a vertex of Q and,
- x_{k} is adjacent to no vertices of G^{+}.

The structure of $G \otimes P_{k}$ is illustrated in Fig. 2.
Proposition 3.18. The graph $G \otimes P_{k}$ is prime.
Proof. Since $[M \cup Q]$ is prime (see Lemma 3.13) and since x_{1} is partial with respect to $M \cup Q$, this set cannot be a module in $G \otimes P_{k}$ and this is the case as well whenever there exists the module $M \cup Q \cup\{w\}$ described in Lemma 3.15. It is easy to verify that the addition of the chain P_{k} to G^{+}does not create any nontrivial modules and, hence, the resulting graph $G \otimes P_{k}$ must be prime, as claimed.

Notation 3.19.

1. G^{*} is a minimal prime extension of G contained, as an induced subgraph, in $G \otimes P_{k}$;
2. G^{*} is said to be of type 1 if it contains P_{k} and of type 2 otherwise;
3. G_{1} is an induced subgraph of G^{*} isomorphic to G by an isomorphism σ;
4. (M_{1}, A_{1}, B_{1}) denotes the partition of $V\left(G_{1}\right)$ for which M_{1}, A_{1}, B_{1} are isomorphic by σ to M, A, B, respectively.

Lemma 3.20. $M_{1} \cap D=\emptyset$.

Proof. Indeed, since the degree in G of every vertex in M is at least two and the degree in $G \otimes P_{k}$ of every vertex of D is exactly one, no vertex of D can belong to M_{1}.

Proposition 3.21. $M_{1} \cup A_{1}$ is not entirely contained in $P_{k} \cup Q \cup M$.
Proof. Assume not; since $\left[M_{1}\right]$ is connected and distinct from a chordless chain, M_{1} is not entirely contained in $P_{k} \cup Q$ and hence $M_{1} \cap M \neq \emptyset$. Since every vertex of M is total with respect to A and indifferent with respect to $B \cup D$, the connectedness of G_{1} implies that $B_{1} \cap(B \cup D)=\emptyset$ and, consequently, $V\left(G_{1}\right)$ is entirely contained in $P_{k} \cup Q \cup M$.

Since no vertex of P_{k} is adjacent to a vertex of M, no vertex of A_{1} can be in P_{k} and consequently A_{1} is entirely contained in $Q \cup M$.

Observe that in the graph $\left[P_{k} \cup Q \cup M\right]$ every vertex $x \in Q$ has either degree 1 or degree 2 precisely when x is the unique vertex of Q adjacent to a vertex of P_{k}. Now, since the degree of every vertex of A in G is at least $|M|$ and since M contains, by assumption, at least three vertices, no vertex of A_{1} can be in Q. It follows that A_{1} is entirely contained in M. Then, since M_{1} is total with respect to A_{1} and no vertex of P_{k} is adjacent to M we have that $M_{1} \cap P_{k}=\emptyset$. Therefore since $M_{1} \cap M \neq \emptyset, M_{1}$ contains vertices from M and Q. Furthermore, the connectedness of [M_{1}] together with the fact that M_{1} is not entirely contained in M (otherwise, $A_{1}=\emptyset$) implies that $M_{1} \cap Q \neq \emptyset$ and that the unique neighbour of every vertex $x \in M_{1} \cap Q$ belongs to M_{1}. It follows that M_{1} cannot be total for A_{1} in G_{1}, a contradiction.

Proposition 3.22. $V\left(G^{*}\right) \cap A \neq \emptyset$ and $V\left(G^{*}\right) \cap P_{k} \neq \emptyset$.
Proof. Assume first that $V\left(G^{*}\right) \cap A=\emptyset$. Since no vertex in $M \cup Q \cup P_{k}$ is adjacent to a vertex of $B \cup D$ and since M_{1} is total with respect to A_{1}, the connectedness of G_{1} and Proposition 3.21, combined, imply that $V\left(G_{1}\right)$ is entirely contained in $B \cup D_{B} . G_{1}$ is proper subgraph of G^{*} and since by assumption $V\left(G^{*}\right) \cap A=\emptyset$, the connectedness of G^{*} implies that $V\left(G^{*}\right)$ is contained in $B \cup D_{B}$, which is in contradiction with the fact that $\operatorname{basic}(G)$ is a minimal prime extension of G. It follows that $V\left(G^{*}\right) \cap A \neq \emptyset$, as claimed.

Assume next that $V\left(G^{*}\right) \cap P_{k}=\emptyset$. Since $V\left(G^{*}\right) \cap A \neq \emptyset$, the set $V\left(G^{*}\right) \cap(M \cup Q)$ must contain at most one vertex; otherwise G^{*} would contain a homogeneous set, a contradiction. It follows that G^{*} is isomorphic to a proper subgraph of $\operatorname{basic}(G)$, a contradiction.

Lemma 3.23. If G^{*} is of type 2 then the set $P_{k} \cap V\left(G^{*}\right)$ is

1. either a subchain $P^{\prime}=x_{i}, x_{i+1}, \ldots, x_{k-1}, x_{k}$ with $1<i<k$ of P_{k}
2. or $P^{\prime} \cup\left\{x_{j}\right\}$ with $1 \leq j<i-1$.

Proof. The conclusion follows immediately from Proposition 3.22 and the fact that the graph G^{*} is prime.
Proposition 3.24. If G^{*} is of type 2 then $T=V\left(G^{*}\right) \cap(M \cup Q)$ contains at most one vertex.
Proof. Assume to the contrary that $|T|>1$. Since the vertices of T have the same neighbourhood in $V\left(G^{*}\right) \cap A$ and since G^{*} is a prime graph, there must exist a set $T^{\prime} \subseteq V\left(G^{*}\right)$ containing T which is not a homogeneous set of G^{*}. It is easy to see that T^{\prime} and, consequently, G^{*} must contain the whole chain P_{k}, a contradiction.

In Lemma 3.15 we proved that in addition to the module $M \cup Q$, the graph G^{+}may also contain the module $M \cup Q \cup\{w\}$ where w is a vertex of B (and hence nonadjacent to M), whose neighbourhood in G is the set A.

To simplify the notation, we shall let $M \cup Q \cup\{w\}$ refer to the set $M \cup Q$ when w does not exist. Now, Notation 3.14, Lemma 3.23 and Proposition 3.24, combined, suggest the following result.

Corollary 3.25. The set $V\left(G^{*}\right) \cap\left(P_{k} \cup M \cup Q \cup\{w\}\right)$ equals either P^{\prime}, or $P^{\prime} \cup\left\{x_{j}\right\}$, or $P^{\prime} \cup\{w\}$, or $P^{\prime} \cup\{h\}$ where h is a vertex of $M \cup Q$.

Proof. The conclusion follows directly by observing that we cannot have both w and h or both w and x_{j} or both h and x_{j} in $V\left(G^{*}\right) \cap\left(P_{k} \cup M \cup Q\right)$, for otherwise the set of these two vertices would be a homogeneous set in G^{*}, a contradiction.

Notation 3.26. To simplify the notation, the set $V\left(G^{*}\right) \cap\left(P_{k} \cup M \cup Q \cup\{w\}\right)$ will be denoted by P^{*}.

At this point it is easy to verify the result below which turns out to be a valuable tool in some of the proofs in the sequel of this section.

Lemma 3.27. Let X be a subset of $G \otimes P_{k}$ such that $[X]$ is connected and distinct from a chordless chain. Let X_{1} be the set $X \cap P_{k}$ and let T be the set of vertices of P_{k} that are total with respect to X. If $X_{1} \neq \emptyset$ then $|T| \leq 2$ and, moreover:

1. $|T|=2$ implies that $\left[T \cup X_{1}\right]$ is isomorphic to a $P_{3}=a b c$ with $a, c \in T$
2. $|T|=1$ implies that $\left|X_{1}\right|=1$ or that X_{1} contains exactly two nonadjacent vertices.

Proposition 3.28. If G^{*} is of type 2 then $M_{1} \cap P^{*}=\emptyset$.
Proof. Assume not. Since the graph [M_{1}] is connected and non-isomorphic to a chordless chain, it cannot be entirely contained in P^{*}. Write $X_{1}=M_{1} \cap P^{*}, X_{2}=M_{1}-X_{1}, Y_{1}=A_{1} \cap P^{*}$ and $Y_{2}=A_{1}-Y_{1}$.

Assume first that $X_{2} \cap B \neq \emptyset$. Since the graph induced by M_{1} is connected, we have $X_{2} \cap A \neq \emptyset$. Since $P^{*}-\left\{x_{k}\right\}$ is total with respect to A, x_{k} is indifferent with respect to A, P^{*} is indifferent for $B \cup D$ and M_{1} is indifferent for B_{1}, it follows that $A_{1} \cap P^{*}=\emptyset$ and $A_{1} \cap D=\emptyset$. Consequently, A_{1} must be entirely contained in $A-\left\{X_{2} \cap A\right\}$, a contradiction.

Thus, X_{2} must be entirely contained in A. Since no vertex of P^{*} is adjacent to a vertex of $B \cup D$, it must be the case that $Y_{2} \cap(B \cup D)=\emptyset$ and consequently Y_{2} must be entirely contained in A. This implies that $Y_{1} \neq \emptyset$. Since, by assumption, $X_{1} \neq \emptyset$, Lemma 3.27 guarantees that $\left|Y_{1}\right| \leq 2$.

Assume that Y_{1} contains two vertices, say x and y. Now, Lemma 3.27 guarantees that these vertices are nonadjacent and X_{1} is a singleton. Since no vertex of P^{*} is adjacent to a vertex of $B \cup D$ and since $X_{1} \neq \emptyset$, it must be that $Y_{2} \subset A$. Since $\left[M_{1}\right.$] is not isomorphic to a chordless chain, X_{2} contains exactly two adjacent vertices, say z and t, that is, [M_{1}] is isomorphic to a C_{3}.

Let θ stand for the number of edges of the graph induced by Y_{2} and let θ_{1} denote the number of edges of the graph induced by A_{1}. We have that $\theta_{1}=\theta+\left|Y_{2}\right|+\left|Y_{2}\right|\left(x\right.$ and y are total with respect to $\left.Y_{2}\right)$. But the number of edges of [A] is at least $\theta+\left|Y_{2}\right|+\left|Y_{2}\right|+1\left(z\right.$ and t are total with respect to Y_{2} and $\{z, t\}$ is an edge of $\left[X_{2}\right]$), a contradiction. Hence, Y_{1} is a singleton and either X_{1} is a singleton or it contains two non-adjacent vertices. In either case, the set X_{2} must contain at least two vertices and hence $\left|A_{1}\right|<|A|$, a contradiction.

Proposition 3.29. If G^{*} is of type 2 then either M_{1} is entirely contained in A or M_{1} is entirely contained in B.
Proof. By Lemma 3.20 and Proposition 3.28, it must be the case that M_{1} is entirely contained in $A \cup B$. Assume for the sake of contradiction that $X_{1}, X_{2} \neq \emptyset$ where $X_{1}=M_{1} \cap A$ and $X_{2}=M_{1} \cap B$. Since every vertex of P^{*} is total with respect to A and indifferent for $B \cup D$, no vertex of $A_{1} \cup B_{1}$ can be in P^{*} and, as a consequence, $A_{1} \cup B_{1}$ is entirely contained in $A \cup B \cup D$.

Consider the proper subgraph H of $\operatorname{basic}(G)$ induced by $\{x, y\} \cup A \cup B \cup D$ where x is a vertex of M and y is the private neighbour of x in Q. Since G_{1} is a subgraph of H and since by Corollary $3.16 H$ is prime, H must contain an extension of G_{1}, contradicting the fact that H is a proper subgraph of $\operatorname{basic}(G)$.

Theorem 3.30. G^{*} is of type 1.
Proof. Assume not. Clearly, we can write $V\left(G^{*}\right) \subseteq A \cup B \cup D \cup P^{*}$. Let R be the set of vertices of G that are partial with respect to M_{1} in $V(G)-V\left(G_{1}\right)$. Proposition 3.29 guarantees that every vertex of M is either total or indifferent with respect to M_{1}. Thus, it must be that $R \cap M=\emptyset$ and, consequently, $R \subset A \cup B$.

Let $S \subset A \cup B$ be the set of vertices that are total or indifferent with respect to M_{1} in the graph induced by $V(G)-V\left(G_{1}\right)$. Let μ be a sequence of vertices $\mu=x_{0} x_{1} \cdots x_{s}$ such that:

1. x_{0} is a vertex of M or a vertex of $R \cup S$;
2. Every vertex of $\mu \backslash x_{0}$ belongs to $A \cup B$;
3. $x_{i}=\sigma\left(x_{i-1}\right), 1 \leq i \leq s$;
4. μ is as long as possible with the above properties.

We shall call the path μ a special path. In this context, we denote by init (μ) the vertex x_{0} and by term (μ) the vertex x_{s}. If $\operatorname{init}(\mu)$ is a vertex of M then μ will be a special path of type 1 and if $\operatorname{init}(\mu)$ is a vertex of $R \cup S$ it will be a
special path of type 2 . Let Γ be the set of special paths in G. We denote by Γ^{1} the set of special paths of type 1 and by Γ^{2} the set of special paths of type 2 . Finally, we shall let $\mu(x)$ denote the special path to which vertex x belongs.

Let μ be a path of G. It is easy to see that:

1. $\sigma(\operatorname{term}(\mu))$ belongs to $D \cup P^{*}$;
2. No two special paths μ_{1} and μ_{2} share common vertices and

$$
\sigma\left(\operatorname{term}\left(\mu_{1}\right)\right) \neq \sigma\left(\operatorname{term}\left(\mu_{2}\right)\right) .
$$

Claim 1. Let x be a vertex of a special path μ distinct from term (μ) such that the neighbourhood of x in G is not a stable set. Then neither the neighbourhood of $\sigma(x)$ in G nor the neighbourhood of $\sigma(\operatorname{term}(\mu))$ in G_{1} can be stable sets.

Proof. If $\sigma(x)$ belongs to A the result is obvious since M belongs to G. Assume then that $\sigma(x)$ belongs to B and consider two adjacent vertices a and b of G which are adjacent to x. Since a and b are both in G, none of $\sigma(a)$ and $\sigma(b)$ can be a vertex of D. Since none of the vertices of P^{*} can be adjacent to $\sigma(x) \in B$, it follows that $\sigma(a) \sigma(b)$ is an edge of $[A \cup B]$ which proves that the neighbourhood of $\sigma(x)$ in G is not a stable set, as claimed.

Finally, it is clear that the neighbourhood in G_{1} of $\sigma(\operatorname{term}(\mu))$ is not a stable set if and only if the neighbourhood of x in G is not a stable set.

In Corollary 3.25 it was shown that P^{*} is formed by the subchain $P^{\prime}=x_{i}, \ldots, x_{k}$ of P_{k} such that $1<i<k$ and possibly by a vertex of $\left\{x_{j}, w, h\right\}$ with $x_{j} \in P_{k}, j<i-1, w \in B$ and $h \in M \cup Q$. In the following, we shall assume that P^{*} is formed by the vertices of $P^{\prime} \cup\{h\}$ where h is a vertex of Q. It is an easy task to verify that the claimed result of this theorem holds when considering all the other possibilities concerning P^{*}.

Let $\mathcal{U}=\left\{M_{0}, \ldots, M_{i}, \ldots, M_{q}\right\}$ be the set satisfying the following conditions:

1. $M_{0}=M$,
2. $M_{i}=\sigma\left(M_{i-1}\right), i=1, \ldots, q$,
3. $M_{i} \subseteq A \cup B, i=1, \ldots, q$,
4. \mathcal{U} is the largest set with respect to the above properties.

Property of \mathcal{U}. Since $M_{0} \cap V\left(G^{*}\right)=\emptyset$, it is easy to verify that for every choice of M_{i} and $M_{j}, 1 \leq i \neq j \leq q$, in \mathcal{U}, $M_{i} \cap M_{j}=\emptyset$.

Claim 2. Let x be a vertex of $M_{i} \in \mathcal{U}, i=0, \ldots, q$ and let $\mu \in \Gamma^{1}$ be the special path containing x. Then $\sigma(\operatorname{term}(\mu)) \in P^{*}$.
Proof. The maximality of μ implies that $\sigma(\operatorname{term}(\mu)) \in P^{*} \cup D$ and since the neighbourhood of any vertex of M_{0} is not a stable set, the result follows from Claim 1.

Claim 3. $M_{q+1}=\sigma\left(M_{q}\right)$ contains vertices from P^{*} and $A \cup B$.
Proof. If not, by the previous claim $\sigma\left(M_{q}\right)$ would be entirely contained in P^{*} and, consequently, M_{q} would induce a graph isomorphic to a chordless chain, a contradiction.

The reader can easily verify the two following claims.
Claim 4. Let M_{i} be a set of \mathcal{U} and X a set of vertices of G outside M_{i}. Then $\sigma(X)$ is partial (resp. total, indifferent) with respect to $\sigma\left(M_{i}\right)$ if and only if X is partial (resp. total, indifferent) with respect to M_{i}.
Claim 5. The number of partial (resp. total, indifferent) vertices of $M_{i} \in \mathcal{U}$ in G is equal to the number of partial (resp. total, indifferent) vertices of $M_{i+1} \in \mathcal{U}$ in $G_{1}, i=1, \ldots, q-1$.

Let $\mathcal{H}=\left\{H_{0}, \ldots, H_{i}, \ldots, H_{r}\right\}$ be a set satisfying the following properties.

1. H_{0} is a module of M,
2. $H_{i}=\sigma\left(H_{i-1}\right), i=1, \ldots, r$,
3. $H_{i} \subseteq A \cup B, i=1, \ldots, r$,
4. $\left|H_{i}\right|>1$, and
5. \mathcal{H} is the largest set with respect to the above properties.

Claim 6. Let $H_{i}, 1 \leq i \leq r$, be a set in \mathcal{H} and let x be a vertex of G which is partial with respect to H_{i}. The following two conditions are satisfied:

1. H_{i} is either entirely contained in A or else entirely contained in B;
2. x belongs to a path μ of type 2, i.e. $\mu \in \Gamma^{2}$.

Proof. The proof is by induction on i. By Proposition 3.29, M_{1} is entirely contained in A or is entirely contained in B and, hence, every vertex of M is either total or indifferent with respect to M_{1} and, consequently, with respect to H_{1}. It follows that every partial vertex with respect to H_{1} in G belongs to R and hence the result holds for $i=1$.

Assume that the result holds for $H_{t}, 1 \leq t<r$, and consider H_{t+1}. If H_{t+1} contains vertices from both A and B, then every vertex of P^{*} is partial with respect to this set in G_{1}. By the induction hypothesis the set, say J, of partial vertices with respect to H_{t} consists of vertices belonging to special paths in Γ^{2}. Since $\sigma(J)$ belongs to $A \cup B \cup D \cup P^{*}$, it follows that every vertex y of P^{*} must satisfy $\sigma^{-1}(y) \in J$, contradicting Claim 2. Hence H_{t+1} is entirely contained in A or entirely contained in B, as claimed.

Consider now a vertex x of G which is partial for H_{t+1}. If $x \in V\left(G_{1}\right) \cap V(G)$ then $x \in \Gamma^{2}$ for otherwise $\sigma^{-1}(x) \notin \Gamma^{2}$, contradicting the induction hypothesis. If $x \in V(G)-V\left(G_{1}\right)$ which equals $M \cup R \cup S$ then since M is total or indifferent in G for M_{t+1} and consequently for H_{t+1}, x must be a vertex of $R \cup S$ which belongs to Γ^{2} as claimed.

Observation. Since the set H_{0} of \mathcal{H} is not necessarily a nontrivial module of $M_{0}=M, H_{0}$ can be M itself and, consequently, Claim 6 holds for every set M_{i} of \mathcal{U}.

Denote by Ω the set $\Omega=\{\sigma(\operatorname{term}(\mu(x))) \mid x \in M\}$. Observe that by virtue of Claim $2, \Omega$ is entirely contained in P^{*}. Let Y be the set $M_{q+1} \cap P^{*}$, let T be the set of vertices of P^{*} which are total with respect to Y and let Ω^{\prime} be the set $\Omega-(T \cup Y)$.

Assume first that M contains at least four vertices. By Lemma 3.27, if $T \neq \emptyset, T \cup Y$ contains at most three vertices and, consequently, $\Omega^{\prime} \neq \emptyset$. Let J be the set of partial vertices of M_{q} in G. By Claim 6 , for $x \in J$ we have $\sigma(\operatorname{term}(\mu(x))) \notin \Omega$ and the number of partial vertices of M_{q+1} in G_{1} is at least $|J|+\left|\Omega^{\prime}\right|$, a contradiction.

Assume now that M contains fewer than four vertices. Since [M] is connected and distinct from a chordless path, [M] must be isomorphic to a C_{3}, say $a b c$, induced, in the obvious way, by vertices a, b, and c. If Y contains two adjacent vertices then $T=\emptyset$ and, consequently, $\left|\Omega^{\prime}\right|=1$ which implies that the number of partial vertices of M_{q+1} in G_{1} is at least $|J|+1$, a contradiction.

Hence Y contains exactly one vertex, say, a. Clearly if $J=\emptyset$ or if $\sigma(J) \subseteq P^{*}$ then $\{b, c\}$ is a module in G_{1} and, consequently, in G^{*} since there is no vertex of $V\left(G_{1}\right)$ that "breaks" the module $\{b, c\}$, a contradiction. Let b^{*} and c^{*} be, respectively, the vertices $b^{*}=\sigma(\operatorname{term}(\mu(b)))$ and $c^{*}=\sigma(\operatorname{term}(\mu(c)))$ which by Claim 2 belong to P^{*}. If at least one of these vertices is not total with respect to $a b c$, the number of partial vertices of $a b c$ in G_{1} is at least $|J|+1$, a contradiction. Hence $Y=\left\{b^{*}, c^{*}\right\}$.

Let $\theta=b_{0} c_{0}, b_{1} c_{1}, \ldots, b_{r} c_{r}$ be the longest sequence of edges in G such that $b_{0}=b, c_{0}=c$ and $b_{i}=\sigma\left(b_{i-1}\right)$, $c_{i}=\sigma\left(c_{i-1}\right), i=1, \ldots, r$. In other words $b_{i} \in \mu\left(b_{o}\right)$ and $c_{i} \in \mu\left(c_{o}\right), i=1, \ldots, r$. Since by Claim 6 the set of partial vertices of $b_{r} c_{r}$ in G belong to paths in Γ^{2}, and b^{*} is nonadjacent to c^{*} then either $\sigma\left(b_{r}\right)=b^{*}$ or $\sigma\left(c_{r}\right)=c^{*}$ but not both.

Assume, without loss of generality, that $\sigma\left(b_{r}\right)=b^{*}$ and write $c_{r+1}=\sigma\left(c_{r}\right)$. Since $b_{r} c_{r}$ is an edge of G, it follows that $b^{*} c_{r+1}$ is an edge of G_{1} and so c_{r+1} belongs to A. Thus, c^{*} distinguishes in G_{1} the vertices of $\left\{b^{*}, c_{r+1}\right\}$. Let I denote the set of partial vertices with respect to $\left\{b_{r}, c_{r}\right\}$ in G. By Claim 6 every vertex of I belongs to a path of Γ^{2}. By Claim 2, $c^{*} \notin \sigma(I)$, a contradiction, since the number of partial vertices in G_{1} of $\left\{b^{*}, c_{r+1}\right\}$ is larger than the number of partial vertices of $\left\{b_{r}, c_{r}\right\}$ in G.

We are now in a position to state the main result of this section.
Theorem 3.31. Let G be a connected graph containing a maximal nontrivial module M such that $[M]$ induces a connected graph with at least three vertices non-isomorphic to a $P_{k}, k \geq 3$. Then, the set of minimal prime extensions $\operatorname{Ext}(G)$ of G is infinite.

Proof. The result follows from the fact that every prime extension of G obtained by the path construction $G \otimes P_{k}$ is of type 1 and the fact that the chain P_{k} is of arbitrary length.

4. All minimal prime extensions: The finite and infinite cases

The main goal of this section is to characterize all classes of graphs whose closure under substitution closure can be defined by a finite set of forbidden subgraphs. Our result will be obtained by an exhaustive examination of the structure of non-trivial modules of a connected graph G. The cases that may arise are illustrated in the Fig. 3.

Theorem 4.1. Let G be a connected graph which is not P_{4}-homogeneous and such that every module of G that induces a connected graph is isomorphic to a chordless chain. If \bar{G} is disconnected then it contains exactly two connected components.

Proof. Suppose not. If \bar{G} contains at least four components, say F_{1}, F_{2}, F_{3}, and F_{4} then $F_{1} \cup F_{2} \cup F_{3}$ is a module in G whose induced graph is not isomorphic to a chordless chain since it contains a C_{3}, a contradiction.

Assume, next, that \bar{G} contains three connected components F_{1}, F_{2} and F_{3}. If two of these components, say F_{1} and F_{2}, are not single vertices, then the module $F_{1} \cup F_{2}$ of G contains a C_{4}, a contradiction. Hence two of these components, say F_{2} and F_{3}, are single vertices, while $\left|F_{1}\right|>2$, for otherwise G would be P_{4}-homogeneous, a contradiction. It is easy to see now that the nontrivial module $F_{1} \cup F_{2}$ of G cannot be isomorphic to a chordless chain, a contradiction.

4.1. $2 P_{4}$-homogeneous graphs

We shall now present a class of graphs whose set of minimal prime extensions is finite.
Definition 4.2. Let G be a connected graph which is not P_{4}-homogeneous and having a universal vertex u. We shall call G a pseudo-gem if $G^{\prime}=G \backslash u$ is a P_{4} - homogeneous graph which is isomorphic to a subgraph of a chordless chain.

The following result clarifies the structure of a pseudo-gem.
Lemma 4.3. Let G be a pseudo-gem and $и$ a universal vertex of G, then $G^{\prime}=G \backslash u$ is one of the following types of graphs:

1. G^{\prime} is isomorphic to a chordless chain $P_{l}, l \geq 5$;
2. G^{\prime} is the disjoint union of two chordless chains P_{l} and P_{t} such that

- $l=1$ and $3 \leq t \leq 4$, or
- $l=2$ and $2 \leq t \leq 4$, or
- $l=3$ and $1 \leq t \leq 4$, or
- $l=4$ and $1 \leq t \leq 4$;

3. G^{\prime} is isomorphic to an O_{3} or is the union of an O_{2} and a P_{2}.

Proof. Indeed, since u is a universal vertex of G and G is not a P_{4}-homogeneous graph, G^{\prime} cannot be a subgraph of a P_{4}. Also, since G^{\prime} is a P_{4}-homogeneous graph isomorphic to a subgraph of a chordless chain, then either G^{\prime} is prime and, consequently, isomorphic to a chordless chain $P_{l}, l \geq 5$ (Case 1 above) or every module of G^{\prime} induces a subgraph of a P_{4}. The conclusion follows.
Definition 4.4. Let G be a connected graph which is not P_{4}-homogeneous such that \bar{G} contains exactly two connected components C_{1} and C_{2}. Then, G and \bar{G} are said to be $2 P_{4}$-homogeneous graphs if [C_{1}] and [C_{2}] are subgraphs of a chordless chain and one of the following conditions holds:

- G is isomorphic to a pseudo gem
- [C C_{2}] is isomorphic to a subgraph of a P_{4} and $\left[C_{1}\right]$ is a P_{4}-homogeneous graph which is $2 K_{2}$-free.

The following result clarifies the structure of a $2 P_{4}$-homogeneous graph.
Lemma 4.5. Let G be a connected $2 P_{4}$-homogeneous graph which is not isomorphic to a pseudo gem. Let C_{1} and C_{2} be the two connected components of \bar{G} with $\left[C_{2}\right]$ a subgraph of a P_{4}. Then

1. $\left[C_{2}\right]$ is isomorphic to a P_{4}, \bar{P}_{3} or a \bar{P}_{2}
2. [C $\left.C_{1}\right]$ is isomorphic to a $P_{1} \cup P_{3}$ or to a $P_{1} \cup P_{4}$ or to an O_{3} or to an $O_{2} \cup P_{2}$.

Fig. 3. Illustration of the various cases that may occur for graph G and module M. For each case we indicate whether Ext (G) is finite or infinite.
Proof. Since G is not isomorphic to a pseudo gem, C_{2} is not a singleton and since $\overline{\left[C_{2}\right]}$ is connected and isomorphic to a subgraph of a $P_{4},\left[C_{2}\right]$ must be isomorphic to a P_{4} or to a \bar{P}_{3} or to a \bar{P}_{2} as claimed. Let us prove now the second assertion of the lemma. Indeed, since $\left[C_{1}\right]$ is $2 K_{2}$-free, $\left[C_{1}\right]$ cannot contain a subgraph isomorphic to either a chordless chain $P_{l}, l \geq 5$ or to the disjoint union of two chordless chains which are both distinct from a P_{1}. Since also G is not a P_{4}-homogeneous graph, $\left[C_{1}\right]$ cannot be isomorphic to a chordless chain having at most 4 vertices. Finally, since $\left[C_{1}\right]$ is a P_{4}-homogeneous graph which is a subgraph of a chordless chain, $\left[C_{1}\right]$ is isomorphic to a $P_{1} \cup P_{3}$ or to a $P_{1} \cup P_{4}$ or to an $O_{2} \cup P_{2}$ to an O_{3} as claimed.

We shall prove now that the set of minimal prime extensions of a $2 P_{4}$-homogeneous graph is finite. Before this we need some preliminaries results.

Theorem 4.6 ([16]). If W is a nontrivial module of a graph G and W induces a subgraph of a P_{4} then in any minimal prime extension of G there exists a W-pseudopath P having at most two vertices. Moreover

1. if $[W]$ is not isomorphic to a P_{4}, P has exactly one vertex.
2. If W is isomorphic to a P_{4} abcd and P has two vertices, the first vertex of P is adjacent to the two middle vertices b and c of $[W]$ and misses the two other vertices a and c.

Notation 4.7. Let Q be a minimal prime extension of its induced connected subgraph G and let W be a non trivial module of G. A W-pseudopath $P_{k}=\left(x_{1}, \ldots, x_{k}\right)$ in Q will be called a strong pseudopath if there is no homogeneous set $W^{\prime} \subseteq W$ in the graph $G \cup P_{k}$. In other words the vertex x_{1} 'breaks' any nontrivial module of [W].

We can derive from Theorem 4.6 the following result:
Proposition 4.8. Let Q be a minimal prime extension of its induced connected subgraph G and let W be a nontrivial module of G such that W induces a subgraph of $a P_{4}$. Then there exists in Q a W-strong pseudopath P having at most two vertices.

Proof. If W contains two or four vertices, the result is directly obtained from Theorem 4.6. Assume then that [W] is isomorphic to a P_{3} or to a $\overline{P_{3}}$. Let x_{1} be the first vertex of P which as we recall, is partial for W. If there exists an homogeneous set $W^{\prime} \subseteq W$ in the graph induced by $G \cup P$, then W^{\prime} has exactly two vertices. Consequently, by Theorem 4.6 there must be a W^{\prime}-pseudopath P^{\prime} in Q. Clearly P^{\prime} is a strong pseudopath and is also a W-pseudopath. We can easily verify that no subset of W is an homogeneous set in the graph $G \cup P^{\prime}$ and hence we are done.

Proposition 4.9. Let Q be a minimal prime extension of its induced connected subgraph G and let W be a maximal homogeneous set of G such that W induces a subgraph of a P_{4}. If W is the unique maximal homogeneous set of G then $|V(Q)|<|V(G)+2|$.

Proof. Indeed, by Proposition 4.8 there exists in Q a W-strong pseudopath P having at most two vertices. Clearly since M is the unique maximal homogeneous set in G the graph $G \cup P$ is prime. Since $Q \in \operatorname{Ext}(G)$, the result follows.

We are now in position to present the main theorem of this subsection.
Theorem 4.10. If G is a $2 P_{4}$-homogeneous graph, then $\operatorname{Ext}(G)$ is a finite set.
Proof. Assume that G is connected and let \mathcal{E} be the set of minimal prime extensions of G. Let C_{1} and C_{2} be the two connected components of \bar{G} and assume w.l.o.g. that $\left[C_{2}\right]$ is a subgraph of a P_{4}.

Consider the bi-partition of \mathcal{E} into the following sets:

1. E_{1} is the set of graphs belonging to $\operatorname{Ext}\left(\left[C_{1}\right]\right) \cap \mathcal{E}$;
2. E_{2} is the set of graphs in $\mathcal{E}-E_{1}$.

Claim 1. E_{1} is finite.
Proof. Since, by assumption, $\left[C_{1}\right]$ is a P_{4}-homogeneous graph, Theorem 2.5 guarantees that $\operatorname{Ext}\left(\left[C_{1}\right]\right)$ is finite and, consequently, the same must hold for E_{1}.

Our next task is to prove that E_{2} is finite. We shall distinguish the two complementary cases: C_{2} is a singleton (i.e. G is a pseudo gem) and $C_{2} \neq$ singleton.

Case $1 C_{2}$ is a singleton

Let Q be an arbitrary graph in E_{2}. Let H be a subgraph of Q isomorphic to G and $H^{\prime}=H \backslash v$ where v is a universal vertex of H. Since Q is prime there must be a subgraph Q^{\prime} in Q containing H^{\prime} as induced subgraph such that $Q^{\prime} \in \operatorname{Ext}\left(H^{\prime}\right)$.

Claim 2. | $V(Q)\left|\leq\left|V\left(Q^{\prime}\right)\right|+|V(G)|\right.$.
Proof. Assume first that the vertex v is not adjacent to all vertices of Q^{\prime}. Then since v is adjacent to all vertices of H^{\prime}, v is partial with respect to $V\left(Q^{\prime}\right)$. Since Q^{\prime} is a prime graph, the graph formed by Q^{\prime} and the vertex v is also prime and consequently this graph is the graph Q. Assume now that the vertex v is total with respect to $V\left(Q^{\prime}\right)$ that is, $V\left(Q^{\prime}\right)$ is a nontrivial module of the graph induced by $V\left(Q^{\prime}\right) \cup\{v\}$. Then by Theorem 2.8 there must be in Q a $V\left(Q^{\prime}\right)$-pseudopath $P=y_{1}, \ldots, y_{r}$. Let $P^{\prime}=y_{1}, \ldots, y_{s}, 1 \leq s \leq r$ be the longest sequence of vertices of P inducing a chordless chain. We show now that $s<\left|V\left(H^{\prime}\right)\right|+1$. Assume the contrary, then since H^{\prime} is isomorphic to a subgraph of a chordless chain, P would contain a subgraph isomorphic to H^{\prime}. It follows that P together with the vertex v would form a prime graph containing a minimal prime extension of H strictly contained in Q, a contradiction. We shall show now that P^{\prime} is exactly P. Assume the contrary and consider the graph $Q^{\prime \prime}$ induced by $V\left(Q^{\prime}\right) \cup P^{\prime} \cup y_{s+1}$. By the definition of P^{\prime}, y_{s+1} is adjacent to all vertices of Q^{\prime} and all vertices of $P^{\prime} \backslash y_{s}$. We can easily verify that the subgraph of $Q^{\prime \prime}$ formed by the vertices of H^{\prime} and the vertex y_{s+1}, is isomorphic to G. Consequently, since $Q^{\prime \prime}$ is a prime graph it contains a minimal prime extension of G. Since $Q^{\prime \prime}$ is a proper subgraph of Q (Q contains also the vertex v) we obtain a contradiction.

Since H^{\prime} is a P_{4}-homogeneous graph, by Theorem $2.8 \operatorname{Ext}\left(H^{\prime}\right)$ is a finite set. Therefore since each minimal prime extension of H is obtained from a graph of $\operatorname{Ext}\left(H^{\prime}\right)$ by adding at most $s<|V(G)|+1$ vertices, we deduce that whenever G is isomorphic to a pseudo-gem, E_{2} is a finite set.

Case $2 C_{2} \neq$ singleton

Let Q be an arbitrary graph in $\operatorname{Ext}(G)$ and G^{\prime} be a subgraph of Q isomorphic to G. Denote by $\left[C_{1}^{\prime}\right]$ and $\left[C_{2}^{\prime}\right]$ the subgraphs of G^{\prime} isomorphic respectively to [C_{1}] and $\left[C_{2}\right]$. Clearly, there is a subgraph H_{1} in Q containing [C_{1}^{\prime}] as proper subgraph such that $H_{1} \in \operatorname{Ext}\left[C_{1}^{\prime}\right]$.

In [17] all the minimal prime extensions for [C_{1}^{\prime}] are given. The reader can easily verify that there are 10 minimal prime extensions whenever [$\left.C_{1}^{\prime}\right] \sim O_{2} \cup P_{2}, 3$ minimal prime extensions whenever $\left[C_{1}^{\prime}\right] \sim P_{1} \cup P_{3}$ or $\left[C_{1}^{\prime}\right] \sim O_{3}$ and 9 minimal prime extensions whenever $\left[C_{1}^{\prime}\right] \sim P_{1} \cup P_{4}$. Furthermore, there is exactly one of these minimal prime extensions extensions whose number of vertices is $\left|C_{1}^{\prime}\right|+3$ while the number of vertices of all others is $\left|C_{1}^{\prime}\right|+2$. Finally, there are exactly three of them having a universal vertex x with respect to $\left[C_{1}^{\prime}\right]$. In Fig. 4 of this paper we give these three minimal prime extensions using the same notations as in [17].

It is easy to see now that we have the following result:

G_{5}

L_{9}

Fig. 4. Three minimal prime extensions: $A \in \operatorname{Ext}\left(O_{3}\right)=\operatorname{Ext}\left(P_{1} \cup P_{3}\right), G_{5} \in \operatorname{Ext}\left(O_{2} \cup P_{2}\right), L 9 \in \operatorname{Ext}\left(P_{1} \cup P_{4}\right)$.
Claim 3. $\left|V\left(H_{1}\right)\right| \leq\left|C_{1}^{\prime}\right|+3$ and there is at most one vertex of H_{1} which is total with respect to C_{1}^{\prime} and not adjacent to any vertex of $V\left(H_{1}\right)-C_{1}^{\prime}$.
Claim 4. If $V\left(H_{1}\right)$ is not an homogeneous set of the graph $H_{1} \cup\left[C_{2}^{\prime}\right]$, then $|V(Q)|<|V(G)|+5$.
Proof. Let M be a maximal nontrivial module of $H_{1} \cup\left[C_{2}^{\prime}\right]$. If M is entirely contained in C_{2}^{\prime}, then since H_{1} is a prime graph, M will be the unique maximal homogeneous set of $H_{1} \cup\left[C_{2}^{\prime}\right]$. The result follows by Proposition 4.9 and Claim 3. Assume then that M is not entirely included in C_{2}^{\prime}. Then since H_{1} is a prime graph, there is exactly one vertex of M, say x belonging to $V\left(H_{1}\right)$. Consequently $M^{\prime}=M-\{x\}$ is entirely contained in C_{2}^{\prime}. Since every vertex of C_{2}^{\prime} is total with respect to C_{1}^{\prime} we deduce that x is adjacent to every vertex of C_{1}^{\prime} which implies that H_{1} is isomorphic to one of the graphs A, G_{5}, L_{9} depicted in Fig. 4. Since the vertex x is not adjacent to any vertex of $V\left(H_{1}\right)-C_{1}^{\prime}$, the same holds for any vertex of M^{\prime}. Consequently the graph H_{1}^{\prime} induced by $\left\{V\left(H_{1}\right) \cup\{y\}\right\}-\{x\}$, with y a vertex of M^{\prime}, is isomorphic to H_{1}. It follows that $H_{1}^{\prime} \cup C_{2}^{\prime}$ contains a unique maximal homogeneous set inducing a subgraph of a P_{4} and the result follows by Proposition 4.9 and Claim 3.

Assume now that $V\left(H_{1}\right)$ is a nontrivial module of $\left[V\left(H_{1}\right) \cup C_{2}^{\prime}\right.$] which is the last case to be examined. By Proposition 4.8 there is a $C_{2}^{\prime-}$ strong pseudopath P in Q, having at most two vertices. If the last vertex of P, say z, is partial with respect to $V\left(H_{1}\right)$ then the graph [$\left.V\left(H_{1}\right) \cup C_{2}^{\prime}\right] \cup P$ is prime and consequently by Proposition 4.8 and Claim 3 we have that $|V(Q)|<|V(G)|+5$. Assume then that z is not partial with respect to $V\left(H_{1}\right)$ then since the nonneighbourhood of C_{2}^{\prime} in [$V\left(H_{1}\right) \cup C_{2}^{\prime}$] is the empty set, z cannot be total with respect to the set $V\left(H_{1}\right)$. It follows that z is indifferent with respect to $V\left(H_{1}\right)$. Consequently, $V\left(H_{1}\right)$ is the unique maximal homogeneous set of $\left[V\left(H_{1}\right) \cup C_{2}^{\prime}\right] \cup P$. By Theorem 2.8 there must be in Q a $V\left(H_{1}\right)$ - pseudopath $R_{k}=\left(x_{1}, \ldots, x_{k}\right)$. Since $V\left(H_{1}\right)$ is the unique maximal homogeneous set of $\left[V\left(H_{1}\right) \cup C_{2}^{\prime}\right] \cup P$, we deduce that the graph [$\left.V\left(H_{1}\right) \cup C_{2}^{\prime}\right] \cup P \cup R_{k}$ is prime.

Our next task is to prove that $k \leq c$, where c is a constant.
Let $\mathcal{A}=\left\{A_{1}, \ldots, A_{l}\right\}$ be the largest set of chordless chains obtained from R_{k} in the following manner:

1. A_{1} is the longest chordless chain formed by consecutive vertices of R_{k} and having as first vertex x_{1}.
2. A_{i} is the longest chordless chain formed by consecutive vertices of $R_{k} \backslash A_{1} \cup \cdots \cup A_{i-1}$ and whose first vertex is the first vertex of $R_{k} \backslash A_{1} \cup \cdots \cup A_{i-1}, 1<i \leq l$.

Let a_{i} be the first vertex and b_{i} be the last vertex of $A_{i}, i=1, \ldots, l$. Clearly if $A_{i} \sim P_{1}, a_{i}=b_{i}$. If $A_{i} \sim P_{r}$ such that $r>1$ we shall note c_{i} the last but one vertex of $A_{i}, i=1, \ldots, l$.

Claim 5. $A_{i}, i=1, \ldots, l$ contains at most six vertices.
Proof. Assume on the contrary that there exists $A_{i} \in \mathcal{A}$ having more than six vertices, then A_{i} contains an induced graph [$C_{1}^{\prime \prime}$] isomorphic to [C_{1}^{\prime}]. Since every vertex of $R_{k} \backslash x_{k}$ is total with respect to C_{2}^{\prime}, the graph [$\left.C_{1}^{\prime \prime}\right] \cup\left[C_{2}^{\prime}\right]$ is isomorphic to G. But since the graph $A_{i} \cup \cdots \cup A_{l} \cup P \cup\left[C_{2}^{\prime}\right]$ is prime, it contains a subgraph isomorphic to G as induced subgraph and is strictly contained in Q, we obtain a contradiction.

We shall show now that $l<10$. Assume the contrary and consider the set $\mathcal{A}^{\prime}=\mathcal{A} \backslash A_{1} \cup A_{l}$.
Claim 6. There are not in \mathcal{A}^{\prime} three chains $A_{i}, A_{i+1}, A_{i+2}, 1<i<l-3$ such that each one is isomorphic to a P_{1}.
Proof. If not, A_{i}, A_{i+1}, A_{i+2} together with the first vertex of A_{i+3} would induce a copath containing a subgraph isomorphic to [C_{2}^{\prime}]. Since every vertex of this copath is total with respect to H_{1}, the graph $H_{1} \cup R_{k}$ which is prime and is strictly contained in Q, would contain an induced subgraph isomorphic to G, a contradiction.

Since by assumption $l>9$, Claim 6 implies that there exists three chordless chains in $\mathcal{A}^{\prime}, A_{r}, A_{s}$ and $A_{t}, r<s<t$ such that none of them is isomorphic to a P_{1}. Assume w.l.o.g. that s is as small as possible that is, there is no A_{i}, $r<i<s$ which is not isomorphic to a P_{1}. If $s=r+1$ then the set of vertices $\left\{c_{r}, b_{r}, c_{s}, b_{s}, b_{t}\right\}$ induces a subgraph isomorphic to a $P_{1} \cup P_{4}$. If $s>r+1$ then since by assumption s is as small as possible, A_{s-1} is isomorphic to a P_{1}. It follows that the set of vertices $\left\{a_{r}, a_{s-1}, c_{s}, b_{s}, b_{t}\right\}$ induces a subgraph isomorphic to a $P_{1} \cup P_{4}$. Consequently in both cases there exists in R_{k} a subgraph isomorphic to [$\left.C_{1}^{\prime}\right]$. It follows that the graph $R_{k} \cup\left[C_{2}^{\prime}\right] \cup P$ which is prime and is strictly contained in Q, contains an induced subgraph isomorphic to G a contradiction.

Since $\left|V\left(H_{1}\right)\right| \leq\left|C_{1}^{\prime}\right|+3$ (Claim 3), P has at most 2 vertices (Proposition 4.9) and $l<10$, it is easy to see now that every minimal prime extension of G has $|V(G)|+c$ vertices, where c is a constant and this completes the proof of the theorem.

4.2. The main theorem

Theorem 4.11. Given a decomposable graph $G, \operatorname{Ext}(G)$ is finite if and only if G is P_{4}-homogeneous or a $2 P_{4}$ homogeneous graph.
Proof. The 'if' part follows from Theorem 2.5 and Theorem 4.10, combined.
We shall now turn to the 'only if' part. For this purpose, assume that G is connected and non-isomorphic to a P_{4}-homogeneous or to a $2 P_{4}$-homogeneous graph. Our goal is to show that $\operatorname{Ext}(G)$ is an infinite set for the different cases illustrated in Fig. 3.

If there exists a module M in G such that [M] is connected and nonisomorphic to a chordless chain $P_{k}, k \geq 3$, the conclusion follows from Theorem 3.31.

Assume, next, that every module M of G that induces a connected graph is isomorphic to a chordless chain P_{k}, $k \geq 1$. If \bar{G} is connected, then since \bar{G} is not P_{4}-homogeneous, it must contain a module M maximal with respect to set inclusion and non-isomorphic to a chordless chain P_{r} with $r>2$. By Theorem 3.31, $\operatorname{Ext}(\bar{G})$ is infinite and by Proposition 3.11 this must also be the case for $\operatorname{Ext}(G)$.

Therefore, in the remainder of the proof we assume that

\bar{G} is disconnected.

Recall that by Theorem 4.1, \bar{G} contains exactly two connected components C_{1} and C_{2}. We shall distinguish the two complementary cases:

1. Neither C_{1} nor C_{2} induce a chordless chain in \bar{G}.
2. At least one of C_{1} or C_{2} induces a chordless chain in \bar{G}.

Case 1 Neither C_{1} nor C_{2} induce a chordless chain in \bar{G}.
Let Q_{1} (resp. Q_{2}) be the set of new vertices that need to be added to $\overline{\left[C_{1}\right]}$ (resp. to $\overline{\left[C_{2}\right]}$) in order to obtain its basic extension U_{1} (resp. U_{2}).

We construct a connected graph H by joining U_{1} with U_{2} with a chordless chain $P_{r}=x_{1} x_{2} \ldots x_{r}$ with $r>2|V(G)|$, and such that

- x_{1} is adjacent to all but one vertex of U_{1},
- x_{r} is adjacent to all but one vertices of U_{2}, and
- no vertex of $\left\{x_{2}, \ldots, x_{r-1}\right\}$ is adjacent to any vertex of $V\left(U_{1}\right) \cup V\left(U_{2}\right)$.

Clearly the graph H constructed above is prime and, therefore, it contains a minimal prime extension H^{\prime} of \bar{G}. We claim that:

$$
\begin{equation*}
H^{\prime} \text { contains the whole chain } P_{r} \text {. } \tag{1}
\end{equation*}
$$

In order to argue for (1) observe that neither U_{1} nor U_{2} can be an extension of \bar{G}. Indeed, assume that one of U_{1} or U_{2}, say U_{1}, is an extension of \bar{G} and let F_{2}, F_{1} be two vertex-disjoint subgraphs of U_{1} isomorphic, respectively, to $\overline{\left[C_{2}\right]}$ and to $\overline{\left[C_{1}\right]}$. Since $\overline{\left[C_{2}\right]}$ is connected its vertex set cannot be entirely included in the stable set Q_{1}. Therefore, since there is no edge between $\overline{\left[C_{2}\right]}$ and $\overline{\left[C_{1}\right]}$ in \bar{G}, we can easily deduce that $F_{1} \neq C_{1}$. Let F_{2}^{\prime} be the set $V\left(F_{2}\right) \cap C_{1}$ and let F_{1}^{\prime} be the set $V\left(F_{1}\right) \cap C_{1}$. By Proposition $3.8 F_{2}^{\prime}$ is a stable set and every vertex of this set has his private neighbour in F_{1}^{\prime} which contradicts the fact that there is no edge between F_{1} and F_{2}. Since neither $\overline{\left[C_{1}\right]}$ nor $\overline{\left[C_{2}\right]}$ is isomorphic to a chordless chain, the vertex-set of any induced copy of $\overline{\left[C_{1}\right]}$ in H^{\prime} is formed by a subset of C_{1} and some of the vertices
of the subchain $P_{1}=x_{1} \ldots x_{t}, t<r / 2$ and the vertex set of any induced copy of $\overline{\left[C_{2}\right]}$ in H^{\prime} is formed by a subset of C_{2} and some of the vertices of the subchain $P_{2}=x_{z} \ldots x_{r}$ with $z>r / 2$. Since H^{\prime} must be connected, it contains the whole chain P_{r}. Since P_{r} has arbitrary length larger than $|V(G)|$ the proof of (1) is complete.
Case 2 At least one of C_{1} or C_{2} induces a chordless chain in \bar{G}.
Assume, without loss of generality, that C_{2} induces a chordless chain in \bar{G}. Clearly, $\left[C_{2}\right]$ is isomorphic to a P_{1} or to a $\overline{P_{2}}$ or to a $\overline{P_{3}}$ or to a P_{4}.

Claim 1. If $\left[C_{1}\right]$ is not a P_{4}-homogeneous graph then $\operatorname{Ext}(G)$ is an infinite set.
Proof. We shall prove that $\operatorname{Ext}(\bar{G})$ is an infinite set. Since by assumption [C_{1}] is not a P_{4} - homogeneous graph, [C_{1}] is a disjoint union of a set of chordless chains $R_{1}, R_{2}, \ldots, R_{l}, l>1$. Assume w.l.o.g. that length $\left(R_{i-1}\right) \geq \operatorname{length}\left(R_{i}\right)$, $1<i \leq l$. Consider now the graph $R_{1} \cup \cdots \cup R_{l-1}$; clearly the set of vertices of this graph forms a nontrivial module M inducing in [C_{1}] a subgraph different from a subgraph of a P_{4}. More precisely [M] is either isomorphic to a chordless chain $P_{r}, r>4$ or is the disjoint union of a set of chordless chains. It follows that M induces in $\overline{\left[C_{1}\right]}$ a connected graph different from a chordless chain and hence we can use our construction in Section 3.2 for obtaining a graph H isomorphic to a path extension $\overline{\left[C_{1}\right]} \otimes P_{k}$ where $P_{k}=x_{1} \ldots x_{k}$ is a chordless path of k vertices. We assume w.l.o.g. that P_{k} contains at least 4 vertices. Let H^{*} be a minimal prime extension of $\overline{\left[C_{1}\right]}$ contained in H.

Fact 1. If H contains a subgraph isomorphic to \bar{G}, then $\operatorname{Ext}(G)$ is an infinite set.
Proof. Indeed, by Proposition $3.18 H$ is a prime graph and consequently H contains a minimal prime extension F of \bar{G}. We claim that F contains the whole chain P_{k}. Indeed, in Theorem 3.30 we proved that any minimal prime extension of $\overline{\left[C_{1}\right]}$ contained in H, contains the whole chain P_{k}. Since F contains a minimal prime extension of $\overline{\left[C_{1}\right]}$ as induced subgraph, F contains the whole chain P_{k}, as claimed. Now, since P_{k} is of arbitrary length, the result follows.
Fact 2. If C_{2} is a singleton then $\operatorname{Ext}(G)$ is an infinite set.
Proof. Since in H the vertex x_{k} is not adjacent to any vertex of $\overline{\left[C_{1}\right]}, H$ contains an induced subgraph isomorphic to \bar{G}. The result follows from Fact 1 .

We assume then in the following that H does not contain a subgraph isomorphic to \bar{G} and that $\overline{C_{2}}$ is not isomorphic to a P_{1}. Let y be one of the extremities of the chordless chain $\overline{\left[C_{2}\right]}$ and let Q be the graph whose vertex set is $V\left(H^{*}\right) \cup C_{2} \cup\{v\}$, where v is a new vertex; the edge set of Q is $E(Q)=E\left(H^{*}\right) \cup E\left(\overline{\left[C_{2}\right]}\right) \cup\{v z\}$, with $z \neq x_{k}, y$. In other words Q is obtained by adding edges between a new vertex v with all vertices of H^{*} except the vertex x_{k} and all vertices of the chain $\overline{\left[C_{2}\right]}$ except one of its extremities y.

It is easy to see that Q is a prime graph containing a subgraph isomorphic to \bar{G}.
Let Q^{\prime} be a prime extension of \bar{G} contained in Q. Let G^{\prime} a subgraph of Q^{\prime} isomorphic to G, and let U_{1} and U_{2} be two subgraphs of G^{\prime} isomorphic to $\overline{\left[C_{1}\right]}$ and respectively to $\overline{\left[C_{2}\right]}$. Since we assumed that H does not contain a subgraph isomorphic to \bar{G}, G^{\prime} is not a subgraph of H^{*}.
Fact 3. G^{\prime} does not contain the vertex v.
Proof. Assume first that v belongs to U_{2} then since U_{1} contains more than two vertices and v misses at most two vertices in Q, there would be an edge between U_{1} and U_{2}, a contradiction. Assume now that v belongs to U_{1}, then if C_{2} contains more than two vertices there would be an edge between U_{1} and U_{2}, a contradiction. Assume now that C_{2} contains exactly two vertices. Since there is no edge between U_{1} and U_{2}, U_{2} would be formed by the two non adjacent vertices x_{k} and y which contradicts the connectedness of U_{2}. Since we assumed that U_{2} is not isomorphic to a P_{1}, we deduce that G^{\prime} does not contain the vertex v, as claimed.

Fact 3 implies that since U_{1} is not isomorphic to a subgraph of a P_{4} and U_{1} is connected, U_{1} is entirely contained in H^{*}.

Fact 4. Q^{\prime} contains H^{*} as induced subgraph.
Proof. Assume the contrary, then since any subgraph of Q^{\prime} isomorphic to $\overline{\left[C_{1}\right]}$ is contained in H^{*}, there must be a subgraph H_{1} of Q^{\prime} strictly contained in H^{*} which is connected, it contains a subgraph isomorphic to $\overline{\left[C_{1}\right]}$ and is maximal with respect to set inclusion and the above properties. The maximality of H_{1} implies that it contains the
vertex x_{k} for otherwise the neighbourhood of H_{1} in Q^{\prime} would be the vertex v and consequently $V\left(H_{1}\right)$ would be a nontrivial module of Q^{\prime}, a contradiction. Also, H_{1} can not be a prime graph for otherwise H^{*} would not be a minimal prime extension of $\overline{\left[C_{1}\right]}$, a contradiction. Let W be a maximal nontrivial module of H_{1}, then if W does not contain the vertex x_{k}, W would be a non trivial module of Q^{\prime}, a contradiction. But since x_{k} has a unique neighbour in H^{*} which is the vertex x_{k-1}, W can not contain the vertex x_{k-1}, for otherwise a neighbour of W in H_{1} would not be adjacent to x_{k}, a contradiction. It follows that the neighbourhood of W in H_{1} is the vertex x_{k-1}. Now, W must be formed by x_{k} and exactly one other vertex, for otherwise $W \backslash\left\{x_{k}\right\}$ would be a non trivial module in Q^{\prime}, a contradiction. Let z be the second vertex of W. Since x_{k-1} is the neighbourhood of W in H_{1}, z is either the vertex x_{k-2} or a vertex belonging to the neighbourhood of M in $\overline{\left[C_{1}\right]}$. Assume first that z is the vertex x_{k-2}, then the vertex x_{k-3} which distinguishes the vertices x_{k-2} and x_{k} does not belong to H_{1}. It follows that since H_{1} contains more than three vertices ($\overline{\left[C_{1}\right]}$ contains at least four vertices), there must be a neighbour, say u, of x_{k-1} belonging to H_{1}. The vertex u must belong to $V\left(R_{l}\right)$ which is the neighbourhood of M in $\overline{\left[C_{1}\right]}$ and we obtain a contradiction since x_{k-2} would be also adjacent to u. Consequently, z belongs to R_{l}. It follows that no vertex of $M \cup\left\{x_{1}, \ldots, x_{k-2}\right\}$ belongs to H_{1} since each one of this vertices is adjacent to z and not adjacent to x_{k}. It is easy to see now that R_{l} cannot be isomorphic to a P_{1} for otherwise the graph H_{1} would be isomorphic to a P_{3}, a contradiction. Consequently, R_{l} contains at least two vertices and hence since H_{1} is assumed to be connected, the only vertices of H that can belong to H_{1} are x_{k}, x_{k-1}, the vertices of R_{l} and the vertex w which is the only vertex needed in the basic extension of $\overline{\left[C_{1}\right]}$ for 'breaking' the nontrivial module $V\left(R_{l}\right)$ of $\overline{\left[C_{1}\right]}$. But since R_{l} contains at least two vertices, it is easy to see that M must contain at least four vertices and we obtain a contradiction.

Since H^{*} contains the whole chain P_{k} which is of arbitrary length, we deduce that $\operatorname{Ext}(G)$ is an infinite set, as claimed.

Assume now that $\left[C_{1}\right]$ is a P_{4}-homogeneous graph then since G is not a $2 P_{4}$-homogeneous graph, $\left[C_{2}\right]$ cannot be a singleton, for otherwise G would be a pseudo-gem, a contradiction. It follows that [C_{1}] cannot be $2 K_{2}$-free.

Let L be the shortest chordless chain containing [C_{1}] as induced subgraph and G_{1} be the graph obtained by adding all missing edges between L and $\left[C_{2}\right]$. Let H be a prime graph containing G obtained by adding to G_{1} an L-pseudopath $P_{k}=x_{1}, x_{2}, \ldots, x_{k}, k \geq 4$ and k even, that satisfies:

1. for $i=1, \ldots, k-1$, if i is odd then x_{i}, x_{i+1} is an edge of H and if i is even then x_{i}, x_{i+1} is a non edge of H
2. x_{1} is adjacent to all but one vertices of [C_{1}]
3. the vertex x_{k} is adjacent to [C_{2}] as follows:
(a) If $\left[C_{2}\right]$ is isomorphic to a $\overline{P_{2}}=a b$ then x_{k} is adjacent to a and not adjacent to b
(b) If $\left[C_{2}\right]$ is isomorphic to a $\overline{P_{3}}=a b c$ with $b c$ the unique edge of $\left[C_{2}\right], x_{k}$ is adjacent to a and b and not adjacent to c
(c) If $\left[C_{2}\right]$ is isomorphic to a $P_{4}=a b c d, x_{k}$ is adjacent to the middle vertices b and c of $\left[C_{2}\right]$ and not adjacent to a and d.

Clearly, since P_{k} is a L-pseudopath, every vertex of $P \backslash x_{k}$ is adjacent to every vertex of $L \cup\left[C_{2}\right], x_{2 i+1}$ is adjacent to any vertex $x_{j}, j<2 i$, and $x_{2 i}$ is not adjacent to any vertex $x_{j}, j<2 i-1, i=1, \ldots, \frac{k}{2}$.

Claim 2. P_{k} is $2 K_{2}$-free and there are not two nonadjacent vertices in P_{k} that are both adjacent to a vertex of $\left[C_{1}\right]$.
Proof. Indeed assume first that there exists a $2 K_{2}$ in P_{k}. Let $x_{r} x_{s}$ and $x_{t} x_{v}$ be the two edges of this $2 K_{2}$ then one of r, s, say r and one of t, v, say t is odd and we obtain a contradiction since x_{r} is adjacent to x_{t}. Let x_{j} and x_{l} be two nonadjacent vertices of P_{k}, then at least one of j, l, say j is even and consequently x_{j} is not adjacent to any vertex of P_{k}, a contradiction.

Since H is a prime graph it contains a minimal prime extension H^{\prime} of G^{\prime}. We claim that H^{\prime} contains entirely the L-pseudopath P_{k}. Indeed, since [C_{1}] contains a $2 K_{2}$ by Claim 2 there cannot be a subgraph of P_{k} isomorphic to [C_{1}] and hence $\left[C_{1}\right]$ is not entirely contained into P_{k}. From the other hand since [C_{2}] contains two nonadjacent vertices, Claim 2 implies that $\left[C_{2}\right]$ cannot be a subgraph of P_{k}. The reader can easily verify now that H^{\prime} must contain the whole pseudopath P_{k}. Since this pseudopath is of arbitrary length, we deduce the claimed result.

5. Concluding remarks

First of all we may observe that the proofs given in the previous section suggest a general method for enumerating in the finite case all minimal prime extensions of a graph G. Consider for example the case where G has two connected components, one being an isolated vertex and the second inducing a P_{4} (i.e. G is the complementary graph of a Gem). It is easy to see that from the different cases examined in the proof of the Lemma 4.3, we can derive all extensions of G.

It must be pointed out here that, since no general result had been available concerning the set of minimal prime extensions in the finite case, it was necessary for obtaining this set to examine separately each particular case of the graphs under consideration - see, for example, [6,17]. Hence, now it becomes interesting to enumerate by a systematic way derived from the results given in this paper, all the minimal prime extensions in the finite case. If the number of minimal prime extensions is large, instead of exhibiting all these extensions we could propose a simple algorithm for it. In this way for instance, we could characterize all the new classes of perfect graphs which are the substitution-composite of subclasses of P_{4}-homogeneous and $2 P_{4}$-homogeneous graphs already been showed to be perfect.

It would also be interesting to search for different methods generating infinite sets of extensions which could be for instance beneficial to a better understanding of the structure of prime graphs that, to this day, are not well understood. Both of these directions are for us an exciting area for further work.

Acknowledgments

The first author is grateful to Alain Cournier for fruitful discussions. Both authors wish to express their debt of gratitude to two anonymous referees for an exceptionally thorough review. The constructive criticism and detailed comments contained in those reviews made us revise the paper, redo most of the proof and helped us improve the flow of ideas and the presentation of the results.

References

[1] C. Berge, Färbung von Graphen deren sämtliche bzw. deren ungerade Kreise starr sind, Wiss, Z. Martin Luther Univ., Hall Wittenberg 10 (1961) 114-115.
[2] C. Berge, Graphes et Hypergraphes, Dunod, Paris, 1970.
[3] P. Bertolazzi, C. De Simone, A. Galluccio, A nice class for the vertex packing problem, Discrete Applied Mathematics 76 (1997) 3-19.
[4] A. Brandstädt, V.B. Le, J. Spinrad, Graph classes: A survey, in: SIAM Monographs on Discrete Mathematics and Applications, 1999.
[5] A. Brandstädt, C. Hoàng, I. Zverovich, Extensions of claw-free graphs and ($K_{1} \cup P_{4}$)-free graphs with substitutions, RUTCOR Research Report RRR 28-2001, 2001, 16 pp. Rutgers University. http://rutcor.rutgers.edu/ rrr.
[6] A. Brandstädt, C. Hoàng, J.M. Vanherpe, On minimal prime extensions of a four-vertex graph in a prime graph, Discrete Mathematics 288 (2004) 9-17.
[7] M. Chudnovsky, N. Robertson, P.D. Seymour, R. Thomas, Progress on perfect graphs, Mathematical Programming Ser. B 97 (2003) 405-422.
[8] V. Chvàtal's web page, http://www.cs.rutgers.edu/~chvatal/perfect/sgpt.html.
[9] C. De Simone, On the vertex packing problem, Graphs and Combinatorics 9 (1993) 19-30.
[10] V. Giakoumakis, On the closure of graphs under substitution, Discrete Mathematics 177 (1997) 83-97.
[11] C. Hoàng, B. Reed, Some classes of perfectly orderable graphs, Journal of Graph Theory 13 (1989) 445-463.
[12] L. Lovász, Normal hypergraphs and the perfect graph conjecture, Discrete Mathematics 2 (1972) 253-267.
[13] S. Olariu, On the closure of triangle-free graphs under substitution, Information Processing Letters 34 (1990) 97-101.
[14] I. Zverovich, Extension of hereditary classes with substitutions, Discrete Applied Mathematics 128 (2003) 487-509.
[15] I. Zverovich, A characterization of domination reducible graphs, Graphs and Combinatorics 20 (2004) 281-289.
[16] I. Zverovich, A finiteness theorem for primal extensions, Discrete Mathematics 296 (1) (2005) 103-116.
[17] I. Zverovich, V. Zverovich, Basic perfect graphs and their extensions, Discrete Mathematics 293 (2005) 291-311.
[18] La longue histore de la décomposition modulaire. http://www.liafa.jussieu.fr//fm/HistDM.html (accessed December 12, 2004).

[^0]: * Corresponding author. Tel.: +1 757683 4417; fax: +1 8046834900.

 E-mail addresses: Vassilis.Giakoumakis@u-picardie.fr (V. Giakoumakis), olariu@cs.odu.edu (S. Olariu).
 ${ }^{1}$ For the definition of perfect graphs see Berge [2] or Brandstädt et al. [4].

[^1]: ${ }^{2}$ We warn the reader that in the sequel of this paper 'homogeneous set' and 'non-trivial module' will be regarded as synonyms and used interchangeably.

