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ABSTRACT

The objective of this study wasto assessthe feasibility of identiying minerals
on Mars using remotely sensed data. In the process we also investigated the
effect of noise of aerosol and dust particles on the spectra of Mars minerals.
Theremotely sensed datawas obtai ned through modeling and simul ation and
compared to the lab spectroscopy of the specific mineralsin order to make an
accurate identification. A linear model was developed using MATLAB
Random Number Generator to obtain a simulated image. Part of the
information we needed for the linear model was pure pixel information of
Marswhich was obtained from Mars Spirit images. Random noise was added
to theimagein order to smulate areal world image. I n addition to therandom
noise, a mathematical model was devel oped to represent the noise caused by
aerosols and dust particlesin Mars' s atmosphere. The simulation was tested
to ensure that it satisfied the appropriate model testing. Our results showed
that our linear model was appropriate, and was accepted at a confidence
interval of about 95%. The simulated image was then corrected from noise
through iterations. The overall accuracy of the corrected image showed an
improvement in classification by 25%. The signatures of the spectra of the
two images were obtained and compared to the lab spectroscopy of specific
minerals. The degradation of noise showed improvement in the spectral
analysis of Mars data. The spectral analysis showed the presence of iron
oxide, calcium oxide and magnesium oxide |eading to the conclusion that the
image simulation isreliable in mineral spectral identification.

Key Words
Remote sensing of planetary surface, spectroscopy, and mathematical
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INTRODUCTION
Remote Sensing aspect of space science and technology relies mainly on sensors
on satellites and mounted in telescopes to monitor Earth, other planetary bodies and
distant stars and galaxies. This research is important since extraterrestrial remote
sensing may make the greatest contributions to useful knowledge of value to
humankind's future. Remote sensing in time became an important means of analyzing
the status of what was on the planet’s surface: clues asto mineral content (Avery, et.
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al., 2001). Mars minera identification is a growing area in scientific community.
Researchers attempted to determine minerals using different approaches. However,
minera identification on Mars is underway through orbital visible-infrared remote
sensingin concert with spectroscopic, chemical and magnetic measurements(J. Bishop,
2005). Theobjective of thisresearchisto determinemineralsin Marsinvisibleand the
near-IR (near infrared) (0.35— 1.4 micrometers) through modeling and simulation and
remote sensing techniques as described in the M ethods. The objective of thisstudy was
toidentify mineralson Marsthrough devel oping alinear mixture model using remotely
sensed data and compared it to the spectroscopy of the specific mineralsin order to
make an accurateidentification . Inthe processwe also investigated the effect of noise
of aerosol and dust particles on the spectraof Mars minerals. The applicationsfor this
method are numerous, but the most significant would be to remotely determine the
mineral make up of a planetary surface accurately.

METHODS
The data were extracted from the Spirit instrument MER-A (Mars Exploration
Rover — A, January, 2004). In order to simulate an image composed of a mixture of
minerals, end member spectra (EMS) and cover class proportions (CCP) were used.

Principle of Linear Mixture Model

In developing the simulated image, the linear mixture model approach was used.
The linear mixture model includes mixtures of nine different classes for three sets of
EMS representing minerals with different CCP. The requirement of the linear mixture
model depends on the extraction of EM'S and the CCP (Jian and Haigh 1997).

To extract the EMS from pure pixel values (X) in a homogenous part of the
imagery, a certain number of training sets are predefined and each pixel isassigned to
atraining set that it resembl es. The quality of training sets depends mostly on accuracy
of the automated classifier (Lilisand and Kiefer, 1994).

If therearectypesof ground cover and nspectral bands itisalwaysassumedthat N > C

to avoid the identifiability problem. A column vector f =[f,,....f ]" isused to

denote the proportions of areas within the pixels occupied by each of the c types of
ground cover.

In correspondence with the Linear Mixture model, we can formulate the equation
below:

Where Mu isindependent of fi and € represents noise.

We can rewrite equation (1) in matrix form as:
X=mf +e=puf +u,f+. . +uf.. (2)

A

to estimate T which satisfies the constraints such that:

> 6 =1f>0 j=1..c @3)
i-1
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In order to ensure that al the error is due to atmospheric noise, the least square
method is used. The assumption is that the random noise is confined to E’ and

denoted as a column vector as E' = [E,, ..., E2] Then equation (2) can be
modified to be (Jian and Haigh 1997):
X'=MF+E'". (%)

The error can be minimized by using: ||X’ — MF |, (Jian, L., and Haigh, J. 1997).
Several LS constraining methods were used to estimate the CCP which can be shown
in the following.

1. Normalized L east Squares M ethod

If the estimated FLS included anegative element of CCP, they will be set to zero,
then theremaining elementswill be scaled so that they all total one. For example, when

c equals 4 classes, if avector of the estimated CCP FLS is[0.4 -0.05 0.7 -0.06],

then the negative proportions -0.05 and -0.06 will first be set to zero, so asto convert
to[0.4 O 0.7 0]. Secondly, each proportion will be multiplied by 1 / { sum of

A

elements (0.4+0+0.7+0)} to yield FNLS: [4/11 O 7/11 Q]. Consequently, thisis

the closest point to FLS while satisfying the constraints of Equation (3), (Settle and
Drake, 1994).

2. Lagrangian Least Square Method

Settle and Drake (1994) proposed an algorithm to solve the constrained least
squares problem. If the constraints of Equation (3) are satisfied, the new equation can
be derived by the Lagrangian analysis, such that

F.=aUj+(1-Uj)F, ()
Wherej =[1,......... ] T inac X 1 matrix where the elementsare all 1,

J= jj T isacX cmatrix | inac X cidentity matrix, U = (M TM)‘lisacx c
matrix, and & = (JUJ")? is a congtant.

Eventually, the newly constrained least squares solution ( FLLS ) can be decided

such that:
F.s =F 0<j'F <1
=(1-aUD F, 0>j"F
—aUj + (I - aUJ) F, | <j"F, (6)
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The solution using the Lagrangian method constraints only the sum to one
condition, so the solution may include negative proportions for some elements.
Therefore, after finding the solution by using Equation (6), the normalizing method that
was discussed in the previous section can be applied for the negative elements.

3. Weighted L east Squares M ethod
A constraint can be imposed as.

C=|NF - X[ + 271~ jF|° (7)

With a very large weight factor, A, so that, in a deviation from 1-j, Fwill cause
a significant error to C. Consequently, the sum of one condition, j 'F=1,is
effectively imposed. Equation (7) can be written as the following matrix (Settle and

Drake, 1994):
_XT 2
1] AR
..... 1 M .
C= X - . (8)
........... 1 1.....1 -
2 Xn
................. 2 f,
- - - i 1 J
N A
C= B x F— ©)
Aforererrnns A X
Once the |\7| and )? minimizing equation (12) are found, then:
B o= M+X w0

Where the subscript WL S represents weighted least squares,

M athematical Atmospheric M odel

The principle of the mathematical atmospheric model is that the light undergoes
transformation and nonlinear change as it is scattered by aerosols while passing
through the atmosphere. The set of eignvalues represents value of coefficient of the
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scattering vector in space. The nonlinear change is proportional to the light intensity
(Logan, 2006) as in the following:

|"—nl =0 (11)
where 1> 0.
The general solution for the intensity in equation (6) is;
| = Acosux+B sin ux , (12)
where 1] = ,uz , and its derivative s,
| '= —Au sin ux— Bu?® cos ux | (13)
| "= —Au® cos ux—Bu® sin ux (14)

Substituting into equation (6), the following matrix is presented:

cospua—cosub sSinpa—sn ub

: . = (15
sinuub—sin pa cos ua —cos b
We then solve for the eigenval ues;
§ = 2nr )
" b-a

2
2nr
= r 17
The eigenvalue is assumed to be equal to the optical depth in an atmospheric layer as
in the following:

Kea exp(— Z/ H)* A*Z
N, =
coso

where K, is the scattering coefficient. Z is the altitude in kilometers, and 6, represents
the zenith angle (Bohren and Huffman, 1983). This equation can be used for
computation of the atmospheric noisethat isintercepted by the telescope or the sensor.
The atmospheric noise is represented by the following:

_ (1+ Area)K  A*B* Z* T ™
- (l+area)K,A*B*Z+1

The atmospheric noise will be added to the linear mixture model equation as in the
following equation:

(18)

(19)

X'=MF+E'+5 (20)
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As we mentioned previously this atmospheric noise will be degraded using
iteration, trial and error iterations. The accuracy of correction can be measured by the
overall accuracy of classification. The corrected image signatureswill be compared to
the lab spectra of minerals.

Simulation of Linear mixtur e model

The EM Swasobtained by selecting pure pixel valuesfrom aperfectly homogenous
areaof Mars Spirit images, which represent different minerals. Perfectly homogenous
areas are designated by similar signatures/spectral values and/or spectrally separable
classes as shown by EMS data setsin Table 1. The extracted dataset 1 (EMS set 1)
consisted entirely of spectrally separableclasseswith distict signatureval ues(threshold

10 signature values) as shown by band 3 (classl, class 2, and class 3). The EMSdata
set 2 (EM S set 2) ismade up of amixture of spectrally separable (band 1-class3, band
2-class 3, and band 3-class 3) and similar classes (threshold 6 signature values). The
dataset 3 (EMS set 3) consisted entirely of spectrally similar classes and do not show
any distinct values. We obtained samples of the necessary training sets within the
simulated image by using the training set signature editor in ENVI 4.4 (commercial
software) where a reference cursor on the screen was used to manually delineate
training area polygons in the displayed image. The pixel values within the polygons
were used in the software to devel op astatistical description filefor each training area.
Thenext stepisestimatethe CCP using the different constraining methods as described
previously. Furthermore, to impose the critical constraints, which arethe*sumto one”
and “make all CCP positive,” several methods were used, such as the Normalization,
L agrangian, and Quadratic constrai ning methods and thewei ghted constrai ning method
(Settleand Drake, 1994). These methodsweretested to determinethebest constraining
method for this experiment. After deciding upon CCP estimation and constraining
methods, evaluations of estimating EMS and its effects on the corresponding CCP
estimation were presented in the section above.

The Quadratic Programming method wastested to be the best constraining method
as described in linear mixture model. Using the EM S data sets, the pixel values were
computed based on Equation (2) usingthe MATLAB Random Number Generator. The
mathematical model was used to derive the atmospheric error. The atmospheric noise
errorswere added to the EM Sto simulate realistic data sets. As mentioned previoudly,
aminimization of the random error in pixel value wasimplemented (section 2.1). An
ASCII filewith pixel values was produced and imported in ERDAS IMAGINE as an
image file. The image is then corrected for atmospheric noise through trial and error
iterations to reduce the atmospheric error and produce enhancement to the
classification accuracy. The Maximum Likelihood automated classifier in ENVI
(commercial software) was used. At each iteration step, the atmospheric noise was
subtracted using initial values of solar zenith angles and scattering coefficient. The
iterationswereterminated whentheoverall classification accuracy reached an optimum
value. The signature graphs of the corrected image are compared with lab spectra of
minerals (Dalton et. a, 2005). The lab spectra of minerals are considered a
“fingerprint” (Clark, 1983). If the graph behavior of corrected image signature values
is matching the lab spectra of minerals, then we can conclude that the mineral is
identified.
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RESULTS

Threedifferent EM S data sets or classes with nine subsetswere generated in Table
1. After adding the random noise, the CCP was normalized again to make all CCP
positive and equal one. The CCP was estimated using the least squares and end
member spectra method (LS EMS) with different constraining methods. To avoid an
unexpected random effect, we repeated the calculation several times for each noise
level. The Roat Mean Square Error (RMSE) of the different combinations of CCP
constraining methods by changing the noise level while using the same LS-EMS is
showninFigure 1. Thedifferent combinations of CCP constraining methodsareL-LS-
CCP(Lagrangian-Least Square-Cover ClassProportions), W-L S-CCP (Weighted-L east
Squares-Cover Class Proportions, and Q-CCP (Quadratic programming constraining
method-cover class proportions).

The different sample sizes may affect the overall results of these experiments. So,
the same experiment was performed with changing the sample sizes. The RMSE of
different combinations of the CCP estimation and constraining methods by changing
the sample sizes while using the same LS-EM S is shown in Figure 2.

The results show that the quadratic programming method proved to be the best
constraining method for CCP estimation. Thisisshown in Figures 1 and 2, indicating
that this method performed much better because of alower (Roat Main Square Error)
RM SE, which does not change with sample size. The result was reasonable, because
of adding a normally distributed error and testing the sample groups that created the
data set.

The simulated image including the atmospheric effect was tested using statistical
testing for appropriate model and significant regresson model using SAS/STAT
software. We presented some sel ected samples of resultswhich show theregressionis
significant at 90% confidence interval. Since F,,, islarger than 14.25 (Milton and
Arnold,1986). H,is accepted at p < 0.025 at 97.5% confidence. Therefore it can be
concluded that the model is appropriate.

Thesimulated imagefor mineral swith atmospheric noise/effectsisshowninFigure
3. The corrected simulated image from atmospheric effectsis shownin Figure4. The
correction accuracy is presented by the overall accuracies of classification at the final
iteration which are shown in Tables 2, 3, 4, 5, 6, and 7. The overall accuracy of
classified pixelsfor theimage with atmospheric effect (Figure 3) is 71.42% and for the
corrected simulated image (Figure 4) is 97.56%. The overall accuracy shows
improvement in classification which ranges between 22% -25 %. Thewavelength was
plotted versus the spectral signature (spectral radiance) asin Figures 5, 6, and 7.

DISCUSSION AND CONCLUSION

Since the statistical regression test was conducted at 90 % confidence interval for
the linear mixture model, we conclude that the regression model is significant. We
conclude that the model is appropriate at 97.5 confidence interval. The results of
classifications were presented by the error matrices for three mineralsasin Tables 2,
3,4,5,6,and 7. In each table, the last row includes the column total represents the
truth data. The diagonal and no diagonal elements represeant the classified data The
spectral valuesal ong the diagonal are higher than the off diagonal oneswhichindicated
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higher accuracy. The overall accuracy showed improvement by 22%-25%. This
indicates that the accuracy of correction is significant. We can conclude that the
correction using the atmospheric model produced significant classification accuracy.
Figures 5, 6, and 7 represent the wavel ength versus signatures (spectral radiances) of
the simulated image for three minerals that were compared with the experimental
spectraof different minerals. The signatures matched the experimental 1ab spectrafor
iron oxide, magnesium oxide and calcium oxide. Thus, the spectral analysis showed
the presence of iron oxide, calcium oxide and magnesium oxide leading to the
conclusion that theimage simulationisreliablein mineral spectral identification. The
applications for this method are numerous, but the most significant would be to
remotely determine the mineral make up of a planetary surface accurately.
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TABLE 1. EMS etl, 2, and 3

EMS Sets Band 1 Band 2 Band 3 L abel
EMSset1 | class1 54 50 67 subset 1
class2 58 57 71 subset 2
class3 59 55 101 subset 3
EMSset2 | class1 142 146 150 subset 4
class 2 148 150 154 subset 5
class 3 131 131 144 subset 6
EMSset3 | class1 241 242 246 subset 7
class 2 245 243 249 subset 8
class 3 257 250 252 subset 9

TABLE 2 Corrected image of mineral 1. Higher diagonal elementsthan non diagonal
pertainto higher accuracy being achieved with correction compared to Table 3.

Classified Data Min.1 | Min. 2 Min. 3 Row Total
Min. 1 12 0 0 12
Min. 2 1 19 0 20
Min. 3 0 0 9 9
Column Total (truth data) 13 19 9 41

TABLE 3 Classification of the noisy image of mineral 1. Less diagonal elements and
more non diganoal elements compared to Table 2 which pertain to less accuracy.

Classified Data Min. 1 Min. 2 Min. 3 | Row Total
Min. 1 11 8 1 20
Min. 2 2 9 0 11
Min. 3 0 2 8 10
Column Total (truth data) 13 19 10 41
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TABLE 4 Classification of corrected image of mineral 2. Higher diagonal elements
thannondiagonal pertainto higher accuracy being achieved with correction compared

to Table 5.
Classified Data Min.1 | Min. 2 Min. 3 Row Total
Min. 1 12 0 0 12
Min. 2 0 16 0 16
Min. 3 0 0 11 11
Column Total (truth data) 12 16 11 39

TABLE 5 Classification of the noisy image of mineral 2. Less diagonal elementsand
more non diganoal elements compared to Table 4 which pertain to less accuracy.

Classified Data Min. 1 Min. 2 Min. 3 Row Total
Min. 1 7 5 0 12
Min. 2 5 11 0 16
Min. 3 0 0 11 11
Column Total (truth Data) 12 16 11 39

TABLE 6 Classification of the noisy image of mineral 3. Higher diagonal elements
thannondiagonal pertainto higher accuracy being achieved with correction compared

to Table 7.
Classified Data Min. 1 Min. 2 Min. 3 Row Total
Min. 1 7 5 0 12
Min. 2 1 13 0 14
Min. 3 0 0 7 7
Column Total (truth data) 8 18 7 33

TABLE 7 Classification of corrected image of mineral 3. Less diagonal elementsand
more non diganoal elements compared to Table 6 which pertain to less accuracy.

Classified Data Min. 1 Min. 2 Min. 3 Row Total
Min. 1 8 0 0 8
Min. 2 0 18 0 18
Min. 3 0 0 7 7
Column Total (truth data) 8 18 7 33
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FIGURE 1. RMSE of CCP estimation and constraining methods
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FIGURE 2. RMSE of CCP estimation and constraining methods by changing sample
sizes
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FIGURE 3. The simulated image with atmospheric noise.

FIGURE 4. Corrected simulated image.
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FIGURE 5. Wavelength in micrometer versus signature (in spectral radiance) shows
the presence of calcium oxide when compared to lab spectra of USGS.
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FIGURE 6 Wavelength in micrometers versus signature (in spectral radiance) shows
the presence of iron oxide when compared to lab spectra of USGS.
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FIGURE 7. Wavelength in micrometer versus signature (in spectral radiance) shows
the presence of magnesium oxide when compared to lab spectra (USGS).
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