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ABSTRACT

DEFORMABLE CONTOUR MODELS FOR DIGITIZING A PRINTED
BRAINSTEM ATLAS

Nirmal J. Patel
Old Dominion University, 2016

Co-Directors: Dr. Dean J. Krusienski
Dr. Michel A. Audette

The brainstem is a part of the brain that is connected to the cerebrum and the spinal

cord. Ten out of twelve pairs of cranial nerves emerge from the brainstem. The cranial

nerves transmit information between the brain and various parts of the body. Due to

its anatomical and physiological relevance, a descriptive digital brainstem is important

for neurosurgery planning and simulation. For both of these neurosurgical applications,

the complexity of the brainstem requires a digital atlas approach to segmentation that

maps intensities to tissues rather than less descriptive voxel or surface-based approaches.

However, a descriptive brainstem atlas with adequate details for neurosurgery planning

and simulation has not been developed to date. Fortunately, various textbooks contain

2D representations of the brainstem at various longitudinal coordinates. The aim of this

thesis is to describe a minimally supervised method to segment sketches coinciding with

slices of the brainstem featuring labeled contours. This thesis also describes a deformable

contour model approach, emphasizing a 1-simplex framework, to reconstruct a 3D vol-

ume from 2D slices.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

The brainstem is a part of the brain that is connected to the cerebrum and the spinal

cord. The brainstem is structurally continuous with the spinal cord. Figure 1 shows the

coarse anatomy of the brainstem. The brainstem is the pathway for fiber tracts passing

up and down from peripheral nerves and the spinal cord to the upper areas of the brain.

It controls various bodily functions such as swallowing, heart rate, and breathing and it

transmits information between the brain and various parts of the head and neck using

cranial nerves as shown in Figure 2. It is the point of attachment of ten of the twelve

pairs of cranial nerves. It consists of three components: the midbrain, the pons, and the

medulla oblongata.

FIG. 1: The coarse anatomy of the brain showing the midbrain, the pons, and the medulla
oblongata [7].
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The midbrain is important for auditory and visual processing as well as ocular motor

control. In the midbrain, there are crus cerebri, which are tracts made of neurons that

connect the cerebral hemespheres to the cerebellum. The pons is involved in auditory

and visual sensory analysis. For instance, the auditory information first arrives in the

brain in pons. Furthermore, the pons transmits signals between the medulla oblongata

and the higher cortical structures of the brain. The medulla oblongata is important for

regulating autonomic activities such as respiration and heart rate. It also controls swal-

lowing and vomiting. Since the brainstem is involved in many vital bodily functions, it is

an important component of the neuroanatomy.

FIG. 2: Cranial nerves and their attachment points. Cranial nerve III to XII emerge from
the brainstem [8].

Although the brainstem is an invaluable neuroanatomical structure, there is a lack of

digital 3D atlases of the brainstem featuring high resolution data, which can be used for
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patient-specific brainstem modeling. A deformable atlas is required for surgery planning

and simulation. Although there are a number of digital atlases of the brain, these atlases

neglect the brainstem, with little detail provided on it. The brain atlases include Harvard’s

Surgical Planning Laboratory (SPL) atlas [14], the atlas available with Oxford’s FMRIB

Software Library (FSL) [31], and the Freesurfer software package [11]. None of these

atlases represents the brainstem. The only competing atlas is the Mai online atlas [20], but

its brainstem is not as descriptive as the atlases found in textbooks such as the Duvernoy’s

atlas [22] and the Paxinos’ atlas [21].

1.2 MOTIVATION

There have been several complications because of iatrogenic damage in the skull base

and spine by surgery or radiotherapy [3, 33, 6, 27, 2]. Some of these complications could

have been mitigated using surgery planning and simulation tools which, using patient-

specific brainstem models, could be used in simulation to penalize gestures causing dam-

age to cranial nerves as well as preventing intraoperative gestures deleterious to these

structures. Thus, it can be strongly argued that improved surgery planning for experts

and surgery simulation for residents would improve patient outcome in terms of mor-

bidity and mortality statistics. Iatrogenic complications in neuro, head, and neck surgery

include the following cases:

• The spinal accessory nerve (SAN) is susceptible to injury in head and neck surgery.

Estimates of SAN injury incidence in diagnostic lymph node biopsies of the poste-

rior triangle of the neck are 3-8 % [3, 33].

• The optical and oculomotor nerves are susceptible to injury in pituitary surgery. In

a national survey [6] to which 1162 neurosurgeons responded, 939 reported having

witnessed at least one complication. Of the 939 neurosurgeons, 179 reported post-

operative visual loss in at least one patient.

• A case of the cranial nerve injury in an acoustic neuroma patient was documented

[27]. Her bone-embedded tumor was removed using an ultrasonic surgical aspi-

rator. The patient suffered right-sided palsies of the 5th, 6th, 7th, and 12th cranial

nerves.

• Surgical complications during skull base surgery in the posterior fossa can introduce

neurological dysfunction resulting in a swallowing disorder [2].
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Thus, better surgery planning and simulation tools capable of producing patient-specific

models are needed. In order to improve patient outcome, surgery planning and simula-

tion must model cranial and cervical nerves explicitly. To explicitly model these nerves,

it is important to exploit both shape priors and tractographic reconstruction of the nerves

using diffusion tensor imaging. However, tractographic reconstruction of cranial and

spinal nerves is still in its infancy compared to the tractography of the brain. Thus, it is

vital to develop a digital atlas for the nerves’ most prevalent topology in order to produce

reliable shape priors.

In order to generate patient-specific models for neurosurgery planning and simula-

tion, medical data obtained using magnetic resonance imaging (MRI) or other means

must be segmented. This segmentation of medical images entails determining correspon-

dence between each voxel in the medical image and the functional regions. In particular,

the segmentation involves assigning each voxel to an anatomical structure. There are

three categories of image segmentation techniques, with some overlap possible [13]:

Voxel-based methods rely on the intensity information in medical images. In particu-

lar, they use voxel intensity and local information in order to determine to which

structure the voxel belongs. The voxel is then assigned the label of the structure.

Unfortunately, there are a lot of ambiguities in voxel-based methods because there

is no one-to-one relationship between voxel intensities and tissue labels.

Boundary-based methods locate boundaries of tissue structures rather than assigning a

label to each voxel. These methods typically evolve a contour in 2D or a surface

in 3D, starting from a user-defined initialization, until it reaches a boundary. A

boundary is typically considered a portion of the image with a high gradient in the

direction coinciding with the interface between two tissues. The contour or surface

evolution can also be constrained with a shape prior.

Atlas-based methods segment a medical image by deforming an already segmented

high-resolution source image to a target image to find correspondence between the

two images. This approach requires an expertly segmented source image.

Although the atlas-based approach requires a manually segmented and verified

model, it is capable of providing descriptiveness far richer than the other two methods.

If the deformation finishes successfully, everything in the target image such as tissue la-

bels is essentially understood in terms of the manually segmented model. Furthermore,

a region of interest in an image segmented using an atlas-based approach can be used as
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(a) (b)

FIG. 3: Examples of 2D sketches of the brainstem found (a) in Duvernoy’s [22] textbook
and (b) in Paxinos’ [21] textbook.

a shape prior with another method for refinement. Therefore, the atlas-based approach is

often clinically more relevant for complex anatomies. In contrast with whole-brain digi-

tal atlases, there is a lack of digital descriptive brainstem atlases required for atlas-based

segmentation.

Despite the paucity of digital brainstem atlases, there are atlases in printed form,

found in textbooks. These atlases are represented as slices of the brainstem along a lon-

gitudinal axis. Figure 3 shows examples of brainstem atlases found in two textbooks [21,

22]. These atlases are rigorous and descriptive. They can be scanned, digitized, stacked,

and reconstructed to generate a digital 3D atlas of the brainstem.

1.3 OBJECTIVE AND CONTRIBUTIONS

The objective of this thesis is to create a software tool which, with minimal super-

vision, digitizes the atlases of the brainstem slices found in textbooks. Once these 2D

atlases are digitized, a novel methodology to reconstruct a region in 3D from 2D slices
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is also presented. The overall goal of these methods is to facilitate the generation of a

brainstem atlas that is suitable for the atlas-based registration. Once the brainstem model

is complete, it will fulfill the requirement of an anatomically detailed brainstem atlas for

neurological surgery planning and simulation.

An anatomist was consulted for feedback on the thesis research. He felt that the more

important functional structures should receive priority. In particular, digitizing nerve

centers is more important than focusing on the entire brainstem. Thus, the goal of the

thesis is not the digital reconstruction of the entire brainstem.

The first contribution of this thesis is a methodology to semi-automatically digitize

the brainstem atlases found in textbooks. The second contribution of this thesis is a novel

approach to reconstructing a 3D volume using 2D slices. In particular, the reconstruction

methodology uses a novel 2D adaptation of a previously published 3D contour model

called 1-simplex mesh [30]. This thesis provides an approach to address the lack of a digi-

tal brainstem atlas. This digital atlas will be suitable for producing patient-specific brain-

stem atlases and modeling cranial nerves using probabilistic shape priors. Therefore, this

thesis is an important step towards enhancing the surgery planning and simulation tools.
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CHAPTER 2

A BACKGROUND IN SEGMENTATION

Segmentation is vital for many areas of medical image analysis. Segmentation, in

medical image analysis, is a process where a medical image is divided into multiple parts

coinciding with different tissue structures. It is used to delineate anatomical structures

automatically or semi-automatically in images produced by MRI, computed tomogra-

phy (CT), and other modalities. These imaging modalities are noninvasive, so they are

important for studying anatomy and planning treatments. Due to its tissue identifica-

tion capabilities, segmentation can aid life-saving procedures such as surgery planning,

surgery simulation, and diagnosis. Segmentation techniques save clinicians time that can

be spent on other areas.

The fundamental component of medical images is a pixel in 2D or a voxel in 3D. Each

pixel or voxel has an intensity. As discussed earlier, the three broad categories of seg-

mentation are voxel-based, boundary-based, and atlas-based segmentation. Voxel-based

methods use intensity information to determine the tissue represented by a specific voxel.

Each voxel is assigned a label corresponding to the functional structure to which it be-

longs. These methods often use local intensity information such as Hounsfield value in

CT and T1-weighted signal in MRI [16]. Medical images may have unclear boundaries,

noise, and low resolution. Thus, using only voxel intensities often cannot yield satis-

factory results. Voxel-based methods typically use classifiers for segmentation. These

classifiers are trained with training data that are manually identified. One of the simplest

classifiers is the k-nearest-neighbors classifier where a voxel is classified by finding the k

intensities in the training data that are closest to the intensity of the voxel. The voxel is

assigned the most common label in the k closest intensities [25]. A number of other voxel-

based methods are available as well, including Expectation-Maximization and Fuzzy C-

Means [23].

Boundary-based methods delineate anatomical structures using tissue borders. In

these methods, a curve in 2D or a surface in 3D is initialized manually. Ideally, the ini-

tialization is close to the region of interest. The model is then deformed until it reaches a

boundary. A model deformation is generally described as a model with a force that reg-

ulates or constrains the shape of the model while the image provides a force that attracts
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the model. The force exerted by the image attracts the model towards a boundary. The

deformation stops once both forces are in equilibrium, which usually occurs at bound-

aries. In medical images, the general morphological properties of a structure are known.

These properties can be incorporated as priors in boundary-based segmentation. Using

priors alleviates some of the problems caused by low-contrast boundaries.

There are two deformable contour-based models mentioned in this paper. These mod-

els are level set methods [29], which are continuous, and the 1 simplex-mesh method [10],

which is discrete. The level set framework is a framework that evolves curves in 2D

and surfaces in 3D. It is a continuous framework that is often used to track and model

object boundaries. Let C be a curve on a two dimensional image. Each point in C moves

according to a certain speed until it reaches a boundary in the image. This behavior is em-

ulated by the level set framework using partial differential equations (PDE). One of the

strengths of the level set methods is that it allows curves to split and join. Furthermore, it

is an adaptable framework featuring multiple deformation schemes. The 1-simplex mesh

is another contour based model. An n-simplex is an (n+1)-connected mesh. A 1-simplex

mesh is a contour with each vertex connected to 2 edges. Similarly, a 2-simplex mesh is a

surface with each vertex connected to 3 edges. As opposed to the level set methods, the

1-simplex model is discrete and is a physically based model. Furthermore, a 1-simplex

mesh does not have to be a closed curve. For example, it can model cranial nerves’ paths,

which are not closed shapes. For this thesis research, contour models are used to detect

region boundaries in a 2D scanned atlas. Therefore, surface models are not relevant. A

more detailed explanation of these contour models is provided later.

The atlas-based approach requires a source image or model that has been segmented

by an expert. In order to segment a target image, a one-to-one correspondence between

the source and the target image is determined. The process of finding this transformation,

on the basis of correspondences, is called registration. The atlas-based segmentation can

produce a result with rich functional details that may not be possible with the other two

methods. Furthermore, atlas-based segmentation is capable of segmenting images with

ill-defined borders or functionally complex anatomy such as that of the brainstem. A

limitation of the atlas-based approach is that a non-rigid registration can be complex and

time-consuming for complex anatomical structures.

Image registration geometrically aligns two or more images by finding an appropriate

transformation that maps a source image to a target image. Due to anatomical variations
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among subjects, a non-rigid registration technique must be used for the atlas-based ap-

proach. In a non-rigid registration, the transformation must allow local warping of the

source image for alignment. Rigid registration, which only allows rotation or translation,

does not have enough flexibility for medical segmentation. A registration algorithm has

three main components [15]:

• the similarity criterion that quantifies the correspondences between the source and

the target images;

• the transformation parameters that describe how the source image can be morphed

to match the target image;

• the optimization process that maximizes the similarity criterion by searching for

the transformation parameters that minimize an objective function based on the

similarity criterion.

One of the commonly used similarity measures is the sum of squared difference (SSD)

in intensity. The SSD assumes that the images are identical after transformation excepting

noise. A similarity measure only based on intensity information such as SSD cannot use

the morphological information if it is present in the source image. Contrarily, some non-

rigid registration methods are based on geometric features such as anatomical surfaces.

These registration methods can match surfaces in the source image with its counterpart

in the target image. These methods are called surface-based registration algorithms [9].

The transformation describes the coordinate system mapping between the source and the

target images. The optimization process optimizes the similarity criterion by adjusting

the transformation parameters. A non-rigid transformation has a high degree of freedom

because portions of the image can deform locally. Therefore, the optimization process for

non-rigid segmentation requires changing more parameters. This increases the chance

of the optimizer being trapped in the local minima, which does not yield the best trans-

form [9]. Therefore, a good understanding of the registration problem is necessary to

choose an appropriate optimizer.
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CHAPTER 3

GENERAL IMAGE REPRESENTATIONS AND OPERATIONS

This thesis research entails digitizing a printed brainstem atlas. Scanning a brain-

stem atlas produces digital images. These images must be processed in order to pro-

duce a digital atlas. Processing images effectively requires understanding how images

are represented and how necessary operations are performed on them. This chapter de-

scribes general image representations and relevant operations, which are mentioned in

later chapters, on these images.

There are two kinds of distinct image types: vector images and raster images. Vec-

tor images are represented with mathematical shapes such as curves, ellipses, polygons,

and glyphs. These images are continuous, so they can be scaled without any information

loss. Unfortunately, it is impossible to capture real images without any error. Thus, the

scanned images are discrete. These images with discrete values are known as raster im-

ages. Figure 4 shows an example of a how a line y = x may be stored in both vector and

raster images. The vector image stores the line information itself while the raster images

reconstructs the line discretely.

The building blocks of raster images are called pixels in 2D images and voxels in 3D

images. Each cell in Figure 4b is a pixel. The higher the pixels or voxels per physical

unit area or volume, the more precise the image will be. Each pixel in the image has one

value from a range of possible values. An image may have either scalar pixels or pixels

with multiple components. For example, a grayscale picture has scalar pixels whereas a

color picture typically has pixels with red, green, and blue components. The images with

pixels containing red, green, and blue pixels are called RGB images. The most common

images have pixels with intensities between 0 and 255. A 2D image can be treated as a

mathematical function I(x, y), so it can be manipulated in various ways.

3.1 COMMON OPERATIONS ON RASTER IMAGES

Scanning the brainstem atlases found in textbooks produces raster images. It is neces-

sary to perform various operations on these raster images to extract relevant anatomical

data. Some of the common pixel operations which include addition, multiplication, and

comparison are not universally defined for RGB pixels. For example, while comparing
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(a) (b)

FIG. 4: A comparison of a line y = x stored (a) in a vector image and (b) in a scalar image.

two RGB pixels, the red component in one pixel may be higher, the blue component may

be equal, and the green component may be higher in the other pixel. One way to solve

this problem is by manually defining fundamental operators such as addition and com-

parison for RGB pixels. Nonetheless, it is often preferred to convert the RGB images into

grayscale images before the processing. Aside from the grayscale conversion algorithms,

the other techniques are relevant for both regular and medical images.

3.1.1 GRAYSCALE CONVERSION

Sometimes the information loss resulting due to RGB to grayscale image conversion is

acceptable. Various operations are much easier to perform on grayscale images compared

to RGB images. There are several ways an RGB pixel can be converted into a grayscale

pixel. One of the simplest ways is using the average of the red, green, and blue component

of the pixel. Thus,

Grayscale pixel =
red + green + blue

3
. (1)

However, humans do not perceive all colors equally strongly. For example, green is per-

ceived more strongly than red and blue. A more sophisticated method, which weighs the

colors according to how strongly they are perceived, uses the following formula [26] for
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grayscale conversion:

Grayscale pixel = 0.3 × red + 0.59 × green + 0.11 × blue. (2)

3.1.2 THRESHOLDING

Often, it is useful to determine which pixels in an image belong to an important struc-

ture depending on their intensities. Thresholding is used in these cases. For instance, the

backgrounds in many images have a different intensity range compared to foreground

objects. Removing the intensities of the background allows focusing on the objects. A

simple global thresholding is described as the following:

f (x, y) =

1 if I(x, y) > α

0 if I(x, y) ≤ α
(3)

where f is the thresholding function that is applied on each pixel, I is the image, and a is

the thresholding bound. Although thresholding is often used to generate a binary image,

it can generate images with more than two possible pixel values. For example,

f (x, y) =


a if I(x, y) > β

b if α < I(x, y) ≤ β

c if ≤ α

(4)

where α and β are thresholding bounds.

3.1.3 CONVOLUTION

Convolution is used widely in image processing in algorithms such as Gaussian

smoothing, Sobel edge detection, and Gabor filter. Typically, an image is convoluted with

a small kernel such as a 3 × 3 or a 5 × 5 kernel. The convolution is performed on ev-

ery pixel on an image. More specifically, a neighborhood with the size of the kernel is

extracted around each pixel. Then, the pixel is replaced by the convolution of the neigh-

borhood and the kernel. If N is the 3 × 3 neighborhood around a pixel and K is a 3 × 3
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kernel, the convolution is calculated by

N ∗ K =


a b c

d e f

g h i

 ∗


j k l

m n o

p q e


= aj + bk + cl + dm + en + f o + gp + hq + ie. (5)

The sum of all elements of the kernel is usually unity. If the sum is higher than one,

it is possible that the result of the convolution may exceed the allowable range of pixel

intensities.

One use of convolution in image processing is Gaussian smoothing. The Gaussian

distribution in 2D is described as:

G(x, y, σ) =
1

2πσ2 exp
(
−x2 + y2

2σ2

)
. (6)

If the desired size of the kernel is 7 × 7, the values of x and y will be between −3 and

3 depending on their distances from the center. Then, a 7 × 7 kernel with the value of

G(x, y, σ) for each element is constructed. Consequently, the kernel is normalized by

dividing the kernel by the sum of its elements. Convolving the image with this kernel

will smooth the image.

3.1.4 GRADIENT CALCULATION

Image gradients are used in many different image processing algorithms. In 2D, the

gradient is defined as

∇ f (x, y) =
∂ f
∂x

x̂ +
∂ f
∂y

ŷ (7)

where x̂ and ŷ are the unit vectors in the x and the y directions respectively. Derivatives

are sensitive to noise, so images are often smoothed before calculating gradients. It is

possible to generate the gradient of an image by combining Gaussian smoothing with

the gradient calculation. Doing this leaves the original image unmodified while still hav-

ing a smoothing step before gradient calculation. This is helpful because it may not be

preferable to modify the original image by applying Gaussian smoothing before calculat-

ing gradients. For gradient calculation using this method, the derivatives of G(x, y, σ) are
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generated with respect to x and y. Here,

∂G
∂x

=
1

2πσ2 exp
(
−x2 + y2

2σ2

)
×− x

σ2 = − x
σ2 G(x, y, σ) (8)

and

∂G
∂y

=
1

2πσ2 exp
(
−x2 + y2

2σ2

)
×− y

σ2 = − y
σ2 G(x, y, σ). (9)

A derivative of an image can be found by convolving the image with a kernel representing

the derivative of a Gaussian. So, ∇I can be found by convolving ∂G
∂x and ∂G

∂y with the

image. It should be noted that image gradient produces an output with two components.

Often, it is the magnitude of the gradient that is required. The magnitude of the gradient

at each point is

|∇I| =
√

I2
x + I2

y . (10)

The same process can be used to generate second order derivatives.

3.1.5 DISCRETIZATION OF DIFFERENTIAL EQUATIONS

Many equations are described using differential equations. Sometimes a differential

equation may need to be solved for an unknown variable. For instance, a function is

differentiated with respect to time, and its value at the current time is known. In order to

solve for its value at the next time instance, the differentiation is discretized and solved

for the unknown. There are various discretization schemes which can be used in these

situations. The three common methods to approximate the differentiation are forward,

backward, and central differencing schemes. Let f (x, y) be a function to be differentiated

at f (i, j) and h be the step size. The differentiation schemes are:

Forward differencing:

∂ f
∂x

≈ D+x
ij f =

f (i + h, j)− f (i, j)
h

(11)

Backward differencing:

∂ f
∂x

≈ D−x
ij f =

f (i, j)− f (i − h, j)
h

(12)
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Central differencing:

∂ f
∂x

≈ D0x
ij f =

f (x + h, j)− f (x − h, j)
2h

(13)

The central differencing scheme has a lower error but requires the value of two neighbors.

As a result, central differencing is not possible on the edges of an image. On the other

hand, forward and backward differencing have less accuracy but can be used on edges.

There is another finite differencing scheme called the upwind scheme. It uses forward

or backward differencing depending on the flow of information. Depending on the direc-

tion of the flow, either backward or forward differencing may produce an unsatisfactory

result, prompting the usage of an adaptive method such as the upwind scheme. The

upwind differencing scheme for numerically solving a ∂ f
∂x is

a
∂ f
∂x

=

a · D−x
ij if a > 0

a · D+x
ij if a < 0

, (14)

which can be simplified to

a
∂ f
∂x

= max
(

a · D−x
ij f , 0

)
+ min

(
a · D+x

ij f , 0
)

. (15)
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CHAPTER 4

DIGITIZING PRINTED BRAINSTEM ATLASES: A LEVEL SET

APPROACH

4.1 INTRODUCTION

This chapter describes a methodology to semi-automatically process a series of brain-

stem sketches obtained from textbooks to generate continuously labeled digital images

that are suitable for resampling and stacking to produce a digital volumetric atlas of the

brainstem. This is an atlas-building process that lays the foundation for atlas-based seg-

mentation in the future. In particular, this thesis research involves building a boundary-

based atlas suitable for surface model-to image segmentation. A digitized 2D atlas is

saved as an image where each region has its distinct label, which is a color. In other

words, each region is filled with its distinct color. Region boundaries are recovered dur-

ing 3D reconstruction, which is described in the next chapter.

4.2 METHODS

The 2D sketches of the brainstems are obtained from textbooks either digitally or by

scanning. Figure 3 shows an example of such images. Before using them, they are con-

verted to grayscale in order to simplify the process. It is difficult to automatically segment

these images, so some operator supervision is necessary. The approach is analogous to

paint-by-numbers toolkits where the user provides a rectangle covering each label. The

rectangles then propagate to coincide with their respective regions. Each of these rectan-

gles carries a user-supplied label. Figure 6c shows how a rectangle propagates its label.

These labels are used to identify regions in the digitized image. Once all labels coincide

with their perspective regions, the regions are reflected about the axis of symmetry. The

axis of symmetry is shown in Figure 3 as a vertical line in each sketch. In order to sim-

plify the objective, it is assumed that the axis of symmetry denotes perfect symmetry on

both sides. A high-level overview of the process is shown in Figure 5. This methodology

works for sketches with solid contours. Paxinos’ [21] atlas features both solid and dashed
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begin

Unneeded Curves? Remove Curves

Get Initial
Rectangles

Smoothen
the Image

Identify the
Regions

Mirror the image

end

yes

no

FIG. 5: A high-level flowchart showing the high-level overview of the 2D digitization
process. The blocks in red require user input whereas the blocks in green do not.

contours. The level set model bled outside regions through openings in the boundaries.

To solve this, dashed contours were converted to solid contours manually.

4.2.1 LEVEL SET FRAMEWORK FOR CURVE EVOLUTION

In order to propagate the user-supplied rectangles to coincide with the regions, a curve

propagation method which can detect regions’ boundaries in an image is needed. The

level set framework provides a rich framework for curve evolution in 2D and surface

evolution in 3D. Let φ(x, y, t) be the level set function at a time t. The curve evolution
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occurs as t increases. A curve C at a time t is represented in this function using

C = {(x, y)/φ(x, y, t) = 0}. (16)

In other words, the curve at a time t is a set of points for which the level set function

evaluates to zero. The curve C is also called the zero level set of φ. The sign of φ for

points outside or inside the curve C is positive or negative depending on the particular

level set method. The value of each point in φ is the distance of that point from the curve.

Level set methods operate on φ to deform the curve C. Let I(x, y) be a two dimensional

image. The properties of the image I will guide the evolution of the level set.

The level set methods can generally be divided into two categories: edge-based and

region-based. Edge-based methods use edges to stop the curve propagation, so these

algorithms require clearly noticeable edges. On the other hand, region-based methods do

not require pronounced boundaries; they require that different regions in the same image

have different characteristics. One of the region-based methods is the Chan-Vese method,

which was tried with atlas images. It is described using the following formula [5]:

∂φ

∂t
= δ(φ)

(
µ∇ · ∇φ

|∇φ| − ν − λ1(I − c1)
2 + λ2(I − c2)

2
)

. (17)

Equation 17 contains a curvature term κ which is

κ(φ) = ∇ · ∇φ

|∇φ| (18)

where ∇· is the divergence operator. Also, the Dirac delta δ is

δ(x) =

1 if x = 0

0 otherwise
(19)

and µ > 0, ν ≥ 0, λ1 > 0, and λ2 > 0 are constants. On the other hand, c1 and c2 are

constants between each iteration that can be defined as

c1 =

∫
I(x, y) · H(φ(x, y)) dx dy∫

H(φ(x, y)) dx dy
(20)
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(a) (b) (c)

FIG. 6: Propagation of a curve: (a) A rectangle provided by the user as shown in red,
(b) the curve during its evolution, and (c) the curve coinciding with the boundary of its
region and stopping at the edges.

and

c2 =

∫
I(x, y) · (1 − H(φ(x, y))) dx dy∫

(1 − H(φ(x, y))) dx dy
(21)

where H(x) =
∫ +∞
−∞ δ(x)dx is the heaviside function. Here, c1 is the average of the portion

of I for which the corresponding level set function φ ≥ 0, and c2 is the average of the rest

of the image.

As shown in Figure 3, a brainstem sketch may have multiple regions with the same

characteristics, a white background in this case. Thus, Chan-Vese, a region-based method,

bled through the edges and penetrated the neighboring regions when it was tested. A

boundary-based method cannot yield acceptable results if it does not halt at a boundary,

so the Chan-Vese method was not used further. Instead, an edge-based method called

geodesic active contours was used [4].

Similar to the Chan-Vese method, geodesic active contours can be used in the level set

framework. In this method, the sign of φ(x, y, t) depends on the position of (x, y) at time

t. The sign of φ is

φ(x, y) =


negative if (x, y) is inside the curve

0 if (x, y) is on the curve

positive if (x, y) is outside the curve

. (22)

Initial rectangles covering each label are provided externally. These rectangles are
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evolved one-by-one. Let C be the curve to be propagated. This curve is initialized as

a user-provided rectangle. As an edge-based method, geodesic active contours requires

an image with noticeable edges. An edge in an image is typically recognized by detect-

ing sudden changes in pixel intensities in small neighborhoods. One way to detect edges

in an image is by examining the gradient of each pixel because the gradient magnitude

describes the magnitude of change in pixel intensity. Thus, pixels on an edge have high

gradient magnitudes. Geodesic active contours use this property of gradients to halt the

contour deformation at a boundary.

Each point on the curve C moves in its normal direction until it reaches a pixel with a

high gradient magnitude. Thus, a stopping function that negates the speed in the normal

direction at pixels with high gradient magnitudes is used. The evolution of a curve using

the geodesic active contours method is described by the following equation [4]:

∂C
∂t

= g(|∇I|)(c + κ)N⃗ −
(
∇g · N⃗

)
N⃗ (23)

where I is the image, g(|∇I|) is the image-based stopping function, κ is the curvature, N⃗
is the normal, and c is a constant. The curvature κ can be calculated using Equation 18.

The normal N⃗ can be calculated using

N⃗ =
∇C
|∇C| . (24)

The stopping function, g(|∇I|), is a function that is very small, ideally zero, at the edges.

There are different functions that can be used as the stopping function. In this case, the

sigmoid function was used as the stopping function. It is represented as

g(|∇I|) = 1

1 + exp
(
− |∇I|−β

α

) (25)

where α and β are constants weights. For finite real valued images and constants α and β,

the result of the chosen stopping function is always a finite real value. Using a sigmoid

filter, the effect of the value β with the range α can be pronounced. Since it is versatile,

the sigmoid function is used as the stopping function.

During the evolution of the curve, if the curve is not close to an edge that has a high

gradient the value of the stopping function will be close to one. Hence, the curve will

move in the normal direction at each point. However, when a point is at an edge, the
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value of the stopping function will be close to zero, so the change in the point’s position

will be very small. However, the stopping function requires infinitely sharp edges to be

zero at the edges. Since it is not possible to have them in real images, the second term in

the equation is needed. The second term will make an already small first term very close

to zero. Thus, the curve will stop at the edges provided that the edges are not ill-defined.

Equation 23 describes the evolution of a curve, but it does not use the level set frame-

work. From Equation 23, the level set equation can be formulated [4] which is

∂φ

∂t
= g(|∇I|)(c + κ)|∇φ|+∇φ · ∇g. (26)

The level set formulation enables numerous benefits. For example, two curves are al-

lowed to join or split. Furthermore, all pixels inside the curve have negative values, mak-

ing it easier to determine which parts of the image belong to the interior or exterior of

the region. Particularly, thresholding is used to filter the pixels inside the region. All the

interior pixels are assigned the label provided by the user. On the other hand, each initial

rectangular curve C needs to be embedded on the level set function φ(x, y, 0). This is done

by solving the following equation

|∇φ(x, y, 0)| = 1 (27)

after setting all points from C in φ zero. A numerical way to determine φ is discussed

in section 4.2.3. The interpretation of Equation 27 is that at each point, the magnitude

of the gradient, which points in the normal direction, has the value of one. In other

words, from the curve, the value of a pixel in the unit normal direction is one more than

the current pixel’s value. This produces the initial level set function φ, which is also a

distance map from the curve.

4.2.2 IMAGE SMOOTHING

The 2D sketches of the brainstems are obtained from textbooks either digitally or

by scanning. Scanning introduces noise in an image that may hinder the evolution of

geodesic active contours. Noise is an unwanted component and needs to be minimized.

In order to make the edges more immune to noise, smoothing is used to pre-process the

images.

Typically, the change of pixel intensities in real images while traversing through the

image pixel by pixel is small, i.e., sufficiently small regions in images are smooth. In
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other words, the neighboring pixels of a typical image have nearly the same intensity

unless there is an edge in the neighborhood. A sudden noticeable change in pixel inten-

sity respective to its neighbors is either noise or an edge. Smoothing algorithms try to

reduce the noise by changing each pixel so that its deviation compared to its neighbors is

reduced.

(a) (b)

(c) (d)

FIG. 7: Comparison of the smoothing algorithms side-by-side: (a) The input image, (b)
the image smoothed using the median filter, (c) the image smoothed using the Gaussian
filter, and (d) the image smoothed using the modified curvature diffusion equation.

A popular smoothing algorithm is median smoothing where each pixel is replaced by

the median of all pixels in its neighborhood. The neighbors are enclosed by a window
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with an odd width and length. Typically, the bigger the window, the more pronounced

the smoothing and the greater the reduction in noise. A median filter does not weigh the

contributions of the pixels according to their distances from the center even though pixels

that are nearer are more likely to be similar than the pixels which are farther. As a result,

the quality of an image decreases rapidly if the median filter is applied with a big window

or applied multiple times. On the other hand, a median filter window always has an odd

number of elements. Thus, the median of the neighbors is guaranteed to be one of the

elements. Therefore, the median filter does not introduce any new distinct value while

smoothing an image.

Another popular smoothing algorithm is Gaussian smoothing, which does weigh the

contributions of pixels depending on their distances. Gaussian smoothing can be de-

scribed by the following equation:

G(x, y) =
1

2πσ2 exp
(
−x2 + y2

2σ2

)
. (28)

Here, x and y are distances in from the center. As x and y increase, the effect of G(x, y)

decreases. However, Gaussian smoothing does not discriminate edges and blurs them

too. This is an undesired behavior because geodesic active contours require clear edges.

In order to preserve edges during smoothing, a function similar to the stopping function

in geodesic active contours can be utilized. As mentioned above, the stopping function

g(|∇I|) is very small at the edges. A similar function c(|∇I|), called the conductance

function, can be introduced for smoothing. The Gaussian function can be formulated as

the following PDE:

∂I
∂t

= ∇ · ∇I (29)

which is known as the heat equation. Like heat, the pixel intensities can be diffused in an

image to simulate smoothing. Applying Equation 29 to an image would smooth all parts

of the image equally. To reduce smoothing on edges, the conductance function c(|∇I|)
can be used in the following way:

∂I
∂t

= ∇ · (c(|∇I|)∇I). (30)

Equation 30 is called the Perona-Malik diffusion, and it was introduced by Perona, Shiota,

and Malik [24].
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The smoothing function used in this thesis research was the modified curvature diffu-

sion equation (MCDE) which is very similar to Equation 30. The MCDE is [32]

∂I
∂t

= |∇I|∇ ·
(

c (|∇I|) ∇I
|∇I|

)
. (31)

Here, the curvature flow is κ = ∇ · ∇I
|∇I| . The conductance term adjusts the effect of the

curvature flow. On edges, the conductance term largely negates the curvature flow, which

minimizes the diffusion. The conductance function, which was chosen from [24], was

c(|∇I|) = exp

(
−
(
|∇I|

K

)2
)

(32)

where K is the conductance parameter which is a constant used to control the algorithm’s

sensitivity to edges. Compared to the Perona-Malik diffusion, the MCDE is less sensitive

to contrast.

4.2.3 IDENTIFYING AND TREATING CURVED LINES

Some sketches of the brainstem may contain curved lines that may need to be treated

before the digitization proceeds. For example, Figure 3a shows a brainstem sketch that

has curved lines crossing multiple regions. Some of the curved lines may be cranial nerve

paths or other important features, so identifying them as accurately as possible is crucial.

Similar to detecting regions, it is difficult to automatically detect curved lines. Therefore,

the users provides two points for each end of every curved line with optionally specifying

midpoints. The Minimal Path [1], which does not escape the curved line, between two

end points captures the general shape of the curved line. Once the curved line is detected,

it can be removed. Figure 8 shows an example of the desired result of curved line removal.

Fast Marching for Minimal Path Detection

The Fast Marching method is used to evolve a front. In this method, a wave front is

propagated from a chosen set of starting points. In the resulting image, the value of each

pixel is the time T at which the front first arrives at that pixel. For the initial points, the

value of T is zero. The arrival time T at a point x is represented as:

|∇T(x)|F(x) = 1 (33)
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(a) (b)

FIG. 8: A side-by-side comparison of the image before and after the curve removal: (a) The
input image with user provided end-points and (b) the output image with the erased
curve.

where F(x) is the speed of the wave at x [28]. This equation is known as the Eikonal

equation. Note that the speed function F is known and the arrival time T for each pixel

needs to be solved. Fast Marching is a numerical method to approximate Equation 33.

Here, the speed function is always positive, so the front propagates only one way. If the

speed function for each point x is F(x) = 1, Equation 33 becomes |∇T(x)| = 1 which is

Equation 27. Thus, the Fast Marching method can be used to generate φ(x, y, 0) from an

initial rectangle.

The property of a Fast Marching method’s result can be exploited to calculate the

shortest path between two points based on retracing a geodesic path along the gradient

of the arrival time. This method is similar to Dijkstra’s shortest path algorithm. In fact, it

is considered the continuous version of Dijkstra’s shortest path method. The arrival time

can be treated as the length of the minimal path from a given point to the initial points.

Since F is a speed function, it can be used to constrain the regions through which the

Minimal Path must pass. In other words, the speed function can be generated such that it

is close to one on boundaries and close to zero elsewhere. This results in an output image

where the arrival time on points on the same curve are smaller than the points outside

the curve. Thus, the Minimal Path between two end points will stay inside the line. The
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speed function is

F(x) =
V(x)− min(V)

max(V)− min(V) (34)

where V(x) is the vesselness measure of the image at x.

(a) (b)

FIG. 9: A demonstration of the distance map generated using the Fast Marching method
and the vesselness: (a) The input image with the initial point provided in the black filled
circle in the region 4 and (b) the generated distance map showing faster arrival in blue
and slower arrival in red.

Equation 33 can be simplified into

(
∂T
∂x

)2

+

(
∂T
∂y

)2

=
1

F2(x, y)
. (35)

Since the Eikonal equation involves flow, a good scheme to numerically solve it is the

upwind differencing scheme. Substituting Equation 15 into Equation 35 yields

[
max

(
D−x

ij T, 0
)
+ min

(
D+x

ij T, 0
)]2

+
[
max

(
D−y

ij T, 0
)
+ min

(
D+y

ij T, 0
)]2

=
1
F2

ij
(36)
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at each point (i, j) [28]. Equation 36 can be solved for T(x, y) to yield

T(x, y) =
h

F(x, y)
+ min(T(x − h, y), T(x + h, y), T(x, y − h), T(x, y + h)) (37)

where h is the step size. Equation 37 is used to update T(x, y).

The Fast Marching algorithm works as follows [28]:

1. For every point xi, set T(xi) = +∞. These points are labeled the far away points.

2. For each initial point xinitial, set T(xinitial) = 0. These points are labeled the alive

points.

3. For every alive point xi, calculate a tentative value Tnew(xi). If Tnew(xi) < T(xi),

change xi to be a trial point and set T(xi) = Tnew(xi).

4. Find xj which is a trial point with the smallest T(xj) and make xj an alive point.

5. Calculate the Ttentative value for every neighbor of xj which is not currently in the

alive set.

6. If, for any neighbor, Ttentative < T(xj), T(xj) = Ttentative. If xj was a far away point,

make it a trial point.

7. If a trial point exists, go to item 4.

An example of the output generated by the Fast Marching method is shown in Fig-

ure 9. These images show that it is much faster for the front to reach other parts inside the

arrow compared to outside the arrow. In order to find the minimal path between a point

p and the initial point p0, the gradient descent method is used by solving the following:

d
dt

γ(t) = −∇T(γ(t)) and γ(0) = p (38)

until γ(t f ) = p0 for some t f . Here, γ is the minimal path.

Vesselness Measure of an Image

The Fast Marching method requires a speed function. This speed function should

have a high speed on curved lines and low speed elsewhere. A speed function with this

desired property is generated by extracting the vesselness measure from the image. The
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vesselness filter is used to extract tubular structures resembling vessels from the image.

Since edges and curves in the image are similar to tubular structures, they can be iden-

tified using vesselness filtering. To extract vesselness, a Hessian matrix is calculated for

each pixel. The Hessian matrix is described by the following equation:

H =

[
Ixx Ixy

Iyx Iyy

]
(39)

where I is the image. Two eigenvalues λ1 and λ2 of the Hessian matrix are calculated and

then sorted such that |λ1| ≤ |λ2|. It can be determined whether the pixel is in a tubular

structure depending on the eigenvalues as shown in Table 1.

λ1 λ2

L H- Tubular structure (bright)

L H+ Tubular structure (dark)

H- H- Blob-like structure (bright)

H+ H+ Blob-like structure (dark)

TABLE 1: Classification of pixels depending on the eigenvalues of the Hessian matrix
(H=high, L=low, +/-=sign of the eigenvalue) [12].

The underlying local structure in the image is captured by the combination of eigen-

values of the Hessian. For example, if two eigenvalues are both high values, the local

structure is blob-like; if one eigenvalue is low and the other is absolutely high, the local

structure is tubular. The most relevant to this situation is a combination of a high positive

value and a low value that coincides with a dark vessel-like structure. After it has been

determined which pixels are inside tubular structures, the vesselness can be extracted

using the following function [12]:

Vo(s) =

0 ifλ2 > 0

exp
(
−RB

2β2

) (
1 − exp

(
− S2

2c2

))
otherwise

(40)

where β and c are constants, RB = λ1
λ2

is the blobness measure, and S =
√

λ2
1 + λ2

2. Here,

β and c are weighing parameters that control the sensitivity of RB and S respectively.
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At every point, the image is twice differentiable, so fxy = fyx. Therefore, the Hes-

sian matrix is symmetric. As such, it has two orthonormal eigenvectors. One eigenvector

points to the direction of the greatest change while the other eigenvector points to the di-

rection of the least change. If the pixel is inside a tubular structure, one eigenvector points

along the tubular structure while the other eigenvector points across it. The eigenvalues

associated with these eigenvectors are called the principal curvatures. If an |λ1| << |λ2|,
it suggests that the change in one direction is much greater than the change in its orthog-

onal direction. Thus, it is possible to determine which pixels belong to tubular structures.

(a) (b)

(c) (d)

FIG. 10: Eigenvalues (|λ1| ≤ |λ2|) of the Hessian matrix of an image: (a) The input image,

(b) S =
√

λ2
1 + λ2

2, (c) the smaller eigenvalue, and (d) the bigger eigenvalue.
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Curve Removal

Once a curved line is detected, it needs to be removed to avoid impeding the evolution

of geodesic active contours. However, a curved line cannot be naively erased by replacing

the value of every pixel inside it with a predetermined constant. Since different regions

may have different background intensities, one of the ways to remove a curved line is

by replacing it in small portions with the local background intensity. For example, in

Figure 8, an arrow originates in region 4 and passes region 5 and 7. The portion of the

arrow in region 4 should be replaced by a different intensity compared to the rest of the

arrow.

Although the Minimal Path, and consequently the general shape, of a curved line is

known, the entire area of the line is unknown. Therefore, the Minimal Path is used as

an initialization for geodesic active contours. The geodesic active contours propagate to

cover the entire area of the curved line. Once the entire area is covered, the pixels belong-

ing to the line are replaced by the median of the outside pixels in the neighborhood. This

allows the curved line to be replaced by the local background intensity of its surrounding

region. Therefore, if a curve passes multiple regions with different characteristics, differ-

ent segments of the curves are replaced accordingly. Once the curves are removed, they

may leave an opening on the boundaries of the regions they intersect. In this case, the

user can input lines to fill the openings. Figure 8 shows an example of a curve before and

after its removal.

(a) (b)

FIG. 11: An example of curve detection: (a) The input image and (b) the image showing
the detected area of the curve.
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4.2.4 POST-PROCESSING

Once all user-supplied rectangles have detected their perspective regions and propa-

gated their values, these regions are overlaid on one another to produce a digitized image

featuring each region containing pixels with a distinct value. However, since the active

contours stop their evolution at edges and edges have a non-zero width, there is empty

space between regions where there was a boundary in the sketch. The regions typically

have boundaries with a constant width. Therefore, the regions are dilated by allowing

the level sets to continue, very briefly, propagating outwardly after convergence at the

boundary. This makes the resulting segmentation continuous which is necessary since

the brainstem does not have empty spaces between regions.

Each brainstem sketch contains an axis of symmetry about which the brainstem is

symmetric. It is assumed that the axis of symmetry in each image to be digitized is ver-

tical, or rather aligned with the y-axis. Furthermore, the methodology assumes that the

axis of symmetry signifies an exact reflection of one side onto the other. The user pro-

vides a point on the axis of symmetry that determines the origin on the lateral axis, which

coincides with the x-axis in the textbook. Then, the digitized image is cropped so that it

begins at the origin on the lateral axis. Then, the image is reflected about the origin and

padded to get a symmetric digitized atlas.

4.3 RESULTS AND DISCUSSION

Figure 12 and Figure 13 show side-by-side the input sketches and the digitized out-

puts. These digitized slices are suitable for programs that require digitized brainstem

slices. As shown in the aforementioned figures, each region has a distinct label, which

is stored as a color. Therefore, it is easy to determine the number of regions and other

information such as size and placement of each region. Since they are mostly continuous

and suitable for resampling, in theory they can be used to reconstruct a 3D digital atlas of

the brainstem.

The brainstem sketches are similar to the sketches found in textbooks for various other

organs. On the other hand, different kinds of atlases may have different small features. As

a result, it is hard to develop a methodology which is general enough to work on different

kinds of atlases. Therefore, a limited user input allows segmentation of different kinds of

atlases. The user input is required in the beginning of the process for each image, so the



32

most time-consuming process, which is the level set evolution, does not require supervi-

sion. Therefore, the supervision in the beginning is a reasonable trade-off. For instance,

Duvernoy’s atlas was used in the beginning for segmentation. However, it was found to

have insufficient resolution along the longitudinal axis, making a meaningful reconstruc-

tion impossible. As a result, the Paxinos brainstem atlas, which exhibits finer-grained

longitudinal resolution, was used. Since it already required supervision, the methodol-

ogy did not require significant changes. One of the differences between the two atlases is

that in Duvernoy’s atlases, the axis of symmetry is more prominent, whereas in Paxinos’

atlas, the axis of symmetry is at 0 mm on the x-axis. Therefore, an automatic detection of

the axis of symmetry may have produced erroneous results.

One limitation of this methodology is that it requires closed contours. Another limita-

tion is that the level set often does not flow through a very narrow portion of the region.

For example, there is a narrow region between region 4 and region 11 in Figure 13c. The

digitized result shows that the level set does not completely propagate through the nar-

row trail. This problem can be mitigated by scanning a higher-resolution image, but it

requires more processing time. On the other hand, removing curved lines often leaves

gaps in the boundaries it crosses. If the gaps are left untreated, they cause the level sets

to bleed outside their regions. In order to solve this problem, the software tool allows the

operator to fill the gaps by manually drawing a line by scribbling.
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(a) (b)

(c) (d)

FIG. 12: Input and digitized 2D atlas of the brainstem: (a) and (c) are the input images,
and (b) and (d) are digitized images.
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(a) (b)

(c) (d)

FIG. 13: Input and digitized 2D atlas of the brainstem: (a) and (c) are the input images,
and (b) and (d) are digitized images.
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CHAPTER 5

ROBUST 3D RECONSTRUCTION WITH DISCRETE CONTOUR

MODELS

5.1 INTRODUCTION

The previous chapter described a level-set contour model, which performed well for

a printed atlas with well defined boundaries but did not fare as well with the Paxinos

atlas without modification. In addition, this model did not produce a result that is easily

interpolated, which is needed to produce a label volume with isotropic or quasi-isotropic

sampling.

This chapter presents a second contour model, based on a 2D adaptation of a 3D 1-

simplex deformable contour model [30]. First of all, this contour model is resistant to

bleeding effects through small contour openings. Second, this contour model is based

on vertices linked by edges, which shows that the vertex motion between two slices is

well defined, producing vectors of relative motion that can be interpolated. This model

is used in conjunction with the output of the level set contour model as described in the

previous chapter. In particular, the 1-simplex model operates on the digitized images, not

the scanned images.

Once the 2D sketches of the brainstem are digitized, they need to be stacked to recon-

struct a 3D brainstem atlas. In order to perform a smooth reconstruction, the volume be-

tween two consecutive slices needs to be interpolated. If the interpolation is not smooth,

the resulting volume would be discontinuous at various points, which is not acceptable.

Furthermore, a meaningful reconstruction requires an adequate number of slices. This

chapter describes a method to reconstruct different regions of the brainstem one-by-one.

Contrary to the 2D digitization portion, a user interface for 3D interpolation was not de-

veloped. Instead, this section presents a methodology which can be used to develop such

an interface.
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5.2 METHODS

In order to reconstruct a region from 2D slices, it is necessary to interpolate the re-

gion boundary between two consecutive slices. Then, the interpolated data need to be

inserted between the slices. If the interpolation is done correctly, the resulting volume is

smooth. Since the morphological variations between consecutive slices are not minimal,

naively stacking them does not produce an acceptable volume. The 1-simplex meshes are

used in order to interpolate regions between two slices. An n-simplex mesh is an (n+1)-

connected mesh [10]. For example, a 1-simplex is a 2-connected contour and 2-simplex

is a 3-connected surface. The level set contours in 2D are replaced by 1-simplex meshes

because the discrete nature of the latter enables interpolation in between the slices. The

simplex meshes need to be initialized with the boundary of a region in the initial, typically

the first, slice. Because this is a discrete contour model, it benefits from an initialization

based on a linearization of a contour, which is provided by the Marching Squares method.

5.2.1 MARCHING SQUARES

In order to create a contour using vertices and edges, the Marching Squares algorithm

is used [19]. Naively extracting all points from a contour in an image yields points which

are unordered. For instance, a naive algorithm scans for boundary pixels from left to right.

These points are not necessarily connected to each other. In order to extract points on a

boundary in the order they are connected, a more sophisticated algorithm is required.

FIG. 14: All 16 possibilities of the Marching Square algorithm showing how a boundary
may pass through the square depending on the value of the corners [19].

Marching Squares is a discretization algorithm, which polygonalizes the tissue bound-

ary in a binary image. In Marching Squares, the image is divided in square cells of 2 × 2.



37

Each of the pixels in the window has one of two states depending on the pixels on the cor-

ners. There are 16 total possibilities. It can be inferred from one of those 16 possibilities

whether the boundary is contained within this cell and the orientation of the boundary.

For instance, if all four cells are true or false (white or black in Figure 14), the cell does

not have a boundary inside it. However, if one cell is true, the boundary is adjacent to

it. All 16 possibilities are shown in Figure 16. For each cell, depending on the states of

the four pixels, it is possible to detect the direction of the boundary in that cell. After this

process is done on all cells, the shape of the boundary is determined by stitching together

the polygon segments. Once the cells containing the boundary are detected, the orienta-

tion of the boundary is known in each cell. Therefore, given a boundary cell, it is possible

to predict which of its neighbor cell contains a boundary. Thus, it is possible to list all

the points in order by starting at a boundary cell, going to the next boundary cell, and

repeating the process until the first cell is found or the boundary has ended [19].

Once all boundary points are found in order, they are decimated since the simplex

method works best with a relatively sparse collection of vertices and edges, which min-

imizes the number of local optima in the contour model-fitting. Although it is not nec-

essary, it is generally better to construct a mesh with equally spaced vertices. This is

achieved by using every nth point from the list and discarding the rest because the March-

ing Squares method typically extracts points that are almost uniformly distanced. The

output of this computational stage is a collection of vertices and edges at depth z= 0,

which is used to initialize the discrete contour at other longitudinal coordinates.

5.2.2 1-SIMPLEX

A 1-simplex mesh is a deformable contour model for minimally supervised boundary-

based segmentation, which previously has been published in 3D [30]. A 1-simplex mesh

is initialized for a region in the initial slice at z = n and is deformed to coincide with the

same region in the consecutive slice at z = n + 1. Because the mesh deformation occurs

when vertices move, the deformation is represented as a series of velocity vectors on each

vertex. Estimating the contour at a z value entails interpolating this vector field defined

along the contour. As long as the simplex mesh is stable and the change of morphology

between two consecutive slices is not too big, a smooth and meaningful interpolation

is possible. This process can be done separately for each separate contour at a given

z coordinate.

Specifically, k-simplex is a (k + 1)-connected union of k-cells. A k-cell is a union of
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(a) (b)

FIG. 15: A 1-simplex mesh corresponding to a region: (a) The input image with a region
to be interpolated and (b) a 1-simplex mesh constructed to represent the boundary of the
region in (a).

(k − 1)-cells. For example, a 0-cell is a vertex, a 1-cell is an edge, and a 2-cell is a face.

Figure 15 shows an example of a 1-simplex mesh. This thesis research uses 1-simplex

meshes for interpolation because the simplex meshes need to represent contours of re-

gions. Each vertex in a 1-simplex mesh undergoes an internal and an external force. The

internal force is originated due to the geometry of the simplex mesh and provides control

to prevent strong discontinuities in the contour model. The external force is exerted on

the simplex mesh by the image. The 1-simplex mesh model is adapted from the 2-simplex

mesh model developed by Delingette [10]. Using the internal and external forces, the mo-

tion of each vertex in the 1-simplex can be described by the following [10]:

m
d2Pi

dt2 = −γ
dPi

dt
+ F⃗int + F⃗ext. (41)

Here, m is the vertex mass, γ is the damping factor, Pi is the position of the ith vertex, F⃗int

is the internal force, and F⃗ext is the external force. It is assumed that all vertices have the

same mass m = 1. The Equation 41 can be discretized as [10]:

Pt+1
t = Pt

i + (1 − γ)(Pt
i − Pt−1

i ) + αi F⃗int + βi F⃗ext. (42)
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Here, αi and βi are weights for the ith vertex, which are the same set of values for all

vertices in this thesis project.

As shown in Figure 16b, the coordinates of Pi relative to its neighbors can be de-

composed into two directions: the normal vector direction and the tangent vector direc-

tion. The tangential component is the orthogonal projection of Pi, called Fi, on the line

Pi+1Pi−1. The normal component L is the distance between Pi and Fi. Given L and Fi,

the coordinates of Pi can be reconstructed using

Pi = Fi + L · n⃗. (43)

Here, Fi can be represented using Pi−1 and Pi+1 because it is on the line Pi+1Pi−1.

The barycentric coordinate system allows representing coordinates with respect to their

neighbors. For a point on a line, two coefficients ϵ1i and ϵ2i as well as the two end-points

form a barycentric coordinate system where

Fi = ϵ1iPi−1 + ϵ2iPi+1. (44)

Here, ϵ1i + ϵ2i = 1. If ϵ1i = 0, Fi = Pi+1 and vice-verse. All three points are equidistant

if ϵ1i = ϵ2i = 0.5. Essentially, ϵ1i and ϵ2i are normalized distances from the neighbors.

According to Equation 43, finding L is necessary. As shown in Figure 16b, L can be written

as the function of ri, di, and ϕi. Here, ri is the radius of the circle formed by Pi, Pi−1, and

Pi+1, di is the distance from Fi to the center O of the circle, and ϕi = π − ̸ Pi−1PiPi+1.

Thus,

L(ri, di, ϕi) =
(r2

i − d2
i ) tan(ϕi)

ξ
√

r2
i + (r2

i − d2
i ) tan2(ϕi) + ri

(45)

where

ξ =

1 if |ϕi| < π
2

−1 if |ϕi| > π
2

. (46)

Substituting Equation 44 and Equation 45 into Equation 43, Pi can be written as:

Pi = ϵ1iPi−1 + ϵ2iPi+1 + L(ri, di, ϕi) · n⃗i (47)
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(a)
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L

(b)

FIG. 16: The local neighborhood for each vertex Pi where (a) the position of Pi can be
decomposed into normal and tangential directions and (b) the value of L depends on ri,
di, and ϕi.

Here, di can be simplified to di = |2ϵ1i − 1|ri. If the desired next position of Pi is P̃i,

F⃗int = P̃i − Pi. Here, P̃i is defined with respect to the neighbors of Pi, the simplex angle

ϕ̃i, and the parameters (ϵ̃1i, ϵ̃2i). Therefore [10],

F⃗int = ϵ̃1iPi−1 + ϵ̃2iPi+1 + L(ri, di, ϕ̃i) · n⃗i − Pi (48)

where

t⃗i =
Pi+1 − Pi−1

|Pi+1 − Pi−1|
and n⃗i = t⃗⊥i . (49)

The internal force depends on the continuity condition imposed. The 1-simplex mesh

allows various continuity conditions which include:

C0 Continuity allows vertices to freely bend. This will allow the simplex mesh to coin-

cide with very rough contours at the cost of smoothness. For C0 continuity, ϕ̃i = ϕi.

C1 Continuity tries to force the simplex mesh to become smoother by setting ϕ̃i = 0

and making the first derivatives continuous. This removes the normal force which

reduces the relative elevation of a vertex relative to its neighbors. Simplifying Fint
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leads to:

F⃗int = ϵ̃1iPi−1 + ϵ̃2iPi+1 − Pi. (50)

C2 Continuity is curvature continuity which tries to force the simplex mesh so that ϕ̃ is

the average of ϕi−1, ϕi, and ϕi+1. Thus,

F⃗int = ϵ̃1iPi−1 + ϵ̃2iPi+1 − Pi + L(ri, d̃i,
ϕi−1 + ϕi + ϕi+1

3
). (51)

Shape Continuity tries to keep the shape similar to its initial shape. In order to enforce

this, ϕ̃i = ϕ0
i . Thus,

F⃗int = ϵ̃1iPi−1 + ϵ̃2iPi+1 − Pi + L(ri, d̃i, ϕ0
i ). (52)

The external force can be described as the sum of gradient and edge force. The gradi-

ent force is

F⃗grad = β
grad
i ((Gi − Pi) · n⃗i)n⃗i (53)

where β
grad
i is a weighing parameter and Gi is the pixel with the highest gradient intensity

in m × m window. On the other hand, the edge force is

F⃗edge = β
edge
i (Ei − Pi) (54)

where β
edge
i is the weighing parameter, Ei is the closest edge pixel along the normal line,

and Ei − Pi is collinear with n⃗i [10]. In this thesis research, the edge force is not adopted.

Thus, βedge = 0.

5.2.3 B-SPLINE-BASED LONGITUDINAL CONTOUR INTERPOLATION

Between two consecutive slices, a 1-simplex mesh is used to interpolate a region. Dur-

ing the evolution of the simplex mesh, each iteration represents that region at a different

point on the z-axis. However, a 1-simplex is a discrete contour model, so a closed 1-

simplex mesh is essentially a polygon. The boundary of a simplex mesh must be smooth

in order for it to resemble an anatomically suitable border. In other words, the points

between the vertices must be interpolated so that there are no visible angles at any point.
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FIG. 17: An interpolated B-spline curve with control points. The control points are not
the data points through which the curve must pass.

In order to achieve this, B-spline interpolation is used. B-spline interpolation produces a

smooth curve that passes through all data points. Generating a B-spline using the vertices

from 1-simplex mesh yields a smooth boundary from the polygon mesh. B-spline inter-

polation is dependent on the order of the spline. Figure 18 shows the difference between

the results of different orders.

A B-spline requires control points as shown in Figure 17 and a knot vector. In or-

der to create a B-spline that passes through all data points, control points and the knot

vector have to be calculated first. Let the order of the spline be p, control points be

P = {P0, P1, ..., Pn}, and the knot vector be U = (u0, u1, u2, ..., un+p+1). Let the data

points be X = {X0, X1, X2, ..., Xn}. A parameter uk ∈ U is assigned to each Xk. This pa-

rameter U can have equally spaced values, but this uniform parameter scheme often does

not provide a satisfactory result. The scheme used to calculate uk is called the centripetal

model, which almost always creates better shapes. In this model [18],

uk =


0 if k = 0

1 if k = n

uk−1 +

√
|Xk−Xk−1|

∑n
j=1

√
|Xk−Xk−1|

otherwise

. (55)
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In turn, the knot vector U is constructed using the following formulae [17]:

u0 = u1 = ... = up = 0, (56)

un+1 = un+2 = ... = un+p+1 = 1, (57)

and

uj+p =
1
p

j+p−1

∑
i=j

ui j = 1, 2, 3, ..., n − p. (58)

Here, the data points X and the knot vector U are known. The control points P are

unknown.

FIG. 18: Two splines constructed from evenly distributed six coordinates of a unit circle.
The red spline is a second order spline and the black spline is the third order spline.

The B-spline is a linear combination of its basis functions. Thus, each data point can be

represented as a linear combination of the basis functions N and control points. Therefore,

Xk =
n

∑
i=0

Ni,p(uk)Pi (59)
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where the B-spline basis function N is a recursively defined function. The zeroth order

basis function is [17]

Ni,p=0(u) =

1 if ui ≤ u ≤ ui+1

0 otherwise
(60)

and an arbitrary pth order basis function for p > 0 is

Ni,p(u) =
u − ui

ui+p − ui
Ni,p−1(u) +

ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u). (61)

Here, the knot vector U = (u0, u1, ..., un+k+1) and the parameter uk for each data point

Xk are known. Hence, the basis functions can be calculated. Only the control points are

unknown. Equation 59 can be solved for the control points P. Once the control points

and basis functions are known, the spline can be constructed by choosing appropriate

V that is similar to U and substituting vk in Equation 59. Here, V is chosen such that

the difference between two consecutive elements is very small. Thus, the consecutive

interpolated values will be very close to each other.

5.2.4 POST-PROCESSING

The velocity vector for each vertex during iterations is calculated by subtracting its

previous position from its current position. This process is applied for each vertex after

each iteration, so having n iterations means that each vertex has a series of n − 1 vectors.

The contour at an arbitrary z position between the two slices is then interpolated by in-

terpolating each vertex’s position. A B-spline is then generated for these vertices, and the

contour is inserted at the z position. Repeating this process between the slices in small

increments of z yields a smooth 3D reconstruction of the region.

5.3 RESULTS AND DISCUSSION

Figure 19 and Figure 20 show the input regions and the reconstructed outputs. The

resulting volume is smooth and appears to be a faithful approximation of the input. The

results show that the longitudinal resolution of the Paxinos atlas is acceptable, i.e., the

reconstructed volume does not display discontinuities. The 1-simplex mesh method is

sensitive to initialization. If the mesh is initialized outside the target, the mesh may con-

verge, but it may not yield acceptable interpolation. In order to mitigate this issue, regions
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in each slice may be aligned beforehand, and the resulting volume can be re-adjusted af-

ter its generation. The 1-simplex mesh algorithm is sensitive to the density of vertices and

various parameters. Therefore, it is often necessary to reconfigure the parameters. On the

other hand, the 1-simplex mesh is adaptable since it allows changing parameters during

the deformation.

Selecting an inappropriate window size for the gradient force for a 1-simplex mesh can

potentially prevent convergence because there may not be a pixel with a high gradient

in any vertex’s window. This eliminates the portion of the external force that attracts

the mesh towards high gradient pixels. The computation time for the 1-simplex mesh

algorithm depends on the number of vertices, the continuity condition, and the vertex-

to-boundary distance. The overall size of the image does not affect the computation time.

Since the internal and the external forces need to be calculated only for the vertices, the

simplex mesh converges quickly.
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(a) (b) (c)

(d) (e)

(f) (g)

FIG. 19: A reconstructed volume from five slices. Images (a), (b), (c), (d), and (e) show
a region labeled Sp5C2 which was interpolated. These images were digitized with the
methodology shown in the previous chapter. Then, the methodology of this chapter was
applied to produce a 3D reconstruction which is shown in two different perspectives in
(f) and (g). The size of each input image is 604 × 540. The reconstructed volume contains
641 slices.
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(a) (b) (c)

(d) (e)

(f) (g)

FIG. 20: A reconstructed volume from five slices. Images (a), (b), (c), (d), and (e) show a re-
gion labeled 9Sp which was interpolated. These images were digitized with the method-
ology shown in the previous chapter. Then, the methodology of this chapter was applied
to produce a 3D reconstruction which is shown in two different perspectives in (f) and
(g). The size of each input image is 405 × 430. The reconstructed volume contains 371
slices.
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CHAPTER 6

CONCLUSION

The brainstem is an important anatomical structure, but there is an insufficiency of

digital brainstem atlases that can be used for the atlas-based segmentation approach. In

order to fulfill this dire need, the brainstem atlases found in textbooks can be digitized.

This thesis research’s aim was to create a software tool that semi-automatically digitizes

a 2D atlas of the brainstem. Another goal of the thesis research was to devise a method-

ology that can be used to stack the digitized slices and reconstruct a volume. The 3D

reconstruction approach was manually applied; a software tool for semi-automatic re-

construction is planned in the future.

The methodology presented in this thesis is reliable and adaptable. The main contri-

bution of this thesis research is that it lays the foundation for the production of a descrip-

tive 3D atlas of the brainstem, which can be used to generate descriptive patient-specific

brainstem atlases. These patient-specific atlases can be used in various neurological ap-

plications such as neurosurgery planning and simulation to improve patient outcome.

This thesis research has implemented the 2D adaptation of the 1-simplex mesh algorithm

which is novel. Another implication of a digital brainstem atlas is that it will allow explicit

modeling of the cranial nerves using probabilistic shape priors.

There are a few limitations of the methodology presented in this thesis. A brainstem

atlas found in a textbook must have edges without openings for this methodology. The

current approach cannot segment open regions. Regions that are open need to be closed

before the digitization process. Another limitation is that the axis of symmetry implies

perfect symmetry, which is not true. Moreover, experts are needed to correctly digitize

the images since these images may have ambiguities. For example, a region may have

a different label in different places. During 3D reconstruction, care must be taken for

correct interpolation because it is affected by the numerous parameters of the 1-simplex

mesh. The values of these parameters often need to be changed during deformation to

fine-tune it. The current methodology allows the reconstruction of only one region at a

time. Furthermore, the neighboring structures do not affect the shape of the region being

interpolated. Finally, the contour interpolation between two slices is affected by only

those two slices; it is not affected by slices that are farther away.
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Despite its limitation, the presented methodology has several strengths. The digitiza-

tion of 2D atlases from textbooks is robust as long as the scanned images are within the

domain of the methodology. The geodesic active contours do not bleed through a closed

boundary. The 1-simplex model is hard to configure correctly but allows fine-tuning of

the behavior, which is beneficial for the interpolation. Another strength of this methodol-

ogy is that it requires minimal supervision because it greatly reduces the complexity and

increases the reliability of the methodology.

In the future, a contour deformation model that works on dashed boundaries or a

method to treat them will be used. Also, a software tool that stacks and reconstructs

the digitized regions semi-automatically will be created. Finally, an anatomist will be

consulted to verify the fidelity of the reconstructed structures.
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