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ABSTRACT 

DESIGN AND IMPLEMENTATION OF AN ARTIFICIAL 

NEURAL NETWORK CONTROLLER FOR QUADROTOR 

FLIGHT IN CONFINED ENVIRONMENT 

 
Ahmed Elhussein Eltayeb Mekky 

Old Dominion University, 2018 

Director: Dr. Thomas E. Alberts 

 

Quadrotors offer practical solutions for many applications, such as emergency 

rescue, surveillance, military operations, videography and many more. For this 

reason, they have recently attracted the attention of research and industry. Even 

though they have been intensively studied, quadrotors still suffer from some 

challenges that limit their use, such as trajectory measurement, attitude estimation, 

obstacle avoidance, safety precautions, and land cybersecurity. One major problem is 

flying in a confined environment, such as closed buildings and tunnels, where the 

aerodynamics around the quadrotor are affected by close proximity objects, which 

result in tracking performance deterioration, and sometimes instability. To address 

this problem, researchers followed three different approaches; the Modeling 

approach, which focuses on the development of a precise dynamical model that 

accounts for the different aerodynamic effects, the Sensor Integration approach, 

which focuses on the addition of multiple sensors to the quadrotor and applying 

algorithms to stabilize the quadrotor based on their measurements, and the 

Controller Design approach, which focuses on the development of an adaptive and 

robust controller. In this research, a learning controller is proposed as a solution for 
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the issue of quadrotor trajectory control in confined environments. This controller 

utilizes Artificial Neural Networks to adjust for the unknown aerodynamics on-line. 

A systematic approach for controller design is developed, so that, the approach could 

be followed for the development of controllers for other nonlinear systems of similar 

form. One goal for this research is to develop a global controller that could be applied 

to any quadrotor with minimal adjustment. A novel Artificial Neural Network 

structure is presented that increases learning efficiency and speed. In addition, a new 

learning algorithm is developed for the Artificial Neural Network, when utilized with 

the developed controller. 

Simulation results for the designed controller when applied to the Qball-X4 

quadrotor are presented that show the effectiveness of the proposed Artificial Neural 

Network structure and the developed learning algorithm in the presence of variety of 

different unknown aerodynamics. These results are confirmed with real time 

experimentation, as the developed controller was successfully applied to Quanser’s 

Qball-X4 quadrotor for the flight control in confined environment. The practical 

challenges associated with the application of such a controller for quadrotor flight in 

confined environment are analyzed and adequately resolved to achieve an acceptable 

tracking performance. 
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CHAPTER 1 

INTRODUCTION 

1.1 INTRODUCTION 

Quadrotors have recently gained major attention in commercial and research 

communities.  The emerging technology is found very useful in many fields; such as 

science, defense, humanity and lifestyle improvement [1]. Quadrotors also represent 

an affordable nonlinear testbed for the experimentation of new control synthesis and 

autonomy approaches. Therefore, many educational and research establishments 

have built quadrotor dedicated labs. However, many challenges are still surrounding 

quadrotors that limit their use in many applications. This research targets two 

objectives: 1) expanded maneuverability, and 2) flight in confined environment. 

Researchers have approached the two objectives from three different 

perspectives; 1) development of a precise quadrotor model that captures all possible 

aerodynamic effects when flying in different environments [2] [3] [4] [5] [6], 2) 

additional sensors to provide measurements that could help implement complex 

control algorithms and maintain performance [7] [8] [9] [10] [11], and 3) design of an 

adaptive and robust controller that would efficiently work for all possible climates 

[12] [13] [14] [15] [16]. A great deal of research has been performed in all areas. 

Nevertheless, researchers are still striving to achieve better performance. When 

flying in confined environments, the behavior of quadrotors is greatly influenced by 

the aerodynamic uncertainties associated with the interaction of the airflow from 
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propellers and the features of the environment in close proximity with the quadrotor. 

There is no available model for quadrotors, thus far, that encompasses the influence 

of confined environments, as the aerodynamics associated with confined 

environments are not yet fully understood, and they differ from one setup to another. 

Therefore, it is not feasible to design fixed controllers based on the available models 

without accounting for uncertainties that could be of a considerable order of 

magnitude, and of a high level of complexity.  

In this research, a learning controller was developed to address the problem of 

quadrotor control in confined environments. There are numerous mechanisms for 

learning and intelligence that could produce an intelligent (learning) machine. Most 

of those methods are related to computer science applications and are taught in the 

field of Artificial Intelligence (AI) e.g. hand writing recognition, bioinformatics, 

computer vison, and others. Nevertheless, Artificial Neural Networks (ANN) were 

utilized to create a learning controller that learns to better control the system while 

operating in flight. The proposed controller was developed using sliding mode control 

methodology and following a backstepping control approach. Two ANNs were used to 

compensate for aerodynamic force and moment uncertainties. A novel ANN structure 

was proposed that is believed to increase the speed and the accuracy of learning. The 

learning algorithm was developed using dynamic optimization for an objective 

function developed using the sliding mode technique, putting in mind both learning 

performance, and ANN weights boundedness. The stability of the closed loop system 

was analyzed using Lyapunov stability theory, and accordingly the limits for design 
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parameters were defined for the guaranteed stability.  The effectiveness of the 

proposed ANN structure, the developed learning laws, and the developed nonlinear 

controller is presented using nonlinear numerical simulations.  Furthermore, 

experimental results are provided for the developed controller when used for the 

trajectory control of the Qball quadrotor in confined environments. The rest of this 

dissertation is organized as follows   

In Chapter 1, a brief introduction about the problem of quadrotor flight control 

in confined environments, and the proposed solution, is provided. The literature 

pertaining to this research is briefly discussed, focusing on learning control systems, 

the use of ANN for aircraft control, and the current state of research in the field of 

quadrotor trajectory control. The research statement, and the approach of this 

research are provided, and the objectives of this study are addressed.  

In Chapter 2, the theoretical background required for the development of the 

proposed controller is provided, focusing on the theory of ANNs, sliding mode control 

methodology, backstepping control approach, Lyapunov stability theorem, and the 

mathematical model for quadrotor dynamics.  

In Chapter 3, a step-by-step derivation of the ANN controller when applied for 

quadrotor trajectory control is provided. The sliding mode methodology is used to 

design the nonlinear controller following backstepping control approach. Two ANNs 

are used to compensate for unknown aerodynamic forces and moments associated 

with environment interaction. A novel ANN structure is introduced, and the 
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corresponding learning law is developed. The stability of the closed loop system is 

discussed using Lyapunov stability theorem.   

Chapter 4 focuses on the practical implementation of the developed controller. 

First, numerical simulation results are presented to validate the effectiveness of the 

proposed ANN structure and the developed learning algorithm in approximating a 

wide range of nonlinear uncertainties. And finally, real time experimental results are 

provided for the Qball quadrotor trajectory control using the proposed controller, and 

with a different variety of environmental setups, to test for controller robustness and 

effectiveness.  

In Chapter 5, conclusions that can be drawn from this research work are 

presented. Furthermore, recommendations for future work are provided. 

1.2 LITERATURE REVIEW 

1.2.1 Learning Control of Nonlinear Systems 

Intelligent control describes the discipline in which control methods are 

developed in an attempt to emulate important characteristics of human intelligence 

[17] [18] [19] [20] [21] [22] [23] [24]. These characteristics include adaptation, 

learning, planning under large uncertainty, and coping with the availability of large 

amounts of data [17]. The number of ideas and concepts of learning is very large, but 

not one of them purports to encompass the whole problem. Areas of adaptive control 

systems, pattern recognition, production of systems, learning controllers, and neural 

networks state different goals of learning systems [25]. 
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1.2.1.1 Intelligent vs Adaptive Control 

What is the relationship/difference between adaptive control and learning 

(intelligent) control [26]? Learning is achieved when an adaptive control algorithm is 

employed to adapt the controller parameters so that, for example, stability is 

maintained. In this case, the system learns, and the knowledge acquired is the new 

value for the parameters. However, if later the same changes occur again and the 

system is described by exactly the same parameters identified earlier, the adaptive 

control algorithm still needs to recalculate the controller and perhaps the plant 

parameters since nothing was kept in memory [26]. So, in that sense, the system has 

not learned. 

There are many areas in control where learning can be useful [26]: (1) learning 

about the plant; (2) learning about the environment; (3) learning about the controller; 

and (4) learning new design goals and constraints. 

 1.2.1.2 Intelligence in Control of Nonlinear Systems 

Many learning control systems were developed that utilize, in general, two 

basic AI techniques: (1) Artificial Neural Networks; and (2) Fuzzy Logic, and an 

offspring of both in the so-called Hybrid Neuro-Fuzzy control. 

1.2.1.2.1 Artificial Neural Networks 

Artificial Neural Networks have found a significant interest in the field of the 

control of nonlinear systems since the early 1990’s [17] [20] [23] [24] [26] [27] [28] [29] 

[30] [31] [32] [33] [34]. In [35], it is clarified that Neural Networks for control systems 
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refers to the study of ANNs that go beyond monitoring or classifying their input 

signals to actually influencing them. Unlike most ANNs, these are explicitly designed 

to learn from a closed loop interaction with the system. Closed loop control involves 

a very different set of requirements for learning methods than those usually 

considered in conventional ANN research. Some of those requirements are, for 

example, in control, it is important to learn online, incrementally, and without an 

explicit supervisor specifying desired behavior [35]. This reference, [35], is a good 

starting point for researching in the field of ANNs for control systems, as it was 

published as a result of a workshop entitled “The Application of Neural Networks to 

Robotics and Control”, held at the University of New Hampshire, Durham, USA, in 

October, 1988. The philosophy of using ANN in control systems was tackled from 

different points of view, and some practical examples for the implementation of ANNs 

in control systems are presented. One of the early books to collect the use of ANN in 

control systems is reference [36], which was a report resulted from the IEE Workshop 

on Neural Networks for Control Systems: Principles and Applications, at the 

University of Reading, Reading, UK, in April 1992. This book provides a broad 

material about the topic of ANN and their implementation in control systems, 

focusing on the practical aspect of the matter. Neural Networks for Modeling and 

Control of Dynamic Systems [37], 2000, is another reference that presented the topic 

of ANNs in control systems, with a focus on two-layer perceptron neural networks 

with hyperbolic tangent hidden units and linear output units; which is regarded as 

the most commonly used type of ANN in control systems [37]. However, it is pointed 
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out that despite the fact that concepts and methods were developed for this specific 

type of ANNs, they are still applicable for different types of ANNs with minimal 

adjustments. This book is aimed at providing a practical insight and the required 

theory for the implementation of such ANN structure in the context of the control of 

dynamical systems. In Intelligent Observer and Control Design for Nonlinear System 

[33] the problem of using ANNs for the control of nonlinear systems with a focus on 

the indirect control structure is presented. In which, the main focus is to identify 

system’s dynamics, and the observed output states are used to control the actual 

plant. ANNs and Fuzzy logic techniques are blended with control methodologies to 

achieve good performance with guaranteed stability. Extensive experimental results 

were presented for the developed control strategies when used in motion control 

applications. 

It has been shown and proven in the literature that a Neural Network with 

one hidden layer can map effectively any nonlinear function [21] [23] [38] [39] [29] 

[28] [40], therefore, it can be used to identify complex uncertainties in the dynamical 

system, and to model the impact of time on mechanical parts within the system, e.g. 

the change of backlash, friction, resistance and weight with time. This criterion is 

very effective for the identification of nonlinear systems offline, and in some 

applications, online. However, two aspects of neural network are challenging: the 

network size and structure which affect learning time, memory, and the required 

performance (precision) [21] [23] [29] [41] [33]. There is a tradeoff between 

performance and computational effort; an ANN with a bigger size would produce a 
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better approximation for the unknown function while requiring a greater 

computational effort and bigger memory. Therefore, the choice of a suitable ANN size 

and structure is not obvious. Hsu et al [24] has attempted to solve that problem by 

developing an ANN controller that uses the Kohonen [42] self-organizing neural 

network, that updates its size according to performance to reduce learning time when 

possible. The drawback of this method is that ANN size update requires extra 

processing i.e. more computational effort. 

Static and Dynamic Neural Networks and their theory are intensively studied 

in the literature [43] [22] [28] [44]. And a thorough body of material is available about 

their application in the fields of computer science, design optimization and control 

systems etc. [18] [20]. 

ANN controllers are generally developed following two methodologies from 

control systems theory: 1) Optimal control, critique/actor method [45] [46] [47] [48] 

[49] [50] [51] [52], and, 2) Nonlinear control methods, such as, Dynamics Inversion, 

Sliding mode, Feedback Linearization, Backstepping …etc. [53] [54] [55] [21] [31] 

[33].    

1.2.1.2.2 Fuzzy Logic 

Fuzzy logic is a powerful tool for modeling human thinking and cognition [28]. 

The concept was first introduced by Lotfi A. Zadeh in 1965 [56]. It is aimed at a 

formalization of the remarkable human capability to perform a wide variety of 

physical and mental tasks without any measurements and any computations [57].  It 
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is referred to as the first computational intelligence technique to be used in control 

systems [28]. Fuzzy logic is a form of multivalued logic, it deals with reasoning that 

is approximate rather than fixed and exact. The main advantages of fuzzy logic in 

control systems are: 1) No accurate mathematical model of the system is required, 

and 2) linguistic fuzzy (loose) control rules or linguistic fuzzy description of the system 

can be incorporated to control the system [58]. Fuzzy control has been successfully 

employed in many commercial and industrial systems [29] [40] [57] [58].  

Despite the fact that existing fuzzy controllers are capable of incorporating 

linguistic information, they are heuristic in nature in the sense that there are no 

general design methods that guarantee the basic requirement of control e.g. stability, 

robustness, etc. [58]. 

1.2.1.3 Direct and Indirect Controller 

Indirect controller refers to a controller that works in parallel with the system 

to continually identify the nonlinear plant and the output is used as observed states 

to control the actual plant [33]. So, in this sense, the controller learns indirectly to 

control the plant by learning about the plant. The learning process here could be 

performed off-line and applied to the plant for further adjustments online. On the 

other hand, the direct controller refers to the controller that learns to optimally 

control the plant online i.e. it finds the optimum input function 𝑢∗ that produces the 

“best” output using some criterion to judge [24]. Therefore, in this structure the 

controller learns to control the plant directly by evaluating the chosen performance 

index. Figure 1.1 shows the block diagram of the indirect controller (a), and the direct 
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controller (b) and (c). Notice that the word “optimal” here is loosely used to refer to 

the final goal of learning, or adaptation, which requires a performance measure that 

is needed to be improved, maximized or minimized, along the learning process. 

1.2.2 ANN Control of Aircraft  

The application of ANN in the closed loop control of aircrafts has been 

conceptualized since the early 1990s. Robert F. Stengel has published in his paper 

“Towards Intelligent Flight Control” in 1993 [59] a thorough study about intelligent 

guidance, navigation and control of aircrafts. He provided the definition for most of 

the concepts and terms that are used in the decades afterwards in the field of 

intelligent control. According to [59], intelligent flight control could help in making 

the aircraft less dependent on the proper human operator, enhance aircraft 

capability, improve performance, increase reliability and safety, and lower cost [59]. 

In his paper, he emphasized the use of ANN as an imperative component of the 

intelligent control algorithm. The role of ANN in the intelligent control, according to 

[59], is to provide a rapid, nonlinear, input-output function.  

Byoung S. Kim et al [30] has designed a feedback linearization controller for 

F-18 that uses an off-line trained ANN to invert the flight dynamics and another 

online trained ANN to compensate for modeling error in the first ANN. The proof of 

stability for the closed loop system is provided in [30] for the case of using only the 

offline trained ANN and in the case of using the two. However, simulation results 

show a poor response when using the two ANN, and an unstable response when using 

only one ANN. Besides, basis functions are chosen to be a combination of sigma-pi 
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polynomials and radial basis functions, under the poor assumption that aircraft 

attitude dynamics could be decoupled. 

 

 

Figure 1.1 Direct and Indirect ANN Controllers 

1.2.3 Quadrotor Control  

A survey of developed control algorithms for quadrotors is provided in [60], 

where a summary of the available quadrotor control algorithms is provided with a 

discussion about advantages and disadvantages of each algorithm. Quadrotors are 

generally controlled using Proportional-Integral-Derivative (PID) controllers [61]. 

While PIDs are simple and easy to design and implement, it is agreed upon, in the 
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research community, that its performance is not satisfactory when applied to highly 

nonlinear systems [60]. Ideas such as variable gain [62] and gain scheduling PID 

controllers are shown to provide a better performance. However, PID, as a linear 

controller, limits the options for the system input to a linear combination of system’s 

output errors. Hence, even with the use of a variable gain, it would not be sufficient 

to achieve the optimal control input as it might be a highly nonlinear function. 

Nonlinear controllers on the other hand, are generally derived based on the 

mathematical expression of the system [63] [64]. Thus, their performance depends 

heavily on the knowledge of the system to be controlled. High performance could be 

achieved using nonlinear controllers, as nowadays it is possible to produce very 

precise models for nonlinear systems with the current revolution of technology and 

advancement of sensing and computation. Nevertheless, the ideal condition in 

laboratory might not cover all possible environments that the system would 

experience in real-life. Accordingly, nonlinear controllers usually perform poorly in 

some operational conditions. Fused with nonlinear control methods, adaptive 

controllers provide a good solution for uncertainties in the dynamical model. 

However, most of the available adaptive controllers require extensive computations 

that would challenge performance, as adaptive controllers would adjust every time a 

change happens. Learning controllers, on the other hand, exploit the merits of 

adaptive controllers with the added benefit of memory. With memory, adaptive 

controllers do not need to re-learn every time a similar situation happens. Thus, 

resulting in a reduced computational effort and an improved performance. 
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With respect to quadrotors, PID controllers usually do well in normal flying 

conditions. However, flying quadrotors in confined environment is still an unsolved 

puzzle. Some researchers tried to solve the problem by improving the dynamical 

model, so that, it would capture the aerodynamic effect of being in a confined 

environment [4] [3] [2] [65] and then design the controller accordingly. Others worked 

on designing an adaptive nonlinear controller that is capable of controlling quadrotor 

when subjected to different flying conditions [51] [53] [54] [65] [66] [67] [68].  

The dynamical model for quadrotors has been deeply studied in the literature. 

Adjustments to account for blade aerodynamic effect, wind field, rotor drag and close 

proximity aerodynamic effects have been made to better control quadrotors in 

different situations. However, each model is adjusted for a specific situation and a 

controller is accordingly designed. The general dynamical model for the quadrotor, 

used in this research, is derived in [69], which is derived following the Lagrange 

method. This form of quadrotor dynamics is found interesting because it allows for 

the separation of the navigation loop (outer) and the attitude loop (inner), and has 

been used in many research papers afterwards.  

Many researches have tackled the design of PID controllers for quadrotors. 

While it has been experimentally shown to be sufficient to control quadrotors in 

normal hovering and trajectory tracking [61], PID controllers need a considerable 

effort to be fine-tuned for the specific quadrotor and they perform poorly in critical 

situations. Therefore, the designed controller will not perform properly if applied to 

a different quadrotor with different properties. Furthermore, quadrotor flight in non-
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ideal aerodynamics, such as in the presence of wind fields or flight in a confined 

environment, would result in poor performance as shown in [4] [3].  

Pure Backstepping controller design for Quadrotors is presented in [69] [70] 

[7]. Experimental implementation is shown in [69], and [7]. Backstepping approach 

and sliding mode method are followed to design the controller for an indoors 

quadrotor in [71]. This method is very close to that used in this research without the 

use of the ANNs. Experimental results were shown only for the attitude dynamics to 

validate the controller performance against a pure backstepping controller.  

Many research papers covered the use of adaptive and ANN controllers for 

quadrotor control. The experimental results of an ANN augmented PID controller is 

presented in [67], where a PID controller properly designed for a specific quadrotor 

could be applied directly to another quadrotor with different characteristics without 

adjustment. A Neuro-adaptive dynamic inversion controller is developed in [68]. An 

ANN is added to the dynamic inversion controller derived in [54] to compensate for 

model uncertainty. An optimal ANN based controller for an UAV helicopter is 

designed in [51], simulation results were shown for the cases of take-off, hovering and 

landing to validate the control algorithm. Most recently, Joshi et. al. presented in [72] 

a Neuro-Adaptive Controller for Quadrotors based on dynamic inversion. A Radial 

Basis ANN is used to compensate for attitude dynamics uncertainties, the ANN 

update law assumes the availability of a good estimate of these uncertainties, 

therefore, an Extended Kalman Filter (EKF) is used to estimate unknown 

disturbances and the estimate is used to, again, train the ANN to estimate the same 
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uncertainties i.e. the ANN weight errors are explicitly calculated at each iteration as 

the ideal values are available beforehand. Only simulation results in the case of blade 

flapping and measurement noise are shown, which is a considerably weak form of 

uncertainty. The most relevant research work is [53], which combines the use of two 

nonlinear control methodologies; namely Sliding mode [63] and Backstepping [64]. 

Two ANNs are used to compensate for the aerodynamic effects and un-modeled 

dynamics, which makes the designed controller general enough to be applied to any 

quadrotor with minimal adjustment. However, there are some missing pieces in the 

controller design approach that will be addressed in this research. Furthermore, an 

experimental validation for the designed controller will be investigated.   

1.3 RESEARCH OBJECTIVES AND APPROACH 

This research is aimed to design and implement a learning controller that is 

capable of controlling a quadrotor in the presence of model and aerodynamic 

uncertainties, with a focus on the aerodynamic uncertainties associated with flying 

in confined environments. This controller is required to be general enough, so that it 

would be easily implemented in any quadrotor aircraft. The hypothesis here is that 

the learning controller would compensate for uncertainties, indirectly, by correcting 

for the considerable deterioration in quadrotors’s performance, and, as a result, would 

improve quadrotor’s performance without the intervention of a human in the loop. 

Many adaptive controllers were developed for quadrotors. However, none have yet 

fully-addressed the issue of flight in a confined environment. This work extends on 

the controller approach presented in [53] where an ANN controller is developed for a 
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quadrotor using a Sliding mode technique and following a Backstepping approach. 

This approach was found attractive because of two reasons: 1) the designed controller 

requires minimal computational effort, and 2) the controller is developed primarily 

based on control systems theory; rather than Artificial Intelligence approaches.  

The contributions of this research are: 1) to address some issues with controller 

stability limits, 2) to use a universal basis function and ANN structure, and 3) to 

perform an experimental implementation of the controller on a quadrotor flight in 

confined environment. 
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CHAPTER 2 

THEORETICAL BACKGROUND 

This chapter provides a brief elaboration about the concepts and theories used 

for the controller design. Five topics are covered, Artificial Neural Networks, Sliding 

Mode Control Methodology, Backstepping Design approach, Lyapunov Stability 

theorem, and Dynamical model for quadrotors.  

2.1 ARTIFICIAL NEURAL NETWORKS 

Artificial Neural Networks are developed in an attempt to mimic the 

functionality of the biological neural system [36]. The brain is a complex, nonlinear 

and parallel computer. It has the ability to perform tasks such as pattern recognition, 

perception and muscle control much faster than any computer [73]. In addition, 

brains have the capability to learn, memorize and generalize. All of these 

characteristics lead to the vast interest in the development of ANN algorithms.  

The biological nervous system processes information through a huge number 

of interconnected nerve cells, called neurons, Figure (2.1). Signals are propagated in 

the form of potential difference between the inside and outside of these units. 

Dendrites bring signals from other neurons into the cell body or the soma, possibly 

multiplying each incoming signal by a weight coefficient. In the soma, cell capacitance 

integrates the signals which collect in the axon hillock. Once the composite signal 

exceeds a cell threshold, a signal, the action potential, is transmitted through the 

axon. Cell nonlinearities make the composite action potential a nonlinear function of 
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the combination of arriving signals. The axon connects through synapses with the 

dendrites of subsequent neurons. The synapses operate through the discharge of 

neurotransmitter chemicals across intercellular gaps, and can be either excitatory 

(tending to fire the next neuron) or inhibitory (tending to prevent firing of the next 

neuron).   

 

 

Figure 2.1 Biological Neuron 

 

An artificial neuron (AN), on the other hand, is a model of a biological neuron 

(BN). Each AN receives signals from the environment, or other ANs, gathers these 
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signals, and when fired, transmits a signal to all connected ANs. Figure 2.2 depicts 

an artificial neuron. Input signals are inhibited or excited through negative and 

positive numerical weights associated with each connection to the AN. The firing of 

an AN and the strength of the exiting signal are controlled by a function, called 

activation function. The AN collects all incoming signals, and computes a net input 

signal as a function of respective weights. The net input signal serves as input to the 

activation function which calculates the output of the AN. 
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Figure 2.2 Artificial Neuron 
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An Artificial Neural Network (ANN) is a layered network of ANs. An ANN may 

consist of an input layer, hidden layers and an output layer. ANs in one layer are 

connected, fully or partially, to the ANs in the next layer. Feedback connections to 

previous layers are also possible. A typical ANN structure is shown in Figure 2.4. 

 

 

Figure 2.3 Hyperbolic Tangent Activation Function 

 

Several different ANN types have been developed [73], including for example:  

• Single-layer ANNs, such as the Hopfield network; 

• Multilayer feedforward ANNs, including standard backpropagation, functional 

link and product units networks; 

• Temporal NNs, such as the Elman and Jordan simple recurrent networks as 

well as time-delayed neural networks; 
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• Self-organizing NNs, such as the Kohonen self-organizing feature maps and 

learning vector quantizer; 

• Combined supervised and unsupervised ANNs, e.g. some radial basis function 

networks. 

These ANN types have been used for a wide range of applications, including 

diagnosis of diseases, speech recognition, data mining, music composition, image 

processing, forecasting, systems control, design optimization, credit approval, 

classification, pattern recognition, planning game strategies and many others.  
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Figure 2.4 Typical Fully Connected ANN 

2.1.1 The Mathematical Model for ANNs 

In this section, the focus is drawn towards the type of ANNs used in this 

research, which is Multilayers feedforward ANN, the reader is advised to look at [28] 

for the other types of ANNs. A novel structure is introduced in this research that 

modifies the existing structure of feedforward ANNs to achieve fast learning and 

more accuracy.  
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A three-layer ANN is depicted in Figure 2.4, where there are two layers of 

neurons and an input layer. The ANN has 𝑛 inputs feeding into the second layer 

having   neurons feeding into the third layer of 𝑀 neurons. The first layer is known 

as the Input layer, with 𝑛 inputs; the second layer is known as the hidden layer, with 

  the number of hidden-layer neurons; the third layer is known as the output layer, 

with 𝑀 the number of outputs. ANN with multiple layers are called multilayer 

perceptrons.  

The output of the three-layer ANN is given by  

 

  = 𝜎(∑   𝜎 (∑𝜈    + 𝜈 0

 

 = 

) +   0

𝐿

 = 

) ;  =  ,2, … ,𝑚 (2-1) 

where 𝜈  represent dendrite weights for the hidden layer, 𝜈 0 is the firing threshold or 

bias, 𝜔   represent the dendrite weights for the output layer, 𝜔 0  is the firing 

threshold or bias for the output layer, and 𝜎(∙) is a differentiable activation function. 

The derivative of the activation function is needed for the ANN learning algorithm. 

It is computationally convenient to represent the ANN output in a matrix form; 

with second layer weight matrix �̅� and third layer weight matrix  ̅ given by 
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Then the output from the ANN becomes 

  = 𝜎( ̅𝑇𝜎(�̅�𝑇 ̅)) (2-3) 

with activation function vector given by 

 𝜎(𝛽) ≡ [   𝜎(𝛽)𝑇]𝑇 ≡ [  𝜎(𝛽 ) 𝜎(𝛽 ) 𝜎(𝛽 ) … 𝜎(𝛽𝐿)]
𝑇 (2-4) 

where the first entry is 1 to account for the threshold or bias inputs, and 𝛽 ∈ ℝ𝐿 is the 

input vector to the activation function 𝜎 ∈ ℝ𝐿+ ,  ̅ = [   𝑇]𝑇 ∈ ℝ +   is the augmented 

ANN input. These matrices are sometimes referred to as the augmented matrices as 

they account for threshold weights and inputs. 

In this research, the output activation function is chosen to be linear. In that 

sense, the output from the ANN becomes 

  =  ̅𝑇𝜎(�̅�𝑇 ) (2-5) 

The bar over the augmented matrices and vectors will be dropped from this 

point and on, as they will always be used in the augmented form. 

2.1.1.1 Linear-In-the-Parameter (LIP) ANN 

If the weights and the activation function for the hidden-layer, 𝜎(�̅�𝑇 ), are 

known a priori, then the ANN is only defined by output-layer weights and 

threshold,  ̅𝑇. Then the ANN is called functional-link ANN, and 𝜙( ) =  𝜎(�̅�𝑇 ) is 

called basis-function. In this sense, the ANN is linear-in-the-parameter  , and is 

easier to be taught compared with three-layer-ANN. Functional-link-ANNs allow for 

a more general activation function options, especially if the elementary components 

of the function to be estimated are accurately known, e.g. sinusoidal, quadratic …etc.. 



25 
 

In addition, a non-diagonal activation function could be used in this context as well. 

In general, LIP ANNs are found very applicable for control systems applications. 

There are many types of LIP ANNs such as, Radial-Basis-Function ANN, and 

Cerebellar Model Articulation Controller ANN. 

2.1.1.2 Stochastic-Basis-Functional-Link ANN 

The Random Vector version of the functional-link ANN consists of a one hidden 

layer of the form Eq. (2-5), where the parameter 𝑉 of the hidden layer is selected 

randomly and independently in advance with a suitable activation function 𝜎, and 

the output layer weights   are learnt using an appropriate learning rule. 

It is proven in the literature that SBFL are general function approximators, and a 

comprehensive study about their validation is provided in [39].   

2.1.2 ANN Learning Algorithms 

The ability to learn is a fundamental feature of intelligent systems. The 

learning process in the ANN context could be defined as the process of updating ANN 

architecture and connection weight values so that an ANN can efficiently perform the 

targeted task [74]. Given an ANN structure, the task then is to calculate ANN 

weights such that the ANN closely models the targeted function. Although there are 

direct methods to calculate ANNs, such as Least Squares method, they usually 

assume certain relationship between input and outputs. Therefore, for complex ANN 

structures and complex targeted functions, iterative learning is inevitable. Iterative 

learning refers to the process of iteratively modifying ANN weights such that better 
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approximation is achieved at each learning step. Generally, there are three main 

types of learning: 

Supervise Learning: where the ANN is provided with a data set consisting of 

input vectors and expected or desired outputs associated with each input vector. This 

data is referred to as the training set. The aim of supervised learning is to adjust 

ANN weights such that the error between the output from the ANN and the target 

output is minimized. 

Unsupervised Learning: where the aim is to discover functions, patterns, or 

features in the input data with no assistance from preexisting data.  

Reinforcement Learning: is a variation of supervised learning in which the 

ANN is provided with only a critique on the correctness of network outputs, not the 

expected true outputs themselves. This is often referred to as critique actor method.  

There are four basic types of training Rules: 

Gradient Descent Learning Rule: 

It is regarded as the most used training rule for ANNs. Gradient Descent 

requires the definition of an error objective function to neuron’s error in 

approximating the targeted output. One choice for the objective function is the sum 

of squared errors. The goal of the gradient descent is to find the values for ANN 

weights such that the error objective function is minimized. This is achieved by 

calculating the gradient of the objective function in the weight space, and to move the 
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weight vector along the negative gradient (downhill), with a less than one step size, 

called learning rate. 

Widrow-Hoff Learning Rule: 

The Widrow-Hoff learning rule, also known as the Least-Means-Squares 

algorithm, was one of the first algorithms to be used for training layered Neural 

Networks with multiple adaptive liner neurons [73]. It assumes that the gradient of 

the activation function with respect to ANN weights is unity, thus linear activation 

functions are used, to avoid singularity in the case of discontinuous activation 

functions.  

Generalized Delta learning Rule: 

The generalized delta learning rule is a generalization of the Widrow-Hoff 

learning rule that assumes differentiable activation functions. 

Error-Correction Learning Rule: 

The basic principle of the error-correction learning rule is to use the error 

signal to modify connection weights to gradually reduce this error. It assumes binary-

valued activation functions, and weights are only adjusted when the perceptron 

makes an error. 

The use of ANNs in closed loop control systems imposes extra requirements for 

the learning algorithm, in contrast to their use in Machine Learning, such as, 

stability of learning, boundedness of ANN weights, and more importantly, speed of 

learning. These characteristics are particularly important in the application of closed 
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loop control, because the output of the ANN influences the behavior of the entire 

system, as the ANN, in that context, represents a sub-dynamical system of the entire 

closed loop system. Therefore, guarantees for stability, boundedness, and learning 

dynamics should be provided prior application of ANN in control systems. In this 

research, an ANN learning algorithm is developed that guarantees stability of the 

closed loop system and boundedness of ANN weights. Furthermore, the design 

parameters for the developed algorithm could be intuitively adjusted to achieve 

certain learning dynamics. 

2.2 SLIDING MODE CONTROL 

The use of sliding mode control in Variable Structure Control (VSC) systems 

was introduced in 1964 by Emel’yanov [75]. Since then sliding mode has been a very 

important method for the deterministic control of uncertain and nonlinear systems 

[75].  

Sliding motion occurs when the system state repeatedly crosses and 

immediately re-crosses a switching manifold, as a result of all the motion in the 

neighborhood of the manifold being directed inwards. This motion occurs on 

individual switching surfaces in the state space, or in all of them at the same time, 

until the last of them is reached, then the system is said to be in the sliding mode, 

Figure 2.5. 

Sliding mode refers to the sliding subspace where the dynamic motion of the 

system is constrained to lie within a certain subspace of the full state space, and is 
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efficiently described by an unforced system of lower order, called the equivalent 

system.  The dynamic behavior of the equivalent system is different from that of each 

of the constituent subsystems.  

 

 

𝒆  
𝒆 

𝒓 = 𝟎 
Switching Motion 

𝒓 > 𝟎 

𝒓 < 𝟎 
𝝄 

Initial state 

Sliding Hyperplane 

Sliding Motion 

State space origin 

State Space 

 

Figure 2.5 Illustration of Sliding Motion 
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The switching surfaces are usually fixed hyperplanes in the state space passing 

through the state space origin, the intersection of which forms the sliding subspace.  

The objective of the design is to drive the state of the system from an arbitrary initial 

condition in the state space to the sliding subspace. Once reached, the action of the 

control is only required to maintain the state on the intersection manifold. The 

equivalent system is required to be asymptotically stable in order to guarantee that 

the state of the system will reach the state space origin, while on the sliding mode. 

The transient behavior of the sliding motion consists of two stages: a fast 

motion bringing the state of the system to the sliding subspace, in which sliding 

occurs; and a slower sliding motion during which system’s state slides towards the 

state space origin, while restricted on the sliding subspace. 

The switching logic is originally proposed as a discontinuous control function, 

which causes control chattering, at a high frequency, when shifting between 

switching surfaces. This phenomenon is undesired in practical applications and could 

be fixed by implementing a smooth continuous nonlinear control function for the 

switching process instead.  

2.2.1 Siding Mode Control Design Procedure 

The sliding mode design procedure starts with selection of the slow dynamics 

that drives the system’s state on the sliding manifold from an initial state to 

equilibrium. This dynamics transforms the system from 𝒙 to a reduced order system 
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on 𝒓. When 𝒓 → 𝟎, the system’s motion is described by the sliding mode.  𝒓 is selected 

such that 𝒓  contains the system’s global input 𝒖. A common choice for 𝒓 is  

 𝒓 = 𝒙 + 𝚲𝒙 (2-6) 

The following step is to design the control input 𝒖 on 𝒓 that drives the state of 

the system from an initial value in the state space to the sliding hypersurface, and 

force it to stay there. These dynamics are commonly selected as a discontinuous 

function which causes controller chattering. Continuous switching functions are also 

developed to avoid chattering with some adjustments to the original design method. 

In this research, a continuous nonlinear control algorithm is developed following 

backstepping design approach. The control input is designed such that:  

• 𝒓𝒓 < 𝟎 outside the sliding hypersurface. 

• 𝒓 = 𝟎 on the hypersurface. 

Upon selecting an appropriate sliding hyperplane, the focus of the control 

problem shifts towards designing stable dynamics for 𝒓 that drives it rapidly from its 

initial value to zero. Then the system is guaranteed stability as 𝚲 is required to be 

Hurwitz. 

2.3 BACKSTEPPING CONTROLLER DESIGN APPROACH 

Backstepping design approach is well regarded in the design of controllers for 

nonlinear systems, because of its simplicity and intuitive nature. It was first 

introduced, in its current form, by Kanellakopoulos et. al. [76] in 1991, since then the 
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method has been heavily used in research and industry for the design of nonlinear 

control systems. 

Backstepping requires the dynamical system to be expressed in a specific 

mathematical form, namely, strict feedback form; where each state variable of the 

system is a strict function of itself and the higher order state variable, and system’s 

input only appears in the time derivative of the highest order variable. While it is 

very strict, methods have been developed to transform systems of other forms into 

strict feedback, e.g. [45]. 

The design process starts with defining the desired state and the required 

dynamics for the first variable, which also represents system’s output. Then, using 

the equation of the first time-derivative, a virtual input is required by the higher 

order variable, to achieve both stability and required performance. Similarly, the 

desired state for the second order variable is the virtual input to the time derivative 

of the first order variable, and with the desired dynamics for the second order variable 

being defined, the equation for the derivative of the second order variable is used to 

calculate the virtual input required by the third order variable. The process continues 

backwards until the highest order equation is reached, then the global input to the 

system is designed such that stability is guaranteed and desired dynamics is 

achieved. 

The nature of the design process that starts with the lowest subsystem, and 

backwards towards the highest order lead to the name Backstepping. Control 

Lyapunov Function (CLF) [64] is usually used to calculate virtual inputs required at 
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each step and the final control input to the system, other methods such as feedback 

linearization, optimal control are used as well. 

The nonlinear continuous-time system in strict-feedback form is as follows 

    =   (  , … ,   ) +   (  , … ,   )  + ,        ≤  ≤ 𝑁 −    𝑛  𝑁 ≥ 2 (2-7) 

   𝑁 =  𝑁(  , … ,   ) +  𝑁(  , … ,  𝑁)𝑢 (2-8) 

  =    (2-9) 

where,   ∈ ℜ is a system state variable, 𝑢 ∈ ℜ represents system’s input,   ∈ ℜ is a 

smooth internal dynamic function,   ∈ ℜ is a smooth output function and  ∈ ℜ is 

system’s output. 

The first step is to define the required dynamics for output error   =   𝑑 −   . 

Then, equation (2-7), at  =  , is solved for the virtual input,   𝑑, required by,   , to 

satisfy response requirements and to assure stability of   . A nonlinear or a linear 

control method could be used to calculate   𝑑, however, CLF is mostly used. Step two 

is to solve equation (2-7), at  = 2, for   𝑑 following the same method used previously. 

Same steps are followed until the 𝑁𝑡ℎ equation is reached, then the global control 

input is solved for, such that, the stability of the entire system is guaranteed. 

In this research, the backstepping approach is followed to design a controller 

for Quadrotors that stabilizes the system and guarantees well tracking of desired 

trajectories. More details about the Backstepping design approach could be found in 

[76] [64]. The details of Backstepping approach implementation in this research are 

provided in Chapter 3.   
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2.4 STABILITY OF NONLINEAR SYSTEMS 

2.4.1 Lyapunov Stability  

In 1892 the Russian mathematician Alexander Mikhailovich Lyapunov 

presented his doctoral thesis “On the General Problem of the Stability of Motion” at 

the University of Moscow [77], where he had introduced basic definitions and 

fundamental theorems for evaluating the stability of solutions of a broad spectrum of 

differential equations. Lyapunov stability theorem is an inevitable tool for analyzing 

the behavior of system trajectories near equilibrium, without the need to calculate 

the explicit solution for system equations.  

Consider the non-autonomous unforced dynamical system given by 

   =  ( ,  ) (2-10) 

with an equilibrium point at the origin of the state space of the system, hence 

  ( , 0) = 0, ∀  ≥ 0 (2-11) 

Definition (2-1): Stability of the Equilibrium in the Lyapunov Sense 

The equilibrium point,  ⋆ = 0, of the nonautonomous unforced system Eq. (2-

10) is stable if for any 휀 > 0 and  0 ≥ 0 there exists 𝛿(휀,  0) > 0 such that for all initial 

conditions ‖ ( 0)‖ < 𝛿 and for all  ≥  0 ≥ 0, the corresponding system trajectories are 

bounded by ‖ ( )‖ < 휀. The equilibrium is uniformly stable if it is stable and 𝛿 does 

not depend on  0. Finally, the equilibrium is unstable if it is not stable. 
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Figure 2.6 Lyapunov Stability 

 

Definition (2-2): Global Stability 

The origin is globally stable if it is stable in the Lyapunov sense and  

lim
𝜀→∞

𝛿(휀,  0) = ∞. 

Definition (2-3): Asymptotic Stability  

The equilibrium point  ⋆ = 0 of Eq. (2-10) is asymptotically stable if it is stable 

and there exists a positive constant  =  ( 0) such that  ( ) → 0 as   → ∞, for all 

‖ ( 0)‖ ≤   . 

Definition (2-4): Uniform Asymptotic Stability 

The equilibrium point  ⋆ = 0 of Eq. (2-10) is uniformly asymptotically stable if 

it is asymptotically stable and the constant   is independent of  0.  
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Definition (2-5): Global Uniform Asymptotic Stability 

The origin is globally uniformly asymptotically stable if it is uniformly 

asymptotically stable and lim
𝜀→∞

𝛿(휀) = ∞. 

Definition (2-6): Positive-Definite and Semidefinite Functions 

A scalar function 𝑉( ): ℝ → ℝ of a vector argument  ∈ ℝ  is called locally 

positive definite if 𝑉(0) = 0, and there exists a constant  > 0 such that 𝑉( ) > 0, for 

all nonzero  ∈ ℝ  from the r-neighborhood of the origin 𝐵𝑟 = { ∈ ℝ : ‖ ‖ ≤  }, the 

function is said to be globally positive definite if 𝐵𝑟 = ℝ . If 𝑉( ) ≥ 0, then the function 

is said to be positive semidefinite.  

Definition (2-7): Negative-Definite and Semidefinite Functions 

A scalar function 𝑉( ): ℝ → ℝ of a vector argument  ∈ ℝ  is called locally 

negative definite if 𝑉(0) = 0, and there exists a constant  > 0 such that 𝑉( ) < 0, for 

all nonzero  ∈ ℝ  from the r-neighborhood of the origin 𝐵𝑟 = { ∈ ℝ : ‖ ‖ ≤  }, the 

function is said to be globally positive definite if 𝐵𝑟 = ℝ . If 𝑉( ) ≤ 0, then the function 

is said to be negative semidefinite. 

Theorem (2-1): Lyapunov Direct Method for Stability 

Let  ⋆ = 0 ∈ ℝ  be an equilibrium point for the nonautonomous dynamics Eq. 

(2-10), whose initial conditions are drawn from a domain 𝐷 ⊂ ℝ , with  ⋆ ∈ 𝐷 and  0 =

0. Suppose that on the domain 𝐷 there exists a continuously differentiable locally 
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positive definite function 𝑉( ): 𝐷 → ℝ, whose time derivative along the system 

trajectories is locally negative semidefinite: 

 𝑉 ( ) = ∇𝑉( ) ( ,  ) ≤ 0 (2-12) 

for all  ≥ 0 and for all  ∈ 𝐷. Then the equilibrium of the system  ⋆ = 0 is locally 

uniformly stable in the Lyapunov sense. Furthermore, if 𝑉 ( ) < 0 for all nonzero   

and for all  ≥ 0, then the origin is locally uniformly asymptotically stable in the 

Lyapunov sense.  

Definition (2-8): Uniform Ultimate Boundedness 

The solutions of Eq (2-10) are uniformly ultimately bounded with ultimate 

bound 𝑏 if there exist positive constants 𝑏 and  , independent of  0 ≥ 0, and for every 

 ∈ (0,  ), there is a constant  =  ( , 𝑏), independent of  0, such that  

 ‖ ( 0)‖ ≤  ⇒ ‖ ( )‖ ≤ 𝑏, ∀ ≥  0 +   (2-13) 

These solutions are said to be globally uniformly ultimately bounded if Eq (2-13) hold 

for an arbitrarily large  . 
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Figure 2.7 Uniform Ultimate Boundedness 

 

 

2.5 QUADROTOR DYNAMICS MODEL 

The quadrotor dynamical model used in this research is derived in [69] 

following Euler-Lagrange modeling method. Consider the quadrotor system shown in 

Figure 2.8. 

The generalized coordinates of the quadrotor are 

 𝑞 = ( ,  , 𝑧, 휃, 𝜙, 𝜓) ∈ ℝ6 (2-14) 

where ( ,  , 𝑧) = 𝜉 ∈ ℝ  denote the position of the center of mass of the quadrotor with 

respect to the inertial frame, and (휃, 𝜙, 𝜓) = 휂 ∈ ℝ  are the Euler angles, (pitch, roll, 

yaw), and they denote the attitude of the quadrotor about its center of mass. 
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Figure 2.8 Typical Quadrotor Model 

 

The Lagrangian of the quadrotor is given by 

 ℒ(𝑞, 𝑞 ) =  𝑡𝑟𝑎 𝑠 +  𝑟𝑜𝑡 − 𝑈 (2-15) 

where  𝑡𝑟𝑎 𝑠 =
𝑚

 
𝜉 𝑇𝜉  is the translational kinetic energy ,  𝑟𝑜𝑡 =

 

 
휂 𝑇𝐽휂  is the rotational 

kinetic energy, and 𝑈 = 𝑚 𝑧 is the potential energy of the quadrotor, with 𝑚 

represents the mass of the quadrotor, 𝑧 the altitude,   the gravitational acceleration, 

and 𝐽 denotes the inertia matrix.   
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The dynamical model for the quadrotor is then obtained using the Euler-

Lagrange method with external generalized forces 

  

  

𝜕ℒ

𝜕𝑞 
−
𝜕ℒ

𝜕𝑞
= (𝐹𝜉 , 𝜏𝜂) (2-16) 

where 𝐹𝜉 = 𝑅�̂� ∈ ℝ  is the translational forces applied to the quadrotor due to throttle 

control input, 𝜏𝜂 ∈ ℝ  denotes applied pitch, roll and yaw torques, and 𝑅(휃, 𝜙, 𝜓) ∈

𝑆 (3) represents the rotational matrix of the quadrotor with respect to the inertial 

frame. The force vector �̂� is given by 

 
�̂� = (

0
0
𝑢
) (2-17) 

where 𝑢 is the total rotors input given by 

 
𝑢 =∑  

4

 = 

 (2-18) 

and    is the force produced by the  𝑡ℎ rotor. Generally,   = 𝑘 𝜔 
 , where 𝑘  is the force 

constant for the  𝑡ℎ rotor, and 𝜔  represents the rotational velocity of the  𝑡ℎ motor. 

The generalized torques are given by 

 

𝜏𝜂 = (

𝜏𝜃
𝜏𝜙 
𝜏𝜓

) ≜

(

 

(  −   ) 
(  −  4) 

∑ 𝜏𝜓𝑖

4

 = )

  (2-19) 

where   is the distance between the motors to the center of mass, and 𝜏𝜓𝑖
 is the yaw 

torque produced by the  𝑡ℎ motor about the center of mass of the quadrotor. 
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Since the Langrangian contains no cross terms in the kinetic energy involving 

𝜉  and 휂 , the Euler-Lagrange equation could be partitioned into two parts. One 

represents the dynamics along the 𝜉 coordinates, and the second for the dynamics at 

the 휂 coordinate. Then, the equations of motion of the quadrotor is given by 

 
𝑚�̈� = −[

0
0
𝑚 

] + 𝐹𝜉   (2-20) 

 𝐽(휂)휂̈ = −𝐶(휂, 휂 )휂 + 𝜏𝜂  (2-21) 

with  

𝐽(휂) =  𝜂
𝑇Σ 𝜂 ,  𝜂 = [

−sin 휃 0  
cos 휃 sin𝜓 cos𝜓 0
cos 휃 cos𝜓 − sin𝜓 0

] , 𝜏𝜂 = [
 0 − 0
0 − 0  
 −  − 

] [

  
  
  
 4

] 

The vector 𝐶(휂, 휂 )휂  is the Coriolis/Centripetal term [53]. Assuming a symmetric 

inertia matrix Σ, for a typical quadrotor 𝐶(휂, 휂 ) is given by:  

 
𝐶(휂, 휂 ) = 2 𝜂

𝑇ΣT 𝜂 −
 

2

𝜕

𝜕휂
(휂 𝑇𝐽(휂)) (2-22) 

Matrix 𝐶(휂, 휂 ) is not unique [78]. However, it is shown in [55] that using the 

above expression (
𝑑

𝑑𝑡
𝐽(휂) − 2𝐶(휂, 휂 )) is skew-symmetric. This property is needed later 

in stability analysis. 
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CHAPTER 3 

CONTROLLER DESIGN 

In this chapter, the controller design following sliding mode methodology and 

backstepping approach is detailed. In addition, the proposed ANN structure used in 

the controller algorithm is presented with the accompanied mathematical expression. 

Furthermore, the derivation of the ANN learning algorithm is provided. And finally, 

the stability of the developed controller with the proposed ANN structure, and the 

developed learning algorithm is analyzed using Lyapunov theorem. 

3.1 CONTROLLER DESIGN 

3.1.1 Modified Quadrotor Dynamics Model 

In this section, the dynamical model of quadrotors, which is detailed in 

Chapter 2, is modified for the purpose of controller design. In summary, the Lagrange 

dynamics model of a typical quadrotor, shown in Fig. 3.1, is given by 

Position dynamics 

 𝑚�̈� = 𝑀𝑔 + 𝐹𝑑  (3-1) 

Attitude dynamics 

 𝐽(휂)휂̈ = −𝐶(휂, 휂 )휂 + 𝜏  (3-2) 

where 𝜉 = [ ,  , 𝑧]𝑇  ∈ ℝ   is the inertial position of the center of gravity, 𝑀𝑔 =

[0,0, −𝑚 ]𝑇 is the gravitational force, and 휂 = [𝜙, 휃, 𝜓]𝑇  ∈ ℝ  represents quadrotor 

attitude, roll, pitch, and yaw.  
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𝐹𝑑 = 𝑢 [
− sin 휃

cos 휃 sin𝜙
cos 휃 cos𝜙

] , 𝑢 =∑  

4

 = 

, 

   = 𝑘𝜔𝑖
𝜔 
  (3-3) 

Here    is the force provided by the  𝑡ℎ  rotor, 𝑘𝜔𝑖
 is the force constant, and 𝜔  is 

rotational speed for the  𝑡ℎ rotor. It is shown in the literature that the force provided 

by each rotor is far more complicated than the expression shown above [4] [61]. 

However, by far Eq. 3-3 is the most commonly used model. In most of the cases, 

quadrotor thrust force is experimentally modeled; to closely fit the specific 

combination of Speed Controller, motor, and propeller. 

𝐽(휂) =  𝜂
𝑇Σ 𝜂 ,  𝜂 = [

− sin 휃 0  
cos 휃 sin𝜓 cos𝜓 0
cos 휃 cos𝜓 −sin𝜓 0

] , 𝜏 = [
 0 − 0
0 − 0  
 −  − 

] [

  
  
  
 4

] 

Here,   is the distance from the center of the rotor to the center of gravity of the 

quadrotor, 𝛴 is the constant quadrotor inertia matrix, and   is a constant known as 

force-to-moment scaling factor caused by the reactive force on the rotor stator. 

The control input to the quad rotor is collected in one vector as: 

 

[

𝑢
𝜏𝜙
𝜏𝜃
𝜏𝜓

] = [

 
 

 
0

 
− 

 
0

0 − 0  
 −  − 

] [

  
  
  
 4

] = Γ  (3-4) 
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Figure 3.1 Quad-Rotor Model with Aerodynamics Uncertainties 

 

The vector 𝐶(휂, 휂 )휂  is the Coriolis/Centripetal term [53]. Assuming a symmetric 

inertia matrix Σ, for a typical quadrotor 𝐶(휂, 휂 ) is given by:  

 
𝐶(휂, 휂 ) = 2 𝜂

𝑇ΣT 𝜂 −
 

2

𝜕

𝜕휂
(휂 𝑇𝐽(휂)) (3-5) 

Matrix 𝐶(휂, 휂 ) is not unique [79]. However, it is shown in [55] that using the above 

expression (
𝑑

𝑑𝑡
𝐽(휂) − 2𝐶(휂, 휂 )) is skew-symmetric. This property is needed later in 

stability analysis.  
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This system is a coupled-Lagrangian form, under-actuated with six outputs 

and four inputs. 

To account for unknown aerodynamic forces and moments associated with 

aggressive maneuverability and environment impact [53] [3] [65] [4], quadrotor 

dynamics are modified to Eq. 3-6 and Eq. 3-7. These forces and moments are difficult 

to calculate and expected to be highly nonlinear [61]. The adjusted Lagrange dynamic 

equations for the quadrotor become: 

Position dynamics 

 𝑚�̈� = 𝑀𝑔 + 𝐹𝑑 +  𝜉(𝜒 ) (3-6) 

Attitude dynamics 

 𝐽(휂)휂̈ = −𝐶(휂, 휂 )휂 + 𝜏 +  𝜂(𝜒 ) (3-7) 

where 𝜒  and 𝜒  are the explanatory variables for the unknown aerodynamics, chosen 

based on the influence on the corresponding dimension, and will be detailed later. For 

brevity, the arguments of the aerodynamic forces and moments will be dropped for 

the rest of this dissertation. 

3.1.2 Backstepping Controller Design 

Backstepping controller design approach is widely used for the control of 

nonlinear systems [64], especially when ANN are used [31] [20]. In this research, the 

method is directly applied to a sliding mode derived from the quadrotor dynamics in 

Lagrange form. This is not a straightforward process, because of the fact that Eq. 3-

5 is bilinear with respect to control inputs, due to the first term in the right-hand side 
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of the equation [53]. Considering this bilinear term as a virtual control input leads to 

complications [80]. The problem that arises is one of control input allocation due to 

more than one solution existing. Figure 3.3 shows the block diagram for the designed 

controller. 

The objective of the controller design is to make the quadrotor follow a desired 

smooth position (at least twice differentiable with respect to time). Controller design 

procedure followed here is based on that described in [55]. Which is detailed as 

follows: 

Step One: starting with the trajectory dynamics, define the tracking error and 

the desired “sliding mode error” respectively, as follows 

   = 𝜉𝑑 − 𝜉 (3-8) 

   =    + Λ    (3-9) 

where, Λ  is a diagonal positive definite design parameter matrix (Hurwitz). It is 

desired to make sliding mode error Eq. 3-9 be zero or very small, thus system’s 

response would follow the sliding motion defined by Λ . This parameter matrix is 

selected for the desired response on the sliding hypersurface  

   ( ) =  −Λ1𝑡  (0) (3-10) 

Substituting quadrotor dynamics Eq. 3-6 and Eq. 3-7 into Eq. 3-9, the augmented 

error dynamics becomes 

 𝑚   = 𝑚�̈�𝑑 +𝑚Λ   −𝑚Λ 
   − 𝐹𝑑 −𝑀𝑔 −  𝜉 (3-11) 
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Hence, the ideal force (virtual input) that stabilizes the tracking error dynamics is 

chosen as: 

 
�̂�𝑑 = 𝑚�̈�𝑑 −𝑚Λ 

   −𝑀𝑔 −  ̂𝜉 + 𝐾𝑟1  + 𝐾 1 ∫     
′

𝑡

0

 (3-12) 

Here,  ̂𝜉 ∈ ℝ  is an approximation of  𝜉, and 𝐾𝑟1 > 0,𝐾 1 > 0 are diagonal control 

gains (PID controller gains). Accordingly, the closed loop augmented error dynamics 

becomes 

 
𝑚   = −(𝐾𝑟1 −𝑚Λ )  +  ̃𝜉 − 𝐾 1 ∫     

′
𝑡

0

 (3-13) 

where,  ̃𝑥𝑦𝑧 =  𝑥𝑦𝑧 −  ̂𝑥𝑦𝑧 is approximation error. Eq. 3-13 defines the dynamics of 

the closed loop system when starting from an arbitrary state until it approaches the 

sliding mode hypersurface Eq. 3-10. The PID gains 𝐾𝑟1 and 𝐾 1are selected for the 

desired augmented error performance. 

 𝜉 is unknown, therefore, an Artificial Neural Network (ANN) is used to approximate 

aerodynamic forces. It is proven in [39] [81] that feedforward ANNs are universal 

function approximators; when properly sized and structured. The ANN 

representation of unknown aerodynamics is given by 

 𝑣𝑁𝑁1 = − 𝜉 ≡   
𝑇𝜇 (𝜒 ) + 휀  (3-14) 

where    is the unknown ideal ANN weight matrix, 𝜒 = [𝜉,   , 𝜉 , 휂]
𝑇
 is the input to 

the ANN and 𝜇 (∙) is a smooth activation function to be selected so that the 

aerodynamic forces can be captured by the ANN. The reconstruction error 휀  is 

assumed to be upper bounded by a positive constant 휀𝑁1, such that ‖휀 ‖ < 휀𝑁1.  
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In contrast to [53], a general stochastic linear-in-the-parameters ANN is 

proposed in this research [39]. This type of ANN is more accurate than the regularly 

used two layer ANN, as it uses three layers with only the linear weights being 

adjusted online, while maintaining the mathematical simplicity. The mathematical 

model for the proposed ANN is detailed later. Now, adding this ANN estimation to 

the desired virtual input equation we get 

 
�̂�𝑑 = 𝑚�̈�𝑑 −𝑚Λ 

   −𝑀𝑔 −  ̂ 
𝑇𝜇 (𝜒 ) + 𝐾𝑟1  + 𝐾 1 ∫     

′
𝑡

0

 (3-15) 

and the augmented error dynamics become 

 
𝑚   = −(𝐾𝑟1 −𝑚Λ )  −  ̃ 

𝑇𝜇 (𝜒 ) − 𝐾 1 ∫     
′

𝑡

0

+ 휀  (3-16) 

where  ̃ 
𝑇 =   

𝑇 −  ̂ 
𝑇 define ANN weights error. ANN weights update algorithms 

are discussed later. 

Step Two is to find total rotor input 𝑢 and required torque 𝜏  to produce �̂�𝑑. As 

shown previously, control variables in 𝐹𝑑 are the produced rotor force 𝑢  and the 

quadrotor attitude 휂. Therefore, given the value of �̂�𝑑, we should be able to calculate 

corresponding 𝑢𝑑 and 휂𝑑. In this step, we shall find 𝜏𝑑 that produces the desired 

attitude.  

Similar to Step One, define the attitude tracking error and sliding mode error 

as 

   = 휂𝑑 − 휂 (3-17) 
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   =    + Λ    (3-18) 

where Λ  is Hurwitz and has similar characteristics as Λ . Then designing a controller 

to keep ‖  ‖ small to guarantee that ‖  ‖  𝑛  ‖   ‖ are small. Similar to the first step 

in backstepping control design, the control input 𝜏 needed to guarantee the stability 

of attitude tracking dynamics is given by 

 

𝜏 = 𝑣𝑁𝑁2 + 𝐾𝑟   +𝐾 2 ∫    
′

𝑡

0

  (3-19) 

with 𝐾𝑟  and 𝐾 2 are positive diagonal PID gain matrices. And  𝑣𝑁𝑁2 =  ̂ 
𝑇𝜇 (𝜒 ), 𝜒 =

[휂, 휂 ,   , 𝜉 ]
𝑇
 are the ANN estimation of unknown nonlinearities in augmented error 

equation and the ANN input respectively. The ANN is used to approximate the 

following nonlinear function 

 𝑣𝑁𝑁2 ≜ {𝐽휂̈𝑑 −  𝜂 + 𝐶(휂, 휂 )(휂 𝑑 + Λ   ) − 𝐽Λ 
   } ≡   

𝑇𝜇 (𝜒 ) + 휀  (3-20) 

Notice here that the ANN is used to estimate difficult to calculate terms in 

addition to unknown aerodynamics; such globality is a property of ANNs. 

Accordingly, the augmented error dynamics becomes 

 

𝐽   =  ̃ 
𝑇𝜇 (𝜒 ) − {𝐾𝑟2 + 𝐶(휂, 휂 ) − 𝐽Λ }  − 𝐾 2 ∫    

′

𝑡

0

+ 휀  (3-21) 

and  ̃ 
𝑇 is the ANN weight error matrix. 

Notice that Eq. 3-16 and Eq. 3-21 are stable as long as the uncertainty is 

bounded and the PID gains are strictly positive with proportional gains chosen such 

that  
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 (𝐾𝑟1 −𝑚Λ ) > 0 

{𝐾𝑟2 + 𝐶(휂, 휂 ) − 𝐽Λ } > 0 

(3-22) 

3.1.3 Solving for  𝐮𝐝 and 𝛈𝐝 

The inverse kinematics method is employed to calculate 𝑢𝑑 and 휂𝑑 for a 

given �̂�𝑑; this method is widely used in the control of robotic manipulators [79] [55]. 

In contrast to the virtual inputs calculated in [53], the required attitude 휂𝑑 is 

calculated taking into account the heading angle, 𝜓, which has been dropped in [53]. 

Consider inertial and body coordinate systems, shown in figure 3.2. The required 

virtual force is calculated using Eq. 3-15, with inertial components  𝑑𝑥𝐼
,  𝑦𝑑𝐼

, and  𝑧𝑑𝐼
 

in the inertial 𝑋, 𝑌, and 𝑍 directions respectively. Then  

 

�̂�𝑑 = [

−𝑢𝑑 sin 휃𝑑𝐼
𝑢𝑑 sin𝜙𝑑𝐼

𝑢𝑑 cos 휃𝑑𝐼 cos𝜙𝑑𝐼

] = [

 𝑥𝑑𝐼
 𝑦𝑑𝐼
 𝑧𝑑𝐼

] (3-23) 

where, the subscript   in desired pitch and roll angles indicates that these angles are 

calculated using inertial force components, and  

 
𝑢𝑑 = √ 𝑥𝑑

 
𝐼
+  𝑦𝑑

 
𝐼
+  𝑧𝑑𝐼

  (3-24) 

 
휃𝑑𝐼 = sin− (−

 𝑥𝑑
𝑢𝑑

) (3-25) 

 
𝜙𝑑𝐼

= sin− (
 𝑦𝑑

𝑢𝑑
) (3-26) 

Now, the required inertial forces could be projected on the body fame as a result of 

the yaw angle, 𝜓, as follows 
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  𝑥𝑑𝑏
=  𝑥𝑑𝐼

cos𝜓 −  𝑦𝑑𝐼
sin𝜓 (3-27) 

  𝑦𝑑𝑏
=  𝑦𝑑𝐼

cos𝜓 +  𝑥𝑑𝐼
sin𝜓 (3-28) 

  𝑧𝑑𝑏
=  𝑧𝑑𝐼

 (3-29) 

Notice that body and inertial frames are identical in the case of zero yaw, 𝜓 =

0. The desired control force input, 𝑢𝑑, is not affected by the yaw angle and is equal in 

the body and inertial frames. If the required attitude angles are calculated using 

forces in body frame, then  

  𝑥𝑑𝑏
= −𝑢𝑑 sin 휃𝑑𝑏 (3-30) 

and  

  𝑦𝑑𝐼 = 𝑢𝑑 sin 𝜙𝑑𝑏 (3-31) 

Substituting the 𝑋 amd 𝑌 components of Eq. 3-23, Eq. 3-30 and Eq. 3-31 into Eq. 3-

27 and Eq. 3-28, we get  

 −𝑢𝑑 sin 휃𝑑𝑏 = −𝑢𝑑 sin 휃𝑑𝐼 cos𝜓 − 𝑢𝑑 sin 𝜙𝑑𝐼 sin𝜓 (3-32) 

and,  

 𝑢𝑑 sin 𝜙𝑑𝑏 = 𝑢𝑑 sin𝜙𝑑𝐼 cos𝜓 − 𝑢𝑑 sin 휃𝑑𝐼 sin𝜓 (3-33) 

Now, dividing by the control input force, the desired attitude become 

 휃𝑑𝑏 = sin− (sin 휃𝑑𝐼 cos𝜓 + sin𝜙𝑑𝐼 sin𝜓) (3-34) 

and,  

 𝜙𝑑𝑏 = sin− (sin 𝜙𝑑𝐼 cos𝜓 − sin 휃𝑑𝐼 sin𝜓) (3-35) 
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The attitude angles, calculated with respect to the body frame, Eq. 3-34 and 

Eq. 3-35, are used to control quadrotor’s attitude. First, the attitude angles are 

calculated based on inertial frame, given inertial virtual force components, using Eq. 

3-25 and Eq. 3-26. Then Eq. 3-34 and Eq. 3-35 are used to calculate equivalent desired 

attitude angles for attitude control. This transformation is necessary because in the 

case of nonzero heading angle, the desired pitch and roll angles calculated based on 

inertial forces will deceivingly direct the quadrotor towards the wrong direction. It is 

assumed that  𝑧𝑑 ≠ 0 i.e. 휃  𝑛  𝜙 ≠ 90° . Notice here that �̂�𝑑 does not depend on 𝜓𝑑, 

therefore, its value could be selected as a reference input [53].  

 

 

 

Figure 3.2 Virtual Force Transformation 
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Figure 3.3 ANN Controller Block Diagram 
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3.2 MODIFIED SBFL ANN 

Linear functions could become very complex when estimated using only 

nonlinear components. Hence, a sum of a large number of these components is 

required to closely estimate that function. Taylor expansion, for example, aims to 

estimate nonlinear functions using a linear combination of function’s independent 

variables, when perturbed about an equilibrium state, and for better accuracy, 

nonlinear terms are added one higher order at a time. This emphasizes on the 

importance of the linear relationship between system’s outputs and system’s states, 

over the nonlinear one. On the other hand, a big number of sinusoidal bases functions 

are required to approximate the output of a linear function with acceptable accuracy. 

Accordingly, the feedforward ANN structure is modified to account for the linear 

relationship between the outputs and inputs of the function; as according to Taylor’s 

expansion method, it could be of more influence on the output than the nonlinear 

relationship.  

The input layer is connected to the hidden layer through weights, and also 

directly to the output layer through a different set of weights. The output activation 

function sums the weighted outputs from the input layer and the hidden layer. An 

illustration is shown in Figure 3.4. This ANN structure is believed to increase 

accuracy and decrease learning time, compared with conventional ANN structures. 

Besides, it is a closer model to the biological Neural Network. One Layer ANNs with 

linear output activation function are known for their fast learning, however, limited 

approximation accuracy could be achieved. Multilayer ANNs on the other hand, are 
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known for their high approximation accuracy, while requiring more time for learning 

compared with One Layer ANN [55] [43] [28]. The proposed ANN structure exploits 

the merits of both types.  

The mathematical expression for the output of the Mekky’s ANN is as follows 

  =  ̅𝑇𝜎(�̅�𝑇 ) (3-36) 

where, the weight matrices for the hidden and output layers are given by 

 

�̅�𝑇 = [

𝑣 0 𝑣  𝑣  … 𝑣  
𝑣 0 𝑣  𝑣  … 𝑣  
⋮
𝑣𝐿0

⋮
𝑣𝐿 

⋮
𝑣𝐿 

⋮
…

⋮
𝑣𝐿 

] 

 ̅𝑇 = [

  0       
…   (𝐿+ )

  0       
…   (𝐿+ )

⋮
 𝑚0

⋮
 𝑚 

⋮
 𝑚 

⋮
…

⋮
 𝑚(𝐿+ )

] 

(3-37) 

Notice, that the size of the output weight matrix has changed from its original 

size, Eq. 2-2, to 𝑚× ( + 𝑛). The weights of the hidden layer �̅� are randomly selected 

using the “rand” command in Matlab ®, while the weights of the output layer are 

adjusted on-line following a learning algorithm. Stability and learning algorithms are 

discussed in a subsequent section. 
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Figure 3.4 Modified SBFL ANN 
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3.3 STABILITY ANALYSIS AND ANN LEARNING ALGORITHM 

The desired “external” command inputs are given by 𝜉𝑑( ) = [ 𝑑( ),  𝑑( ),

𝑧𝑑( )]
𝑇 and 𝜓𝑑. In this research, in contrast to that given in [53] [55] , a novel ANN 

training algorithm and the Lyapunov-based analysis for the control law are 

presented. It is assumed that the norm of desired trajectory 𝑞𝑑 = [𝜉𝑑
𝑇 𝜓𝑑]

𝑇 is bounded 

by some bound 𝑞𝑏, the norm of the ideal ANN weights is bounded by  𝑏 and the 

auxiliary inertia matrix is upper bounded by a positive bound 𝐽𝑀. The validity of those 

assumptions is straightforward: the first is guaranteed by the choice of desired 

trajectory, the second is managed by the learning algorithm and is valid in a compact 

set, and the third is valid because the auxiliary inertia matrix consists of a 

combination of trigonometric functions.  

The challenging stage in the design of ANN controllers is to show that stability 

is guaranteed and to define its limits. In contrast to the method followed in [55], the 

learning law is derived as the solution to a quadratic optimization problem. The 

following section details the derivation of the ANN learning laws. 

3.3.1 Learning Algorithm 

The learning law for the ANN is developed so as to minimize a quadratic 

objective function. Starting with trajectory dynamics, the objective function is given 

by 

 
𝒥 =

 

2
Υ 
𝑇Υ +

 

2
 ̂ 

𝑇𝜅  ̂  (3-38) 
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Subject to the augmented error dynamics (3-16), 

 
𝑚   =  ̃𝑥𝑦𝑧 − (𝐾𝑟1 −𝑚Λ )  −𝐾 1 ∫     

′
𝑡

0

 (3-16) 

where Υ   is given by the learning sliding mode 

 
Υ = 𝑚   + 𝑄𝑟1𝐾𝑟1  + 𝑄 1𝐾 1∫     

′
𝑡

0

 (3-39) 

Here, 𝒬 = [𝑄𝑟1 , 𝑄 1], with 𝑄𝑟1 ∈ ℝ  and 𝑄 1 ∈ ℝ , is chosen so as to make the learning 

dynamics faster than augmented error dynamics defined by Eq. 3-16. Therefore, 𝒬  

is Hurwitz with elements 𝒬 ( ) ≥  . Then, the gradient of the objective function with 

respect to estimated ANN weights  ̂ , is calculated using the chain rule as follows  

 𝜕𝒥 

𝜕 ̂ 

=
𝜕𝒥 
𝜕Υ 

𝜕Υ 

𝜕 ̂ 

+ 𝜅  ̂ = Υ 
𝜕Υ 

𝜕 ̂ 

+ 𝜅  ̂  (3-40) 

The gradient of the learning sliding mode Υ  with respect to estimated ANN 

weights  ̂  is identical to that of the ANN estimation error  ̃𝑥𝑦𝑧, accordingly 

 𝜕𝒥 

𝜕 ̂ 

= −𝜇 Υ + 𝜅  ̂  (3-41) 

Substituting the learning sliding mode dynamics, we get 

 𝜕𝒥 

𝜕 ̂ 

= −𝜇 [𝑚   + 𝑄𝑟1𝐾𝑟1  + 𝑄 1𝐾 1 ∫     
′

𝑡

0

] + 𝜅  ̂  (3-42) 

It is a common practice to define the ANN weights update law as a scaled 

version of objective function gradient. Accordingly, the learning dynamics become 

 
 ̂  = −𝐹 (

𝜕𝒥 

𝜕 ̂ 

) = 𝐹 
𝑇𝜇 [𝑚   + 𝑄𝑟1𝐾𝑟1  + 𝑄 1𝐾 1∫     

′
𝑡

0

] − 𝜅 𝐹  ̂  (3-43) 
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with the requirement for stability that, 

[𝐾𝑟1 −𝑚Λ ] > 0 

and design learning parameters matrices 𝐹 = 𝐹 
𝑇 > 0 and 𝜅 > 0. 

Similar steps are followed to derive the learning algorithm for attitude 

dynamics. Consider the quadratic objective function given by 

 
𝒥 =

 

2
Υ 
𝑇Υ +

 

2
 ̂ 

𝑇𝜅  ̂  (3-44) 

Subject to the augmented error dynamics (3-21), 

 
𝐽   =  ̃𝜙𝜃𝜓 − {𝐾𝑟2 + 𝐶(휂, 휂 ) − 𝐽Λ }  − 𝐾 2 ∫     

′
𝑡

0

 (3-21) 

where Υ   is given by the learning sliding mode 

 
Υ = 𝐽   + 𝑄𝑟2𝐾𝑟2  + 𝑄 2𝐾 2∫     

′
𝑡

0

 (3-45) 

It follows that  

 
 ̂  = −𝐹 (

𝜕𝒥 

𝜕 ̂ 

) = 𝐹 
𝑇𝜇 [𝐽   + 𝑄𝑟2𝐾𝑟2  + 𝑄 2𝐾 2 ∫     

′
𝑡

0

] − 𝜅 𝐹  ̂  (3-46) 

with the requirement for stability that, 

[𝐾𝑟2 + 𝐶(휂, 휂 ) − 𝐽Λ ] > 0 

and design learning parameters matrices 𝐹 = 𝐹 
𝑇 > 0 and 𝜅 > 0. 

Notice that this learning law guarantees that Υ  and Υ  are minimized, which 

in turn imply that    and     are minimized. The second term in the learning objective 
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function is added to guarantee the boundedness of ANN weights, also referred to as 

persistence of excitation in the literature. The choice of 𝜅 governs the tradeoff between 

performance and boundedness.  

3.3.2 Stability Analysis 

This part presents the main result in this section. 

Theorem 3.1  

 Given the system described by Eq. 3-16 and Eq. 3-21, and control inputs given 

by Eq. 3-15 and Eq. 3-19 with the conditions in Eq. 3-22 satisfied. And given the ANN 

structures defined by Eq. 3-14 and Eq. 3-20, with ANN learning Laws Eq. 3-43 and 

Eq. 3-46, with design parameters 𝐹 , 𝐹 , 𝜅, 𝒬, and 𝜚 chosen such that 

 𝐹 , 𝐹2 > 0 

𝜅 > 0 

𝜚 > 0 

𝑄𝑟 ≥
 

𝐾𝑣‖𝜇‖ 
+ 𝜚 

𝑄 =   

(3-47) 

Then,   ,   ,  ̃𝑥𝑦𝑧 , and  ̃𝜙𝜃𝜓 are stable in the Lyapunov sense around zero. Moreover,   , 

and    are guaranteed to be arbitrarily small with transient dynamics shaped by the 

choice of Λ , Λ , 𝐾𝑟1 , 𝐾𝑟2 , 𝐾 𝑟1  and 𝐾 𝑟2 . 
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Proof. 

 Consider the Lyapunov function candidate given by 

 
𝕃 =

 

2
  
𝑇𝑚  +

 

2
[∫   

𝑇  ′
𝑡

0

] 𝐾  [∫     
′

𝑡

0

] +
 

2
[∫   

𝑇  ′
𝑡

0

] 𝐾  [∫     
′

𝑡

0

]

+
 

2
  
𝑇𝐽  +

 

2
{ ̃𝑥𝑦𝑧

𝑇 𝐹−  ̃𝑥𝑦𝑧} +
 

2
{ ̃𝜙𝜃𝜓

𝑇 𝐹−  ̃𝜙𝜃𝜓} 

(3-48) 

The time derivative along the solution of the dynamic system is given by: 

 
𝕃 =   

𝑇𝑚   +   
𝑇𝐽   +

 

2
  
𝑇𝐽   +   

𝑇𝐾  [∫     
′

𝑡

0

] +   
𝑇𝐾  [∫     

′
𝑡

0

]

+ { ̃𝑇𝐹−  ̃ } 

(3-49) 

with  ̃ = [ ̃𝑥𝑦𝑧 ,  ̃𝜙𝜃𝜓]
𝑇
, and 𝐹 =     (𝐹  , 𝐹 ). Recall that augmented error dynamic of 

the system is given by 

𝑚    =  ̃𝑥𝑦𝑧 − (𝐾𝑟1 −𝑚Λ )  − 𝐾 1 ∫    
′

𝑡

0

  

and  

𝐽    =   ̃𝜙𝜃𝜓 − {𝐾𝑟2 + 𝐶(휂, 휂 ) − 𝐽Λ }   − 𝐾 2 ∫    
′

𝑡

0

 

Substitute Eq. 3-16, and Eq. 3-21 into Eq. 3-49, we get  
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𝕃 =   
𝑇 { ̃𝑥𝑦𝑧 − (𝐾𝑟1 −𝑚Λ )  − 𝐾 1 ∫    

′

𝑡

0

  } +
 

2
  
𝑇𝐽   

+   
𝑇 { ̃𝜙𝜃𝜓 − {𝐾𝑟2 + 𝐶(휂, 휂 ) − 𝐽Λ }   − 𝐾 2 ∫    

′

𝑡

0

}

+   
𝑇𝐾  [∫     

′
𝑡

0

] +   
𝑇𝐾  [∫     

′
𝑡

0

] + { ̃𝑇𝐹−  ̃ } 

(3-50) 

The following steps show straightforward mathematical simplifications for Eq. 

3-50; first, integral terms cancel out 

𝕃 =   
𝑇{ ̃𝑥𝑦𝑧 − (𝐾𝑟1 −𝑚Λ )  }  +   

𝑇{ ̃𝜙𝜃𝜓 − {𝐾𝑟2 + 𝐶(휂, 휂 ) − 𝐽Λ }   }  +
 

2
  
𝑇𝐽   

+ { ̃𝑇𝐹−  ̃ } 

Then, similar terms are collected and organized in a matrix form, as follows 

𝕃 = {−  
𝑇(𝐾𝑟1 −𝑚Λ )  +   

𝑇 ̃𝑥𝑦𝑧  }  +
 

2
  
𝑇𝐽   

+ {  
𝑇 ̃𝜙𝜃𝜓 −   

𝑇(𝐾𝑟2 − 𝐽Λ )   −   
𝑇𝐶(휂, 휂 )   }  + { ̃𝑇𝐹−  ̃ } 

𝕃 = {−  
𝑇(𝐾𝑟1 −𝑚Λ )  −   

𝑇(𝐾𝑟2 − 𝐽Λ )     }  +
 

2
  
𝑇𝐽   −   

𝑇𝐶(휂, 휂 )   +   
𝑇 ̃𝜙𝜃𝜓

𝑇 +   
𝑇 ̃𝑥𝑦𝑧

𝑇

+ { ̃𝑇𝐹−  ̃ } 

𝕃 = − 𝑇𝐾𝑣  +
 

2
 𝑇𝐽𝐶𝑣 +   

𝑇 ̃𝜙𝜃𝜓
𝑇 +   

𝑇 ̃𝑥𝑦𝑧
𝑇 + { ̃𝑇𝐹−  ̃ } 
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The derivative of the Lyapunov function candidate is then given by 

 
𝕃 = − 𝑇𝐾𝑣  +

 

2
 𝑇𝐽𝐶𝑣 + { ̃𝑇𝐹−  ̃ +   ̃𝜙𝜃𝜓

𝑇    
𝑇 +  ̃𝑥𝑦𝑧

𝑇    
𝑇} (3-51) 

where 

𝐾𝑣 = [
𝐾𝑟1 −𝑚Λ 0

0 𝐾𝑟2 − 𝐽Λ 
] , 𝐽𝐶𝑣 = [

0 0

0
 

2
(𝐽 − 2𝐶(휂, 휂 ))

] 

 = [  ,   ]
𝑇 

It is shown in [55] that with the choice of 𝐶(휂, 휂 ) in (5), (
𝑑

𝑑𝑡
𝐽(휂) − 2𝐶(휂, 휂 )) is 

skew-symmetric. Accordingly, the second term in Eq. 3-51 is eliminated. The time 

derivative of the ANN estimation error is calculated as follows 

 ̃ = (
  ̃

  ̂
)

𝑇
  ̂

  
 

  ̂

  
≜ −𝐹

𝜕𝒥

𝜕 ̂
= −𝐹 {Υ

 Υ

  ̂
+ 𝜅 ̂} 

 ̃ = −𝐹 (
  ̃

  ̂
)

𝑇

Υ
 Υ

  ̂
− 𝐹 (

  ̃

  ̂
)

𝑇

𝜅 ̂ 

 ̃ = −𝐹(−𝜇𝑇)Υ(−𝜇) − 𝐹(−𝜇𝑇)𝜅 ̂ 

  ̃ = −𝐹(𝜇𝑇)Υ(𝜇) + 𝐹(𝜇𝑇)𝜅 ̂ (3-52) 

where  ̂ = [ ̂ ,  ̂ ]
𝑇
, 𝜇 =     (𝜇 , 𝜇 ), and Υ = [Υ , Υ ]

𝑇. 
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The learning sliding mode, Υ, has a direct relationship with aerodynamics 

uncertainty estimation error,  ̃, which is produced by the substitution of dynamics 

sliding mode Eq. 3-16 and Eq. 3-27 into, Υ 

 

Υ =  ̃ + (𝑄𝑟 − 𝜚)𝐾𝑟 + (𝑄 −  )𝐾 ∫   ′
𝑡

0

 (3-53) 

Here, 𝐾𝑟 =     (𝐾𝑟1 , 𝐾𝑟2), 𝐾 =     (𝐾 1 , 𝐾 2) 𝑄𝑟 =     (𝑄𝑟1 , 𝑄𝑟2), and 𝑄 =

    (𝑄 1 , 𝑄 2). With 0 < 𝜚 <  , derived from the stability requirement Eq. 3-22.  

Substituting Eq. 3-53 into Eq. 3-52, we get  

 

 ̃ = −𝐹𝜇𝑇𝜇 [ ̃ + (𝑄𝑟 − 𝜚)𝐾𝑟 + (𝑄 −  )𝐾 ∫   ′
𝑡

0

] + 𝐹𝜇𝜅 ̂ (3-54) 

and Accordingly,  

{ ̃𝑇𝐹−  ̃ } =  ̃𝑇 {−𝜇𝑇𝜇 [ ̃ + (𝑄𝑟 − 𝜚)𝐾𝑟 + (𝑄 −  )𝐾 ∫   ′
𝑡

0

] + 𝜇𝜅 ̂} 

{ ̃𝑇𝐹−  ̃ } = {−𝜇𝑇𝜇 [ ̃𝑇 ̃ +  ̃𝑇(𝑄𝑟 − 𝜚)𝐾𝑟  +  ̃𝑇(𝑄 −  )𝐾 ∫   ′
𝑡

0

] +  ̃𝑇𝜇𝜅 ̂} 

 

{ ̃𝑇𝐹−  ̃ } = {−𝜇𝑇𝜇 ̃𝑇 ̃ − 𝜇𝑇𝜇 ̃𝑇(𝑄 −  )𝐾 ∫   ′
𝑡

0

+  ̃𝑇𝜇𝜅 ̂}

− 𝜇𝑇𝜇 ̃𝑇(𝑄𝑟 − 𝜚)𝐾𝑟  

(3-55) 

Now, substituting Eq. 3-55 into the time derivative of the Lyapunov function 

candidate, Eq. 3-51. We get, 
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𝕃 = − 𝑇𝐾𝑣  +

 

2
 𝑇𝐽𝐶𝑣 

+ {{−𝜇𝑇𝜇 ̃𝑇 ̃ − 𝜇𝑇𝜇 ̃𝑇(𝑄 −  )𝐾 ∫   ′
𝑡

0

+  ̃𝑇𝜇𝜅 ̂}

− 𝜇𝑇𝜇 ̃𝑇(𝑄𝑟 − 𝜚)𝐾𝑟 +  ̃𝜙𝜃𝜓
𝑇    

𝑇 +  ̃𝑥𝑦𝑧
𝑇    

𝑇} 

(3-56) 

The last three terms in right hand side of Eq. 3-56 are dealt-with as follows 

−𝜇𝑇𝜇 ̃𝑇(𝑄𝑟 − 𝜚)𝐾𝑟 +  𝑇 ̃ 

with  𝑇 ̃ = [  
𝑇 ,   

𝑇][ ̃𝜉 ,  ̃𝜂]
𝑇
. Recall the upper limit on the norm of   given by 

‖ ‖ ≤
‖ ̃‖

𝐾𝑣
 

and, the definition of 𝑄𝑟 

𝑄𝑟 >   

Then,  

 
−‖𝜇𝑇𝜇 ̃𝑇(𝑄𝑟 − 𝜚)𝐾𝑟 −  𝑇 ̃‖ ≤ −‖ ̃‖

 
(
𝜇𝑇𝜇(𝑄𝑟 − 𝜚)

𝜚
−

 

𝜚𝐾𝑟
)

≤ −𝜌‖ ̃‖
 
 

(3-57) 

with the choice of 𝑄 =  , the integral term in Eq. 3-56 vanishes. And the fifth term 

in Eq. 3-56 has the following inequality apply 

 
‖ ̂‖ ≤

‖𝜇𝑇𝜇Υ‖

𝜅
 (3-58) 
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Which, with the limit on the magnitude of  , implies   

 
‖ ̂‖ ≤

‖𝜇𝑇𝜇Ã‖

𝜅
 (3-59) 

Accordingly, the time derivative of the Lyapunov candidate function is given by 

 𝕃 ≤ −𝐾𝑣‖ ‖
 − 𝜌‖ ̃‖

 
 (3-60) 

Which is strictly negative semidefinite, with 𝜌 > 0. ∎ 

Based on the Lyapunov theorem (2-1), the closed loop system is asymptotically 

stable in the lyapunov sense around the state space origin, when the design 

parameters are selected according to Eq. 3-47. 
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CHAPTER 4 

ANN CONTROLLER IMPLEMENTATION 

This chapter presents the details of the practical implementation of the 

developed ANN controller. First, the experiment apparatus is described, and the 

required setup is presented. Second, the method followed for trajectory measurement 

is discussed. Afterwards, numerical simulation results for the ANN controller when 

used for Qball trajectory control are provided. Several unknown aerodynamic and 

model uncertainties were applied to the numerical simulation to test for the 

effectiveness of the proposed ANN structure with the developed learning algorithm, 

while stability conditions are satisfied. Finally, real time experimental results are 

shown for the Qball trajectory control with several different environment setups, 

when using the predesigned PID controller, and the developed ANN controller.  

4.1 QUANSER’S QBALL-X4 

Quanser is Canadian company founded in 1989, which specializes on the 

creation of real-time platforms for education and research. Their products are 

supported by MatLab ® and Simulink ® with the required addition of Quanser’s 

QUARC ® software.  

The Quanser Qball-X4, shown in Figure 4.1, is an UAV quadrotor designed for 

indoors laboratory setup. It represents a flexible, open-architecture platform that can 

be used to develop and apply controllers and control algorithms. A fiber carbon 

protective cage is built around the Qball, to protect its components and people from 
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collision damage. To measure onboard sensors and drive thrust motors, the Qball-X4 

utilizes Quanser's onboard avionics data acquisition card (DAQ), the HiQ, and the 

embedded Gumstix computer. The HiQ DAQ is a high-resolution Inertial 

Measurement Unit (IMU) and avionics Input/Output (I/O) card designed to 

accommodate a wide variety of research applications e.g. attitude estimation and 

trajectory control. The high precision aero sensory board, HiQ, is equipped with 3-

axis accelerometer, 3-axis gyroscope, 3-axis magnetometer, 2 barometers, an altitude 

SONAR sensor, and additional input ports for extra inputs. Table 4-1 summarizes 

the technical specifications of the Qball-X4 quadrotor [82].  

QUARC ®, Quanser's real-time control software, allows to rapidly develop and 

test controllers on actual hardware through a MATLAB/Simulink interface. 

QUARC's open-architecture hardware and the extensive Simulink block set provide 

a powerful controls development tool. QUARC can target the Gumstix embedded 

computer, automatically generate the code, and execute controllers onboard the 

vehicle. During flight, while the controller is executing on the Gumstix, code 

parameters could be tuned, and sensor measurements could be observed in real-time 

from a host ground station computer (PC or laptop) [82]. It is worth mentioning that 

Simulink offers the same capability in the Simulink Real-Time toolbox. 

The interface to the Qball-X4 is MATLAB Simulink with QUARC. The 

controllers are developed in Simulink with QUARC on the host computer, and these 

models are downloaded and compiled into executables on the target, the Gumstix.  
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For more details about the Quanser Qball-X4, the reader is advised to check 

[82]. 

 

 

Figure 4.1 Qball-X4 

 

In this research, the hardware and the software of the Qball are significantly 

modified. To replace Quanser’s expensive off-the-shelf OptiTrack localization system, 

a Simultaneous Localization and Mapping (SLAM) sensor is integrated with the 

Qball to constantly measure its location in an indoors setup. This modification makes 

Qball completely inclusive, so, it could be operated anywhere in the presence of the 
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Host computer with the running modules, without the need to setup the tracking 

system every time the environment changes. In addition, this modification allows to 

extend Qball’s flying zone, which is usually confined by the OptiTrack’s cameras field 

of view. The software provided by Quanser is modified to support the hardware 

modification. 

 

Table 4-1 Qball-X4 Features 

Parameter Description 

Power 2 LiPo rechargeable batteries, 3000 mAh, 

3-Cell (upgraded from original) 

On-board Computer Gumstix Verdex, with integrated 802.11 

b/g/n WiFi 

Outputs 10 PWM (servo motor outputs) 

gyroscope 3-axis reconfigurable range for ±75°/ , 

± 50°/ , or ±300°/ . With a resolution of 

0.0 25°/ / 𝑆𝐵 at the used range of ±75°/  

Accelerometer 3-axis accelerometer, resolution 3.33 𝑚 /

 𝑆𝐵 

Pressure 2 pressure sensors, absolute and relative 

pressure 

Sonar Input 4 Maxbotix sonar inputs 

Input Power 10-20 V 

Extra I/O 11 reconfigurable digital I/O 

2 TTL serial ports 

Serial GPS input 

Propellers 4 of APC 10x4.7 

Motors 4 of E-Flite Park 480 (1020 Kv) 
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Table 4-2 Qball-X4 Properties 

Parameter Value Unit 

𝑱𝒙𝒙 0.03 𝑘 .𝑚  

𝑱𝒚𝒚 0.03 𝑘 .𝑚  

𝑱𝒛𝒛 0.04 𝑘 .𝑚  

𝒎  .4 𝑘  

𝒍 0.2 𝑚 

𝑭 𝐾𝑓
 

 +  
 𝑁/𝑃 𝑀 

𝒘  5    /    

𝑬𝒙𝒕.𝑫𝒊𝒂. 0.74 𝑚 

𝑲𝑭  20 𝑁/𝑃 𝑀 

𝑲𝒚 4 𝑁.𝑚/𝑃 𝑀 

 

4.1.2 Qball’s Software Module 

Two Simulink models are required to operate the Qball, namely: 

Host_Jostick_TYPE_B.mdl, and qball_x4_control_v4_Ahmed_Sam.mdl. The former 

runs on the host computer and communicates Joystick measurement to the Qball, 

while the latter acts as the main control module for the quadrotor and is executed on 

the Qball’s onboard computer. 
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Figure 4.2 Host Joystick Module 

 

Figure 4.2 shows the Simulink model for the Host Joystick Module. The 

Joystick Commands block acquires commands from the serially connected joystick to 

the host computer, while the Send Joystick to Qball-X4 sends joystick commands to 

the embedded computer on Qball via WiFi. The OptiTrack block is not active in the 

original set up, as this feature was not purchased with the platform.  
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Figure 4.3 Qball-X4 Controller Module 

 

The Qball-X4 controller Module, shown in Figure 4.3, on the other hand, 

initializes and configures the onboard aero sensory board through the HiQ block. The 

Joystick from host block receives joystick inputs and position measurements (when 

available). Pitch Controller, Roll Controller and Yaw Controller blocks apply an LQ 

designed PID controller for the respective attitude dynamics. The Calculate Pitch Roll 

Heading block is responsible for calculating attitude angles using IMU 

measurements with the aid of complimentary filters. The measurements from 
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Accelerometer and Gyroscope are used for estimating pitch and roll angles, while 

magnetometer is used for calculating heading angle. The Control Mode block is used 

to switch between open-loop control (via the joystick), and closed-loop control when 

trajectory measurement is available. A switcher is dedicated to each trajectory 

degree-of-freedom; namely 𝑋, 𝑌, 𝑍, and 𝜓. Therefore, the Qball could be operated with 

a closed-loop set up for one degree-of-freedom, e.g. height, while the rest are set to 

open-loop control, and vice versa.  

The Position Command block provides trajectory commands when the closed-

loop set up is selected. This block also contains the altitude PID controller, which uses 

the sonar sensor, mounted at the bottom of the cage, for height measurement. The 𝑋, 

𝑌, and 𝜓 controllers are embedded inside the Pitch controller, Roll controller, and 

Yaw controller blocks respectively. 

The Control signal Mixing block combines PWM commands from the different 

degrees of freedom to send four signals to each motor. 

Finally, the Save Data block saves all selected measurements to a data file on 

MatLab’s directory. 

4.1.3 Qball PID Controller 

Figures 4.4, 4.5, 4.6 show the Qball controller designed by Quanser. Attitude 

Proportional Integral Derivative (PID) controllers are designed using Linear 

Quadratic (LQ) method with the experimentally realized Qball model [82]. The gains 

for the X, and Y Proportional Derivative (PD) controllers are experimentally 
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designed. The altitude and the heading are controlled with experimentally designed 

PID controllers as well. Table 4-3 shows the gain values for Quanser’s controller 

parameters. 

 

Table 4-3 Qball PID Controller Parameters 

Parameter Value 

Attitude Controller (roll and pitch) 

𝑲𝒑 0.062 

𝑲𝒅 0.0 3 

𝑲𝑰 0 

𝑲𝒗  . 07 

Heading Controller 

𝑲𝒑 0.03 6 

𝑲𝒅 0.0 5 

Position Controller 

𝑲𝒑 0.67 

𝑲𝒅 0.36 

Altitude Controller 

𝑲𝒑 0.0062 

𝑲𝒅 0.0078 

𝑲𝑰 0.002  
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Figure 4.4 Quanser's Trajectory and Attitude Controllers 
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Figure 4.5 Quanser's Altitude Controller 
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Figure 4.6 Quanser's Heading Controller 
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4.2 TRAJECTORY MEASUREMENT 

Mobile robots position measurement is an active research area [83] [84]. 

Solutions for more precision, reliability, and efficiency are sought to control a wide 

variety of mobile robots for an even wider spectrum of applications.  Sensors including 

Light Distance and Ranging (LIDAR), Sound Navigation and Ranging (SONAR), 

Inertial Measurement Units (IMUs), wheel encoders, Radio Distance and Ranging 

(RADAR), Infrared Ranging (IR), Global Positioning Systems (GPS), Optical Flow, 

Ultra-Wideband Range Localization, Optical Tracking, and Simultaneous 

Localization and Mapping (SLAM), and combination of many sensors together have 

been used in mobile robot systems for better localization. 

In this research, SLAM is used for trajectory measurement. SLAM is a 

fundamental solution for mobile robot’s navigation that allows for localization using 

primarily vision. Its main purpose is to allow mobile robots to incrementally build a 

consistent map for the environment while simultaneously determining their location 

within this map, when randomly placed at an unknown environment and unknown 

location [85]. The theoretical and conceptual level of SLAM is considered a solved 

problem [85]. However, sustainable issues remain in the practical realization of the 

algorithm. 

SLAM has been widely implemented in different domains including outdoor, 

indoor, underwater, and airborne robot systems. There are many developed SLAM 

algorithms with open source codes available for research and development [85] [86]. 
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Vision based sensors are found more accurate and reliable than GPS in outdoor 

domains, and, more importantly, they provide a good solution for GPS denied 

domains. The major advantage of SLAM is that it increases the level of independency 

of mobile robots on external hardware, and allows to build completely autonomous 

systems, in contrast to other methods. However, there are some practical issue that 

researchers are still working on to increase the robustness of SLAM. It is important 

to mention that the application of UAV imposes tougher requirements for trajectory 

measurement, as UAVs are inherently unstable and contain very rapid dynamics, 

accordingly, localization has to be very fast and accurate to avoid eminent damage. 

In this research, the Parrot S.L.A.M Dunk developer’s kit, shown in Figure 4.7, 

is used to measure the Qball trajectory. Parrot is a French manufacturing company, 

specialized in technologies involving voice recognition and signal processing for 

embedded products as well as remotely controlled drones [87]. 

The SLAM Dunk developer’s kit is an integrated hardware and software for 

advanced navigation applications, such as drones and robotics. The Parrot SLAM 

Dunk allows to access integrated sensors optimized to delivering synchronized data 

through the standard Robotics Operating System (ROS) framework. It utilizes two 

wide angle stereo cameras to generate a depth map for the environment, in real-time, 

and integrates that with the measurement of IMU embedded sensors, using a SLAM 

algorithm to compute the position in space in real-time, without GPS, and to map the 

environment in three dimensions in point cloud [88]. 
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SLAM Dunk comes with an onboard computer with NVIDIA Tagra K1 

microprocessor that runs on Ubuntu with ROS compatible Software Development Kit 

(SDK). This allows for the development of complex algorithms within the SLAM 

Dunk, without the need for extra computer. 

 

Figure 4.7 Parrot S.L.A.M Dunk 

 

Communication with SLAM Dunk could be established through serial or WiFi 

connection, as a ROS node. 

Due to the limited accessibility to the Qball onboard computer, the serial 

communication was not possible. Accordingly, the Host computer is connected to the 

SLAM Dunk through WiFi, and Simulink’s ROS toolbox is used to create a 

‘subscribing node’ to acquire position data. This Simulink/ROS model is integrated 

with the Qball Joystick module, so as to send the data one-time from the Host 
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computer to the target computer. Figure 4.8 shows the modified Qball Joystick SLAM 

dunk model: Host_Joystick_TYPE_B_AhmedSlam_Dunk_Rate_Sync. In doing this 

merge, the following challenges had to be addressed: 

• Position information is sent through WiFi communication, which introduces 

the problem of lost data packets, and accordingly leads to performance glitch. 

This issue is managed by optimizing the WiFi connection.   

• For the two models to work together, namely SLAM Dunk and Joystick models, 

the ‘normal’ simulation mode was necessary. Which introduces the problem of 

execution-time’s synchrony with real-time; as the simulation computational-

time is completely different than real-time, usually faster depending on the 

complexity of the Simulink code and the computer computational capability. 

For this reason, a Time Pacer block is used in the model to synchronize the 

simulation-time with real-time. 

• The sampling rate for the SLAM algorithm is set at 60 Hz, which is much 

slower than the Joystick’s model sampling frequency of 100 Hz. This difference 

in sampling rate is resolved by using Simulink’s ‘enable’ block which allows to 

hold the previous value until it is updated at the 60 Hz frequency. 

SLAM Dunk sensor’s power supply is directly connected to the power 

distribution board of the Qball. This adds more power requirement to the Qball 

batteries, accordingly, Qball’s batteries were upgraded to 3000 mAh from 2700 mAh. 

Notice that the battery upgrade adds more payload to the Qball in addition to what 

the SLAM Dunk sensor and its holder add, which exceeds the limit for the Qball 
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payload. Accordingly, the run time is significantly reduced to about 5 minutes, from 

the original 10 minutes. However, no actuator saturation is observed, which could 

have led to results invalidation.  A holder is 3D printed to mount the SLAM Dunk 

sensor right below the batteries compartment. 

Figures 4.8 and 4.9 show the modified joystick module and the SLAM dunk 

measurement module respectively. The SLAM dunk Position Measurement block is 

added to the original joystick module to connect with Parrot’s SLAM dunk and 

acquire trajectory measurements. This block creates a Subscribing “ROS” node that 

communicates between the host computer and the Parrot SLAM dunk through WiFi. 

The Topic subscribed for is Pose, which provides Parrot’s SALM Dunk inertial 3D 

position, and inertial attitude angles about the inertial coordinate system. X, Y, Z, 

and 𝜓 are the only measurements used for the Qball control. The remaining attitude 

measurements are acquired at a higher sampling rate and higher precision from the 

onboard IMU. It is important to note that the SLAM algorithm runs at 60 Hz 

sampling rate, while the Qball controller runs at 200 Hz on the onboard computer. 

The Set Parameter block is used to set the Video Mode for the Parrot sensor to 

60 fps, as it is defaulted at 30 fps. This set up is chosen for a quicker position 

sensitivity. The Rate Sync block synchronizes simulation’s run-time with Real-Time, 

as these two times are different when Simulink runs on normal mode, as previously 

mentioned.  
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Figure 4.8 Modified Joystick Module 

 

Figure 4.9 SLAM Dunk Position Measurement Submodule 
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The coordinate system used for the OptiTrack tracking, shown in Figure 4.10 

(a), is different than that of the Qball, shown in Figure 4.10 (b). Accordingly, the 

Qball-X4 controller module is modified to match tracking coordinates with Qball’s 

system. 

 

 

 

 

 

 

 

 

(a) OptiTrack Coordinate system (b) Qball Coordinate system 

 

 

𝑌 

𝑋 (Front) 𝑍 

𝑌 

𝑍 

𝑋 (Front) 

 

Figure 4.10 OptiTrack vs Qball Coordinate System 

 

4.3 QBALL ANN CONTROLLER MODULE  

The developed Qball ANN controller module is shown in Figure 4.11. The three 

trajectory controller blocks and the three attitude controller blocks are replaced with 

Mekky’s ANN Controller. Unlike the original controller, quadrotors states are 

vectored, making 휁 for trajectory states and 휂 for attitude states, then, the ANN 

controller is implemented in two loops; an outer trajectory loop, and an inner attitude 

loop, as depicted in Figure 3.3.  
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The ANN controller design parameters for the experiments are chosen as: Λ =

    (0.72, 0.72, 0.46 5), 𝐾𝑟1 =     (4.7 74, 4.7 74, 2.4), 𝐾 1 =     ( .4,  .4,  .68), Λ =

    (5.2025, 5.2025, 2. 070), 𝐾𝑟2 =     (0.624, 0.624, 0.24), and 𝐾 2 =

    (0.0083, 0.0083, 0. ). ANN parameters are selected as: 𝑄𝑟1 = 𝑄𝑟2 =  .2, 𝑄 1 = 𝑄 2 =

 , 𝐹 =     (0.063 ,0.063 ,0.036), 𝐹 =     (0.009,0.009,0.009) and 𝜅 = 𝜅 = 0.02. 

Notice that these values satisfy the stability conditions in Eq. 3-47. 

As shown in chapter 3, attitude commands are corrected for the heading angle, then 

the designed controller for attitude angles calculated based on the inertial frame is 

used to control attitude angles based of the body frame.  

The small angle assumption is used for the calculation of 𝜙𝑑   and 휃𝑑, which is 

typical for the Qball, as it is designed for small attitude angles with limits at 

±0.08    ,  attitude commands on the body frame become: 

 𝜙𝑐𝑏 = 𝜙𝑐𝑖
∗ cos(𝜓) − 휃𝑐𝑖 ∗ sin(𝜓)  (4-1) 

And 

 휃𝑐𝑏 = 휃𝑐𝑖 ∗ cos(𝜓) + 𝜙𝑐𝑖 ∗ sin(𝜓) (4-2) 

Small angle assumption is not applicable for the heading angle as it could vary 

for a wide range of values depending on commanded yaw angle 𝜓𝑐. 

The challenges faced when implementing the ANN controller are: 

• Computational capacity of the embedded computer: it was very challenging to 

get the ANN controller coded on the Qball’s computer, as its processing power 

is limited. Accordingly, the coding of the controller had to be optimized for the 
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least computational effort. Therefore, it was important to study alternative 

ways to code the same operation and chose the least computationally extensive 

method. On the other hand, the sampling rate had to be reduced to 80 Hz from 

the original 200 Hz on the PID controller. The reduction in the sampling rate 

limits the capability of the ANNs, as ANNs learn at each sample step, 

especially for the fast attitude dynamics. To achieve higher sampling rates, 

and accordingly, better performance, a more powerful onboard computer will 

be required. 

• Motors saturation limit, and propellers thrust capacity: These factors lead to 

the limitation on the controller design parameters. And accordingly, smaller 

gain values were necessary, thus slower design dynamics could be achieved, in 

contrast to simulation results. To achieve high levels of performance, motor 

and propeller combination should be upgraded.  

• Sensor noise: measurement noise was a very important issue to deal with. This 

could be the reason why online trained ANN controllers have not been 

experimentally successful. Here, Low pass filters were used when calculating 

derivative of state. The cut off frequencies of the filters had to be carefully 

chosen, such that, interference with actual dynamics is minimized. Better, 

more expensive, sensors could lead to better performance, as low pass filters 

introduce delays that interfere with performance. The tradeoff between noise 

interference and filter dynamics influence is crucial to control performance. 
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Figure 4.11 Qball ANN Controller Module 

 

4.4 SIMULATION RESULTS 

A nonlinear simulation is carried out for the proposed controller when applied 

to the Qball-X4 quadrotor. This simulation is developed for the purpose of testing the 

universality of the proposed ANN structure and the developed learning algorithm. 

Therefore, some ideal conditions are assumed in carrying out the simulation to put 

extra emphasizes on the tested properties. These assumptions include: 

1- Inertial attitude angles and attitude rates are available for measurement. 
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2- Absence of measurement noise. 

3- Sampling rate of 100 Hz. 

4- Position measurements are available at 100 Hz. 

Quadrotor parameters are shown in Table 4-2. Five cases are reported in this 

dissertation to show the robustness of the developed learning controller; first: when 

no aerodynamic uncertainties are applied, second: in the presence of model 

uncertainty, assuming that the mass of the quadcopter is roughly estimated, and the 

actual quadrotor is 1 kg heavier than the estimated value, third: when time 

dependent aerodynamic forces are applied, with different magnitudes and 

frequencies in the X, Y, and Z directions, fourth: when state dependent aerodynamic 

forces are applied, and finally: when a fixed wind force, with different X and Y 

components, is applied. The desired trajectory is generated using the method followed 

in [53]; which is developed in [89] so as to reduce jerk. The results of the five cases 

are discussed in the following. 

Controller Design Parameters are chosen as: Λ =     (20, 20, 20), 𝐾𝑟1 =

    (58, 58, 58), 𝐾 1 =     (29, 29. 29), Λ =     ( 0,  0,  0), 𝐾𝑟2 =

    (30.4, 30.4, 30.4), and 𝐾 2 =     ( 5.2,  5.2,  5.2). ANN parameters are selected 

as: 𝑄𝑟1 = 𝑄𝑟2 =  .2, 𝑄 1 = 𝑄 2 =  , 𝐹 = 𝐹 =     (0.9,0.9,0.9), and 𝜅 = 𝜅 = 0. 5. 

 Case 1: No unknown aerodynamics or model uncertainties applied to the 

quadrotor dynamics. The dynamic response of the quadrotor is shown in Figure 4.12. 

The first ANN has learned some function Figure 4.12 (d), however, the force values 
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are very small and accordingly, they are negligible. On the other hand, the attitude 

ANN have calculated fairly considerable values; that corresponds to the complex 

dynamics shown in Eq. 3-20 with  𝜙𝜃𝜓 = 0. Figure 4.12 (f) shows the boundedness of 

attitude ANN weights. The weights of the translational ANN are not presented for 

their very small values. 

  Case 2: Model uncertainty, mass error. In this case, the quadrotor is 1 kg 

heavier than its assumed value for controller design. Figure 4.13 shows the dynamic 

response of the quadrotor in this case. Notice that the force ANN, shown in Figure 

4.13 (d), have captured effectively the model uncertainty of -9.81 N (Red dashed line) 

in the Z direction. The force ANN weights are shown in Figure 4.13 (f). Furthermore, 

the trajectory error, shown in Figure 4.13 (a), quickly recovers from its high initial 

value, compared with case 1. 

  Case 3: Sinusoidal time dependent unknown aerodynamics. Three sinusoidal 

waves with different magnitudes and frequencies in the X, Y and Z directions are 

applied. The actual applied aerodynamics are given by  𝑥𝑦𝑧 = [0.5 ∗ sin(3 ∗  ) ,  .5 ∗

sin( ) , sin(0.5 ∗  )]𝑇𝑁. The performance of the quadrotor with this type of uncertainty 

is shown in Figure 4.14. Notice that the unknown aerodynamics are effectively 

captured by the ANN, as shown in Figure 4.14 (d). The force ANN weights are 

bounded as shown in Figure 4.14 (f). Despite the absence of unknown moment 

aerodynamics, the second ANN estimates the complex terms in the attitude dynamic 

equation.  



89 
 

  Case 4: State dependent unknown aerodynamics. The applied aerodynamic 

forces are given by  𝑥𝑦𝑧 = [2 ∗ 𝑋 , 0.5 ∗ 𝑌 , 𝑍 ]
𝑇
𝑁. Figure 4.15 shows the dynamic 

performance of the quadrotor with such aerodynamic forces. The force ANN has 

captured the unknown aerodynamics, as shown in Figure 4.15 (d), with bounded 

weights, as shown in Figure 4.15 (f). 

  Case 5: Fixed wind force in X and Y directions. The applied force in this case 

is  𝑥𝑦𝑧 = [− , 0.5, 0]𝑇𝑁. Figure 4.16 shows the performance of the quadrotor. Notice, 

that unknown forces are effectively estimated by the ANN, as shown in Figure 4.16 

(d), with bounded weights.  

  In general, the overall performance in all cases is very good, including in the 

cases where the unknown part of the dynamics has no straightforward relationship 

with system’s states.  These results show the effectiveness of the proposed ANN 

structure and the developed learning algorithm.  
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Figure 4.12 (a) Simulation Results for Case 1: Translational Response 

 

Figure 4.12 (b) Simulation Results for Case 1: Attitude Response 
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Figure 4.12 (c) Simulation Results for Case 1: Control Force and Torque Inputs 

 

Figure 4.12 (d) Simulation Results for Case 1: (d) ANN Force Realization 
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Figure 4.12 (e) Simulation Results for Case 1: ANN Moment realization 

 

Figure 4.12 (f) Simulation Results for Case 1: Attitude ANN Weights 
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Figure 4.13 (a) Simulation Results for Case 2: Translational Response 

 

Figure 4.13 (b) Simulation Results for Case 2: Attitude Response 
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Figure 4.13 (c) Simulation Results for Case 2: Control Force and Torque Inputs 

 

Figure 4.13 (d) Simulation Results for Case 2: ANN Force Realization 
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Figure 4.13 (e) Simulation Results for Case 2: ANN Moment Realization 

 

Figure 4.13 (f) Simulation Results for Case 2: Force ANN Weights 
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Figure 4.14 (a) Simulation Results for Case 3: Translational Response 

 

Figure 4.14 (b) Simulation Results for Case 3: Attitude Response 
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Figure 4.14 (c) Simulation Results for Case 3: Control Force and Torque Inputs 

 

Figure 4.14 (d) Simulation Results for Case 3: ANN Force Realization 
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Figure 4.14 (e) Simulation Results for Case 3: ANN Moment Realization 

 

Figure 4.14 (f) Simulation Results for Case 3: Force ANN Weights 
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Figure 4.15 (a) Simulation Results for Case 4: Translational Response 

 

Figure 4.15 (b) Simulation Results for Case 4: Attitude Response 
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Figure 4.15 (c) Simulation Results for Case 4: Control Force and Torque Inputs 

 

Figure 4.15 (d) Simulation Results for Case 4: ANN Force Realization 
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Figure 4.15 (e) Simulation Results for Case 4: ANN Moment Realization 

 

Figure 4.15 (f) Simulation Results for Case 4: Force ANN Weights 
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Figure 4.16 (a) Simulation Results for Case 5: Translational Response 

 

Figure 4.16 (b) Simulation Results for Case 5: Attitude Response 
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Figure 4.16 (c) Simulation Results for Case 5: Control Force and Torque Inputs 

 

Figure 4.16 (d) Simulation Results for Case 5: ANN Force Realization 
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Figure 4.16 (e) Simulation Results for Case 5: Force ANN Weights 

 

Figure 4.16 (f) Simulation Results for Case 5: Moment ANN Weights 
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4.5 EXPERIMENTAL RESULTS 

The laboratory in which experiments were conducted represents an inherent 

confined environment, as it was not designed for UAV research. In addition, 

experiments were performed with a focus on low altitude to increase exposure to 

ground effects. Therefore, even when Qball is flying away from walls, it still 

experiences aerodynamics uncertainties associated with confined environment. 

It is important to mention that the original Qball PID controller is designed 

for the original hardware, which is modified by the upgrade of the batteries (weight), 

and the Parrot SLAM dunk sensor (weight plus CG shift). This hardware modification 

introduces two factors that have not been accounted for in the controller design: 

Weight uncertainty, and center of gravity location uncertainty. Therefore, Qball’s 

performance under the PID controller is expected to deteriorate from its designed 

performance. Despite the fact that an improvement in performance could be achieved 

by adjusting controller parameters, the original Qball controller gains were not 

optimized for these modifications. Thus, the author wants to clarify that the original 

controller is used here as baseline controller to evaluate the performance of ANN, 

rather than to evaluate its design.  

Experiment results presented here are designed to push the quadrotor to its 

physical limits to test stability, robustness, and effectiveness of the ANN controller. 

Eight cases were conducted, and the results are summarized in Table 4-4, and are 

detailed as follows: 
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4.5.1 No Walls Nearby 

The environment setup in this case is shown in Figure 4.17. Qball is 

commanded to hover at different altitudes when there are no nearby walls. This 

description is loosely used here to describe the situation when there is no barrier 

within about 2 m around the Qball. Figure 4.18 shows the response in this case when 

the ANN controller is used. 

 

 

Figure 4.17 Environment Setup for Case 1: No Nearby Wall 

 

It can be seen, in Figure 4.18 (e), that the X force identified by the ANN is 

shifted towards a positive value, with a mean of 0.62 𝑁. This shift could be caused by 

either the CG shift resulting from the SLAM sensor and the batteries, or because of 
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an asymmetry on the longitudinal thrust mechanism. The Y component of the 

identified force is shifted towards a negative value, with a mean of −0.26 𝑁, which 

could be caused by the same reasons causing the longitudinal shift. The realized Z 

force indicates that the Qball is heavier than expected. This result was expected 

because of the additional weight added by the SLAM sensor, SLAM’s holder and the 

batteries upgrade. Nevertheless, it should be noted that this realized weight 

difference is not the exact weight change, as the integral term in the altitude 

controller should have compensated for some of the weight difference. The cyclic 

nature of the three identified forces is an indication for the presence of aerodynamic 

fluctuations associated with being in a confined environment, despite the fact that 

there are no nearby barriers.  

The torque ANN has captured a negative pitch torque and a positive roll 

torque, these are attributed to the IMU misalignment, CG shift, and thrust system 

asymmetry. As it is observed that Roll and Pitch measurements deviate from zero 

when the Qball is leveled. 

Notice that the errors in X and Y decrease with time, as the ANNs learn more 

with time. Also notice the shift in the pitch and roll responses which is corrected 

through time.      

This environment almost represents the ideal condition for PID controller. 

However, two factors make it not ideal: 

1- The hardware changes. 
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2- The laboratory environment. As typical UAV research laboratories have higher 

roofs and bigger empty arenas. 

Figure 4.19 shows Qball’s response for the first case when using the PID 

controller. The performance is very good, however, pitch and roll commands needed 

to bang between their limits to maintain the position. In addition, notice the shift in 

pitch and roll response, which align with the identified torques by the ANN’s. 

Trajectory tracking errors are oscillating at a fixed magnitude, because the PID 

controller is not adaptive. 

 

Figure 4.18 (a) Experimental Results for Case 1 Using ANN Controller: 

Translational Response 
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Figure 4.18 (b) Experimental Results for Case 1 Using ANN Controller: Position 

Errors 

 

Figure 4.18 (c) Experimental Results for Case 1 Using ANN Controller: Roll Angle 

Response 
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Figure 4.18 (d) Experimental Results for Case 1 Using ANN Controller: Pitch Angle 

Response 

 

Figure 4.18 (e) Experimental Results for Case 1 Using ANN Controller: ANN 

Realized Forces 
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Figure 4.18 (f) Experimental Results for Case 1 Using ANN Controller: ANN 

Realized Moments 

 

Figure 4.19 (a) Experimental Results for Case 1 Using PID Controller: Translational 

Response 
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Figure 4.19 (b) Experimental Results for Case 1 Using PID Controller: Position 

Errors 

 

Figure 4.19 (c) Experimental Results for Case 1 Using PID Controller: Roll Angle 

Response 
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Figure 4.19 (d) Experimental Results for Case 1 Using PID Controller: Pitch Angle 

Response 

 

4.5.2 One Wall Nearby 

The setup in this case is shown in Figure 4.20. The Qball is required to hover 

close to a wall at a low altitude. It is observed that this case represents the second 

most challenging to control the Qball. Figures 4.21 and 4.22 show the time response 

of the Qball in this case. The PID controller has failed to maintain stability for 180 

seconds, as the Qball became unstable and crash on the wall. While, the ANN 

controller could maintain stability for about 500 seconds. Notice that the error in Y 

direction is reducing significantly with time. Force ANNs identified forces in the X, 

Y, and Z directions. The Y component of the force has a greater magnitude, with a 
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mean of −0.3665 𝑁, towards the wall with more oscillations compared with the No-

wall case; this indicates that the wall is pulling the quadrotor towards it. The reason 

for the exponential increase in the Z force is the safety tethers, as one of them was 

trapped under the wall (table) and pulled the Qball downwards. The identified 

torques in the 휃 and 𝜙 have changed directions compared to that of the first case. The 

roll torque is negative, which means that the Qball is trying to roll away from the 

wall. This could be caused by the reflected air at the corner of the wall and the ground, 

as Qball is flying at low altitude, which creates more thrust on the right propeller 

when the Qball rolls.  

 

 

Figure 4.20 Environment Setup for Case 2: One Wall  
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Figure 4.21 (a) Experimental Results for Case 2 Using ANN Controller: 

Translational Response 

 

Figure 4.21 (b) Experimental Results for Case 2 Using ANN Controller: Position 

Errors 



116 
 

 

Figure 4.21 (c) Experimental Results for Case 2 Using ANN Controller: Roll Angle 

Response 

 

Figure 4.21 (d) Experimental Results for Case 2 Using ANN Controller: Pitch Angle 

Response 
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Figure 4.21 (e) Experimental Results for Case 2 Using ANN Controller: ANN 

Realized Forces 

 

Figure 4.21 (f) Experimental Results for Case 2 Using ANN Controller: ANN 

Realized Moments 
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Figure 4.22 (a) Experimental Results for Case 2 Using PID Controller: Translational 

Response 

 

Figure 4.22 (b) Experimental Results for Case 2 Using PID Controller: Position 

Errors 
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Figure 4.22 (c) Experimental Results for Case 2 Using PID Controller: Roll Angle 

Response 

 

Figure 4.22 (d) Experimental Results for Case 2 Using PID Controller: Pitch Angle 

Response   
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4.5.3 Corner of Two Walls 

In this case, the Qball is operated in a corner of two walls as shown in Figure 

4.23. Figures 4.24 and 4.25, show the hover response when flying in a low altitude. 

The ANN controller could maintain stability and compensate for aerodynamics 

uncertainties. This fact is reflected by the fewer oscillations on the X, Y directions 

when compared with that of the PID controller. It is seen too, that the ANN required 

attitude commands well below saturation limits to maintain position, while the PID 

controller required attitude angles beyond saturation limits. Notice that force and 

torque ANNs have captured different behaviors for aerodynamics uncertainties than 

in previous cases. The smaller X force is an indication that the wall behind the 

quadrotor is applying a negative force that balanced, to some extent, the positive force 

caused by CG shift and thrust asymmetry which was identified in previous runs. Also, 

it is seen that the identified Y force has less fluctuations compared with the one wall 

case. Figure 4.24 (f) shows how the pitch torque in this case has a less negative value 

compared with the no wall case, as a result of the back wall. On the other hand, roll 

torque agrees with that of the one wall case, and is in a different direction compared 

with no wall case.  Notice that in the case of PID attitude controller, Figure 4.25 (c) 

and (d), the roll command saturates more on the negative side, away from the wall, 

which indicates that the Qball is constantly drifting towards the wall. While the pitch 

command is almost balanced, as the CG shift which is pushing the Qball forward 

balances the negative force applied by the back wall which tends to pull the Qball 

backwards. 
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Figure 4.23 Environment Setup for Case 3: Corner of Two Walls 

 

 

Figure 4.24 (a) Experimental Results for Case 3 Using ANN Controller: 

Translational Response 
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Figure 4.24 (b) Experimental Results for Case 3 Using ANN Controller: Position 

Errors 

 

Figure 4.24 (c) Experimental Results for Case 3 Using ANN Controller: Roll Angle 

Response 



123 
 

 

Figure 4.24 (d) Experimental Results for Case 3 Using ANN Controller: Pitch Angle 

Response 

 

Figure 4.24 (e) Experimental Results for Case 3 Using ANN Controller: ANN 

Realized Forces 
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Figure 4.24 (f) Experimental Results for Case 3 Using ANN Controller: ANN 

Realized Moments 

 

Figure 4.25 (a) Experimental Results for Case 3 Using PID Controller: Translational 

Response 
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Figure 4.25 (b) Experimental Results for Case 3 Using PID Controller: Position 

Errors 

 

Figure 4.25 (c) Experimental Results for Case 3 Using PID Controller: Roll Angle 

Response 
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Figure 4.25 (d) Experimental Results for Case 3 Using PID Controller: Pitch Angle 

Response 
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4.5.4 Between Chairs (Typical Confined Environment) 

The environment setup in this case is shown in Figure 4.26. The Qball is 

commanded to hover at different altitudes starting at a very low value until it flies 

higher than the height of the chairs. This case is considered as a typical confined 

environment, because it represents the case when the quadrotor is flying around 

objects that are not necessarily solid or symmetric. As a result, air is expected to 

behave in chaotic nature. 

Figures 4.27 and 4.28 show the time response of the Qball when controlled by 

the ANNs and the PID respectively. Performance is generally very good in both cases. 

It is seen that the force ANN has captured an X component that is shifted forward, a 

Y component that is fluctuating about the zero, and a Z component that looks similar 

to previous cases, this is a very good indication for ANNs consistency. X and Y forces 

are fluctuating with bigger magnitudes compared with previous runs with a clear 

irregularity, associated with irregularity of the environment. Notice that torques 

identified by the ANN change with altitude; which is expected as a result of the 

change of chairs geometry with altitude. 

Notice too, that the PID controller is trapped in a limit cycle to maintain 

position, with attitude commands saturating back and forth.  
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Figure 4.26 Environment Setup for Case 4: Middle of Chair Rows 

 

 

Figure 4.27 (a) Experimental Results for Case 4 Using ANN Controller: 

Translational Response 
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Figure 4.27 (b) Experimental Results for Case 4 Using ANN Controller: Position 

Errors 

 

Figure 4.27 (c) Experimental Results for Case 4 Using ANN Controller: Roll Angle 

Response 
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Figure 4.27 (d) Experimental Results for Case 4 Using ANN Controller: Pitch Angle 

Response 

 

Figure 4.27 (e) Experimental Results for Case 4 Using ANN Controller: ANN 

Realized Forces 
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Figure 4.27 (f) Experimental Results for Case 4 Using ANN Controller: ANN 

Realized Moments 

 

Figure 4.28 (a) Experimental Results for Case 4 Using PID Controller: Translational 

Response 
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Figure 4.28 (b) Experimental Results for Case 4 Using PID Controller: Position 

Errors 

 

Figure 4.28 (c) Experimental Results for Case 4 Using PID Controller: Roll Angle 

Response 
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Figure 4.28 (d) Experimental Results for Case 4 Using PID Controller: Pitch Angle 

Response 
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4.5.5 Tunnel-Like Environment 

This is the most challenging setup performed in this research. Challenges faced 

were far beyond controller adaptation and uncertainty compensation. The main 

difficulty was associated with Computer Vision, it was very difficult to create a tunnel 

path and have the SLAM sensor work properly at the same time. Two problems arose: 

Light level, and view repetition. Because of those two problems position measurement 

jump abruptly between values with significant difference, up to meters, which lead 

to the controller trying to compensate for them and crash the Qball. Figure 4.29 shows 

the final setup for this case: it is similar to that of the case of Between-The-Chairs 

with the addition of foam boards on the sides of part of the passage. This setup turned 

out to be a very good scenario, as flight performance could be tested when entering, 

and exiting the tunnel as well as inside the tunnel. The Qball is first lifted off inside 

the tunnel (between the boards), let to hover for a while, then an X command is 

applied to send the Qball away from the boards, and then sent back to the tunnel 

again. 

Figures 4.30 and 4.31 show the response in this setup when using the ANN 

and PID controllers respectively. This case showed a significant difference between 

the two controllers. When the PID is used, the Qball could not maintain the X position 

and was oscillating back and forth with a large magnitude, until it surpasses the 

boards. However, the Y response looked better because the Qball was not maintained 

inside the tunnel. When the Qball is sent away from the boards the X response 

improved, this is a sign of the significant influence of the aerodynamics associated 
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with the tunnel. The Qball crashed on the side of the tunnel at the end of the PID 

run. The ANN controller was able to maintain the Qball inside the tunnel, 

compensate for the aerodynamic forces on the X, Y and Z directions, and improve 

performance with time. Notice the change of ANN forces when the Qball is out of the 

tunnel, and more importantly, how they maintained their identified functions when 

quickly sent back in the tunnel. This shows that ANNs provide function estimation 

rather than instant adaptation for changes, such is a manifestation of the difference 

between learning and adaptation. 

 

 

Figure 4.29 Environment Setup for Case 5: Tunnel-Like 
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Figure 4.30 (a) Experimental Results for Case 5 Using ANN Controller: 

Translational Response 

 

Figure 4.30 (b) Experimental Results for Case 5 Using ANN Controller: Position 

Errors 
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Figure 4.30 (c) Experimental Results for Case 5 Using ANN Controller: Roll Angle 

Response 

 

Figure 4.30 (d) Experimental Results for Case 5 Using ANN Controller: Pitch Angle 

Response 
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Figure 4.30 (e) Experimental Results for Case 5 Using ANN Controller: ANN 

Realized Forces 

 

Figure 4.30 (f) Experimental Results for Case 5 Using ANN Controller: ANN 

Realized Moments 
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Figure 4.31 (a) Experimental Results for Case 5 Using PID Controller: Translational 

Response 

 

Figure 4.31 (b) Experimental Results for Case 5 Using PID Controller: Position 

Errors 
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Figure 4.31 (c) Experimental Results for Case 5 Using PID Controller: Roll Angle 

Response 

 

Figure 4.31 (d) Experimental Results for Case 5 Using PID Controller: Pitch Angle 

Response 
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4.5.6 Added Actuator Dynamics 

It has been observed in previous runs that there are visible ‘cyclic’ fluctuations 

on the Z response. These fluctuations are partly caused by fluctuations in position 

measurement, associated with trajectory sensory, and partly by the actuator being 

slower than the controller. The ANN controller commands forces and expects 

propellers to be able to instantly deliver these forces. It is well known in the field of 

nonlinear systems that such delays (nonlinearities) cause limit cycle behavior [90]. 

The actuator dynamics for the Qball are experimentally identified by Quanser and 

the model is provided in the Qball manual, Table 4-2. Therefore, it is decided to 

include actuator dynamics in the controller module to fix these fluctuations. Figures 

4.33 shows the time response for the case of between the chairs with the inclusion of 

actuator dynamics, Figure 4.32. Notice the significant reduction in altitude 

fluctuations. 

It is important to mention that the drawback of including actuator model in 

the altitude controller is that it makes altitude dynamics very responsive and, as a 

result, very fragile for position sensory glitches. In several occasions when the SLAM 

sensor loses track of position it holds the previous ‘known’ value until it retrieves 

position information then a sudden change in altitude happens, and accordingly, the 

Qball reacts very quickly and crashes. To avoid that, some safety features are added 

to the ANN controller module.  

The general performance in this case is considered satisfactory. 
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Figure 4.32 Environment Setup for Case 6: Added Actuator Dynamics 

 

 

Figure 4.33 (a) Experimental Results for Case 6 Using ANN Controller: 

Translational Response 
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Figure 4.33 (b) Experimental Results for Case 6 Using ANN Controller: Position 

Errors 

 

Figure 4.33 (c) Experimental Results for Case 6 Using ANN Controller: Roll Angle 

Response 
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Figure 4.33 (d) Experimental Results for Case 6 Using ANN Controller: Pitch Angle 

Response 

 

Figure 4.33 (e) Experimental Results for Case 6 Using ANN Controller: ANN 

Realized Forces 
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Figure 4.33 (f) Experimental Results for Case 6 Using ANN Controller: ANN 

Realized Moments 
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4.5.7 One-Wall, Redone (With Damaged Propeller)  

The one wall case presented previously is redone with some adjustments to the 

setup and the inclusion of actuator dynamics for the ANN controller. A longer wall is 

made and the Qball is commanded to hover at a low altitude close to the wall, Figure 

4.34. 

Figures 4.36, 4.37 and 4.38 show the response for this case with the ANN, PID 

(200 Hz), and PID (80 Hz) respectively.  

Notice that for all previous runs the Qball controller is set to 200 Hz sampling 

rate when the PID controller is used, while it is set to 80 Hz when the ANN controller 

is used. This case is intended to show the effect of sampling rate on performance, in 

addition to performance evaluation for the specific set up.  

Notice that the X force has more positive magnitude compared with that of 

case 2, with a mean of 0.867 𝑁 compared with 0.5276 𝑁 for case 2, this looked 

skeptical, as both cases, roughly, share the same setup. Upon investigation, the front 

blade was found slightly damaged, as seen in Figure 4.35. This damage occurred at a 

crash that happened in the process of adding actuator dynamics to the ANN 

controller, before running case 6, however, it was not identified in the results of case 

6 as the aerodynamic forces associated with that setup (between the chairs) dominated 

the effect of propeller damage. When the front propeller is damaged, it produces less 

lift and accordingly the quadrotor tends to pitch forward, and as a result it generates 

a positive X force. 
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Notice in the PID case that the Qball balances about a positive X value instead 

of zero. Which validates the conclusion drawn by the ANN. Also notice that the pitch 

command in this case saturates on the negative side but not on the positive side, 

which also shows that the Qball tends to pitch forward, as a result of the broken 

propeller. 

The response in the ANN case shows a good performance, which indicates that 

the controller could successfully reject uncertainties associated with environment 

setup and propeller damage. However, in both cases a successful run was achieved. 

Notice the significant deterioration in PID performance when the sampling 

rate is reduced to match that of the ANN. The low sampling rate has a great effect on 

attitude control, as attitude has much faster dynamics compared with trajectory 

dynamics which updates at 60 Hz at the SLAM dunk sensor. 

The bang-bang nature of the roll control is a sign of instability, as the limits 

for the roll angles are adjusted carefully by Quanser to prevent instability. However, 

notice that the PID have produced better error RMS than ANN, as shown in Table 4-

4. Therefore, the Qball performance in this case is a measure for the ban-bang 

controller rather than the PID’s. And thus, if these attitude hard-limits are removed, 

the PID would not be able to maintain stability. It has been observed too, that 

quadrotor’s performance with the ANN controller looks visually steadier than the 

PID.  
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Figure 4.34 Environment Setup for Case 7: Modified One-Wall with Actuator 

Dynamics 

 

 

Figure 4.35 Damaged Propeller 
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Figure 4.36 (a) Experimental Results for Case 7 Using ANN Controller: 

Translational Response 

 

Figure 4.36 (b) Experimental Results for Case 7 Using ANN Controller: Position 

Errors 
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Figure 4.36 (c) Experimental Results for Case 7 Using ANN Controller: Roll Angle 

Response 

 

Figure 4.36 (d) Experimental Results for Case 7 Using ANN Controller: Pitch Angle 

Response 



151 
 

 

Figure 4.36 (e) Experimental Results for Case 7 Using ANN Controller: ANN 

Realized Forces 

 

Figure 4.36 (f) Experimental Results for Case 7 Using ANN Controller: ANN 

Realized Moments 
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Figure 4.37 (a) Experimental Results for Case 7 Using PID Controller (200 Hz): 

Translational Response 

 

Figure 4.37 (b) Experimental Results for Case 7 Using PID Controller (200 Hz): 

Position Errors 
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Figure 4.37 (c) Experimental Results for Case 7 Using PID Controller (200 Hz): Roll 

Angle Response 

 

Figure 4.37 (d) Experimental Results for Case 7 Using PID Controller (200 Hz): 

Pitch Angle Response 
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Figure 4.38 (a) Experimental Results for Case 7 Using PID Controller (80 Hz): 

Translational Response 

 

Figure 4.38 (b) Experimental Results for Case 7 Using PID Controller (80 Hz): 

Position Errors 
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Figure 4.38 (c) Experimental Results for Case 7 Using PID Controller (80 Hz): Roll 

Angle Response 

 

Figure 4.38 (d) Experimental Results for Case 7 Using PID Controller (80 Hz): Pitch 

Angle Response 
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4.5.8 Trajectory Following, with Fixed Propellers, and Added Actuator 

Dynamics  

In this case the damaged propeller is fixed, and actuator dynamics are 

included, and the Qball is operated in a random position in the laboratory.  Qball is 

given commands in X, Y and Z in this case to evaluate the general performance. The 

response of the Qball with the ANN controller is shown in Figure 4.40. At the 

maximum X command, the right back tether was pulling the Qball back, and it can 

be seen, in Figure 4.40 (e), that the ANN was reacting to the force applied by the 

tether. Comparing this response with PID’s, Figure 4.39, it is clear that the ANN 

performance is satisfactory. A very important benefit of the ANN controller is the 

consistency in performance and robustness, a property the PID controller lacked.    
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Figure 4.39 (a) Experimental Results for Case 8 Using PID Controller: Translational 

Response 

 

Figure 4.39 (b) Experimental Results for Case 8 Using PID Controller: Position 

Errors 
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Figure 4.39 (c) Experimental Results for Case 8 Using PID Controller: Roll Angle 

Response 

 

Figure 4.39 (d) Experimental Results for Case 8 Using PID Controller: Pitch Angle 

Response 
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Figure 4.40 (a) Experimental Results for Case 8 Using ANN Controller: 

Translational Response 

 

Figure 4.40 (b) Experimental Results for Case 8 Using ANN Controller: Position 

Errors 
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Figure 4.40 (c) Experimental Results for Case 8 Using ANN Controller: Roll Angle 

Response 

 

Figure 4.40 (d) Experimental Results for Case 8 Using ANN Controller: Pitch Angle 

Response 
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Figure 4.40 (e) Experimental Results for Case 8 Using ANN Controller: ANN 

Realized Forces 

 

Figure 4.40 (f) Experimental Results for Case 8 Using ANN Controller: ANN 

Realized Moments 
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Table 4-4 Summery of Experimental Error RMS 

Case ANN Controller PID Controller 

 𝑋 (𝑚) 𝑌(𝑚) 𝑍(𝑚) 𝜙(   ) 휃(   ) 𝑋 (𝑚) 𝑌(𝑚) 𝑍(𝑚) 𝜙(   ) 휃(   ) 

No Wall 0.058 0.070 0.022 0.013 0.013 0.075 0.082 0.029 0.033 0.039 

One Wall 0.054 0.129 0.019 0.023 0.013 0.085 0.101 0.027 0.034 0.028 

Corner of 

Two Walls 
0.068 0.078 0.017 0.013 0.013 0.065 0.059 0.02 0.027 0.035 

Between 

Chairs 
0.065 0.063 0.024 0.013 0.013 0.085 0.083 0.031 0.034 0.032 

Tunnel-

Like 
0.061 0.122 0.036 0.025 0.023 0.251 0.169 0.073 0.040 0.058 

Added 

Actuator 

Dynamics 

0.055 0.060 0.019 0.012 0.008 NA NA NA NA NA 

One Wall 

(redone) 
0.076 0.133 0.023 0.025 0.017 

0.106 

0.101 

0.087 

0.102 

0.029 

0.032 

0.035 

0.036 

0.026 

0.028 

Trajectory 

Tracking 
0.057 0.068 0.023 0.015 0.013 0.124 0.070 0.083 0.038 0.0425 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

In this chapter, conclusions from this dissertation are discussed, and some 

recommendations are presented in terms of what research work could be done as a 

continuation of this research. 

5.1 CONCLUSIONS 

Quadrotors are proven to provide practical solutions for many applications, as 

a result, a significant amount of research is drawn towards them in both industrial 

and academic establishments. One important application is to make quadrotors 

execute indoor missions in hazardous conditions. While quadrotors could operate in 

unreachable places, they are difficult to manage in confined environments, because 

of the associated complex aerodynamic forces and moments. Researches approached 

the issue of quadrotor maneuverability in confined environment following three 

schools of thought; 1) Development of a high-fidelity model, 2) Sensory integration, 

and 3) Development of a robust and adaptive controller.  

In this research, an ANN controller is designed to improve quadrotors flight 

control in confined environment. The proposed controller makes use of the modeling 

capability of ANNs to compensate for the aerodynamic uncertainties associated with 

confined environments. In addition, two nonlinear control methodologies are followed 

to design the controller, and to allow for shaping desired closed loop performance 

based on control theories. 
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In an effort to make this dissertation inclusive, required background in the 

fields of AI and control systems is provided. Hence, an introduction about the use of 

AI in the field of control systems is provided, with a focus on ANNs. Advantages and 

challenges of using such techniques in control systems are discussed. Furthermore, a 

brief theoretical background for the utilized control methodologies, sliding mode and 

backstepping, is presented. In addition, the Lyapunov stability theorem, used for 

stability analysis, and relevant stability definitions are provided.  

A systematic design procedure for the developed controller when applied to 

quadrotors is presented, with the aim of improving stability, robustness, and 

performance when flying in confined environments.  The step-by-step procedure could 

be followed to design controllers for nonlinear systems with similar form.   

A novel ANN structure is proposed that improves learning speed and accuracy 

of the Linear-In-the-Parameters ANNs. This structure takes into account the linear 

relationship between system’s inputs and outputs, in addition, to the nonlinear 

relationship. A novel ANN learning algorithm is developed to insure boundedness of 

the weights and accuracy of the ANNs output. The learning problem is tackled as an 

optimization problem with an objective function chosen based on sliding mode 

methodology. Lyapunov stability theorem is used to define the limits of the design 

parameters for the guaranteed stability of the closed loop system. The effectiveness 

of the proposed ANN structure when combined with the developed learning algorithm 

is presented using numerical simulation when applied to quadrotors. It is shown that 

the developed learning mechanism works efficiently in estimating different types of 
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model and aerodynamic uncertainties. Finally, experimental results of the proposed 

controller when applied to quadrotor flight control in confined environment are 

presented. Challenges that limit the practical application of the developed ANN 

controller for quadrotors are discussed. In the process of controller implementation 

on the Qball quadrotor, a SLAM sensor is integrated with the Qball to allow for 

trajectory measurement, and necessary software modifications are made for the Qball 

modules to accommodate for the additional hardware. This modification increases the 

level of autonomy of the Qball, expands its range of operation, and replaces the 

expensive OptiTrack system. Experimental results showed the robustness, and 

effectiveness of the designed controller. The novelty of this research is in the proposed 

ANN structure, the developed learning algorithm, and the successful real-time 

implementation of the online ANN controller in the application of quadrotor 

trajectory control. Upon finishing this research, the following conclusions are drawn: 

The developed ANN controller required minimal knowledge of the system’s 

dynamics. However, because of its intuitive structure, the desired closed loop 

performance of the system could be naturally shaped by the choice of controller gains. 

The closed loop system, herein, consists of three first-order subsystems; the ANN 

learning dynamics, sliding mode hyperplane switching dynamics, and the sliding 

mode dynamics. Each one of these subsystems has its own gains that determine how 

fast it reaches steady state, while enforcing the relationships defined in theorem 3.1 

for stability. In general, the learning dynamics should be faster than the hyperplane 

switching dynamics, which in turn, should be faster than the sliding mode dynamics. 
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It is important to note that the transient response of the closed loop system is 

influenced by the three dynamics at the time, until the learning and hyperplane 

switching dynamics settle, then the dynamical behavior of the system is solely 

defined by the sliding mode. 

The proposed ANN structure combines the merits of one-layer-ANNs and 

multilayer-ANNs of learning speed and learning performance, with the choice of the 

general stochastic basis function. This structure is found to be very effective when 

combined with the developed learning algorithm. One important feature of this 

combination is that it only requires knowledge of explanatory variables of the sought 

unknown functions to be implemented. These explanatory variables are application 

dependent, and they are well documented for each application. In the case of 

unknown explanatory variable, all available measurements could be fed to the ANNs 

as inputs, and accordingly less influential variables would automatically achieve near 

zero weights when approximation is complete.  

The designed ANN controller was successfully tested, in real-time experiment, 

on the flight control of quadrotors in confined environment. Experimental results 

showed that the benefits of the ANN controller go beyond closed loop performance, 

robustness, and stability in the presence of unknown uncertainties, to providing a 

model, in real-time, for the uncertainties experienced during flight, in the specific 

setup. Realized models could be studied later to better understand the influence of 

unknown aerodynamics associated with the flight environment. And furthermore, 

they could be implemented with numerical simulations to perform realistic tests for 
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developed controllers when applied to quadrotors. This benefit provides an important 

solution to the first research school of thought in the field of quadrotor control, which 

focuses on advancing quadrotors control by seeking better models for them.   

Limitations, such as, onboard computational power, and sensor measurement 

noise are found to be very influential when applying ANN controllers to real-time 

systems. Computational power, for example, provides a restriction to the choice of 

sampling rate at which the ANN learns, which in turn leads to slow learning. This 

limitation is found especially important in the application of quadrotor because of its 

fast attitude dynamics, which requires fast learning. Measurement noise on the other 

hand, affects learning in the sense that it appears to the ANN as real disturbances 

that should be accounted for. In addition, noise affects the performance of the 

nonlinear controller, especially when the time derivative of these measurements is 

required. These two factors are believed to be the reason for the lack of experimental 

results in the literature for the application of ANN controllers in quadrotors 

trajectory control, as they are very challenging to be successfully implemented in real 

time experimentation.  
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5.2 RECOMMENDATIONS 

The developed controller is found to provide a very promising solution for the 

field of control of nonlinear systems, as it could achieve high levels of robustness and 

performance, however, more research is needed to analyze its performance and test 

its limits, especially in practical applications. Therefore, it is recommended that this 

controller be applied to different nonlinear systems, and to develop a solid closed form 

procedure for the use of such controller with nonlinear systems in different forms. 

It is recommended to test the designed controller on different quadrotors to 

confirm its globality. As it provides the important advantage of requiring minimal 

adjustments when applied for different quadrotors. Upon confirmation, this 

controller could be installed in a black-box with few parameters to adjust and it would 

work with any quadrotor.  

In addition to robustness, the ANN controller produced mathematical models 

for the aerodynamic forces and moments associated with confined environment. 

Accordingly, it is recommended to operate the Qball with the ANN controller and 

collect the produced ANN models for a wide spectrum of environment setups and 

publish these functions to be used for quadrotor controller testing. With the aid of 

these models, quadrotors could be tested using numerical simulations with the 

presence of realistic disturbances; which is lacking in the literature. 

More research is still needed in the field of ANNs in control systems, especially 

in the aspect of practical application. ANNs are shown to be very effective in 
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compensating for a wide spectrum of unknown uncertainties, as they represent global 

estimators. However, the practical application of ANNs in control systems is proven 

to be very challenging. The research in this field is expected to produce rapid and 

innovative results because of the availability of newly developed powerful, and yet 

small, onboard PCs, and the current advancement in sensory technologies.  

The SLAM algorithm, used in SLAM dunk, needs some improvement. As some 

performance issues were observed during experimental implementation that need to 

be addressed, such as, localization deficiency due to low lighting condition, moving 

objects, repetition of features in the field of view, and the limited sampling rate. The 

reliability of SLAM dunk algorithm is crucial, as the performance of the Qball 

depends heavily on Parrot’s SLAM dunk performance in providing consistent 

trajectory measurement.  

The Parrot SLAM dunk kit comes with a powerful onboard PC, which is 

integrated with an IMU and additional sensors. Accordingly, it is recommended to 

code Qball’s modules on SLAM dunk’s PC to make use of its computational power, on 

one hand, and to make use of its IMU sensors, on the other hand. This would allow 

for the implementation of very complex controller algorithms with very high sampling 

rates, in contrast to Qball’s onboard PC which has a limited processing power.  

The Qball with the Parrot SLAM dunk sensor represents a potential apparatus 

for research in the field of autonomy and robotics. Accordingly, it is recommended to 

conduct extra research towards developing a fully autonomous UAV robot using the 

Qball, to deliver indoors missions. There are very interesting research subjects that 
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could be conducted using this device, such as, the development and implementation 

of obstacle avoidance algorithms, navigation and control algorithms, and acrobatic 

maneuvers ...etc. 
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