
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

STEMPS Faculty Publications STEM Education & Professional Studies

Fall 2017

Curriculum for an Introductory Computer Science Course: Curriculum for an Introductory Computer Science Course:

Identifying Recommendations from Academia and Industry Identifying Recommendations from Academia and Industry

Simon G. Sultana

Philip A. Reed
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/stemps_fac_pubs

 Part of the Curriculum and Instruction Commons, Higher Education Commons, and the Science and

Mathematics Education Commons

Original Publication Citation Original Publication Citation
Sultana, S. G., & Reed, P. A. (2017). Curriculum for an introductory computer science course: Identifying
recommendations from academia and industry. Journal of Technology Studies, 43(2), 80-92. doi:
10.21061/jots.v43i2.a.3

This Article is brought to you for free and open access by the STEM Education & Professional Studies at ODU
Digital Commons. It has been accepted for inclusion in STEMPS Faculty Publications by an authorized
administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/stemps_fac_pubs
https://digitalcommons.odu.edu/stemps
https://digitalcommons.odu.edu/stemps_fac_pubs?utm_source=digitalcommons.odu.edu%2Fstemps_fac_pubs%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/786?utm_source=digitalcommons.odu.edu%2Fstemps_fac_pubs%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1245?utm_source=digitalcommons.odu.edu%2Fstemps_fac_pubs%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/800?utm_source=digitalcommons.odu.edu%2Fstemps_fac_pubs%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/800?utm_source=digitalcommons.odu.edu%2Fstemps_fac_pubs%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

80

T
h

e
 J

o
u

rn
a

l
o

f
Te

c
h

n
o

lo
g

y
S

tu
d

ie
s

Curriculum for an Introductory Computer Science
Course: Identifying Recommendations from
Academia and Industry
 By Simon G. Sultana and Philip A. Reed

ABSTRACT
The purpose of this study was to define the
course content for a university introductory
computer science course based on regional
needs. Delphi methodology was used to identify
the competencies, programming languages, and
assessments that academic and industry experts
felt most important. Four rounds of surveys were
conducted to rate the items in the straw models,
to determine the entries deemed most important,
and to understand their relative importance
according to each group. The groups were
then asked to rank the items in each category
and attempt to reach consensus as determined
by Kendall’s coefficient of concordance. The
academic experts reached consensus on a list
of ranked competencies in the final round
and showed a high degree of agreement on
lists of ranked programming languages and
assessments. The industry experts did not
reach consensus and showed low agreement
on their recommendations for competencies,
programming languages, and assessments.

Keywords: Curriculum Design, Delphi,
Competencies, Assessments, Computer
Science Education, Programming Languages,
Introductory Course

INTRODUCTION AND BACKGROUND
As education aims to prepare a workforce for
future jobs, it is of little surprise that the number
of students in introductory computer science
(CS) courses have continued to grow in colleges
and universities. These courses can cover
information systems, hardware and architecture,
operating systems, software engineering (SE),
programming, databases, among other topics
(Anderson, Ferro, & Hilton, 2011; Wu, Hsu, Lee,
Wang, & Sun, 2014). Additionally, instructors
can select from several computer languages
(Ali & Smith, 2014; Chang, 2014; Shein,
2015) to provide students an experience that
is educational, motivating, and meets current
industry practices. Likewise, there are several
possibilities for assessment in these courses

(Fulton & Schweitzer, 2011; Muñoz, Martínez,
Cárdenas, & Cepeda, 2013; Shaw, 2010). The
aim of this research was to provide suggestions
for the competencies, programming languages,
and assessments for an introductory CS course.
The class, part of a new undergraduate SE
program at a small private nonprofit university
in Fresno County, California, will serve as a
program gateway for students looking to major
or minor in SE, and for others looking to develop
some background in computing.

Sources of CS Curriculum
Recommendations
Expert recommendations on computing curricula
are found in professional associations, industry,
academic institutions, and the literature.
The Association for Computing Machinery
(ACM) provided the first set of curriculum
recommendations for undergraduate study in CS
in 1965 and has published updates about once
every decade, in recent years as part of the Joint
Task Force on Computing Curricula (JTFCC,
2001; JTFCC, 2013). Though the JTFCC’s
recommendations have provided much value to
institutions offering CS programs over the years,
educators at liberal arts colleges and universities
have often felt underserved by the documents
(Liberal Arts Computer Science Consortium
[LACS], 2007). The LACS last released a model
curriculum almost ten years ago and based their
suggestions on JTFCC’s 2001 recommendations
and included hours to focus on topics in
introductory courses.

The computing industry includes businesses
engaged in activities directly related to the
disciplines of CS, computer engineering,
information systems, information technology,
and SE. Most of these distinct fields of study
arose because of the individual skill sets required
for these varied jobs and disciplines (Chand,
1974; Lunt, et al., 2005; Lutz, Naveda, &
Vallino, 2014).

Industry defines the skills necessary for
employment and education aims to teach them.
Norton (1998) based the DACUM (Developing

81a Curriculum) methodology on the premise that
experts in industry best define their jobs and
possess certain knowledge, skills, and aptitude
with tools. Business practices are developed
to improve effectiveness and efficiency and there
arises a need for new employees who possess
some knowledge of, and perhaps the ability
to implement, them. There has been much
written over the past few years on the reasons for
teaching agile software development practices
in the classroom (Guercio & Sharif; 2012; Lutz et
al., 2014; Rajlich, 2013). The computing industry
has thus shown that it serves a role in
the curriculum definition of CS and
related disciplines.

There are approximately 1,300 academic
institutions in the United States offering
undergraduate programs in CS or related
disciplines (U.S. News & World Report, 2015).
Hambrusch, Libeskind-Hadas, and Aaron (2015)
pointed to almost 800 such institutions in their
study on the backgrounds of Ph.D. students
majoring in CS Education and industry, therefore,
can both be regarded as sources of expertise
that can be useful for the development of new
computing curriculum. The findings in the
literature, along with experts’ recommendations,
serve as rich sources to help a curriculum
designer choose competencies, programming
languages, and assessments.

Competencies
There are myriad topics in the CS discipline
(JTFCC, 2001) so a consideration of disparate
areas was required if experts were to be provided
with a comprehensive list. The JTFCC (2013)
identified potential topics and the LACS (2007)
provided recommendations on areas of study.
Three introductory CS course textbooks were also
consulted: these were Connecting with Computer
Science (2nd edition) (2011) by Anderson, Ferro,
and Hilton, Invitation to Computer Science (7th
edition) (2016) by Schneider and Gersting, and
Computer Science Illuminated (6th edition)
(2016) by Dale and Lewis.

A literature review was conducted to supplement
the topics identified in these texts. A straw
model was developed using the information
on competencies gathered from these sources.
Although identification of potential competencies
from curriculum recommendations/textbooks and
journal articles was done independently, 24 of

the 26 topics in the former sources were found
in the latter group. In all, 38 competencies were
identified to form the straw list introduced to the
experts in this study.

Programming Languages
Introductory CS courses include programming
to varying degrees (Davies, Polack-Wahl, &
Anewalt, 2011). There are reportedly up to 2,500
programming languages (Kinnersley, n.d.),
though not all are actively used. Regardless, there
are numerous languages available to introduce
students to computer programming. Of utmost
importance is accessibility for non-majors and
beginners (Kelleher & Pausch, 2005; Malan &
Leitner, 2007; Norman & Adams, 2015; Stefik
& Gellenbeck, 2011) and perceived importance
by majors (Forte & Guzdial, 2005).

Six sources were consulted to determine language
use in industry; these included the TIOBE index,
RedMonk, the PopularitY of Programming
Language (PYPL) list, Trendy Skills, Black
Duck Software, and IEEE Spectrum. Four
sources were found that identified language
popularity in academia. O’Grady (2013) reported
on RedMonk’s (2015) use of references of
programming languages in the curriculum
of leading colleges and universities to rank the
top twenty languages, as did three additional
sources from journal articles, which included
popularity rankings (Ben Arfa Rabai, Cohen,
& Mili, 2015; Davies et al., 2011; Guo, 2014).
Using the guideline to include languages
that were identified in at least three of the six
industry sources, or in at least two of the four
academic sources, a list of twenty languages
was constructed. Additionally, three visual
programming languages were thought to warrant
inclusion (Alice, Greenfoot, and Scratch) as they
have become increasingly popular in introductory
courses (Davies et al., 2011; Malan & Leitner,
2007). In all, 23 programming languages were
identified to form the straw list introduced to the
experts in this study.

Assessments
The literature contained articles in which
educators teaching computing courses shared
their curriculum designs and explained
assessments. Many researchers mentioned
assessments they utilized in the classroom as
evidence of student learning to demonstrate
results. The authors reviewed reported on some

C
u

rric
u

lu
m

 fo
r a

n
 In

tro
d

u
c

to
ry C

o
m

p
u

te
r S

c
ie

n
c

e
 C

o
u

rse
:

Id
e

n
tifyin

g
 R

e
c

o
m

m
e

n
d

a
tio

n
s fro

m
 A

c
a

d
e

m
ia

 a
n

d
 In

d
u

stry

82

T
h

e
 J

o
u

rn
a

l
o

f
Te

c
h

n
o

lo
g

y
S

tu
d

ie
s

of the assessments used in introductory CS
courses. Eleven distinct assessment devices were
identified for academic and industry experts
to consider for an introduction to a CS course.
These items, in alphabetical order, were:

 • Case studies

 • Code reviews

 • Concept questions

 • Essays

 • Final exams

 • Interviews with professionals

 • Lab exercises

 • Online threaded discussions

 • Quizzes

 • Smaller programming activities

 • Term projects

The goal of the study was to suggest
competencies, programming languages, and
assessments for an introductory CS course based
on the recommendations of regional experts in
academia and industry. This information could
then be used by a curriculum developer to better
meet the needs of students and other stakeholders
in the region in which the introductory CS
course was offered.

METHODS
The Delphi approach was used to collect data
and surveys were distributed via SurveyMonkey.
An email message with instructions and the
appropriate link for each round was sent to the
participants and they were asked to respond
within one week. Follow-up emails were sent
out during the week. This study’s design was
heavily based on the approach of Okoli and
Pawlowski (2004) in that a panel structure was
utilized, which divided the two expert groups as
they selected items in Round 2 and ranked them
in subsequent rounds. A major deviation from
Okoli and Pawlowski’s (2004) approach was
to provide experts with straw models of initial
items (Rotondi & Gustafson, 1996) for each of
the three categories in Round 1.

Potential participants were identified using
suggestions from professionals in higher
education, graduates of academic programs,
and research of organizations’ web sites in
California’s Central Valley. All persons were

invited to take part in the research by email.
Phone calls were placed to those who did not
initially respond. Snowball sampling was
utilized to help increase exposure of the study
to the expert population (Hays & Singh, 2012).
Individuals who agreed to participate, therefore,
were asked to suggest other candidates. The
participants expressing interest were questioned
about their backgrounds in the fields of
computing and software development to verify
they met the criterion of a minimum of
five years’ experience.

One research subject matter expert was also
recruited for this study to assist the researcher
in reviewing participants’ open responses from
the first round to validate their identification.
This individual was required to have a Ph.D.
and have experience teaching in an information
technology related discipline.

In the first survey, each participant was asked
to provide demographics (gender, age, current
employment, years of experience, highest
education earned in CS or a related field) and
the number of programming languages in
which the individual was fluent. The second
set of questions asked the participants to rate
the applicability of the competencies from
the straw model on a five-point Likert-type
scale (very important = 5, important = 4,
moderately important = 3, of little importance
= 2, unimportant = 1). The subsequent sections
provided a list of programming languages and
assessments. Blank entries were also available
for optional contributions to each of
the three categories.

The results of the surveys were downloaded
into Microsoft Excel. Statistics were computed
for the age, years of experience, number of
programming languages in which the participants
were fluent, gender, employment, and highest
education were computed using various built-
in functions. Responses to each of the three
content categories were also copied into Excel
and quantified according to the anchors as
previously identified. Newly suggested items
by participants were checked for individuality
and inserted into the lists. The newly suggested
items were reviewed with the subject matter
expert and changes to the surveys for the next
round were made. Any item selected by at
least two participants was added to the list of
competencies, programming languages,
or assessments.

The rated lists of items and their median weight
scores were added to the survey for the second

83round. The median was computed as these
data were Likert-type in nature (Boone, H.
N. Jr. & Boone, D. A., 2012) and this value
in the questionnaires would communicate the
perceived importance attributed to each item.
The participants were instructed to determine
whether each of the items should be included for
the introductory CS course by choosing to select
at least ten topics for each of the three categories
(Okoli & Pawlowski, 2004). The items were
imported into SurveyMonkey as two equivalent
questionnaires for the academic and industry groups.

At this stage, the study took on a panel structure
(Okoli & Pawlowski, 2004). The industry and
academic groups were given separate links
so analysis of their feedback could be done
independently. This design would potentially
allow experts to come to consensus more quickly
and would allow recommendations from each
group to be distinguished for final decision
making by the curriculum designer/researcher.

Feedback was collected from participants on
their selected items from each of the three
categories. Those items selected by at least half
of each expert group were chosen to be included
for Round 3 (Okoli & Pawlowski, 2004) for
that group. The findings from this point would be
independent for each group.

The steps in Rounds 3 and 4 were identical. The
lists of items as selected by the experts from
the previous round were added to the survey.
Participants were asked to rank each item in
each of the three categories of competencies,
programming languages, and assessments. The
lists were imported into SurveyMonkey as two
questionnaires in keeping with separate panels.

The coefficient of concordance, Kendall’s W,
was used to determine the level of agreement
among the participants’ ranked lists for each
panel. Kendall’s W ranges from zero to
one to indicate a scale of increasing unanimity
between rankings (Field, 2009). Schmidt (1997)
identified a value of at least 0.7 to indicate
strong agreement so this threshold was used
to determine whether any of the lists of
competencies, programming languages, or
assessments needed to be submitted in a fourth
round to either of the panels. The W value would,
therefore be computed six times for Round 3.
Each W value would be analyzed independently
and only those topics that failed to meet the
minimum 0.7 threshold value were included
in a Round 4 survey for each individual panel.

It was decided that a maximum of four rounds
would be considered as it has been found that
major fluctuations are typically not expected
after a fourth round (Wilhelm, 2001) and
participant fatigue can become a concern
(Schmidt, 1997; Sitlington, 2015). Two ranked
lists of suggested competencies, programming
languages, and assessments were available as
the industry and academia experts would likely
have different preferences. These data would
then be used in the curriculum development of
the introductory class to the extent desired by the
course designer. See Figure 1 for an overview
of the study’s design methodology.

Participants
The target members for experts were experienced
industry and academic professionals in
California’s Central Valley. Since the opinion
of experts in these positions was sought, a
minimum of five years’ experience was required
for potential industry participants (Guu, Lin, &
Lee, 2014; Joyner & Smith, 2015). Educators
who held at least a Master’s Degree in their field
(Surakka, 2007) were approached about their
interest in participating as academic experts.
The researcher directly invited 85 experts from
California’s Central Valley; 48 individuals (56%)
were from higher education; and 37 (44%) were
from industry. A total of 23 individuals (27% of
those directly invited) agreed to participate in
the study. There were 11 persons (48%) in the
industry group and 12 persons (52%) in
the academic group.

RESULTS

Round 1
Eleven academic (92%) and eleven industry
(100%) experts completed the Round 1 survey,
including twenty males and 2 females (one from
academia and one from industry). The second
section of the survey asked participants to rate
potential competencies for an introductory CS
course. It was noteworthy that four competencies,
those dealing with procedural programming,
teamwork/interpersonal group skills, problem
solving, and critical thinking, received median
scores of 5 (very important) and the latter three
items received minimum rating values no
lower than 3.

The next section of the survey asked participants
to rate programming languages in terms of their
importance for an introductory CS course. The
rating scale was similar to the one used for
course competencies with the inclusion of an
option titled “unfamiliar,” which was weighted

C
u

rric
u

lu
m

 fo
r a

n
 In

tro
d

u
c

to
ry C

o
m

p
u

te
r S

c
ie

n
c

e
 C

o
u

rse
:

Id
e

n
tifyin

g
 R

e
c

o
m

m
e

n
d

a
tio

n
s fro

m
 A

c
a

d
e

m
ia

 a
n

d
 In

d
u

stry

84

T
h

e
 J

o
u

rn
a

l
o

f
Te

c
h

n
o

lo
g

y
S

tu
d

ie
s

as 0 points. Only 5 of the 23 languages were
known to all the participants, including assembly
language, C, C++, Java, and Visual Basic. Six
languages achieved median scores of zero,
indicating unfamiliarity by more than half the
group (Alice, Greenfoot, Haskell, R, Scheme,
and Scratch). Five languages were rated as
being “very important” according to their
median rankings (C#, C++, Java, JavaScript,
and Python). The experts provided six open-
ended responses to the optional questions about

additional programming languages not listed
but only HTML5 (Hypertext Markup Language)
was mentioned in two responses. Though
not typically considered a true programming
language, HTML5 was added to the list for
Round 2 because concepts in CS could be taught
using this markup language.

The final section of the Round 1 survey asked
participants to rate 11 potential assessments.
The rating scores available were identical to

Repeat process inside

dashed lines for
Round 2 (Select),

Round 3 (Rank), and
Round 4* (Rank)

*Round 4 necessary

only for topics in which
consensus not achieved

for either group
(Kendall’s W < 0.7)

after Round 3

Design & distribute

Round 1 survey to both
groups

Research expert review

& analyze Round 1
results

Recruit & identify

participants

Develop Straw Models

from Literature

Design Round 2/3/4*

survey

Distribute Round 2/3/4*
survey to industry group

Distribute Round 2/3/4*

survey to academic
group

Review & analyze

industry group results

Round 2/3/4*

review & analysis

Review & analyze

academic group results

Identify expert

recommendations

Figure 1. Study design methodology

85those used with the course competencies. The
experts provided only four open-ended responses
to the list of assessments to be considered. Team
programming assignments were recommended
by two individuals so this assessment was
added for Round 2.

Round 2
The median ratings of the competencies,
programming languages, and assessments were
recorded into the survey for Round 2 to
communicate the importance attributed to each
item by the overall group. The goal of the second
round was to give experts the opportunity to
narrow down the lists they would rank in Rounds
3 and 4 (Okoli & Pawlowski, 2004). Participants
were instructed to select no fewer than 10
items from each of the lists of competencies,
programming languages, and assessments. They
were also advised to consider their opinions on
each item in relation to the importance attributed
by the overall group as indicated by the median
rating score from Round 1. This instruction
enabled participants to utilize deliberation as
characterized by the Delphi approach without
meeting with other experts in person.

Eight programming languages were selected
by at least half of the experts in the academic
group. The industry group elected to include
12 languages. All eight languages selected by
at least half the experts in the academic group
were also chosen by the industry group. The sole
programming language chosen by all industry
experts was JavaScript. No academic expert
chose Greenfoot and no industry professional
included Alice, Greenfoot, MATLAB,
Scala, or Scratch.

Finally, the groups ranked 11 assessments.
Because of the low number of assessments, the
narrowing effect was expected to be minimal.
Only essays were not chosen to be carried over
into Rounds 3 and 4 and this omission was true
for both groups.

The detailed data from Rounds 1 and 2 are not
included in this article but are available in
Sultana (2016).

Round 3
The third round provided experts the opportunity
to rank the items selected in the previous round.
The participants were instructed to rank the items
in each of the lists according to their importance
for an introductory CS course for majors and
non-majors. They were again advised to consider
their opinions on each entry in relation to the
importance attributed by the overall group as
indicated by the number of experts in their group

selecting it in Round 2. There were 19 total
experts who participated in the third round with
10 in the industry group (91%) and nine in the
academic group (75%).

The academic group ranked 15 competencies and
the industry experts ranked 12 competencies as
shown in Table 1. The interquartile range (IQR)
was calculated to identify the dispersion of the
middle half of these data. The IQR values for
the rankings of the top five competencies varied
from 3.0 to 5.5 for the academic group and from
5.3 to 7.5 for the industry group.

The ranked programming languages from Round
3 for both groups are presented in Table 2. The
academic group ranked eight programming
languages and chose Java as their most important
and C++ as the next highest ranked. The industry
experts ranked 12 languages and selected
JavaScript and Python as their most important.

Finally, the groups ranked 11 assessments. Both
groups selected smaller programming activities
among their highest ranked items and did so with
little variability as indicated by the low IQR
values of 1.5 for the academic group and 2.3 for
the industry group. The academic experts also
selected lab exercises as a top assessment and
again did so with a low variability (IQR = 2.0).
The industry group also selected term projects as
tied for the most important assessments but with
a high IQR value (8.3).

Kendall’s W was calculated to analyze the
conformity among the rankings of the three
categories by the expert groups. Linear
transformations of the Kendall’s W were
performed to describe the corresponding
correlations (r) so the level of agreement for each
of the categories by the groups could
be identified (Zaiontz, 2013). P-values were
calculated to determine significance. Neither
group reached the consensus threshold of
W = 0.7, as recommended by Schmidt (1997), on
any of the three categories in Round 3.

Even so, the academic experts apparently agreed
more on each of the three categories than
did the industry experts. Kendall’s coefficient of
concordance (W) tests were statistically
significant, yet lacked full agreement, for the
academic group on the competencies (WAC = 0.57,
rAC = 0.52, p < 0.001), programming languages
(WAL = 0.63, rAL = 0.58, p < 0.001), and
assessments (WAA = 0.53, rAA = 0.48, p < 0.001).

C
u

rric
u

lu
m

 fo
r a

n
 In

tro
d

u
c

to
ry C

o
m

p
u

te
r S

c
ie

n
c

e
 C

o
u

rse
:

Id
e

n
tifyin

g
 R

e
c

o
m

m
e

n
d

a
tio

n
s fro

m
 A

c
a

d
e

m
ia

 a
n

d
 In

d
u

stry

86

T
h

e
 J

o
u

rn
a

l
o

f
Te

c
h

n
o

lo
g

y
S

tu
d

ie
s

Competency

Round 3 Round 4

Academic
Group

Industry
Group

Academic
Group

Industry
Group

Median IQR Median IQR Median IQR Median IQR

Analyze algorithms for
effectiveness and efficiency

9.0 4.0 7.0 5.3 9.0 2.0 7.0 3.0

Describe different types of data
representation

- - 7.0 5.5 - - 7.0 4.0

Describe basic computer
architecture and organization

12.0 5.5 6.5 9.0 11.0 3.0 6.0 7.0

Illustrate the use of databases and
apply SQL

- - 9.5 4.5 - - 11.0 2.0

Explain the functionality of
operating systems with examples

12.0 4.5 - - 13.0 2.5 - -

Describe common programming
languages and popular uses

- - 7.5 6.3 - - 9.0 7.0

Demonstrate use of recursion in a
program

12.0 3.0 - - 13.0 2.0 - -

Describe best practices for
computer and data security

14.0 2.0 - - 15.0 2.5 - -

Explain the role of modeling and
simulation in computing

12.0 6.5 - - 14.0 1.5 - -

Describe process and practices
in SE

11.0 4.5 5.0 6.0 10.0 1.0 3.0 5.0

Write functioning object-oriented
programs

3.0 4.5 7.0 3.8 2.0 0.5 9.0 5.0

Write functioning procedural
programs

1.0 4.5 5.5 5.3 1.0 1.0 6.0 5.0

Implement good documentation
practices in programming

7.0 7.5 8.5 7.3 7.0 2.5 8.0 5.0

Demonstrate teamwork and
interpersonal group skills

8.0 6.5 6.0 7.5 8.0 2.5 6.0 3.0

Demonstrate algorithmic thinking 5.0 5.5 - - 4.0 4.0 - -

Demonstrate computational
thinking

6.0 3.0 - - 6.0 0.5 - -

Demonstrate problem solving 3.0 3.5 2.5 7.5 3.0 1.0 2.0 2.0

Demonstrate critical thinking and
reasoning

5.0 3.0 3.0 7.3 5.0 2.0 2.0 5.0

Note. N = 9 for academic group and N = 10 for industry group in Round 3, and N = 9 for
academic group and N = 11 for industry group in Round 4.

TABLE 1: Rounds 3 & 4 Median Rankings of Competencies for Introductory Computer Science

87

The industry experts also fell short of the
agreement threshold in their rankings but
achieved statistical significance in their rankings
for assessments (WIA = 0.20, rIA = 0.11, p = 0.03).
Their agreement levels for the competencies
(WIC = 0.13, rIC = 0.03, p = 0.21) and languages
(WIL = 0.10, rIL = 0.00, p = 0.43), however, lacked
statistical significance.

Round 4
Because of the lack of consensus among either
group on any of the three categories, the Round
3 surveys were reproduced for Round 4. The
coefficient of concordance values for each
category were included and explained in the
subsequent survey so the participants would
have information on the level of consensus
they had achieved. The median rank values
were also provided so the experts could weigh
their preferences against those of the rest of the
group. There were 20 experts who participated
in the final round. All eleven industry members
participated (100%) and nine of the twelve
academic experts (75%) completed surveys.
Round 4 rankings for competencies by both
groups are presented in Table 1. The academic
group made only slight changes to their rankings
for competencies from Round 3. The situation
was similar for the industry group’s rankings,
though to a reduced extent. Most items
experienced a decrease in IQR, again pointing

to less variation in competency rankings.
The Round 4 results for programming languages
are shown in Table 2. The academic group
changed little in their rankings from Round 3
to Round 4. Java remained the top language,
(median rank = 1.0, IQR = 2.0), followed
by C++ (median rank = 2.0, IQR = 1.5). The
industry group had a few more noteworthy
changes in their rankings of programming
languages. Java (median rank = 3.0, IQR = 2.0),
joined Python (median rank = 3.0, IQR = 1.0)
and JavaScript (median rank = 3.0, IQR = 4.0)
as the most important languages. Assembly
language held its position as last (median rank
= 11.0) but experienced a sizable increase in
variability (IQR = 9.0) among its rankings.

The final round rankings for assessments by
each group are shown in Table 3. Again, the
academic group exhibited little difference in
their ranked lists. Lab exercises were deemed the
most important assessment by the group (median
rank = 1.0, IQR = 1.5), followed by smaller
programming activities (median rank = 2.0, IQR
= 1.0). The industry group ranked assessments
slightly differently than they had in Round 3.
Smaller programming activities (median rank
= 1.0, IQR = 4.0) was still chosen as the most
important assessment device, though on its
own in Round 4.

Programming
Language

Round 3 Round 4

Academic Group Industry Group Academic Group Industry Group

Median IQR Median IQR Median IQR Median IQR

Assembly
Language

- - 10.0 4.3 - - 11.0 9.0

C 4.0 2.5 7.0 4.8 4.0 4.0 7.0 5.0

C# 6.0 2.5 4.5 5.8 8.0 3.0 4.0 3.0

C++ 2.0 2.0 5.5 4.0 2.0 1.5 6.0 4.0

HTML5 - - 5.5 5.8 - - 6.0 4.0

Java 1.0 1.5 4.5 6.8 1.0 2.0 3.0 7.0

JavaScript 7.0 3.5 3.0 2.3 6.0 3.5 3.0 4.0

PHP 6.0 2.5 6.0 7.3 6.0 2.0 9.0 5.0

PL/SQL - - 8.0 4.3 - - 8.0 4.0

Python 4.0 2.5 3.0 5.3 4.0 1.0 3.0 4.0

Ruby 6.0 2.0 9.5 3.3 6.0 1.0 9.0 6.0

Shell - - 9.0 4.8 - - 8.0 3.0

Note. N = 9 for academic group and N = 10 for industry group in Round 3 and N = 9 for
academic group and N = 11 for industry group in Round 4.

TABLE 2: Round 3 & 4 Median Rankings of Programming Languages for
Introductory Computer Science C

u
rric

u
lu

m
 fo

r a
n

 In
tro

d
u

c
to

ry C
o

m
p

u
te

r S
c

ie
n

c
e

 C
o

u
rse

:
Id

e
n

tifyin
g

 R
e

c
o

m
m

e
n

d
a

tio
n

s fro
m

 A
c

a
d

e
m

ia
 a

n
d

 In
d

u
stry

88

T
h

e
 J

o
u

rn
a

l
o

f
Te

c
h

n
o

lo
g

y
S

tu
d

ie
s

Assessment

Round 3 Round 4

Academic Group
Industry
Group

Academic
Group

Industry
Group

Median IQR Median IQR Median IQR Median IQR

Case Studies 9.0 4.5 6.5 2.3 8.0 2.5 7.0 1.0

Code Reviews 6.0 3.0 4.5 2.0 6.0 3.0 5.0 4.0

Concept Questions 5.0 2.5 6.0 5.8 4.0 3.5 5.0 3.0

Final Exams 7.0 3.0 8.0 3.0 8.0 3.5 9.0 3.0

Threaded Discussions 10.0 1.5 9.0 4.3 10.0 1.0 11.0 3.0

Interviews with
Professionals

10.0 1.5 8.5 4.0 11.0 3.0 9.0 4.0

Lab Exercises 2.0 2.0 4.0 6.8 1.0 1.5 3.0 2.0

Quizzes 6.0 3.5 8.5 7.5 6.0 2.5 8.0 8.0

Small Program Activities 2.0 1.5 3.0 2.3 2.0 1.0 1.0 4.0

Team Program
Assignments

4.0 3.5 6.0 5.5 3.0 2.5 6.0 4.0

Term Projects 6.0 4.5 3.0 8.3 6.0 3.0 4.0 5.0

Table 3: Rounds 3 & 4 Median Rankings of Assessments for Introductory Computer Science

Note. N = 9 for academic group and N = 10 for industry group for Round 3 and N = 9 for
academic group, and N = 11 for industry group for Round 4.

Kendall’s coefficient of concordance (W) tests
were again conducted. Consensus was only
achieved by the academic group on the rankings
for competencies (WAC = 0.84, rAC = 0.82, p <
0.001). Though concordance values increased
for both groups on each of the three categories,
the academic experts again showed higher
conformity than those from industry. Kendall’s
W values again showed statistically significant
ranked lists by the academic group on the
competencies, programming languages (WAL =
0.63, rAL = 0.58, p < 0.001), and assessments (WAA
= 0.67, rAA = 0.62, p < 0.001). The concordance
values for the industry group again revealed
less conformity in their rankings but this time
achieved statistical significance in their lists for
both competencies (WIC = 0.32, rIC = 0.25, p <
0.001) and assessments (WIA = 0.37, rIA = 0.31,
p < 0.001). The industry group, however,
displayed little agreement on programming
languages and the lists lacked statistical
significance (WIL = 0.12, rIL = 0.02, p = 0.25).

CONCLUSIONS
The overall goal of this study was to identify
regional experts’ recommendations to help better
design an introductory CS course for majors
and non-majors. Professionals in academia and
industry can provide invaluable input on the
content, and though their interests are varied,

there can be similarity on recommended course
components such as competencies, programming
languages, and assessments. See Table 4 for
a list of the competencies and Table 5 for the
assessments suggested by the experts in this study.

The experts recommended a CS course that
provides students with a focus on programming
and SE process along with training in
professional soft skills, such as problem solving,
critical thinking, and teamwork. These same
attributes were identified by the National
Association of Colleges and Employers (2016) as
being most important for career readiness. Those
designing curriculum for CS and related fields
should focus on helping students to develop
these abilities. These experts also recommended
that assessments be based on the opportunity
to learn by doing; in the form of smaller and
team programming activities, lab exercises,
term projects, and more traditional concept
questions. Code reviews should also be used to
help students learn best practices and build their
own knowledge. These types of assessments are
very much in line with the recommendations
of Crawley, Malmqvist, Östlund, Brodeur, and
Edström (2014). Interestingly, the assessments
recommended by these experts seemingly point
more to an introductory course in SE, other
than one in CS.

89

Competency

Demonstrate problem solving

Demonstrate critical thinking and reasoning

Write functioning procedural programs employing programming fundamentals

Describe process and practices in Software Engineering

Demonstrate teamwork and interpersonal group skills

Write functioning object-oriented programs employing programming fundamentals

Implement good documentation practices in programming

Analyze algorithms for effectiveness and efficiency

Describe basic computer architecture and organization

Table 4: Top Recommended Competencies for Introductory Computer Science by
Both Groups (Unranked)

Assessment

Smaller programming assignments

Lab exercises

Concept questions

Term projects

Code reviews

Team programming assignments

TABLE 5: Top Recommended Assessments
for Introductory Computer Science by
Both Groups (Unranked)

The choice of programming languages to use
in introductory CS courses will likely remain
a contentious one. A curriculum designer is
well advised to use a language like Java, which
continues to thrive in the classroom and in
industry. It is important, however, to consider
the audience and keep a close eye on the
dynamic programming field. Python continues
to increase in popularity and its accessibility
and versatility make it a strong choice, especially
for courses with non-majors (Enbody, Punch, &
McCullen, 2009). Though visual programming
languages like Alice, Greenfoot, and Scratch
were not known to many of the participants
in this study, an increasing number of experts in
the literature recommend they should continue
to be considered to introduce concepts in
programming before transitioning to a language
like Java or Python (Daly, 2011; JTFCC, 2013;
Malan & Leitner, 2007).

A suggestion for additional research would be to
include focus groups or one-on-one interviews
with academic and industry professionals. The
online Delphi approach used in this study was
successful in that 20 academic and industry
professionals remained engaged through four
rounds and provided valuable information.
Alternate designs, however, would allow for
the study of the differences between the groups.
Separate interviews would help to identify
the reasons for experts’ choices and help the
curriculum designer make more informed
decisions. Finally, most academic programs
have industry advisory groups that are
excellent resources to provide this level of
detail and for recommendations aimed at
continuous improvement.

Simon G. Sultana, Ph.D. is an Associate
Professor in the Department of Computer
Science and Mathematics at Fresno Pacific
University, California.

Philip A. Reed, Ph.D. is a Professor in
the Department of STEM Education and
Professional Studies at Old Dominion University,
Norfolk, VA, and is a member of the Beta Chi
Chapter of Epsilon Pi Tau.

C
u

rric
u

lu
m

 fo
r a

n
 In

tro
d

u
c

to
ry C

o
m

p
u

te
r S

c
ie

n
c

e
 C

o
u

rse
:

Id
e

n
tifyin

g
 R

e
c

o
m

m
e

n
d

a
tio

n
s fro

m
 A

c
a

d
e

m
ia

 a
n

d
 In

d
u

stry

90

T
h

e
 J

o
u

rn
a

l
o

f
Te

c
h

n
o

lo
g

y
S

tu
d

ie
s

REFERENCES
Ali, A., & Smith, D. (2014). Teaching an introductory programming language in a general education
 course. Journal of Information Technology Education: Innovations in Practice, 13, 57-67.

Retrieved from http://www.jite.org/documents/Vol13/JITEv13IIPp057-067Ali0496.pdf

Anderson, G., Ferro, D., & Hilton, R. (2011). Connecting with computer science (2nd ed.). Boston,
MA: Course Technology.

Ben Arfa Rabai, L., Cohen, B., & Mili, A. (2015). Programming language use in US academia and
 industry. Informatics in Education, 14(2), 143-160.

Boone, H. N., Jr., & Boone, D. A. (2012). Analyzing Likert data. Journal of Extension, 50(2), 1-5.
Retrieved from http://www.joe.org/joe/2012april/tt2.php

Chand, D. R. (1974). Computer science education in business schools. SIGCSE Bulletin, 6(3), 91-97.

Chang, C-K. (2014). Effects of using Alice and Scratch in an introductory programming course for
corrective instruction. Journal of Educational Computing Research, 51(2), 185-204.

Crawley, E. F., Malmqvist, J., Östlund, S., Brodeur, D. R., Edström, K. (2014). Rethinking engineering
education: The CDIO approach (2nd ed.). New York: Springer.

Dale, N., & Lewis, J. (2016). Computer science illuminated. Burlington, MA: Jones & Bartlett Learning.

Daly, T. (2011). Minimizing to maximize: An initial attempt at teaching introductory programming
using Alice. Journal of Computing Sciences in Colleges, 26(5), 23-30.

Davies, S., Polack-Wahl, J. A., & Anewalt, K. (2011). A snapshot of current practices in
teaching the introductory programming sequence. In Proceedings of the 42nd ACM Technical
Symposium on Computer Science Education Dallas, TX (pp. 625-630). New York, NY: ACM.

 doi:10.1145/1953163.1953339

Enbody, R. J., Punch, W. F., McCullen, M. (2009). Python CS1 as preparation for C++ CS2. ACM
SIGCSE Bulletin, 41(1), 116-120.

Field, A. (2009). Discovering statistics using SPSS (3rd ed.). Thousand Oaks, CA: Sage Publications Inc.

Forte, A., & Guzdial, M., (2005). Motivation and nonmajors in computer science: Identifying discrete
audiences for introductory courses. IEEE Transactions on Education, 48(2), 248-253.

Fulton, S., & Schweitzer, D. (2011). Impact of giving students a choice of homework assignments in
an introductory computer science class. International Journal for the Scholarship of Teaching
and Learning, 5(1), 1-12.

Guercio, A., & Sharif, B. (2012). Being agile in computer science classrooms. AURCO Journal, 18, 41-62.

Guo, P. (2014, July 7). Python is now the most popular introductory teaching language at top U.S.
universities. [Web log comment]. Retrieved from http://cacm.acm.org/blogs/blog-

 cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-us-
 universities/fulltext

Guu, Y. H., Lin, K-Y., & Lee, L-S. (2014). Identifying professional competencies of the flip-chip
packaging engineer in Taiwan. Turkish Online Journal of Educational Technology, 13(4), 61-70.

Hambrusch, S., Libeskind-Hadas, R., & Aaron, E. (2015). Understanding the U.S. domestic computer
science Ph.D. pipeline. Communications of the ACM, 58(8), 29-32.

Hays, D. G., & Singh, A. A. (2012). Qualitative inquiry in clinical and educational settings. New
York: Guilford.

Joint Task Force on Computing Curricula [JTFCC]. (2001). Computing curricula 2001. New York:
Author. Retrieved from http://www.acm.org/sigcse/cc2001

Joint Task Force on Computing Curricula [JTFCC]. (2013). Computer science curricula 2013:
Curriculum guidelines for undergraduate degree programs in computer science. New York:
Author. Retrieved from https://www.acm.org/education/CS2013-final-report.pdf

91Joyner, H. S., & Smith, D. (2015). Using Delphi surveying techniques to gather input from non-
 academics for development of a modern dairy manufacturing curriculum. Journal of Food
 Science Education, 14(3), 88-115.

Kelleher, C., & Pausch, R. (2005). Lowering the barriers to programming: A taxonomy of
 programming environments and languages for novice programmers. ACM Computing
 Surveys, 37(2), 83-137.

Kinnersley, B. (n.d.). Collected information on about 2500 computer languages, past and present.
 Retrieved from http://people.ku.edu/~nkinners/LangList/Extras/langlist.htm

Liberal Arts Computer Science Consortium [LACS]. (2007). A 2007 model curriculum for a liberal
 arts degree in computer science. ACM Journal on Educational Resources in Computing, 7(2),
 1-35. doi:10.1145/1240200.1240202

Lunt, B., Ekstrom, J., Lawson, E. A., Kamali, R., Miller, J., Gorka, S., & Reichgelt, H. (2005).
 Defining the IT curriculum: The results of the past 3 years. Issues in Informing Science and
 Information Technology Education, 2, 259-270.

Lutz, M. J., Naveda, J. F., & Vallino, J. R. (2014). Undergraduate software engineering.
 Communications of the ACM, 57(8), 52-58.

Malan, D. J., & Leitner, H. H. (2007). Scratch for budding computer scientists. ACM SIGCSE Bulletin,
 39(1), 223-227.

Muñoz, M, Martínez, C., Cárdenas, C., & Cepeda, M. (2013). Active learning in first-year engineering
 courses at Universidad Católica de la Santísima Concepción, Chile. Australasian Journal of
 Engineering Education, 19(1), 27-38.

National Association of Colleges and Employers. (2016). April 2016: Job outlook 2016 spring update.
 Retrieved from https://www.odu.edu/content/dam/odu/offices/cmc/docs/ nace/2016-spring-
 update.pdf

Norman, V., & Adams, J. (2015). Improving non-CS major performance in CS1. In Proceedings of the
 46th ACM Technical Symposium on Computer Science Education, Kansas City, MO (pp. 558-
 562). New York, NY: ACM. doi:10.1145/2676723.2677214

Norton, R. E. (1998). Quality instruction for the high performance workplace: DACUM. Retrieved
 from http://files.eric.ed.gov/fulltext/ED419155.pdf

O’Grady, S. (2013, April 4). Academia and programming language preferences [Blog post]. Retrieved
 from http://redmonk.com/sogrady/2013/04/04/academia-and-programming-languages/

Okoli, C., & Pawlowski, S. D. (2004). The Delphi method as a research tool: an example, design
 considerations and applications. Information & Management, 42(1), 15-29.

Rajlich, V. (2013). Teaching developer skills in the first software engineering course. In Proceedings
 of the 2013 International Conference on Software Engineering San Francisco, CA (pp. 1109-
 1116). Piscataway, NJ: IEEE Press.

RedMonk. (2015). The RedMonk programming language rankings: June 2015. Retrieved from https://
 redmonk.com/sogrady/category/programming-languages/

Rotondi, A., & Gustafson, D. (1996). Theoretical, methodological and practical issues arising out of the
 Delphi method. In Adler, M., & Ziglio, E. (Eds.), Gazing into the oracle: The Delphi method
 and its application to social policy and public health (pp. 34-55). Bristol, UK: Jessica Kingsley
 Publishers, Ltd.

Schmidt, R. C. (1997). Managing Delphi surveys using nonparametric statistical techniques, Decision
 Sciences, 28(3), 763-744.

Schneider, G. M., & Gersting, J. (2015). Invitation to computer science. Boston, MA: Cengage Learning.

Shaw, A. (2010). Modifying computer programming education courses to support Web 2.0 and social
 computing paradigms. Journal of Information Systems Technology & Planning, 3(6), 54-60.

C
u

rric
u

lu
m

 fo
r a

n
 In

tro
d

u
c

to
ry C

o
m

p
u

te
r S

c
ie

n
c

e
 C

o
u

rse
:

Id
e

n
tifyin

g
 R

e
c

o
m

m
e

n
d

a
tio

n
s fro

m
 A

c
a

d
e

m
ia

 a
n

d
 In

d
u

stry

91Joyner, H. S., & Smith, D. (2015). Using Delphi surveying techniques to gather input from non-
 academics for development of a modern dairy manufacturing curriculum. Journal of Food
 Science Education, 14(3), 88-115.

Kelleher, C., & Pausch, R. (2005). Lowering the barriers to programming: A taxonomy of
 programming environments and languages for novice programmers. ACM Computing
 Surveys, 37(2), 83-137.

Kinnersley, B. (n.d.). Collected information on about 2500 computer languages, past and present.
 Retrieved from http://people.ku.edu/~nkinners/LangList/Extras/langlist.htm

Liberal Arts Computer Science Consortium [LACS]. (2007). A 2007 model curriculum for a liberal
 arts degree in computer science. ACM Journal on Educational Resources in Computing, 7(2),
 1-35. doi:10.1145/1240200.1240202

Lunt, B., Ekstrom, J., Lawson, E. A., Kamali, R., Miller, J., Gorka, S., & Reichgelt, H. (2005).
 Defining the IT curriculum: The results of the past 3 years. Issues in Informing Science and
 Information Technology Education, 2, 259-270.

Lutz, M. J., Naveda, J. F., & Vallino, J. R. (2014). Undergraduate software engineering.
 Communications of the ACM, 57(8), 52-58.

Malan, D. J., & Leitner, H. H. (2007). Scratch for budding computer scientists. ACM SIGCSE Bulletin,
 39(1), 223-227.

Muñoz, M, Martínez, C., Cárdenas, C., & Cepeda, M. (2013). Active learning in first-year engineering
 courses at Universidad Católica de la Santísima Concepción, Chile. Australasian Journal of
 Engineering Education, 19(1), 27-38.

National Association of Colleges and Employers. (2016). April 2016: Job outlook 2016 spring update.
 Retrieved from https://www.odu.edu/content/dam/odu/offices/cmc/docs/ nace/2016-spring-
 update.pdf

Norman, V., & Adams, J. (2015). Improving non-CS major performance in CS1. In Proceedings of the
 46th ACM Technical Symposium on Computer Science Education, Kansas City, MO (pp. 558-
 562). New York, NY: ACM. doi:10.1145/2676723.2677214

Norton, R. E. (1998). Quality instruction for the high performance workplace: DACUM. Retrieved
 from http://files.eric.ed.gov/fulltext/ED419155.pdf

O’Grady, S. (2013, April 4). Academia and programming language preferences [Blog post]. Retrieved
 from http://redmonk.com/sogrady/2013/04/04/academia-and-programming-languages/

Okoli, C., & Pawlowski, S. D. (2004). The Delphi method as a research tool: an example, design
 considerations and applications. Information & Management, 42(1), 15-29.

Rajlich, V. (2013). Teaching developer skills in the first software engineering course. In Proceedings
 of the 2013 International Conference on Software Engineering San Francisco, CA (pp. 1109-
 1116). Piscataway, NJ: IEEE Press.

RedMonk. (2015). The RedMonk programming language rankings: June 2015. Retrieved from https://
 redmonk.com/sogrady/category/programming-languages/

Rotondi, A., & Gustafson, D. (1996). Theoretical, methodological and practical issues arising out of the
 Delphi method. In Adler, M., & Ziglio, E. (Eds.), Gazing into the oracle: The Delphi method
 and its application to social policy and public health (pp. 34-55). Bristol, UK: Jessica Kingsley
 Publishers, Ltd.

Schmidt, R. C. (1997). Managing Delphi surveys using nonparametric statistical techniques, Decision
 Sciences, 28(3), 763-744.

Schneider, G. M., & Gersting, J. (2015). Invitation to computer science. Boston, MA: Cengage Learning.

Shaw, A. (2010). Modifying computer programming education courses to support Web 2.0 and social
 computing paradigms. Journal of Information Systems Technology & Planning, 3(6), 54-60.

C
u

rric
u

lu
m

 fo
r a

n
 In

tro
d

u
c

to
ry C

o
m

p
u

te
r S

c
ie

n
c

e
 C

o
u

rse
:

Id
e

n
tifyin

g
 R

e
c

o
m

m
e

n
d

a
tio

n
s fro

m
 A

c
a

d
e

m
ia

 a
n

d
 In

d
u

stry

92

T
h

e
 J

o
u

rn
a

l
o

f
Te

c
h

n
o

lo
g

y
S

tu
d

ie
s

Shein, E. (2015). Python for beginners. Communications of the ACM, 58(3), 19-21.

Sitlington, H. (2015). Using the Delphi technique to support curriculum development. Education +
 Training, 57(3), 306-321.

Stefik, A., & Gellenbeck, E. (2011). Empirical studies on programming language stimuli. Software
 Quality Journal, 19(1), 65-99.

Sultana, S. (2016). Defining the competencies, programming languages, and assessments for an
 introductory computer science course (Doctoral dissertation). Retrieved from http://
 digitalcommons.odu.edu/stemps_etds/10/

Surakka, S. (2007). What subjects and skills are important for software developers? Communications
 of the ACM, 50(1), 73-78.

U.S. News & World Report. (2015). University Directory. Retrieved from http://www.
 usnewsuniversitydirectory.com/

Wilhelm, W. J. (2001). Alchemy of the oracle: The Delphi technique. Delta Pi Epsilon Journal, 43(1), 6-26.

Wu, H-T., Hsu, P-C., Lee, C-Y., Wang, H-J., & Sun, C-K. (2014). The impact of supplementary hands-
 on practice on learning in introductory computer science course for freshmen. Computers &
 Education, 701-708.

Zaiontz, C. (2013). Real statistic using Excel. Retrieved from http://www.real-statistics.com/ kendalls-w/

	Curriculum for an Introductory Computer Science Course: Identifying Recommendations from Academia and Industry
	Original Publication Citation

	tmp.1538490926.pdf.ZwUMy

