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ABSTRACT

NUMERICAL STUDIES AND OPTIMIZATION OF MAGNETRON WITH
DIFFRACTION OUTPUT (MDO) USING PARTICLE-IN-CELL SIMULATIONS

Alireza Majzoobi
Old Dominion University, 2015
Director: Dr. Ravindra P. Joshi

The first magnetron as a vacuum-tube device, capable of generating microwaves, was
invented in 1913. This thesis research focuses on numerical simulation-based analysis of
magnetron performance. The particle-in-cell (PIC) based MAGIC software tool has been
utilized to study the A6 and the Rising-Sun magnetron structures, and to obtain the
optimized geometry for optimizing the device performance. The A6 magnetron is the more
traditional structure and has been studied more often. The Rising-Sun geometry, consists
of two alternating groups of short and long vanes in angular orientation, and was created

to achieve mode stability.

The effect of endcaps, changes in lengths of the cathode, the location of cathodes with
respect to the anode block, and use of transparent cathodes have been probed to gauge the
performance of the A6 magnetron with diffraction output. The simulations have been
carried out with different types of endcaps. The results of this thesis research demonstrate
peak output power in excess of 1GW, with efficiencies on the order of 66% for magnetic

(B)-fields in the range of 0.4T - 0.42T.

In addition, particle-in-cell simulations have been performed to provide a numerical
evaluation of the efficiency, output power and leakage currents for a 12-cavitiy, Rising-

Sun magnetron with diffraction output with transparent cathodes. The results demonstrate



peak output power in excess of 2GW, with efficiencies on the order of 68% for B-fields in
the 0.42T - 0.46T range. While slightly better performance for longer cathode length has
been recorded. The results show the efficiency in excess of 70% and peak output power on
the order of 2.1GW for an 18 cm cathode length at 0.45T magnetic field and 400 kV applied

voltage. All results of this thesis conform to the definite advantage of having endcaps.

Furthermore, the role of secondary electron emission (SEE) on the output performance
of thel2-cavity, 12-cathodes Rising-Sun magnetron has been probed. The results indicate
that the role of secondary emission is not very strong, and leads to a lowering of the device

efficiency by only a few percentage points.
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CHAPTER 1

INTRODUCTION

1-1 Brief History of Magnetrons

The first magnetron as a vacuum-tube device with perpendicular E-field and B-field
(cross-fields), capable of generating microwaves, was invented by Arthur Hull in 1913.
The initial devices with the power levels of 100 W were built in 1920s and 1930s [8]. This
device uses the interaction of a stream of electrons with a magnetic field while moving past
a series of open metal cavities called cavity resonators. Bunches of electrons passing by
the openings to the cavities excite radio wave oscillations in the cavity, much as a guitar's
strings excite sound in its sound box. The frequency of the microwaves produced, called
the resonant frequency, is determined by the cavities' physical dimensions. Unlike other
microwave tubes, such as the klystron and traveling-wave tube (TWT), the magnetron
cannot function as an amplifier to increase the power of an applied microwave signal. It
serves solely as an oscillator, generating a microwave signal from direct current power
supplied to the tube.

In 1940, John Randall and Harry Boot introduced the first cavity magnetron. They were
able to get 10kW output power using this cavity magnetron [9]. The early magnetron
suffered from poor frequency stability which was resolved by strapping method and
invention of Rising-Sun geometry after World War Il [8, 10]. The invention of pulsed
power technology led to the development of relativistic magnetrons which work at higher
currents by pulsed power and cold cathode technology. The relativistic magnetron is the

conventional magnetron which works with high current generated by high voltages. The



first relativistic magnetrons reached the powers in the order of 900 MW, while the output
power of conventional magnetrons was about 10MW at that time [8].

Several groups, such as those at the Massachusetts Institute of Technology (MIT), have
successfully produced Megawatt output power from relativistic magnetrons. The MIT A6
was one of the most popular relativistic magnetron in 1970s which has become a standard
geometry for simulation and experimental researches in this area. This famous magnetron
had a solid cathode design. However, more recently, a research group at the University of
New Mexico introduced an A6 magnetron with a transparent cathode [11] for faster start-

up that helps produce much shorter microwave pulses for ultra-wideband applications.

1-2 Basic Operation of Magnetron

The magnetron is basically a cross-field device, which means that the applied magnetic
field and electric field are orthogonal to each other. In cross-field devices, the electrons
that supply the energy to generate the microwaves are emitted directly from the cathode
(or series of cathodes) in the interaction region. As a result, these devices are basically
compact and no external component for generation of beam is required. The very simple
and basic geometry of a magnetron consists of two parallel conductors with a DC electric
field (E) applied between them, and a magnetic field (B) applied parallel to the surfaces of
the conductors. Upon the application of a high voltage between the anode and cathode,
explosive emission occurs on the surface of cathode, and electrons are ejected. The speed

of electrons generated in the gap is given by Equation (1.1) below as:

_ExB

Vd = W . (11)



Equation (1.1), given above, shows that the electrons move in an azimuthal direction
with a speed |E|/|B|. As the applied voltage between anode and cathode increases, the radius

of electrons trajectory increases.

Figure 1-1. Basic configuration of a cylindrical magnetron [1].

Figure 1-1 shows the basic geometry of a cylindrical magnetron. The cathode with
radius 7, is separated by a gap from the anode which is shown to have a radius r,,. The gap
area contains the drifting electrons in operation of magnetron. Also, clearly shown in the

Figure 1-1, r,, is the vane radius.

The Hull cutoff and Buneman-Hartree (B-H) conditions are two important regimes
based on appropriate equations which specify the operating region of magnetrons. For a

given voltage, the applied magnetic field should be enough for generation of initial



electrons around the cathode without getting any breakdown in the gap. In addition, the
magnetic field should not be so large that it might reduce the speed of electrons based on
Equation (1.1). The critical magnetic field (H) to prevent breakdown of the anode-cathode
interaction region in a magnetron is called the Hull field. In the case of an axial field this

critical field is given by Equation (1.2) below as:
B =——@*-1Y* (1.2)

where, m and e are the mass and charge of the electron, respectively, and c is the speed of
light. The relativistic factor, y, and the effective gap in cylindrical geometry, d., is given

by Equations (1.3) and (1.4), respectively as detailed below:

ev Vv (kV)

y=1+ mc? =1+ 0511 ' (1.3)
_ev _ n%—rcz
and, de =5 =1+, (1.4)

VV is the anode-cathode voltage in Equation (1.3) while r,and r, are the radii of the anode

and cathode in Equation (1.4).

If a magnetron is designed properly, then there are values of electric and magnetic field
which satisfy the Hull Cutoff condition, known as the Buneman-Hartree (B-H) condition

and specified by Equation (1.5) below [8]. This B-H condition is:

ev e Bywn TaWn
mc? = me?n Tade =1+ /1 - (7)2 ' (1.5)

where, w,, is the operating frequency in radians per second and B, is the applied axial

magnetic field.



When the field from the axial current flow, I,, becomes significant, which happens for

large currents od long cathodes, the Buneman—Hartree condition is modified to Equation

(1.6) [8] and expressed as follows:

(1.6)

ev _EBzwnrade_l_F\/(1+b§%)[1_(%)2] ’

mc? mc?n

(1.7)

_ Iz (kA) _ Ta
where b, = os = In(rc)

Figure 1-2 depicts the general Hull cutoff and Buneman—Hartree curves. As it has been
shown in the figure there is a region which satisfies both the Hull cutoff and Buneman—
Hartree conditions and for a particular applied voltage, the magnetron will oscillate only if

the applied magnetic field is bound between the two curves.

Hull cutoft
Conducting
@
=14]
3
3
o Oscillating
old  _ -
Hartree i -
Bugemﬁ‘_‘f_, - L :
_ e Cutoft

Magnetic field

Figure 1-2. General representation of magnetron operation domain (Hull cutoff and Buneman-Hartree

curves) [8].



1-3 Outline of Thesis

This thesis describes the results of Particle-In-Cell (PIC) simulations based on the
MAGIC software tool for A6 magnetron with diffraction output (MDO) with transparent
cathode. The use of transparent cathodes was recently suggested as a way to reduce the
start-up time of magnetron devices and thus enable the generation of ultrashort pulses
microwave pulses. Such short pulses have application in ultrawideband radar systems.
Furthermore, this thesis research includes simulation studies of a 12-cavity "Rising-Sun”
magnetron with axial diffraction output. In addition, the role of endcaps and variations in
the length of cathodes for enhanced microwave performance in these devices is probed in
this study. The thesis is organized as follows. Chapter 1 provides a very brief history of
magnetrons and an outline of the thesis research work including the salient goals and
objectives. Chapter 2 discusses the theory of operation and design challenges of the MDO
and the compact MDO. Chapter 3 presents as a comprehensive overview of the
computational tools and methods, and the Particle-In-Cell (PIC) approach which have been
used for simulation in this thesis. In addition, this chapter provides an overview of MAGIC
simulation tool and describes the geometry of the magnetrons which have been simulated
in this thesis. Chapter 4 details the results obtained and a discussion along with pertinent
analysis. Chapter 5 contains the conclusions and a summary of the research findings.

Recommendations for future work are also summarized in Chapter 5.



CHAPTER 2

LITERATURE REVIEW AND BACKGROUND

2-1 The Basic A6 Magnetron

The A6 magnetron with radial output was the first relativistic magnetron invented at
MIT by Bekefi, Orzechowski and Palevsky in 1970s with the capability of producing

power in the Megawatt range [8].

The anode block of this device consisted of 6 sectorial 20° cavities with length L = 7.5
cm, maximum radius (cavity radius) Rcav = 4.11 cm, minimum radius (anode radius) Ra =
2.11 cm, and a solid cathode radius R¢ of 1.58 cm. This geometry is the most successful,
and the most studied relativistic magnetron to date. In addition this geometry serves as the
basic conceptual structure for the magnetron with diffraction output (MDO) which has also
been simulated in this thesis. Figure 2-1 shows the anode block of A6 magnetron produced

at the University of New Mexico (UNM).

Figure 2-1. Anode block of A6 magnetron built at UNM [2].
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Figure 2-2(a) shows the cross section of A6 magnetron in r-¢ plane. Figure 2-2(b) and
Figure 2-2(c) shows the cross section of A6 magnetron in the r-z plane at different 6 angles.

The vane and the cavity are visible in Figures 2-2(b) and 2-2(c), respectively.

2-2 Magnetrons with Diffraction Output (MDO)

While the most relativistic magnetrons extract the output power radially from a slot
located in their cavities, in axial diffraction output magnetrons (also known as magnetrons
with diffraction output -- MDO), the radiations extracted axially along the vanes of the
anode block via a horn antenna or multiple waveguides. In a MDO, the vanes of the anode
block are continued and tapered within inside of a conical horn antenna. The vanes and
cavities of the MDO are tapered smoothly up to a radius that exceeds the cutoff radius of
regular cylindrical waveguide. Tapering works to improve impedance matching and allows
enhanced power transfer. Compared to the relativistic magnetron with radial extraction,
MDO offers advantages such as compact structure, azimuthal symmetry, and high output
power. Other benefits of the MDO include a strong resistance to microwave breakdown,
more compact systems for producing the magnetic fields, and the ability to select any

eigenmode without mode hopping.

The first sample of axial diffraction output relativistic magnetron was tested by Mikhail
Fuks in Russia in the late 1970s. But the efficiency of this original MDO was about 12%-
13% at that time [11]. Figure 2-3 shows this early sample of relativistic magnetron with
axial output. In addition, Figure 2-4 depicts the schematic diagram of this type of

magnetron introduced by Fuks.
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Figure 2-3 Photograph of the early sample of diffraction output relativistic magnetron [3].

4(a) Cylindrical waveguide

Anode cavity

.

- !rCathode: .

Figure 2-4. Geometry of early Russian MDO. (a) The z-r cross section, (b) the r-¢ cross section obtained at

the dashed-line position [4].
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This type of magnetron was considerably improved in 2007 when Daimon and Jiang at
the Nagaoka University of Technology in Japan, introduced a new geometry for the MDO
[4]. Figure 2-5 shows the geometry of this modified version of MDO by this Japanese
group. The performance of this new geometry was studied for different amount of angle

for ¢, where ¢, = 9.5 corresponds to the conventional configuration (Figure 2-4).

Tt @ ! ()
1’@%%
‘s

Figure 2-5. The Japanese modified configuration. (a) The z-r cross section, (b) the r-¢ cross section obtained

at the dashed-line position [4].

Figure 2-6 shows the dependence of output power and efficiency of Japanese modified
MDO on the value of ¢,. The results of research showed this type of MDO with output
power of about 130 MW, 810 MW and 1050 MW, as well as the efficiency about 3%, 23%
and 37% for ¢, equal to 9.5°, 12.5" and 30", respectively [4]. Thus, the Japanese group
optimized the geometry of MDO to produce up to 37% efficiency and about Gigawatt

(GW) of output power.
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This research was continued by Fuks and Shcamiloglu at the University of New Mexico
to improve the MDO geometry. Their simulation studies demonstrated the attainment of
efficiencies up to 70% with over 1GW output power based on simulations that used the
MAGIC software tool [3]. Figure 2-7 shows the proposed geometry by UNM research
group. The different values for angles o and 13 were tested to obtain the optimized angles
for having the highest output power and efficiency. Figure 2-8 depicts the dependence of
output power and efficiency on angles o and . The results show the magnetron has the
best performance at angles 17.5 and 32 for a and B respectively [3]. These values have

been considered as the basic assumption for the simulated geometry in this thesis.

— 1500 . . 100

¢ Output Power ] ! —_
E 1200 K A Efﬁ'cwncy | S— S A 80 £
S 900 )
= <]
S .
~ 600 A=
= 2

42
£ 300
o
0 10 20 30 40 50

Outer Opening Angle [ Deg ]

Figure 2-6. Output power and efficiency of Japanese modified MDO for different values of angle ¢, [4].
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Figure 2-7 Optimized MDO by University of New Mexico research group [2].

- I d
1% Gax 20 29 31 33
B=232° a=17.5°

Figure 2-8. Dependence of radiation power P/Pmax (1) and efficiency (2) of UNM MDO on vanes
angles. (a) angle o. (b) angle 18 [3].

2-3 Rising-Sun Magnetrons

In the context of magnetron development, the Rising-Sun configuration was created and

designed in the 1940s to achieve mode stability [12, 13]. This device geometry consists of



14

two alternating groups of short and long vanes in angular orientation, that helped create
greater frequency separation between the modes and prevent mode competition. Another
feature of this configuration is that it enables mechanical frequency tenability [8, 14-16].
Since increasing the number of resonators decreases mode separation, conventional
magnetrons cannot be used with a large number of resonators, and so this is an aspect where
the Rising-Sun geometry would be particularly useful. Not only does this geometry have
fabrication advantages over designs employing strapping, [10] its multi-cavity structure
can support a number of distinct standing-wave modes. Of these, the m-mode is
nondegenerate with only one field distribution at its excitation frequency, and hence
preferred for some applications. The device manufacture for the Rising-Sun magnetron

though could be a bit more complicated.

Since the invention of the Rising-Sun magnetron in 1940s, the various geometries for
the Rising-Sun magnetron have been introduced and their performance has been analyzed
[14, 17-21]. Figure 2-9 depicts the different Rising-Sun geometries which have been

studied as examples.
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Figure 2-9. Samples for different Rising-Sun anode block geometry. (a) Hollenberg et al. in 1948 [12], (b)
Todd et al. in 1988 [14], (c) Lemek et al. in 2000 [18], and (d) Liu et al. in 2014 [21].

2-4 Using Endcap for Magnetrons

The use of cathode endcaps has been one of the performance enhancing aspect studied
both through experiments and simulations [22, 23]. The physics associated with the
improvement is based on two aspects. First, the metallic endcaps shape the electric fields
and help define the effective electrical length of the cathode. Without such endcaps, the
finite size of the magnetron anode block could give rise to competition between different

axial modes. In addition, by extending the cathode length beyond that of the anode via such
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endcaps, electron leakage currents can be suppressed [5]. One contributing factor towards
leakage current suppression is the reduction in the electron swarm width, due to the
influence of radial electric fields on the particle trajectories along the extended cathode.
Furthermore, the axial electric fields of the electron space charge that fills the interaction
space and the azimuthal magnetic field can provide a negative radial drift for electrons that
may be leaving the interaction space. Furthermore, the endcap protects the output window
of the MDO from electron bombardment [5]. Figure 2-10 shows the picture of endcap

tested at the University of New Mexico.

h t [
y LA S S

Figure 2-10. Photograph of endcap on solid cathode [5].

2-5 Magnetron Priming

Performance improvements in output power, efficiency, and mode purity in relativistic
magnetrons are the most prominent issues in this research area. Priming is one of the most
important and effective class of techniques that has been introduced for magnetron

performance improvement. These techniques include magnetic priming, cathode priming,
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and electrostatic priming. Priming is a technique whereby electrons are pre-bunched into
the desired number of rotating electron spokes in a magnetron. For pulsed-power-driven
magnetrons the driving power is only available to the magnetron for ten to a few hundred
nanoseconds. So, in order to utilize the energy, the magnetron needs to operate in the
desired mode as quickly as possible. As the magnetrons are usually slow to start oscillating,
considerable attention has recently been given to the different methods for achieving rapid
start up. Basically, the start of RF oscillations is dependent on the azimuthal RF electric
field,E,. Researchers have studied different techniques of priming and cathode
configurations, such as the use of transparent cathodes and specially shaped cathodes, to

decrease the rise time and achieve better mode control in relativistic magnetrons [24-28].

2-5-1 Cathode Priming

The cathode priming technique uses discrete regions of electron emission periodically
arranged along the azimuth of a solid cathode surface. Priming of a radiation source always
involves some external means by which the desired operating mode is preferentially
excited. Radio frequency priming is another priming method in which a low level external
signal is injected at the same frequency of the desired operating mode. In the cathode
priming method, instead of injecting an external RF signal, the cathode is prepared in such
a manner that its emission geometry favors excitation of the = mode, the usual operating
mode of the relativistic magnetron [28]. This method (Cathode Priming) is much simpler

and less expensive than RF priming.

For cathode priming of a six-cavity magnetron operating in the @ mode, three

azimuthally periodic emitting regions on the surface of cathode should be made. Therefore,
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a threefold symmetry in the electron bunches is immediately formed from the very
beginning. The cathodes are fabricated using projection ablation lithography (PAL) where a

KrF laser etches desired regions of surface[28].

Figure 2-11 shows the three—dimensional (3D) simulation results on this method of
cathode priming which shows the faster startup in magnetron which cathode priming is
applied on its cathode. This figure reveals the position of electrons after discrete times of
7.363 ns and 13.413 ns for a magnetron with and without cathode priming. As it is shown
in the Figure 2-11(c) and Figure 2-11(d), the primed magnetron is operating in the = mode,

while the electrons in the magnetron with no cathode priming exhibit the characteristics of
the 2?" mode at 13.413 ns (Figure 2-11 (b)). Therefore, the 2?" mode is suppressed during

startup by cathode priming [28].
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Figure 2-11. Electron positions without cathode priming for (a) t=7.363 ns and (b) t=13.413 ns. Electron

positions with cathode priming for (c) t=7.363 ns and (d) t=13.413 ns [28].

2-5-2 Magnetic Priming

Azimuthally varying axial magnetic fields have been utilized to perform “magnetic
priming” of magnetrons for rapid startup, low noise, and mode control. Azimuthally
modulated magnetic fields are used for magnetic priming, which lead to modulation of the

electron sheath over the solid cathode surface. This modulation is amplified when the
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sheath is moving in the periodic magnetic field. Figure 2- 12 shows the arrangement of

permanent magnets used for magnetic priming.

Added magnets

Existing Upper Magnet

T e nm

Cavities

Existing Lower Magnet

Added magnets

(a) (b)

Figure 2-12. The arrangement of permanent magnets used for magnetic priming. (a) 3-D top view of the
optimal magnetic priming in a Panasonic magnetron. (b) Side view of the typical axially symmetric,

azimuthally varying magnetic field for a Toshiba magnetron [26].

2-5-3 Transparent Cathode

The first generation of relativistic magnetrons used a uniform emission cylindrical
cathode which was called a "solid cathode” as shown in Figure 2-13(a). The transparent
cathode (Figure 2-13(b)) was proposed at University of New Mexico as a means of

improving the overall performance of A6 relativistic magnetron and decreasing the start
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time of oscillations. The transparent cathode is a hollow cathode with longitudinal strips of
material removed in a symmetric angular fashion. As a result, the transparent cathode
consists of a district number of individual emitters. The term "transparent” arises from the
transparency of the cathode to the azimuthal component of the RF electric fields that are

used as the operating modes of magnetrons.

Figure 2-13. Two different types of cathode produced at UNM. (a) Solid cathode. (b) Transparent cathode

2.

The main difference between solid and transparent cathode which affects their
performance is the existence of azimuthal electric fields for the case of a transparent

cathode, while the azimuthal electric fields equal zero along the surface of solid cathodes.
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The simulations and experimental results show that, in addition to decreasing oscillation
start time, competition between modes can be eliminated. Furthermore, the range of
magnetic fields over which the A6 magnetron with a transparent cathode can operate is

increased over a similar A6 device with solid cathode.

Figure 2-14 shows the geometry of A6 magnetron with transparent cathode,
implemented by MAGIC, which is a particle-in-cell simulation software tool. This tool

has been extensively used in this thesis research.

20
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Figure 2-14. Geometry of A6 magnetron with transparent cathode. (a) r-6 plane cross section of A6

magnetron with transparent cathode. (b) r-z plane cross section of A6 magnetron with transparent cathode.
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Overall then, the performance of magnetrons with a transparent cathode is improved by
self-consistently and simultaneously providing three different priming techniques: cathode

priming, magnetic priming, and electrostatic priming.

The cathode strips in a transparent cathode act in much the same manner as the periodic
electron emitting zones generated for cathode priming which has been discussed earlier.

Thus the transparent cathodes effectively provide cathode priming in magnetrons.

Figure 2-15 shows the distribution of electrons at the same time in two magnetron with
the same conditions and different types of cathode. This simulation results confirm the
faster build-up of the RF fields in transparent cathode (Figure 2-15(a)) compared with solid
cathode (Figure 2-15(b)). As evident from the Figure 2-15, the bunching is well formed in
the case of a magnetron with a transparent cathode (Figure 2-15(a)), while no spatial

formation is visible with a solid cathode in Figure 2-15(b).

Q
W

A A

A A

Figure 2-15. Electron prebunching in the transparent cathode. (b) Solid ring of electrons around the solid

cathode [29].
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In addition, a transparent cathode also self-consistently provides magnetic priming
which has been discussed earlier. According to Ampere’s Law, the axial currents along the
longitudinal cathode strips generate azimuthal magnetic fields around the strips as shown

in Figure 2-16. The magnitude of generated azimuthal magnetic fields is given by Equation

(2.1) below:
Byp =22 2.1)

where r, is the distance from the strip center, and I, is the longitudinal current of the Nth

strip.

Figure 2-16. The axial current in the cathode strip and the corresponding azimuthal magnetic field lines [29].

Inaddition to all the aforementioned forms of priming provided by transparent cathodes,
the use of such structures also increases the speed of electron flow towards the anode. In a
magnetron with transparent cathode, the synchronous azimuthal RF electric field, Ey, is
distributed as a modified Bessel function of the first kind of order "n” [30]. Figure 2-17

shows dependence of azimuthal electric field, E,, on the radial position for transparent and
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solid cathode. As this figure shows, azimuthal electric field, Ey, goes to zero on the surface
of solid cathode, while for transparent cathode, azimuthal electric field, Eg, penetrate
through the cathode strips. Thus, the electron sheath region in a magnetron with transparent
cathode has higher electric field magnitude as compared to the solid cathode. This fact
leads to a larger radial velocity of the electrons and a faster rate of oscillation build-up [29,

30].

Figure 2-17. Dependencies of the azimuthal electric field of the synchronous wave on radius for a transparent

and solid cathode [29].
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CHAPTER 3

METHOD AND SIMULATION MODEL

3-1 Introduction on Particle-in-Cell (PIC)

The origin of Particle-In-Cell (PIC) method used in the simulation of collisionless
plasmas can be traced to the early work performed by Buneman (1959) and Dawson (1960)
[6]. In these basic physics models, space charge forces were included via direct solution of
Coulomb’s law, and charged particle trajectories were computed in periodic systems. In
the first PIC simulations, the motion of 100-1000 particles and also the interactions
between them, were included. Nowadays PIC codes can simulate 10°-10'° particles.
However, the PIC scheme was formalized and numerically coded during the 1970s. Classic
texts were published by Birdsall and Langdon in 1985 and also by Hockney and Eastwood

in 1981.

The PIC code simulates the motion of plasma particles and calculates all macro-
quantities (like density, current density, distribution functions) from the position and
velocity of these particles. This is a computational method which can be used to simulate
plasmas, rarefied gases, molecular gas dynamics and other processes marked by a departure
from the thermal equilibrium. In the PIC method, the gas is represented by a number of
macroparticles that move in a domain described by a computational mesh. At any time,
each particle is located within a mesh cell, giving the method its name [31]. The macro-
force acting on the particles is calculated from the field equations. The name "Particle-in-
Cell” has originated from the way it assigning macro-quantities to the simulation particles.

PIC codes usually are classified depending on the dimensionality of the code and on the
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set of Maxwell’s equations used. The electromagnetic codes solve the entire set of
Maxwell’s equations, whereas the electrostatic codes solve only the Poisson equation.

PIC codes have a number of advantages. They represent the lowest codes, i.e., the
number of assumptions made in the physical model is reduced to a minimum. They can
simulate high-dimensional cases and complex geometries, while also tackling complicated
atomic and plasma-surface interactions. But these advantages come at the expense of
longer simulation time and computational efficiency which should be mentioned as the
most important disadvantages of this technique [32].

The PIC method can be used in many applications. Applications involving fluid
dynamics, plasma physics, magneto hydrodynamics, and multiphase applications all use

the PIC method. Also PIC can be used to solve the problems in solid mechanics.

3-2 PIC Fundamentals

The general flow of the PIC scheme is shown schematically in Figure 3-1. The
computational cycle of PIC starts with the charge weighting from the position of particles
to the grid nodes. Also source terms, p and J, for the field equations are accumulated from
the continuous particle locations to the discrete mesh locations. Then, the Poisson’s and
Maxwell’s equations are solved on the nodes in order to obtain the electric and magnetic
fields. The electric and magnetic field values from the grid is weighted back to the particles
and the force imposed on the particles is calculated. The particles are moved according to
this force and their acceleration. In the next step, particle boundary conditions such as

absorption and emission are applied. In addition, the Monte Carlo collision (MCC) scheme
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is applied, if the model is collisional. The fields are then advanced one time step, and the

time step loop repeats [7].

Integration of equations
of motion

FF— v, —® X

Particle loss/gain at the
boundaries (emission,
absorption, etc.)

-

to particles
(EB) —= F

Interpolation of fields

l

Monte Carlo collisions
of motion

v, —® v

il

Integration of field
equations on grid

(Pjij) — (Eijj)

Interpolation of particle
sources to grid

(X‘-V‘) — (pj,Jj)

Figure 3-1. Particle-In-Cell computational cycle [6].

In the PIC method, the position and velocity of particles are defined in continuum space

while the fields are defined at discrete locations in space. However, both fields and particles

are defined at discrete times. Position and velocity of particle and field values are advanced

sequentially in time, starting from initial conditions, with the temporal scheme shown in

Figure 3-2. In this scheme which is called leap-frog scheme, particle positions and

velocities are offset in time by half a time-step, i.e., % :
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Figure 3-2. Schematic diagram of leap-frog method.

3-2-1 Interpolation of Particles to Nodes

Charge density is a scalar measure spatially varying in space. It indicates the number of
charge units per unit volume. It is computed by distributing charge of all particles onto the

nodes of computational cells, and then dividing by the corresponding node volume.

The linear scattering operation is schematically shown in Figure 3-3(a). The charge of
the simulated particle (the circle in the middle of the cell; gray particle) has been distributed
amongst the nodes of the cell in which the particle lies (Hence the name for this method,
particle in cell). The closest node to the particle (yellow node) receives the largest fraction

of the charge and the smallest amount is contributed to the farthest node (green node).
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Figure 3-3. (a) Schematic of the scatter operation. (b) Graphical representation of the linear weighting on the

2-D structured Cartesian grid.

Also, a linear weighting scheme for a PIC in 2-D structured Cartesian grid (j, k) is
shown in Figure 3-3(b). With the same scenario which has been shown in this figure, for
three dimensional Cartesian grid, weighting factor is defined as Equation (3.1).

w =x; — Xjkm (3.1)
where, x; refers to the position of the i particle, and Xjkm is the position of the nearest
lower mesh node. It should be mentioned that, as "i" is considered for i*" particle, "j, k, m"
denote the indices of an orthogonal right-handed set of coordinates, instead of "i, j, k".

Thus, we can write the relations for linearly interpolating a single particle charge "g;"

to the surrounding nodes as follows [6, 7]:

Qikm = a1 =w))A —w )1 —wp) 3.2)
Qj+rkm = WA —wi )X —wp) (3.3)

Qjk+im = (X —w))W )L —wp) (3.4)
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Qikm+1 = (L —w)A —w)(wp) (3.5)
Qj+rk+1m = G(W) W) (1 — wipn) , (3.6)
Qj+1km+r = (W) (1 — wi) (W) , (3.7)
Qjk+im+r = qi (L —wy) (W) (W) , (3.8)
and Qjr1per1,me1 = (W) (Wi ) (W) : (3.9)

The charge is accumulated in this fashion for all particles. In this thesis chapter, just the
linear interpolation has been explained. However, there are different methods for the
gathering of particles at the nodes, such as, the nearest grid point (NGP), quadratic spline
(QS) and cubic spline (CS) methods. Figure 3-4 shows weighting factor versus distance
of particle from node for linear spline (LS), the quadratic spline (QS) and the cubic spline
(CS).

The charge density could be calculated from Equation (3.10) given below as:

= Jikm (3.10)

pj,k,m Vikm )
where, V; ;. m is the volume of the cell centered on the (j, k, m)*" mesh node, in the classical
PIC scheme.

For electromagnetic models, the current is needed for Maxwell’s equations. The current

can be weighted by an algorithm equivalent to the charge density weighting algorithm.
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Figure 3-4. Weighting factor versus distance of particle from node for a number of interpolation schemes.

LS the linear spline, QS the quadratic spline and CS is the cubic spline [6].

Based on Equations (3.1), (3.11) and (3.12), we can write the two-dimensional charge

conserving currents generated in the first cell due to the particle motion shown in Figure

3-5 (Equations (3.13)-(3.16)).

— t+At t
Aw =w -w ,
_ witEbtyyt
w = —2 y
1 ij :Zl%Awl(l_Wz)
1xj+—=Xg t
2
— qi —_—
I Ax; =), —Aww
1,xj+T],xk+Axk Zl At 172

=Y (L= w)Aw,

1 Axy,
2,xj,xk +T

(3.11)
(3.12)

(3.13)

(3.14)

(3.15)
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Figure 3-5. Current deposition for a multi-cell particle motion [6].

3-2-2 Calculation of Electric (E) and Magnetic (H) Fields

For electrostatic models, the mesh is defined as shown in Figure 3-6. The source terms
and potentials are known at grid nodes, with the electric fields often defined on the same
nodes or along cell edges.

The electric field is related to the charge density by Gauss’s law as follows:

VEZS , (3.17)
where, p is charge density and ¢ is permittivity of medium. Also, the electric field is related
to the electric potential by following gradient relationship:

E=-Vo . (3.18)
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Figure 3-6. Computational mesh for electrostatic mesh [6].

Thus, after substitution of Equation (3.18) in Equation (3.17), the potential is related to

the charge density by Poisson’s equation as shown in Equation (3.19) below.

V.Ve(x,t) = M . (3.19)

By using a center difference in a one dimensional linear homogeneous isotropic

medium, Equation (3.19) becomes:

(pj+1_2(pj+(pj—1 — _& (3 20)
Ax2 e’ '

For a system fully bounded by conductors, the charge is conserved. Thus:

¢ eE.dS = ¢, pdV + § (o + 0))dS =0, (3.21)
where S is the surface enclosing the system and V is the volume. Also O and J refer to
boundaries of a system with spatial index 0 < j < J. The electric field within an ideal

conducting material is zero and the surface electric fields in the boundaries are equal to:

E, = ? , (3.22)
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and, £, = -2 . (3.23)

&€

Since a boundary condition is required in order to have a unique solution, which is

usually a reference potential, for instance ¢, = 0, is considered for one of the electrodes.

For a non-uniform orthogonal Cartesian mesh in two dimensions, Equation (3.19) can

be rewritten as:

. 2 . F 1 . 2 . P .
A‘pj,k-l-Al_ - (sz +A‘P},kA1_ +A‘p1+1,Ak_ - ‘ij,k +A‘pj 12(_ — __Pjk ’ (324)
X 1 AXy x 1Ax 1 x 10Xy y. 14y; y. 14y. 1 Y. 14Yj €
ki3 kty kg k3 it 7 g i i
where, Ax, .1 = X1 — X : (3.25)
2
Ax +1+Axk—l
and, Ax, =—2—2% . (3.26)

3-2-2-1 Maxwell’s Equations

The differential forms of Maxwell’s equations in an isotropic medium are:

oD

o VxH-] (3.27)
a

o= VxE ’ (3.28)
V.B=0 , (3.29)
and V.D =p : (3.30)

where, "D" is electric flux density, "H" is the magnetic field intensity, "B" is magnetic flux
density, "E" electric field intensity, "J" is electric current density and "p" is electric charge
density.

Also Equations (3.31)-(3.33) show constitutive relations.

B=pH |, (3.31)
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D=¢E |, (3.32)
and ] =oE , (3.33)
where, [ is the magnetic permeability, € is the dielectric permittivity and o is the electric
conductivity. All of the field parameters are assumed to be functions of position and time,

while material parameters are functions of position.

3-2-2-2 Finite-Difference Time Domain (FDTD) Technique

The nature of Maxwell's differential equations is that the time derivative of the magnetic
field (H) is dependent on the curl of the electric field (E), and the time derivative of the
electric field is dependent on the curl of the magnetic field. These interdependent properties
were the key reason for introducing the Finite-Difference Time Domain (FDTD) technique.
In this technique, at any point in space, an updated value of an E/H-field in time is
dependent on the stored value of the E/H-field, and the numerical curl of the local
distribution of the H/E-field in space [33].

The FDTD technique was originally introduced by Yee in 1966 and is based on time
and spatial discretization of Maxwell’s equations to obtain solutions for the
electromagnetic field in the time domain [34]. The technique is numerically implemented
by continuously sampling the electromagnetic field over the wave propagation in the
medium which is discretized into a grid. This grid is popularly called the Yee lattice, and
is a numerical three-dimensional space lattice comprised of a multiplicity of Yee cells
(Figure 3-7).

Figure 3-7 shows standard Cartesian Yee cell and helps to better understand this

staggered time and space grid. As it has been shown in the picture by dashed lines, there is
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itime step difference between electric field (E) and magnetic field (H). Due to the central

difference approximation technique in time, magnetic field is present at t = (n +%)At,

where "n" is an integer and electric field is known at integral multiples of the time step.
These half time steps are introduced to perform the finite difference computation of electric

field based on magnetic field and vice versa.
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Figure 3-7. Standard Cartesian Yee cell used for finite-difference time domain (FDTD) technique.

Figure 3-7 depicts the positions of various field components. It shows the electric field
components are in the middle of the edge and the magnetic field components are in the
center of the surface.

After calculation of initial conditions with satisfaction of Maxwell’s equations, the
electric and magnetic fields are then advanced in time using finite-differenced forms of
Ampere’s law and Faraday’s law, and Equations (3.27) and (3.28). Also, other Maxwell’s
equations, which were illustrated through Equations (3.29) and (3.30), remain satisfied in

time.
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In a rectangular coordinate system, Equation (3.27) is equivalent to the following

equations:

dDx _ dH, OHy

ot oy o Jx (3.34)
0Dy _ dH, 0H,
2= Sy (3.35)

ap, _ 0Hy,  OHy
and, P E—g—jz . (3.36)

In addition, Faraday’s law, i.e., Equation (3.8) can be evaluate in the same fashion and

yields:
3By _ OEy  0E,
? — E - E y (337)
0By _ OE, OEx
—=—=-—"= (3.38)

and, 2% = "’aiy - (3.39)

The most common implementation of Equations (3.34) - (3.39) in PIC codes uses a
center difference for the differentials and places the fields on the mesh as shown in Figure
3-7, called the leapfrog algorithm. As it mentioned, D, E and J are defined in the middle of
the edges, while B and H are defined in the center of the surface.

The center difference form of Ampere’s law, Equations (3.34)-(3.36), on a uniform
orthogonal mesh become:

D§(i+%, j,k)—D,tht(H%, jk) Hi=aY 2(i+%, j+%,k)—HZt_At/ 2(i+%, j-2k)

At Ay

H;—At/z(H%J'k%)_y;‘mﬂ(i+%,j,k—%) _t-At/2 (i +1 j k) (3.40)
20 ' .

Az x




D§(i.j+5k)-Dy (i j+3k)  HEMP (14 s aerd)—HE A2 (142 k=)

At Az

t—At/2 t—At/2

H

Ax y

7P (gt k) —H (104 k)  earg2 (i,j + % : k)

DE(i,jde+3)-DE0(ij k+3)  Hy (i3, k) - Hy A2 (i3 ke +2)
and, At - Ax
H;—Ar/z(i'j%‘k%)_H;—Ar/z(. 1

Ay z

W=3k+3)  eeacs (ij k+1)
b 2

39

(3.41)

(3.42)

In these equations, spatial and time steps are represented by the lower indices (i, j, k)

and the upper index(t), respectively. Where i, j and k denote the indices of an orthogonal

right-handed set of coordinates and Figure 3-8 shows the position of the electric and

magnetic field components in standard a Cartesian Yee cell.

Similarly, the center-difference form of Faraday’s law, Equations (3.37)-(3.39), on a

uniform orthogonal mesh become:

B;+At/2 (L',j + l,k +%) _ B;—At/z (L',j +%,k +%)

At

E§(i,j+%,k+1)—E§(i,j+%,k) EE(i,j+1,k+%)—E§(i,j,k+%)
Az - Ay !

g (i) bk

At -

5 (igk+)-ES(i-1jk+3)  EE(i-3jk+3)-E(i-3jk—3)
Ax B Az '

t+At/2(. 1. 1 t-At/2(. 1. 1
B, / (L—E,]-FE,}C)—BZ / (L—E,]-l-?k) _
and, ” =

E§(i—%,j+1,k)—E,tc(i—%,j,k) Ef(i-1,j+3k)-E5(1.j+k)

Ay Ax

(3.43)

(3.44)

(3.45)
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Figure 3-8. Position of electric and magnetic field components in standard Cartesian Yee cell.

The above equations are solved consecutively and the fields leapfrog forwards in time.
In a leapfrog algorithm, the new amounts of filed are only dependent upon the previous
field values.

Finally, after the computation of the electric and magnetic fields in the nodes, these
calculated fields are interpolated to the real particles in the cells for calculation of imposed

force on the particles in the next step.

3-2-2-3 Advantages and Limitations of the FDTD Method

Finite Difference Time Domain (FDTD) is a relatively powerful and very popular
method because of its simplicity. Solving Maxwell’s equations using FDTD is a simple
iterative procedure and the most prominent advantage of FDTD is that this time-stepping
scheme avoids the need to solve simultaneous equations, so matrix inversions are not

necessary.
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On the other hand, there are several limitations to the numerical implementation of the
FDTD technique through the above-mentioned difference equations which have been the
subject of research. Some of these restrictions force limitations on the grid size and time
step increments which affect the accuracy and stability of this technique.

One of the most important restrictions is setting the maximum value for the longest side

of the grid cell which should be much shorter than the shortest wavelength of the wave
within the cell. A very common restriction assumed in practice is % where A is the shortest

perceptible wavelength in the excitation signal [35].

The second limitation is the time-step restriction required to satisfy the Courant—
Friedrichs-Levy (CFL) condition. The CFL condition is a necessary condition for stability
while solving certain partial differential equations numerically by the method of finite
differences.

In multiple dimensions, the Courant— Friedrichs-Levy (CFL) stability criterion on the

time step is given by:

1 - Y,
>< i=1A_xi2) : (3.46)

VinaxAt —
where, the index "i" sums over the coordinate indices and Ax; denotes the grid spacing in
the it" coordinate direction. "N"is the grid dimension "V},,," is the maximum wave
velocity within the model.

In a three dimensional (3D) case, Equation (3.46) will be written in the following form:

1 1 1 1 1/2
>( +- 4+ ) . (3.47)

VinaxAt — \Ax%2  Ay2 = Az2

In the case of N-dimensional isotropic cells, Equation (3.46) can be simplified to:
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VmaxAt i
— = & (3.48)
where the left hand side of this equation (V’"“T"At) is called the Courant number. For instance

in a three dimensional isotropic case, the Courant number should be less than 0.577

(VmaxAt < 1 _
§ T3

0.577).

Different cases have demonstrated that using smaller values of At does not necessarily
improve the results. However, smaller values for the Courant number may sometimes yield
satisfactory results [35].

Another restriction develops from the scale and geometry of the problem especially for
solving of the problems which consist of very small objects compared with other large
parts of geometry. As the method uses a uniform grid to model small parts of model along
with large parts, the geometry imposes challenging limitations, especially in computation

cost. One way to solve this problem is by using a non-uniform grid, which adds more

difficulties for satisfying stability conditions such as CFL condition [35].
3-2-3 Position and Velocity of Particles

The plasma or every material which is studied, is described by a number of
computational particles with position "x" and velocity "v". The position and velocity of
particles could be calculated based on Lorentz equation and Newton’s second law of

motion as follow:

ma=F =qE+(qv*xB) (3.49)

d d
where, a = and v ==
dat dat
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The electric and magnetic fields in Equation (3.49) have been calculated in the previous
step by FDTD method. After substitution of acceleration "a", in Equation (3.49), the

equation changes to:

%:%(E+v><3) . (3.50)

Based on the leap-frog scheme as shown in Figure 3-9, Equation (3.50) can be rewritten

as follow:
At At At At
L T
w:i(Et_FMXBt) _ (3.51)
At m
d . .
Also: d—’; = v is written as:
tHAE_ At
T =pttz, (3.52)
At
Update Position (x)
Update Position (x) B Update Position (x)

Update Velocity (v)

Update Velocity (v)

n-1 n+1 Timelevel

Figure 3-9. The leap frog integration scheme [7].

The stability of the leapfrog scheme can be shown for particles in simple harmonic

motion:

dzx 2
a=—3 = —wX. (3.53)
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With a numerical approximation of second-order derivatives, Equation (3.53) becomes:

xt+At_xt xt_xt—At

2 — t+At _ 5.t t—At
Cro T e ) o el 2y, (354)
Solutions of Equation (3.54) are of the form
xt o« exp(—iwt) : (3.55)

and xt+4¢ o exp(—iw(t + At))

(3.56)

Using Euler’s equation (e™* = Cosx + i Sinx), the finite difference becomes:

sin (‘”T“) = Foodt (3.57)

2

So w has an imaginary component for w,At > 2, indicating numerical instability and

a rapidly growing instability exists for wy At > 2 . Therefore, the condition of stability is

At <=,

wWo
3-2-4 Particle Boundary Conditions

There are two types of boundary conditions, namely emission and absorption. The
emitting boundary condition, is used primarily at the cathode surface of the device and in
regions prone to electron emission, such as the collector. Emission from surface of
materials depends upon different parameters, such as voltage level and temperature, and
this subject is an active area of research.

The second particle boundary condition for simulation is a perfectly absorbing

boundary. This boundary condition is often applied to surfaces that are also perfectly
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conducting metal boundaries for the field solutions. In this case the particles are eliminated
when encounter the boundary and weighting the current produced by these particles is
stopped. Although this condition often happens in practice, but the physical validity of this
situation is more questionable and often results in difficulties in understanding all the

current paths in the simulation [6].

3-3 Brief Description of MAGIC

Nowadays, no one can cast any doubts on the importance of modeling and simulation
in the research and development aspects of engineering. In most projects, it is impossible
or prohibitively expensive to build a device and then test the response in the real world. As
a result, before actual manufacture, modeling and simulation of a device, process or system
becomes a more convenient, practical, and cost-effective route. Furthermore, modeling

allows the simulated testing under different conditions before actual manufacture.

The Particle-in-cell (PIC) based MAGIC software tool has been used in this thesis for
simulating the magnetron. One of the objectives is to use the tool for performance
predictions which could then lead to the selection of an optimized geometry. This software
is a well-established commercially available electromagnetic design tool in the plasma,
microwave, and pulsed power communities. MAGIC is a two- and three-dimensional user-
configurable numerical simulation code that self-consistently solves the full set of time-
dependent Maxwell's equations and the complete Lorentz force equation to provide the
interaction between space charges and electromagnetic fields [36]. Three-dimensional
finite-difference time-domain (FDTD) electromagnetic algorithms are combined with

particle-in-cell (PIC) approaches to provide fast, accurate, time-dependent calculations of
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the fields and particle motion in phase-space. The use of different computational and
simulation software like MAGIC is necessary since analytical solutions are not usually

feasible or even possible for complicated models and geometries.

The accuracy of the simulation results in MAGIC (which is based on the PIC method)
is highly dependent on the size and number of the grids or cells. As a general rule, having
more cells with finer sizes leads to higher accuracy in the results. However, a simulation
with finer grids takes more time and computational costs. Thus, there is a trade-off between
accuracy on the one hand, and time and cost. So the size of cells needs to be chosen wisely
to have acceptable accuracy in the results while attaining a reasonable running time for
simulations. The default configurations of MAGIC provide an acceptable accuracy in
reasonable time for the users who does not wish or may not know how to specify some
aspects of an electromagnetic PIC simulation [37]. One of the most attractive features of
MAGIC is that it allows adaptive meshing for increasing the cell resolution in the area of

simulation where the important physics takes place [38].

MAGIC is a successful software in solving equations of motion for particles in
electromagnetic fields because it incorporates the most useful techniques and allows for
configurations to meet a user’s specific needs with minimum effort. Thus, it has been used
for simulation and design of various equipment such as microwave amplifiers, sensors,
lasers, accelerator components, antennas, for beam propagation, pulsed power systems,

field emitter arrays, and semiconductor devices [37].

In the simulations of this thesis with the MAGIC software tool, the magnetron

interaction space is divided as follow: 0.5 mm for radial grid resolution, 7.5 mm for axial
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grid resolution, and 5 degree for azimuthal grid resolution. There were almost 300,000
active particles present during the simulation to start with, and their number can increase
significantly over time during the course of the simulation due to secondary electron

emissions.

MAGIC offers different types of emission processes of charged particles from the
surfaces of an object. These include: EMISSION EXPLOSIVE, EMISSION
HIGH_FIELD, EMISSION PHOTOELECTRIC, EMISSION THERMIONIC, and

EMISSION SECONDARY [39].

Explosive emission, (MAGIC command: EMISSION EXPLOSSIVE) is the main type
of emission which has been used in simulation of magnetron in this thesis. Explosive

emission results from plasma formation on a material surface.

A simple, qualitative explanation for initiation of the explosive emission is that an
applied external voltage creates high electric fields (in the 10-108 V/cm range) at cathode
micro-protrusions or “whiskers”. Electrons are then emitted from the surface by processes
such as field-emission. The micro-protrusions subsequently blow up due to the high local
current density that causes rapid resistive heating, leading to vaporization of the cathode
material. Experimental information on possible phase-change at the emitting surface
during this process has been observed by means of electron microscopy (for example, in
the context of carbon emitters [40]). The vapor is easily ionized, creating a "cathode

plasma" that acts as a rich source of electrons [41].

MAGIC largely ignores the physical details of the plasma formation process, relying

instead on a phenomenological description. However, the particle emission itself is based
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upon Child’s law of physics, specifically, the normal electric field vanishing at the plasma
surface. In MAGIC calculations, breakdown can occur only if the normally directed field
at the half-cell, E., exceeds the specified breakdown (field threshold) which is defined by

the user.

Checking of the electric field with the field threshold is performed continuously for
every surface cell on the emitting object. The “break down” occurs at a cell which the field
exceeds the field threshold. It should be noted that in MAGIC, a single, non-emitting cell
between two emitting cells is also allowed to break down, even if the threshold is not
exceeded. The time of breakdown, t,, is recorded for each cell that breaks down.

Subsequently, every cell has its own history and is treated independently [39].

The resulting plasma surface is counted as a metal with zero work function. Thus, both
ions and electrons can be emitted under the effect of local field. The creation of the macro
particle based on Gauss’s law is allowed using the phenomenological algorithm until the
field of surface reduced to some specified residual value [37]. It can be represented as

follows:

M — eof (t— to)(Ee — E,) — p dx, (3.58)

where, f is the plasma formation rate which depends on t,, p is the existing charge density
at the surface, and E,. is the residual field. Restrictions may be imposed to limit the charge

of minimum macro particles and maximum current density.
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In field emission, (MAGIC command: EMISSION HIGH_FIELD), the electric field
supplies the required energy for overcoming the work function. The current density is given

by the Fowler-Nordheim equation as follows:

d?q __ AE?
dAdt @ t(y)?

B v(v) 0%
exp(ZZ0y (3.59)

Es

where 4 and B are the Fowler-Nordheim constants. The work function, @, and the other
functions in the equation may be either a constant or a function of tome and spatial

functions [39].

In thermionic emission, thermal (MAGIC command: EMISSION THERMIONIC),
thermal energy is required to overcome the work function. In this condition, the current

density is given as Equation (3.60).

dzq
dA dt

= 4, T?exp(=) | (3.60)

where, kis the Boltzmann constant and A,is the Dushman parameter (= 1.24 x

A

m2Kelvin?

106 ). The work function, @, may be either a constant or a function of time and

spatial coordinates [39].
For secondary electron emission, (MAGIC command: EMISSION SECONDARY),

which has been probed in simulations of this thesis, the incidents electrons provides the

required energy for overcoming the potential barrier of the function.
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3-4 Simulation Model

In order to analyze the effects of endcaps, length of cathode, and location of the cathode
with respect to the anode, the A6 MDO geometry of UNM [3] has been chosen as the basic
geometry (Figure 2-7) for the present analysis. As was mentioned in Chapter 2, this
geometry is the modified design of the well-known A6 magnetron invented by the MIT

group [1] with details as explained in Section 2-1.

In order to evaluate the role of endcap on output power, efficiency and leakage current
of the A6 MDO magnetron, two types of endcap were designed for magnetron: (a) one

comprehensive bulbous shaped endcap, and (b) six individual endcaps.

Different views of A6 MDO magnetron with one bulb-shape endcap and with six
individual endcaps, designed by MAGIC 3D, are shown in Figure 3-10 and Figure 3-11,

respectively.
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Figure 3-10. A6 MDO magnetron with bulb shape endcap. (a) Cross sectional view in the r-¢ plane. (b) Three

dimensional view, (c) Cross sectional view in the r-z plane.
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Figure 3-11. A6 MDO magnetron with six individual endcaps. (a) Cross sectional view in the r-¢ plane. (b)

Three dimensional view, (c) Cross sectional view in the r-z plane.

In addition, in order to evaluate and find the optimized geometry and operation
conditions of a Rising-Sun magnetron with axial output, again the well-known A6
magnetron [1] was chosen as the basic configuration to start building with, though
appropriate changes relating to the anode block and cathodes were implemented for the
Rising-Sun geometry. The anode block consisted of 12 sectorial 20° cavities with length L

= 7.5 cm, maximum radius Reay = 4.11 cm, and minimum radius Ra = 2.11 cm [3, 42-44].

Two different structures were used for the short vanes of the Rising-Sun magnetron. As

shown in Figure 3-12, for the first geometry, the outer radii of vanes were fixed and the
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slope of vanes () was changed. In the second geometry (Figure. 3-13), the radius of the
vanes (Rs) was changed while the distances to the point of the vane endings were fixed at
204.6 mm for all six vanes. Thus, both models had the basic tapered structure that has been
proposed and studied previously [45]. This differs slightly from the configuration used in
a very recent report on 12-cavity relativistic magnetrons [46], wherein the tapered cavity
was replaced by a single-stepped cavity. However, the single-stepped design does have
some drawbacks, and so was not considered in this thesis. For example, one cannot have
mode conversion as readily as with a tapered MDO. In addition, one would require larger
diameter Helmholtz coils for the single-stepped cavity in order to provide the uniform

magnetic field in the interaction space.
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Z (mm)

Figure 3-12. Rising-Sun magnetron with the anode block geometry chosen as the first configuration for
quantitative performance evaluation with variable angle for short vanes (angle 8). (a) Cross sectional view
in the r-¢ plane. (b) Three dimensional view for 8 equal to 15 degrees. (c) Cross sectional view of the long
vanes in the r-z plane. (d) Cross sectional view of the short vanes in the r-z plane [47].

The transparent cathode structure for the simulations was modeled as consisting of 12
discrete longitudinal emitters evenly placed at 8 millimeter from the center (Rc = 8 mm)

with 2 mm and a 10-degree thickness.

For the MDO, the coaxial antenna for extracting the generated microwave power was

modeled to consist of an antenna feed and head without a dielectric vacuum window to
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maintain vacuum inside the magnetron. The model here included an input port at the lowest

z-position for providing dc power to the magnetron, and an output port at the highest z-

position for absorbing the microwave power incident on it.

)
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Figure 3-13. The second anode block geometry chosen for the Rising-Sun magnetron simulations with
variable outer radius for short vanes (R,). (2) Cross sectional view in the r-¢ plane. (b) Three dimensional

view for Ry equal to 75 mm. (c) Cross sectional view of the long vanes in the r-z plane. (d) Cross sectional
view of the short vanes in the r-z plane [47].
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In addition, two different shapes of the endcap were used in the simulations of Rising-
Sun magnetron: a bulb shape and cylindrical shape. The radius of endcap for both cases
was taken to be 25 mm with the thickness of the cylindrical endcap set at 15 mm. The

geometry for these two comprehensive endcaps used is shown in Figure 3-14.

150 (b)
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Figure 3-14. Geometry used for Rising-Sun MDO structures with different endcap geometries. (a) Three
dimensional view with Bulb shape endcap, (b) Cross sectional view in the r-z plane with Bulb shape endcap,

(c) Three dimensional view with cylindrical endcap, (b) Cross sectional view in the r-z plane with cylindrical
endcap [47].
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CHAPTER 4

RESULTS AND DISCUSSION

For the PIC simulations, 50-ns voltage pulses of magnitude 400 kV with a 4-ns rise-
time were applied. Integrating the angular electric field across each cavity yielded the
radiofrequency (RF) voltages. The frequency was obtained through a Fourier transform of
an RF-voltage over a time interval in the steady state domain. The simulation time step,
on which the time-integration scheme is based, is automatically chosen to meet the
Courant-Friedrichs-Lewy [48] stability condition of: 6z < dx/(c\'2), where dx is the smallest

cell size and c is the speed of light.

4-1 Simulation Results and Discussion

4-1-1 A6 MDO Magnetron

The role of the cathode length and its extension beyond the anode dimensions was
initially probed. The length of the anode block L was 7.2 cm, and different cases were
simulated for cathode lengths of L, L+2dz, L+4dz, where dz = 7.5 mm. PIC simulation
results for the A6 MDO without any endcap for these three different lengths of the cathode
are shown in Figure 4-1. The output power, device efficiency and leakage current were
obtained as a function of the applied magnetic field. In all cases, the maximum efficiency
occurs at a B-value of about 0.42T and is roughly 43%. As shown in Figure 4-1(a), the
leakage current is predicted to fall monotonically from about 2.65 kA to 1.8 kA in going

from 0.3T to 0.44 T in 7.5 cm cathode length.
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Figure 4-1. PIC simulation results for the A6 MDO without any endcap. The output power, device efficiency
and leakage current are shown as a function of the applied magnetic field for different cathode lengths: (a)
Cathode length 7.5 cm (L), (b) cathode length 9 cm (L +2dz=7.5+1.5 cm), and (c) cathode length 10.5 cm
(L +4dz=7.5+3 cm).
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In regards to the increase in cathode length, a comparison of Figure 4-1(a) and Figure
4-1(c) shows a slight decrease in leakage currents from about 1.8 kA down to 1.55 KA at
the 0.44 T field. The maximum output power is predicted to about 1 GW at the highest

0.44 T field in both cases.

Next, PIC simulations for the MDO with one comprehensive endcap encompassing all
six cathodes were carried out for four different lengths of the cathode. The geometry for
the comprehensive endcap is shown in Figure 3-10. Once again, the output power, device
efficiency and leakage currents were obtained as a function of the applied magnetic field

for cathode lengths of L-2dz, L, L+2dz, and L+4 dz, as shown in Figure 4-2.

The increases in efficiency as compared to the previous results of Figure 4-1 are quite
significant. For instance comparing Figure 4-1(c) with Figure 4-2(b) for a cathode length
L+4dz, shows the efficiency to increase from about 43% at a 0.42 T field without an
endcap, to 62% at the same 0.42T field with an endcap. Figure 4-2(b) shows the efficiency
values for a slightly longer cathode with an endcap is again slightly large. It is thus apparent
that though a shorter cathode length is detrimental to the performance, the endcap plays a
stronger role. Even more important and significant is the sharp drop-off in leakage current
with the presence of an endcap. The leakage current is close to zero in Figure 4-2(c) at the

higher magnetic fields of 0.42 T, as compared to 1.8 kA in Figure 4-1.
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Figure 4-2. PIC simulation results for the A6 MDO with one comprehensive endcap for different length of
cathodes. (a) The output power, as a function of the applied magnetic field. (b) Efficiency, as a function of
the applied magnetic field, and (c) Leakage current, as a function of the applied magnetic field.
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Finally, the output power is also predicted to increase with the use of endcaps for all
four cathode lengths as shown in Figure 4-2(a). At the magnetic fields of 0.4T, the output
power is predicted to be on the order of 1.5 GW. Based on Figure 4-2, one would select
operating magnetic fields in the 0.4-0.44 range with the endcap and a cathode that extends

beyond the anode dimension for superior performance.

In addition, MAGIC-based simulations were also carried out for the same MDO
structure, but with six individual endcaps for the six electrodes. The geometry for this
configuration is shown in Figure 3-11. Results of MAGIC simulation for the MDO with
the six individual endcaps are shown once again as a function of the applied magnetic field
in Figure 4-3. These plots show the output power, device efficiency and leakage current
for cathode lengths of L-2dz, L, L+2dz, and L+4 dz. The results are somewhat similar to

the plots of Figure 4-2 obtained for a single endcap.

As Figures 4-3(a) and 4-3(c) shows the peak output power at the highest B-fields of
0.44T is predicted to be somewhat lower at about 1.08 GW, though the leakage currents at
the same fields are close to zero for cathode length 9 cm and 10.5 cm. The efficiencies
continue to be quite high, and are just over 62%. The results show although the B-field
0.44T gives the highest efficiency but the output power at 0.44T dropped to about 1 GW
from 1.4 GW at B-field around 0.4T. Thus, for this 6-endcap configuration, the results
suggest an optimum operating range for the B-field around 0.4T. Therefore, based on the
results of Figures 4-2 and 4-3, the best choice taking account of the highest efficiency,
output power, and lowest leakage current, would appear to be an extended cathode with

length L + 2 dz and an operating B-field of 0.4 T.
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Figure 4-3. PIC simulation results for the A6 MDO with six individual endcaps for different length of
cathodes. (a) The output power, as a function of the applied magnetic field. (b) Efficiency, as a function of

the applied magnetic field, and (c) Leakage current, as a function of the applied magnetic field.
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Based on these parameters for having the optimized geometry and magnetic field,
further simulation work was carried out to probe the potential location and thus angular
offset between the transparent cathodes relative to the six-anode structure. Figure 4-4
shows the angle between x-axis and the first cathode which has been changed from zero to

60 degree for analyzing the effect of location of cathodes with respect to anode block.
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Figure 4-4. Angle between x-axis and first cathode (alpha).

Both the output power and leakage currents are shown as a function of “a” in Figure 4-
5. As this figure shows the magnetron has the lowest leakage current magnitude and highest
output power at a~55 degree. Thus, the optimized value of the output power is predicted
to be about 1.47 GW for the 400 kV, 4 ns rise-time voltage. The leakage current is small

at about 25 Amperes and the overall efficiency of this MDO with a cathode extension of 3

cm was obtained at about 66 %.
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Figure 4-5. Simulation results for the output power and leakage current as a function of angular location of
the cathode with respect to the anode block. One comprehensive endcap and an extended cathode of length
L+2dz was used with a fixed B-field of 0.4 T.

4-1-2 Rising-Sun Magnetron

Finding the optimized geometry for anode block of Rising-Sun magnetron was the first
step in the overall process of conducting numerical simulations on Rising-Sun geometry.
The cut-away views of the Rising-Sun geometry are shown in Figures 3-12 and 3-13. The
anode is a Rising-Sun block comprised of six long and six short vanes. In the first
geometric configuration for the anode block, the slope of the short vanes (angle g in Figure
3-12(d)) was changed from 5 degree to 60 degree in 5 degree increments, while the angle
of other six vanes (angle 0 in Figure 3-12(c)) was kept fixed at 32 degrees. This fixed value
represents an optimized angle as obtained in previous simulations [3, 42]. In the second
anode block geometry shown in Figure 3-13, R, was changed from 55 mm to 100 mm in
5mm steps, while Zs was kept fixed at 204.6 mm for all six short vanes. It should be noted
that the outer radius for the six long vanes was 105 mm at a constant angle of 6=32 degrees.

Three dimensional views of these two geometries (Figures 3-12(b) and 3-13(b)) give a
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better perception of the geometries. Particle-in-cell simulation results for the 12 cavities,
12 cathodes Rising-Sun MDO without any endcap for these two different geometries of
the anode block are shown in Figures 4-6 and 4-7. The simulations were carried out at two
different applied magnetic fields of 0.42 T and 0.48 T. The output power, device efficiency
and leakage current were obtained for different values of £ as shown in Figures 4-6(a) and

4-6(b), and for various R, values as in Figures 4-7(a) and 4-7(b).
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Figure 4-6. PIC simulation results for the 12-Cavity Rising-Sun Magnetron. The output power, device

efficiency and leakage current are shown as a function of short vanes angle (8). Applied magnetic fields of:

(a) B=0.42T, and (b) B =0.48 T were used [47].
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Figures 4-6(a) and 4-6(b) show the output power, device efficiency and leakage current
for different angles of the short vanes for applied magnetic fields of 0.42 T and 0.48 T,
respectively. Figures 4-7(a) and 4-7(b) show the output power, device efficiency and
leakage current for different values of Rs (corresponding to the anode geometry of Figure
3-13) for same two values of the applied magnetic fields. Comparing Figures 4-6 with
Figures 4-7 shows that the first geometry (i.e., changing angle ) appears to have a better

performance as compared to changing Rs within the second geometry.

The magnetron with the geometry of Figure 3-12 is predicted to work at an efficiency
of about 57% at 0.42 T, and an efficiency of about 59% at 0.48 T. On the other hand, the
second geometry (Figure 3-13) at best is predicted to work at efficiencies of about 50%

and 54% for magnetic fields of 0.42 T and 0.48 T, respectively.

In addition, the output power in the first geometry is higher than that of the second
geometry. For example, the first structure has a maximum output power of about 2.1 GW
at 0.42 T and 1.45 GW at 0.48 T, while the second geometry has maximum output powers
ofabout 1.7 GWand 1.2 GW at 0.42 T and 0.48 T, respectively. Clearly then, the geometry
of Figure 3-12 is preferable from the standpoint of better performance and was therefore

chosen for further analysis.
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Figure 4-7. PIC simulation results for the 12-Cavity Rising-Sun magnetron. The output power, device
efficiency and leakage current are shown as a function of the parameter Rs. As with figure 3-13, applied
magnetic fields of: (a) B=0.42 T, and (b) B =0.48 T were used [47].

After choosing the geometry for the Rising-Sun MDO, a selection for the best slope
(angle B) was made based on the simulation results already obtained. Simulation data of
Figure 4-6 suggest an optimum operating range for 8 between 40 and 50 degrees from the
standpoint of efficiency and output power. In this range of angles, a 57% efficiency and a
2.1 GW output power, as well as a 59% efficiency and a 1.4GW output power were

obtained at magnetic fields of 0.42 T and 0.48 T, respectively. Therefore, § = 45 degrees
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was chosen as the optimized angle for the short vanes of the Rising-Sun MDO, with a
56.4% efficiency and 2.13 GW output power at 0.42 T, and a 59.1% efficiency with a 1.47
GW output power for the 0.48 T field. It may be noted that at this chosen angle, the device
has relatively low leakage current compared to the other angles at both simulated magnetic

field values.

Next, PIC simulations for the Rising-Sun MDO with one comprehensive endcap
encompassing all twelve cathodes were carried out for different values of the applied
magnetic field. Two different shapes of the endcap were used in the simulations: a bulb
shape and cylindrical shape. The geometry for these two comprehensive endcaps used is
shown in Figure 3-14. It should be mentioned that these two types of endcaps were added

to optimized geometry (including the g = 45 degrees angle) obtained in the previous steps.

The output power, device efficiency and leakage currents were obtained once again with
the endcaps as a function of the applied magnetic field. Figure 4-8 shows the results. The
increase in efficiency in Figure 4-8 is quite significant as compared to the previous results
of Figure 4-6. For instance, comparing the results of Figure 4-6 for a 8 value of 45-degree
with Figure 4-8 at a 0.42 T magnetic field, shows the efficiency increasing from about 56%
without an endcap, to about 65% and 66% with a bulb shaped and cylindrical endcap,
respectively. The results at a different magnetic field of 0.48 T also verified this rising trend
in efficiency. At 0.48 T, the efficiency is predicted to increase from 59% for an MDO

without an endcap, to about 69% with either a bulb shaped or cylindrical endcaps.
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Figure 4-8. PIC simulation results for the 12-Cavity Rising-Sun magnetron with endcap. The output power,
device efficiency and leakage current are shown as a function of the applied magnetic field for: (a) a bulb

shape endcap, and (b) a cylindrical endcap [47].

In addition to efficiency increases, the sharp drop-off in leakage current with the
presence of an endcap is another important benefit of adding endcaps. Figure 4-9 compares
the leakage current for three different conditions: without any endcap, with a bulb-shaped
cap, and with a cylindrical cap. This figure shows that the leakage current to have decreased
significantly upon adding endcaps for the cathodes. Specifically, the leakage current
values dropped from about 1.5 kA to less than 200 A for magnetic field higher than 0.4T.
Besides, the values were quite close to zero at operating magnetic fields in the 0.41 T to

0.43 T range. Therefore, based on the simulation results of Figures 4-8 and 4-9, one might
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select the cylindrical endcap at an operating magnetic field 0.43 T as the optimized
geometry and operating condition for enhanced efficiency and output power, coupled with

low leakage currents.
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Figure 4-9. Leakage current of 12-Cavity Rising-Sun Magnetron for three different cathode structures. These

structures were without any endcap, with a bulb-shaped cap, and with a cylindrical endcap [47].

The role of the cathode length and its extension beyond the anode dimensions was
probed next. The length of the anode block L was 7.2 centimeters, and different cases were
simulated for cathode lengths ranging in the interval: 12cm <L <19.5 cm. The simulations
were carried out at incremental steps dz of 7.5 mm. PIC simulation results for the 12-
Cavity Rising-Sun MDO with a cylindrical endcap for different lengths of the cathode are
shown in Figure 4-10. The magnetic field was taken to be 0.43 T. The output power,
device efficiency and leakage current were obtained as a function of cathode length. From

the standpoint of high efficiency and output power, coupled with low leakage currents, a
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cathode length of L+5dz appears to be a good optimal choice based on the simulation

results of Figure 4-10.
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Figure 4-10. PIC simulation results for the 12-Cavity Rising-Sun MDO with a cylindrical endcap for different

lengths of the cathode at an applied magnetic field 0.43 T. The output power, device efficiency and leakage

current are shown as a function of cathode length [47].
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PIC simulations were also carried out for different cathode lengths at a slightly higher
magnetic field of 0.45 T with the cylindrical endcap. This second set of simulations at a
slightly higher magnetic field of 0.45 T were carried out based on the results already
obtained in Figure 4-8. Though the device output power was slightly lower (2.15 GW at
the 0.45 T magnetic field), but a slightly higher 68% efficiency was predicted at this
magnetic field. The PIC simulation results as a function of cathode length at 0.45 T are
given Figure 4-11. The results of Figure 4-11 are somewhat similar to the curves at 0.43T
in Figure 4-10. The results show the efficiency to have been raised slightly with increasing
cathode length. It is seen to slightly surpass 70% efficiency for the interval: 17.25cm < L
< 18.75cm at 0.45 T. Thus, taking into consideration both figures 4-10 and 4-11, the best
choice in terms of the highest efficiency and output power, with the lowest leakage current
would appear to be an extended cathode with a length of 18 cm (=L+6dz) and an operating
magnetic-field of 0.43 T or 0.45 T. At 0.43 T, the device operates with a 68% efficiency
and 2.35 GW output power, while the MDO works at a 70.5% efficiency and 2.14 GW
output power at 0.45 T. It may additionally be mentioned that the leakage current in both
these cases is at about 150 A which is significantly lower than without any endcaps. In the

former case, leakage currents as high as 1.5 kA were calculated.

Furthermore, Figures 4-12 and 4-13 depict the MAGIC-based PIC simulation results for
the temporal evolution of various quantities of interest within the 12-Cavity Rising-Sun
magnetron. A cylindrical endcap and 18 cm cathodes (=L+6dz) at a 0.45 T applied
magnetic field was used. The efficiency is seen to reach 70% within about 20 ns. The

output power is predicted to be about 2.36 GW with a current of ~8.4 kKA.
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Figure 4-12. MAGIC-based simulation results for the 12-Cavity Rising-Sun Magnetron with a cylindrical

endcap and 18cm cathodes (L+6dz) at a 0.45 T magnetic field. The figures show: (a) Output power, and (b)
Efficiency [47].

Moreover, snapshots of the electron distributions within the cross sectional structure of
the magnetron without and with a cylindrical endcap at three different time instants of 4.99
ns, 20.038 ns, and 39.442 ns for a 0.45T magnetic field are shown in Figures 4-14 and 4-
15 respectively. Comparison of the figures, with and without an endcap, demonstrates the
role of the endcap in suppressing electrons leakage current and contributing to higher
efficiency. For instance, Figures 4-14(d) till 4-14(f) and Figures 4-15(g) till 4-15(i)

represent snapshots at exactly the same position and time of MDO with and without

endcap, respectively.
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Figure 4-13. MAGIC-based simulation results for the 12-Cavity Rising-Sun Magnetron with a cylindrical
endcap and 18cm cathodes (L+6dz) at a 0.45 T magnetic field. (a) Total current, and (b) Anode current [47].
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Figure 4-14. Snapshots at 4.99 ns, 20.038 ns, and 39.442 ns showing the evolution of the electron swarm
and formation of spokes in the 12-Cavity 12-cathode Rising-Sun Magnetron without endcap at 0.45 T
magnetic field and 400kV applied voltage. The various figure are the r-z plane cross sectional view of
magnetron without any endcap at: (a) 4.99 ns, (b) 20.038 ns, and (c) 39.442 ns. The r-¢ plane cross sectional
view of the MDO at z=17.04cm, at: (d) 4.99 ns, (e) 20.038 ns, and (f) 39.442 ns [47].
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Most of the electron flux is blocked by the endcap and is predicted not to reach the vanes
and output window. It should be noted that Figures 4-15(g), 4-15(h), and 4-15(i) are
cathodes with endcap, but this intersection (at z = 17.04cm) is below the endcap, and hence

the endcap cannot be seen in the figure.
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Figure 4-15. Snapshots at 4.99 ns, 20.038 ns, and 39.442 ns showing the evolution of the electron swarm and
formation of spokes in the 12-Cavity 12-cathode Rising-Sun Magnetron with a cylindrical endcap at 0.45 T
magnetic field and 400kV applied voltage. The various figures are the MDO cross sectional view in the r-z
plane at: (a) 4.99 ns, (b) 20.038 ns, and (c) 39.442 ns. Cross-sectional snapshots in the r-¢ plane of magnetron
at z = 20.08cm at: (d) 4.99 ns, (e) 20.038 ns, and (f) 39.442 ns. Finally, snapshots in the r-¢ plane of the
magnetron at z = 17.04cm, at: (g) 4.99 ns, (h) 20.038 ns, and (i) 39.442 ns, respectively [47].
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Figure 4-16. Output voltage spectra for the 12-Cavity Rising-Sun Magnetron at an applied magnetic field
0.45 T for various cases. (a)Without endcap and 13.5 cm cathodes, (b) with a cylindrical endcap and 13.5 cm
cathodes, and (c) with a cylindrical endcap and 18 cm (= L+6dz) cathodes [47].

For completeness, results for the frequency of the magnetron operation are briefly
discussed. Figure 4-16 shows the output voltage spectrum for the 12-Cavity Rising-Sun
Magnetron at an applied magnetic field 0.45 T, with and without the use of endcaps.
Different cathode lengths were simulated, and the results shown correspond to 13.5 cm

long (Figures 4-16(a) and 4-16(b)), and 18 cm long (Figure 4-16(c)) cathodes. In all cases,
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a frequency of about 2.66 GHz was obtained despite the variation in cathode length and
structure. Thus, based on the results obtained the system appears quite stable.

Finally, for completeness, the effect of Secondary Electron Emission (SEE) on
performance of 12-cavity Rising-Sun magnetron has been probed. The optimized geometry
for 12-cavity Rising-Sun magnetron was used for consideration role of SEE. The best
length of cathodes in terms of the highest efficiency and the output power, with the lowest
leakage current found in previous sections was 18 cm. In addition, the cylindrical endcap
encompassing all twelve cathodes was considered for 12 cavity Rising-Sun magnetron. It
worth mentioning that the simulation results show that the Rising-Sun geometry with 15
degree cavities has a slightly better performance in terms of output power and efficiency
over the 20- degree cavities. Thus, 15° degree cavities were chosen in the present
simulation for evaluation the role of secondary emission. For the PIC simulations, 40-ns

voltage pulses of magnitude 400 kV with a 4-ns rise-time were applied.
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Fig 4-17. PIC simulation results for 12- cavity Rising-Sun magnetron with cylindrical end cap and cathode

length 18 cm. The output power and device efficiency are shown as a function of the applied magnetic field

with and without the inclusion of SEE.
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The output power and efficiency for different applied axial magnetic field strengths with

and without the inclusion of SEE from the anode and cathode, are shown in Figure 4- 17.

In addition, Figure 4-18 shows the leakage current of magnetron as a function of applied
magnetic field with and without the inclusion of SEE. Both Figures 4-17 and 4-18 show
the secondary electron emission does not have the considerable effect on output of

magnetron.
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Fig 4-18. PIC simulation results for 12-cavity Rising-Sun magnetron with cylindrical end cap and cathode
length 18 cm. The leakage current is shown as a function of the applied magnetic field with and without the
inclusion of SEE.

Furthermore, Figure 4-19 depicts the output power as a function of time for applied
magnetic fields of 0.45T and 0.47T with and without SEE from the anode and cathode. As
Figures 4-19 shows, there is not considerable change in output power; although the
decrease of output power with secondary electron emission at the 0.45 T magnetic field

(Figure 4-19(a)) is more visible between the 10 ns to 25 ns interval.
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Fig 4-19. MAGIC-based simulation results for the time dependent output power obtained for the 12-Cavity

Rising-Sun Magnetron with a cylindrical endcap and 18 cm cathodes for different applied magnetic fields

with and without SEE: (a) 0.45 T magnetic field, and (b) 0.47 T magnetic field.
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In addition, Figure 4-20 shows the efficiency as a function of time for applied magnetic
fields of 0.45T and 0.47T with and without SEE. As with the plots for output power, there
are no appreciable changes in efficiency in Figure 4-20. Again, as with the results for output
power, the slightly decrease of efficiency in the case of including secondary emission at

0.45 T magnetic field (Figure 4-20(a)) is visible between the 8ns to 25 ns interval.

Overall, as is apparent from the recent figures, there is negligible difference between
the curves including SEE and without SEE because of the weak effect of Secondary
Electron Emission (SEE). Thus, the role of secondary emission was not found to be very
strong for the 12-cavity Rising-Sun magnetron though it did lead to some (a few percent)

lowering of the device efficiency.
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Rising-Sun Magnetron with a cylindrical endcap and 18 cm cathodes for different applied magnetic fields

with and without SEE: (a) 0.45 T magnetic field, and (b) 0.47 T magnetic field.
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CHAPTER 5

CONCLUSIONS AND SCOPE FOR FUTURE WORK

5-1 Summarizing Conclusions

The A6 magnetron with radial output and uniform emission cylindrical cathode (i.e.,
"solid cathode”), was the first relativistic magnetron invented at MIT in 1970s with the
capability of producing power in the Megawatt range. The starting time and build-up of
microwave oscillations in magnetrons with solid cathode is very slow. Thus, the
"transparent cathode” was proposed as a mean of improving the overall performance of A6
relativistic magnetron and decreasing the start time of oscillations, which can lead to short
pulses for ultrawideband applications. The transparent cathode is a hollow cathode with
longitudinal strips of material removed in a symmetric angular fashion. As a result, the
transparent cathode consists of a district number of individual emitters. The strong
azimuthal RF electric field in transparent cathodes, as compared to zero amount in solid
cathode, quickly captures pre-bunched electrons into the rotating spokes. This phenomenon
provides the improved condition for the fast conversion of the electron potential energy

into electromagnetic energy.

Magnetrons with diffraction output (MDO) is another important class of relativistic
magnetrons that has been proposed in recent years. While most relativistic magnetrons
extract the output power radially from a slot located in their cavities, in axial diffraction
output magnetrons (MDOs), the radiation is extracted axially along the vanes of the anode
block via a horn antenna or multiple waveguides. In a MDO, the vanes of the anode block

are continued and tapered within inside of a conical horn antenna. In addition, Rising-Sun
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geometry was created and designed to achieve mode stability. This device geometry
consists of two alternating groups of short and long vanes in angular orientation, that help

create greater frequency separation between the modes and prevent mode competition.

The use of cathode endcaps has been one of the performance enhancing aspect studied
both through experiments and simulations. The physics associated with the improvement
is based on two aspects. First, the metallic endcaps shape the electric fields and help define
the effective electrical length of the cathode. In addition, electron leakage currents can be
suppressed and the output window of the MDO would be protected from electron

bombardment.

The Particle-in-cell (PIC) code simulates the motion of plasma particles and calculates
all macro- quantities from the position and velocity of these particles. Particle-in-cell based
MAGIC software tool has been used in this thesis for modeling and simulation of

magnetron to obtain the optimized geometry based on the device performance.

In the first part, Particle-in-cell simulations were performed to provide a numerical
analysis of the efficiency, output power and leakage currents in an A6 magnetron with
diffraction output and transparent cathode. The central goal was to evaluate the role of
cathode length, different types of endcap, and location of cathodes in respect with anode
block, as a function of different applied magnetic fields, on the output power, efficiency
and leakage current of magnetron. In reality, the parameter space is really large, and so for
convenience the basic dimensions and geometry were confined to that used in recent

reports of the A6 relativistic magnetron.
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Simulation results, in keeping with previous reports, demonstrate the definite advantage
of having endcaps. Though the use of individual endcaps was probed, the performance
was not shown to significantly improve over a single, comprehensive endcap. Given the
ease of manufacture, a single endcap would, therefore, provide a more practical
implementation. The results demonstrated peak output power in excess of 1 GW, with
efficiencies on the order of 66% for B-field in the 0.4 T - 0.42 T range. For optimization,
the relative angular displacement of the cathode relative to the anode was obtained to be

about 55 degrees.

Furthermore, Particle-in-cell simulations were performed to provide a numerical
evaluation of the efficiency, output power and leakage currents in a 12-cavitiy, 12-cathode
Rising-Sun magnetron with diffraction output. The central goal was to conduct a parameter
study of a Rising-Sun magnetron that comprehensively incorporated performance
enhancing features such as transparent cathodes, axial extraction, the use of endcaps, and
cathode extensions. Once again, the basic dimensions and geometry were confined to that
used in recent reports of the A6 relativistic magnetron and the different conditions analyzed
for optimized shape and angle of the short vanes in the structure. The results for this part
again show the definite advantage of having endcaps. A 45 degree angle was obtained as
the optimized value for the short vanes of the Rising-Sun magnetron, with the slope of
other vanes kept fixed at 32" degrees (an optimized angle reported in previous reports). The
simulations here also demonstrated peak output power in excess of 2GW, with efficiencies
on the order of 68% for B-fields in the 0.42 T - 0.46 T range. For further optimization, the

role of the cathode length and its extension beyond the anode dimensions was probed. The
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results show the efficiency in excess of 70% and peak output power on the order of 2.1GW

for an 18 cm cathode length at 0.45 T magnetic field and 400 kV applied voltage.

Finally, the role of secondary electron emission (SEE) on performance of 12-cavity
Rising-Sun magnetron was performed in this thesis research. The Particle-In-Cell
simulations based on the MAGIC tool were performed to provide a numerical analysis into
efficiency, output power, and leakage currents. The simulation results show the weak effect
of Secondary Electron Emission (SEE) on output power, efficiency and leakage current of
magnetron. Thus, the role of secondary emission was not found to be very strong for the
12-cavity Rising-Sun magnetron, though it did lead to some (a few percent) lowering of

the device efficiency.

5-2 Scope for Future Work

Based on the research work described in this thesis, some of the other areas for further

research and simulation aspects for future studies are briefly described as follows:

1) Experimental works on Rising-Sun magnetron with different geometries which
could be the best way for confirmation of the MAGIC-based simulation results.

2) Carrying out 3D MAGIC simulation with different shapes of cathode such as
the cathodes with sharp edges in order to increase the local electric field and
enhancing electron emission for the cathode.

3) Studying and Particle-in-cell MAGIC-based simulation on the operation of a
compact relativistic magnetron with a virtual cathode (VC) in the interaction

space of the device, instead of a physical cathode.
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4) Simulation and research on the effect of changing the cathode strip position on
the operation mode of magnetron.

5) Consideration of the effect of cascading electron emission in Secondary Electron
Emission (SEE) in Rising-Sun MDO magnetron.

6) A study of magnetron performance with the anode cavities partially or fully
filled with dielectrics could be carried out. This model would provide variable
frequency operation, especially if liquid oils could be used in piston-like

containers of variable length.
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