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ABSTRACT

COMPUTATIONAL MODELING OF FACIAL RESPONSE FOR
DETECTING DIFFERENTIAL TRAITS IN AUTISM SPECTRUM

DISORDERS

Manar D. Samad
Old Dominion University, 2016

Director: Dr. Khan M. Iftekharuddin

This dissertation proposes novel computational modeling and computer vision methods

for the analysis and discovery of differential traits in subjects with Autism Spectrum Dis-

orders (ASD) using video and three-dimensional (3D) images of face and facial expressions.

ASD is a neurodevelopmental disorder that impairs an individual’s nonverbal communica-

tion skills. This work studies ASD from the pathophysiology of facial expressions which

may manifest atypical responses in the face. State-of-the-art psychophysical studies mostly

employ näıve human raters to visually score atypical facial responses of individuals with

ASD, which may be subjective, tedious, and error prone. A few quantitative studies use

intrusive sensors on the face of the subjects with ASD, which in turn, may inhibit or bias

the natural facial responses of these subjects. This dissertation proposes non-intrusive

computer vision methods to alleviate these limitations in the investigation for differential

traits from the spontaneous facial responses of individuals with ASD. Two IRB-approved

psychophysical studies are performed involving two groups of age-matched subjects: one

for subjects diagnosed with ASD and the other for subjects who are typically-developing

(TD). The facial responses of the subjects are computed from their facial images using the

proposed computational models and then statistically analyzed to infer about the differen-

tial traits for the group with ASD. A novel computational model is proposed to represent

the large volume of 3D facial data in a small pose-invariant Frenet frame-based feature

space. The inherent pose-invariant property of the proposed features alleviates the need

for an expensive 3D face registration in the pre-processing step. The proposed modeling

framework is not only computationally efficient but also offers competitive performance in

3D face and facial expression recognition tasks when compared with that of the state-of-

the-art methods. This computational model is applied in the first experiment to quantify

subtle facial muscle response from the geometry of 3D facial data. Results show a statis-

tically significant asymmetry in specific pair of facial muscle activation (p<0.05) for the

group with ASD, which suggests the presence of a psychophysical trait (also known as an



’oddity’) in the facial expressions. For the first time in the ASD literature, the facial action

coding system (FACS) is employed to classify the spontaneous facial responses based on

facial action units (FAUs). Statistical analyses reveal significantly (p<0.01) higher preva-

lence of smile expression (FAU 12) for the ASD group when compared with the TD group.

The high prevalence of smile has co-occurred with significantly averted gaze (p<0.05) in the

group with ASD, which is indicative of an impaired reciprocal communication. The metric

associated with incongruent facial and visual responses suggests a behavioral biomarker

for ASD. The second experiment shows a higher prevalence of mouth frown (FAU 15) and

significantly lower correlations between the activation of several FAU pairs (p<0.05) in the

group with ASD when compared with the TD group. The proposed computational mod-

eling in this dissertation offers promising biomarkers, which may aid in early detection of

subtle ASD-related traits, and thus enable an effective intervention strategy in the future.
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RF= Random Forest, NB=Näıve Bayes, SVM =Support Vector Machine with
radial basis function kernel). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

9. Comparison of 3D-FR verification rates at 0.1% FAR and Rank-1 recognition
rates using the FRGC v2.0 dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

10. Cost of computation in registering and processing 3D facial data. ICP = Iter-
ative Closest Point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

11. Comparison of 3D-FER % accuracy for six basic expressions using the BU-
3DFE dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

12. Advantages of the proposed framework compared to existing methods using the
BU-3DFE dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

13. Parametric values to extract 3D radial curves related to different facial muscle
regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



ix

14. ANOVA tests for different lip actions in the ASD and TD groups.The upper
and lower triangles for within-group column show the results for the TD and
the ASD group, respectively. The significant p values are highlighted. . . . . . . . . . 64

15. Post-hoc Tucky tests on mean change in curvature (MCC) of different 3D facial
curves representing different facial muscles. The upper and lower triangles show
the results from the control and ASD groups, respectively. The significant p
values are highlighted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

16. 10-fold cross-validation accuracies in % for classifying five facial action units
from 2D and 3D facial data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

17. ANOVA test results on the percentage of prevalence of FAUs with the 2D facial
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

18. ANOVA test results on the percentage of prevalence of FAUs for 3D facial data. 83

19. ANOVA test results. The upper triangle is for the group with ASD, the lower
triangle is for the TD group. The significant inferences are highlighted. No =
No region, UP = upper part, LP = lower part of the face, GUI = graphical
user interface, PVGD = percentage of voluntary gaze duration. . . . . . . . . . . . . . . 85

20. FACS-based annotation of facial actions tracked by the facial motion capture
system (faceshift). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

21. Temporal breakdown of the proposed four-minute long Avatar-based audio-
visual stimuli (narrated in Appendix C) for context and emotional content. . . . . 93

22. Summary of the research findings related to the proposed methods and the
group with ASD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



x

LIST OF FIGURES

Figure Page

1. Spatial locations of different facial muscles contributing to the activation of
different facial action units using FACS1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2. Hardware-software setup for the experiments. (a) Subject sitting before the
68” TV display and the positioning of the camera sensors. (b) Two monitors
behind the scene to launch and coordinate the experiments. . . . . . . . . . . . . . . . . . 21

3. Three non-intrusive sensors and their outputs for visualization. (a) 3dMD cam-
era for 3D facial imaging, (b) Mirametrix eye-tracker showing the eye-gaze map,
(c) Sony EVI-D70 video camera for videotaping of the face. . . . . . . . . . . . . . . . . . 22

4. Preparation work for a session and timing diagram for automated sequence of
actions in a trial of the study for the first experiment. . . . . . . . . . . . . . . . . . . . . . . 23

5. Data collection in the second experiment. (a) Tracking of facial key points of
the actor to map on the 3D deformable model for rendering the stimuli and
collecting subject data. (b) The animated Avatar’s face used for the audio-
visual stimulus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6. Sample 3D facial images with emotional expressions (from the Binghamton 3D
facial dataset) randomly displayed in different trials of the first experiment. 3D
faces portraying (a) happiness, (b) anger, (c) fear, (d) sadness, (e) surprise, and
(f) disgust expressions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7. Data acquisition steps for the second experiment. Top: Rendering of Avatar-
based audio-visual stimuli mapping the persona of an actor. Bottom: Collecting
facial activation data of subjects in response to audio-visual stimuli. . . . . . . . . . 26

8. Stimuli and tasks for the first experimental study. (a) First session: Facial
expression recognition task from 3D facial expression stimuli, the colorful GUI
at the bottom has buttons to click and choose about the displayed expression.
(b) Second session: Manipulation of 3D face with expression using the mouse
cursor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

9. Radial curve and Frenet frame representation. (a) Illustration of 64 linear paths
with the nose tip at the origin. p and q determine the slope and the value of k
selects the quadrant; (b) Extraction of 64 radial curves from 64 linear paths; (c)
Frenet frame with 3 orthonormal basis vectors: Tangent T̂ , (Principal) Normal
N̂ , Binormal B̂ at each point of a space curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

10. Algorithm flow diagram for the mathematical framework of feature extraction. . 35



xi

11. Algorithm for the Frenet frame-based feature extraction. . . . . . . . . . . . . . . . . . . . . 37

12. Sample 3D facial expression data from the BU-3DFE dataset (top row) and the
Bosphorous dataset (bottom row). Six expressions from left to right (happy,
anger, fear, surprise, sad, and disgust) are selected for the experiment. . . . . . . . 38

13. Automatic preprocessing of a 3D face. (a) A raw 3D face with a coarse facial
surface, (b) After smoothing the facial surface, and (c) After cropping the 3D
face. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

14. Radial curves and features directly extracted from frontal and posed 3D faces.
(a) 128 radial curves on a 3D frontal face; (b) Extraction of curves from a posed
3D face; (c) Topological view of extracted radial curves; and (d) Illustration of
five types of features extracted from 40 radial curves. . . . . . . . . . . . . . . . . . . . . . . 41

15. (a) ROC curves and (b) CMC plots for three best performing features in 3D-FR
using BU-3DFE dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

16. (a) ROC curves and (b) CMC plots for the best performing features and a
combination of features in 3D-FR using the FRGC v2.0 dataset. . . . . . . . . . . . . 44

17. Effect of pose angles on 3D-FR using the BU-3DFE dataset. (a) AuROC vs
pose angles for five different features. (b) ROC curves for the best performing
Fγ feature under different pose angles of the probe 3D face. . . . . . . . . . . . . . . . . 45

18. Average recognition rate of six facial expressions for three different features
under varying pose angles of test faces using the (a) BU-3DFE, (b) Bosphorous
datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

19. (a) All 64 radial curves originating from nose tip at the center, (b) Curves
corresponding to 40 selected features, (c) Curves following feature selection
results are mapped on the 3D face. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

20. The 20 most active facial curves on 3D faces for six facial expressions in contrast
to the neutral expression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

21. Illustration of automatic landmark point detection on a 2D facial image frame.
(a) 66 landmark points, (b) A line connecting two lip corners, (c) A line con-
necting the nose tip and the midpoint of the upper lip, and (d) A line connecting
the nose tip and the midpoint of the lower lip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

22. Five 3D facial curves and their locations. 1= Zygomaticus Major Right (ZMR),
2=Zygomaticus Major Left (ZML), 3=Orbicularis Oris (OrOr) ,4= Levator
Anguli Oris Right (LAOR), and 5=Levator Anguli Oris Left (LAOL). (a) Five
facial curves on a mesh representation of a 3D face and (b) on a topological
view of a 3D facial point cloud. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



xii

23. Illustration of lip actions for the two groups of participants. The mean change
in (a) Lip corner distance, (b) Upper lip action, (c) Lower lip action. (d) Mean
and standard error plots for different lip actions over all 12 trials. . . . . . . . . . . . 63

24. Mean change in curvature (MCC) for five different probe muscle actions. Zy-
gomaticus Major Right (ZMR), Zygomaticus Major Left (ZML), Orbicularis
Oris (OrOr), Levator Anguli Oris Right (LAOR), and Levator Anguli Oris
Left (LAOL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

25. Subject-specific mean change of the facial curvature feature in left and right:
for Lavator anguli oris muscle regions of (a) Control group and (b) Group with
ASD, for Zygomaticus major muscle regions of (c) Control group and (d) Group
with ASD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

26. Steps for preprocessing and feature extraction from facial images prior to the
classification of FAUs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

27. Gabor filters and filter outputs. (a) Input facial image, (b) 40 Gabor filters, (c)
Extracted Gabor features from the input facial image. . . . . . . . . . . . . . . . . . . . . . 74

28. Classification and evaluation of the test facial images through five binary clas-
sifier models corresponding to five target FAUs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

29. Four visual areas of interest (AOI) for eye-tracking. UP and LP represent the
upper and lower part of the face, respectively. GUI shows the graphical user
interface region. The rest belongs to the No region. . . . . . . . . . . . . . . . . . . . . . . . . 76

30. (a) Ground truth reference face with facial landmarks, (b) Test face with de-
tected landmarks, (c) Registered face after rigid transformation of landmarks,
(d) Segmented lower region of the face. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

31. ICP-based registration of 3D point cloud facial data. (a) Two 3D facial point
cloud before registration, (b)-(c) After registration. (d) 2D projected surface
curvature maps of 3D faces, (e) Segmented lower half of the face. . . . . . . . . . . . . 78

32. Mean prevalence of FAUs and standard error plots for 2D facial images. (a)
Subject-wise mean prevalence of all FAUs for subjects with ASD, (b) Subject-
wise mean prevalence of all FAUs for TD subjects, (c) Mean prevalence of
different FAUs in two groups, (d) Overall mean prevalence of FAUs in two
groups of subjects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

33. Mean prevalence of FAUs and standard error plots for 3D facial images. (a)
Subject-wise mean prevalence of all FAUs from subjects with ASD, (b) Subject-
wise mean prevalence of all FAUs from control subjects, (c) mean prevalence
of different FAUs in two groups (d) Overall mean prevalence of FAUs in two
groups of subjects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



xiii

34. Subject-specific prevalence of five different FAUs in eight subjects with ASD
and eight TD subjects. Percentage of prevalence of (a) AU 10, (b) AU 12, (c)
AU 14, (d) AU 24, (e) AU 25, (d) Mean FAUs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

35. (a) Percentage of gaze duration at four visual scenes (No = No region, UP
= upper face, LP = lower face, GUI = Graphical User Interface). PVGD =
Percentage of Voluntary Gaze Duration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

36. Gaze pattern in an attempt to recognize a facial expression. Gaze patterns
produced by (a) A TD subject and (b) A subject with ASD. . . . . . . . . . . . . . . . . 87

37. Synthetically generated ten facial action units on 3D deformable facial model
for visualization. (a) FAU 1, (b) FAU 6, (c) FAU 10, (d) FAU 12, (e) FAU 14,
(f) FAU 15, (g) FAU 16, (h) FAU 17, (i) FAU 20, (j) FAU 24 . . . . . . . . . . . . . . . 92

38. (a) Mean count of ten different facial action units from time-sampled data
averaged from ten subjects in each group. (b) Mean correlation coefficients over
ten subjects for each pair of facial action units. The bar indicates standard error. 94

39. Mean count of FAUs for the group with ASD and the TD group. Effects of
different types of stimuli context on facial responses averaged from all facial
action units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



1

CHAPTER 1

INTRODUCTION

Autism Spectrum Disorder (ASD) is a neurodevelopmental disability that is character-

ized by behavioral restrictions, cognitive deficits, and impairments in social and interper-

sonal skills. Autism and Developmental Disabilities Monitoring (ADDM) Network, USA

reports that the prevalence of ASD among 8-year-old children is 1 in 68 from 11 states

in the surveillance year 2010 [1]. The range of the prevalence is reported to be from 21.9

per 1,000 in New Jersey to 5.7 per 1,000 in Alabama. The report, published on March

28, 2014, reveals a rapid increase of 23% from 2002 to 2006 and a 78% increase from 2002

to 2008 in the prevalence rate of population with ASD. This is significant because ASD

is pervasive, and will continue to have lifetime impacts on the health and function of an

affected individual. In addition, ASD entails four to six times more medical expenses than

that of non-ASD individuals [2] with a substantial amount of treatment and special edu-

cation services. Since the prevailing rate is increasing rapidly, there is a need for extensive

research and development efforts to identify the pathophysiological targets and minimize

functional limitations and disabilities. Unfortunately, the cause or origin of the disorder

is not well understood, and the relevant research findings are often inconclusive and in-

consistent. This is because of the inherent complexity and heterogeneity of the spectrum

disorder as it is found co-morbid with multiple clinical conditions such as anxiety, phobia,

hyperactivity and so on [3]. The existing research efforts can be categorized into studies

such as clinical, psychological, radiological, and behavioral to understand the etiology and

pathophysiology of the disorder. However, the complexity of the disorder requires multi-

disciplinary research efforts that combine multiple areas of expertise in more systematic,

thoughtful, and innovative ways. This, in turn, underscores the need to leverage scientific

resources, technologies, and innovations to accommodate the needs for next generation

diagnosis and treatment measures.

1.1 Diagnosis and Screening for ASD

The onset of ASD usually occurs during the early developmental period of a child with

subtle deviances noted after the six-month period [4]. Unfortunately, there is no reliable
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biomarker for the diagnosis of ASD [5]. Therefore, this disorder is commonly diagnosed

through the direct visual observation of atypical verbal and nonverbal behaviors. While

early identification of ASD is highly desirable for the implementation of effective interven-

tion strategies, it can be challenging to visually identify subtle abnormalities displayed by

the child. Harrington et al. systematically delineate the aspects of understanding, diagnos-

ing, screening, and treating of children with ASD [3]. A clinician needs to be knowledgeable

of the signs and symptoms of ASD following the changes that may occur in the Diagnostic

and Statistical Manual of Mental Disorders (DSM-5) [6]. The DSM-5 suggests multiple

criteria of deficits in individuals with ASD [7]. Children who meet the DSM-5 criteria are

typically diagnosed by the age of two to three. Many of the impairments related to ASD

appear in the nonverbal and joint attention skills of the child, which are screened using the

Modified Checklist for Autism in Toddlers (M-CHAT) [8]. Unfortunately, the M-CHAT is

not suitable for children over three years of age. On the other hand, there can be subtle

cases of ASD, which may take a longer time to diagnose. As the child with ASD gradually

attempts to engage in social interactions, these subtle abnormalities can lead to complex

behavioral impairments such as lack of social communication skills, deficits in perceiving

emotions, and the inability to respond with appropriate facial expressions. The impair-

ments related to ASD may not be evident among children until the school-age involving

higher social interactions. Therefore, early diagnosis can be challenging for physicians

who rely on observational methods to identify the abnormalities displayed by the child.

The diagnosis of ASD during the early childhood period is crucial in order to achieve an

effective intervention.

Children diagnosed with ASD are known to develop varying manifestations of symp-

toms and severity [9, 10]. Therefore, a child diagnosed with ASD needs follow-up clinical

screenings to detect and measure atypical traits in behavior, which may emerge over the

developmental period. The atypical traits associated with ASD are often termed as broad

autism phenotype (BAP), which are targeted to identify and evaluate the deviances in

ASD from typical development [11]. Researchers believe that the study on BAP may help

finding useful information regarding the etiology and early identification of ASD [12]. For

the identification and evaluation of BAP-related traits among pre-school and school-aged

children with ASD, there are measurement tools developed by clinicians and researchers.

These tools are based on interviews [13], visual observations [14], rating scales and ques-

tionnaires [8, 15]. Unfortunately, all these measurement tools are subjective and require

qualitative visual assessments. Dawson et al. propose an effective measurement tool known
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as the Broader Phenotype Autism Symptom Scale (BPASS). The BPASS is used to rate

ASD-related traits affecting four developmental skills of school-aged children: social mo-

tivation, expressiveness, conversational skills, and range of interests [14]. The BPASS

requires trained clinicians to interact with children with ASD to observe and rate ASD-

related traits for four items of expressiveness: eye contact, vocal prosody, facial expressions,

and social smile.

1.2 Problem Statement

The above discussions demand both effective computational models and extensive psy-

chophysical studies to propose objective and measurable targets for screenings and inter-

ventions of ASD. Several experiments are performed to validate the proposed computa-

tional models and investigate for differential traits from facial response data of individuals

with ASD. The experiments are proposed to achieve the following goals related to one or

more problem statements.

The first goal of this dissertation is to obtain a computational model for generalized

representation and analysis of 3D facial data. A generalized computational model for 3D

facial data is proposed to measure both the facial shape for identity retrieval and the

facial muscle response for expression analysis. However, the large volume of data in 3D

faces limits effective extraction of essential features for the computational modeling, which

needs to be addressed without compromising the performance of the computational model.

Experiments on several benchmarked 3D facial datasets are performed to demonstrate the

effectiveness of the generalized computational model.

The second goal of this dissertation is to design and develop experimental protocols

and setup in order to overcome several limitations in existing psychophysical studies on

subjects with ASD. The existing studies mostly employ näıve human raters to perform ret-

rospective analysis of videotaped facial images of subjects with ASD [16, 17]. The elicited

or spontaneous facial responses in subjects with ASD are often found to be attenuated

and covert, making them too subtle and subjective to be perceived by human eyes [18].

The intrusive administration of electrophysiological sensors (e.g., EMG) on facial skin may

inhibit and bias the natural response of the subjects with ASD. In other studies, the abil-

ity to imitate six target prototypical expressions is studied using computer vision-based

methods in subjects with ASD [19] and schizophrenia [20]. Unlike spontaneous facial ex-

pressions, the task of imitation does not reflect the natural psychophysical response of an

individual due to social or emotional trigger. In general, an ergonomic experimental setup
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needs to be designed for an effective psychophysical study to ensure minimal invasion and

stress while yielding maximum engagement and elicitation from subjects with ASD. Two

experimental protocols are designed to scan the spontaneous response data of the subjects

in a non-intrusive manner.

The third goal addresses the challenge that the elicited facial responses of individuals

with ASD can be too subtle for computing the differential traits. The subtle expressions

in subjects with ASD may not be easily classified as one of the six prototypical expressions

of healthy individuals. This requires sophisticated computational models to probe facial

muscle-specific responses in a non-intrusive manner for the subjects with ASD. There

appears to be no work in the literature that employs non-intrusive computational models

to reliably investigate the facial muscle-specific responses of individuals with ASD. This

dissertation performs two experiments to investigate the differential traits for ASD using

non-intrusive and spontaneous facial imaging data. The first experiment uses the proposed

Frenet frame-based computational model on 3D facial data to probe facial muscle-specific

responses. The second experiment uses a sophisticated facial action coding system for the

first time in the ASD literature to identify the differential traits from the prevalence of

subtle facial actions. Complementary response data such as eye-gaze and percentage of

correction recognition are considered to discover a behavioral marker for the group with

ASD.

The fourth goal aims to investigate the time-sampled dynamic activations of different

facial actions of individuals in response to dynamic social stimuli. An experiment is per-

formed to capture and identify the differential traits using a non-intrusive facial motion

capture system. This experiment offers a fine-grain analysis of facial responses to different

contexts in audio-visual stimuli. This non-intrusive scanning of dynamic facial actions may

be potential substitute for intrusive EMG-based scanning of faces.

In general, there is a significant gap in the literature in investigating computational

models for faster, automatic, quantitative, and objective detection of differential traits

for ASD. Although effective, the existing clinical procedures for screening ASD-related

differential traits require significant time, cost, training, and expertise due to human in-

terventions. The discovery of measurable traits via computational models may be used as

behavioral biomarkers in the ASD screening procedures for the early detection of ASD-

related deficits to enable an effective intervention strategy.
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1.3 Contributions

The primary contributions for this dissertation are discussed below.

Following the overarching need for automatic, quantitative, and objective detection of

differential traits in the facial expression of individuals with ASD, the first goal is to develop

a novel 3D geometry-based computational model for generalized 3D face classification,

recognition, and localization. For this purpose, a 3D Frenet frame-based computational

model for analyzing 3D facial data is proposed. The proposed computational model with

Frenet frame-based representation offers versatile benefits such as competitive performance

in generalized face and facial expressions recognition, pose-invariant face recognition, data

dimensionality reduction that results in faster processing of data, and localization of facial

responses based on facial curves. The proposed model reduces the large volume of data

in a 3D face to a small, pose-invariant, and effective feature space without compromising

the performance in the recognition task. A mathematical proof as well as experimental

demonstrations also show the pose-invariance properties of these features in pose-invariant

recognition of face and facial expressions. The Frenet frame-based computational model

also obtains location information about different facial regions through the curve-based

representation of 3D face. This location information about facial curves contributes in two

ways following their respective experimental results. First, following a feature selection

and classification method, the curves corresponding to the selected features can be iden-

tified and located on the 3D facial data. Second, the location of a specific curve can be

targeted over the sample of faces to probe actions related to a particular facial region. This

localization attribute of the proposed computational model is later considered to probe the

responses at different facial muscles using the 3D facial response data collected from the

subjects with ASD. The proposed computational model is evaluated using three publicly

available benchmarked datasets of 3D face and facial expressions.

The second goal addresses the limitations in the existing psychophysical studies to

obtain a non-intrusive and ergonomic experimental setup for data collection for subjects

with ASD. Institutional Review Boards (IRBs) from two different institutions (ODU and

EVMS) approved two separate carefully designed psychophysical experiments. The study

recruited a total of 36 human subjects, a half of whom have a diagnosis of ASD and the

other half includes typically-developing (TD) subjects. The first experiment collects data

on the spontaneous psychophysical responses using a video camera, 3D facial imaging

sensors, and an eye-tracker. The second experiment employs a motion capture sensor

to capture the dynamic facial actions in response to dynamic audio-visual stimuli. Both
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experiments involve a hardware-software platform that integrates multiple non-intrusive

imaging sensors for data collection, synchronizes the sensor activation with the onset of

the visual stimuli presented to the human subjects, and automates the data collection

and the sequential procedures for the experimental protocols. The remaining goals and

contributions are proposed following the data collected from these two experiments.

The third goal is to investigate the proposed 3D curve-based computational model in the

quantification of a behavioral marker for ASD namely the ’oddity’ in the facial expressions

of individuals with ASD. The differential trait in the facial responses of subjects with ASD

is reported as oddity in the qualitative behavioral studies on ASD. Statistical analyses in

this dissertation show significantly asymmetric responses in a pair of facial muscles for the

group with ASD. This suggests a quantitative metric for computing a differential trait in

a non-intrusive manner from the geometric features of the facial curves.

The fourth goal is to discover behavioral markers from the facial responses captured by

video data, 3D facial images, and visual responses from the eye-tracker data. For the first

time in the ASD literature, the facial action coding system (FACS) is introduced to classify

spontaneous facial responses using video data and 3D facial images. The differential traits

of the subjects with ASD are studied from the prevalence of facial action units (FAUs)

defined by FACS. State-of-the-art computer vision frameworks are proposed to recognize

the prevalence of different FAUs in the facial responses of subjects with ASD. FACS-based

analysis contributes a better insight into the subtle facial responses, which may not be

visible to human eyes. The analysis of video frames of facial responses and eye-tracker

data reveal behavioral biomarkers related to the facial expression and social smile for the

group with ASD, which may be measurable targets in differentiating the group with ASD

from the TD group.

The final goal aims to quantify the differential traits using the dynamic facial response of

the subjects in response to dynamic audio-visual stimulus. In the second experiment, three

metrics for computing differential traits are proposed from the prevalence of different FAUs

in response to dynamic audio-visual stimuli. The first metric determines the prevalence

of each FAU for each group, the second metric computes the correlation between time-

sampled activation data for any two FAUs, and the third metric computes the stimuli

context-specific activation of all FAUs for each group. These metrics facilitate a fine-grain

analysis of the spontaneous facial response data to objectively evaluate the differential

traits underlying the psychophysical responses of the subjects with ASD.
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In summary, this dissertation proposes quantitative, non-intrusive, and objective com-

putational models to investigate the differential traits from the spontaneous facial responses

of subjects with ASD. This alleviates the limitations with the existing subjective and in-

trusive procedures in the literature involving posed or imitated facial expressions. The

dissertation, so far, has contributed to four journal manuscripts and two conference pro-

ceedings. The computational model for analyzing 3D face using Frenet frame and its effec-

tiveness in pose-invariant 3D face and facial expression recognition tasks are presented in

a journal manuscript published in the IEEE Transaction on Human-and-Machine Systems

(THMS) [21]. The curve-based localization of facial regions based in facial curves is pub-

lished in a conference proceeding [22]. The findings related to the asymmetry in the facial

responses of subjects with ASD are published in the Journal of Optics and Laser Tech-

nology (JOLT) [23] and in the 2015 IEEE International Conference on Bioinformatics and

Biomedicine (BIBM-2015) [24]. The findings related to the behavioral biomarkers for ASD

are presented from the prevalence of FAUs and an eye-tracker in a journal manuscript cur-

rently under review in the IEEE transaction on Cognitive and Developmental Systems [25].

The results from the second experiment are presented in another journal manuscript, which

is in preparation for submission in the IEEE transaction on Affective Computing [26].

1.4 Organization of the dissertation

The rest of the dissertation is organized as follows. Chapter 2 provides a background

review on the differentials traits in ASD and state-of-the-art methods for investigating

the traits from facial responses. Chapter 3 proposes the design and protocol for the two

IRB-approved psychophysical studies. This chapter covers the criteria for human subject

enrollment, the setup for the integration of the non-intrusive multimodal sensors, tasks,

and the procedures for data collection. Chapter 4 investigates the efficacy of the proposed

computational model for the analysis and classification of 3D facial data. Chapter 5 studies

the computational model proposed in Chapter 4 to quantify the differential traits in the

activation of facial muscles for the group with ASD in the first experiment. Chapter 6

proposes state-of-the-art computer vision models to compute prevalence of different FAUs

from the video data of face and 3D facial data. The prevalence of FAUs is studied along

with the eye-gaze patterns of the subjects to obtain a measurable trait as the behavioral

biomarker for ASD. Chapter 7 proposes three metrics for computing the differential trait

from the dynamic facial action data in response to dynamic audio-visual stimuli. The

dissertation concludes with a summary and future work in Chapter 8.
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CHAPTER 2

BACKGROUND REVIEW

The symptoms of ASD can be categorized into three major types. First, one of the

signs of ASD is obsession or lack of attention that restricts an individual’s ability to learn

and adapt to social and behavioral development. More than one-third of the children

diagnosed with ASD have some form of obsession [3]. Second, intellectual deficit is one of

the co-morbid features present among 60% of children diagnosed with ASD [27], which may

cause lack of proper perception of their surroundings and context. The lack of perception

of the nonverbal communication skills such as human gesture, verbal cues, and facial

expressions may limit the ability to learn necessary cognitive and motor skills for social

and psychological processes. Third, repetitive and restrictive behaviors in individuals

with ASD are mainly characterized by repetitive motor actions such as continuous hand

flapping, lining up toys or spinning wheels of a toy car [3]. Subjects with ASD also restrict

their interests to a limited area and stick to an action-based routine. This limits their

ability to learn, adapt, and accept new aspects and situations in real life. These symptoms

may lead to the manifestation of differential traits that can contrast a group with ASD

from a group with typically-developing (TD) individuals.

2.1 Differential Study for ASD

The traits of ASD are identified in differential studies to compare a group with ASD to

those of a TD group. The differential traits can be measurable, and hence, can be consid-

ered biomarkers for ASD [28, 29]. The differential traits in ASD have been investigated by

scanning physiological responses and phenotype patterns using a variety of sensor modal-

ities. There are prior studies that aim to find neural correlates of ASD from the brain

fMRI data [30], MRI data [31], and evoked potentials in brain using EEG [32] as shown in

Table 1. Liu et al. use several electrical sensors to collect physiological data for affective

modeling of subjects with ASD [33]. Aldridge et al. report significant differences in the

morphology of face between the ASD group and their control peers [34]. Apart from the

facial morphology, other phenotypes related to head, hair, forehead [35], and face-brain

asymmetry [36] have been considered to differentiate a group with ASD from the TD group.
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TABLE 1: Application of different sensing modalities for quantitative differential studies
on ASD.

References Data modality Data source Detection

Aldridge et al. [34] 3D Camera Face Facial phenotypes

Liu et al. [33] EMG Two facial muscles, Facial affect,
EMG Shoulder, Stress
EEG Cardiac response Anxiety, liking

Wang et al. [31] MRI Brain Neural correlates

Deshpande et al. [30] fMRI Brain Neural correlates

Thabet et al. [39] CT scan Brain Auditory
hypersensitivity

Wagner et al. [32] Eye-tracker Eye Visual Area
of interest

Volker et al. [17] Manual Rating Perceptual Perception about
Skill Facial expression

To address the attention deficits in the ASD group, prior studies quantify visual processing

and attention of subjects from their eye-fixation patterns using an eye-tracker [32, 37, 38].

However, the verbal and nonverbal communication skills are the most common tar-

gets for clinical screening. A measurable trait or behavioral marker associated with the

nonverbal skills has additional implications beyond contributing to objective diagnosis or

screening procedures. Since ASD impairs more than one area of human actions and re-

sponse to different extents, a measurable target can quantify the severity of the disorder.

The measurement of psychophysical responses may identify the area of deficits to facilitate

the subject-specific intervention strategy. The efficacy of an intervention can be objec-

tively evaluated if the deficits can be quantified with the aid of a sensor. Therefore, the

differential traits of ASD are necessary not only to learn about the deficits associated with

the disorder but also to obtain a target metric for assessing the efficacy of intervention

system [40]. The following sections describe the nonverbal behavior of subjects with ASD,

which may offer potential targets for identifying differential traits of the disorder.
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2.2 Nonverbal Behavior in ASD

Nonverbal response and communication provide important cues about behavioral en-

gagement in a social setting. It has been suggested that nonverbal responses convey about

80% of the meaning in social communications [41]. Two of the most important chan-

nels of nonverbal communication are facial expressions and eye contact. Children with

an effective use of facial expressions and eye contact are often adept at social interactions

[42]. However, individuals with ASD have core deficits in processing mental states such

as beliefs, intentions, desires, and emotional expressions during social communication [43].

Individuals with ASD often struggle to perceive human emotional cues such as facial ex-

pressions [17, 44, 45]. Volker et al. report that children with ASD have greater difficulty

recognizing anger and fear expressions than their TD peers [17]. The failure to recognize

social communications may, in turn, manifest atypical responses in nonverbal behavior.

Therefore, the study of facial expressions and eye movement data may identify useful

behavioral markers for the group with ASD. The facial response in humans can happen

following one of two mechanisms [17, 46]. First, it can be motor mimicry where an indi-

vidual matches the expression as he/she visualizes the expression. This is a non-emotional

mechanism to create facial responses. Second, a facial response can be spontaneous as a

result of emotional arousal due to a stimulus. The spontaneous facial response provides an

indication of the subject’s perception and psychological development. For example, when

an individual views an angry expression, the motor mimicry response will show anger.

However, the response due to emotional arousal may yield a fear expression. There are

some emotional expressions (e.g. laughing), which are typically contagious as they induce

similar expressions [47]. There may be a presence of recurrent or atypical facial expressions

such as in palsy, which may be subtle, uncontrolled, and not associated with a particular

emotional state [48].

In the ASD literature, facial expressions are elicited using visual stimuli that are known

to create unusual activations of certain brain regions in subjects with ASD [49]. This un-

usual activation may lead to atypical facial responses by altering the natural mimicry or

empathy toward the displayed emotions. The facial expressions in response to visual stim-

uli may be complemented by eye-tracker data from an individual’s visual scan. Eye-gaze is

a pivotal element in determining an individual’s engagement and focus of interest. While

there has been some progress in understanding the visual scanning mechanism of individ-

uals with ASD [50, 51, 32, 37, 38], there remain challenges in computing and encoding

elicited and subtle facial responses in ASD.
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TABLE 2: The state-of-the-art studies on the analysis of facial expressions of individuals
with ASD.

Study Modality Non-intrusive Spontaneous Outcomes
Expressions

[53] EMG No Yes Higher muscle
activity in ASD

[16] Visual Yes Yes Intense, but odd facial
Observation expressions in ASD

[17] Visual Yes No Odd facial
Observation expressions in ASD

[54] EMG No Yes Undifferentiated

[19] Facial No No Less complex facial
markers patterns in ASD

2.3 Facial Expression Analysis in ASD

The face is a sophisticated target that embodies motor attributes associated with emo-

tions and gestures for nonverbal communication skills. A variety of facial muscles con-

tribute to a diverse set of facial expressions that may reflect mental states, cognitive pro-

cesses, mimicry of expressions, and other voluntary or involuntary motor actions triggered

by the brain. Therefore, neurodevelopmental disorders like ASD may manifest the func-

tional anomaly of the brain through the physiology of facial muscles. The Diagnostic and

Statistical Manual (DSM) of Mental Disorders outlines the differential traits in eye-gaze

and facial expressions during social interaction as two among other diagnostic criteria for

ASD [52]. A controlled psychophysical study with proper visual stimuli can elicit responses

in facial muscles, which may, in turn, unravel differential traits in the facial physiology of

the individuals with ASD. The state-of-the-art psychophysical studies investigating the

facial expressions of individuals are highlighted in Table 2, and can be categorized based

on the following two categories.
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2.3.1 Qualitative Study

In one of the earliest studies on facial expressions of ASD, Adrien et al. conduct a

retrospective analysis on home videos of children with ASD acquired from 11 families [55].

Their study, based on visual investigation, reveals differences in the facial expression and

eye-contact between children with and without ASD. While physicians use visual obser-

vation and expertise during the diagnostic process, most of the research studies employ

näıve human coders who qualitatively score the facial expressions from video data of the

face [17, 16, 56]. Subjective rating scales are used to study the ability of individuals with

Parkinson’s disease in posing emotional facial expressions [57]. Stel et al. use an audio-

visual stimulus to elicit facial expressions in subjects with ASD and employ näıve human

coders to evaluate the facial expressions from the video data [56]. Unfortunately, human

coder-based studies often suffer from poor inter-rater reliability. Volker et al. employ näıve

human coders to evaluate the performance of participants with ASD in imitating proto-

typical facial expressions.The imitated facial expressions are compared with the target

prototypical expressions to investigate anomalies in facial responses. Unlike spontaneous

mimicry of emotion or empathy toward the viewed emotion, imitation is an effortful or

volitional task [18, 58]. The task of imitation does not reflect the psychophysical response

which is due to spontaneous emotional or social trigger.

In a similar retrospective analysis of facial images of individuals with ASD, Faso et al.

report a more intense presence of facial expressions when compared with the TD group.

However, such qualitative measurement of intense facial expressions reports less natural

traits than those perceived in the TD participants. The lack of natural traits in facial

expression is known as an odd facial expression, and such ’oddity’ in the facial expression

may be one of the differential traits of individuals with ASD [16, 17]. Although human

eyes can perceive an emotion underlying a typical facial expression, neurodevelopmental

disorders (e.g. ASD, Alzheimer’s disease, schizophrenia etc.) may impair the facial ex-

pressions resulting in facial actions that are too subtle and ambiguous to trace and score

visually. This necessitates computational modeling of the subtle facial expressions to assist

the clinicians with objective differential information.

2.3.2 Quantitative Study

The existing quantitative techniques have mostly utilized electrophysiological sensors

in contact with several body parts including the face. Park et al. have performed a
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quantitative study on the facial expressions of adult subjects with schizophrenia [59]. They

employ multiple intrusive sensors to capture the psychophysical response of the subjects in

response to emotion inducing video stimuli. The subtle facial responses in individuals with

ASD have been computed with the aid of Electromyography (EMG) by placing electrodes

at different facial muscle regions [46, 33, 53, 54]. Studies involving EMG measurements

report either similar facial response with a time delay [60] or enhanced mimicry actions

[61] in the group with ASD than those in the TD group. Unfortunately, this method limits

the probes to only two facial muscles (Zygomaticus Major and Corrugator Supercilii)

without considering the entire face [33, 46]. It may be infeasible to probe the entire face

using such electrodes to yield a comprehensive profile of facial responses. Furthermore,

the intrusive application of electrodes on facial skins may irritate or distract an individual

with ASD in different ways, since half of the population diagnosed with ASD is known

to have anxiety and fear of novel experiences as well as tactile defensiveness [3]. The

application of EMG electrodes involves intrusive steps such as washing the face with soap,

preparing facial skin using alcohol swabs, and finally placing Ag/AgCl electrodes on the

facial skin. Electrophysiological sensors have been also placed on different body parts such

as the face, fingers, shoulder, and chest of individuals with ASD [33]. In such a constrained

environment, the subjects are often restricted in their body, hand, and head movements.

This may bias natural facial and visual responses of the subject to the visual stimuli. In

order to yield unbiased and natural psychophysical responses, recent quantitative studies

on ASD avoid wearable or intrusive sensors on any body parts [62, 17] and employ computer

vision-based methods for the analysis of behavioral traits.

2.4 Computer Vision-based Study

The availability of sophisticated optical sensors has enabled non-intrusive scanning and

analysis of the entire face for facial features in details. A recent computer vision-based

study proposes a quantitative means to evaluate the severity of schizophrenia from the

subject’s ability to imitate different facial expressions [20]. As mentioned earlier, the

imitation of facial expressions takes effort and hence, can be intense and deliberately

exaggerated by an actor in achieving the target facial expression. In contrary, spontaneous

facial responses in individuals with ASD due to expression-mimicry or emotional arousal

can be subtle, ambiguous, and even attenuated due to the neurodevelopmental disorder.

This poses an additional challenge for the computer vision-based methods in encoding and

detecting the differential traits from subtle facial responses. Optical sensors, like 3D facial
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cameras, have been employed to capture high-resolution 3D facial data of individuals with

ASD in order to investigate atypical morphological features in the face [34]. Hashemi et

al. have recently proposed computer vision-based methods to detect differential markers

from the video data of body motion and gestures for the children at risk for ASD [62].

Unfortunately, there appears to be no work that applies computer vision methods to

compute and compare the spontaneous facial responses in subjects with ASD with those

in a TD group. The following section provides an overview of the state-of-the-art trends

in the computer vision-based analysis of facial imaging data.

2.5 Analysis of facial imaging data

Facial imaging data from video data and from 3D imaging sensors as 3D facial point

clouds are commonly utilized for the computer vision-based analysis and classification of

facial attributes. The 2D intensity-based facial image frames from video data are the

most common type of imaging modality. There have been an extensive studies that in-

volve processing pipelines of 2D facial images for the retrieval of facial identity [63], facial

expressions [64], and other face-related key-points and features [65]. However, 2D facial

images suffer from a variety of non-trivial challenges such as facial pose [66], occlusion [67],

lighting conditions [68], scale or size of the face [69], and so on. Therefore, a vast majority

of the current literature on 2D facial images aims to propose robust algorithm pipelines to

address one or more of these non-trivial challenges. A common method is to reconstruct

3D facial data from 2D images to mitigate the effects of these non-trivial challenges on the

classification of 2D facial images [70].

On the other hand, a 3D representation of the face facilitates the analysis of the human

face by providing more detailed geometric information than 2D intensity-based images.

Unlike 2D intensity-based images, the classification of 3D facial data is less affected by

distortions such as facial pose, occlusions, and illumination. These advantages have led

to advances in 3D face recognition (3D-FR) [71, 72] and 3D facial expression recognition

(3D-FER) [73, 74, 75]. Although 3D facial data are rich in geometric information, their

classification entails increased computation due to high volumes of data. 3D facial data

are most commonly reduced through manual selection of landmarks [76, 77, 73, 78] or 3D

to 2D projection techniques [74, 76, 79]. These data reduction techniques may inherently

limit the advantage of 3D over 2D data in pose invariant recognition of the face and facial

expression. The following sections provide an overview of the related works on 3D-FR and

3D-FER. While 3D-FR is primarily a recognition task comparing two sets of 3D facial
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data, 3D-FER is mostly a classification task among faces bearing different expressions.

2.5.1 3D Face Recognition

In a face recognition task, a probe face is compared with each facial image sample in a

gallery of faces to determine the similarity in their facial features. The facial images in the

gallery are ranked based on similarity score and the probe face is recognized as the gallery

individual with the highest similarity score.

The goal of 3D-FR is to retrieve facial identity by finding global features that are invari-

ant to local variations such as facial expressions [80, 81, 82], pose [80, 70], and occlusions

[83] in facial images. Different global features preserving data reduction techniques such

as average face, Eigen face [71], and isomap of the face [81] are less sensitive to facial

expressions. The rigid region of the face is often selected to yield features insensitive to

local variations [72, 84]. Sangineto proposed a method to localize facial features that are

invariant to pose and expressions for 3D-FR [85]. Such approaches selectively exclude a

part of the 3D facial data which may be useful for 3D-FER. In addition, such facial ex-

pression invariant 3D-FR approaches are effective under the assumption that deformation

of the face due to expression is isometric [80, 81, 86], which may not be always the case

[81]. Therefore, it is important to search for pose and expression invariant features from

the entire face rather than arbitrarily excluding a facial region.

2.5.2 3D Facial Expression Recognition

The local variations in the face are the most important features for 3D-FER. The

recognition of facial expressions is a multiclass classification task, where the number of

classes is determined by the number of target facial expressions. When the expression is

mild or occurs at the rigid part of the face, it contributes less to the local variation of

the face [72, 84]. In addition, the facial shape of different individuals vary. Therefore,

it is essential to extract effective local features that can represent different expressions

independent of the global information of a face. To obtain representative features from 3D

facial data, a common method is to project the 3D facial data onto 2D and use the 2D

projected intensity-based features for classification. Previous studies used 2D projected

geometric features such as curvature [74, 77], depth [74, 76, 79], curvature-based shape

index [74, 77], and spherical harmonic features [87] for either 3D-FR or 3D-FER. However,

such projected features lose the depth information of 3D data [88], and hence suffer from

the limitations that are common in 2D face classification. Wang et al. report that the
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recognition performance of facial expressions from such 2D projected features of 3D facial

data rapidly degrades with increasing angle of the facial pose [76]. Therefore, the facial

features should be extracted directly from the 3D facial data without entailing loss of data

as in 3D to 2D projection.

2.5.3 Recognition of Facial Actions from Images

Facial action coding system (FACS) provides a dictionary of all possible facial muscle

actions encoded in Facial Action Units (FAUs) [89, 90]. A prototypical facial expression

(e.g. happy, angry) can be synthesized from multiple FAUs. Conversely, this enables a

fine-grain analysis of facial expressions by decomposing a facial expression into multiple

of the constituent FAUs [20, 91]. Therefore, subtle and ambiguous facial expressions can

be decomposed and categorized into units of facial actions known as FAUs. The analysis

or synthesis of FACS-based FAUs has been contributing to the areas of human-computer

interfaces, multimedia and animation applications, security and surveillance, and behav-

ioral research. Behavioral research studies aim to learn differential traits in psychophysical

responses of a target group under a certain task or stimulus. The psychophysical responses

of subjects with neurodevelopmental disorder such as ASD can be subtle and ambiguous

and may not be classified as prototypical facial expressions as seen within the TD sub-

jects [20]. Therefore, the analysis of facial expressions based on FACS may provide a better

insight into the subtle psychophysical responses of subjects with ASD, which may not be

evident to human eyes. The FAUs defined by FACS can also serve as markers for different

emotional states. For example, upper lip raising (FAU 10) is found in disgusted facial

expressions [92]. Lip corner puller (FAU 12) represents a smile [47]. The facial dimple,

contributed by the buccinator muscle, yields FAU 14, which is reported as a marker of

depression [93]. Lip pressing is annotated by FAU 24, which represents resentment. ’Lips

apart’ is defined by FAU 25, which appears in the surprised expression. Figure 1 1 shows

the spatial location of different facial muscles contributing to the activation of different

FAUs.

Within recent literature, Wu et al. [94] and Savran et al. [74] provide two of the most

comprehensive studies on the recognition of FAUs from 2D facial image frames and both

2D and 3D facial images, respectively. Wu et al. investigate an optimal design of a

multi-layer feature extraction architecture for the best possible recognition of FAUs. This

work suggests that a dual layer feature extraction architecture where Gabor features are

1Collected from: http://www.kidport.com/reflib/science/HumanBody/MuscularSystem/
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FIG. 1: Spatial locations of different facial muscles contributing to the activation of dif-
ferent facial action units using FACS1.

extracted in the first layer and Local Binary Patterns (LBP) in the following layer yields

better recognition accuracy than using any one of the layers alone. Savran et al. perform

an extensive research on the performance of recognizing different FAUs from 2D and 3D

facial images. They develop the Bosphorous dataset that provides both 2D and 3D facial

images labeled with different FAUs. This work concludes that 3D facial images provide

better accuracy than 2D images in recognizing a number of facial action units. However,

2D facial images do outperform 3D images in recognizing a few other FAUs. The computer

vision-based detection of FAUs recently shows a fine-grain analysis of only imitated facial

expressions in subjects with schizophrenia [20]. FACS-based computational models may

play significant role in the analysis of spontaneous facial expressions of subjects with ASD.

This will require a computational model capable of recognizing the prevalence of multiple

FAUs from the images of spontaneous facial expressions.

2.6 Challenges in Analyzing 3D Facial data

Although 3D facial data offer more detailed information about the face than 2D

intensity-based images, there remain several challenges in analyzing 3D facial data. For
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example, the pose invariant classification of 2D facial images has been an intense area of

study [70, 78]. However, the effect of pose distortions in 3D face classification has not

received much attention until recently. Similar to 2D facial image, the capture of 3D facial

data also suffers from the loss of information due to an out-of-plane rotation of the head.

This loss of information can deteriorate the performance of 3D-FR and 3D-FER. The de-

gree of pose angle variations in 3D facial data poses an additional challenge in effective

feature extraction for classification. Such pose related distortions may be mitigated by

extracting facial features directly from 3D facial data. For 3D-FR, Lei et al. use distance

and angle features obtained from 3D facial vertices [72], as well as the depth information

at different point locations of 3D facial curves [95]. Ocegueda et al. compute the proba-

bility of each vertex of 3D facial data to classify faces for 3D-FR and 3D-FER [96]. Such

methods mostly involve multilayer networks and heavy computations for extraction and

classification of features from the large volume of 3D facial points. These 3D point-based

methods often involve a computationally expensive point-to-point registration step to align

two 3D facial data samples. As an alternative, representative landmark points are often

selected manually from the 3D facial data [77, 73, 78]. Wang et al. decompose the 3D face

into three 2D image maps each representing one of three components of 3D normal vectors

computed at the vertices of 3D facial surface. They manually segment the 2D projected

3D facial features into 21 regions for 3D-FER [97]. Such manual segmentation or selection

of landmarks is often cumbersome and limits the automated FR [80]. In addition, these

methods may discard a significant region of the face which may be useful for a recognition

task. Youssef et al. report that the scanning of the entire face provides better 3D-FER

performance than selecting only the upper or lower half of the face [98]. Therefore, it

is necessary to take the entire face into account to ensure robust 3D-FR and 3D-FER.

These necessitate an effective computational model that can offer automatic extraction of

pose-invariant features from the intrinsic geometry of the 3D face.

2.6.1 Curve-based Analysis of 3D Face

The geometric features are extracted from point [71, 96], or surface [74], or curve-

based [88, 80] representation of 3D facial data. A curve-based representation can be a good

trade-off between surface and point-based representations for computational efficiency. A

surface-based representation of a 3D face provides useful global features for 3D-FR at the

expense of high computation cost [88]. A point-based representation, on the other hand,

provides local information which may be more effective for 3D-FER than a surface-based
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representation [72]. However, the registration or comparison of 3D facial data in large

datasets using 3D points can be computationally more expensive when compared to that

of surface-based methods [96, 99, 71]. Unlike surface or point-based representation, radial

curves can be easily localized, parameterized, and compared.

There are studies that involve the curve-based representation of 3D face for 3D-FR

[83, 88, 99, 80]. Li et al. compare curves from six facial regions to perform 3D-FR [83].

Jahanbin et al. use facial curves extracted from different facial contour paths to compare

3D facial data in 3D-FR [88]. Samir et al. represent 3D facial data into a collection of

level curves to compare 3D facial data from the differential geometry of the curves [99].

However, these studies involve an additional 3D pose correction step for 3D-FR. Drira et

al. [80] report that radial curves offer benefits over other curve-based representations for

3D-FR. Radial curves, originating from the nose tip, are easy to acquire and useful to

probe different facial regions. This dissertation proposes radial curve-based representation

of 3D face to facilitate an efficient classification of face and facial expressions and to enable

analysis of subtle facial responses from the geometry of the curve.

In summary, the detailed geometric information of 3D facial data can be useful in

the analysis of subtle and spontaneous facial expressions when the challenges with 3D

facial data are addressed. This requires sophisticated computational modeling to extract

useful features efficiently, which can reveal differential traits for the group with ASD. On

the other hand, an efficient psychophysical study protocol and non-intrusive methods for

facial data acquisition are necessary to elicit the facial responses of subjects with ASD. This

will facilitate computer vision-based computational models in discovering the measurable

differential traits from the facial expressions of individuals with ASD.
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CHAPTER 3

EXPERIMENTAL DESIGNS FOR ASD STUDY

3.1 Chapter Overview

This chapter discusses the design and protocol for the two experiments conducted in

this dissertation examining the facial responses of individuals with ASD. As discussed in

Chapter 2, the experimental protocol and setup need to carefully consider the behavioral

and physical manifestations of individuals with ASD. An ergonomic experimental setup is

required that offers minimally or non-intrusive access to body parts, as well as facilitates

maximum engagement without any distraction. The stimuli need to be appropriately cho-

sen to elicit responses without causing any extreme experience such as shock or surprise.

The response data from the participant should be collected over a fixed time frame syn-

chronous with the visual stimulus in order to make the data comparable between subjects

and trials of the study. All these factors should be taken into account while designing a

controlled experimental setup. The study protocol has been designed following multiple

studies [46, 100, 101, 56] and in consultation and collaboration with experienced physicians

at Eastern Virginia Medical School (EVMS) and an expert in communication disorders at

Old Dominion University (ODU), who are actively engaged in providing health services to

children with ASD.

3.2 Subjects

The study protocols for the two experiments, involving human subjects, are approved by

the Institutional Review Boards (IRB) at ODU (See Appendix A) and EVMS, respectively.

In the first experiment, a total of sixteen human participants have been recruited as follows:

(i) a group exclusively diagnosed with ASD with IQ score >70 and (ii) a healthy or

typically developing group (control group) without a diagnosis of ASD. The age range

of the participants is between 7 to 20 years which is suitable to undertake the tasks for

the study. Among sixteen enrolled subjects, eight are diagnosed with ASD by a psychiatry

practice at EVMS with an average age of 13±4.4 years. The remaining eight subjects are

typically-developing (TD) individuals with an average age of 16±4.1 years. The ages of the
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(a) (b)

FIG. 2: Hardware-software setup for the experiments. (a) Subject sitting before the 68”
TV display and the positioning of the camera sensors. (b) Two monitors behind the scene
to launch and coordinate the experiments.

two groups are compared under an ANOVA test and the results show an F-value of the test

of F(1, 14)=2.66, and a large p-value (p>0.05). Such results are indicative of no significant

difference in the ages between the two groups. All the subjects without ASD are considered

within the TD group. For the TD group, the same inclusionary and exclusionary criteria

(See Appendix B) are followed except the diagnosis of ASD or any disorder is considered

as an exclusion criterion. In the second experiment, the same protocol is followed to enroll

a total of twenty age-matched subjects. The ASD group consists of ten subjects with

average an age of 13.5±2.37 years. The TD group includes ten subjects with an average

age of 13.1±3.31 years.

Prior to the enrollment, a potential subject is screened for inclusion and exclusion

criteria via telephone. An eligible subject and parent undergo the informed consent and

assent forms, which briefly outline the goals and tasks in the study.

3.3 Hardware-Software Platform

A hardware-software platform is developed to facilitate an ergonomic accommodation

of the subjects, as well as an automatic operation of the sensors and stimuli. The platform

includes a 68” multimedia TV to display the visual stimulus as shown in Fig. 2(a). Lerner

et al. place their subjects 2.5 feet before a 24” monitor [100], which is transformed to

seven feet for a 68” TV display. There are also two monitors behind the scene as shown

in Fig. 2(b). The experimenter uses these two monitors to launch and coordinate each
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(a)

(b)

(c)

FIG. 3: Three non-intrusive sensors and their outputs for visualization. (a) 3dMD camera
for 3D facial imaging, (b) Mirametrix eye-tracker showing the eye-gaze map, (c) Sony
EVI-D70 video camera for videotaping of the face.

trial during the study. One of the monitors clones the 68” TV display and the other

displays the command and control applications for the experiment. The non-intrusive

sensors used in this study are as follows. A commercially available state-of-the-art 3D

optical camera 3dMD (www.3dmd.com). The 3dMD system is reported to reconstruct 3D

point cloud geometry from the captured stereo images with an average error of 0.27 mm

[102]. This eliminates chances for any significant error in the 3D data analysis due to the

3D reconstruction process. The video data of the face is captured using a Sony EVI-D70

color video camera. An eye-tracker camera from Mirametrix (www.mirametrix.com) is

also placed in the setup to capture the time-sampled data about the gaze location and

duration of the participants. Fig. 3 shows the sensors and corresponding generated data
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FIG. 4: Preparation work for a session and timing diagram for automated sequence of
actions in a trial of the study for the first experiment.

used in the first experiment.

All the sensors are positioned away from the line of sight of the participants as they view

the TV screen. For each subject, the eye-tracker and the cameras are calibrated to have

the subject’s face within the field of view. A graphical user interface (GUI) application is

developed using Qt/C++, which displays options for selecting an emotion from six buttons

corresponding to six facial expressions. The GUI collects the subject’s perception of the

emotion displayed as a visual stimulus in each trial. The onset and end of a trial are

programmed to happen at a definite time

sequence as shown in Fig. 4. The mouse cursor is programmed to automatically and

sequentially initiate each step in a trial, which involves automatic activation of the imaging

sensors, display of the visual stimulus and the GUI at definite time instances. The timing

diagram shows that once the GUI is displayed, the subject provides the answer by mouse

cursor click. At the end of the trial, the cursor prompts the sensors to stop and remove

the visual stimulus on time.

In the second experiment, a commercially available real-time facial motion capture

(MoCap) system, known as faceshift (www.faceshift.com) is used to capture the dynamic

facial motion of a subject in response to a dynamic audio-visual stimulus. The faceshift

system uses a 3D range sensor named PrimeSense to capture the 3D depth image of the

face. At first, the deformable 3D facial model with the faceshift system is calibrated by the
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(a) (b)

FIG. 5: Data collection in the second experiment. (a) Tracking of facial key points of the
actor to map on the 3D deformable model for rendering the stimuli and collecting subject
data. (b) The animated Avatar’s face used for the audio-visual stimulus.

neutral face of the subjects. The faceshift application tracks the facial landmark points

(See 5(a)) that are computed in real-time from the 3D facial range image captured by the

PrimeSense sensor. The motions of the facial landmarks are mapped onto the calibrated

deformable 3D facial model to compute the magnitude of activations for different facial

actions. The magnitude of facial actions is normalized between the values of 0 and 1. In this

experiment, the faceshift facial MoCap system is used to develop the Avatar-based audio-

visual stimuli, as well as to collect the spontaneous time-sampled magnitudes of the facial

actions of the subjects in response to the audio-visual stimuli. Table 3 summarizes the

subject and design information related to the two experiments. Fig. 7 shows the application

of faceshift MoCap system in rendering the audio-visual stimuli and in collecting facial

action data from the subjects for the second experiment.

3.3.1 Stimuli

The first experiment uses high-resolution static 3D facial images with expressions (See

Fig. 6) as visual stimuli, which are selected from the Binghamton 3D facial expression

dataset [103]. It is hypothesized that visualization of such facial images portraying emo-

tional expressions will either create mimicry or arousal of facial expressions [46]. In this

study, the visual stimuli are collected from the Binghamton 3D facial expression dataset

that consists of high-resolution 3D faces benchmarked with six prototypical expressions

(happy, anger, fear, sad, surprise, and disgust) [103]. The use of the 3D facial images has

introduced more realism in the visual stimuli than the traditional 2D facial images with
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TABLE 3: Subjects and designs for the two experimental studies.

ASD TD Dura- Stimuli Tasks Sensor
Num., Num., tion Data
(Age) (Age)

Expt. 8, 8, 40-min Static Visualize, 3D face,
1 (13±4.4) (16±4.1) 3D faces recognize, video,

years years with manipulate Eye-
Expression tracker

Expt. 10, 10, 15-min Audio- Visualize, Facial
2 (13.5±2.3) (13.1±3.3) visual engage motion

years years animation capture

(a) (b) (c) (d) (e) (f)

FIG. 6: Sample 3D facial images with emotional expressions (from the Binghamton 3D
facial dataset) randomly displayed in different trials of the first experiment. 3D faces
portraying (a) happiness, (b) anger, (c) fear, (d) sadness, (e) surprise, and (f) disgust
expressions.

expressions used in [46, 100].

The second experiment uses an audio-visual stimuli [54, 56]. Individuals with ASD

have been found to be more engaged during computer simulated environments and with

Avatar characters than during real-person interactions [104]. The application of Avatar-

based intervention in the ASD literature has been promising [105, 106], which motivates

the use of Avatar-based stimuli to elicit spontaneous facial responses in this study. The

persona of a real human actor is used to create an Avatar character via the faceshift

application as shown in Fig. 7(Top). The Avatar character imitates the actor’s speech

and facial actions in a story-telling scenario, which talks about experiences related to his
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FIG. 7: Data acquisition steps for the second experiment. Top: Rendering of Avatar-based
audio-visual stimuli mapping the persona of an actor. Bottom: Collecting facial activation
data of subjects in response to audio-visual stimuli.

school-life story and engagement as narrated in Appendix C. The content and context

of the story are selected at the appropriate interest and intelligence level of the target

age-group. The speech and facial animation of the Avatar character (See Fig. 5(b)) are

recorded as a four minute video data to be used as the audio-visual stimuli for the second

experiment.

3.4 Tasks and Procedures

The subject is seated in an adjustable chair in front of a 68” multimedia TV with the

computer mouse on a side table. In the first experiment, there are two sessions of tasks

as shown in Fig. 8. The first session requires the subject to recognize the emotion from

a visual stimulus of 3D face with expression in 12 random trials. A similar approach to

elicit facial expressions in subjects with ASD is found in [46, 100]. Six facial expression

samples with the highest expression intensity are considered from the dataset to create 12

random trials with 12 different 3D faces. Each trial displays a 3D face corresponding to

one of six basic facial expressions in a random order. The experimenter triggers each trial

independently to launch a sequence of automated actions. Following Lerner et al. [100],

the subject is allowed to visualize the stimulus for 3000 ms before displaying the GUI to

respond (Fig. 8 (a)). Furthermore, a time constraint of 15s is imposed for each trial [101]

to allow the subject select from the GUI about the displayed 3D facial expression as shown

in the timing diagram (See Fig. 4). The GUI disappears as soon as the answer is noted or
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(a) (b)

FIG. 8: Stimuli and tasks for the first experimental study. (a) First session: Facial expres-
sion recognition task from 3D facial expression stimuli, the colorful GUI at the bottom has
buttons to click and choose about the displayed expression. (b) Second session: Manipu-
lation of 3D face with expression using the mouse cursor.

TABLE 4: A summary of the two sessions for the first experimental study.
Session Duration Num. of Display Tasks

per trial Trials

1 15 s 6 Expressions X 2 GUI followed Visualization, expression
=12 3D-faces by 3D face recognition

2 25 s 6 Expressions X 2 3D faces with Visualization,
=12 3D-faces expressions manipulation

at the end of 15,000 ms time constraint.

In the second session, the subject performs a manipulation task using a mouse in each

trial as shown in Fig. 8(b). A total of 12 random trials are launched with 12 random 3D

faces with expressions. The time required for the manipulation task may vary depending

on the difficulty of the task. Based on observation with some test subjects, the subject

in the study is given 25,000 ms in each trial for the manipulation task. At the end of a

trial in either session, the mouse cursor automatically replaces the visual stimulus with a

progress bar and a note of encouragement. The subject performs several practice trials

prior to each session. A summary of the two sessions for the first experiment is presented
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in Table 4. The subjects are given break periods in between two sessions or at any time

they prefer. It takes about 40 minutes to complete the study including two sessions,

calibration, positioning, and break periods. In the second experiment, the PrimeSense

sensor is adjusted on a tripod to capture the facial image without interfering with the line

of sight of the subject. The task of the subjects is to visualize, listen, and recognize the

story content narrated by an animated Avatar.

3.5 Data collection

Several studies report that the facial affect appears 500-1000 ms after the onset of the

visual stimulus [46, 54]. Therefore, 3D optical and the video cameras are activated 1000

ms after displaying the stimulus as shown in Fig. 4. The 3D camera takes about 14 s

to charge its flashes before it can snap the next shot. Therefore, this camera yields only

one 3D facial image sample per trial. The 3D camera yields dense 3D point clouds of

the subjects face in response to the visual stimuli. On the other hand, the video camera

continuously captures facial image frames over the entire period of the trial until it is

terminated by the automated mouse cursor. Unlike static 3D facial imaging data, the

video data offer a dynamic response of the face over the tasks of the trial that include

visualization, recognition, and manipulation with the mouse cursor. The time-sampled

2D facial images from the video data are considered for analysis. Similar to the video

camera, the eye-tracker captures the dynamic visual response data in the form of gaze

fixation time and fixation location. The time-sampled data about the gaze fixation provide

quantitative information about the visual interest and engagement of the subject. A note

of encouragement with a progress bar is displayed at the end of each trial to lessen the

anxiety and keep the subjects informed of their progress. In the second experiment, the

facial actions of the subjects are collected via the faceshift application in response to the

Avatar’s story-telling and animation as shown in Fig. 7 (bottom). The faceshift application

provides the time-sampled magnitude of a number of facial actions normalized between the

values of 0 and 1. The onset of the facial data collection, the initiation of the audio-visual

stimuli, and stopping of the data collection are synchronized and performed automatically.

This allows a time synchronization between the presentation of the visual stimuli and the

facial response data collected during the study. Upon completion of the study, each subject

is offered a $15 gift card as an incentive for the participation as approved by the IRBs.

In the following chapters, novel computational methods are proposed to extract differ-

ential traits for the group with ASD from the multimodal facial images and eye-tracker
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data collected in the first experiment. Statistical analyses are also performed on the dy-

namic facial action data collected in response to dynamic audio-visual stimuli in the second

experiment.
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CHAPTER 4

COMPUTATIONAL MODELING FOR THE

CLASSIFICATION OF 3D FACIAL DATA

4.1 Chapter Overview

This chapter proposes a novel mathematical framework and its computational imple-

mentation for extracting curve-based geometric features from the 3D facial point cloud

data. The aim is to exploit the inherent advantage of processing 3D data for pose invari-

ant 3D-FR and 3D-FER, respectively. Without resorting to 2D projection, novel geometric

features are extracted from the 3D space curve representation of 3D facial data. The Frenet

frame-based geometric features are inherently fast to obtain when compared to the existing

3D point and surface-based representations. The proposed framework effectively reduces

a large volume of 3D facial data into a finite number of radial curves and extracts a gener-

alized set of novel geometric features from radial curves for a recognition task. The Frenet

frame-based mathematical framework is used to represent the large volume of the 3D facial

data in a pose-invariant feature space of very small dimension. The proposed framework

and features alleviate the need for an expensive registration step that is usually needed in

the 3D-FR pipeline.

4.2 Proposed Method for 3D Face Analysis

Following the discussions in Sections 2.6 and 2.6.1, this dissertation proposes a curve-

based feature extraction method from the entire 3D face to facilitate a framework for 3D-

FR and 3D-FER. This section illustrates the proposed framework to obtain pose invariant

geometric features and their evaluation methods in 3D-FR and 3D-FER with and without

pose distortions. The proposed framework, from pre-processing to experimental design, is

discussed below.

4.2.1 Preprocessing of 3D facial data
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A 3D face may contain non-facial regions, outliers, holes, and uneven surface. A surface

smoothing technique, which applies averaging over the 3D vertices, is used to smooth the

coarse facial surface and remove the surrounding outliers. An automatic preprocessing

step is applied to clean the undesired components to yield a useful region of the 3D face.

The nose tip is simply detected as the highest z-value of a 3D facial point cloud. The nose

tip coordinate information is used to create a 3D mask equivalent to an average 3D facial

region. The 3D mask crops the non-facial regions to obtain a valid 3D face. Finally, an

interpolation step fills out any holes on the facial surface.

4.2.2 Normalization of 3D facial data

The 3D facial point cloud is nonuniform in 3D space. This point cloud can be repre-

sented as a surface, z=f(x,y) where z represents depth values as a function of nonuniform

sample points (x, y). A normalization step interpolates all 3D facial data on a square grid

with uniform sample points (x′, y′), which is defined within the following boundary values,

[xmin, xmax] = {x′ ∈ R : xmin ≤ x′ ≤ xmax}, (1)

and[ymin, ymax] = {y′ ∈ R : ymin ≤ y′ ≤ ymax}. (2)

Here, xmin, xmax, ymin, and ymax are the boundary values of the X-Y coordinate for a given

3D face. The non-uniform points z=f(x, y) of a given 3D face are used to compute the

interpolated values z′ for the uniform sample points on (x′, y′) grid such as z′ = f(x′, y′).

The interpolated values on the uniform grid provide a common topology for curve and

feature extraction.

4.2.3 Extraction of radial curves

Once the 3D face is normalized following the interpolation step, the radial curves

are extracted. Since frontal 3D faces are posed along the Z-axis, the nose tip can be

automatically detected as the largest Z-value of the face as in [81]. The nose tip is projected

as the origin (xn, yn) of the uniform grid. With the nose tip at the origin, the grid is divided

into four quadrants. A set of linear paths (Fig. 9 (a)), defined by slope ratios p
q

= yn−yu
xn−xu

in different quadrants, are originated from (xn, yn) and can be represented as,

y − yn =
yn − yu
xn − xu

(x− xu). (3)
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FIG. 9: Radial curve and Frenet frame representation. (a) Illustration of 64 linear paths
with the nose tip at the origin. p and q determine the slope and the value of k selects the
quadrant; (b) Extraction of 64 radial curves from 64 linear paths; (c) Frenet frame with 3
orthonormal basis vectors: Tangent T̂ , (Principal) Normal N̂ , Binormal B̂ at each point
of a space curve.

Here, (xu, yu) are the point coordinates on the uniform grid intersecting the linear paths.

The interpolated depth values zu, corresponding to these (xu, yu) points, constitute a

3D curve on the facial surface. Thus, the linear paths in Eq. 3 can obtain facial curves

originating from the nose tip as shown in Fig. 9(b). These curves are known as radial

curves and can be defined using an angular representation, θij, given as,

θij =
kiπ

2
+ arctan

(
p

q

)
j

, k = 0, 1, 2, and 3, (4)

where four values of k denote four quadrants and p
q

is the slope ratio for an arbitrary linear

path j in a quadrant.

4.2.4 Generalization of radial curve using Frenet frame

The proposed mathematical framework for the curve-based geometry is adapted

from [107]. Each of the extracted radial curves is considered as a space curve. At each

point of the curve, a local coordinate system consisting of three orthogonal basis vectors

can be constructed as shown in Fig. 9(c). This coordinate system is known as a Frenet

frame [108]. A space curve is defined as β : (a, b) → <3 within an interval (a,b). In the

Cartesian coordinate of <3, β(s) is defined as, β(s) = (x(s), y(s), z(s)), where x(s), y(s),
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z(s) are real valued functions of real variables and s is the arc length parameter. A closed

interval [a,b] of the curve can be partitioned in m vertices as:

B = {a = s0 < s1 < . . . < sm = b} , (5)

where the position vector of a point f on a space curve β(s) is ~r(s)=(x, y, z). A neighboring

point g on the curve corresponds to ~r(s+ds). The tangent vector to the curve β(s) at point

f , ~T (s) is given as d~r(s)
ds

, where d~r(s) = ~r(s)− ~r(s+ ds). The tangent vector at point f to

the curve β(s) can be expressed by:

β′(s) = lim∆s→0

βsi − βsi−1

∆s
. (6)

Here, ‖β′(s)‖ is called the derivative of arc length at a point f to the curve, where the arc

length is defined by
∫
‖β′(s)‖ds. From the definition of tangent vector given above, allows

for the computation of the unit tangent vector T̂ :

T̂ =
β′(s)

‖β′(s)‖
, where (7)

β′(s) = ‖β′(s)‖ T̂ . (8)

The derivative of Eq. 8 with respect to the arc length s yields another vector of the curve,

β′′:

β′′ = ‖β′‖′ T̂ + T̂ ′ ‖β′‖ . (9)

By definition, a vector of a constant length and its derivative are orthogonal to each other.

Since,
∣∣∣T̂ ∣∣∣ = 1, T̂ ′ is orthogonal to T̂ and also orthogonal to its principal normal vector,

N̂ , such that, T̂ .N̂ = 0. Since, T̂ ′ is proportional to N̂ , Eq. 9 can be rewritten as follows:

β′′ = ‖β′‖′ T̂ + ‖β′‖2
κN̂, (10)

where, κ is the curvature at a point on the space curve. In <3, the third normal vector,

the binormal vector, B̂, is such that, B̂ = T̂ × N̂ . The triple
{
T̂ , N̂ , B̂

}
, as orthonormal

basis vectors, create the Frenet frame field of β as shown in Fig. 9(c). Both β′ and β′′

vectors of a curve β are represented in terms of the orthonormal basis vectors of Frenet

frame. The cross product of these vectors can be expressed as follows:

β′ × β′′ = κ ‖β′‖3
B̂ (11)
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Taking the magnitude on both sides in Eq. 11 yields ‖β′ × β′′‖ = κ ‖β′‖3. Here, B̂ is a

unit normal vector which yields the expressions for κ:

κ =
‖β′ × β′′‖
‖β′‖3 (12)

Replacing the κ in Eq.11 by Eq. 12, an expression for unit binormal vector (B̂) can be

obtained as follows:

B̂ =
β′ × β′′

‖β′ × β′′‖
. (13)

Similarly, the derivative of β′′ as β′′′ with respect to arc length s can be expressed in terms

of Frenet frame basis vectors to yield the expression for torsion (τ) as below.

τ =
β′ × β′′.β′′′

‖β′ × β′′‖2 . (14)

4.2.5 Pose invariance of Frenet-based generalized space curve features

The space curve vectors (β′, β′′, and β′×β′′) related to basis vectors of a local coordinate

frame are not invariant to motion in 3D space. The basis vector field
{
T̂ , N̂ , B̂

}
will

transform with the facial pose which is a form of Euclidean motion in <3. Here, the

projections of β′, β′′, and β′ × β′′ vectors are shown along these basis vectors of a Frenet

frame are invariant under Euclidean motion or pose angle of the face. The projection of β′

along an orthonormal basis T̂ is ||β′|| as shown in Eq. 8. Applying an affine transformation

matrix A on β′ yields γ′, given as γ′ = Aβ′. We take the magnitude of this expression,

‖γ′‖ = ‖Aβ′‖. Since the determinant of an orthogonal transformation matrix is one,

|A| = 1, we can write ‖γ′‖ = ‖β′‖. Therefore, ‖β′‖ is invariant to motion in Euclidean

space in <3. Similarly, from Eq. 11, the projection of β′ × β′′ vector along orthonormal

basis vector B̂ is κ ‖β′‖3. κ ‖β′‖3 can be also invariant to Euclidean motion if κ is invariant.

The transformation γ′ = Aβ′ can be applied in Eq. 9 to obtain an expression for β′′, which

is, in turn, plugged in Eq. 12 to obtain κ[γ] = κ[β]. Hence, κ is invariant to transformation

in 3D space. Similarly, from Eq. 14, it can be shown that τ [γ] = ±τ [β], and hence τ is

also invariant.
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FIG. 10: Algorithm flow diagram for the mathematical framework of feature extraction.

4.2.6 Feature Extraction

Fig. 10 illustrates a summary of the proposed Frenet frame-based feature extraction

framework from 3D facial data. We derive five types of features from the Frenet frame

representation of space curves as follows. The derivatives of these basis vectors
{
T̂ , N̂ , B̂

}
with respect to arc length parameter s can also be represented as linear combinations of

the basis vectors using Frenet-Serrete formulae [109] given as,

T̂ ′ = κN̂, (15)

N̂ ′ = τB̂ − κT̂ , and (16)

B̂′ = −τN̂ . (17)

The magnitude of the derivative of basis vectors yields the desired new set of pose-invariant

features in Euclidean space as follows,

∥∥∥T̂ ′∥∥∥ = κ, (18)∥∥∥N̂ ′∥∥∥ =
√
κ2 + τ 2, and (19)∥∥∥B̂′∥∥∥ = τ. (20)

The magnitude of change of basis vectors, as shown in Eqs. 18-20, are computed at all

points on each curve. For each curve, these values from all points are averaged to obtain the

mean curvature, Fκ, mean torsion Fτ and the average change in principal normal vector,
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Fn, respectively as shown in Eqs. 21-23.

Fκ =
1

N

N∑
i=1

κ(si), (21)

Fτ =
1

N

N∑
i=1

τ(si), and (22)

Fn =
1

N

N∑
i=1

√
κ(si)2 + τ(si)2. (23)

Mean curvature and mean torsion are represented by the average change of tangent and

binormal vectors to characterize how the space curve turns and twists along its path,

respectively.

The remaining two features are derived from the pose invariant feature, ‖β′‖. For point-

wise partition of a space curve as in Eq. 5, we compute the piece-wise arc lengths between

each pair of consecutive points from their corresponding tangent vectors β′. Consider that

each space curve β(s) lies on the Riemannian manifold. The distance on the Riemannian

manifold, between two consecutive points indexed by i and j on a curve β : [i, j], can

be measured by taking the dot product of their tangent vectors. From the definition of

Reimann space, the arc length ds can be obtained using ds2 = β′i.β
′
j = ‖β′‖2, which is

invariant to motion in Euclidean space. The angle between two tangent vectors is α,

where cosα =
β′i.β

′
j

|β′i||β
′
j |

= β′i.β
′
j, since |β′| = 1. If α is the angle between a circular path with

the radius as the unit tangent vector, the arc length of the path is equal to α. Therefore,

we can write the piece-wise arc length (δ) of a space curve as follows,

δ = arccos
(
β′i.β

′
j

)
. (24)

Consider the sum of piece-wise arc lengths to yield the total length of the space curve is

as:

Fδ =
N∑
i=1

arccos
(
‖β′(si)‖2

)
. (25)

The mean arc length of a curve Fγ can also be measured by averaging the piece-wise arc

lengths of the space curve as:

Fγ =
1

N
Fδ. (26)
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Input: 3D Facial Data
Output: Frenet frame-based features
LUT: Lookup Table with slope ratios p

q
about the linear path

Nose tip: (xn, yn)
for i =1:num of curves do

p
q
← LUT (i)

Linear path on grid (xu,yu) ← {Nose tip, p
q
}

Radial curves βi(xu, yu, zu) ←Calculate zu for (xu,yu)
{T̂ , N̂ , B̂} ← Compute Frenet frame for βi
X (i) ← Compute features from {T̂ , N̂ , B̂}; using Eqs. 21-23 and 25-26

end for

FIG. 11: Algorithm for the Frenet frame-based feature extraction.

Each curve is represented by one of five features as defined in Eqs. 21-23 and 25-26.

The feature extraction algorithm is shown in Figure 11. Each feature value represents a

curve which is obtained by either summing or averaging the features from all points on the

curve. Therefore, a change in the local features will have less of an effect on the average

feature values. This may facilitate expression invariant 3D-FR. On the other hand, the

averaging operation eliminates the effect of the large number of points and corresponding

feature values. If a larger facial shape yields a longer curve with more points per curve,

the averaging may minimize the effect of an individual’s facial shape to provide more local

information required for 3D-FER.

4.3 Experimental protocol

To evaluate the generalizability and pose invariance of the proposed framework and

features, experiments have been conducted in 3D-FR and 3D-FER for both frontal and

varying pose conditions. For the evaluation in 3D-FR, two publicly available datasets (Face

Recognition Grand Challenge (FRGC v2.0) [110] and Binghamton University 3D Facial

Expression (BU-3DFE) [103]) are used. For 3D-FER evaluation, two 3D facial expression

datasets (BU-3DFE and Bosphorous 3D facial expression [111]) are used. Figure 12 shows

samples of 3D faces with expressions from these two datasets. Also, pose distortions are

synthetically applied on 3D facial data to evaluate the performance for pose invariant

3D-FR and 3D-FER.
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FIG. 12: Sample 3D facial expression data from the BU-3DFE dataset (top row) and the
Bosphorous dataset (bottom row). Six expressions from left to right (happy, anger, fear,
surprise, sad, and disgust) are selected for the experiment.

4.3.1 Experiment for 3D-FR

In the BU-3DFE dataset, the gallery consists of 3D facial data of different subjects

with six basic facial expressions. The probe dataset consists of 3D facial data of the same

subjects with neutral expressions. From the FRGC v2.0 dataset, the Fall 2003 dataset

is used considering subjects that have 4 or more 3D face samples. For each subject, one

sample of 3D face is reserved for the probe and the rest are considered in the gallery. The

algorithm in Fig. 11 is used to extract Frenet-based features from each sample of 3D face.

To make the non-linear feature space separable for a classifier, three types of subspace

projection techniques are used: Principal Component Analysis (PCA), Linear Discriminant

Analysis (LDA), and Kernel Fisher Analysis (KFA). PCA projects the data onto the

principal vectors which account for the highest variance in the data. LDA projects the

data in such a way that maximizes the variance between-class data and minimizes the

variance within class data. LDA is a generalized version of Fisher Discriminant analysis

where the data distribution is considered normal. The kernel mapped feature applied

to LDA is known as KLDA, which is interchangeably termed as Kernel Fisher Analysis

(KFA). The features extracted from the gallery samples are used to train the corresponding

model for subspace projection. The trained models are then used to project and select

test features from the probe sample. The subspace projection facilitates a classifier such

as nearest neighbor (NN) to effectively classify the projected probe features. The NN

classifier is therefore used to train and test subspace projected features for 3D-FR.

The performance in 3D-FR is evaluated based on Cumulative Matching Curve (CMC)
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and the Receiver Operating Characteristics (ROC) curves. For CMC, all samples in the

gallery are ranked based on their similarity score with the probe sample. CMC shows the

cumulative probability for the probe individual which can be correctly recognized within

the top M ranked gallery individuals based on the similarity scores. Therefore, rank-1

recognition rate from the CMC is the probability for the probe individuals to be correctly

recognized as the first or highest ranked gallery individual. For evaluation and comparison

with ROC plots, the verification rate at 0.1% false acceptance rate (FAR) is considered.

When the test is conducted for pose distortion, the probe 3D face is rotated in an out-

of-plane manner between 00 and 900 at 50 intervals prior to the feature extraction. With

the increase of pose angle, the 3D facial point cloud gradually loses data in the direction

of rotation. The effect of pose on 3D-FR performance is evaluated by the ROC curve and

the area under the ROC (AuROC) curve corresponding to each pose angle.

4.3.2 Experiment for 3D-FER

3D facial point cloud samples with six basic facial expressions (happy, anger, fear,

surprise, sad, and disgust) are considered from the BU-3DFE and Bosphorous datasets

for classification. The algorithm in Fig. 11 is applied to extract Frenet frame-based

features from each sample of 3D face. A multiclass feature selection technique, known

as maximum relevancy and minimum redundancy (MRMR) [112], is employed to identify

a set of representative features that best discriminate the 6-class facial expressions. The

MRMR technique ranks the features under two combined criteria: One maximizes the

mutual information between a feature space X and a target class Y and the other minimizes

the redundant information considering the mutual information among the features. Both

criteria are combined as follows,

max
mεX

[
I(m,Y )− 1

|X|
∑
nεX

I(m,n)]

]
, (27)

where I(m,Y ) is the mutual information between feature m and target class Y and I(m,n)

is the mutual information between m and n features. A trial and error method is used

to determine the dimension (N) of the features (the first N features from the rank) which

yield the best accuracy in classifying the six facial expressions. The selected features are

used to perform a 10-fold cross validation using three classifiers (Random Forest (RF),

Näıve Bayes (NB), and SVM with radial basis function (SVM-RBF) kernel). Finally, the

classification results are evaluated using ROC curves and AuROC. The approach, similar
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(a) (b) (c)

FIG. 13: Automatic preprocessing of a 3D face. (a) A raw 3D face with a coarse facial
surface, (b) After smoothing the facial surface, and (c) After cropping the 3D face.

to 3D-FR, is applied to test the effects of pose distortion on 3D-FER. The 3D facial point

clouds are rotated between 00 and 900 with an interval of 50 prior to the feature extraction.

The extracted and selected features from the posed 3D facial data are tested for six facial

expressions using a trained 6-class classifier model. The recognition rate versus the pose

angle is plotted to show the effect of pose distortion on 3D-FER.

4.4 Results

This section illustrates the outcomes of the proposed framework and the results follow-

ing the experimental protocols discussed in Sections 4.2 and 4.3.

4.4.1 Preprocessing

Following the preprocessing steps in Section 4.2.1, Fig. 13 illustrates an example of

smoothing a 3D facial surface and removal of non-facial regions. The nose tip is automati-

cally detected and subsequently used to define a 3D rectangular cuboid mask that retains

the useful facial region after cropping the non-facial regions as shown in Fig. 13 (c). As

discussed in Section 4.3.2, a 3D facial point cloud is normalized on a uniformly sampled

square grid. However, the dimension of this uniform grid depends on the quality of the

3D point cloud rendering. For the BU-3DFE and Bosphorous datasets, a uniform grid

of 100x100 is effective for a good recognition performance. For FRGC v2.0 dataset, the

acceptable dimension of the uniform grid is found to be 200x200.
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FIG. 14: Radial curves and features directly extracted from frontal and posed 3D faces.
(a) 128 radial curves on a 3D frontal face; (b) Extraction of curves from a posed 3D face;
(c) Topological view of extracted radial curves; and (d) Illustration of five types of features
extracted from 40 radial curves.

4.4.2 Radial curve extraction

Radial curves, originating from the nose tip, are extracted following the procedures in

Section 4.3.3. The same approach is applied for curve extraction from both frontal and

posed faces without the need for a pose correction or a registration technique for the 3D

facial data. Figure 14(a) and 14(b) show the radial curves on 3D frontal and posed faces,

respectively. Figure 14(c) shows the extracted radial curves.

4.4.3 Feature extraction

The extraction of radial curves automatically decomposes a dense 3D facial point cloud

into N number of 3D curves which are then directly transformed into an N-dimensional

feature vector. Figure 14(d) offers a quantitative illustration of five types of features

from 40 radial curves, where each radial curve is characterized by a feature value. This

experiment suggests that a total of 192 radial curves per 3D face, with 48 curves per

quadrant of the square grid, yields the best performance for both 3D-FR and 3D-FER.

Unlike segmentation or selective landmark-based techniques, radial curves from the entire

face are considered in search of important facial features which may discriminate facial

identity and expressions.
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TABLE 5: 3D-FR performance for different features and subspace projection techniques
using the BU-3DFE dataset.

PCA LDA KFA

Frenet at 1% Rank-1 at 1% Rank-1 at 1% Rank-1
features FAR FAR FAR

Fκ 72 74 82 86 90 92
Fγ 80 82 78 86 94 96
Fδ 72 82 72 80 84 94
Fτ 12 36 10 36 30 40
Fn 16 42 18 46 30 52

4.4.4 Results for 3D-FR

The BU-3DFE and FRGC v2.0 datasets were used to evaluate the performance of the

proposed framework in 3D-FR as described in Section 4.3.1.

3D-FR using frontal faces

As mentioned earlier, for 3D-FR using the BU-3DFE dataset, the gallery contains 3D

facial data with six facial expressions for each individual. The neutral probe faces are

tested against the gallery of 3D faces with expressions. The features extracted from the

gallery samples are used to create subspace projection models related to PCA, LDA, and

KFA, respectively. These models are used to obtain a set of representative test features

from the probe samples. Following the steps in Section 4.3.1., the NN based classification

is applied on these test features to classify the probes for 3D-FR. For each type of feature

and subspace projection technique, the ROC and CMC curves are obtained to provide the

verification rate at 0.1% FAR and rank-1 recognition rate, respectively. Table 5 shows

the summary performance for 3D-FR using different features and subspace projection

techniques.

Table 5 shows that the Fγ feature outperforms the other four features and KFA provides

the best 3D-FR performance. The first three features (Fκ, Fγ, and Fδ) show a comparable

performance in 3D-FR with rank-1 recognition rates 92%, 96%, and 94%, respectively. In

addition, Fig. 15 shows the CMC and ROC curves for 3D-FR with KFA-based subspace

projection. The ROC curve in Fig. 15(a) shows the verification rates at 0.1% FAR and
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FIG. 15: (a) ROC curves and (b) CMC plots for three best performing features in 3D-FR
using BU-3DFE dataset.

CMC plot in Fig. 15(b) reveals the rank-1 recognition rates for the three best types of

features. Therefore, in the subsequent results for 3D-FR, the performance of these the best

performing features (Fκ, Fγ, and Fδ) is demonstrated following the KFA-based subspace

projection.

TABLE 6: Face recognition performance of different features and their fusions using FRGC
v2.0 dataset.

LDA KFA
Frenet features at 1% FAR Rank-1 at 1% FAR Rank-1

Fκ 86 88 92 88
Fγ 88 92 94 96
Fδ 90 94 92 96

Fκ+Fγ 90 94 96 96
Fκ+Fδ 88 94 92 96
Fγ+Fδ 88 94 92 96

Fκ+Fδ+Fγ 88 94 92 96

For the FRGC v2.0 dataset, the ROC curves and CMC plots in Figure 16 illustrate

the 3D-FR performance of different features. Figure 16(a) shows verification rates at 0.1%

FAR for three features (Fκ, Fγ, and Fδ) as 92%, 94%, and 92%, respectively. The rank-1

recognition rates from CMCs in Fig. 16(b) are 88%, 96%, and 96% for Fκ, Fγ, and Fδ,
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FIG. 16: (a) ROC curves and (b) CMC plots for the best performing features and a
combination of features in 3D-FR using the FRGC v2.0 dataset.

respectively. Note that 3D-FR performance for the FRGCv2.0 is better than that for

the BU-3DFE dataset. Since the BU-3DFE dataset contains a gallery of 3D facial data

with different expressions, it may impose an additional challenge for expression invari-

ant 3D-FR. On the other hand, the FRGC v2.0 dataset mostly contains 3D faces with

neutral expressions. The absence of expression variations in the FRGC v2.0 dataset may

have contributed to better performance than the BU-3DFE dataset. Further experiment

was performed to see if any combination of these features provides any complementary

information to improve the 3D-FR performance. A simple feature concatenation is per-

formed using different combinations of the three best-performing features to probe their

effectiveness for 3D-FR. Interestingly, the combination of Fγ and Fκ features yields the

best performance in 3D-FR when compared to any of the individual features or their com-

binations. This combination yields 96% verification rate at 0.1% FAR and 96% rank-1

recognition rate, as shown in Table 6.

3D-FR using posed faces

In this experiment, the same gallery of 3D facial data, as in Section 4.3.1, is used

to train the classifier. However, the probe 3D faces are synthetically rotated at different

angles varying 50 between 00 to 900 prior to curve and feature extraction. The only

assumption is that the coordinate location of the nose tip is known in the rotated 3D

face to directly extract the radial curves and corresponding features. Figure 17 (a) shows
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FIG. 17: Effect of pose angles on 3D-FR using the BU-3DFE dataset. (a) AuROC vs pose
angles for five different features. (b) ROC curves for the best performing Fγ feature under
different pose angles of the probe 3D face.

the 3D-FR performance for the five Frenet-based features extracted from 3D facial data

at different pose angles while using the BU-3DFE dataset. Figure 17 (a) shows that the

3D-FR performance is consistent up to a 550 of pose angle for Fκ and Fγ, up to 400 for Fn

and Fτ , and 350 for Fδ. Fκ and Fγ show the most robustness to pose distortion. Figure 17

(b) shows the effect of pose angle on the ROC curve for the best performing Fγ feature.

The ROC curves demonstrate the decrease in 3D-FR performance with the increase in

pose angle.

4.4.5 Results for 3D-FER

The BU-3DFE and Bosphorous facial expression datasets were used to evaluate the

performance of the proposed framework in 3D-FER as described in Section 4.3.2.

3D-FER using frontal faces

The same curve and feature extraction framework, as shown in Fig. 11, is applied

for 3D-FER. The three best performing features in 3D-FR (Fγ, Fκ, and Fδ) are also

considered in this case for 3D-FER. The MRMR-based feature selection technique, as

described in Section 4.3.2, is applied to obtain an optimal number of feature points for

each type of feature, which yields the best classification of six facial expressions. Table

7 presents the AuROC for three features following a 10-fold cross-validation using each
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TABLE 7: Area under the ROC (AuROC) curves after classification of the six basic
facial expressions for three features using the BU-3DFE dataset. Three classifiers are RF
= Random Forest, NB=Näıve Bayes, SVM = Support Vector Machine with radial basis
function kernel).

Dataset BU-3DFE
Features Fκ Fγ Fδ

Classifier/ RF NB SVM RF NB SVM RF NB SVM
Expressions

Happy 95.6 93.9 97.0 96.6 94.2 96.7 95.9 93.1 97.1
Anger 85.4 80.2 83.9 88.6 82.5 85.5 87.9 83.2 84.3
Fear 79.8 81.8 79.8 83.2 83.2 81.2 83.4 82.5 81.6

Surprise 97.0 94.1 97.1 97.8 95.4 96.9 97.9 96.5 97.4
Sad 87.8 86.9 88.7 90.9 91.6 89.2 91.9 92 90.1

Disgust 91.6 90.6 91.5 91.1 91.0 90.7 89.6 88.9 90.0
Average 89.5 87.9 89.7 91.4 89.7 0.90 91.1 89.4 90.1

of the three proposed classifiers (Random forest, Näıve Bayes, Support Vector Machine)

using the BU-3DFE dataset. The combination of feature Fγ with the multiclass random

forest (RF) classifier offers the best performance in 3D-FER for both the BU-3DFE and

Bosphorous datasets. Since the RF classifier is found to be the best performing classifier

for the proposed feature type and dimension, this classifier is subsequently selected to

evaluate similar features from the Bosphorous dataset as shown in Table 8. For both

datasets, ’happy’ and ’surprise’ are found to be the best classified facial expressions. In

comparison, the BU-3DFE dataset provides better 3D-FER performance than that of the

Bosphorous dataset. This can be attributed to the fact that the BU-3DFE dataset offers

better rendering of 3D facial data than the Bosphorous dataset [96]. In general, ’fear’ and

’anger’ expressions are poorly classified when compared to other expressions, which have

affected the overall performance for 3D-FER. ’Fear’ and ’anger’ expressions are mostly

characterized by eye and eye-brow regions at the rigid upper part of the face which do not

contribute to the local variation similar to the mouth region [95, 84].
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TABLE 8: Area under the ROC (AuROC) curves after classification of six basic facial
expressions for 3 features using the Bosphorous dataset. Three classifiers are RF= Ran-
dom Forest, NB=Näıve Bayes, SVM =Support Vector Machine with radial basis function
kernel).

Dataset Bosphorous
Features Fκ Fγ Fδ

Classifier/ RF
Expressions

Happy 97.8 98 95.4
Anger 87.9 86 83.5
Fear 79.4 80.3 79.6

Surprise 88.4 87.9 85.7
Sad 77.5 77.5 75.1

Disgust 76.7 79.5 76.2
Average 84.6 84.9 82.6

3D-FER using posed faces

In this case, a multiclass SVM-RBF classifier model is trained using features from 3D

facial data labeled with six facial expressions. The probe 3D faces are created by syn-

thetically rotating the same 3D faces at different pose angles prior to curve and feature

extraction. Features from these posed 3D faces are classified using the trained multiclass

SVM-RBF classifier model. Figure 18 shows 3D-FER performance for three features under

varying pose angles. For the BU-3DFE and Bosphorous datasets, Fγ yields the best perfor-

mance as a pose robust feature in 3D-FER. For the BU-3DFE dataset, Fγ is pose-invariant

up to a 550 pose angle as shown in Fig. 18 (a). Fκ and Fδ are pose-invariant up to 500

and 400 pose angles, respectively. For the Bosphorous dataset, Fγ is pose invariant up to

a 550 pose angle while Fδ and Fκ are pose invariant to about 400. Figure 18 shows that Fδ

is the most adversely affected feature due to pose distortion. This feature represents the

sum of piece-wise arc length of the curves. With the increase of pose angle, the 3D face

gradually loses data as well as the length of the curves. Hence, pose distortion affects the

sum of arc lengths of the curve more than the mean of the arc length of the curve, Fγ.

4.5 Discussions

This work proposes a novel mathematical framework for Frenet frame-based generalized

geometric features that can be effectively used in pose invariant classification of 3D faces.
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FIG. 18: Average recognition rate of six facial expressions for three different features under
varying pose angles of test faces using the (a) BU-3DFE, (b) Bosphorous datasets.

The performance of the proposed features is evaluated in two recognition tasks: 3D-FR

and 3D-FER with and without pose distortions.

4.5.1 Specific findings

The Frenet frame-based generalized space curve representation of 3D facial data can be

effective for both frontal and pose invariant 3D-FR and 3D-FER. The mathematical and

experimental results also verify the pose invariance property of these generalized features.

The evaluation also suggests that the proposed features have varying performance for 3D-

FR and 3D-FER. In general, the mean piece-wise arc length feature, Fγ performs the best

for both pose-invariant 3D-FR and 3D-FER and can be considered as the most efficient

generalized feature. However, the combination of Fγ and Fκ yields the best performance

for 3D-FR with the FRGC v2.0 dataset. This suggests that these features can provide

complementary information about the face. On the other hand, the sum of the piece-wise

arc length feature Fδ may capture the local variations in the face image, which yield the

facial expressions. Therefore, Fδ feature has a comparable performance with Fγ feature

in 3D-FER as shown in Table 7. Overall, the Fγ, Fκ, and Fδ features outperform the

other two features in both 3D-FR and 3D-FER. These three features are derived from the

tangent vectors of the space curve. The contribution of the tangent vector suggests that

the space curves from a 3D face bend like a circular path yielding a measurement of arc and

curvature. The features derived from the other two vectors of Frenet frame, binomial and
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TABLE 9: Comparison of 3D-FR verification rates at 0.1% FAR and Rank-1 recognition
rates using the FRGC v2.0 dataset.

Method Verification rate at 0.1% FAR Rank-1 recognition rate

Alyuz et al. [113] 86.1% not reported
Husken et al. [114] 86.9% not reported

Al-Osaimi et al. [115] 94.1% 96.5%
Ocegueda et al. [96] 97.5% 96.6%
Faltemier et al. [116] 94.8% 97.2%

Drira et al. [80] 97.1% 97.0%
Dissertation Method 96.0% 96.0%

principal normal vectors, do not provide discriminative attributes for 3D-FR and 3D-FER.

This finding suggests that the space curves from 3D facial data are not twisted along their

paths in such a way that can be represented by these two vectors.

Under pose distortion, Fγ yields the best performance, which shows robustness to pose

variance from 00 to about a 550 pose angle for both 3D-FR and 3D-FER. This indicates that

for an out-of-plane pose distortion within 550 in one direction or 1100 in both directions

of the 3D face, the proposed feature may be able to provide pose invariant performance in

a recognition task. Existing research employs a registration or similar step to correct the

pose angle variation prior to 3D-FR [72, 80, 71], which can be computationally expensive

for a large volume of 3D facial data. The proposed framework directly extracts the pose

invariant features from posed 3D faces and eliminates the need for such a registration step.

4.5.2 Comparison with related work

Table 9 compares 3D-FR results using the FRGC v2.0 dataset. The results suggest

either comparable or better 3D-FR performance for the proposed method when compared

to the best performing methods. Similar 3D-FR performance with the BU-3DFE dataset

in Table 5 suggests resilience of the proposed method to a large scale FR.

The proposed framework rapidly reduces about 30,000 3D points per 3D face down to

an effective feature space with less than 200 feature points. The reduction in dimension

retains the state-of-the-art performance in a synthetic biometric recognition task, as well

as guarantees a faster processing time with 3D faces, which is crucial for real-time applica-

tions. Table 10 summarizes the superiority of the proposed method in terms of processing
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TABLE 10: Cost of computation in registering and processing 3D facial data. ICP =
Iterative Closest Point.

Computation cost per 3D facial data in seconds
Registration Processing Total Processor

time

Li et al. [83] 1.95 (ICP) 7.05 9.00 Intel Core Duo
2.34 GHz

Fatlamer et al. [116] 2.38 (ICP) 7.50 9.88 Intel P4 2.4 GHz
Ocegadua et al. [96] Pre-registered 2.88 >2.88 AMD Opteron

2.1 GHz
Dissertation Method 0 (Pose-Robust) 0.76 0.76 Intel Core Duo

2.66 GHz

TABLE 11: Comparison of 3D-FER % accuracy for six basic expressions using the BU-
3DFE dataset.

Vretos et al. Venkatesh et al. Gong et al. Dissertation
[117] [118] [79] Method

Happy 86.0 93.2 81.2 87.6
Anger 65.0 92.7 71.4 70.5
Fear 67.0 47.9 62.5 67.6

Surprise 89.0 89.9 88.1 87.6
Sad 62.0 74.0 77.5 76.2

Disgust 68.6 75.0 76.6 80.0
Average 72.9 78.8 76.2 78.2

time per 3D face. Although Faltermier et al. have a higher rank-1 recognition rate [116],

their method takes 2.3 seconds to align a probe-gallery pair as shown in Table 10. This will

take about 17 minutes to align a probe with 500 faces in a gallery, which is a limitation for

real time 3D-FR. MatLab 2010b was used to run the algorithm in a 32-bit single thread

process, which has the similar configuration for other studies. However, the magnitude of

improvement in this work is considerably higher than all others.

Table 11 provides a comparison of the 3D-FER performance in this dissertation with

those in the literature. The recognition of fear appears to be the most challenging. Tables

9 and 11 show that unlike existing studies, the same set of Frenet frame-based features
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TABLE 12: Advantages of the proposed framework compared to existing methods using
the BU-3DFE dataset.

Steps Existing Approaches Limitations of Dissertation Approach
the Existing
Approaches

Feature Manual [76, 77, 73, 78] Tedious, not Automatic,
Extraction Landmarks or automatic [80] Generalized features,

Segments Tables 9, 11

Dimension 2D projection Prone to pose Direct extraction
Reduction [74, 76, 79, 96] distortion [76] from 3D

Computation Multi-layer complex Limits real-time Light computation
Complexity processing [96] application Table 10

Matching ICP Registration Expensive [83] Not needed,
[116, 83, 72] pose invariant

Reference Neutral Face Subject Not needed,
Face in 3D-FER [97, 79] dependent subject independent

3D-FER

can be used as generalized features for both 3D-FR and 3D-FER at a significantly faster

computation time without compromising the recognition performance. This suggests the

generalizability of the proposed framework in four different recognition tasks (3D-FR,

posed 3D-FR, 3D-FER, and posed 3D-FER).

The effect of pose distortions on 3D facial data is not well studied. Prabhu et al. study

pose invariant face recognition for 2D facial images by reconstructing their 3D faces [70].

However, they report that at 0.1% FAR, the verification rate drops as low as 44.6% even

after using a 3D reconstruction approach. The effect of pose in 3D facial data is mostly

resolved by employing a computationally expensive registration method such as Iterative

Closest Point (ICP). The proposed framework exploits the inherent geometry of the 3D

point cloud data to provide pose invariant features at the cost of very low computation

time and complexity. The proposed method shows that if the nose tip location is correctly

identified in the posed 3D facial data, the recognition performance in 3D-FR or 3D-FER

can remain consistent up to a 550 pose angle variation.
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Table 12 summarizes the advantages of the proposed framework over the literature

in terms of processing steps and methods. Apart from the competitive results shown in

Tables 9-11, Table 12 illustrates the benefits of the proposed approach in analyzing 3D

facial data for a recognition task. In order to perform both FR and FER using a common

set of features for frontal and posed data, the proposed method avoids manual selection of

features, segmentation, and expensive pose corrections for each sample of 3D facial data.

Secondly, a subject independent 3D-FER is obtained without using the neutral face as the

reference to extract features related to different expressions [97, 79]. Thirdly, the proposed

work avoids computationally expensive point-based representation and registration of 3D

facial data. Finally, the features are directly extracted from the 3D facial data unlike other

approaches, where 3D facial data are projected on the 2D space for 3D-FER [74, 76, 79].

4.6 Localization of discriminative 3D facial curves

The radial curve-based representation of 3D face and Frenet frame-based geometric

features have been considered in this section to localize facial curves characterizing different

facial expressions. For this purpose, the BU-3DFE dataset [103] is used. For each of six

basic facial expressions, 3D facial shapes of 50 individuals are considered. Therefore, the

dataset contains features from a total of 300 3D faces labeled with six facial expressions.

This curve-based localization will be later used in studying several facial muscle activations

in individuals with ASD.

4.6.1 Data processing

Following the algorithm proposed in Fig. 11, each radial curve in a 3D point cloud

representation of the face is represented by a feature point. Therefore, the weight or

contribution of a feature point in classification or discrimination can, in turn, reveal the

contribution of a facial curve. Since facial expressions involve multiple facial muscle activa-

tions, the aim is to find the most contributing facial curves in rendering such expressions.

In this case, the mean curvature (Fκ) of each curve as previously computed in Eq. 21

(Section 4.2.6) is considered.

In this case, two types of localization tasks are performed. In the first case, the super-

vised feature selection method MRMR is used to rank the features and select the top M

number of features from the rank, which best classify the six facial expressions as discussed

in Section 4.3.2. The facial curves corresponding to the selected features are identified to

illustrate the most discriminative facial regions for classifying six facial expressions. In
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(a) (b) (c)

FIG. 19: (a) All 64 radial curves originating from nose tip at the center, (b) Curves
corresponding to 40 selected features, (c) Curves following feature selection results are
mapped on the 3D face.

the second case, the representative curves for each facial expression are localized. The Fκ

feature is obtained for a total of 300 3D faces labeled with six facial expressions as men-

tioned in Section 4.6. For each individual subject in the BU-3DFE dataset, the squared

difference between Fκ(s) feature vectors from 3D faces is measured with a particular facial

expression and without any expression (neutral). For each facial expression, the squared

differences are averaged over 50 individuals to obtain mean squared differences (MSD) as:

MSD =
1

50

50∑
r=1

[FκN(r)− FκE(r)]2 , (28)

where, FκN and FκE are feature vectors from 3D faces of with neutral and with a given

facial expression for the same subject (indexed by r), respectively. The feature points are

ranked based on their MDS values, and the top 20 feature points corresponding to the

highest MDS values are considered for illustration. Each of these feature points belongs

to a radial curve that we can identify and localize on the 3D face.

4.6.2 Results

The MRMR-based multiclass feature selection method shows that 40 out of 64 curves

yield the best 3D-FER performance. The optimal number of features or curves is searched

from the classification accuracies followed by 10-fold cross validation in classifying six facial

expressions.

Considering Fκ feature, a total of 64 feature points are obtained from an equal 64

number of facial curves of a 3D face as shown in Fig. 19(a). The best contributing curves
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(a) Happy (b) Anger (c) Fear

(d) Sad (e) Surprise (f) Disgust

FIG. 20: The 20 most active facial curves on 3D faces for six facial expressions in contrast
to the neutral expression.

following the feature selection procedure are shown in Fig. 19(b). These selected curves

are mapped back on the facial surface to show that most of the curves lie in the lower

half of the face as shown in Fig. 19(c). On the other hand, Figure 20 demonstrates

the most discriminative curves contributing to each of six facial expressions following the

highest MDS values of the features. Fig. 20 shows that most of the facial expressions

involve activations of facial curves in the lower half of the face except for anger and fear

expressions. These two facial expressions involve considerable activations of facial curves

in the upper half of the face.

The proposed curve-based representation and feature extraction allow classification,

recognition of 3D face as well as localization of facial curves based on their activation

due to facial expressions. This enables a convenient comparison of 3D faces using the

curve based geometric feature representation. Instead of using the entire 3D volumetric

surface or 3D point cloud, the curve is easy to acquire, index, and localize on 3D faces

for visualization and comparison of the large volume of 3D face. This approach can be

employed in the automatic selection of useful regions of the face in a given recognition task.

Many studies related to 3D-FR or registration invariably exclude the lower half of the face

for analysis [84], [119]. Instead of excluding upper or lower part, one can automatically
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select a set of facial curves that perform the best for a given classification or recognition

task.

The proposed computational model in this chapter is investigated further in the next

chapter to quantify differential traits from the 3D facial data of the subjects with ASD.

The geometric feature computed from several facial curves are considered to investigate

facial muscle actions local to those curves.
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CHAPTER 5

FACIAL MUSCLE ACTIVATION ANALYSIS IN

ASD

5.1 Chapter Overview

The first experiment collects static 3D facial data and video data of the face in response

to the visual stimuli and tasks outlined in Chapter 3. This chapter investigates facial

muscle-specific response using the static 3D facial data and video data obtained from this

experiment. The computational model for analyzing 3D facial data, as discussed in Chapter

4, is utilized to probe facial muscle-specific actions in a non-intrusive manner. Since the

proposed geometric features obtained using Algorithm in Fig. 11 are found effective in

the classification and localization of facial expressions, these features are used to compute

activations of distinct facial curves. The activation of facial curves, in turn, provides the

activation the information about activation of the facial muscles local to those facial curves.

The investigation with static 3D facial data is complemented with the analysis of video

data of the facial responses. A state-of-the-art facial landmark detection and tracking

algorithm is used to compute facial muscle-specific activations from the video data. The

goal of this chapter is to study potential differential traits in the activation of facial muscles

from the geometry of the 3D facial curves and facial landmarks tracked in video data.

5.2 Data Analysis Framework

This section discusses the data analysis frameworks for 2D and 3D facial images, which

are used to compute facial muscle movements of the two groups of subjects in the first

experiment.

5.3 Analysis of 2D Facial Image

The video camera involved in the first experiment (See Chapter 3) collects facial images

of the participants in response to the task and visual stimuli. The video data are sampled
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(a) (b) (c) (d)

FIG. 21: Illustration of automatic landmark point detection on a 2D facial image frame.
(a) 66 landmark points, (b) A line connecting two lip corners, (c) A line connecting the
nose tip and the midpoint of the upper lip, and (d) A line connecting the nose tip and the
midpoint of the lower lip.

into 2D facial image frames at a rate of one frame per second. This enables the frame-by-

frame analysis of facial landmarks movements during the study. A robust facial landmark

detection routine is applied, which consistently detects 66 landmark points on each of

the 2D facial image frames [65] as shown in Fig. 21(a). Among the 66 landmark points,

12 points trace the edges of the lips, whereas the other points trace the regions of the

eyes, nose, and the facial boundary. This automatic landmark-based feature extraction

alleviates the need for a registration step, which can be challenging for a 2D facial image

with potentially an out-of-plane rotation of the face. Chapter 4 showed that the lower half

of the face is the most active part for the rendering of facial expressions (See Fig. 19(b)).

The lower half of the face includes the mouth, which contributes to a significant number

of facial action units coded by the facial action coding system (FACS) [89]. Therefore,

the frame-by-frame movements of the landmark points associated with the lip region have

been computed in the following sections. Based on the landmark points of the lip regions,

we derive the following features related to the lip action.

(a) Lip corner distance The two lip corners are identified by two distinct landmark

points. Figure 21(b) shows a connecting line representing the Euclidean distance between

the two lip corners FLC is given as,

FLC =
√

(xllc − xrlc)2 − (yllc − yrlc)2. (29)
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where, (xllc, yllc) and (xrlc, yrlc) are the coordinate points of left and right lip corners,

respectively. This distance feature FLC computes the breadth or spread of the lip corners.

The lip corners may be actuated by one or several underlying facial muscles, which, in

turn, may change the lip corner distance or lip stretch.

(b) Lip distance The upper and lower lips are primarily actuated by Orbicular Oris

muscle. This action may manifest as distinct facial actions such as lip funnel, tight lips,

pressed lips, lips apart annotated by facial action units 22, 23, 24, and 25, respectively.

The nose tip is a rigid or fixed point which can be used as the reference point to compute

the relative motion of an individual lip. Following the detection of facial landmarks, we

compute the Euclidean distance Fnul between the midpoint of the upper lip (xul, yul) and

the nose tip (xn, yn) as follows,

Fnul =
√

(xn − xul)2 − (yn − yul)2. (30)

Figure 21 (c) shows a line as the distance between the detected midpoint of the upper

lip and the nose tip. Similarly, Figure 21(d) illustrates a line as the distance between the

midpoint of the lower lip (xll, yll) and the nose tip (xn, yn), which can be calculated as

follows,

Fnll =
√

(xn − xll)2 − (yn − yll)2. (31)

(c) Analysis of the features The proposed distance features depend on the partic-

ipant’s facial morphology and may vary from participant to participant. A comparable

physiological response, independent of the participant, can be obtained from the mean

deviation of the proposed feature over a set of facial image frames. In this regard, a pre-

stimulus facial image frame with neutral expression is considered as the reference facial

image frame. In each trial, the facial image frame at 1000 ms after the onset of the stimulus

is compared with the pre-stimulus reference facial image frame. For each participant, the

mean deviation (Q) is computed by averaging the absolute differences between the pre-

stimulus features (FN) from the reference facial frame and N features (Fi) from N facial

frames in response to the visual stimuli as,

Q =
1

N

N∑
i=1

abs(FN − Fi). (32)
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The mean deviation of the facial muscle action for each participant is considered to perform

within-group and between-group ANOVA tests. The ANOVA tests will reveal if there is

any significant difference in the mean deviation of the facial muscles within a group or

between two groups.

5.4 Analysis of 3D Facial Data

The 3D optical camera yields a dense 3D point cloud representation of the face. The

3D facial point cloud data can be compared in terms of surface-based representation en-

compassing the entire face, which may be computationally expensive and prone to errors

due to a registration step. Instead of considering the entire 3D facial point cloud, a small

set of 3D curves related to different facial muscle regions are automatically extracted for

analysis. The mean curvature feature Fκ, derived in Chapter 4, is computed from the

geometry of the extracted 3D facial curve. The mean curvature feature will capture the

change in the facial muscle movement and can serve as a metric to compute the physiol-

ogy of the facial muscle. The following sub-sections discuss the preprocessing and feature

extraction steps for the 3D facial point cloud data.

(a) Preprocessing and Normalization The 3D optical camera system reconstructs

a 3D facial point cloud from the captured stereoscopic images, which include undesired

regions protruding from the facial surface such as ears, scalp, and partial neck. There

are a few floating 3D points around the surface of the face. Publicly available software

application named MeshLab (http://meshlab.sourceforge.net/) facilitates the visualization

and manipulation of the 3D facial point cloud data. This software application is utilized

to remove the undesired floating points and protruding regions to obtain the useful region

of the face from the 3D point cloud. The 3D facial point is then represented by depth

values along the z-axis, where z-values are essentially mapped on to non-uniform sample

points (x, y) in Cartesian coordinate as z=f(x, y). In order to have a common topology

for feature extraction, the z-values are interpolated on a uniformly sampled square grid

(x′, y′), which is defined within the boundary values defined in Eqs. 1 and 2 (See Section

4.2.2). This interpolation step normalizes all the 3D facial point clouds on a common

topology of a uniformly sampled grid. Following the normalization, an Iterative Closest

Point (ICP) based rigid registration is applied to align a test 3D facial point cloud with

the reference 3D facial point cloud.
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(b) Extraction of facial curves Following the method discussed in Chapter 4, radial

curves are extracted from 3D facial data corresponding to five distinct locations of the

face. Following the previously described method, the nose tip of the 3D facial point cloud

is detected as the highest z value and the coordinate point of the nose tip projected on

the uniform grid (xn, yn) is used to draw a linear path defined by a slope ratio as follows.

p

q
=
yn − yu
xn − xu

, (33)

where (xu, yu) are the points of the uniform grid that satisfy the equation of the linear

paths drawn as follows.

y − yn =
yn − yu
xn − xu

(x− xn). (34)

The zu values corresponding to (xu, yu) points belong to a 3D curve on the 3D facial

surface, which can be represented in an angular form as θij as follows,

θij =
kiπ

2
+ arctan

(
p

q

)
j

, k = 1, 2, 3 and 4, (35)

where the uniform grid is divided into four quadrants denoted by four different values of k,

and p
q

stands for the slope ratio corresponding to a linear path j in a given quadrant. This

representation can be used to localize and index infinite number of radial curves around

the face starting from the nose tip.

Taking advantage of this mathematical representation, five radial curves are extracted

corresponding to the five facial muscle regions as shown in Fig. 22. Although each curve

originates from the nose tip, the curve segment lying on the nose region is discarded, and

only the curve segment corresponding to the facial surface is considered for the analysis of

facial muscle activations. The five probe muscle regions are related to: Zygomaticus Major

Right (ZMR) and Left (ZML), Levator Anguli Oris Right (LAOR) and Left (LAOL), and

Orbicularis Oris (OrOr). Following Eq. 37, Table 13 shows the parameter values for

extracting the five radial curves corresponding to the five probe facial muscle regions. In

Table 13, p
q

represents the slope ratio of the linear path that extracts the facial curve in

one of four quadrants (indexed by k), whereas θ represents the angular orientation of the

facial curve originating from the nose tip.
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(a) (b)

FIG. 22: Five 3D facial curves and their locations. 1= Zygomaticus Major Right (ZMR),
2=Zygomaticus Major Left (ZML), 3=Orbicularis Oris (OrOr) ,4= Levator Anguli Oris
Right (LAOR), and 5=Levator Anguli Oris Left (LAOL). (a) Five facial curves on a mesh
representation of a 3D face and (b) on a topological view of a 3D facial point cloud.

(c) Curve-based geometric features The extracted 3D curves are further processed

to obtain geometric features that represent the change in the geometry of the curve due

to the activation of local facial muscle. The mean curvature of a 3D space curve can be

computed by averaging all the curvature values of the constituting N number of 3D points

as follows,

Fκ =
1

N

N∑
i=1

κ(si). (36)

The curvature represents how the curve bends along its path at a particular point. The

mean curvature of a 3D curve thus characterizes the average bending of the entire curve

along its path. The results in Chapter 4 shows the effectiveness of this feature in the

classification and localization of facial responses for six facial expressions (See Section

4.6.2). These benefits of the proposed feature can be utilized to analyze facial muscle-

specific responses from 3D faces. A 3D face with neutral expression is compared with

a 3D face in response to a visual stimulus (test 3D face) in terms of their respective

mean curvatures obtained from the 3D curves. To facilitate this comparison, the absolute

difference between the mean curvature feature values from a test 3D face and a neutral 3D

face of the same participant is computed. The absolute differences are then averaged over
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TABLE 13: Parametric values to extract 3D radial curves related to different facial muscle
regions.

Facial Muscle Regions Slope Ratio Quadrant Angular
(p
q
) Index (k) Orientation (θ)

Zygomaticus Major Right (ZMR) 1
0

1 1800

Zygomaticus Major Left (ZML) −1
0

1 00

Levator Anguli Oris Right (LAOR) 2
1

2 2060

Levator Anguli Oris Left (LAOL) −2
1

4 3330

Orbicularis Oris (OrOr) 0
1

3 2700

the number (M) of available test faces as follows,

∆Fκ(j) =
1

M

M∑
i=1

|Ftest(i, j)− Fneutral(j)|, (37)

where, ∆Fκ is the mean change in curvature (MCC) of the facial curve, which is utilized

as a feature to represent facial muscle actions of an individual participant, and j is the

index for the facial curves (j =1,2,..5). This feature representation includes the average of

absolute differences between two facial samples, which can cancel out potential errors due

to reprocessing of 3D facial data.

Similar to the 2D facial image analysis, ANOVA tests are performed on the MCCs of

the facial curves corresponding to different facial muscles. A within-group ANOVA test is

conducted to find any significant differences among five different muscle actions within a

particular group. To measure the statistical difference between MCCs of each pair of facial

muscles, a post-hoc Tucky test is conducted where the degrees-of-freedom of F-statistics

are given as F(r, t). Here, r and t are computed as (2-1 =1) for a pair of muscles and

(8-1)X 2 =14 for eight subjects, respectively. The significance or α level is chosen as 0.05

for this study.

5.5 Results

This section illustrates the results following the processing steps and methods presented

in the previous section.
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5.5.1 Results for 2D Facial Images

For each participant, the mean deviation of a lip action over 12 facial image frames in

contrast to a pre-stimulus neutral facial image frame is computed. These 12 facial images

are taken from 12 trials of the study, where each frame is shot at 1,000 ms after the onset

of the visual stimulus in the trial. For each of the 12 trials, the average of mean deviation

of lip actions is taken over all participants in a group to represent a group characteristic.
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FIG. 23: Illustration of lip actions for the two groups of participants. The mean change in
(a) Lip corner distance, (b) Upper lip action, (c) Lower lip action. (d) Mean and standard
error plots for different lip actions over all 12 trials.
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TABLE 14: ANOVA tests for different lip actions in the ASD and TD groups.The upper
and lower triangles for within-group column show the results for the TD and the ASD
group, respectively. The significant p values are highlighted.

Within-group Between-group

Lip Actions Lip Corner Lower Lip Upper Lip
Distance

Lip Corner — F(1,14)=0.06, F(1,14)=3.57, F(1,14)=0.21,
Distance p >0.05 p >0.05 p >0.05

Lower Lip F(1,14)=6.67, — F(1,14)=4.11, F(1,14)=3.13,
p<0.05 p >0.05 p >0.05

Upper Lip F(1,14)=0.5, F(1,14)=5.74, — F(1,14)=2.5,
p >0.05 p<0.05 p >0.05

Fig. 23(a) shows the mean change in the lip corner distance or lip stretch at different

trials for the ASD and TD groups. Both groups show a similar trend of lip stretch actions.

Taking the mean over all 12 trials, Fig. 23(d) shows no obvious difference between the two

groups in terms of lip corner distance or lip stretch. The ASD group manifests a higher

action in the upper lips when compared with the TD group as illustrated in Fig. 23(b).

The average from all 12 trials reveals a higher mean deviation of the upper lip for the ASD

group (See Fig. 23(d)). Similar observations are found for the lower lip action, which is

evident in Figs. 23(c) and (d). In general, Fig. 23(d) reveals that the ASD group manifests

a higher mean deviation in all lip actions when compared with the TD group.

A within-group ANOVA test reveals no significant difference among different lip actions

within the TD group, F(2,21)=1.18, p>0.05. However, for the ASD group, there remains a

significant difference among the three different lip actions, F(2,21)=4.14, p<0.05. To find

further effect on the pair-wise lip actions, we conduct a post-hoc Tucky test within each

group. The upper triangle of the within-group column in Table 14 shows the pair-wise

statistical results for the TD group. No lip action pair is found to be statistically different

for the TD group. The lower triangle of the within-group column in Table 14 shows the

statistics for the ASD group. For the ASD group, there exists a significant difference

between the lip stretch and lower lip actions, F(1, 14)=6.67, p<0.05, as well as between

the upper lip and lower lip actions, F(1, 14)=5.74, p<0.05.
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TABLE 15: Post-hoc Tucky tests on mean change in curvature (MCC) of different 3D
facial curves representing different facial muscles. The upper and lower triangles show
the results from the control and ASD groups, respectively. The significant p values are
highlighted.

ZMR ZML OrOr LAOR LAOL

ZMR — F=0.39, F=117, F=2.28, F= 4.60,
p >0.05 p<0.0001 p >0.05 p<0.05

ZML F=0.47, — F=130, F=5.24, F=7.75 ,

p >0.05 p<0.0001 p<0.05 p<0.05

OrOr F=12.51, F=22.68, — F=81.65, F=83.22,

p<0.01 p<0.001 p<0.001 p<0.001

LAOR F=0.06, F=1.34, F=18.7, — F = 0.13,

p > 0.05 p > 0.05 p<0.001 p > 0.05

LAOL F=1.52, F=0.21, F=48.81, F=5.4, —

p > 0.05 p > 0.05 p<0.0001 p<0.05

5.5.2 Results for 3D facial images

For a participant, the mean change in curvature (MCC) is computed for each facial

muscle region over all the available 3D facial point cloud data. For the TD group, a within-

group ANOVA test reveals a statistically significant difference among the MCCs from five

muscle regions, F(4, 35) =47.49, p <0.001. Out of five probe muscles regions, four of them

lie symmetrically at the left and right sides of the face. These muscle regions are ZMR and

ZML as well as LAOR and LAOL. A post-hoc Tucky test shows further inferences about

the pair-wise muscle actions in the upper triangle of Table 15 for the TD group. The upper

triangle of Table 15 shows that ZMR and ZML muscles have no significant differences in

activations, F (1,14)=0.39, p >0.05, which is also true for LAOR and LAOL muscles, F (1,

14)= 0.13, p >0.05. These results indicate a symmetric action in the facial muscles of the

TD group. The upper triangle of Table 15 also demonstrates that the Zygomaticus Major

muscle yields significantly different MCC than that of the Levator Anguli Oris muscle for

the TD group. This difference is evident between ZMR and LAOL muscles as F(1, 14)=
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FIG. 24: Mean change in curvature (MCC) for five different probe muscle actions. Zygo-
maticus Major Right (ZMR), Zygomaticus Major Left (ZML), Orbicularis Oris (OrOr),
Levator Anguli Oris Right (LAOR), and Levator Anguli Oris Left (LAOL).

4.60, p <0.05, between ZML and LAOL muscles as F(1, 14)=7.75 , p <0.05, and between

ZML and LAOR as F(1, 14)=5.24, p <0.05. The OrOr muscle responsible for lip actions

is found to be the most active facial muscle yielding the highest MCC as shown in Fig. 24.

Similar to the observations in Table 15, Fig. 24 illustrates the symmetry in the facial

muscle actions for the TD group in the ZMR-ZML and LAOR-LAOL muscle pairs. Similar

to the TD group, ANOVA test reveals significantly different MCC for the five facial muscle

regions within the group diagnosed with ASD, F(4, 35) =9.57, p <0.001 The lower triangle

of Table 15 demonstrates the post-hoc Tucky test results for each pair of the facial muscles

in the ASD group. The symmetrically located facial muscles (ZML-ZMR) do not yield any

significant difference in between, F(1, 14) = 0.47, p >0.05. However, unlike the TD group,

the other symmetrically located muscle pair LAOL-LAOR yields significantly different

MCC, F(1, 14) =5.4, p <0.05. This indicates an asymmetry in the facial physiology of the

ASD group.

The subject-specific plots of left and right facial muscle actions for the two groups are

presented in Fig. 25. Fig. 25(b) shows that the average facial responses of three subjects,

out of eight, demonstrate left and right asymmetry in their facial muscle activations. Two

of them are siblings of 11 and 13 years of age who are expected to have similar treatment
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FIG. 25: Subject-specific mean change of the facial curvature feature in left and right:
for Lavator anguli oris muscle regions of (a) Control group and (b) Group with ASD, for
Zygomaticus major muscle regions of (c) Control group and (d) Group with ASD.

history. The visual inspection of their video images also reveals exaggerated lip actions.

The other individual is a 17-year old. The 17-year old consistently shows smiles most

likely because he had been reinforced so much to respond with a smile. Furthermore, the

attempt to cope with anxiety and/or stress can stimulate similar repetitive motor actions

in individuals with ASD.

Unlike the TD group, the lower triangle of Table 15 also reveals that the group with

ASD fails to yield significantly different muscle actions between the Zygomaticus Major

and Levator Anguli Oris muscles. This finding is evident between ZMR and LAOR as

F(1, 14)= 0.06, p >0.05, between ZMR and LAOL as F(1, 14)=1.52 , p >0.05, between

ZML and LAOR as F(1, 14)=1.43, p >0.05, and between ZML and LAOL F(1, 14)=0.21,
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p >0.05. Similar to the TD group, the OrOr muscle yields significantly higher MCC when

compared with other muscles within the ASD group. A between-group design ANOVA is

performed to investigate any significant difference between the two groups in terms of the

MCC for a particular facial muscle. Figure 24 shows a comparative plot of MCCs produced

by the five facial muscles for the two groups. Fig. 24 shows that the ASD group yields

higher MCC than the TD group for all facial muscles except for LAOL. However, none of

the facial muscle regions shows significant difference between two groups. The between-

group statistics for the five facial muscle regions are as follows: for ZMR is F(1, 14)=3.29.

p=0.09, for ZML is F(1, 14)=2.16, p=0.163, for LAOR is F(1, 14)=4.19, p=0.059, for

LAOL is F(1, 14)=0.58, p=0.45, and for OrOr is F(1, 14)= 1.13, p=0.30.

5.6 Discussions of the Results

The experiment using 3D facial images was performed on eight subjects with ASD. Each

3D facial image is captured only once after 1000 ms of the onset of the stimulus in each trial.

This yields twelve 3D facial images per subjects, which are used to compute the average

facial response for each subject. The average facial responses for these three subjects

contributed to a significant inference for the group of eight subjects. These subject-specific

facial responses may have impacted the group statistics since the group consists of a limited

number of subjects. While a larger dataset would yield more reliable group statistics, the

subject-specific cases can provide us with useful differential traits for the individual facial

responses.

This study demonstrates the feasibility of the proposed non-intrusive computational

method in the analysis of the physiology of facial muscles. The proposed methods show

that a particular facial muscle region can be non-intrusively probed from 2D facial image

frames or 3D facial point cloud data to analyze its physiology. These methods are tested

in a pilot study to investigate the atypical facial muscle actions for the group with ASD

in contrast to the TD group. In general, the between-group ANOVA test reveals no

significant difference between the ASD and TD groups in terms of a facial muscle action.

However, a borderline difference appears between the two groups in the case of LAOR

muscle action using 3D facial point cloud data, F(1, 14)=4.19, p=0.059. This inference

may turn significant with a larger size of population and 3D facial point cloud samples.

Furthermore, within-group ANOVA tests reveal several interesting inferences about the

facial muscle actions as follows.
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Intense facial expressions in participants with ASD Both of the facial imaging

modalities (2D and 3D) confirm a higher magnitude of facial muscle actions in the ASD

group when compared with the TD group. This is evident in Fig. 23(d) and Fig. 24 for

2D and 3D facial images, respectively. This observation may provide quantitative support

for similar observations found in the prior studies [16, 53]. In an EMG-based physiological

study, Mathersul et al. report higher Zygomaticus Major muscle response in the ASD

group when compared with the TD group [53]. In a study involving visual evaluation

of facial image frames, an intense level of facial expression is reported in the ASD group

when compared with the TD group [16]. However, prior subjective studies report that

such intense facial expressions in the group with ASD has lack of natural traits, which is

reported as the oddity in facial expressions [16] or awkward expression [17]. Consequently,

this dissertation provides further quantitative supports to discover the differential traits

in the facial expressions of the group with ASD.

Asymmetry in the facial expressions of participants with ASD The oddity in

facial expressions may be explained by the asymmetry in the physiology of facial muscles

as observed in this study. From the analysis of 2D facial image frames, the ASD group

reveals significant differences between the mean deviations of the lower and upper lips.

This difference is found insignificant in the TD group. On the other hand, the analysis of

3D facial point cloud data reveals significant difference between the MCCs of left and right

Levator Anguli Oris muscle regions for the group with ASD. All these observations indicate

asymmetric facial muscle actions in the ASD group, and such asymmetry is not statistically

significant for the TD group. A few recent studies report a significant structural asymmetry

between the left and right halves of the face in participants with ASD when compared with

the TD group [34, 36]. Apart from the morphological facial asymmetry, this study shows

asymmetry in the physiology of facial muscles, which may contribute to the manifestation

of oddity in the facial expressions.

Lack of differential facial muscle actions in participants with ASD The statisti-

cal analysis also reveals that the TD group yields a significant difference in actions between

the Levator anguli oris (LAOL, LAOR) and Zygomaticus major (ZML and ZMR) muscle

regions. This indicates that these two muscle regions are activated independently for the

TD group. Although the participants with ASD exhibit a higher mean change in facial
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muscle actions when compared with the TD group, the ASD group fails to produce signifi-

cant differences in these two specific muscle actions. This may indicate the inability of the

participants with ASD to control these muscles independently. Such muscle actions may

blend together, which may potentially contribute to the manifestation of oddity in facial

expressions.

This Chapter investigates the proposed curve-based computational model for the de-

tection of oddity in the facial expressions of individuals with ASD. Statistical analyses are

performed to study the physiology of facial muscles in a non-intrusive manner using the

geometric feature of 3D facial curves. Statistical analyses reveal intense, but asymmetric

facial muscle actions in the subjects with ASD, which may objectively define measur-

able impairments in exhibiting facial expressions. Such facial oddities may be one of the

differential traits for the group with ASD.
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CHAPTER 6

BEHAVIORAL MARKER DETECTION IN ASD

6.1 Chapter Overview

This chapter investigates differential traits of ASD from facial expressions and eye-gaze

data using computer vision-based methods. The nonverbal items of the BPASS protocol

such as eye contact, facial expressions, and social smile, as discussed in Section 1.2, are

studied using eye-tracker and both video and static 3D facial image data, respectively. For

the time first time in ASD literature, FACS is employed to encode and classify FAUs from

facial image data as mentioned in Chapter 2. The goal of this chapter is to identify a

behavioral marker from three categories of response: prevalence of FAUs in facial images,

subjects perception of the displayed facial expressions, and eye-gaze fixation while the

subjects perform the same tasks assigned in the first experiment. The behavioral markers

gleaned from the physiology of the face and vision may further facilitate the computa-

tion of the severity and prognosis of the disorder. The findings related to the behavioral

marker have implications in the early detection of ASD-related traits to devise an effective

intervention strategy.

6.2 Computer-based Analysis of Facial Response

This section presents the proposed computational methods for computer-based recog-

nition of FAUs from 2D and 3D facial images.

6.2.1 Dataset of Facial Action Units

For the computer vision-based classification of FAU, we use a publicly available dataset

of 2D and 3D facial images benchmarked with different FAUs. The dataset is known as

the Bosphorous facial expression dataset [111]. On an average, the dataset provides 2D

and 3D facial images of fifty individuals annotated by professional FACS coders. In this

study, five FAUs, AU 10, AU 12, AU 14, AU 24, and AU 25, are probed, as mentioned

in Section 2.5.3. The dataset is used to obtain a set of ground truth facial features that
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FIG. 26: Steps for preprocessing and feature extraction from facial images prior to the
classification of FAUs.

represent a particular FAU. These ground truth features are used to train the classifier

models for detecting a FAU. Since typical facial expressions are compound and constitute

more than one FAU [92, 91], we design five binary classifier models corresponding to five

FAUs. The five binary classifiers are AU 10 Vs Neutral, AU 12 Vs Neutral, AU 14 Vs

Neutral, AU 24 Vs Neutral, and AU 25 Vs Neutral. These classifiers are trained by

the ground truth features extracted from the Bosphorous dataset. The following sections

describe the data processing and feature extraction steps involved in the analysis of 2D

and 3D facial images.

6.2.2 Analysis of Facial Data

The basic pipeline for analyzing facial data is illustrated in Fig. 26 and discussed in

the following subsections for both 2D and 3D facial data.

Preprocessing: A 15-second video clip corresponding to a trial of the study is sampled

into 15 2D-facial image frames at the rate of one frame per second. A robust facial landmark

detection algorithm is adapted from the work of Zhu et al. [120], which can detect facial
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landmarks on eyes, nose, mouth, and facial edges within a complex color background. The

landmarks on facial edges are used to determine a rectangular boundary for the facial

region, which is segmented from the background of the raw video frame.

Unlike 2D facial images with intensity values, 3D faces are represented by point clouds

in 3D space. A raw 3D face contains non-facial regions such as the neck, hair, partial scalp,

ears, and other non-facial outliers which are removed to obtain an effective facial region.

An open-source software application known as MeshLab (http://meshlab.sourceforge.net/)

is used to visualize and clean each 3D facial point cloud. In addition, the 3D point clouds

generated from faces of younger subjects are typically smaller in shape than their older

peers. Therefore, the smaller 3D faces are uniformly normalized (scaled up) using MeshLab

to an average face of the age group without affecting the local variations in the facial images.

Registration and Normalization: While 3D point cloud data can be conveniently cor-

rected for pose and scale, 2D intensity-based facial images suffer from these non-trivial

challenges. The proposed robust facial landmark detection algorithm [120] is used to facil-

itate a rigid registration of a probe 2D facial image with a reference image. The coordinate

points of the detected landmarks corresponding to the probe face and the reference face

are considered to compute a rigid transformation matrix, which is applied to the probe

image for registration. The registered 2D facial images are resampled and normalized as

N-by-N dimension.

For the 3D facial point cloud, an iterative closest point (ICP) based rigid registration is

applied to automatically align all 3D facial point clouds to a reference 3D face. Following

the registration, a 3D facial point cloud is interpolated on a 200x200 uniformly sampled

grid (x’, y’) within the boundary values defined by Eqs. 1 and 2 (See Section 4.2.2).

The 3D facial surface points z=f(x, y) are linearly interpolated on a grid of uniform

sample points as z’=f(x’ , y’) , where z represents the interpolated depth of a 3D point on

a grid point (x,y). Maximum surface curvature is computed at each of the grid point for

the surface z=f(x,y) as used in a recent work on detecting FAUs from 3D facial data [74].

Feature extraction: The lower region of the normalized N-by-N 2D facial image is

segmented for feature extraction. The color images are converted to gray scale as in

Fig. 27(a). A bank of 2D Gabor functions are used as Gabor filters with 5 scales and

8 orientations as shown in Fig. 27(b) and the extracted Gabor features are shown in

Fig. 27(c). A total of 40 Gabor filters have been constructed to extract Gabor features from

the segmented lower face. For the 3D facial point cloud, the maximum surface curvature

feature is computed at each point (x’, y’) of the proposed uniform grid for the surface
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(a) (b) (c)

FIG. 27: Gabor filters and filter outputs. (a) Input facial image, (b) 40 Gabor filters, (c)
Extracted Gabor features from the input facial image.

z=f(x’,y’). The curvature values computed on the points of 3D surface are projected on to

the 200x200 grid as gray scale intensity values [74]. Since the target FAUs appear in the

lower half of the face, the curvature map of the 3D surface is segmented to account only

the lower half of the face for feature extraction. Similar to the step for 2D facial images, 40

Gabor filters are used to extract the Gabor features from the maximum curvature feature

map of the 3D face. A similar approach involving the Gabor features is applied in the

state-of-the-art studies on FAU recognition [94, 74].

Feature Selection: Once the Gabor features are extracted, the same feature selection

technique is applied for both 2D and 3D facial images. This is to reduce the large dimension

of Gabor feature into a set of representative features. The Gabor features are ranked

based on their contribution in differentiating between a FAU and a neutral expression.

The benchmarked 2D and 3D faces from the Bosphorous dataset are employed to identify

a subset of features that yield the best performance for the binary classifier. The Gabor

features are extracted from the 2D and 3D facial images corresponding to five different

FAUs and neutral expressions, respectively. The mean squared differences (MSD) for a

FAU over N (=50) 2D or 3D facial image samples is obtained as,

MSD =
1

N

N∑
k=1

[FN(:, k)− FFAU(:, k))]2 , (38)

where FN and FFAU represent Gabor feature vectors from the kth subject in the dataset

corresponding to neutral expression and a particular FAU, respectively. The indices of the
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FIG. 28: Classification and evaluation of the test facial images through five binary classifier
models corresponding to five target FAUs.

feature vector are ranked based on the MDS values. The indices corresponding to MSD

values higher than a threshold are stored for each binary classifier. These indices are used

to select the representative features from the large Gabor feature vector of a probe facial

image.

Evaluation Methods: The selected Gabor features acquired from the test or training

datasets (Fig. 26) are considered for a three-step evaluation process as follows.

In the first step, a ten-fold cross-validation is performed for each binary classifier using

the selected features from the training dataset. An average of the classification accuracies

from the ten folds represents the performance of a particular binary classifier. This step is

to demonstrate the performance of our proposed FAU classification framework, as well as

to optimize the classifier parameters to yield the best performance. In the second step, the

outcomes and optimization of classifiers in the cross-validation step are taken into account

to construct five binary classifier models (See Fig. 28). A binary classifier is trained by

the selected features from ground truth facial image samples with neutral expression and

a target FAU, respectively. In the third step, the trained binary classifiers are used to

detect FAUs from probe 2D and 3D facial data collected from the participants in this

study, respectively. A probe facial image may contain more than one FAU as mentioned

in Section 6.3.2. For a number of available facial images for a subject, we compute the

percentage of prevalence of each FAU from these facial images. For a probe subject, the

percentage of prevalence of an action unit X (PAUX) is computed as follows,

PAUX =
NAU

TNFI
× 100, (39)



76

FIG. 29: Four visual areas of interest (AOI) for eye-tracking. UP and LP represent the
upper and lower part of the face, respectively. GUI shows the graphical user interface
region. The rest belongs to the No region.

where NAU is the number of facial images detected with the AU X, TNFI denotes the

total number of facial images available from the probe subject, and X represents any one

of the probe FAUs such as 10, 12, 14, 24, or 25.

Percentage of prevalence accounts for the probability of a FAU to appear in a subject’s

face while participating in the study. The percentage of prevalence of different FAUs from

the participating subjects are statistically evaluated in between-group and within-group

designs of ANOVA tests. These tests will reveal any significant impact of the experimental

task and stimuli on the prevalence of FAUs. A significance level α is equal to 0.05 for the

ANOVA tests.

6.2.3 Analysis of Eye-tracker data

The eye-tracker system provides coordinate location and gaze duration for each gaze

fixation point. Gaze fixation is initiated at the onset of the visual stimulus until the

disappearance of the GUI when the subject chooses an answer. A gaze fixation with equal

or more than 320 ms duration is considered as voluntary gaze fixation for this study [121].

Each gaze fixation is labeled by one of four possible visual areas of interest (AOI) based on

its coordinate location in the visual scene as shown in Fig. 29. These AOIs are the upper

part of the face (from the nose to the forehead), the rest as the lower part of the face, the

GUI, and the No region. The No region includes all AOIs beyond the facial image and
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(a) (b) (c) (d)

FIG. 30: (a) Ground truth reference face with facial landmarks, (b) Test face with detected
landmarks, (c) Registered face after rigid transformation of landmarks, (d) Segmented
lower region of the face.

the GUI. In each trial, the percentage of gaze fixation duration (GFD) spent at each of

four areas is defined as follows,

GFD =
G AOI

G Trial
× 100, (40)

and is used to compare the two groups in the study. Here, G AOI and G TRIAL are

voluntary GFDs at an AOI and the total GFD in a trial, respectively. For each subject,

the percentage of GFD spent at each region is averaged over the number of trials. Within-

group and between-group designs of ANOVA tests are considered with a significance level

α=0.05. The ANOVA tests will reveal the significant areas of visual interest for a group

during the study.

6.3 Experimental Results

Following the proposed experimental methods discussed in Section 6.3, the obtained

results are presented in the following subsections:

6.3.1 Processing of Facial Image

Following the discussion in Section 6.3.3, the facial landmarks are automatically de-

tected from color facial images as shown in Figs. 30(a) and (b). A transformation matrix

is computed between two sets of landmark points corresponding to the reference face and

probe face, respectively. This transformation matrix is used to perform a rigid registration

of the probe face on the reference facial image as demonstrated in Fig. 30(c). Fig. 30(d)

shows the segmented lower part of the face after conversion to gray scale. The lower part
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(a) (b) (c)

(d) (e)

FIG. 31: ICP-based registration of 3D point cloud facial data. (a) Two 3D facial point
cloud before registration, (b)-(c) After registration. (d) 2D projected surface curvature
maps of 3D faces, (e) Segmented lower half of the face.

of the facial image is of 40x60 dimension, which is originally segmented from a 60x60 full

facial image after the registration. The Gabor feature extraction step yields a total of

96,000 feature points from the lower part of the facial image. A small subset of representa-

tive features are selected for classification in each binary classifier following the procedure

mentioned in Section 6.3.3.

Following the descriptions in Section 6.3.3, 3D facial point clouds are registered with

a reference 3D facial point cloud as shown in Figs. 31(a)-(c). Following the registration,

the surface-based maximum curvature is computed at each point of the interpolated 3D

point cloud and projected on the 200x200 uniformly spaced grid as the intensity-based

feature as shown in Fig. 31(d). The mouth region of the projected curvature feature

map is segmented as shown in Fig. 31(e). The segmented lower half of the face has a

dimension of 55x200, which is further downsampled to 28x100 for the ease of computation.

A total of 40 Gabor filters applied over the curvature feature map yield 112,000 Gabor

feature points per segmented face. This large feature dimension is reduced to a smaller

set of representative features prior to classification following the feature selection step, as

discussed in Section 6.3.3.
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TABLE 16: 10-fold cross-validation accuracies in % for classifying five facial action units
from 2D and 3D facial data.

Classifiers Accuracy (%)
3D Data 2D Data

Classifier N10 AU 10 vs Neutral 95.83 95.23
Classifier N12 AU 12 vs Neutral 95 97.14
Classifier N14 AU 14 vs Neutral 95 94.28
Classifier N24 AU 24 vs Neutral 85 88.57
Classifier N25 AU 25 vs Neutral 93 96.29

TABLE 17: ANOVA test results on the percentage of prevalence of FAUs with the 2D
facial data.

Within-group design
Action Units Subject

Within Control F(4, 35) = 10.5 (p<0.001) F(7, 32) = 0.53 (p>0.05)
Within ASD F(4, 35) = 6.45 (p<0.001) F(7, 32) = 1.21 (p>0.05)

Action Units Between-group design

AU 10 F(1, 14) = 2.99 p>0.05
AU 12 F(1, 14) = 9.23 p<0.01
AU 14 F(1, 14) = 0.95 p>0.05
AU 24 F(1, 14) = 0.45 p>0.05
AU 25 F(1, 14) = 0.81 p>0.05

The performance of the proposed data analysis framework is evaluated by a ten-fold

cross-validation using ground truth 2D and 3D facial images from the Bosphorous dataset,

respectively. Table 16 shows the ten-fold cross-validation results for the five proposed

binary classifiers using benchmarked 2D and 3D facial data, respectively. The 2D facial

images yield slightly better accuracies than 3D facial point cloud data except for action

units 10 and 14.

6.3.2 Prevalence of FAUs in 2D Facial Data

The video camera yields more than 100 facial image frames per subject on an average.

Some of the facial image frames are discarded in which the faces are partially out of the
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FIG. 32: Mean prevalence of FAUs and standard error plots for 2D facial images. (a)
Subject-wise mean prevalence of all FAUs for subjects with ASD, (b) Subject-wise mean
prevalence of all FAUs for TD subjects, (c) Mean prevalence of different FAUs in two
groups, (d) Overall mean prevalence of FAUs in two groups of subjects.

frame, ill-posed, or occluded because of the unconstrained head motion. The trained clas-

sifier models are used to detect the prevalence of different FAUs from the test facial images

obtained from the study. Figure 32(a) shows that the average percentage of prevalence

(APP) of FAUs, measured over all FAUs, is below 40% for the TD subjects. However, the

subjects with ASD demonstrate variability in the APP measured over all FAUs, which is

over 40% for several subjects as shown in Fig. 32(b). A within-group design ANOVA re-

veals that the TD subjects have no significant difference among themselves, F(7, 32)=0.53,

(p>0.05) as shown in Table 17. Similarly, the subjects with ASD reveal no significant dif-

ference in terms of the APP measured over all FAUs, F(7, 32)=1.21, (p>0.05). Within
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a group, further ANOVA tests show significant difference among APPs of the five FAUs.

The APPs of five FAUs have been found to be significantly different for the TD group,

F(4, 35) =10.5, (p<0.001) as well as for the group with ASD, F(4, 35) = 6.45, (p<0.001).

Between-group ANOVA tests are performed to investigate the difference between the two

groups. Table 17 summarizes the between-group ANOVA test results, which show no

significant difference between two groups in terms of APP of FAUs except for FAU 12.

Figure 32(c) provides a comparative illustration of the two groups in terms of APPs re-

lated to five FAUs, respectively. The ASD group exhibits a significantly higher prevalence

of FAU 12, F (1, 14) = 9.23, (p<0.01) than the TD group, which is evident in Fig. 32(c).

A comparative illustration between the TD and ASD groups is shown in Fig. 32(d) in

terms of the APPs of all FAUs measured over all subjects within a group. This overall

illustration reveals that the group with ASD (37.21%) manifests a higher APP of FAUs

when compared to the TD group (27.94%).

6.3.3 Prevalence of FAUs in 3D Facial Data

The 3D optical camera reconstructs 3D facial point cloud data from multiple stereo-

scopic images, which are sensitive to the positioning of the subject’s head. If a stereo image

misses a portion of a facial side, it may distort the final reconstructed 3D face. There have

been subjects with ASD who are restless in nature, and therefore sometimes fail to stay

within the camera’s field of view. In addition to the sensor limitation as mentioned earlier,

a number of 3D facial images have been discarded for incomplete or distorted reconstruc-

tion. Therefore, on an average, about 12 3D-facial images are obtained per subject. The

following section discusses the prevalence of FAUs for 3D facial images collected in this

study.

Table 18 summarizes the results following the ANOVA tests performed using 3D facial

point cloud data. A within-group design ANOVA test shows no significant difference

among the subjects within the TD group in terms of their APP measured over all FAUs,

F(7, 32)=1.02, p>0.05 as illustrated in Fig. 33(a). However, the subjects with ASD have

been found significantly heterogeneous in terms of APP measured over all FAUs, F (7, 32)

=14.46, p<0.001 as shown in Fig. 33(b).

Table 18 shows that there is no significant differences among five FAUs in terms of

their APPs measured over all subjects within the group with ASD, F (4, 35) = 0.46,

p>0.05. However, the TD group reveals a significant difference among their elicited five

FAUs in terms of APP, F(4, 35) = 4.21, p<0.01. A between-group design ANOVA test is
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FIG. 33: Mean prevalence of FAUs and standard error plots for 3D facial images. (a)
Subject-wise mean prevalence of all FAUs from subjects with ASD, (b) Subject-wise mean
prevalence of all FAUs from control subjects, (c) mean prevalence of different FAUs in two
groups (d) Overall mean prevalence of FAUs in two groups of subjects.

performed to identify the statistical difference between the two group in terms of the APP

measured for each FAU. Table 18 shows that there is no significant difference between ASD

and control groups in terms of APP of any FAU, which is also illustrated in Fig. 33(c).

Similar to the observation with 2D facial images, the APP measured over all subjects and

all FAUs for the group with ASD (32.27%) is found higher than that for the TD group

(25.37%) as shown in Fig. 33(d). Note that the 3D facial point cloud data do not yield

a statistically significant result in between-group ANOVA tests as in the case of 2D facial

images. Therefore, we further discuss the subject-specific findings about the percentage of

prevalence of different FAUs.



83

TABLE 18: ANOVA test results on the percentage of prevalence of FAUs for 3D facial
data.

Within-group design
Action Units Subject

Within Control F(4, 35) =4.21 (p<0.01) F(7, 32)=1.02 (p>0.05)
Within ASD F(4, 35) =0.46 (p>0.05) F(7, 32) =14.46 (p<0.001)

Action Units Between-group design

AU 10 F(1, 14)=0.3 p>0.05
AU 12 F(1, 14)=0.78 p>0.05
AU 14 F(1, 14)=0.12 p>0.05
AU 24 F(1, 14)=0.82 p>0.05
AU 25 F(1, 14)=0.91 p>0.05

Fig. 34 demonstrates the subject-specific percentage of prevalence for different FAUs.

Fig. 34(a) shows that the subjects with ASD labeled by ID numbers 1, 3, 4, and 6 have

more prevalence of AU 10 than their TD peers. Fig. 34(e) shows a high prevalence of AU

25 with the same subjects as for AU 10, since ’upper lip raiser’ (FAU 10) usually co-occurs

with ’mouth open’ (AU 25) involving the activation of Orbicularis Oris muscle around the

lip region.

Subjects with ASD, labeled 4, 5, and 6, have noticeably produced a high prevalence

of AU 12, which represents ’lip stretching’ as the main component of smile expression as

shown in Fig. 34 (b). Fig. 34 (c) shows high prevalence of ’facial dimple formation’ (AU 14)

with the same subjects. This is because facial AU 14 is activated by Buccinator muscle,

which can co-occur with the activation of muscle Zygomaticus Major resulting in AU 12.

Subjects with ASD, labeled 2, 7, and 8, reveal a high prevalence of neutral expression or

lack of facial affect, except a few prevalence of ’lip pressing’ represented by AU 24 (Fig. 34

(d)). On the other hand, TD subjects with labels 1 and 8 have a moderate prevalence

of all FAUs. TD subjects with labels 5, 6, and 7 have a moderate presence of all FAUs,

except AU 10 and AU 25, which may appear together as mentioned before. TD subject 4

excludes AU 25, subject 2 excludes AU 10, and subject 3 excludes both AU 10 and AU 12.

Fig. 34 (f) shows the APP over all five FAUs for individual subjects belonging to the two

groups. This reveals that subjects with ASD have been found facially more active than

their TD peers.
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FIG. 34: Subject-specific prevalence of five different FAUs in eight subjects with ASD and
eight TD subjects. Percentage of prevalence of (a) AU 10, (b) AU 12, (c) AU 14, (d) AU
24, (e) AU 25, (d) Mean FAUs.

6.3.4 Results from the Eye-tracker data

Following the procedures in Section 6.3.4, the percentage of gaze fixation duration

(GFD) spent at each visual AOI is computed for individual subjects. The percentage of
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TABLE 19: ANOVA test results. The upper triangle is for the group with ASD, the lower
triangle is for the TD group. The significant inferences are highlighted. No = No region,
UP = upper part, LP = lower part of the face, GUI = graphical user interface, PVGD =
percentage of voluntary gaze duration.

Within-group design
No UP LP GUI

No X F=19.95, F=13.72 F=1.4,
p<0.001 p<0.001 p>0.05

UP F=2.12 X F=0.54 F=74.21
p>0.05 p>0.05 p<0.001

LP F=3.63 F=6.64 X F=48.21,
p>0.05 p<0.05 p<0.001

GUI F=23.26 F=1.48 F=43.22, X
p<0.001 p>0.05 p<0.001

Between-group design

PVGD No UP LP GUI
F=4.06, F=6.39, F=7.54, F=0.35, F=1.3,
p=0.063 p<0.05 p<0.05 p>0.05 p>0.05

time spent on voluntary GFD over all GFD (both voluntary and involuntary) has been

found to be higher within the TD group (74%) when compared with the group with ASD

(68%), however, this difference is not statistically significant (F(1, 14)= 4.06, p>0.05).

This is shown as the percentage voluntary gaze duration (PVGD) in Fig. 35 and Table 19.

The following sections describe the findings from the ANOVA tests.

Fig. 36 shows an example of overall gaze maps in a trial for two age-matched subjects

(one with ASD and one TD subject). It is obvious from the gaze map that unlike the TD

subject, the subjects with ASD avoided the upper part of the face and rather gazed at the

lower part and elsewhere.

The ANOVA test results reveal some interesting observations in Table 19. The upper

triangle of Table 19 reveals that the group with ASD has spent a significantly higher

percentage of GFD in scanning the GUI and the No region than at the facial regions (lower

and upper face). A significantly higher percentage of GFD is found at the No region when

compared with the upper part (F=19.95, p<0.001) and the lower part (F=13.72, p<0.001)

of the face. Similarly, the ASD group has spent significantly more percentage of GFD in

scanning the GUI than the upper (F=74.21, p<0.001) and lower (F=48.21, p<0.001) parts

of the face. However, no significant difference is found between the percentages of GFD
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FIG. 35: (a) Percentage of gaze duration at four visual scenes (No = No region, UP =
upper face, LP = lower face, GUI = Graphical User Interface). PVGD = Percentage of
Voluntary Gaze Duration.

spent in scanning lower and upper parts of the face (F=0.54, p>0.05) respectively. This

indicates that individuals with ASD have a tendency to avoid visual interaction with the

human face and exert more visual scanning on elsewhere. The findings are quite different

for the TD group as shown in the lower triangle of Table 19. The TD group has spent

a significantly higher percentage of GFD in scanning the upper part of the face than the

lower part (F=6.64, p<0.05). Individuals in the TD group have spent significantly less

percentage of time in scanning the No region, (F=23.26, p<0.001) and lower part of the

face (F=43.22, p<0.001) than that spent in scanning the GUI. A between-group ANOVA

test indicates an insignificant difference between two groups in terms of the percentage

of time spent in scanning the GUI (F= 1.3, p>0.05) and lower part of the face (F=0.43,

p>0.05) as shown in Table 19. However, the TD group has spent a significantly higher
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(a) (b)

FIG. 36: Gaze pattern in an attempt to recognize a facial expression. Gaze patterns
produced by (a) A TD subject and (b) A subject with ASD.

percentage of time visually scanning the upper part of the face than that spent by the

group with ASD, (F=7.54, p<0.05). The group with ASD has spent a significantly higher

percentage of time scanning the No region than that spent by the TD group, (F=6.39,

p<0.05).

6.3.5 Perception of Emotions

The facial expression recognition task in Session 1 of the first experiment also examines

the subjects perception of the displayed emotional expression, which is collected on the

GUI. Fig. 35(b) shows the percentage correct recognition of six facial expressions for two

groups of subjects. Similar to a previous study [122], Fig. 35(b) reveals that subjects

with ASD have performed poorly in recognizing negative expressions such as anger, fear,

and disgust. This difference indicates that subjects with ASD may fail to grasp a social

context due to the impairment in their perception of negative facial expressions. This lack

of perception of emotions may, in turn, regulate or limit their facial responses as found in

the previous sections.

6.4 Discussion of the Results

The quantitative evaluations in this chapter demonstrate several differential responses

that can provide important insights into the symptoms and severity of the group with
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ASD. The analysis of FAUs from videotaped data reveals a significant prevalence of FAU

12, which is the major constituent of smile expression. Although the smile expression is,

in general, visible, any anomaly pertaining to the smile expression (FAU 12) at an early

developmental age can be subtle for human eyes. Smiling and crying are known to be the

earliest facial responses of human infants as classified by baby FACS [123]. The anomaly

in the prevalence of smile expression for the school-aged group with ASD may also be a

target for screening younger children with ASD at preschool ages. An early screening and

identification of ASD-related traits will, in turn, enable early and effective intervention

planning.

Note that the higher prevalence of FAUs in the group with ASD when compared with

the TD group (See Fig. 7(d)) may contradict a general notion that subjects with ASD

are unable to produce facial expressions. However, this study enrolls high-functioning

subjects with ASD who are known to engage and respond more appropriately than their

low-functioning peers when the stimulus or the task is arousing [53] [124] [16]. The re-

sults in Chapter 4 involving muscle-specific analyses of both 2D and 3D facial data also

reveal higher facial muscle activation in the group with ASD when compared with the TD

group [23]. From the definition of FACS, the activation of Zygomaticus Major muscle may

be studied using the APP of FAU 12 [89]. Unlike prior studies [54, 60, 46] with intrusive

methods and undifferentiated findings, the proposed non-intrusive computer vision-based

method shows a significantly higher prevalence of FAU 12 for the group with ASD.

The FAU 12 is the principal component of smile expression, whereas social smile and

facial expressions are clinically screened in individuals with ASD [14]. Social smile is a

reciprocal behavior that involves eye contact during sharing of smile between two indi-

viduals. In Section 6.4.4, the eye-tracker data reveal that the subjects with ASD have

spent significantly more time elsewhere than visualizing the faces with expressions. The

high prevalence of smile expression along with such averted gaze patterns violates the reci-

procity of social smile. Therefore, the impairment in social smile in subjects with ASD may

be automatically computed simultaneously from facial responses and eye-gaze patterns us-

ing non-intrusive computer vision sensors. Furthermore, human infants can manifest social

smile as early as six months of age by making face-to-face interaction with adults [125]. If

the impairment in social smile is identified earlier, it may consequently provide an early

target for behavioral intervention. The efficacy of the behavioral intervention to mitigate

the anomaly in social smile may further be evaluated using the proposed computational

methods.
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The averted eye-gaze patterns may have contributed to poor emotion recognition per-

formance of the subjects with ASD as shown in Section 6.4.4. The lack of perception of

negative emotional expressions such as anger, fear, and disgust may have favored the man-

ifestation of smile incongruent to the visual stimuli for these subjects. Smiles incongruent

to other channels of verbal or nonverbal communication such as vocal prosody, eye-gaze

and gesture may be an effective behavioral marker for ASD. The subjective evaluations of

human raters in prior studies report atypical traits in the facial responses of subjects with

ASD when compared with the TD group [126, 16, 17]. An objective evaluation via com-

puter vision-based recognition of FAUs and eye-tracking data, as proposed in this study,

may offer necessary metric to quantify the atypical behavioral traits from the elicited facial

and visual responses.

In contrast to the group with ASD, the low prevalence of FAU 12 in TD subjects

may be due to a lack of enthusiasm in the tasks with facial expressions presented via a

computer-simulated environment. The eye-tracker reveals that TD subjects are visually

focused on the upper part of the face (eye-contact region) and GUI while attempting to

provide the answer. This suggests that the TD group may have more control of their emo-

tional expressions than the ASD group. Individuals suffering from neurological disorders

like ASD are known to have less control over their emotional expressions [127]. Emotional

expressions such as smiling and crying can be induced involuntarily even in cases of palsy

or lack of emotional control. This is because facial nerves originating from the thalamus

regulate involuntary control of facial muscles, which may elicit involuntary smile expres-

sion [48]. Furthermore, prior studies report that subjects with ASD are more comfortable

and engaged during a computer-based interface or virtual environments than during real

life human interactions [104, 105]. Therefore, similar computer-based virtual environments

may be used to stimulate and intervene the anomalies detected as behavioral markers.

This chapter proposes a computational model to investigate the behavioral markers

that differentiate the group with ASD from the TD group. The behavioral markers are

quantitatively studied from the elicited facial responses, eye-gaze patterns, and perceptual

skills of the subjects. These spontaneous responses are common targets for follow-up

visual screenings of children with ASD. The FACS-based encoding of facial responses and

the analysis of gaze patterns reveal that the group with ASD manifests intense and frequent

smile expression with an averted gaze pattern. The lack of congruence in facial responses

and eye-gaze suggests a behavioral marker, which may be useful in quantifying nonverbal

skills of subjects with ASD.
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CHAPTER 7

DYNAMIC FACIAL RESPONSE IN ASD

7.1 Chapter Overview

This chapter discusses the second experiment as outlined in Section 3. The second

experiment employs a motion capture sensor to acquire dynamic facial actions in response

to dynamic audio-visual stimuli as discussed in Section 3.3.1. The narrative of the story

is provided in Appendix C. The time-sampled dynamic facial response data are encoded

using FACS-based FAUs. The differential traits for the group with ASD are investigated

from the prevalence of different FAUs in the time-sampled facial action data in response to

the stimuli. Several metrics are proposed and investigated to compute the differential traits

for the group with ASD using the dynamic facial action data. Within-group and between-

group ANOVA tests are performed to statistically evaluate the prevalence of differential

traits in the facial expressions of the group with ASD compared to the TD group using

dynamic facial response data.

7.2 Analysis of Dynamic Facial Response

For the purpose of this study, ten FAUs are considered corresponding to ten distinct

facial actions detected and tracked by faceshift as shown in Fig. 37. These action units

cover a range of facial actions from the eye-brow to the jaw. Du et al. delineate the

constituents of different compound emotional states in term of FAUs [91]. The proposed

ten FAUs contributing to different compound emotional expressions are shown in Table 20.

The prevalence of the ten target FAUs were computed and compared for the two groups

to identify several differential traits in the spontaneous facial responses. The differential

traits associated with the group with ASD are computed using the following three metrics.

First, the number of times a FAU is activated is counted for each subject in response

to the four-minute long audio-visual stimuli. The numbers of activation within a group

are averaged over all ten subjects for each FAU. This yields the mean and standard error

of the prevalence of a particular FAU within a group. The mean prevalence of a FAU is

utilized to compare between the TD and ASD groups using a t-test. This analysis reveals
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TABLE 20: FACS-based annotation of facial actions tracked by the facial motion capture
system (faceshift).

Facial Actions Facial Action Representative Emotional
(faceshift) Units (FAUs) Expressions

Brows Up AU 1 Sadness, Surprise Fear
Sneer AU 6 Happiness, Scorn

Upper Lips Up AU 10 Disgust
Smile AU 12 Happiness

Dimple AU 14 Depression [93]
Mouth Frown AU 15 Disgust, Sadness

Lower lip down AU 16 Disgust
Jaw AU 17 Disgust

Lips stretch AU 20 Fear
Mouth Press AU 24 Anger

any deficit in the mean prevalence of a FAU in the group with ASD when compared with

that for the TD group.

Second, the effects of emotional context of the audio-visual stimuli on the prevalence

of FAU are computed. A story narrated by an Avatar is used as the audio-visual stimuli

(See Appendix C). The story demonstrates multiple emotional states of the Avatar and

shows contexts as categorized in Table 21. For each of the ten stimuli contexts (labeled

with stimuli ID), the average number of activations for all FAUs per subject is computed.

Within a group, the numbers of activation are averaged over all ten subjects for each

stimuli context (stimuli ID). This yields the mean and standard error of the prevalence of

the FAUs within a group for a particular stimuli context.

Third, the correlation coefficient is computed between the time-sampled activation data

of two FAUs in response to the four-minute long audio-visual stimulus. A prototypical

facial expression (e.g. happy, anger, or surprise) may be a combination of multiple FAUs.

Therefore, the facial muscle actions are likely to be correlated, where the activation of one

FAU can be tied to the activation of another. Between-group ANOVA tests are conducted

to ascertain if any group has significantly higher correlation coefficient for a pair of FAUs

than that of the other group. The lack of correlation between a pair of FAUs suggest a

measurable differential trait in the facial physiology for the group with ASD.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIG. 37: Synthetically generated ten facial action units on 3D deformable facial model for
visualization. (a) FAU 1, (b) FAU 6, (c) FAU 10, (d) FAU 12, (e) FAU 14, (f) FAU 15,
(g) FAU 16, (h) FAU 17, (i) FAU 20, (j) FAU 24

7.3 Results

The section describes the results obtained following the methods proposed in Sec-

tion 7.2.

7.3.1 Mean Prevalence of Facial Action Unit

The magnitude of activation for a FAU is normalized between the values of 0 and 1. The

threshold for activation is set equal to or higher than 0.3 by trial-and-error to represent the

activation of the FAU at a time instance. The magnitude of activation data for each FAU

are collected via the faceshift application at a rate of 24 samples per second. The four-min

time series data of facial activation in response to the four-min audio-visual stimuli are

downsampled to 240 sample points per FAU. We count the number of the activation of

each FAU and average over ten subjects within a group. Fig. 38 shows the mean activation

of each FAU over ten subjects for each group. Facial action units 1, 14, 16, 17, and 24

appear to yield low activation count when compared with the other five action units. The

TD group appears to yield higher activation of FAU 6 (sneer), FAU 12 (smile), and FAU

20 (lip stretch) when compared with the group with ASD. Interestingly, the group with
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TABLE 21: Temporal breakdown of the proposed four-minute long Avatar-based audio-
visual stimuli (narrated in Appendix C) for context and emotional content.

Stimuli ID Context of Total Avatar Emotion

Stimuli Time(in sec.)

1 Introduction: Introduce 40 Neutral

School and Friends

2 Plan for watching movie 14 Excited
with friends

3 Pizza and anchovy 16 Disgusted
in Pizza

4 Tony took my notebook 29 Angry
and forgot to return

5 Missing notebook, test 28 Anxious &
tomorrow! Sad

6 Tony shows up with notebook 13 Surprise
and a candy bar

7 In the Exam Hall with the test 25 Tensed
and a candy bar

8 Saturday Bowling party 12 Happy

9 Bowling Performance 42 Suspense

10 Saying good bye 7 Neutral

ASD has produced a higher mean activation of FAU 15 (mouth frown) when compared

with the TD group. However, none of these differences is statistically significant.

Since five FAUs (1, 14, 16, 17, 24) have low yields in terms of activation, these action

units are excluded from the within-group design ANOVA tests. A post-hoc Tucky test is

performed on the activation of FAU pairs within a group. The five FAUs (6, 10, 12, 15, 20)

that are the most active for both groups are considered. For the group with ASD, there

is no significant difference among the activations of five FAUs, F(4, 45) =0.54, p>0.05.

Further post-hoc Tucky test reveals no significant difference between the activations of any

two FAUs. For the TD group, there is no significant difference among the activations of

FAUs, F(4, 45)= 1.21, p>0.05. However, a post-hoc Tucky test shows a significantly lower

activation of FAU 15 (mouth frown) when compared with that of FAU 12 (smile), [F(1,
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FIG. 38: (a) Mean count of ten different facial action units from time-sampled data aver-
aged from ten subjects in each group. (b) Mean correlation coefficients over ten subjects
for each pair of facial action units. The bar indicates standard error.

18)=6.74, p<0.05] for the TD group. This is also evident in Fig. 38(a), which shows an

absence of mouth frown (AU 15) in the TD group unlike the group with ASD.

7.3.2 Correlation Coefficients of facial action units

The correlation coefficient for each pair of time-sampled FAU activation data is com-

puted for each subject. The five most prevalent FAUs (6, 10, 12, 15, 20) are considered

in this case. The computed correlation coefficients are further evaluated in between-group

ANOVA tests. The five FAUs make a total of ten pairs of facial actions. Fig. 38(b) shows

the correlation coefficients for ten pairs of FAUs units averaged for ten subjects in each

group. Between-group ANOVA tests reveal that the TD group has significantly higher

correlation coefficients for three FAU pairs than those with the group with ASD. These

FAU pairs and corresponding statistics are: FAU 6 and AU 10, [F(1,18)=4.24, p=0.05],

FAU 6 and FAU 12, [F(1,18)=7.98, p<0.05], FAU 10 and AU 12 [F(1,18)=5.08, p<0.05].

The correlation coefficients for the other pairs of FAUs yield insignificant difference be-

tween the two groups. These results indicate that unlike the TD group, the group with

ASD has significantly lower correlation in the activation of FAUs. The lack of correlation

in the activation of facial actions may be a potential anomaly that suggests a differential

trait for the subjects with ASD.
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FIG. 39: Mean count of FAUs for the group with ASD and the TD group. Effects of
different types of stimuli context on facial responses averaged from all facial action units.

7.3.3 Stimulus-specific facial response

Fig. 39 shows mean activation plots of all FAUs for the group with ASD and the TD

group. The mean activations of all FAUs are higher for the TD group than those for the

group with ASD. The changes in the mean activations over the stimuli ID appear to be

similar for both groups except at the periods of stimuli IDs 4 and 5. Table 21 shows

that these two stimuli refer to the contexts when the Avatar demonstrates angry, anxious,

and sad expressions. At this point of the story, Tony forgets to return Robert’s (Avatar

character) notebook, the exam is scheduled tomorrow, and Robert has no other means to

study or prepare. The flatness in the mean activation patterns of FAUs for the group with

ASD indicates that unlike the TD group, the individuals with ASD tend to be apathetic

to the state of anger and anxiety of their peers.

7.4 Discussion of Results

In this chapter, the differential traits in the spontaneous facial expression of the group

with ASD are objectively computed using three metrics: unusual prevalence of an odd

FAU (e.g., mouth frown, FAU 15), the lack of correlation in the time-sampled responses of

several FAU pairs, and lack of response to emotional trigger (stimuli). Although the FAU
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15 (mouth frown) is almost absent in the TD group, it is detected at a higher magnitude

in the group with ASD. Unlike the TD group, the presence of mouth frown (FAU 15) may

have diminished the natural traits in the expression, as noticed by human raters employed

in the prior studies [16, 17]. On the other hand, the smile expression constitutes both FAU

6 and 12. A variety of emotional states can be represented by the smile expression apart

from happiness and the time-sampled data of smile expression can be a useful target in the

investigation of covert emotional states [47]. Whereas both FAUs of the smile expression are

equally prevalent in the TD group, the group with ASD shows a flatness in the activation for

the FAU 6 than that of the FAU 12 (See Fig. 38(a)). Such flatness in the prevalence of FAU

6 may be a differential trait in the smile expressions of the group with ASD. Furthermore,

the smile expression should yield the activation of FAU 6 and FAU 12 simultaneously with

a higher correlation in their time-sampled activation data. However, the group with ASD

yields significantly lower correlation coefficients between the time-sampled activation data

for FAU 6 and FAU 12 unlike the TD group. The significant absence of correlation in the

time-sampled activation data for different FAUs may be a measurable differential trait for

the individuals with ASD. All these results indicate obvious deviations from the typical

functioning and prevalence of the relevant FAUs typically found with the TD group.

The group with ASD is also known to have deficits in the perception about the emo-

tional and social contexts [122, 44]. In behavioral studies, such deficits are investigated

subjectively via visual screening [56]. This deficit may be identified quantitatively using

the stimuli-specific activation data of FAUs as shown in this study. Therefore, the lack of

facial response at the event of emotional trigger may be a measurable trait for subjects

with ASD. Fig. 39 shows that on an average the group with ASD yields less activations of

FAUs for all contexts and emotional trigger displayed by the audio-visual stimuli. This re-

veals a lack of empathy of the subjects with ASD toward emotional contents and contexts

of the stimuli. Therefore, the proposed study procedure and computational models may be

used for quantitatively screening of subject-specific empathy in response to an emotional

trigger.

In summary, this chapter demonstrates a novel method to compute the differential

traits from the spontaneous and dynamic facial motion capture data. The FACS-based

annotation of the time-sampled facial activation data offers a fine-grain quantitative anal-

ysis of spontaneous facial response in the measurement of differential traits for the subjects

with ASD. The dynamic facial actions in response to dynamic audio-visual stimuli are more

realistic than using the static stimuli as discussed in Chapter 3 for the first experiment.
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CHAPTER 8

SUMMARY AND FUTURE WORK

This dissertation proposes experiments and computational models for quantitative psy-

chophysical study of spontaneous facial expressions of subjects with ASD in a non-intrusive

manner. The work herein demonstrates several novel computational models and computer

vision-based frameworks in the investigation of differential traits from the spontaneous

facial response of subjects with ASD. Following IRB-approval, two psychophysical studies

have been conducted to collect and analyze multimodal data from for subjects with ASD

and a control group with TD subjects. The spontaneous facial expressions capture the ac-

tual psychophysical response unlike the study of posed or imitated facial expressions in the

literature. The proposed methods alleviate the existing drawbacks in the literature about

subjective and intrusive procedures to study the differential traits in the facial expressions

of subjects with ASD. Consequently, this dissertation proposes a number of quantitative

and objective methods and metrics for extensive analysis of psychophysical response from

facial imaging data.

Extensive statistical analyses and comparison of psychophysical response data from

both groups reveal the differential traits in the facial expressions for the group with ASD.

These differential traits may suggest several biomarkers for the group with ASD. The over-

all contributions of this dissertation are summarized in Table 22 and are further discussed

below.

First, a curve-based representation of 3D facial data is proposed and an efficient com-

putational model is developed to extract pose-invariant geometric features from the curve-

based representation in Chapter 4. The proposed computational models and geometric

features offer several benefits such as pose robustness, competitive performance in face

and facial expression recognition, reduced cost of computation, and facial muscle-specific

localization, and analysis of 3D facial data. Second, the proposed curve-based represen-

tation of the 3D face has shown promising results in the non-intrusive computation of

asymmetry in the facial muscle actions. Chapter 5 shows statistically significant asymme-

try in the facial muscle actions for the group with ASD in contrast to the TD group. This

offers a non-intrusive computational model to objectively compute the differential traits in
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TABLE 22: Summary of the research findings related to the proposed methods and the
group with ASD.

Chapter Proposed Description Outcomes
Methods

4 Computational modeling Competitive performance Pose-invariant &
of Frenet frame-based for 3D face & facial faster 3D facial
novel features expression recognition analysis &

under pose variations recognition [21, 22]

5 3D facial data Significant asymmetry A metric to
for computing in left-right facial compute oddity
facial muscle muscle actions in the facial
activation for subjects with ASD expressions [23, 24]

6 FACS-based Significant Uncontrolled
facial response prevalence of facial expression
analysis from FAU 12 for for subjects
2D/3D facial data subjects with ASD with ASD [25]

6 Eye-tracking Significantly Poor reciprocity
while visualizing averted gaze in social smile
3D faces with & eye-contact Poor perception
expressions for subjects of negative

with ASD expressions

7 Facial MoCap Prevalence of Computing of
sensor to mouth frown, lack traits and apathy
study dynamic of correlation in using dynamic
activation of FAUs FAU actions, facial response
in response to flatness in FAU data [26]
social stimuli with subjects with ASD

facial expressions of individuals with ASD, which is reported in qualitative studies on ASD

. Third, the dissertation proposes FACS-based classification of subtle spontaneous facial

expressions for the first time in ASD literature. The computer vision-based classification of

FAUs using video data reveals significantly higher prevalence of FAU 12 for the group with

ASD when compared to the TD group. This appears to be an uncontrolled manifestation

of smile expression. At the same time of this manifestation, the eye-tracker data reveal

significantly averted gaze for the group with ASD. The group with ASD significantly avoids

eye contact while interacting with a human facial image with expression. This aversion to
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the face or facial image in conjunction with the higher prevalence of smile suggests a lack

of congruency in the reciprocal communication such as social smile.

Finally, the second experiment involving dynamic facial expressions in response to dy-

namic audio-visual stimuli offers fine-grain computational models for evaluating differential

traits in facial expressions. The second experiment suggests several metrics for comput-

ing the abnormality following several differential traits that are found with individuals

with ASD. These differential traits in Chapter 7 suggest several behavioral biomarkers for

ASD, which may be introduced in the screening procedures for the early detection of ASD-

related traits. The presence of mouth frown (FAU 15), significantly lack of correlations

in the activation of several FAU pairs, as well as the lack of FAU 6 (a constituent of a

smile expression) demonstrate several measurable targets as differential traits that may be

contributing to the oddity in the facial expressions of individuals with ASD. Interestingly,

the first experiment also reveals a significantly differential trait in the prevalence of FAU

12 for the group with ASD. The differential traits found in the constituent FAUs of smile

expressions (FAUs 6 and 12) in both experiments suggest that the smile expression may

be a strong candidate for quantitative differential study of ASD. The second experiment

also reveals flatness in the facial actions for the group with ASD in response to anxiety

and anger of the peers. Thus, the emotional apathy or bluntness of the individual with

ASD during a specific social context can be objectively computed from the facial response

data.

Unlike the first experiment, a general trend in the second experiment shows that the

TD group has produced higher facial activations when compared to the group with ASD.

It appears that the difference in the stimuli type, tasks, and procedural contents of the

experiments have played an important role in yielding variability in these results. Al-

though the first experiment involves static 3D faces with expressions, the first experiment

allows the subject to interact with the 3D face using a computer mouse. The task of

recognizing and manipulating expressions from static 3D face may be trivial tasks for

the TD group. However, interaction with computer-simulated objects may have created

additional engagement and interests for the group with ASD as reported in prior stud-

ies [105, 106]. This may have led the group with ASD to create higher facial response than

that of the TD group. This finding is consistent over multiple imaging modalities following

the computational methods proposed in this dissertation (Chapters 5 and 6). The second

experiment, however, demands the perception about the emotional content and context of
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the dynamic audio-visual stimuli played by the animated Avatar character. The recogni-

tion of emotional content of such social stimuli may be more intellectually demanding for

the subjects with ASD. Therefore, in the second experiment, the TD group has facially

responded higher by recognizing the story content and context than the group with ASD.

The flatness in the activation of FAUs for the group with ASD reveal their lower facial

activations in Chapter 7.

While both experiments offer non-intrusive computational methods for investigating

subtle facial responses, there are several advantages of the second experiment over the first

one. The second experiment provides a dynamic and time-sampled facial response data

unlike the static facial response captured by the 3D facial imaging sensor. A dynamic

audio-visual stimulus is used in the second experiment, which is perhaps more effective

than the static presentation of 3D faces with expression. Interestingly, the Levator anguli

oris muscle region in the first experiment is at the similar location where mouth frown

(FAU 15) takes place in the second experiment. Both of these targets located at a common

facial region offer interesting differential traits for the group with ASD. Therefore, both

experiments suggest a common target or differential trait for the screening of individuals

with ASD. The asymmetric left and right facial response at Levator anguli oris muscle

region and the unusual prevalence of mouth frown at the same facial region may be the

measurable traits contributing to the pathophysiology of the disorder. Moreover, the

facial motion capture system also offers a fine-grain analysis of a variety of facial muscle

actions, which may not be feasible to probe using traditional electromyography (EMG)

based electrodes. This is because EMG electrodes usually probe activations of only two

facial muscles [33] and scanning all possible facial actions using intrusive electrodes may

not be feasible. Furthermore, the proposed FAU-based method can detect subtle facial

actions at a level that is beyond human visual perception.

8.1 Future Work

In this dissertation, the static and dynamic analyses of facial response in two consec-

utive experiments show several complementary and promising differential traits for the

group with ASD. However, there are several limitations of the dissertation. Future studies

are necessary to address these limitations for early detection and therapeutic intervention

for ASD. Future studies are necessary in the following areas.
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8.1.1 Full-scale study on larger population

One of the major limitations of the proposed pilot study is the smaller sample size. In

the first experiment, there are only eight subjects in each group and the static acquisition

of 3D facial imaging system yields only one facial image sample of the subject per trial.

The dynamic acquisition and analysis of 3D facial data on a large population of subjects

can further validate the observed differential traits for the group with ASD. For example,

the asymmetry observed in the left and right facial muscle actions of the three individuals

with ASD out of eight contributes to a statistically significant result for the group (See

Section 5.5.2), which requires further study with larger population. Among the three

individuals, two of them are siblings of 11 and 13 years of age who are expected to have a

similar treatment history. The other individual is a 17-year old. The visual inspection of

video images reveals that the 17-year old consistently showed smiles most likely because

he had been reinforced so much to respond with a smile. Older children may have received

training to respond and, hence, the bias in the differential traits due to the training can be

difficult to identify. Therefore, it is important to focus on younger subjects who have not

received significant training in regard to rendering facial expressions. On the other hand,

the untrained younger subjects will help to identify if the differential traits in the response

are genuinely because of the disorder. The study of younger subjects is also important for

investigating early detection of behavioral markers.

8.1.2 Early detection of behavioral biomarkers

This dissertation identifies several differential traits in a group of school-aged children

with ASD, which may be investigated even earlier during their preschool ages. The early

detection of ASD-related differential traits is imperative for formulating subject-specific

and effective intervention plans. In the future, an experimental paradigm involving parent-

child or caregiver-child interaction may be planned during the early childhood period with

appropriate visual, auditory, and gestural stimuli [128, 129]. An earlier detection of a

trait related to a behavioral marker may help in early intervention for effective behavioral

therapy and treatment. This will require facial expression datasets of younger children

as offered by the Child Affective Face Set (CAFE) dataset [130]. The CAFE dataset

provides a large number of ground truth facial expression imaging data of subjects of much

younger age ranging from 2.7 to 8.7 years. These ground truth facial image data of control

subjects from a much younger age group will offer an extremely useful reference to compare
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similar affects of younger children with ASD. The availability of such early childhood facial

expression datasets can play a crucial role in finding the early pathophysiology of ASD

from the facial affect of much younger children. Consequently, this effort may require

developing novel computational models for the early detection of ASD-related behavioral

biomarkers.

8.1.3 Comparative studies to replace the use of EMG

One of the contributions of this dissertation includes non-intrusive computation of

subtle facial responses instead of using intrusive sensors such as EMG. The non-intrusive

imaging sensors also offers complete scanning of the face for detecting the subtle responses,

which may not be feasible using EMG. Further studies will be required to compare the

efficacy of facial imaging sensors with that of the EMG to study if the traditional EMG-

based intrusive approach can be replaced with the application of the computation models

proposed in this dissertation.

8.1.4 Adaptive learning system for behavioral engagement

The proposed behavioral biomarkers suggested in this dissertation offer valuable tar-

gets for future detection and intervention studies. A measurable trait in psychophysical

response can be used as a metric to assess the efficacy of a training or intervention system

for ASD therapeutics. This recommends the study and design of an adaptive interven-

tion system where the stimuli are automatically adjusted by considering the quantitative

information about the psychophysical response from the subjects. The differential traits

obtained from the proposed computational models can be used to interactively drive an

Avatar-based or humanoid-robot mediated or a hybrid adaptive learning systems for the

therapy of subjects with ASD. Therefore, there is a need for careful investigation of adap-

tive and intelligent machines capable of collaborating and engaging subjects with ASD

using quantitative and objective biomarker data. Such technology-assisted adaptive learn-

ing system may significantly reduce the requirement for time, cost, and training involving

a human expert or caregiver for ASD.
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APPENDIX A

IRB APPROVAL
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APPENDIX B

INCLUSIONARY/EXCLUSIONARY CRITERIA

An eligible subject should comply with the inclusion criteria as below. The eligible

subject should also not have the issues listed in the exclusion criteria below that would

keep him/her from participating in this study.

• Inclusion criteria Adolescent and adult (ages 7 to 20) male and female individuals,

diagnosed with an Autism Spectrum Disorder by documentation provided by the

subject, IQ score > 70, and the ability to comprehend the verbal content of the

psychological tests being administered as determined by conversations during the

phone screens and consent procedure.

• Exclusion criteria individuals, not diagnosed with Autism Spectrum Disorder, not

able to comprehend the verbal content of the psychological tests being administered

including the following:

– Heart, lung, kidney, or liver disease, or if your child is on dialysis

– High blood pressure diagnosis or hypertension

– Cancer diagnosis or tumors of the brain

– Neurological illnesses (e.g. multiple sclerosis) or history of concussion/head

injury/seizures
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APPENDIX C

SCRIPT FOR THE AUDIO-VISUAL STIMULUS

Hi, my name is Robert. Glad to have you here today.

How are you? (pause)

(hmmI see! Alright!)

I am in 8th grade in Blair middle schoolDo you go to school?...(pause)... Which grade

are you in? (Pause)

Hmm I see !

The thing I like about being at school is that I have many wonderful friendsthe teachers

are greatbut sometimes I would rather play baseball outside than do my homework! Also,

in my free time at home, I like to play mine craft. What is your favorite game to play?

Last week, my friends and I went to see the Batman movie. Next week we are going

to watch Transformer 4, it is going to be awesome!

Friday night my friends and I like to go to the pizzeria.I like to get pepperoni, however,

Tony likes anchovies on his slice. Do you like anchovies?

Hmm I see.

You know what happened last week?(pause)

Tony was sick on Monday and Tuesday with a cold, so I let Tony borrow my math

notebook last Wednesday. He said he would return by Thursday, but he forgot to bring it

to school! We have a test tomorrow. My friend Sarah said I could copy hers, but I can’t

read her handwriting!

Now, I am on the bus home and I don’t have my notes!! I’m really angry with Tony.

How would you feel to be in my situation?(Pause...)

I am very worried that I will not be ready for Mr. Connery Math exam. Sarah says

everything will be fine. She invited me to her birthday party at the bowling alley Saturday.

Here is my bus stop.

I told my mom that I don’t have my notes. She is calling Tony’s dad. Oh good, Tony’s

dad is bringing my notes to my house.

Tony also brought me a Snickers bar! Wow! He remembered that it was my favorite

candy bar. I am so relieved to have my notes and an extra treat.
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Here I am back in school. Mr. Connery is about to give me my exam. I feel like I’m

prepared.

I am in my exam. At first the exam, seemed tricky, but when I stopped to collect my

thoughts I was able to figure out 3 of the 4 questions. Do you sometimes feel overwhelmed

during tests? (Pause)

It Saturday! I am at the bowling party with 15 of Sarah’s friends. We are having a

great time. There is plenty of pizza for everyone.

I started off not bowling so well. I put the ball in the gutter three times this game.

I’m still having fun though. This is last my bowl. I knocked all of the pins over! Wow

the only strike of this game! Now I get another chance. Here I go woah I knocked down 9

pins and the last 1 is wobbling. Come on pin, fall over!. If I hit 5 pins over I will have the

highest score. Here it goes Whoops the ball went left and only hit 4 pins over. Oh well,

second place is still good!

Thanks for listening for my week.
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