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ABSTRACT 

NUMERICAL STUDIES AND OPTIMIZATION OF MAGNETRON WITH 
DIFFRACTION OUTPUT (MDO) USING PARTICLE-IN-CELL SIMULATIONS 

Alireza Majzoobi 
Old Dominion University, 2015 
Director: Dr. Ravindra P. Joshi 

 

The first magnetron as a vacuum-tube device, capable of generating microwaves, was 

invented in 1913. This thesis research focuses on numerical simulation-based analysis of 

magnetron performance. The particle-in-cell (PIC) based MAGIC software tool has been 

utilized to study the A6 and the Rising-Sun magnetron structures, and to obtain the 

optimized geometry for optimizing the device performance. The A6 magnetron is the more 

traditional structure and has been studied more often. The Rising-Sun geometry, consists 

of two alternating groups of short and long vanes in angular orientation, and was created 

to achieve mode stability. 

The effect of endcaps, changes in lengths of the cathode, the location of cathodes with 

respect to the anode block, and use of transparent cathodes have been probed to gauge the 

performance of the A6 magnetron with diffraction output. The simulations have been 

carried out with different types of endcaps. The results of this thesis research demonstrate 

peak output power in excess of 1GW, with efficiencies on the order of 66% for magnetic 

(B)-fields in the range of 0.4T - 0.42T. 

In addition, particle-in-cell simulations have been performed to provide a numerical 

evaluation of the efficiency, output power and leakage currents for a 12-cavitiy, Rising-

Sun magnetron with diffraction output with transparent cathodes. The results demonstrate 



peak output power in excess of 2GW, with efficiencies on the order of 68% for B-fields in 

the 0.42T - 0.46T range. While slightly better performance for longer cathode length has 

been recorded. The results show the efficiency in excess of 70% and peak output power on 

the order of 2.1GW for an 18 cm cathode length at 0.45T magnetic field and 400 kV applied 

voltage. All results of this thesis conform to the definite advantage of having endcaps. 

Furthermore, the role of secondary electron emission (SEE) on the output performance 

of the12-cavity, 12-cathodes Rising-Sun magnetron has been probed. The results indicate 

that the role of secondary emission is not very strong, and leads to a lowering of the device 

efficiency by only a few percentage points. 
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CHAPTER 1 

INTRODUCTION 

1-1 Brief History of Magnetrons 

The first magnetron as a vacuum-tube device with perpendicular E-field and B-field 

(cross-fields), capable of generating microwaves, was invented by Arthur Hull in 1913. 

The initial devices with the power levels of 100 W were built in 1920s and 1930s [8]. This 

device uses the interaction of a stream of electrons with a magnetic field while moving past 

a series of open metal cavities called cavity resonators. Bunches of electrons passing by 

the openings to the cavities excite radio wave oscillations in the cavity, much as a guitar's 

strings excite sound in its sound box. The frequency of the microwaves produced, called 

the resonant frequency, is determined by the cavities' physical dimensions. Unlike other 

microwave tubes, such as the klystron and traveling-wave tube (TWT), the magnetron 

cannot function as an amplifier to increase the power of an applied microwave signal. It 

serves solely as an oscillator, generating a microwave signal from direct current power 

supplied to the tube. 

In 1940, John Randall and Harry Boot introduced the first cavity magnetron. They were 

able to get 10kW output power using this cavity magnetron [9]. The early magnetron 

suffered from poor frequency stability which was resolved by strapping method and 

invention of Rising-Sun geometry after World War II [8, 10]. The invention of pulsed 

power technology led to the development of relativistic magnetrons which work at higher 

currents by pulsed power and cold cathode technology. The relativistic magnetron is the 

conventional magnetron which works with high current generated by high voltages. The 
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first relativistic magnetrons reached the powers in the order of 900 MW, while the output 

power of conventional magnetrons was about 10MW at that time [8].  

Several groups, such as those at the Massachusetts Institute of Technology (MIT), have 

successfully produced Megawatt output power from relativistic magnetrons. The MIT A6 

was one of the most popular relativistic magnetron in 1970s which has become a standard 

geometry for simulation and experimental researches in this area. This famous magnetron 

had a solid cathode design. However, more recently, a research group at the University of 

New Mexico introduced an A6 magnetron with a transparent cathode [11] for faster start-

up that helps produce much shorter microwave pulses for ultra-wideband applications. 

1-2 Basic Operation of Magnetron 

The magnetron is basically a cross-field device, which means that the applied magnetic 

field and electric field are orthogonal to each other. In cross-field devices, the electrons 

that supply the energy to generate the microwaves are emitted directly from the cathode 

(or series of cathodes) in the interaction region. As a result, these devices are basically 

compact and no external component for generation of beam is required. The very simple 

and basic geometry of a magnetron consists of two parallel conductors with a DC electric 

field (E) applied between them, and a magnetic field (B) applied parallel to the surfaces of 

the conductors. Upon the application of a high voltage between the anode and cathode, 

explosive emission occurs on the surface of cathode, and electrons are ejected. The speed 

of electrons generated in the gap is given by Equation (1.1) below as: 

ௗܸ =
ܧ × ܤ
ଶ|ܤ| 			.																																																																																																																															(1.1) 
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Equation (1.1), given above, shows that the electrons move in an azimuthal direction 

with a speed |E|/|B|. As the applied voltage between anode and cathode increases, the radius 

of electrons trajectory increases. 

 

 

Figure 1-1. Basic configuration of a cylindrical magnetron [1]. 

Figure 1-1 shows the basic geometry of a cylindrical magnetron. The cathode with 

radius ݎ௖ is separated by a gap from the anode which is shown to have a radius ݎ௔. The gap 

area contains the drifting electrons in operation of magnetron. Also, clearly shown in the 

Figure 1-1, ݎ௩ is the vane radius. 

The Hull cutoff and Buneman-Hartree (B-H) conditions are two important regimes 

based on appropriate equations which specify the operating region of magnetrons. For a 

given voltage, the applied magnetic field should be enough for generation of initial 
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electrons around the cathode without getting any breakdown in the gap. In addition, the 

magnetic field should not be so large that it might reduce the speed of electrons based on 

Equation (1.1). The critical magnetic field (H) to prevent breakdown of the anode-cathode 

interaction region in a magnetron is called the Hull field. In the case of an axial field this 

critical field is given by Equation (1.2) below as: 

∗ܤ = ௠௖
௘ௗ೐

ଶߛ) − 1)ଵ ଶ⁄          ,                                                                                               (1.2) 

where, ݉ and ݁ are the mass and charge of the electron, respectively, and ܿ is the speed of 

light. The relativistic factor, ߛ, and the effective gap in cylindrical geometry,	݀௘, is given 

by Equations (1.3) and (1.4), respectively as detailed below: 

ߛ = 1 + ௘௏
௠௖మ

= 1 + ௏	(௞௏)
଴.ହଵଵ

    ,                                                                                        (1.3) 

and,  ݀௘ = ௘௏
௠௖మ

= 1 + ௥ೌమି	௥೎మ

ଶ௥ೌ
    ,                                                                                        (1.4) 

ܸ is the anode-cathode voltage in Equation (1.3) while ݎ௔and ݎ௖ are the radii of the anode 

and cathode in Equation (1.4). 

If a magnetron is designed properly, then there are values of electric and magnetic field 

which satisfy the Hull Cutoff condition, known as the Buneman-Hartree (B-H) condition 

and specified by Equation (1.5) below [8]. This B-H condition is: 

௘௏
௠௖మ

= ௘	஻೥ఠ೙
௠௖మ௡

௔݀௘ݎ − 1 + ට1− (௥ೌ ఠ೙
௖௡

)ଶ       ,                                                                (1.5) 

where, ߱௡ is the operating frequency in radians per second and ܤ௭ is the applied axial 

magnetic field. 
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When the field from the axial current flow, ܫ௭, becomes significant, which happens for 

large currents od long cathodes,  the Buneman–Hartree condition is modified to Equation 

(1.6) [8] and expressed as follows: 

௘௏
௠௖మ

= ௘	஻೥ఠ೙
௠௖మ௡

௔݀௘ݎ − 1 + ට൫1 + ܾఝଶ ൯[1 − (௥ೌ ఠ೙
௖௡

)ଶ]     ,                                                (1.6) 

where ܾఝ = ூ೥	(௞஺)
଼.ହ

= ln	(௥ೌ
௥೎

)    .                                                                                           (1.7) 

Figure 1-2 depicts the general Hull cutoff and Buneman–Hartree curves. As it has been 

shown in the figure there is a region which satisfies both the Hull cutoff and Buneman–

Hartree conditions and for a particular applied voltage, the magnetron will oscillate only if 

the applied magnetic field is bound between the two curves. 

 

Figure 1-2. General representation of magnetron operation domain (Hull cutoff and Buneman-Hartree 
curves) [8]. 
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1-3 Outline of Thesis 

This thesis describes the results of Particle-In-Cell (PIC) simulations based on the 

MAGIC software tool for A6 magnetron with diffraction output (MDO) with transparent 

cathode. The use of transparent cathodes was recently suggested as a way to reduce the 

start-up time of magnetron devices and thus enable the generation of ultrashort pulses 

microwave pulses. Such short pulses have application in ultrawideband radar systems. 

Furthermore, this thesis research includes simulation studies of a 12-cavity ″Rising-Sun″ 

magnetron with axial diffraction output. In addition, the role of endcaps and variations in 

the length of cathodes for enhanced microwave performance in these devices is probed in 

this study. The thesis is organized as follows. Chapter 1 provides a very brief history of 

magnetrons and an outline of the thesis research work including the salient goals and 

objectives. Chapter 2 discusses the theory of operation and design challenges of the MDO 

and the compact MDO. Chapter 3 presents as a comprehensive overview of the 

computational tools and methods, and the Particle-In-Cell (PIC) approach which have been 

used for simulation in this thesis. In addition, this chapter provides an overview of MAGIC 

simulation tool and describes the geometry of the magnetrons which have been simulated 

in this thesis. Chapter 4 details the results obtained and a discussion along with pertinent 

analysis. Chapter 5 contains the conclusions and a summary of the research findings. 

Recommendations for future work are also summarized in Chapter 5. 
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CHAPTER 2 

LITERATURE REVIEW AND BACKGROUND 

2-1 The Basic A6 Magnetron 

The A6 magnetron with radial output was the first relativistic magnetron invented at 

MIT by Bekefi, Orzechowski and Palevsky in 1970s with the capability of producing 

power in the Megawatt range [8]. 

The anode block of this device consisted of 6 sectorial 20◦ cavities with length L = 7.5 

cm, maximum radius (cavity radius) Rcav = 4.11 cm, minimum radius (anode radius) Ra = 

2.11 cm, and a solid cathode radius Rc of 1.58 cm. This geometry is the most successful, 

and the most studied relativistic magnetron to date. In addition this geometry serves as the 

basic conceptual structure for the magnetron with diffraction output (MDO) which has also 

been simulated in this thesis. Figure 2-1 shows the anode block of A6 magnetron produced 

at the University of New Mexico (UNM).  

 

 
Figure 2-1. Anode block of A6 magnetron built at UNM [2]. 
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Figure 2-2. The different cross sectional view of A6 magnetron. (a) r-θ plane cross section. (b) r-z plane cross 

section at the θ corresponding to center of vane. (c) r-z plane cross section at the θ corresponding to center 

of cavity. 
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Figure 2-2(a) shows the cross section of A6 magnetron in r-θ plane. Figure 2-2(b) and 

Figure 2-2(c) shows the cross section of A6 magnetron in the r-z plane at different θ angles. 

The vane and the cavity are visible in Figures 2-2(b) and 2-2(c), respectively. 

2-2 Magnetrons with Diffraction Output (MDO) 

While the most relativistic magnetrons extract the output power radially from a slot 

located in their cavities, in axial diffraction output magnetrons (also known as magnetrons 

with diffraction output -- MDO), the radiations extracted axially along the vanes of the 

anode block via a horn antenna or multiple waveguides. In a MDO, the vanes of the anode 

block are continued and tapered within inside of a conical horn antenna. The vanes and 

cavities of the MDO are tapered smoothly up to a radius that exceeds the cutoff radius of 

regular cylindrical waveguide. Tapering works to improve impedance matching and allows 

enhanced power transfer. Compared to the relativistic magnetron with radial extraction, 

MDO offers advantages such as compact structure, azimuthal symmetry, and high output 

power. Other benefits of the MDO include a strong resistance to microwave breakdown, 

more compact systems for producing the magnetic fields, and the ability to select any 

eigenmode without mode hopping. 

The first sample of axial diffraction output relativistic magnetron was tested by Mikhail 

Fuks in Russia in the late 1970s. But the efficiency of this original MDO was about 12%-

13% at that time [11]. Figure 2-3 shows this early sample of relativistic magnetron with 

axial output. In addition, Figure 2-4 depicts the schematic diagram of this type of 

magnetron introduced by Fuks. 
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Figure 2-3 Photograph of the early sample of diffraction output relativistic magnetron [3]. 

 

 

Figure 2-4.  Geometry of early Russian MDO. (a) The z-r cross section, (b) the r-߮ cross section obtained at 

the dashed-line position [4]. 
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This type of magnetron was considerably improved in 2007 when Daimon and Jiang at 

the Nagaoka University of Technology in Japan, introduced a new geometry for the MDO 

[4]. Figure 2-5 shows the geometry of this modified version of MDO by this Japanese 

group. The performance of this new geometry was studied for different amount of angle 

for ߮଴ where ߮଴ = 9.5°corresponds to the conventional configuration (Figure 2-4). 

 

 

Figure 2-5.  The Japanese modified configuration. (a) The z-r cross section, (b) the r-߮ cross section obtained 

at the dashed-line position [4]. 

 

Figure 2-6 shows the dependence of output power and efficiency of Japanese modified 

MDO on the value of ߮଴. The results of research showed this type of MDO with output 

power of about 130 MW, 810 MW and 1050 MW, as well as the efficiency about 3%, 23% 

and 37% for ߮଴ equal to 9.5°, 12.5° and 30°, respectively [4]. Thus, the Japanese group 

optimized the geometry of MDO to produce up to 37% efficiency and about Gigawatt 

(GW) of output power. 
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This research was continued by Fuks and Shcamiloglu at the University of New Mexico 

to improve the MDO geometry. Their simulation studies demonstrated the attainment of 

efficiencies up to 70% with over 1GW output power based on simulations that used the 

MAGIC software tool [3]. Figure 2-7 shows the proposed geometry by UNM research 

group. The different values for angles α and ß were tested to obtain the optimized angles 

for having the highest output power and efficiency. Figure 2-8 depicts the dependence of 

output power and efficiency on angles α and ß. The results show the magnetron has the 

best performance at angles 17.5̊ and 32 ̊  for α and ß respectively [3]. These values have 

been considered as the basic assumption for the simulated geometry in this thesis. 

 

 

Figure 2-6. Output power and efficiency of Japanese modified MDO for different values of angle ߮଴ [4]. 
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Figure 2-7 Optimized MDO by University of New Mexico research group [2]. 

 

 

Figure 2-8. Dependence of radiation power P/Pmax (1) and efficiency (2) of UNM MDO on vanes 

angles. (a) angle α  (b) angle ß [3]. 

2-3 Rising-Sun Magnetrons 

In the context of magnetron development, the Rising-Sun configuration was created and 

designed in the 1940s to achieve mode stability [12, 13]. This device geometry consists of 
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two alternating groups of short and long vanes in angular orientation, that helped create 

greater frequency separation between the modes and prevent mode competition. Another 

feature of this configuration is that it enables mechanical frequency tenability [8, 14-16]. 

Since increasing the number of resonators decreases mode separation, conventional 

magnetrons cannot be used with a large number of resonators, and so this is an aspect where 

the Rising-Sun geometry would be particularly useful. Not only does this geometry have 

fabrication advantages over designs employing strapping, [10] its multi-cavity structure 

can support a number of distinct standing-wave modes. Of these, the π-mode is 

nondegenerate with only one field distribution at its excitation frequency, and hence 

preferred for some applications. The device manufacture for the Rising-Sun magnetron 

though could be a bit more complicated.  

Since the invention of the Rising-Sun magnetron in 1940s, the various geometries for 

the Rising-Sun magnetron have been introduced and their performance has been analyzed 

[14, 17-21]. Figure 2-9 depicts the different Rising-Sun geometries which have been 

studied as examples.  
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Figure 2-9. Samples for different Rising-Sun anode block geometry. (a) Hollenberg et al. in 1948 [12], (b) 

Todd et al. in 1988 [14], (c) Lemek et al. in 2000 [18], and (d) Liu et al. in 2014 [21].  

2-4 Using Endcap for Magnetrons 

The use of cathode endcaps has been one of the performance enhancing aspect studied 

both through experiments and simulations [22, 23]. The physics associated with the 

improvement is based on two aspects. First, the metallic endcaps shape the electric fields 

and help define the effective electrical length of the cathode. Without such endcaps, the 

finite size of the magnetron anode block could give rise to competition between different 

axial modes. In addition, by extending the cathode length beyond that of the anode via such 
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endcaps, electron leakage currents can be suppressed [5]. One contributing factor towards 

leakage current suppression is the reduction in the electron swarm width, due to the 

influence of radial electric fields on the particle trajectories along the extended cathode. 

Furthermore, the axial electric fields of the electron space charge that fills the interaction 

space and the azimuthal magnetic field can provide a negative radial drift for electrons that 

may be leaving the interaction space. Furthermore, the endcap protects the output window 

of the MDO from electron bombardment [5]. Figure 2-10 shows the picture of endcap 

tested at the University of New Mexico. 

 

 

Figure 2-10. Photograph of endcap on solid cathode [5]. 

2-5 Magnetron Priming 

Performance improvements in output power, efficiency, and mode purity in relativistic 

magnetrons are the most prominent issues in this research area. Priming is one of the most 

important and effective class of techniques that has been introduced for magnetron 

performance improvement. These techniques include magnetic priming, cathode priming, 
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and electrostatic priming. Priming is a technique whereby electrons are pre-bunched into 

the desired number of rotating electron spokes in a magnetron. For pulsed-power-driven 

magnetrons the driving power is only available to the magnetron for ten to a few hundred 

nanoseconds. So, in order to utilize the energy, the magnetron needs to operate in the 

desired mode as quickly as possible. As the magnetrons are usually slow to start oscillating, 

considerable attention has recently been given to the different methods for achieving rapid 

start up. Basically, the start of RF oscillations is dependent on the azimuthal RF electric 

field,ܧఏ . Researchers have studied different techniques of priming and cathode 

configurations, such as the use of transparent cathodes and specially shaped cathodes, to 

decrease the rise time and achieve better mode control in relativistic magnetrons [24-28]. 

2-5-1 Cathode Priming 

The cathode priming technique uses discrete regions of electron emission periodically 

arranged along the azimuth of a solid cathode surface. Priming of a radiation source always 

involves some external means by which the desired operating mode is preferentially 

excited. Radio frequency priming is another priming method in which a low level external 

signal is injected at the same frequency of the desired operating mode. In the cathode 

priming method, instead of injecting an external RF signal, the cathode is prepared in such 

a manner that its emission geometry favors excitation of the ߨ mode, the usual operating 

mode of the relativistic magnetron [28]. This method (Cathode Priming) is much simpler 

and less expensive than RF priming. 

 For cathode priming of a six-cavity magnetron operating in the ߨ mode, three 

azimuthally periodic emitting regions on the surface of cathode should be made. Therefore, 
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a threefold symmetry in the electron bunches is immediately formed from the very 

beginning. The cathodes are fabricated using projection ablation lithography (PAL) where a 

KrF laser etches desired regions of surface[28]. 

Figure 2-11 shows the three–dimensional (3D) simulation results on this method of 

cathode priming which shows the faster startup in magnetron which cathode priming is 

applied on its cathode. This figure reveals the position of electrons after discrete times of 

7.363 ns and 13.413 ns for a magnetron with and without cathode priming. As it is shown 

in the Figure 2-11(c) and Figure 2-11(d), the primed magnetron is operating in the ߨ mode, 

while the electrons in the magnetron with no cathode priming exhibit the characteristics of 

the ଶగ
ଷ

 mode at 13.413 ns (Figure 2-11 (b)). Therefore, the ଶగ
ଷ

 mode is suppressed during 

startup by cathode priming [28]. 



19 
 

 

 

Figure 2-11. Electron positions without cathode priming for (a) t=7.363 ns and (b) t=13.413 ns. Electron 

positions with cathode priming for (c) t=7.363 ns and (d) t=13.413 ns [28]. 

2-5-2 Magnetic Priming 

Azimuthally varying axial magnetic fields have been utilized to perform “magnetic 

priming” of magnetrons for rapid startup, low noise, and mode control. Azimuthally 

modulated magnetic fields are used for magnetic priming, which lead to modulation of the 

electron sheath over the solid cathode surface. This modulation is amplified when the 
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sheath is moving in the periodic magnetic field. Figure 2- 12 shows the arrangement of 

permanent magnets used for magnetic priming. 

 

 

Figure 2-12. The arrangement of permanent magnets used for magnetic priming. (a) 3-D top view of the 

optimal magnetic priming in a Panasonic magnetron. (b) Side view of the typical axially symmetric, 

azimuthally varying magnetic field for a Toshiba magnetron [26]. 

2-5-3 Transparent Cathode 

The first generation of relativistic magnetrons used a uniform emission cylindrical 

cathode which was called a ″solid cathode″ as shown in Figure 2-13(a). The transparent 

cathode (Figure 2-13(b)) was proposed at University of New Mexico as a means of 

improving the overall performance of A6 relativistic magnetron and decreasing the start 
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time of oscillations. The transparent cathode is a hollow cathode with longitudinal strips of 

material removed in a symmetric angular fashion. As a result, the transparent cathode 

consists of a district number of individual emitters. The term ″transparent″ arises from the 

transparency of the cathode to the azimuthal component of the RF electric fields that are 

used as the operating modes of magnetrons. 

 

 

Figure 2-13. Two different types of cathode produced at UNM. (a) Solid cathode. (b) Transparent cathode 

[2]. 

 

The main difference between solid and transparent cathode which affects their 

performance is the existence of azimuthal electric fields for the case of a transparent 

cathode, while the azimuthal electric fields equal zero along the surface of solid cathodes.  
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The simulations and experimental results show that, in addition to decreasing oscillation 

start time, competition between modes can be eliminated. Furthermore, the range of 

magnetic fields over which the A6 magnetron with a transparent cathode can operate is 

increased over a similar A6 device with solid cathode. 

Figure 2-14 shows the geometry of A6 magnetron with transparent cathode, 

implemented by MAGIC, which is a particle-in-cell simulation software tool.  This tool 

has been extensively used in this thesis research. 

 

 

Figure 2-14. Geometry of A6 magnetron with transparent cathode. (a) r-θ plane cross section of A6 

magnetron with transparent cathode. (b) r-z plane cross section of A6 magnetron with transparent cathode. 
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Overall then, the performance of magnetrons with a transparent cathode is improved by 

self-consistently and simultaneously providing three different priming techniques: cathode 

priming, magnetic priming, and electrostatic priming. 

The cathode strips in a transparent cathode act in much the same manner as the periodic 

electron emitting zones generated for cathode priming which has been discussed earlier. 

Thus the transparent cathodes effectively provide cathode priming in magnetrons. 

Figure 2-15 shows the distribution of electrons at the same time in two magnetron with 

the same conditions and different types of cathode. This simulation results confirm the 

faster build-up of the RF fields in transparent cathode (Figure 2-15(a)) compared with solid 

cathode (Figure 2-15(b)). As evident from the Figure 2-15, the bunching is well formed in 

the case of a magnetron with a transparent cathode (Figure 2-15(a)), while no spatial 

formation is visible with a solid cathode in Figure 2-15(b). 

 

 

Figure 2-15. Electron prebunching in the transparent cathode. (b) Solid ring of electrons around the solid 

cathode [29]. 
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In addition, a transparent cathode also self-consistently provides magnetic priming 

which has been discussed earlier. According to Ampere’s Law, the axial currents along the 

longitudinal cathode strips generate azimuthal magnetic fields around the strips as shown 

in Figure 2-16. The magnitude of generated azimuthal magnetic fields is given by Equation 

(2.1) below: 

ேఏܤ = ఓబூಿ೥
ଶగ௥

   ,                                                                                                                 (2.1) 

where ݎ, is the distance from the strip center, and ܫே௭ is the longitudinal current of the ܰݐℎ 

strip. 

 

 

Figure 2-16. The axial current in the cathode strip and the corresponding azimuthal magnetic field lines [29]. 

 

In addition to all the aforementioned forms of priming provided by transparent cathodes, 

the use of such structures also increases the speed of electron flow towards the anode. In a 

magnetron with transparent cathode, the synchronous azimuthal RF electric field, ܧఏ , is 

distributed as a modified Bessel function of the first kind of order ″n″  [30]. Figure 2-17 

shows dependence of azimuthal electric field,	ܧఏ , on the radial position for transparent and 
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solid cathode. As this figure shows, azimuthal electric field, ܧఏ , goes to zero on the surface 

of solid cathode, while for transparent cathode, azimuthal electric field, ܧఏ , penetrate 

through the cathode strips. Thus, the electron sheath region in a magnetron with transparent 

cathode has higher electric field magnitude as compared to the solid cathode. This fact 

leads to a larger radial velocity of the electrons and a faster rate of oscillation build-up [29, 

30]. 

 

 

Figure 2-17. Dependencies of the azimuthal electric field of the synchronous wave on radius for a transparent 

and solid cathode [29]. 
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CHAPTER 3 

METHOD AND SIMULATION MODEL 

3-1 Introduction on Particle-in-Cell (PIC) 

The origin of Particle-In-Cell (PIC) method used in the simulation of collisionless 

plasmas can be traced to the early work performed by Buneman (1959) and Dawson (1960) 

[6]. In these basic physics models, space charge forces were included via direct solution of 

Coulomb’s law, and charged particle trajectories were computed in periodic systems. In 

the first PIC simulations, the motion of 100-1000 particles and also the interactions 

between them, were included. Nowadays PIC codes can simulate 105-1010 particles. 

However, the PIC scheme was formalized and numerically coded during the 1970s. Classic 

texts were published by Birdsall and Langdon in 1985 and also by Hockney and Eastwood 

in 1981. 

The PIC code simulates the motion of plasma particles and calculates all macro- 

quantities (like density, current density, distribution functions) from the position and 

velocity of these particles. This is a computational method which can be used to simulate 

plasmas, rarefied gases, molecular gas dynamics and other processes marked by a departure 

from the thermal equilibrium. In the PIC method, the gas is represented by a number of 

macroparticles that move in a domain described by a computational mesh. At any time, 

each particle is located within a mesh cell, giving the method its name [31]. The macro-

force acting on the particles is calculated from the field equations. The name ″Particle-in-

Cell″ has originated from the way it assigning macro-quantities to the simulation particles. 

PIC codes usually are classified depending on the dimensionality of the code and on the 
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set of Maxwell’s equations used. The electromagnetic codes solve the entire set of 

Maxwell’s equations, whereas the electrostatic codes solve only the Poisson equation. 

PIC codes have a number of advantages. They represent the lowest codes, i.e., the 

number of assumptions made in the physical model is reduced to a minimum. They can 

simulate high-dimensional cases and complex geometries, while also tackling complicated 

atomic and plasma-surface interactions. But these advantages come at the expense of 

longer simulation time and computational efficiency which should be mentioned as the 

most important disadvantages of this technique [32]. 

The PIC method can be used in many applications. Applications involving fluid 

dynamics, plasma physics, magneto hydrodynamics, and multiphase applications all use 

the PIC method. Also PIC can be used to solve the problems in solid mechanics. 

3-2 PIC Fundamentals 

The general flow of the PIC scheme is shown schematically in Figure 3-1. The 

computational cycle of PIC starts with the charge weighting from the position of particles 

to the grid nodes. Also source terms, ρ and J, for the field equations are accumulated from 

the continuous particle locations to the discrete mesh locations. Then, the Poisson’s and 

Maxwell’s equations are solved on the nodes in order to obtain the electric and magnetic 

fields. The electric and magnetic field values from the grid is weighted back to the particles 

and the force imposed on the particles is calculated. The particles are moved according to 

this force and their acceleration. In the next step, particle boundary conditions such as 

absorption and emission are applied. In addition, the Monte Carlo collision (MCC) scheme 
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is applied, if the model is collisional. The fields are then advanced one time step, and the 

time step loop repeats [7]. 

 

 

Figure 3-1. Particle-In-Cell computational cycle [6]. 

 

In the PIC method, the position and velocity of particles are defined in continuum space 

while the fields are defined at discrete locations in space. However, both fields and particles 

are defined at discrete times. Position and velocity of particle and field values are advanced 

sequentially in time, starting from initial conditions, with the temporal scheme shown in 

Figure 3-2. In this scheme which is called leap-frog scheme, particle positions and 

velocities are offset in time by half a time-step, i.e., ∆௧
ଶ

 . 
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Figure 3-2. Schematic diagram of leap-frog method. 

3-2-1 Interpolation of Particles to Nodes 

Charge density is a scalar measure spatially varying in space. It indicates the number of 

charge units per unit volume. It is computed by distributing charge of all particles onto the 

nodes of computational cells, and then dividing by the corresponding node volume. 

The linear scattering operation is schematically shown in Figure 3-3(a). The charge of 

the simulated particle (the circle in the middle of the cell; gray particle) has been distributed 

amongst the nodes of the cell in which the particle lies (Hence the name for this method, 

particle in cell). The closest node to the particle (yellow node) receives the largest fraction 

of the charge and the smallest amount is contributed to the farthest node (green node).  
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Figure 3-3. (a) Schematic of the scatter operation. (b) Graphical representation of the linear weighting on the 

2-D structured Cartesian grid. 

 

Also, a linear weighting scheme for a PIC in 2-D structured Cartesian grid (݆, ݇) is 

shown in Figure 3-3(b). With the same scenario which has been shown in this figure, for 

three dimensional Cartesian grid, weighting factor is defined as Equation (3.1). 

ݓ = ௜ݔ − ௝ܺ௞௠   ,                                                                                                        (3.1) 

where, ݔ௜  refers to the position of the ݅௧௛ particle, and ௝ܺ௞௠  is the position of the nearest 

lower mesh node. It should be mentioned that, as "݅" is considered for ݅௧௛ particle, "݆, ݇,݉" 

denote the indices of an orthogonal right-handed set of coordinates, instead of "݅, ݆,݇". 

Thus, we can write the relations for linearly interpolating a single particle charge "ݍ௜" 

to the surrounding nodes as follows [6, 7]: 

ܳ௝,௞,௠ = −௜(1ݍ −1)(௞ݓ−1)(௝ݓ  ௠)     ,                                                             (3.2)ݓ

ܳ௝ାଵ,௞,௠ = 1)(௝ݓ)௜ݍ −௞)(1ݓ−  ௠)        ,                                                             (3.3)ݓ

ܳ௝,௞ାଵ,௠ = −௜(1ݍ −1)(௞ݓ)(௝ݓ  ௠)         ,                                                             (3.4)ݓ
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ܳ௝,௞,௠ାଵ = −௜(1ݍ −௝)(1ݓ  (3.5)                                                             ,         (௠ݓ)(௞ݓ

ܳ௝ାଵ,௞ାଵ,௠ = −1)(௞ݓ)(௝ݓ)௜ݍ  ௠)            ,                                                             (3.6)ݓ

ܳ௝ାଵ,௞,௠ାଵ = −1)(௝ݓ)௜ݍ  (3.7)                                                             ,            (௠ݓ)(௞ݓ

ܳ௝,௞ାଵ,௠ାଵ = ௜(1ݍ  (3.8)                                                            ,           (௠ݓ)(௞ݓ)(௝ݓ−

and			ܳ௝ାଵ,௞ାଵ,௠ାଵ =  (3.9)                                                  .               (௠ݓ)(௞ݓ)(௝ݓ)௜ݍ

The charge is accumulated in this fashion for all particles. In this thesis chapter, just the 

linear interpolation has been explained. However, there are different methods for the 

gathering of particles at the nodes, such as, the nearest grid point (NGP), quadratic spline 

(QS) and cubic spline (CS) methods.  Figure 3-4 shows weighting factor versus distance 

of particle from node for linear spline (LS), the quadratic spline (QS) and the cubic spline 

(CS). 

The charge density could be calculated from Equation (3.10) given below as: 

௝,௞,௠ߩ = ொೕ,ೖ,೘

௏ೕ,ೖ,೘
      ,                                                                                                   (3.10) 

where,  ܸ ௝,௞,௠ is the volume of the cell centered on the (݆,݇,݉)௧௛ mesh node, in the classical 

PIC scheme. 

For electromagnetic models, the current is needed for Maxwell’s equations. The current 

can be weighted by an algorithm equivalent to the charge density weighting algorithm. 
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Figure 3-4. Weighting factor versus distance of particle from node for a number of interpolation schemes. 

LS the linear spline, QS the quadratic spline and CS is the cubic spline [6]. 

 

Based on Equations (3.1), (3.11) and (3.12), we can write the two-dimensional charge 

conserving currents generated in the first cell due to the particle motion shown in Figure 

3-5 (Equations (3.13)-(3.16)). 

ݓ∆ = ௧ା∆௧ݓ −  ௧         ,                                                                                         (3.11)ݓ

ഥݓ = ௪೟శ∆೟ା௪೟

ଶ
                 ,                                                                                         (3.12) 

ܫ
ଵ,௫ೕା

∆ೣೕ
మ ,௫ೖ

= ∑ ௤೔
∆௧௜ −ଵ(1ݓ∆  ଶതതതത)          ,                                                                  (3.13)ݓ

ܫ
ଵ,௫ೕା

∆ೣೕ
మ ,௫ೖା∆௫ೖ

= ∑ ௤೔
∆௧௜  ଶതതതത              ,                                                                 (3.14)ݓଵݓ∆

ܫ
ଶ,௫ೕ,௫ೖା

∆ೣೖ
మ

= ∑ ௤೔
∆௧௜ (1−  ଶ          ,                                                                 (3.15)ݓ∆(ଵതതതതݓ
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	and		ܫ
ଶ,௫ೕା∆௫ೕ,௫ೖା

∆ೣೖ
మ

= ∑ ௤೔
∆௧௜                                                              .             ଶݓ∆ଵതതതതݓ

(3.16) 

 

Figure 3-5. Current deposition for a multi-cell particle motion [6]. 

3-2-2 Calculation of Electric (E) and Magnetic (H) Fields 

For electrostatic models, the mesh is defined as shown in Figure 3-6. The source terms 

and potentials are known at grid nodes, with the electric fields often defined on the same 

nodes or along cell edges. 

The electric field is related to the charge density by Gauss’s law as follows: 

∇. E = ஡
க
    ,                                                                                                               (3.17) 

where, ߩ is charge density and ߝ is permittivity of medium. Also, the electric field is related 

to the electric potential by following gradient relationship: 

ܧ = −∇φ      .                                                                                                          (3.18) 
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Figure 3-6. Computational mesh for electrostatic mesh [6]. 

Thus, after substitution of Equation (3.18) in Equation (3.17), the potential is related to 

the charge density by Poisson’s equation as shown in Equation (3.19) below. 

∇.∇φ(ݔ, (ݐ = ିఘ(௫,௧)
ఌ

      .                                                                (3.19) 

By using a center difference in a one dimensional linear homogeneous isotropic 

medium, Equation (3.19) becomes: 

ఝೕశభିଶఝೕାఝೕషభ
∆௫మ

= − ఘೕ
ఌ

 .                                                                                             (3.20) 

For a system fully bounded by conductors, the charge is conserved. Thus: 

∮ .ܧߝ ݀ܵ	
ௌ = ∮ 	ܸ݀ߩ

௏ + ∮ ଴ߪ) + ܵ݀(௃ߪ ≡ 0	
௦  ,                                                             (3.21) 

where ܵ is the surface enclosing the system and ܸ is the volume. Also 0 and ܬ refer to 

boundaries of a system with spatial index 0 ≤ ݆ ≤  The electric field within an ideal .ܬ

conducting material is zero and the surface electric fields in the boundaries are equal to: 

଴ܧ = ఙబ
ఌ

     ,                                                                                                               (3.22) 
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and, ௃ܧ = − ఙ಻
ఌ

   .                                                                                                    (3.23) 

Since a boundary condition is required in order to have a unique solution, which is 

usually a reference potential, for instance ߮଴ = 0, is considered for one of the electrodes. 

For a non-uniform orthogonal Cartesian mesh in two dimensions, Equation (3.19) can 

be rewritten as: 

ఝೕ,ೖశభ

∆௫
ೖశభమ

	∆௫̅ೖ
− ଶఝೕ,ೖ

∆௫
ೖశభమ

	∆௫
ೖషభమ

+ ఝೕ,ೖషభ

∆௫
ೖషభమ

	∆௫̅ೖ
+ ఝೕశభ,ೖ

∆௬
ೕశభమ

	∆௬തೕ
− ଶఝೕ,ೖ

∆௬
ೕశభమ

	∆௬
ೕషభమ

+ ఝೕషభ,ೖ

∆௬
ೕషభమ

	∆௬തೕ
= − ఘೕ,ೖ

ఌ
 ,  (3.24) 

where,  ∆ݔ௞ାభమ
= ௞ାଵݔ −  ௞        ,                                                                                        (3.25)ݔ

and,    ∆̅ݔ௞ =
∆௫

ೖశభమ
ା∆௫

ೖషభమ
ଶ

   .                                                                                                 (3.26) 

3-2-2-1 Maxwell’s Equations 

The differential forms of Maxwell’s equations in an isotropic medium are: 

డ஽
డ௧

= ∇ × ܪ −  (3.27)                                                                                                 ,      ܬ

ப୆
ப୲

= −∇ × E          ,                                                                                                 (3.28) 

∇. B = 0                 ,                                                                                                 (3.29) 

and		∇. D = ρ                ,                                                                                                         (3.30) 

where, "ܦ"  is electric flux density, "ܪ" is the magnetic field intensity, "ܤ" is magnetic flux 

density, "ܧ" electric field intensity, "ܬ" is electric current density and "ߩ" is electric charge 

density. 

Also Equations (3.31)-(3.33) show constitutive relations. 

B = µH    ,                                                                                                               (3.31) 
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D = εE     ,                                                                                                                   (3.32) 

and  ܬ = σE     ,                                                                                                                  (3.33) 

where, µ is the magnetic permeability, ε is the dielectric permittivity and σ is the electric 

conductivity. All of the field parameters are assumed to be functions of position and time, 

while material parameters are functions of position. 

3-2-2-2 Finite-Difference Time Domain (FDTD) Technique 

The nature of Maxwell's differential equations is that the time derivative of the magnetic 

field (H) is dependent on the curl of the electric field (E), and the time derivative of the 

electric field is dependent on the curl of the magnetic field. These interdependent properties 

were the key reason for introducing the Finite-Difference Time Domain (FDTD) technique. 

In this technique, at any point in space, an updated value of an E/H-field in time is 

dependent on the stored value of the E/H-field, and the numerical curl of the local 

distribution of the H/E-field in space [33]. 

The FDTD technique was originally introduced by Yee in 1966 and is based on time 

and spatial discretization of Maxwell’s equations to obtain solutions for the 

electromagnetic field in the time domain [34]. The technique is numerically implemented 

by continuously sampling the electromagnetic field over the wave propagation in the 

medium which is discretized into a grid. This grid is popularly called the Yee lattice, and 

is a numerical three-dimensional space lattice comprised of a multiplicity of Yee cells 

(Figure 3-7). 

Figure 3-7 shows standard Cartesian Yee cell and helps to better understand this 

staggered time and space grid. As it has been shown in the picture by dashed lines, there is 
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ଵ
ଶ
 time step difference between electric field (E) and magnetic field (H). Due to the central 

difference approximation technique in time, magnetic field is present at ݐ = (݊ + ଵ
ଶ
 ,ݐ∆(

where "݊" is an integer and electric field is known at integral multiples of the time step. 

These half time steps are introduced to perform the finite difference computation of electric 

field based on magnetic field and vice versa. 

 

 

Figure 3-7. Standard Cartesian Yee cell used for finite-difference time domain (FDTD) technique. 

Figure 3-7 depicts the positions of various field components. It shows the electric field 

components are in the middle of the edge and the magnetic field components are in the 

center of the surface. 

After calculation of initial conditions with satisfaction of Maxwell’s equations, the 

electric and magnetic fields are then advanced in time using finite-differenced forms of 

Ampere’s law and Faraday’s law, and Equations (3.27) and (3.28). Also, other Maxwell’s 

equations, which were illustrated through Equations (3.29) and (3.30), remain satisfied in 

time. 
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In a rectangular coordinate system, Equation (3.27) is equivalent to the following 

equations: 

డ஽ೣ
డ௧

= డு೥
డ௬

− డு೤
డ௭

−  ௫      ,                                                                                        (3.34)ܬ

డ஽೤
డ௧

= డுೣ
డ௭

− డு೥
డ௫

−  ௬      ,                                                                                        (3.35)ܬ

and,  డ஽೥
డ௧

= డு೤
డ௫

− డுೣ
డ௬

−  ௭  .                                                                                    (3.36)ܬ

In addition, Faraday’s law, i.e., Equation (3.8) can be evaluate in the same fashion and 

yields: 

డ஻ೣ
డ௧

= డா೤
డ௭

− డா೥
డ௬

      ,                                                                                                 (3.37) 

డ஻೤
డ௧

= డா೥
డ௫

− డாೣ
డ௭

      ,                                                                                                 (3.38) 

and, డ஻೥
డ௧

= డாೣ
డ௬

− డா೤
డ௫

      .                                                                                        (3.39) 

The most common implementation of Equations (3.34) - (3.39) in PIC codes uses a 

center difference for the differentials and places the fields on the mesh as shown in Figure 

3-7, called the leapfrog algorithm. As it mentioned, ܧ ,ܦ and ܬ are defined in the middle of 

the edges, while ܤ and ܪ are defined in the center of the surface. 

The center difference form of Ampere’s law, Equations (3.34)-(3.36), on a uniform 

orthogonal mesh become: 
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, ݆, ݇ቁ    .           (3.40) 



39 
 

 

஽೤೟ ቀ௜,௝ା
భ
మ,௞ቁି஽೤೟ష∆೟ቀ௜,௝ା

భ
మ,௞ቁ

∆௧
=

ுೣ
೟ష∆೟ మ⁄ ቀ௜ା,௝ାభమ,௞ାభమቁିுೣ

೟ష∆೟ మ⁄ ቀ௜,௝ାభమ,௞ିభమቁ		

∆௭
       

                    −
ு೥
೟ష∆೟ మ⁄ ቀ௜ାభమ,௝ାభమ,௞ቁିு೥

೟ష∆೟ మ⁄ ቀ௜ିభమ,௝ାభమ,௞ቁ	

∆௫
− ௬ܬ

௧ି∆௧ ଶ⁄ ቀ݅, ݆ + ଵ
ଶ

, ݇ቁ     .          (3.41) 

and, 
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In these equations, spatial and time steps are represented by the lower indices (݅, ݆, ݇) 

and the upper index(ݐ), respectively. Where i, j and k denote the indices of an orthogonal 

right-handed set of coordinates and Figure 3-8 shows the position of the electric and 

magnetic field components in standard a Cartesian Yee cell. 

Similarly, the center-difference form of Faraday’s law, Equations (3.37)-(3.39), on a 

uniform orthogonal mesh become: 
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Figure 3-8. Position of electric and magnetic field components in standard Cartesian Yee cell. 

 

The above equations are solved consecutively and the fields leapfrog forwards in time. 

In a leapfrog algorithm, the new amounts of filed are only dependent upon the previous 

field values. 

Finally, after the computation of the electric and magnetic fields in the nodes, these 

calculated fields are interpolated to the real particles in the cells for calculation of imposed 

force on the particles in the next step. 

3-2-2-3 Advantages and Limitations of the FDTD Method 

Finite Difference Time Domain (FDTD) is a relatively powerful and very popular 

method because of its simplicity. Solving Maxwell’s equations using FDTD is a simple 

iterative procedure and the most prominent advantage of FDTD is that this time-stepping 

scheme avoids the need to solve simultaneous equations, so matrix inversions are not 

necessary. 
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On the other hand, there are several limitations to the numerical implementation of the 

FDTD technique through the above-mentioned difference equations which have been the 

subject of research. Some of these restrictions force limitations on the grid size and time 

step increments which affect the accuracy and stability of this technique. 

One of the most important restrictions is setting the maximum value for the longest side 

of the grid cell which should be much shorter than the shortest wavelength of the wave 

within the cell. A very common restriction assumed in practice is ఒ
ଵ଴

, where ߣ is the shortest 

perceptible wavelength in the excitation signal [35]. 

The second limitation is the time-step restriction required to satisfy the Courant– 

Friedrichs-Levy (CFL) condition. The CFL condition is a necessary condition for stability 

while solving certain partial differential equations numerically by the method of finite 

differences. 

In multiple dimensions, the Courant– Friedrichs-Levy (CFL) stability criterion on the 

time step is given by: 

ଵ
௏೘ೌೣ∆௧

≥ ൬∑ ଵ
∆௫೔

మ
ே
௜ୀଵ ൰

ଵ
ଶൗ

.                                                                                          (3.46) 

where, the index "݅"	sums over the coordinate indices and ∆ݔ௜ denotes the grid spacing in 

the ݅௧௛ coordinate direction. "ܰ"	is the grid dimension " ௠ܸ௔௫"	is the maximum wave 

velocity within the model. 

 In a three dimensional (3D) case, Equation (3.46) will be written in the following form: 

ଵ
௏೘ೌೣ∆௧

≥ ቀ ଵ
∆௫మ

+ ଵ
∆௬మ

+ ଵ
∆௭మ
ቁ
ଵ
ଶൗ .                                                                               (3.47) 

In the case of N-dimensional isotropic cells, Equation (3.46) can be simplified to: 
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√୒

     ,                                                                                                        (3.48) 

where the left hand side of this equation (௏೘ೌೣ∆௧
ఋ

) is called the Courant number. For instance 

in a three dimensional isotropic case, the Courant number should be less than 0.577 

(௏೘ೌೣ∆௧
ఋ

≤ ଵ
√ଷ
≡ 0.577). 

Different cases have demonstrated that using smaller values of ∆ݐ does not necessarily 

improve the results. However, smaller values for the Courant number may sometimes yield 

satisfactory results [35]. 

Another restriction develops from the scale and geometry of the problem especially for 

solving of the problems which consist of very small objects compared with other large 

parts of geometry. As the method uses a uniform grid to model small parts of model along 

with large parts, the geometry imposes challenging limitations, especially in computation 

cost. One way to solve this problem is by using a non-uniform grid, which adds more 

difficulties for satisfying stability conditions such as CFL condition [35]. 

3-2-3 Position and Velocity of Particles 

The plasma or every material which is studied, is described by a number of 

computational particles with position "ݔ" and velocity "ݒ". The position and velocity of 

particles could be calculated based on Lorentz equation and Newton’s second law of 

motion as follow: 

݉ܽ = ܨ = ܧݍ + ݒݍ) ×   (3.49)                                                                              ,       (ܤ

where, ܽ = ௗ௩
ௗ௧

 and  ݒ = ௗ௫
ௗ௧

 .  
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The electric and magnetic fields in Equation (3.49) have been calculated in the previous 

step by FDTD method. After substitution of acceleration "ܽ", in Equation (3.49), the 

equation changes to: 

ௗ௩
ௗ௧

= ௤
௠

ܧ) + ݒ ×  (3.50)                                                                                         .       (ܤ

Based on the leap-frog scheme as shown in Figure 3-9, Equation (3.50) can be rewritten 

as follow: 

೟శ࢜
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×  ௧) .                                                               (3.51)࡮

Also:   ௗ௫
ௗ௧

=  :is written as ݒ

೟࢞೟శ∆೟ି࢞

∆௧
= ௧ା࢜

∆೟
మ  .                                                                                                    (3.52) 

 

Figure 3-9. The leap frog integration scheme [7]. 

The stability of the leapfrog scheme can be shown for particles in simple harmonic 

motion: 

ܽ = ௗమ௫
ௗ௧మ

= −߱଴
ଶ(3.53)                                                                                                   .ݔ 
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With a numerical approximation of second-order derivatives, Equation (3.53) becomes: 

ௗమ௫
ௗ௧మ

=
࢞)
೟శ∆೟ష࢞೟

∆೟ ࢞)ି(
೟ష࢞೟ష∆೟

∆೟ )

∆௧
= ೟ష∆೟࢞೟ା࢞೟శ∆೟ିଶ࢞

∆௧మ
= −߱଴

ଶ(3.54)                                            .ݔ 

Solutions of Equation (3.54) are of the form 

௧࢞ ∝  (3.55)                                                                                             ,      		(ݐ߱݅−)݌ݔ݁

and  ࢞௧ା∆௧ ∝ ݐ)߱݅−)݌ݔ݁ +                                                                              .				((ݐ∆

(3.56) 

Using Euler’s equation (݁௜௫ = ݔݏ݋ܥ +  :the finite difference becomes ,(ݔ݊݅ܵ	݅

sin ቀఠ∆௧
ଶ
ቁ = ∓ ఠబ∆௧

ଶ
    .                                                                                             (3.57) 

So ߱ has an imaginary component for ߱଴∆ݐ > 2 , indicating numerical instability and 

a rapidly growing instability exists for ߱଴∆ݐ > 2 . Therefore, the condition of stability is  

ݐ∆ < ଶ
ఠబ

 . 

3-2-4 Particle Boundary Conditions 

There are two types of boundary conditions, namely emission and absorption. The 

emitting boundary condition, is used primarily at the cathode surface of the device and in 

regions prone to electron emission, such as the collector. Emission from surface of 

materials depends upon different parameters, such as voltage level and temperature, and 

this subject is an active area of research. 

The second particle boundary condition for simulation is a perfectly absorbing 

boundary. This boundary condition is often applied to surfaces that are also perfectly 
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conducting metal boundaries for the field solutions. In this case the particles are eliminated 

when encounter the boundary and weighting the current produced by these particles is 

stopped. Although this condition often happens in practice, but the physical validity of this 

situation is more questionable and often results in difficulties in understanding all the 

current paths in the simulation [6]. 

3-3 Brief Description of MAGIC 

Nowadays, no one can cast any doubts on the importance of modeling and simulation 

in the research and development aspects of engineering. In most projects, it is impossible 

or prohibitively expensive to build a device and then test the response in the real world. As 

a result, before actual manufacture, modeling and simulation of a device, process or system 

becomes a more convenient, practical, and cost-effective route. Furthermore, modeling 

allows the simulated testing under different conditions before actual manufacture. 

The Particle-in-cell (PIC) based MAGIC software tool has been used in this thesis for 

simulating the magnetron. One of the objectives is to use the tool for performance 

predictions which could then lead to the selection of an optimized geometry. This software 

is a well-established commercially available electromagnetic design tool in the plasma, 

microwave, and pulsed power communities. MAGIC is a two- and three-dimensional user-

configurable numerical simulation code that self-consistently solves the full set of time-

dependent Maxwell's equations and the complete Lorentz force equation to provide the 

interaction between space charges and electromagnetic fields [36]. Three-dimensional 

finite-difference time-domain (FDTD) electromagnetic algorithms are combined with 

particle-in-cell (PIC) approaches to provide fast, accurate, time-dependent calculations of 
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the fields and particle motion in phase-space. The use of different computational and 

simulation software like MAGIC is necessary since analytical solutions are not usually 

feasible or even possible for complicated models and geometries. 

The accuracy of the simulation results in MAGIC (which is based on the PIC method) 

is highly dependent on the size and number of the grids or cells. As a general rule, having 

more cells with finer sizes leads to higher accuracy in the results. However, a simulation 

with finer grids takes more time and computational costs. Thus, there is a trade-off between 

accuracy on the one hand, and time and cost. So the size of cells needs to be chosen wisely 

to have acceptable accuracy in the results while attaining a reasonable running time for 

simulations. The default configurations of MAGIC provide an acceptable accuracy in 

reasonable time for the users who does not wish or may not know how to specify some 

aspects of an electromagnetic PIC simulation [37]. One of the most attractive features of 

MAGIC is that it allows adaptive meshing for increasing the cell resolution in the area of 

simulation where the important physics takes place [38]. 

MAGIC is a successful software in solving equations of motion for particles in 

electromagnetic fields because it incorporates the most useful techniques and allows for 

configurations to meet a user’s specific needs with minimum effort. Thus, it has been used 

for simulation and design of various equipment such as microwave amplifiers, sensors, 

lasers, accelerator components, antennas, for beam propagation, pulsed power systems, 

field emitter arrays, and semiconductor devices [37]. 

In the simulations of this thesis with the MAGIC software tool, the magnetron 

interaction space is divided as follow: 0.5 mm for radial grid resolution, 7.5 mm for axial 
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grid resolution, and 5 degree for azimuthal grid resolution. There were almost 300,000 

active particles present during the simulation to start with, and their number can increase 

significantly over time during the course of the simulation due to secondary electron 

emissions. 

MAGIC offers different types of emission processes of charged particles from the 

surfaces of an object. These include: EMISSION EXPLOSIVE, EMISSION 

HIGH_FIELD, EMISSION PHOTOELECTRIC, EMISSION THERMIONIC, and 

EMISSION SECONDARY [39].   

Explosive emission, (MAGIC command: EMISSION EXPLOSSIVE) is the main type 

of emission which has been used in simulation of magnetron in this thesis. Explosive 

emission results from plasma formation on a material surface. 

A simple, qualitative explanation for initiation of the explosive emission is that an 

applied external voltage creates high electric fields (in the 107–108 V/cm range) at cathode 

micro-protrusions or “whiskers”. Electrons are then emitted from the surface by processes 

such as field-emission.  The micro-protrusions subsequently blow up due to the high local 

current density that causes rapid resistive heating, leading to vaporization of the cathode 

material.  Experimental information on possible phase-change at the emitting surface 

during this process has been observed by means of electron microscopy (for example, in 

the context of carbon emitters [40]).  The vapor is easily ionized, creating a "cathode 

plasma" that acts as a rich source of electrons [41]. 

MAGIC largely ignores the physical details of the plasma formation process, relying 

instead on a phenomenological description. However, the particle emission itself is based 
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upon Child’s law of physics, specifically, the normal electric field vanishing at the plasma 

surface. In MAGIC calculations, breakdown can occur only if the normally directed field 

at the half-cell, ܧ௖ , exceeds the specified breakdown (field threshold) which is defined by 

the user. 

Checking of the electric field with the field threshold is performed continuously for 

every surface cell on the emitting object. The “break down” occurs at a cell which the field 

exceeds the field threshold. It should be noted that in MAGIC, a single, non-emitting cell 

between two emitting cells is also allowed to break down, even if the threshold is not 

exceeded. The time of breakdown, ݐ௕, is recorded for each cell that breaks down. 

Subsequently, every cell has its own history and is treated independently [39]. 

The resulting plasma surface is counted as a metal with zero work function. Thus, both 

ions and electrons can be emitted under the effect of local field. The creation of the macro 

particle based on Gauss’s law is allowed using the phenomenological algorithm until the 

field of surface reduced to some specified residual value [37]. It can be represented as 

follows: 

ௗ௤
ௗ஺

= ݐ)଴݂ߝ − ௖ܧ)(଴ݐ − (௥ܧ −  (3.58)                                                                             ,ݔ݀	ߩ

where, ݂ is the plasma formation rate which depends on ݐ௕, ρ is the existing charge density 

at the surface, and ܧ௥ is the residual field. Restrictions may be imposed to limit the charge 

of minimum macro particles and maximum current density. 
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In field emission, (MAGIC command: EMISSION HIGH_FIELD), the electric field 

supplies the required energy for overcoming the work function. The current density is given 

by the Fowler-Nordheim equation as follows: 

ௗమ௤
ௗ஺	ௗ௧

= ஺ாೞమ

∅	௧(௬)మ
exp	(ି஻	௩(௬)	∅య మ⁄

ாೞ
) ,                                                                                                 (3.59) 

where ܣ	and ܤ	are the Fowler-Nordheim constants. The work function, ∅, and the other 

functions in the equation may be either a constant or a function of tome and spatial 

functions [39]. 

In thermionic emission, thermal (MAGIC command: EMISSION THERMIONIC), 

thermal energy is required to overcome the work function. In this condition, the current 

density is given as Equation (3.60). 

ௗమ௤
ௗ஺	ௗ௧

= ∅ି)	ܶଶexp	଴ܣ
௄்

) ,                                                                                                 (3.60) 

where, ݇	is the Boltzmann constant and ܣ଴	is the Dushman parameter (= 1.24 ×

10଺ ஺
௠మ௄௘௟௩௜௡మ

). The work function, ∅, may be either a constant or a function of time and 

spatial coordinates [39]. 

For secondary electron emission, (MAGIC command: EMISSION SECONDARY), 

which has been probed in simulations of this thesis, the incidents electrons provides the 

required energy for overcoming the potential barrier of the function. 
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3-4 Simulation Model 

In order to analyze the effects of endcaps, length of cathode, and location of the cathode 

with respect to the anode, the A6 MDO geometry of UNM [3] has been chosen as the basic 

geometry (Figure 2-7) for the present analysis. As was mentioned in Chapter 2, this 

geometry is the modified design of the well-known A6 magnetron invented by the MIT 

group [1] with details as explained in Section 2-1. 

In order to evaluate the role of endcap on output power, efficiency and leakage current 

of the A6 MDO magnetron, two types of endcap were designed for magnetron: (a) one 

comprehensive bulbous shaped endcap, and (b) six individual endcaps. 

Different views of A6 MDO magnetron with one bulb-shape endcap and with six 

individual endcaps, designed by MAGIC 3D, are shown in Figure 3-10 and Figure 3-11, 

respectively. 
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Figure 3-10. A6 MDO magnetron with bulb shape endcap. (a) Cross sectional view in the r-φ plane. (b) Three 

dimensional view, (c) Cross sectional view in the r-z plane. 
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Figure 3-11. A6 MDO magnetron with six individual endcaps. (a) Cross sectional view in the r-φ plane. (b) 

Three dimensional view, (c) Cross sectional view in the r-z plane. 

In addition, in order to evaluate and find the optimized geometry and operation 

conditions of a Rising-Sun magnetron with axial output, again the well-known A6 

magnetron [1] was chosen as the basic configuration to start building with, though 

appropriate changes relating to the anode block and cathodes were implemented for the 

Rising-Sun geometry.  The anode block consisted of 12 sectorial 20◦ cavities with length L 

= 7.5 cm, maximum radius Rcav = 4.11 cm, and minimum radius Ra = 2.11 cm [3, 42-44]. 

Two different structures were used for the short vanes of the Rising-Sun magnetron.  As 

shown in Figure 3-12, for the first geometry, the outer radii of vanes were fixed and the 
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slope of vanes (ߚ) was changed.  In the second geometry (Figure. 3-13), the radius of the 

vanes (Rs) was changed while the distances to the point of the vane endings were fixed at 

204.6 mm for all six vanes.  Thus, both models had the basic tapered structure that has been 

proposed and studied previously [45].  This differs slightly from the configuration used in 

a very recent report on 12-cavity relativistic magnetrons [46], wherein the tapered cavity 

was replaced by a single-stepped cavity.  However, the single-stepped design does have 

some drawbacks, and so was not considered in this thesis.  For example, one cannot have 

mode conversion as readily as with a tapered MDO.  In addition, one would require larger 

diameter Helmholtz coils for the single-stepped cavity in order to provide the uniform 

magnetic field in the interaction space. 
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Figure 3-12. Rising-Sun magnetron with the anode block geometry chosen as the first configuration for 

quantitative performance evaluation with variable angle for short vanes (angle ߚ). (a) Cross sectional view 

in the r-φ plane. (b) Three dimensional view for ߚ equal to 15 degrees. (c) Cross sectional view of the long 

vanes in the r-z plane. (d) Cross sectional view of the short vanes in the r-z plane [47]. 

 

The transparent cathode structure for the simulations was modeled as consisting of 12 

discrete longitudinal emitters evenly placed at 8 millimeter from the center (Rc = 8 mm) 

with 2 mm and a 10-degree thickness. 

For the MDO, the coaxial antenna for extracting the generated microwave power was 

modeled to consist of an antenna feed and head without a dielectric vacuum window to 
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maintain vacuum inside the magnetron.  The model here included an input port at the lowest 

z-position for providing dc power to the magnetron, and an output port at the highest z-

position for absorbing the microwave power incident on it.  

 

 

Figure 3-13. The second anode block geometry chosen for the Rising-Sun magnetron simulations with 

variable outer radius for short vanes (ܴ௦). (a) Cross sectional view in the r-φ plane. (b) Three dimensional 

view for ܴ௦ 	 equal to 75 mm. (c) Cross sectional view of the long vanes in the r-z plane. (d) Cross sectional 

view of the short vanes in the r-z plane [47]. 
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In addition, two different shapes of the endcap were used in the simulations of Rising-

Sun magnetron: a bulb shape and cylindrical shape. The radius of endcap for both cases 

was taken to be 25 mm with the thickness of the cylindrical endcap set at 15 mm.  The 

geometry for these two comprehensive endcaps used is shown in Figure 3-14. 

 

 

Figure 3-14. Geometry used for Rising-Sun MDO structures with different endcap geometries. (a) Three 

dimensional view with Bulb shape endcap, (b) Cross sectional view in the r-z plane with Bulb shape endcap, 

(c) Three dimensional view with cylindrical endcap, (b) Cross sectional view in the r-z plane with cylindrical 

endcap [47]. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

For the PIC simulations, 50-ns voltage pulses of magnitude 400 kV with a 4-ns rise-

time were applied. Integrating the angular electric field across each cavity yielded the 

radiofrequency (RF) voltages. The frequency was obtained through a Fourier transform of 

an RF-voltage over a time interval in the steady state domain.  The simulation time step, 

on which the time-integration scheme is based, is automatically chosen to meet the 

Courant-Friedrichs-Lewy [48] stability condition of: δt < δx/(c√2), where δx is the smallest 

cell size and c is the speed of light. 

4-1 Simulation Results and Discussion 

4-1-1 A6 MDO Magnetron 

The role of the cathode length and its extension beyond the anode dimensions was 

initially probed.  The length of the anode block L was 7.2 cm, and different cases were 

simulated for cathode lengths of L,  L+2dz, L+4dz, where dz = 7.5 mm.  PIC simulation 

results for the A6 MDO without any endcap for these three different lengths of the cathode 

are shown in Figure 4-1. The output power, device efficiency and leakage current were 

obtained as a function of the applied magnetic field. In all cases, the maximum efficiency 

occurs at a B-value of about 0.42T and is roughly 43%. As shown in Figure 4-1(a), the 

leakage current is predicted to fall monotonically from about 2.65 kA to 1.8 kA in going 

from 0.3T to 0.44 T in 7.5 cm cathode length. 
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Figure 4-1. PIC simulation results for the A6 MDO without any endcap. The output power, device efficiency 

and leakage current are shown as a function of the applied magnetic field for different cathode lengths: (a) 

Cathode length 7.5 cm (L), (b) cathode length 9 cm (L +2dz=7.5+1.5 cm), and (c) cathode length 10.5 cm 

(L +4dz=7.5+3 cm). 
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In regards to the increase in cathode length, a comparison of Figure 4-1(a) and Figure 

4-1(c) shows a slight decrease in leakage currents from about 1.8 kA down to 1.55 kA at 

the 0.44 T field.  The maximum output power is predicted to about 1 GW at the highest 

0.44 T field in both cases. 

Next, PIC simulations for the MDO with one comprehensive endcap encompassing all 

six cathodes were carried out for four different lengths of the cathode. The geometry for 

the comprehensive endcap is shown in Figure 3-10. Once again, the output power, device 

efficiency and leakage currents were obtained as a function of the applied magnetic field 

for cathode lengths of L-2dz, L, L+2dz, and L+4 dz, as shown in Figure 4-2. 

The increases in efficiency as compared to the previous results of Figure 4-1 are quite 

significant. For instance comparing Figure 4-1(c) with Figure 4-2(b) for a cathode length 

L+4dz, shows the efficiency to increase from about 43% at a 0.42 T field without an 

endcap, to 62% at the same 0.42T field with an endcap. Figure 4-2(b) shows the efficiency 

values for a slightly longer cathode with an endcap is again slightly large. It is thus apparent 

that though a shorter cathode length is detrimental to the performance, the endcap plays a 

stronger role. Even more important and significant is the sharp drop-off in leakage current 

with the presence of an endcap. The leakage current is close to zero in Figure 4-2(c) at the 

higher magnetic fields of 0.42 T, as compared to 1.8 kA in Figure 4-1. 
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Figure 4-2. PIC simulation results for the A6 MDO with one comprehensive endcap for different length of 

cathodes. (a) The output power, as a function of the applied magnetic field. (b) Efficiency, as a function of 

the applied magnetic field, and (c) Leakage current, as a function of the applied magnetic field. 
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Finally, the output power is also predicted to increase with the use of endcaps for all 

four cathode lengths as shown in Figure 4-2(a).  At the magnetic fields of 0.4T, the output 

power is predicted to be on the order of 1.5 GW.  Based on Figure 4-2, one would select 

operating magnetic fields in the 0.4-0.44 range with the endcap and a cathode that extends 

beyond the anode dimension for superior performance. 

In addition, MAGIC-based simulations were also carried out for the same MDO 

structure, but with six individual endcaps for the six electrodes.  The geometry for this 

configuration is shown in Figure 3-11. Results of MAGIC simulation for the MDO with 

the six individual endcaps are shown once again as a function of the applied magnetic field 

in Figure 4-3.  These plots show the output power, device efficiency and leakage current 

for cathode lengths of L-2dz, L, L+2dz, and L+4 dz. The results are somewhat similar to 

the plots of Figure 4-2 obtained for a single endcap. 

As Figures 4-3(a) and 4-3(c) shows the peak output power at the highest B-fields of 

0.44T is predicted to be somewhat lower at about 1.08 GW, though the leakage currents at 

the same fields are close to zero for cathode length 9 cm and 10.5 cm.  The efficiencies 

continue to be quite high, and are just over 62%. The results show although the B-field 

0.44T gives the highest efficiency but the output power at 0.44T dropped to about 1 GW 

from 1.4 GW at B-field around 0.4T. Thus, for this 6-endcap configuration, the results 

suggest an optimum operating range for the B-field around 0.4T. Therefore, based on the 

results of Figures 4-2 and 4-3, the best choice taking account of the highest efficiency, 

output power, and lowest leakage current, would appear to be an extended cathode with 

length L + 2 dz and an operating B-field of 0.4 T. 
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Figure 4-3. PIC simulation results for the A6 MDO with six individual endcaps for different length of 

cathodes. (a) The output power, as a function of the applied magnetic field. (b) Efficiency, as a function of 

the applied magnetic field, and (c) Leakage current, as a function of the applied magnetic field. 
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Based on these parameters for having the optimized geometry and magnetic field, 

further simulation work was carried out to probe the potential location and thus angular 

offset between the transparent cathodes relative to the six-anode structure. Figure 4-4 

shows the angle between x-axis and the first cathode which has been changed from zero to 

60 degree for analyzing the effect of location of cathodes with respect to anode block. 

 

 
Figure 4-4. Angle between x-axis and first cathode (alpha). 

 

Both the output power and leakage currents are shown as a function of “α” in Figure 4-

5. As this figure shows the magnetron has the lowest leakage current magnitude and highest 

output power at α~55 degree. Thus, the optimized value of the output power is predicted 

to be about 1.47 GW for the 400 kV, 4 ns rise-time voltage.  The leakage current is small 

at about 25 Amperes and the overall efficiency of this MDO with a cathode extension of 3 

cm was obtained at about 66 %. 
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Figure 4-5.  Simulation results for the output power and leakage current as a function of angular location of 

the cathode with respect to the anode block.  One comprehensive endcap and an extended cathode of length 

L+2dz was used with a fixed B-field of 0.4 T. 

4-1-2 Rising-Sun Magnetron 

Finding the optimized geometry for anode block of Rising-Sun magnetron was the first 

step in the overall process of conducting numerical simulations on Rising-Sun geometry.  

The cut-away views of the Rising-Sun geometry are shown in Figures 3-12 and 3-13. The 

anode is a Rising-Sun block comprised of six long and six short vanes.  In the first 

geometric configuration for the anode block, the slope of the short vanes (angle ߚ in Figure 

3-12(d)) was changed from 5 degree to 60 degree in 5 degree increments, while the angle 

of other six vanes (angle θ in Figure 3-12(c)) was kept fixed at 32 degrees.  This fixed value 

represents an optimized angle as obtained in previous simulations [3, 42].  In the second 

anode block geometry shown in Figure 3-13, ܴ௦	was changed from 55 mm to 100 mm in 

5mm steps, while Zs was kept fixed at 204.6 mm for all six short vanes.  It should be noted 

that the outer radius for the six long vanes was 105 mm at a constant angle of θ=32 degrees.  

Three dimensional views of these two geometries (Figures 3-12(b) and 3-13(b)) give a 
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better perception of the geometries.  Particle-in-cell simulation results for the 12 cavities, 

12 cathodes Rising-Sun MDO without any endcap for these two different geometries of 

the anode block are shown in Figures 4-6 and 4-7. The simulations were carried out at two 

different applied magnetic fields of 0.42 T and 0.48 T.  The output power, device efficiency 

and leakage current were obtained for different values of 	ߚ as shown in Figures 4-6(a) and 

4-6(b), and for various ܴ௦ values as in Figures 4-7(a) and 4-7(b). 

 

 

Figure 4-6. PIC simulation results for the 12-Cavity Rising-Sun Magnetron.  The output power, device 

efficiency and leakage current are shown as a function of short vanes angle (ߚ).  Applied magnetic fields of:  

(a) B = 0.42 T, and (b) B = 0.48 T were used [47]. 
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Figures 4-6(a) and 4-6(b) show the output power, device efficiency and leakage current 

for different angles of the short vanes for applied magnetic fields of 0.42 T and 0.48 T, 

respectively.  Figures 4-7(a) and 4-7(b) show the output power, device efficiency and 

leakage current for different values of Rs (corresponding to the anode geometry of Figure 

3-13) for same two values of the applied magnetic fields.  Comparing Figures 4-6 with 

Figures 4-7 shows that the first geometry (i.e., changing angle ߚ) appears to have a better 

performance as compared to changing Rs within the second geometry. 

The magnetron with the geometry of Figure 3-12 is predicted to work at an efficiency 

of about 57% at 0.42 T, and an efficiency of about 59% at 0.48 T.  On the other hand, the 

second geometry (Figure 3-13) at best is predicted to work at efficiencies of about 50% 

and 54% for magnetic fields of 0.42 T and 0.48 T, respectively. 

In addition, the output power in the first geometry is higher than that of the second 

geometry.  For example, the first structure has a maximum output power of about 2.1 GW 

at 0.42 T and 1.45 GW at 0.48 T, while the second geometry has maximum output powers 

of about 1.7 GW and 1.2 GW at 0.42 T and 0.48 T, respectively.  Clearly then, the geometry 

of Figure 3-12 is preferable from the standpoint of better performance and was therefore 

chosen for further analysis. 
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Figure 4-7. PIC simulation results for the 12-Cavity Rising-Sun magnetron. The output power, device 

efficiency and leakage current are shown as a function of the parameter Rs.  As with figure 3-13, applied 

magnetic fields of:  (a) B = 0.42 T, and  (b) B = 0.48 T were used [47]. 

 

After choosing the geometry for the Rising-Sun MDO, a selection for the best slope 

(angle ߚ) was made based on the simulation results already obtained.  Simulation data of 

Figure 4-6 suggest an optimum operating range for ߚ	 between 40 and 50 degrees from the 

standpoint of efficiency and output power.  In this range of angles, a 57% efficiency and a 

2.1 GW output power, as well as a 59% efficiency and a 1.4GW output power were 

obtained at magnetic fields of 0.42 T and 0.48 T, respectively. Therefore, ߚ	45 =  degrees 
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was chosen as the optimized angle for the short vanes of the Rising-Sun MDO, with a 

56.4% efficiency and 2.13 GW output power at 0.42 T, and a 59.1% efficiency with a 1.47 

GW output power for the 0.48 T field.  It may be noted that at this chosen angle, the device 

has relatively low leakage current compared to the other angles at both simulated magnetic 

field values. 

Next, PIC simulations for the Rising-Sun MDO with one comprehensive endcap 

encompassing all twelve cathodes were carried out for different values of the applied 

magnetic field.  Two different shapes of the endcap were used in the simulations: a bulb 

shape and cylindrical shape. The geometry for these two comprehensive endcaps used is 

shown in Figure 3-14. It should be mentioned that these two types of endcaps were added 

to optimized geometry (including the ߚ	45 =  degrees angle) obtained in the previous steps. 

The output power, device efficiency and leakage currents were obtained once again with 

the endcaps as a function of the applied magnetic field.  Figure 4-8 shows the results.  The 

increase in efficiency in Figure 4-8 is quite significant as compared to the previous results 

of Figure 4-6. For instance, comparing the results of Figure 4-6 for a ߚ value of 45-degree 

with Figure 4-8 at a 0.42 T magnetic field, shows the efficiency increasing from about 56% 

without an endcap, to about 65% and 66% with a bulb shaped and cylindrical endcap, 

respectively. The results at a different magnetic field of 0.48 T also verified this rising trend 

in efficiency.  At 0.48 T, the efficiency is predicted to increase from 59% for an MDO 

without an endcap, to about 69% with either a bulb shaped or cylindrical endcaps. 
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Figure 4-8.  PIC simulation results for the 12-Cavity Rising-Sun magnetron with endcap.  The output power, 

device efficiency and leakage current are shown as a function of the applied magnetic field for: (a) a bulb 

shape endcap, and (b) a cylindrical endcap [47]. 

 

In addition to efficiency increases, the sharp drop-off in leakage current with the 

presence of an endcap is another important benefit of adding endcaps.  Figure 4-9 compares 

the leakage current for three different conditions: without any endcap, with a bulb-shaped 

cap, and with a cylindrical cap. This figure shows that the leakage current to have decreased 

significantly upon adding endcaps for the cathodes.  Specifically, the leakage current 

values dropped from about 1.5 kA to less than 200 A for magnetic field higher than 0.4T.  

Besides, the values were quite close to zero at operating magnetic fields in the 0.41 T to 

0.43 T range.  Therefore, based on the simulation results of Figures 4-8 and 4-9, one might 
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select the cylindrical endcap at an operating magnetic field 0.43 T as the optimized 

geometry and operating condition for enhanced efficiency and output power, coupled with 

low leakage currents. 

 

 

Figure 4-9. Leakage current of 12-Cavity Rising-Sun Magnetron for three different cathode structures. These 

structures were without any endcap, with a bulb-shaped cap, and with a cylindrical endcap [47]. 

 

The role of the cathode length and its extension beyond the anode dimensions was 

probed next.  The length of the anode block L was 7.2 centimeters, and different cases were 

simulated for cathode lengths ranging in the interval: 12 cm < L < 19.5 cm.  The simulations 

were carried out at incremental steps dz of 7.5 mm.  PIC simulation results for the 12-

Cavity Rising-Sun MDO with a cylindrical endcap for different lengths of the cathode are 

shown in Figure 4-10.  The magnetic field was taken to be 0.43 T.  The output power, 

device efficiency and leakage current were obtained as a function of cathode length.  From 

the standpoint of high efficiency and output power, coupled with low leakage currents, a 
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cathode length of L+5dz appears to be a good optimal choice based on the simulation 

results of Figure 4-10. 

 

 

Figure 4-10. PIC simulation results for the 12-Cavity Rising-Sun MDO with a cylindrical endcap for different 

lengths of the cathode at an applied magnetic field 0.43 T.  The output power, device efficiency and leakage 

current are shown as a function of cathode length [47]. 

 

 

Figure 4-11. Simulation results for the 12-Cavity Rising-Sun Magnetron with cylindrical endcap for different 

lengths of the cathode at magnetic field 0.45T.  The output power, device efficiency and leakage current are 

shown as a function of cathode length [47].  
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PIC simulations were also carried out for different cathode lengths at a slightly higher 

magnetic field of 0.45 T with the cylindrical endcap.  This second set of simulations at a 

slightly higher magnetic field of 0.45 T were carried out based on the results already 

obtained in Figure 4-8. Though the device output power was slightly lower (2.15 GW at 

the 0.45 T magnetic field), but a slightly higher 68% efficiency was predicted at this 

magnetic field.  The PIC simulation results as a function of cathode length at 0.45 T are 

given Figure 4-11.  The results of Figure 4-11 are somewhat similar to the curves at 0.43T 

in Figure 4-10.  The results show the efficiency to have been raised slightly with increasing 

cathode length.  It is seen to slightly surpass 70% efficiency for the interval: 17.25cm < L 

< 18.75cm at 0.45 T.  Thus, taking into consideration both figures 4-10 and 4-11, the best 

choice in terms of the highest efficiency and output power, with the lowest leakage current 

would appear to be an extended cathode with a length of 18 cm (=L+6dz)  and an operating 

magnetic-field of 0.43 T or 0.45 T.  At 0.43 T, the device operates with a 68% efficiency 

and 2.35 GW output power, while the MDO works at a 70.5% efficiency and 2.14 GW 

output power at 0.45 T.  It may additionally be mentioned that the leakage current in both 

these cases is at about 150 A which is significantly lower than without any endcaps.  In the 

former case, leakage currents as high as 1.5 kA were calculated. 

Furthermore, Figures 4-12 and 4-13 depict the MAGIC-based PIC simulation results for 

the temporal evolution of various quantities of interest within the 12-Cavity Rising-Sun 

magnetron.  A cylindrical endcap and 18 cm cathodes (=L+6dz) at a 0.45 T applied 

magnetic field was used.  The efficiency is seen to reach 70% within about 20 ns.  The 

output power is predicted to be about 2.36 GW with a current of ~8.4 kA.   
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Figure 4-12.  MAGIC-based simulation results for the 12-Cavity Rising-Sun Magnetron with a cylindrical 

endcap and 18cm cathodes (L+6dz) at a 0.45 T magnetic field.  The figures show:  (a) Output power, and (b) 

Efficiency [47]. 

 

Moreover, snapshots of the electron distributions within the cross sectional structure of 

the magnetron without and with a cylindrical endcap at three different time instants of 4.99 

ns, 20.038 ns, and 39.442 ns for a 0.45T magnetic field are shown in Figures 4-14 and 4-

15 respectively. Comparison of the figures, with and without an endcap, demonstrates the 

role of the endcap in suppressing electrons leakage current and contributing to higher 

efficiency. For instance, Figures 4-14(d) till 4-14(f) and Figures 4-15(g) till 4-15(i) 

represent snapshots at exactly the same position and time of MDO with and without 

endcap, respectively.  
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Figure 4-13.  MAGIC-based simulation results for the 12-Cavity Rising-Sun Magnetron with a cylindrical 

endcap and 18cm cathodes (L+6dz) at a 0.45 T magnetic field. (a) Total current, and  (b) Anode current [47]. 

 

Figure 4-14.  Snapshots at 4.99 ns, 20.038 ns, and 39.442 ns showing the evolution of the electron swarm 

and formation of spokes in the 12-Cavity 12-cathode Rising-Sun Magnetron without endcap at 0.45 T 

magnetic field and 400kV applied voltage.  The various figure are the r-z plane cross sectional view of 

magnetron without any endcap at: (a) 4.99 ns, (b) 20.038 ns, and (c) 39.442 ns.  The r-φ plane cross sectional 

view of the MDO at z=17.04cm, at: (d) 4.99 ns, (e) 20.038 ns, and (f) 39.442 ns [47]. 
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Most of the electron flux is blocked by the endcap and is predicted not to reach the vanes 

and output window.  It should be noted that Figures 4-15(g), 4-15(h), and 4-15(i) are 

cathodes with endcap, but this intersection (at z = 17.04cm) is below the endcap, and hence 

the endcap cannot be seen in the figure. 

 

 

Figure 4-15. Snapshots at 4.99 ns, 20.038 ns, and 39.442 ns showing the evolution of the electron swarm and 

formation of spokes in the 12-Cavity 12-cathode Rising-Sun Magnetron with a cylindrical endcap at 0.45 T 

magnetic field and 400kV applied voltage.  The various figures are the MDO cross sectional view in the r-z 

plane at: (a) 4.99 ns, (b) 20.038 ns, and (c) 39.442 ns.  Cross-sectional snapshots in the r-φ plane of magnetron 

at z = 20.08cm at: (d) 4.99 ns, (e) 20.038 ns, and (f) 39.442 ns.  Finally, snapshots in the r-φ plane of the 

magnetron at z = 17.04cm, at: (g) 4.99 ns, (h) 20.038 ns, and (i) 39.442 ns, respectively [47]. 
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Figure 4-16. Output voltage spectra for the 12-Cavity Rising-Sun Magnetron at an applied magnetic field 

0.45 T for various cases. (a)Without endcap and 13.5 cm cathodes, (b) with a cylindrical endcap and 13.5 cm 

cathodes, and (c) with a cylindrical endcap and 18 cm (= L+6dz) cathodes [47]. 

 

For completeness, results for the frequency of the magnetron operation are briefly 

discussed. Figure 4-16 shows the output voltage spectrum for the 12-Cavity Rising-Sun 

Magnetron at an applied magnetic field 0.45 T, with and without the use of endcaps. 

Different cathode lengths were simulated, and the results shown correspond to 13.5 cm 

long (Figures 4-16(a) and 4-16(b)), and 18 cm long (Figure 4-16(c)) cathodes. In all cases, 
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a frequency of about 2.66 GHz was obtained despite the variation in cathode length and 

structure. Thus, based on the results obtained the system appears quite stable. 

Finally, for completeness, the effect of Secondary Electron Emission (SEE) on 

performance of 12-cavity Rising-Sun magnetron has been probed. The optimized geometry 

for 12-cavity Rising-Sun magnetron was used for consideration role of SEE. The best 

length of cathodes in terms of the highest efficiency and the output power, with the lowest 

leakage current found in previous sections was 18 cm. In addition, the cylindrical endcap 

encompassing all twelve cathodes was considered for 12 cavity Rising-Sun magnetron. It 

worth mentioning that the simulation results show that the Rising-Sun geometry with 15◦ 

degree cavities has a slightly better performance in terms of output power and efficiency 

over the 20◦ degree cavities. Thus, 15◦ degree cavities were chosen in the present 

simulation for evaluation the role of secondary emission. For the PIC simulations, 40-ns 

voltage pulses of magnitude 400 kV with a 4-ns rise-time were applied. 

 

 
Fig 4-17. PIC simulation results for 12- cavity Rising-Sun magnetron with cylindrical end cap and cathode 

length 18 cm. The output power and device efficiency are shown as a function of the applied magnetic field 

with and without the inclusion of SEE. 
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The output power and efficiency for different applied axial magnetic field strengths with 

and without the inclusion of SEE from the anode and cathode, are shown in Figure 4- 17.  

In addition, Figure 4-18 shows the leakage current of magnetron as a function of applied 

magnetic field with and without the inclusion of SEE. Both Figures 4-17 and 4-18 show 

the secondary electron emission does not have the considerable effect on output of 

magnetron. 

 

Fig 4-18.  PIC simulation results for 12-cavity Rising-Sun magnetron with cylindrical end cap and cathode 

length 18 cm. The leakage current is shown as a function of the applied magnetic field with and without the 

inclusion of SEE. 

 

Furthermore, Figure 4-19 depicts the output power as a function of time for applied 

magnetic fields of 0.45T and 0.47T with and without SEE from the anode and cathode. As 

Figures 4-19 shows, there is not considerable change in output power; although the 

decrease of output power with secondary electron emission at the 0.45 T magnetic field 

(Figure 4-19(a)) is more visible between the 10 ns to 25 ns interval.  
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Fig 4-19. MAGIC-based simulation results for the time dependent output power obtained for the 12-Cavity 

Rising-Sun Magnetron with a cylindrical endcap and 18 cm cathodes for different applied magnetic fields 

with and without SEE: (a) 0.45 T magnetic field, and (b) 0.47 T magnetic field. 
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In addition, Figure 4-20 shows the efficiency as a function of time for applied magnetic 

fields of 0.45T and 0.47T with and without SEE. As with the plots for output power, there 

are no appreciable changes in efficiency in Figure 4-20. Again, as with the results for output 

power, the slightly decrease of efficiency in the case of including secondary emission at 

0.45 T magnetic field (Figure 4-20(a)) is visible between the 8ns to 25 ns interval. 

Overall, as is apparent from the recent figures, there is negligible difference between 

the curves including SEE and without SEE because of the weak effect of Secondary 

Electron Emission (SEE). Thus, the role of secondary emission was not found to be very 

strong for the 12-cavity Rising-Sun magnetron though it did lead to some (a few percent) 

lowering of the device efficiency. 
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Fig 4-20. MAGIC-based simulation results for the time dependent efficiency obtained for the 12-Cavity 

Rising-Sun Magnetron with a cylindrical endcap and 18 cm cathodes for different applied magnetic fields 

with and without SEE: (a) 0.45 T magnetic field, and (b) 0.47 T magnetic field.  
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CHAPTER 5 

CONCLUSIONS AND SCOPE FOR FUTURE WORK 

5-1 Summarizing Conclusions 

The A6 magnetron with radial output and uniform emission cylindrical cathode (i.e., 

″solid cathode″), was the first relativistic magnetron invented at MIT in 1970s with the 

capability of producing power in the Megawatt range. The starting time and build-up of 

microwave oscillations in magnetrons with solid cathode is very slow. Thus, the 

″transparent cathode″ was proposed as a mean of improving the overall performance of A6 

relativistic magnetron and decreasing the start time of oscillations, which can lead to short 

pulses for ultrawideband applications. The transparent cathode is a hollow cathode with 

longitudinal strips of material removed in a symmetric angular fashion. As a result, the 

transparent cathode consists of a district number of individual emitters. The strong 

azimuthal RF electric field in transparent cathodes, as compared to zero amount in solid 

cathode, quickly captures pre-bunched electrons into the rotating spokes. This phenomenon 

provides the improved condition for the fast conversion of the electron potential energy 

into electromagnetic energy. 

Magnetrons with diffraction output (MDO) is another important class of relativistic 

magnetrons that has been proposed in recent years. While most relativistic magnetrons 

extract the output power radially from a slot located in their cavities, in axial diffraction 

output magnetrons (MDOs), the radiation is extracted axially along the vanes of the anode 

block via a horn antenna or multiple waveguides. In a MDO, the vanes of the anode block 

are continued and tapered within inside of a conical horn antenna. In addition, Rising-Sun 
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geometry was created and designed to achieve mode stability. This device geometry 

consists of two alternating groups of short and long vanes in angular orientation, that help 

create greater frequency separation between the modes and prevent mode competition. 

The use of cathode endcaps has been one of the performance enhancing aspect studied 

both through experiments and simulations. The physics associated with the improvement 

is based on two aspects. First, the metallic endcaps shape the electric fields and help define 

the effective electrical length of the cathode. In addition, electron leakage currents can be 

suppressed and the output window of the MDO would be protected from electron 

bombardment. 

The Particle-in-cell (PIC) code simulates the motion of plasma particles and calculates 

all macro- quantities from the position and velocity of these particles. Particle-in-cell based 

MAGIC software tool has been used in this thesis for modeling and simulation of 

magnetron to obtain the optimized geometry based on the device performance. 

In the first part, Particle-in-cell simulations were performed to provide a numerical 

analysis of the efficiency, output power and leakage currents in an A6 magnetron with 

diffraction output and transparent cathode. The central goal was to evaluate the role of 

cathode length, different types of endcap, and location of cathodes in respect with anode 

block, as a function of different applied magnetic fields, on the output power, efficiency 

and leakage current of magnetron. In reality, the parameter space is really large, and so for 

convenience the basic dimensions and geometry were confined to that used in recent 

reports of the A6 relativistic magnetron. 
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Simulation results, in keeping with previous reports, demonstrate the definite advantage 

of having endcaps.  Though the use of individual endcaps was probed, the performance 

was not shown to significantly improve over a single, comprehensive endcap.  Given the 

ease of manufacture, a single endcap would, therefore, provide a more practical 

implementation.  The results demonstrated peak output power in excess of 1 GW, with 

efficiencies on the order of 66% for B-field in the 0.4 T - 0.42 T range.  For optimization, 

the relative angular displacement of the cathode relative to the anode was obtained to be 

about 55 ̊degrees.   

Furthermore, Particle-in-cell simulations were performed to provide a numerical 

evaluation of the efficiency, output power and leakage currents in a 12-cavitiy, 12-cathode 

Rising-Sun magnetron with diffraction output. The central goal was to conduct a parameter 

study of a Rising-Sun magnetron that comprehensively incorporated performance 

enhancing features such as transparent cathodes, axial extraction, the use of endcaps, and 

cathode extensions. Once again, the basic dimensions and geometry were confined to that 

used in recent reports of the A6 relativistic magnetron and the different conditions analyzed 

for optimized shape and angle of the short vanes in the structure. The results for this part 

again show the definite advantage of having endcaps. A 45̊ degree angle was obtained as 

the optimized value for the short vanes of the Rising-Sun magnetron, with the slope of 

other vanes kept fixed at 32 ̊degrees (an optimized angle reported in previous reports). The 

simulations here also demonstrated peak output power in excess of 2GW, with efficiencies 

on the order of 68% for B-fields in the 0.42 T - 0.46 T range. For further optimization, the 

role of the cathode length and its extension beyond the anode dimensions was probed. The 
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results show the efficiency in excess of 70% and peak output power on the order of 2.1GW 

for an 18 cm cathode length at 0.45 T magnetic field and 400 kV applied voltage. 

Finally, the role of secondary electron emission (SEE) on performance of 12-cavity 

Rising-Sun magnetron was performed in this thesis research. The Particle-In-Cell 

simulations based on the MAGIC tool were performed to provide a numerical analysis into 

efficiency, output power, and leakage currents. The simulation results show the weak effect 

of Secondary Electron Emission (SEE) on output power, efficiency and leakage current of 

magnetron. Thus, the role of secondary emission was not found to be very strong for the 

12-cavity Rising-Sun magnetron, though it did lead to some (a few percent) lowering of 

the device efficiency. 

5-2 Scope for Future Work 

Based on the research work described in this thesis, some of the other areas for further 

research and simulation aspects for future studies are briefly described as follows: 

1) Experimental works on Rising-Sun magnetron with different geometries which 

could be the best way for confirmation of the MAGIC-based simulation results. 

2) Carrying out 3D MAGIC simulation with different shapes of cathode such as 

the cathodes with sharp edges in order to increase the local electric field and 

enhancing electron emission for the cathode. 

3) Studying and Particle-in-cell MAGIC-based simulation on the operation of a 

compact relativistic magnetron with a virtual cathode (VC) in the interaction 

space of the device, instead of a physical cathode. 
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4) Simulation and research on the effect of changing the cathode strip position on 

the operation mode of magnetron. 

5) Consideration of the effect of cascading electron emission in Secondary Electron 

Emission (SEE) in Rising-Sun MDO magnetron. 

6) A study of magnetron performance with the anode cavities partially or fully 

filled with dielectrics could be carried out. This model would provide variable 

frequency operation, especially if liquid oils could be used in piston-like 

containers of variable length. 
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