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ABSTRACT 

 ALGORITHMS FOR CONSTRUCTING VEHICLE TRAJECTORIES IN URBAN 

NETWORKS USING INERTIAL SENSORS DATA FROM MOBILE DEVICES 

 

Umama Ahmed 

Old Dominion University, 2017 

Director: Dr. Mecit Cetin 

Vehicle trajectories are an important source of information for estimating traffic flow 

characteristics. Lately, several studies have focused on identifying a vehicle’s trajectory in traffic 

network using data from mobile devices. However, these studies predominantly employed GPS 

coordinate information for tracking a vehicle’s speed and position in the transportation network. 

Considering the known limitations of GPS, such as, connectivity issues at urban canyons and 

underpasses, low precision of localization, high power consumption of device while GPS is in 

use, this research focuses on developing alternate methods for identifying a vehicle’s trajectory 

at an intersection and at a urban grid network using sensor data other than GPS in order to 

minimize GPS dependency. In particular, accelerometer and gyroscope data collected using 

smartphone’s inertial sensors, and speed data collected using an on-board diagnostics (OBD) 

device, are utilized to develop algorithms for maneuver (i.e., left/right turn and through), trip 

direction, and trajectory identification. 

Different algorithms using threshold of gyroscope and magnetometer readings, and 

machine learning techniques such as k-medoids clustering and dynamic time warping are 

developed for maneuver identification and their accuracy is tested on collected field data. It is 

found that, clustering based on maximum and minimum value of gyroscope readings is effective 

for maneuver identification. For trip direction identification at an intersection, two different 

methods are developed and tested. The first method utilizes accelerometer, gyroscope and OBD 

speed data, and the 2nd method employs magnetometer and acceleration data. The results 



 

 

demonstrate that the developed method using accelerometer, gyroscope and OBD speed data are 

effective in identifying a vehicle’s direction. An effective algorithm is developed using OBD 

speed information, maneuver and trip direction identification algorithms to identify vehicle’s 

trajectory at a grid network. Techniques for noise removal and orientation correction to transfer 

the raw data from phone’s local coordinate to global coordinate system are also demonstrated. 

Overall, this research eliminates the need for continuous GPS connectivity for trajectory 

identification. This research can be incorporated in methods developed by researchers to estimate 

traffic flow, delays, and queue lengths at intersections. This information can lead to better signal 

timings, travel recommendations, and traffic updates.
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CHAPTER 1 

INTRODUCTION 

In recent years, traffic congestion has become a substantial problem for most of the big 

cities around the world. According to a study focusing on the economic impact of congestion on 

urban cities, in 2011, urban Americans had to travel 5.5 billion hours more and purchase an extra 

2.9 billion gallons of fuel because of traffic congestion, resulting into a total cost of congestion 

of $121 billion [1]. The essential step to control congestion is traffic monitoring, through which 

the necessary information to take appropriate traffic control measures for relieving congestion 

can be obtained. Traditionally, traffic monitoring has been performed using dedicated sensing 

infrastructure such as loop detectors, radars, video cameras, etc. Because of the high cost of 

installation and maintenance of these sensing infrastructures, the traffic networks covered and 

monitored are limited to mostly highways and major arterial streets. For the last few years, a 

promising approach of inferring real time traffic information via intelligent transportation system 

(ITS) applications installed in mobile devices is becoming popular, because of lower cost and 

prospect of more global coverage of traffic network. Studies utilizing data from mobile devices 

to estimate traffic flow, lane detection, and trajectory identification have been growing as a 

result. However, studies focusing on trajectory identification using mobile data predominantly 

employed GPS coordinate information1. GPS has some significant limitations. Proper 

functioning of GPS requires clear signal reception from GPS satellites. In urban cities with dense 

high-rise buildings and under passes, the signals can get obstructed, causing GPS outage for an 

extended period of time. In addition, GPS is vulnerable to spoofing attacks [2]. In some 

situations, blockages of some satellites but not others occur, resulting into large error in 

                                                             
1 IEEE Transactions and Journals style is used in this thesis for formatting figures, tables, and references. 
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positional coordinates. High power consumption of device while GPS is in use, is another 

limitation of using continuous GPS localization [3, 4].  

This research is focused on developing methods to identify a vehicle’s trajectory at an 

intersection and at an urban grid network utilizing inertial sensor data from mobile devices. 

Particularly, this research utilizes smartphone’s inertial sensor data: gyroscope, accelerometer 

data, and speed data collected using an on-board diagnostics (OBD) device. The objective of this 

research is to find a vehicle’s trajectory without relying on information collected from GPS, so 

that the trajectory information can be supplemented in case of GPS outage.  

At a four-legged intersection, a vehicle can execute mainly 3 maneuvers from each leg of 

intersection: left turn, right turn and through maneuver, resulting into total 12 possible 

movements at the intersection (Fig. 1). Thus, this research focuses on developing methods for 

maneuver identification (left turn, right turn, and through) and trip direction identification at an 

intersection to construct vehicle’s trajectory at the intersection. Next, as at an urban grid 

network, for same origin and same destination, there exist multiple routes (as shown in Fig. 2), 

this research focuses on developing methods to identify vehicle’s trajectory at the grid network. 

Due to sensitivity of the inertial sensors, the raw data collected by the phone contains noises. 

Thus, applying appropriate noise removal technique is an important preprocessing step before 

any algorithm development. In addition, the phone can remain in any random orientation inside 

the vehicle. An appropriate orientation correction technique is thus necessary to be developed 

and applied on raw data. This will ensure that the develop trajectory identification algorithms are 

applicable to data from all phones regardless of their orientation inside the vehicle. 
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Fig. 1.  Twelve possible maneuvers at a four-legged intersection. 

 

 

Fig. 2.  An urban grid network with multiple routes between origin (O) to destination (D). 
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1.1 Objectives 

The specific objectives of this research are as follows: 

• To develop a method to identify a vehicle’s trajectory at an intersection using a smartphone’s 

inertial sensor data and OBD speed data. 

• To investigate which feature(s) of the inertial sensor data provide the most useful information 

for identifying different maneuver: left turn, right turn, and through maneuver at an 

intersection and develop an algorithm for maneuver identification of a vehicle at an 

intersection. 

• To develop a method to identify vehicle’s direction through an intersection using a 

smartphone’s inertial sensor data. 

• To develop an algorithm that can identify vehicle’ trajectory at an urban grid traffic network 

with known origin and destination information. 

• To develop and employ appropriate noise removal technique and orientation correction 

technique. 

 

1.2 Potential Application 

The potential applications of this research are demonstrated by a use case scenario. 

Consider a scenario, where a vehicle is a part of a vehicular ad-hoc network [5]. A Roadside Unit 

(RSU) is installed in one of the traffic signal lights (Fig. 3) at a particular intersection. The RSU 

acts as a communication device and can communicate with the phone via Bluetooth. While 

within the RSU’s range, the smartphone in the vehicle acts as an on-board unit (OBU) and 

transmits the collected data to the RSU intermittently [6, 7]. RSU sends the data packet to the 

server. This data packet includes inertial sensor data and OBD data collected by phone. This 
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research will identify the vehicle’s trajectory at an intersection and thus can work as an input to 

estimate traffic flow and queue length at the intersection. This information will lead into better 

signal time optimization at the intersection. Similarly, at an urban traffic network, suppose two 

RSUs are installed at two intersections. A vehicle is traveling in the network and the phone is 

collecting the inertial sensor data and OBD data (Fig. 4). As soon as the vehicle comes near RSU 

1, the phone sends a data packet to it. As the vehicle keeps moving, it goes out of the range of 

RSU 1. After a while, the vehicle reaches within the range of RSU 2 and the phone sends the 

collected data packets to it. The RSUs send the data packets to the server. Thus, RSU 1 can be 

considered the origin and RSU 2 can be considered the destination of the vehicle. However, there 

exist multiple routes to go from RSU 1 to RSU 2. This research will identify the vehicle’s 

trajectory. This information can lead to quantifying traffic flow and travel time in each route, 

which in turn can be incorporated to provide better signal coordination between different 

intersections. Most importantly, this research eliminates the need for continuous GPS 

connectivity for trajectory identification. 
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Fig. 3.  Use case scenario 1. 

 

 

Fig. 4.  Use case scenario 2. 
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1.3 Organization of the Dissertation 

Chapter 1 has introduction, objectives and potential applications of the work done in this 

dissertation.  Chapter 2 contains the background of collected data from mobile devices and the 

data collection system for this research. Chapter 3 describes literature review on orientation 

correction techniques and trajectory identification methods. Chapter 4 includes overview of some 

of the machine learning methods that are used in the model development. Chapter 5 describes 

data prepossessing requirements and the noise removal techniques and orientation correction 

techniques. Chapter 6 includes the description of the methods explored and developed for 

maneuver identification. Chapter 7 describes the method for trip direction identification at an 

intersection. Chapter 8 includes the method for distance estimation and algorithm for trajectory 

identification at an urban grid network. Chapter 9 concludes the dissertation with the summary of 

findings, results, contributions, and possible applications of the developed models and future 

work. 
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CHAPTER 2 

BACKGROUND ON DATA COLLECTION USING MOBILE DEVICES 

Data collection using mobile devices has become an important technology for acquiring 

information regarding real-time speed, travel time, queue measurements, and volume estimation. 

Intelligent transportation system (ITS) applications that are specifically designed for collecting 

real-time traffic data are installed in the vehicles through various equipment, such as electronic 

tags, smart phones, Global Positioning System (GPS) receivers, etc. and transmit collected data 

using roadside receivers/transmitters, cellular phones, etc. [8]. 

This data collection system using mobile devices has several advantages over traditional 

traffic detectors. It has a low cost per unit of data, can continuously collect data as the probe 

vehicle travel through the network, the installation requires no traffic disruption, and data 

collection is automated. However, this system also has some disadvantages. For example, the 

initial development of the software that collects the data requires advanced software designing 

skills, may have high initial cost of purchasing and installing the devices, and raises privacy 

concerns of the drivers as their movement can be continuously monitored by tracking the probe 

data collected from their vehicles [8].  

For this research, data have been collected using an application developed for smartphone 

and transmitted the collected data using cellular transmission. The detailed description of the 

application is provided in data description and preprocessing section. 

 

2.1 Data Collection Using Smartphones 

Modern smartphones are equipped with advanced sensing capabilities. They have in-built 

GPS receivers, proximity sensors, light sensors, accelerometer, gyroscope, and magnetometer. 

Some high-end smartphones even contain barometers, thermometers, and air humidity sensors. 
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The internal view of a smart-phone is shown in Fig. 5. The sensing data collected using 

accelerometers, gyroscopes, and magnetometers, and data from GPS receivers are within the 

scope of this study.   

 

Fig. 5.  Internal view of Smartphone board [11]. 

 

The built-in accelerometer can measure the acceleration and deceleration experienced by 

the phone. The acceleration values are provided in XYZ coordinate along phone’s local axis in 

meter/second2.  The description and figure of phone’s local axis is presented at the end of this 

section. The device rested in Earth also captures the gravitational acceleration (g = 9.8 ms-2). 

Thus the acceleration measured by a mobile device represents the total acceleration due to the 

motion of phone and the earth’s gravity [9]. 

The gyro sensor detects the change in angular speed of the phone. The swinging, rotating, 

tilting motion is thus detected by the gyro sensor. The gyroscope is calibrated such that when 
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laid in horizontal plane, the gyroscope reading is zero. Any change in the orientation of the 

phone is detected by the gyroscope and change of angular speed corresponding to phone’s local 

axis is provided in XYZ coordinate in radian/second. The in-built accelerometer/gyroscope 

sensor in a smartphone is shown in Fig. 6. 

 

 

Fig. 6.  Accelerometer/gyroscope sensor in Smartphone [12]. 

 

The GPS sensor inside the smartphone connects to 3 satellites and provides latitude and 

longitude information of the location of phone. Typical precision of GPS provided data is 20-

50m, while maximum precision is 10m. 

Magnetometer sensor measures the strength of the Earth’s magnetic field in the phone’s 

location and provides the values in XYZ coordinate in Micro Tesla (μΤ). The direction of the 

phone compared to the global North can be calculated using the values of Earth’s magnetic field. 
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All the inertial sensor data are collected based on smart phone’s local coordinate system. 

Phone’s local coordinate frame is fixed in the center of it. The X axis of the local coordinate 

system is along the width of the phone and considered positive along the right side and negative 

toward the left side. The Y axis is along the length of the phone and positive towards the top and 

negative towards the bottom of the phone. The Z axis is perpendicular to the screen of the phone 

and positive towards outward direction [10]. Fig. 7 demonstrates the phone coordinate system. 

When a user carries his smartphone while traveling in a vehicle, the smartphone can 

capture the acceleration and deceleration of the vehicle.  The change in angular speed of the 

vehicle due to turn or bends along the path is captured by the smartphone using gyro sensors. 

The magnetometer data can be utilized to get the direction of magnetic north at the location of 

the vehicle. 

 

 

Fig. 7.  Smartphones' local coordinate system [10]. 
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CHAPTER 3 

LITERATURE REVIEW 

This chapter describes previous research works on coordinate conversion, turn 

identification, route matching, and activity identification.  

 

3.1 Literature Review on Coordinate Conversion 

As mentioned in the previous chapter, conversion of forces from phone’s local coordinate 

to world coordinate is required to find signature pattern in movements of phone regardless of 

their individual orientation.  Many previous studies have applied different coordinate conversion 

technique to transform the forces from local to the desired coordinate system. 

Mohssen et al. utilized smartphone sensor data to estimate the user orientation relative to 

Earth’s coordinate system [13].  They converted the smartphone data from a phone’s local 

coordinate to a global coordinate system. They defined a 3 coordinate system: world coordinate 

system defined by North (N), East (E) and Gravity (-G); the smartphone’s local coordinate 

system is defined as (X, Y, Z), and the user coordinate system defined by the user’s forward 

direction (F), right side related to F (S) and (-G) (as shown in Fig. 8). 
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Fig. 8.  Earth's, smartphone's and user's coordinate system [13]. 

 

Applying the concept of rotation matrixes Mohssen et al. determined the phone 

orientation angles pitch (𝛼), roll (𝛽) and yaw (𝛾). Yaw (𝛾) is the phone orientation angle relative 

to North. Fig. 9 demonstrates the angles. In order to do the determination, the authors utilized the 

raw magnetometer data and the gravity component of the phone’s acceleration at its arbitrary 

location. These orientation angles are used for coordinate conversion of the phone’s estimated 

forces from its local coordinate system to Earth’s coordinate system. Finally, the raw 

acceleration values obtained at phone’s local coordinate is converted to global coordinate by 

using quaternion conversion as follows by using q. l..q*. Where l is the linear acceleration in 

local coordinate, q is the quaternion vector and q* is the conjugate of q. This converted 

acceleration value is used to find the direction of user relative to earth’s plane [13]. 
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Fig. 9.  Phone orientation angles [13].  

 

Wang et al. used the concept of rotation matrix in order to align a phone’s coordinate 

system with the vehicle’s [14]. Fig. 10 shows how the authors defined the phone’s coordinate 

system (Xp, Yp, Zp) and the vehicle’s coordinate system (Xc, Yc, Zc). In order to find the 

rotation matrix that rotate phone’s local coordinate to vehicle’s coordinate, the authors defined 

three unit coordinate vectors under the vehicle’s coordinate system as �̂�, 𝒋̂, and �̂�.  
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Fig. 10.  Illustration of a phone's and vehicle's coordinate system [14].  

 

Wang et al. utilized the acceleration and gyroscope data collected using the smartphone 

to obtain the rotation matrix consisting of three unit vectors �̂�, 𝒋̂, and �̂� along vehicle’s local X, Y 

and Z axis [14]. The unit vector �̂� is obtained by estimating the gravity component from the raw 

acceleration data. The authors applied a low pass filter on the three axis raw accelerometer 

readings to separate the constant components from those. These constant components are the 

gravity part of the acceleration and normalized to generate the unit vector �̂�. The unit vector 𝒋̂ is 

derived by extracting the linear component of acceleration while the vehicle decelerates. The unit 

vector �̂� is derived by vector multiplication of 𝒋̂ and �̂�. One drawback of this method is that, it 

relies on correct identification of a vehicle stops or turns as it is assumed that vehicle decelerates 

before making stops or turns. However, modern smartphones are also very sensitive and thus can 

capture slightest disturbance on the phone, as well as contain noisy data. Also, any user 

interaction with the phone during the journey is also captured by the sensors. Thus, the accuracy 

of coordinate alignment by this method relies on accurate estimation of a vehicle’s deceleration. 
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Some researchers tried to simplify the alignment method by aligning just one axis to 

vehicle’s coordinate. Nawaz et al. only aligned the Z- axis of the phone to vehicle’s Z axis [15]. 

They defined the vehicle’s coordinate system by three orthogonal axis by Xv, Yv, and Zv and 

phone’s coordinate system as Xp, Yp, and Zp, as shown in Fig. 11. The authors showed that the 

turn of vehicle can be identified by the gyroscopes value along Zp axis as gyroscope senses the 

angular rotation the vehicle experiences by taking turn. Plotting the gyroscope data along Xp and 

Yp axis while the vehicle takes turn, the authors demonstrated that there is no change of the 

gyroscope values because of turns along these two axes. Thus, the authors ignored these two axis 

and only aligned Zp to Zv. From the raw acceleration data collected by phone, the authors ran a 

low pass filter on the output to extract the gravity components of the acceleration along the 

phone’s local coordinate system. This gravity acceleration on phone’s local coordinate is used to 

determine the inclination angle 𝜃 between Zp and Zv.  𝜃 is used to calculate the quaternion that 

rotates Zp to Zv.   

 

 

Fig. 11.  Vehicle coordinate and smartphone coordinate system [15].  
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3.2 Literature Review on Route Matching 

In recent years, several studies have utilized smartphone collected probe data to identify 

users’ driving routes. Two studies have been found to have similarity to the research work of this 

dissertation. Nawaz et al.  utilized smartphone collected accelerometer and gyroscope data to 

identify users’ significant driving routes [15]. When a vehicle makes a turn, a change of angular 

speed is observed by the phone’s gyroscope. Thus, each route has a unique signature in the form 

of variation in angular speed. The authors applied this concept to differentiate routes based on 

the unique signature of angular speed for each route. They first drove through different routes to 

collect each route’s unique signature sensed by the gyroscope. Then, when the smartphone data 

from a journey that needed route identification are being collected, the authors applied Dynamic 

Time Warping (DTW) to calculate dissimilarity or distance between the ordered sequences of the 

new journey with previously collected data from known routes. A dynamic time warping 

algorithm calculates dissimilarity or distance between two ordered sequences (as shown in Fig. 

12). It allows required compression or expansion of the ordered axis for best aligning the two 

sequences.  The route’s gyroscope data that have the least distance with the new journey’s 

collected data are identified as the journey’s route. Using dynamic time warping, the authors 

performed clustering of routes of collected angular speeds of a vehicle from n journeys made by 

a user. Journeys included journeys between the same origin and destination and vice-versa, the 

same origin different destination and vice-versa, and completely different origins-destinations. 

The authors computed normalized DTW distances between each pair of journeys to construct an 

n×n dissimilarity matrix. This dissimilarity matrix D is used with any k-medoids clustering 

algorithms to group similar journeys or routes together. The collected dataset included 43 

journeys on 15 routes, with the shortest route being 4 km and the longest being 90 km.  It was 
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observed that using k-medoids with k=8, the routes were organized in well-separated clusters. 

Similar routes were being organized within the same cluster or a cluster nearby. Fig. 13 shows 

the results of route clustering [15]. 

 

 

Fig. 12.  Dynamic time warping between two trips [15]. 

 

 

Fig. 13.  Clustering of routes based on angular speed [15]. 
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Nawaz et al. also argued that this approach would also be applicable for route 

identification in Manhattan style grid based network where turns at intersections haves similar 

signatures. To demonstrate this, the authors collected 1,000 taxi trips in New York with an 

average trip length of 9 miles. The dataset contained travelled distance, pickup, and drop off 

locations but did not contain actual routes taken by taxis. The authors used a routing algorithm 

on Open Street Map road network of New York to find the shortest route between pickup and 

drop off locations for each trip. For each shortest route road segment for each trip, they 

computed turning angles for all turns along the route and encoded these turns into alphabets 

according to some defined rules. Thus, each route is represented with a concatenated string in a 

particular order with each alphabet is associated with turns along the route. The common 

sequence of characters between two trips represents similarity between two trips based only on 

turns. One drawback of this approach is that, it can only identify reasonably long trips. The 

authors did not demonstrate whether this approach works for trips of smaller length. Another 

drawback is that, in grid network, multiple routes from same origin to same destination may 

contain a similar sequence of turns. How such routes are differentiated from each other is not 

discussed in the paper. Also, the authors did not show how accurately the identification of such 

sequences associated with turns in each trip based on smartphone probe data can be done. 

 Another study that bears similarity with this dissertation’s research approach was done by 

Thiagarajan et al. [16] who matched the route of a vehicle to a map using cellular (GSM) 

fingerprints. A GSM fingerprint refers to a set of observed IDs of cell towers and their associated 

received signal strength (RSSI) value. The authors applied a two-pass algorithm to match a route 

to a map.  In the first pass, they applied a Hidden Markov Model (HMM) to divide space into 

grid cells and determine the most likely sequence of traversed grid cells. In the second pass, 
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another HMM was built to match the traversed grid cell sequence to road segments.  First, the 

authors divided a segment of a map into small grids.  When a vehicle is within the segment, the 

users’ smartphone provides the observed IDs of cell towers in that location and their associated 

RSSI values for up to 6 neighboring towers along with the associated cell tower. A training 

database was built with the known location from the GPS and the RSSI with the observed cell 

towers for the particular grids. Using the training database, the emission and transition 

probability was calculated and the HMM of grid sequencing was developed. Once the sequence 

of grids the vehicle traversed is known from the first HMM model, the authors then converted 

this grid sequence into a sequence of (latitude, longitude) coordinates. In the next stage, Segment 

Matching takes as input the sequence of points from the Smoothing and Interpolation phase, 

along with turns and movement hints from the phone, to determine the most likely sequence of 

segments traversed using a different HMM. The authors utilized the time series signals from 

accelerometer, compass, and gyroscope from the phone to infer information about whether the 

phone being tracked was moving or not, and processed the orientation sensor readings from a 

compass or a gyroscope to heuristically infer vehicular turns. The algorithm step is shown in Fig. 

14. One drawback of this approach is that it still requires GPS information for building the 

training database and the HMM model.  
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Fig. 14.  Steps of Trajectory Mapping Algorithm by Thiagarajan et al. [16]. 

 

Another study related to this dissertation’s work was done by Aly et al. [17]. The authors 

employed accelerometer and gyroscope sensors to detect a car’s ambient road semantics, such as 

speed bumps, tunnels, bridges, stop signs, etc.  The sequence of road semantics found from the 

car’s trip is then applied in a map matching process and infer the car’s current road location. Map 

matching is done using Hidden Markov Model (HMM) algorithm that takes the car’s road 

semantics information, surrounding information, and the noise of the input data into account to 

enhance the accuracy of the estimated road segments and evaluate the candidate road segments. 

Finally, a Viterbi Algorithm is employed to dynamically and efficiently identify the most 

probable road segment. One drawback of that study is that it relies on variation in road semantics 

for map matching. For some routes with small length, there may not be very much variation in 
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semantics. For example, at an urban grid network, multiple routes may have similar sequence of 

semantics. In such cases, this approach may not work. 

As GPS has accuracy issues at places that have disrupting GPS satellite connectivity due 

to high-rise structures, several studies have been devoted towards matching error-prone GPS 

readings of smartphones from moving vehicles to actual road segments. For example, 

Thiagarajan et al. explored the GPS and sensor readings from users in Chicago downtown and its 

vicinity riding on buses to match the bus trajectory with scheduled bus routes [18]. The data set 

contained both users riding buses and users stationary on the street. Using smartphone inertial 

sensor data collected from the users, the authors first developed an activity classification system 

based on acceleration values that could identify whether a user was walking or riding a bus. 

Once the users riding the bus were identified, the authors explored the GPS reading from those 

users to identify the trajectory of the bus. The authors collected bus shapes from publicly 

available data from the Chicago Transit Authority (CTA). Each bus shape consisted of a 

sequence of bus stops specified as latitude-longitude coordinates. Once the GPS reading of a user 

riding on bus was found, using the geospatial index lookup using the user GPS reading, the set of 

candidate bus routes were narrowed down to match. Then, they applied a least square 

minimization algorithm to each of the candidate routes that finds the bus shape that is the closest 

fit to the user’s GPS sequences.  

Goh et al. developed an online map-matching algorithm based on a Hidden Markov 

Model (HMM) to accurately map the GPS trajectories to the road network in real time [19]. A 

trajectory is a sequence of data points collected by a vehicle.  Each trajectory point is specified 

by its longitude, latitude, speed, and a time stamp. For every trajectory point, the authors first 

identified a set of candidate road segments from which the data were most likely collected. Each 
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of these candidates is then represented as a hidden state in the Markov chain and an emission 

probability for each candidate is calculated based on the likelihood of observing the GPS point 

conditional on the candidate segment being the true match. The transition probability for every 

pair of adjacent hidden state in the chain was calculated such that the probability of the latter is 

dependent only on the former. The maximum likelihood path over the Markov chain that has the 

highest joint emission and transmission probabilities is identified as the vehicle trajectory.  

Several authors developed mathematical methods for map matching using GPS data 

collected from a user’s smart phone. For example, Bierlaire et al. developed a probabilistic map 

matching algorithm that employs both geographical and temporal information in GPS data to 

measure the likelihood that the data have been generated along a given path [20]. A probabilistic 

measurement model is employed to calculate the probability that a GPS recording device would 

have generated a sequence of measurements while following a given path. Basing on the work of 

Bierlaire et al., Chen et al. developed a probabilistic measurement model that employs GPS 

location data only [21]. The model calculates the likelihood of observing the smartphone data in 

a multimodal transport network. The probabilistic method results the output as a set of candidate 

true paths and gives the probability of each path being the actual one.  

Using time stamped GPS data, Brakatsoulas et al. presented three map-matching 

algorithms that mapped trajectory on a road network by matching geometries [22]. The first 

algorithm employs a portion-by-portion map matching by projecting the trajectory on a map by 

matching distance and angles between the curves. The second and third approach aims to match 

the trajectory with candidate road network by comparing similarity measures: the Fréchet 

distance and the weak Fréchet distance, respectively, which provides the path that is the optimal 

distance to the trajectory.  
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Krumm et al. developed a map matching algorithm in which GPS coordinates are taken 

as input and roads are matched based not only on the location measurements, but also on the time 

stamps of the measurements [23]. The time constraint ensures that the sequence of matched 

roads can be reached from each other in the time intervals computed from the measurements’ 

time stamps. Using the GPS input and candidate paths, a path that matches the location 

measurements and is reachable within the provided time constraints is chosen as the vehicle 

trajectory. The error in GPS measurements and the error in the estimates of path traversal times 

are optimized with a hidden Markov model (HMM). The HMM is based on a probability 

distributions representing the two errors and the distributions are based on a large database of 

trip information with GPS coordinates of drivers. The results indicate that the map-matching 

algorithm is accurate in matching measured locations to roads. 

Several studies also focused on finding walking trajectory of pedestrians using a periodic 

GPS signal and a smartphone’s inertial sensors. Ionut et al. developed an escort system where 

mobile phone sensors and an audio beacon system between different individuals are used to 

provide route guidance to an individual to reach a destination [24]. The system measures the 

accelerometer and compass readings from user-carried mobile phones to measure a user’s 

approximate displacement from the initial position and to develop a walking trail. An audio 

beacon system is developed where a user’s phone periodically sends audio signals to another 

individual’s phone and also listens for signals from those devices. This audio signal between 

phones is uploaded to an audio server. The strength of the signal between phones is used as a 

guide to further correct the user’s walking trail that was developed using the inertial sensors. 

Constandache et al. developed a localization system that develops a unique signature of 

compass and accelerometer data for walking trails [25]. The mobile phone’s accelerometer and 
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electronic compass is used to measure the walking speed and orientation of the mobile user. 

These readings are used to produce a directional trail that can be matched against walkable path 

segments within a local area map. Infrequent GPS readings are employed to periodically 

recalibrate the user’s location. The results show that this is a promising approach to identify 

user’s walking trail with low error. 

Uddin et al. employed acceleration readings from a user’s smartphone to identify walking 

direction. Using principle component analysis, they identified the major axis along which the 

acceleration has much variation [26].  

Several other studies have focused on identifying a user’s location using a phone’s 

inertial sensor data to reduce dependence on continuous GPS connectivity. For example, Paek et 

al. employed accelerometer readings from phones to identify a user’s movement from an initial 

position [27]. A Bluetooth connection is then used between nearby devices to get a GPS location 

update rather than turning on its own GPS device.  This study just focused on periodic 

localization of a user’s device not the trajectory identification. Liu et al. employed the signal 

strength of Wi-Fi signals in smartphones and accelerometer and compass data to identify a user’s 

location inside a building [28]. The user’s direction of movement and distance walked is 

estimated using compass and accelerometer data.  Using Wi-Fi signal strength, a training 

database of the building’s room layout is created and a map matching is done based on observed 

signal strength and the determined movement direction.    

 

3.3 Literature Review on Activity Detection 

Several studies have focused on activity detection of a user by exploring smartphone 

inertial sensor data. For example, Thiagarajan et al. developed a system that  detects a user’s 
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state, such as walking, in a stationary vehicle, or in a moving vehicle, based on accelerometer 

input [16].  First, the authors detected a user’s motion by sampling the accelerometer at 1 Hz, 

and continuously computing an exponentially weighted mean and standard deviation of the X,Y, 

and Z accelerometer data. If a phone is in a stationary position, an incoming sample lies inside of 

three standard deviations on any axis. If the phone is in motion the incoming accelerometer lies 

outside of the three standard deviation range. In order to detect walking motion, the authors 

computed a discrete Fourier transform (DFT) for a sliding window of the raw accelerometer 

values. If the magnitude of DFT coefficients are at (1-3 Hz) range, which is common to walking, 

then the motion is detected as walking motion. In order to find vehicular motion, first, the 

walking motion data are filtered out using the walking motion detection technique. Then, using 

the training data, two distributions of acceleration samples, the moving vehicle and stationary 

vehicle, is modeled by Laplace distribution and probability density function is estimated. Then, 

Bayes theorem is applied to compute the probability of a sample coming from a moving vehicle 

distribution.  

Eren et al. applied Bayes classification on accelerometer and gyroscope data collected 

from drivers to identify the driving behavior of the drivers [29]. They classified driving behavior 

as safe driving and risky driving. Based on a training data set, the authors calculated the prior 

probability of safe and risky driving. Then, using accelerometer and gyroscope observations 

from driving events, the probability of each observation coming from safe driving or risky 

driving is calculated using a Bayesian interference. Their approach was able to correctly detect 

the safe driving and risky deriving instances 93.3% times. Similar work was done by Johnson et 

al. who explored accelerometer, gyroscope, and device’s Euler rotation angle values to 

differentiate aggressive versus non-aggressive driving [30]. The authors first focused on 
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developing template of eight maneuvers or events: left turn, right turn, hard left, hard right, 

swerve left, swerve right, U-turn, and hard U-turn. Using a training data set of multiple trips of 

each maneuvers, the authors first employed the K-Nearest Neighbors (k-NN) classification 

method with k = 3 to determine the type of event. In order to determine whether or not a driving 

event is non-aggressive or aggressive, they applied a DTW algorithm with the sequence of 

smartphone sensor data from unknown events to each of the events template. The DTW 

algorithm finds the optimal path between each template with the unknown event’s sequence. The 

template that has the lowest cost of the aligned path is identified as the maneuver type of the 

unknown event.  

Hemminki et al. explored smartphone accelerometer data to detect the transportation 

mode of a user [31]. The authors extracted a series of features from a horizontal accelerometer 

that captures characteristics of acceleration and breaking patterns for different transportation 

modes. They extracted statistical features (e.g., mean, variance, and kurtosis), time-domain 

metrics (e.g., double integral, auto-correlation, and zero crossings), frequency-domain metrics 

(e.g., energy, six first FFT components, entropy, and the sum of FFT coefficients) and peak-

based features such as volume, intensity, length, kurtosis, skewness, etc. Frame-based features 

were found to be effective to capture characteristics of high-frequency motion caused by a user’s 

physical movement during pedestrian activity, or during motorized periods, from a vehicle’s 

engine and contact between its wheels and surface, etc. Peak-based features characterized 

acceleration and deceleration periods. After the features were extracted, the authors employed a 

discrete Hidden Markov Model (HMM) and a variant of AdaBoost for transportation mode 

detection. 
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Chu et al. designed a Driver Detection System (DDS) that relies on smartphone sensors 

to recognize micro-activities in humans, that is different for the driver and the passenger [32]. 

Using the accelerometer and gyroscope data from the driver’s and passenger’s smartphone, the 

authors developed a set of sensor signatures for movements that differ for a driver and for a 

passenger. The considered movements included the vehicle entry swing in which the user’s 

lower body movement is different based on whether the driver is entering to the left or to the 

right of the vehicle; pedal press: that determines if the user is putting pressure on the brake or gas 

pedal given that the phone is in kept in the user’s inner leg pocket; seat-belt, in which the user’s 

turning direction toward left or right will depend based on the seating arrangement inside the car. 

They also employ microphone audio data from the phone in order to differentiate whether the 

user is sitting in front or rear of the vehicle. The authors employed support vector machine 

(SVM) to classify the input data for signature for each different activity. The evaluation for their 

techniques revealed that the accuracy of their developed techniques for each of the signature 

movement detection varied from 88% to 95%. 
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CHAPTER 4 

MACHINE LEARNING METHODS 

 

In this chapter, the detailed machine learning methods that will be used later in the 

dissertation, are described.  

 

4.1 Application of Dynamic Time Warping (DTW) Technique 

 Dynamic time warping (DTW) is a well-known technique to find an optimal alignment 

between two given time series sequences while allowing warping of the sequences in a nonlinear 

fashion to match each other [33]. This algorithm matches one point of a sequence to one or more 

point of another sequence [34, 35]. DTW has been widely used for speech recognition to 

compare different speech patterns. However, recently it has been employed in various other 

purposes, such as shape recognition, gesture recognition, map matching, etc.[15, 36].  

 It is intended in this research to apply a DTW algorithm to find the distance between the 

time series sensor data of an unknown maneuver with a known maneuver.  A signature dataset 

consisting of sensor data from a known maneuver of a vehicle is considered as the template. A 

DTW technique will be applied to match the sequence of the dataset from unknown maneuvers 

with a time series sensor from the template maneuver. 

Suppose, A= {𝑎1, 𝑎2, 𝑎3 ……𝑎𝑛} is a time series of an inertial sensor data along a 

particular axis which recorded a specific force that is experienced by the smartphone when the 

vehicle completed a known maneuver at an intersection. B= {𝑏1, 𝑏2, 𝑏3 ……𝑏𝑚} is a time series 

of the same force along the same axis experienced by another smartphone in an unknown 

maneuver at an intersection. For eliminating the complexity of coordinate conversion, let’s 

suppose that both the phones during both the maneuvers were at the same orientation and thus 
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the major axis that they experienced the maximum variation of force along, was same. Let’s say 

that axis was Y-Axis of phone’s local coordinate. If i =1, 2,…, s,….,n and j = 1, 2,….,s,…,m are 

the indexes of the two time series, A and B, respectively, then the optimal path that minimizes 

the total distance between the two series is  

𝑃 =  𝑝1, 𝑝2, … , 𝑝𝑠, … , 𝑝𝑛 ,                                                              (1) 

where 

ps=(is, js)    is the warping function.  

The dissimilarity or distance between the two sequences is as follows: 

𝐷𝐷𝑇𝑊(𝐴, 𝐵) =
∑ 𝑑(𝑝𝑠

𝑘
𝑠=1 )𝑍𝑠

∑ 𝑍𝑠
𝑘
𝑠=1

⁄ ,                                             (2) 

where 

d(ps)        is the distance between is and js, 

Zs > 0      is the weighting coefficient. 

P is found by solving the following problem with certain constraints: 

         min (𝐷(𝐴, 𝐵).                                                           (3) 

The constraints are as follows: 

is-1  ≤ is ,                                                                (4) 

  js-1 ≤ js ,                                                                                                 (5) 

is – is-1  ≤ 1,                                                           (6)  

js – js-1 ≤ 1,                                                           (7) 

i1  = 1, ik = n,                                                            (8)  

  j1 = 1,  jk = m,                                                         (9) 
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  |is – js| ≤ r,                                                         (10) 

where r > 0 is the window length. 

  Equations 3 and 4 are the monotonicity constraints and guarantee that the path proceeds 

forward in time index. Equations 5 and 6 are the continuity constraint and guarantee that the path 

just moves one step in the time index. Equations 7 and 8 are the boundary constraints and 

ensures that the aligned path starts from bottom left and end at top right of the grid. Equation 9 

ensures that the path does not wander very far from the diagonal [35]. 

Solving Equation 2 gives us the optimal path and knowing the optimal path, the distance 

between the two sequences can be calculated using equation 1. If A and B are the results of a 

similar maneuver, then the distance will be small, if different, then the distance is expected to be 

large. This method is applied to identify the three maneuver types. 

 

4.2 K-medoids Clustering 

K-medoids clustering is applied to time series data of gyroscope readings from different 

trip to cluster similar type of maneuver together. K-mediods clustering steps are as 

follows [37]: 

1) Assume one point from each cluster as a representative object of that cluster. 

2) Find the Euclidean distance of each object from this representative object.  

3) The objects with minimum distance from the cluster representative are selected as the 

members of each cluster. 

4) Estimate the mean of the minimum distances for each point from its cluster 

representative object. 

5) Select 2 new objects as representative objects and repeat steps 2-4. 
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6) Swapping cost is calculated by subtracting previous mean distance from new mean 

distance. 

7) If swapping cost is negative then new medoids are the new representative objects and 

go to step 5. 

8) If cost is more than 0, discard points and select new representatives in step 5 keeping 

original points. 

9) These steps will be repeated until cluster variation does not change. 
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CHAPTER 5 

DATA DESCRIPTION AND PREPOSSESSING 

 

This section details the description of the data, the data collection system, the 

prepossessing requirements, and the data preprocessing and validation techniques applied. 

 

5.1 Data Description 

The data were collected using the GoGreen app. GoGreen is a custom Android 

application developed by the Transportation Research Institute at Old Dominion University. The 

data collection system consists of the GoGreen app, GPS satellite, On Board Diagnostic (OBD) 

device, and a database. The app was developed in Android smartphone environment.  In order to 

collect data using this app during a trip, the user has to start the app on a smartphone. The app 

collects inertial sensor data, such as linear acceleration, gravity acceleration, gyroscope readings, 

etc. The user can choose to turn the GPS of the smartphone on in order to get latitude and 

longitude information of the vehicle or can choose to keep the GPS off. Similarly, the OBD 

device can be turned on and off. If on, the OBD device measures a vehicle’s speed, throttle 

position, fuel level, and RPM [mph]. The OBD device transmits data via Bluetooth to the 

smartphone. 

Once the application is running with GPS and OBD on, it will collect the following 

readings:  

1. Video 

2. Accelerometer data: Time stamped acceleration in a local X, Y, and Z axis 

[meter per second2, ms−2] 
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3. Gyroscope: Time stamped angular speed in a local X, Y, and  Z axis 

[radian per second, rad/s] 

4. Compass data: Time stamped magnetometer data in a local X, Y, and Z axis [micro tesla, 

μT] 

5. OBD data: Speed, throttle position, fuel level, RPM [mph] 

6. Orientation data: The orientation of the phone [degrees] 

7. GPS data: Altitude, latitude, longitude, speed [m/s], time stamp 

8. Linear acceleration data: Time stamped data extracted from the accelerometer data in a 

local X, Y, and Z axis [ms−2] 

9. Gravity data: Time stamped data extracted from the accelerometer data in a local X, Y, 

and Z axis [ms−2] 

The phone collects that data at varying rates. The raw data are interpolated to get 10 data 

points per second (data rate 10 Hz). Once the user stops the app, it will display the time the trip 

took, fuel consumption of the vehicle, and average speed of the vehicle. The data collected are 

saved to the phone’s local database. It will also prompt the user to upload the data into the 

database. Once uploaded, the data can be acquired using a code written in Java for data 

acquisition. Fig. 15 shows the data collection system. The snapshot of GoGreen app and the view 

of data in database are shown in Fig. 16 and Fig. 17. All the inertial sensor data are collected 

based on smart phone’s local coordinate system (Fig. 18). The phone’s local coordinate frame is 

fixed in the center of the phone. The X axis of the local coordinate system is along the width of 

the phone and considered positive towards the right side. The Y axis is along the length of the 

phone and positive towards the top of the phone. The Z axis is perpendicular to the screen of the 

phone and positive towards outward direction.   
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Fig. 15.  Data collection System. 

 

 

Fig. 16.  Snapshot of GoGreen app. 
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Fig. 17.  The database of stored data. 

 

The dataset for preliminary analysis was collected from two separate intersections in 

Norfolk and one intersection in Virginia Beach. The Norfolk intersections are the Boush-

Brambleton intersection (mentioned as Intersection 1 in this dissertation) and Hampton Blvd-38th 

street intersection (mentioned as Intersection 2 in this dissertation). The Virginia Beach 

intersection is the Independence Blvd-Virginia Beach intersection (mentioned as Intersection 3 

in this dissertation). The locations are shown in Fig. 19, Fig. 20, and Fig. 21. The dataset 

collected from Intersection 1 and Intersection 2 contained vehicle information for the trips made 

by 7 separate drivers with 10 and 12 different type of cellphones, individually. The dataset 

collected from Intersection 3 contained vehicle information for the trips made by 5 separate 

drivers with 7 different types of cellphones. The data summary is presented in TABLE 1. The 

smartphone is kept in arbitrary orientation inside the vehicle. The data are gathered from circular 

area with a radius 90 meter measured from the center of the intersection.  
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TABLE 1  Summary of Data collected from 3 different intersections 

Location #Drivers #Cell phones Left turn Right turn Through 

Intersection 1 7 10 145 90 35 

Intersection 2 7 12 124 133 157 

Intersection 3 5 7 9 3 56 

 

 

Fig. 18.  Smartphone's local coordinate system, global coordinate system and orientation angles 

made by the phone.  
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Fig. 19.  Map of location of data collection for analysis showing Intersection 1 and 2. 

 

 

 

Fig. 20.  Map of location of data collection for analysis showing Intersection 3. 
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Fig. 21.  Intersections for data collection for preliminary analysis.  Top Left: Location 1: Boush- 

Brambleton intersection. Top right: Location 2: Hampton-38th Street intersection. Bottom: 

Intersection 3: Independence Blvd-Virginia Beach Blvd. 

 

5.2 Data Preprocessing Requirements 

The smartphone can remain in any arbitrary orientation inside a vehicle. The smartphone 

provides the sensing data in the X, Y, and Z axes of its local coordinate. Based on the orientation 

of the phone and the direction of movement of the vehicle, change in forces is experienced along 

different axes. For example, the gyro sensor detects the change in angular speed of the phone. 
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The gyroscope is calibrated such that when laid in horizontal plane, the gyroscope reading is 

zero. Any change in the orientation of the phone is detected by the gyroscope and change of 

angular speed corresponding to phone’s local axis is provided in a XYZ coordinate in 

radian/seconds. When a vehicle undergoes a turning maneuver, the gyroscope sensor inside the 

smartphone detects the turning motion and a change is expected to be observed in the reading 

along the Z axis of phone’s local coordinate provided that the phone is laid on horizontal plane. 

However, as the phone can remain in an arbitrary position, the variation of the gyroscope reading 

due to turning movement can be observed at any axis. Such a scenario is described in Fig. 22. 

Fig. 22(a) and Fig. 22(d) show two different orientations of phone inside a vehicle. Plots of raw 

three-Axis gyroscope readings during two left turn trips for these two orientations are presented 

in Fig. 22(b) and Fig. 22(e), respectively. The variation in raw gyroscope readings for left turn 

was observed along Y axis of phone’s local coordinate (Fig. 22 (b)) for orientation 1, while it 

was observed along Z axis (Fig. 22 (e)) for orientation 2, highlighted by the brown box in the 

figures. As the goal is to find unique signature of vehicle maneuvers for all phones regardless of 

orientation, orientation correction on raw sensor data is applied. This will align a phone’s local 

coordinate system to a global coordinate system. A global coordinate is considered as North, 

East, and Downward positive. Thus a phone’s positive X, Y, and Z axis will align to East, North 

and downward direction, respectively. Fig. 18 shows the phone’s local coordinate system and 

global coordinate system. 
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Fig. 22.  Three-axis gyroscope plots for before and after orientation correction during two left 

turn trips while phone kept in two different orientations.  
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Finally, smartphone sensors are very sensitive and capture any movements experienced 

by a phone; thus are prone to noise in the data. During the data collection, the phones are kept in 

a stationary position. However, the phone might still experience some jerks or vibrations along 

directions other than the direction of vehicle’s movement. It is necessary to filter out such 

instances so that the forces experienced by the phone are only due to vehicular movement. Thus, 

it is required to apply appropriate techniques for data filtering to clear out such noise.  

 

5.3 Data Preprocessing 

In this section, the data pre-processing techniques used for noise removal and orientation 

correction of the smartphone sensor data are described. 

  

5.3.1 Noise Removal 

Two techniques have been employed to reduce noises in the sensor data. For the first 

technique, the gravity acceleration extracted using 3-axis accelerometers has been utilized to 

filter out the sensor data points within the time series. Since a smartphone can remain in any 

arbitrary orientation inside a vehicle, gravity acceleration measured by the phone is divided 

among the X, Y, and Z axes along a phone’s local coordinate system. The total gravity 

acceleration, which is the square root of gravity acceleration values measured in each direction, 

is expected to be 9.8 ms-2. Due to potholes on the road surface, the vehicle may experience 

sudden jerky movement along the direction perpendicular to the horizontal plane. As a result, the 

phone will also experience sudden movement along the vertical direction, which, in turn, can 

cause a sudden dip or spike in total gravity acceleration values. This understanding is employed 

to filter out such instances in the time series by taking only the instances in which the square root 
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of gravity acceleration values measured in each direction is higher than 9.6 ms-2 and lower than 

9.98 ms-2. The following filter is employed to each instance of the time series: 

9.6 𝑚𝑠−2 ≤ √𝑔𝑋
2 + 𝑔𝑌

2 + 𝑔𝑍
2  ≤ 9.98 𝑚𝑠−2,                                  (11)                                                                                                         

where 

𝑔𝑋        Gravity acceleration value measured by phone along a phone’s local X axis, 

𝑔𝑌        Gravity acceleration value measured by phone along a phone’s local Y axis, 

𝑔𝑍        Gravity acceleration value measured by phone along a phone’s local Z axis. 

The threshold value of g is taken to be 9.6 𝑚𝑠−2 instead of 9.8 𝑚𝑠−2, as the precision of 

smartphone accelerometer can vary up to 0.018g, resulting the value of g measured to be within 

the range from 9.6 to 9.98 ms-2 [38]. It was found that only 2 trips out of 775 (0.25%) trips had 

such instances where the gravity value was out of range. 

Next, a median filter is applied on 1-second window of sensor data. A median filter is 

chosen as the data smoothening technique as it can effectively reduce noise without losing 

important features of the data. Each data point is replaced by the median value of consecutive 10 

data points. The equation for the median filter is as follows: 

𝑥𝑖 = 𝑚𝑒𝑑𝑖𝑎𝑛 {𝑥𝑖 , 𝑥𝑖+1, … , 𝑥𝑖+9},                                     (12) 

where 

i         index of the data point. 

The Z component of gyroscope readings plot before and after noise removal is shown in Fig. 23. 
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Fig. 23.  Z component of gyroscope readings plot before and after noise removal. 

 

5.3.2 Orientation Correction 

A two-step orientation correction method is applied on the smartphone collected raw data 

to transform the data to a global coordinate system. The first step is to identify the orientation of 

the phone with respect to its global coordinate; the second step includes the transformation of the 

raw sensor data from a local to a global coordinate.  

For the first step, the technique developed by Ozyagcilar is employed [39]. Let, φ, 

θ and ψ are the pitch, roll, and yaw angles of a phone respectively in Fig. 18. φ, θ, and 

ψ represent the rotation along X, Y and Z axis of phone’s local coordinate respectively. ψ is also 

the angle made by the phone relative to North.  

Let, the gravity component, g measured by the phone at its current location is  
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[

𝑔𝑋

𝑔𝑌

𝑔𝑍

]                                                                       (13) 

and the magnetometer signal, m at the current orientation and location is 

[

𝑚𝑋

𝑚𝑌

𝑚𝑍

].                                                                     (14) 

Then, according to Ozyagcilar [39], 

Pitch(𝜑) = tan−1 (
𝑔𝑌

𝑔𝑍
) ,                                              (15) 

Roll (𝜃) = tan−1(
−𝑔𝑋

𝑔𝑌 sin𝜑+𝑔𝑍 cos𝜑
) ,                                    (16) 

Yaw (𝜓)= 𝑡𝑎𝑛−1(
𝑚𝑋 𝑐𝑜𝑠 𝜃+𝑚𝑌 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜑+𝑚𝑍 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜑

𝑚𝑍 𝑠𝑖𝑛 𝜑−𝑚𝑌 𝑐𝑜𝑠 𝜑
).                   (17) 

Further restriction on the angles is provided to assure that for one orientation of the phone 

the pitch, roll, and yaw has only one unique solution. The pitch and yaw angles are restricted to 

have values from -180 to 180 degree, while roll angles are restricted to have values from -90 to 

90 degrees.   

The second step of the orientation correction technique involves applying transformation 

operation on raw data to transform it from local to global coordinate system.  After finding the 

orientation angles, a quaternion transformation equation is developed and applied on the 

smartphone-collected data. It can also be done by applying rotation matrix to rotate a phone’s 

local coordinates to global coordinates, where, a local X, Y, and Z axis will be rotated by 

𝜑, 𝜃, and γ amount, respectively, to align with a global X, Y, and Z axis. The rotation matrixes 

will be as follows: 
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RX = [
1 0 0
0 cosφ sinφ
0 − sinφ cosφ

] ,                                          (18) 

𝑅𝑌 = [
𝑐𝑜𝑠 𝜃 0 −𝑠𝑖𝑛 𝜃

0 1 0
𝑠𝑖𝑛 𝜃 0 𝑐𝑜𝑠 𝜃

] ,                                              (19) 

𝑅𝑍 = [
𝑐𝑜𝑠 𝜓 𝑠𝑖𝑛 𝜓 0

−𝑠𝑖𝑛 𝜓 𝑐𝑜𝑠 𝜓 0
0 0 1

].                                              (20) 

Let’s suppose, x̃ỹz̃ is a new coordinate system whose orientation w.r.t xyz is a rotation by 

ψ along z − axis. The coordinates of point r in new system 

(

𝑟1̃
𝑟2̃
𝑟3̃

)=𝑅𝑍(𝜓)(

𝑟1
𝑟2
𝑟3

)= [
𝑐𝑜𝑠 𝜓 𝑠𝑖𝑛 𝜓 0

−𝑠𝑖𝑛 𝜓 𝑐𝑜𝑠 𝜓 0
0 0 1

] (

𝑟1
𝑟2
𝑟3

).                           (21) 

 

 

 

Fig. 24.  New coordinate system. 

 

𝜓 
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�̃��̃��̃� is a new coordinate system whose orientation w.r.t xyz is a rotation by 𝜓 along z axis, 𝜑 

along x axis and 𝜃 along y axis (Fig. 24). 

 

The coordinates of point r in new system 

(

𝑟1̃
𝑟2̃
𝑟3̃

)=𝑅𝑧(𝜓) 𝑅𝑦(𝜃) 𝑅𝑥(𝜑)(

𝑟1
𝑟2
𝑟3

)                                        (22) 

= [
𝑐𝑜𝑠 𝜓 𝑠𝑖𝑛 𝜓 0

−𝑠𝑖𝑛 𝜓 𝑐𝑜𝑠 𝜓 0
0 0 1

] [
𝑐𝑜𝑠 𝜃 0 −𝑠𝑖𝑛 𝜃

0 1 0
𝑠𝑖𝑛 𝜃 0 𝑐𝑜𝑠 𝜃

] [
1 0 0
0 𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛 𝜑
0 −𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜑

](

𝑟1
𝑟2
𝑟3

).          (23) 

                  

𝑅𝑥(𝜑)=  [
1 0 0
0 𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛 𝜑
0 −𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜑

]                                                   (24) 

                                          

can be represented as 

Quaternion, 𝑞𝑥(𝜑)  = (𝑐𝑜𝑠
𝜑

2
, 𝑠𝑖𝑛

𝜑

2
𝑥)                                     (25) 

= (𝑐𝑜𝑠
𝜑

2
+ 

(𝑖.1+𝑗.0+𝑘.0)

√1+0+0
𝑠𝑖𝑛

𝜑

2
 )                                 (26) 

     = (𝑐𝑜𝑠
𝜑

2
+ 𝑖 𝑠𝑖𝑛

𝜑

2
).                                                 (27) 

Similarly,  𝑞𝑦(𝜃) =(𝑐𝑜𝑠
𝜃

2
+ 𝑗 𝑠𝑖𝑛

𝜃

2
)                                          (28) 

𝑞𝑧(𝜓) =(𝑐𝑜𝑠
𝜓

2
+ 𝑘 𝑠𝑖𝑛

𝜓

2
).                                          (29) 

                                                    

Rotations along z-y-x axis can be represented by 
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𝑞 =  (𝑐𝑜𝑠
𝜓

2
+ 𝑘 𝑠𝑖𝑛

𝜓

2
) (𝑐𝑜𝑠

𝜃

2
+ 𝑗 𝑠𝑖𝑛

𝜃

2
) (𝑐𝑜𝑠

𝜑

2
+ 𝑖 𝑠𝑖𝑛

𝜑

2
)                   (30) 

= (𝑐𝑜𝑠
𝜓

2
𝑐𝑜𝑠

𝜃

2
+ 𝑘 𝑠𝑖𝑛

𝜓

2
𝑐𝑜𝑠

𝜃

2
+ 𝑗 𝑐𝑜𝑠

𝜓

2
𝑠𝑖𝑛

𝜃

2
− 𝑖 𝑠𝑖𝑛

𝜓

2
𝑠𝑖𝑛

𝜃

2
) (𝑐𝑜𝑠

𝜑

2
+ 𝑖 𝑠𝑖𝑛

𝜑

2
)            (31) 

=(𝑐𝑜𝑠
𝜓

2
𝑐𝑜𝑠

𝜃

2
𝑐𝑜𝑠

𝜑

2
+ 𝑐𝑜𝑠

𝜓

2
𝑐𝑜𝑠

𝜃

2
𝑠𝑖𝑛

𝜑

2
 + 𝑘 𝑠𝑖𝑛

𝜓

2
𝑐𝑜𝑠

𝜃

2
 𝑐𝑜𝑠

𝜑

2
+ 𝑗 𝑠𝑖𝑛

𝜓

2
𝑐𝑜𝑠

𝜃

2
𝑠𝑖𝑛

𝜑

2
+

𝑗 𝑐𝑜𝑠
𝜓

2
𝑠𝑖𝑛

𝜃

2
𝑐𝑜𝑠

𝜑

2
− 𝑘 𝑐𝑜𝑠

𝜓

2
 𝑠𝑖𝑛

𝜃

2
𝑠𝑖𝑛

𝜑

2
− 𝑖 𝑠𝑖𝑛

𝜓

2
𝑠𝑖𝑛

𝜃

2
𝑐𝑜𝑠

𝜑

2
+ 𝑠𝑖𝑛

𝜓

2
𝑠𝑖𝑛

𝜃

2
𝑠𝑖𝑛

𝜑

2
)                 (32) 

= (𝑐𝑜𝑠
𝜃

2
𝑐𝑜𝑠

𝜑

2
𝑐𝑜𝑠

𝜓

2
+ 𝑠𝑖𝑛

𝜑

2
𝑠𝑖𝑛

𝜃

2
𝑠𝑖𝑛

𝜓

2
 ) + (𝑠𝑖𝑛

𝜑

2
𝑐𝑜𝑠

𝜃

2
𝑐𝑜𝑠

𝜓

2
− 𝑐𝑜𝑠

𝜑

2
 𝑠𝑖𝑛

𝜃

2
𝑠𝑖𝑛

𝜓

2
) 𝑖  

+ (𝑐𝑜𝑠
𝜑

2
𝑠𝑖𝑛

𝜃

2
𝑐𝑜𝑠

𝜓

2
+ 𝑠𝑖𝑛

𝜑

2
𝑐𝑜𝑠

𝜃

2
 𝑠𝑖𝑛

𝜓

2
) 𝑗 + (𝑐𝑜𝑠

𝜑

2
𝑐𝑜𝑠

𝜃

2
𝑠𝑖𝑛

𝜓

2
− 𝑠𝑖𝑛

𝜑

2
𝑠𝑖𝑛

𝜃

2
𝑐𝑜𝑠

𝜓

2
) 𝑘.                    (33) 

Thus, Equation 19 can be written as quaternion 

q = 

[
 
 
 
 
 
 𝑐𝑜𝑠 (

𝜑

2
) 𝑐𝑜𝑠 (

𝜃

2
) 𝑐𝑜𝑠 (

𝜓

2
) + 𝑠𝑖𝑛 (

𝜑

2
) 𝑠𝑖𝑛 (

𝜃

2
) 𝑠𝑖𝑛 (

𝜓

2
)

𝑠𝑖𝑛 (
𝜑

2
) 𝑐𝑜𝑠 (

𝜃

2
) 𝑐𝑜𝑠 (

𝜓

2
) − 𝑐𝑜𝑠 (

𝜑

2
) 𝑠𝑖𝑛 (

𝜃

2
) 𝑠𝑖𝑛 (

𝜓

2
)

𝑐𝑜𝑠 (
𝜑

2
) 𝑠𝑖𝑛 (

𝜃

2
) 𝑐𝑜𝑠 (

𝜓

2
) + 𝑠𝑖𝑛 (

𝜑

2
) 𝑐𝑜𝑠 (

𝜃

2
) 𝑠𝑖𝑛 (

𝜓

2
)

𝑐𝑜𝑠 (
𝜑

2
) 𝑐𝑜𝑠 (

𝜃

2
) 𝑠𝑖𝑛 (

𝜓

2
) − 𝑠𝑖𝑛 (

𝜑

2
) 𝑠𝑖𝑛 (

𝜃

2
) 𝑐𝑜𝑠 (

𝜓

2
)]
 
 
 
 
 
 

.                     (34) 

Quaternion operation is applied on the smartphone raw data to convert the data along 

their local coordinate to global coordinate.  

Now the equation for the conversion is as follows: 

𝑎𝑔𝑙𝑜𝑏𝑎𝑙  =  𝑞𝑎𝑞∗ ,                                                     (35) 

where 

𝑎   is the parameter in smartphone local coordinate and consists of  

                                                                         [

𝑎𝑥

𝑎𝑦

𝑎𝑧

],                                                               (36) 

 

q    the quaternion, 

q*   the conjugate of q. 



 

 

49 

Equation 35 can be elaborated as following: 

= (𝑞 + 𝑞𝑥𝑖̂ +  𝑞𝑦𝑗̂ + 𝑞𝑧�̂�)(𝑎𝑥𝑖̂ + 𝑎𝑦𝑗̂ + 𝑎𝑧�̂�)(𝑞 − 𝑞𝑥𝑖̂ − 𝑞𝑦𝑗̂ −  𝑞𝑧�̂�) 

= {(𝑞𝑎𝑥𝑖̂ + 𝑞𝑎𝑦𝑗̂ + 𝑞𝑎𝑧�̂�) + 𝑞𝑥𝑎𝑥(−1) + 𝑞𝑥𝑎𝑦�̂� + 𝑞𝑦𝑎𝑧𝑖̂ + 𝑞𝑧𝑎𝑥𝑗̂ + 𝑞𝑥𝑎𝑧(−𝑗̂) +

 𝑞𝑦𝑎𝑥(−�̂�) + 𝑞𝑦𝑎𝑦(−1) +   𝑞𝑧𝑎𝑦(−𝑖̂) + 𝑞𝑧𝑎𝑧(−1)}(𝑞 − 𝑞𝑥𝑖̂ −  𝑞𝑦𝑗̂ − 𝑞𝑧�̂�) 

= (𝑞2𝑎𝑥 − 2𝑞𝑎𝑦𝑞𝑧 + 2𝑞𝑞𝑦𝑎𝑧 + 𝑞𝑥
2𝑎𝑥 + 2𝑞𝑥𝑎𝑦𝑞𝑦 + 2𝑞𝑥𝑎𝑧𝑞𝑧 − 𝑞𝑦

2𝑎𝑥 − 𝑞𝑧
2𝑎𝑥)𝑖̂ + (2𝑞𝑞𝑧𝑎𝑥

+ 𝑞2𝑎𝑦 − 2𝑞𝑎𝑧𝑞𝑥 +    2𝑞𝑥𝑎𝑥𝑞𝑦 − 𝑞𝑥
2𝑎𝑦 + 𝑞𝑦

2𝑎𝑦 − 𝑞𝑧
2𝑎𝑦 + 2𝑞𝑦𝑞𝑧𝑞𝑧)𝑗̂ + (−2𝑞𝑞𝑦𝑎𝑥 + 2𝑞𝑞𝑥𝑎𝑦

+ 𝑞2𝑎𝑧 + 2𝑞𝑥𝑎𝑥𝑞𝑧 − 𝑞𝑥
2𝑎𝑧 +  2𝑞𝑦𝑞𝑧𝑎𝑦 + 𝑞𝑧

2𝑎𝑧

− 𝑞𝑦
2𝑎𝑧)�̂�.                                                                                                                                                                  (37) 

Equation 37 will provide the values of a along the global X, Y and Z axis. This will ensure that 

the equations or techniques developed for maneuver identification will be same regardless of 

phone’s orientation. It is noteworthy that similar quaternion conversion technique is applied by 

[13], however the final quaternion for orientation correction found by their method is different 

than the quaternion found in this research.  

The whole conversion process can be expressed by the flow chart in Fig. 25. 
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Fig. 25.  Flow chart of orientation correction process. 

 

After quaternion conversion the same two trips shown in Fig. 22 with different phone 

orientations, initially, shows a major variation of gyroscope readings along the Z axis of the 

global coordinate (Fig. 22 (e) and Fig. 22(f)). 

 

5.3.3 Orientation Correction Method Validation 

In order to check the accuracy of the orientation correction method, a validation 

technique is required. Validation is done by transforming raw gravity data obtained along a 

phone’s local coordinate to a global coordinate. For a randomly oriented phone making angles 

with a horizontal surface, the raw gravity data are divided among local the X, Y, and Z axes, 

resulting in a component value of 9.8 ms_2. After orientation correction, the transformed data 

represent data from a phone lying on a horizontal surface. For a phone lying on a horizontal 

plane, the gravity value should be 9.8 ms-2 along the global Z axis (perpendicular to the 
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horizontal plane) and near to 0 along the global X and Y axes. Thus, after orientation correction, 

if the transformed gravity readings are found to be 9.8 ms-2 along the global Z axis 

(perpendicular to the horizontal plane) and near to 0 along the global X and Y axes, then this 

validates the orientation correction technique. 

This validation technique was applied and it was found that the transformed gravity 

readings of the Z component of the gyroscope readings were around 9.8 ms-2, while the X and Y 

components were near to 0 (shown in TABLE 2). Thus, the orientation correction method was 

accurate. 

 

TABLE 2  Gyroscope readings of raw data and data after orientation correction showing proof of 

orientation correction method validation 

  

Gravity acceleration readings  

(raw) 
Gravity acceleration readings  

(after orientation correction) 

 Index 

X 

component 

Y 

component 

Z 

component 

X 

component 

Y 

component 

Z 

component 

1 1.19 9.312 2.833 5.13E-16 3.45E-15 9.807 

2 1.18 9.337 2.754 -2.86E-16 8.03E-16 9.806 

3 1.15 9.374 2.642 -8.30E-17 3.47E-17 9.807 

4 1.14 9.394 2.574 -2.84E-16 7.96E-16 9.806 

5 1.13 9.412 2.509 4.13E-16 6.99E-16 9.807 

6 1.14 9.427 2.450 -5.67E-16 -1.60E-15 9.806 
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CHAPTER 6 

MANEUVER IDENTIFICATION 

 

At an intersection, vehicles typically execute 3 different maneuvers: left turn, right turn, 

and through. As the vehicle makes a turn, a phone’s gyroscope experiences a high rotation rate as 

opposed to when the vehicle makes a through movement. This knowledge is used to differentiate 

the three maneuvers. At first, gyroscope data collected during multiple trips from Intersection 1 

are plotted to see if there exists any pattern that could be used to differentiate the maneuvers. As 

the trip data for analysis are labeled data, the ground truth of the maneuver type is already 

known. Using the ground truth for each type of maneuver, gyroscope readings along the global Z 

axis from multiple trips are plotted. Fig. 26, Fig. 27and Fig. 28 show the plot for multiple left 

turn, right turn, and through trips. The limit for y axis is from -0.4 radian/second to 0.4 

radian/second. The limit for x axis is from 1 to the number of data points in each trip. Observing 

these plots, a pattern is found. For left turn maneuvers, the gyroscope reading shows a hike in the 

time series, while for a right turn, it shows a depression in the time series. For through  

maneuvers, no such pattern is observed. This pattern can be explained by understanding the 

gyroscope data collection mechanism. As the vehicle makes a left turn, a phone is kept at 

stationary position in a random orientation inside the vehicle experiences rotation along its local 

axis. After orientation correction, the transformed data are such that the phone is laid on 

horizontal plane inside the vehicle. Thus, due to a vehicle making a left turn, the phone 

experiences anti-clockwise rotation along global Z axis.  As the anti-clockwise direction is 

positive, as a result, positive readings of gyroscope data are generated and a spike in time series 

along the global Z axis in observed. Theoretically, as the vehicle executes the left turn gradually,  

 



 

 

53 

 

Fig. 26.  Gyroscope plot for 50 left turn trips at Intersection 1. 
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Fig. 27.  Gyroscope plot for 50 right turn trips at Intersection 1. 
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Fig. 28.  Gyroscope plot for 39 through trips at Intersection 1. 

 

the phone experiences anti-clockwise rotation gradually, thus, the signature pattern for the 

gyroscope reading along the global Z axis should be a concave shape.  Similarly, when the 

vehicle makes a right turn, the phone inside it experiences clockwise rotation along global Z 

axis, thus generating a negative reading. Theoretically, as the vehicle executes a right turn 

gradually, the phone also experiences a clockwise rotation gradually, thus, the signature pattern 

for gyroscope reading along the global Z axis should be a convex shape.  A depression in the 

gyroscope time series data along global Z axis is observed as a result. For through maneuvers, 

the phone does not experience any rotation, thus no spike or depression in gyroscope time series 

data should be observed. Theoretically, a straight line should be observed in gyroscope readings. 

However, in the plot for multiple through trips, there are some trips that show variation in 
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gyroscope time series data, which indicates that due to noise in data, the pattern may not always 

be observed. It is important to mention that, the time series for different trips contains different 

numbers of data points.  

Not all trips contain clear patterns representing maneuver type. For the three 

intersections, number of trips showing no clear pattern in gyroscope global Z component 

readings is presented in TABLE 3. Among 774 total trips, 111 trips (14%) trips show no clear 

pattern. 

 

TABLE 3  Number of trips for each intersection that shows no clear pattern in gyroscope 

readings 

 
# of trips with no clear pattern in gyroscope reading 

 
Intersection 1 Intersection 2 Intersection 3 

Left turn 19 15 1 

Right turn 6 16 1 

Through 18 35 0 

 

 

The plots shown in Fig. 26, Fig. 27 and Fig. 28 are for transformed gyroscope reading along 

global Z axis after orientation correction. The local axis along which the maximum variation of 

gyro reading occurs depends on the orientation of the phone inside the vehicle (as mentioned in 

the data description section). Fig. 29(a) and Fig. 30(d) shows the gyroscope plot along a phone’s 

local axis that experienced a high rotation rate during 3 different trips for left turns and right 

turns, respectively. For example, a plot of raw gyroscope readings for Trip 1 presented in Fig. 

29(a) shows high rotation rate along phone’s local X axis while for Trip 2, it is observed in the 

phone’s local Y axis. Also, the signature pattern between left turn and right turn is not distinctive 

due to noise in the data and arbitrary orientation of the phone. Thus it is necessary to reduce 
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noise and apply orientation correction. Fig. 29(b) and Fig. 30(e) shows gyroscope plot for the 

same trips after noise reduction and orientation correction. 

 

 

Fig. 29.  Gyroscope plot for 3 different trips during left turn (a) before transformation and (b) 

after transformation. 
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Fig. 30.  Gyroscope plot for 3 different trips during right turn (d) before transformation and (e) 

after transformation. 
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As observed in Fig. 29(b) and Fig. 30(e), the plot of the transformed gyroscope readings 

show higher rotation rate along the global Z axis for turning vehicles and a particular pattern can 

be found for left turns and right turns. For left turns, the transformed gyroscope time series plot 

showed a concave shape [Fig. 29 (b)], while for right turns, a convex shape is observed [Fig. 30 

(e)]. As the vehicle makes a left turn, a phone lying in a horizontal plane experiences a counter 

clockwise rotation along global Z-axis, thus generating positive readings and a concave shape in 

the gyroscope time series plot. If the vehicle is making a right turn, then the phone experiences 

clockwise rotation and generates negative readings in gyroscope and a convex shape in the 

gyroscope time series plot. The signature pattern for left turns and right turns is presented in Fig. 

31 and Fig. 32. For through maneuvers, the phone does not experience any rotation and thus no 

high rotation rate will be observed in the gyroscope reading.  

 

 

Fig. 31.  Signature pattern for left turn. 
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Fig. 32.  Signature pattern for right turn. 

 

6.1 Distinctive Feature Identification 

Feature identification is an important step for algorithm development as features impact 

the accuracy of classification. There are several methods for feature evaluation and selection. A 

simple method of assessing feature quality is visualization of the features. In this research, 

boxplots are employed as a means for visualizing the distribution of data and identifying 

distinctive features. As observed, the distinctive pattern is found for the Z component of the 

transformed gyroscope data for the three maneuver types. Thus, the distribution of the Z 

component of transformed gyroscope data is explored using the boxplots. Data from three 

intersections have been analyzed. The features that are selected to visualize are: mean, median, 

maximum, minimum, and range. Based on ground truth, left turns, right turns, and through 

maneuvers are separated. For each trip, the mean, median, maximum, minimum, and range 

values have been calculated. For a particular intersection, the mean value of the selected 5 

features for all left turn trips, right turn trips, and through trips have been calculated. Using these 

as inputs, boxplots for each type of maneuvers in an intersection, have been generated for the 

selected 5 features. 
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Fig. 33, Fig. 34 and Fig. 35 show the boxplots for mean, median, maximum, minimum, 

and range for Intersection 1. The central rectangle equals to the inter quartile range (IQR) is 

calculated as follows: 

𝐼𝑄𝑅 =  𝑄3 − 𝑄1 ,                                                                          (38)                    

where  𝑄3          3rd quartile 

𝑄1          1st quartile. 

The rectangular box represents the 1st quartile, median, and 3rd quartile of the particular 

feature. The upper whisker is located at the smaller of the maximum x value and Q3 + 1.5*IQR, 

lower whisker is located at the larger of the smallest x value and Q1 – 1.5*IQR. The circular 

points represent the outliers that lie outside the whiskers. 

For Intersection 1, the boxplots are shown in Fig. 33. The boxplot for maximum values of 

Z component of transformed gyroscope readings show that for the distribution for gyroscope 

readings during left turns does not have overlap with the distributions for gyroscope readings 

during right turns and through maneuvers. However, there is overlap between the distribution of 

gyroscope readings during right turn and through maneuver. That indicates that the maximum 

value of the gyroscope readings will not be a distinctive feature for maneuver classification. The 

boxplot for the minimum values of the Z component of the transformed gyroscope readings show 

that there is overlap between the distribution of gyroscope readings during left turns and through 

maneuvers. The boxplots for mean and median values show that there is overlap among the 

distributions of gyroscope readings during all three maneuvers.  The least overlap between the 

distributions of gyroscope readings during left turns, right turns, and through maneuvers is 

observed for range values. Thus, it is identified as the most distinctive feature for maneuver 

classification. Similar observations were made for the boxplots for Intersection 2 (Fig. 34) and 
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Intersection 3 (Fig. 35). For all the 3 intersections, range was found to be the most distinctive 

feature for maneuver classification. 

 

 

Fig. 33.  Boxplots for features of gyroscope values for trips at Intersection 1. 
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Fig. 34.  Boxplots for features of gyroscope values for trips at Intersection 2. 
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Fig. 35.  Boxplots for features of gyroscope values for trips at Intersection 3. 
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6.2 Maneuver Identification Algorithm Based on Threshold of Gyroscope Reading 

An algorithm is empirically developed to identify the 3 different types of maneuver. The 

range value of the Z component of transformed gyroscope readings are employed for the 

algorithm development.  

For any particular trip, the range, r is calculated as in 

   Range, r = max{x1, x2, x3, …… , xn} - min{x1, x2, x3, …… , xn},                   (39) 

where x is the Z component of gyroscope reading for a trip with 1 to n data points. 

For a particular trip, if r is greater than 0.29, the maneuver executed in the trip is identified as 

turn, else identified as through. For any particular trip with maneuver identified as turns, if the 

absolute value of maximum positive gyroscope reading is higher than the absolute value of 

maximum negative gyroscope reading, then the turn is identified as a left turn (LT), else it is 

identified as a right turn (RT). The value of r for the algorithm is set to 0.29 empirically and 

based on sensitivity analysis done on a training data set consisting of 35 trips. The results for 

sensitivity analysis is presented in TABLE 4, TABLE 5 and TABLE 6. Among the 35 trips, 8 

were left turns, 8 were right turns, and 19 were through maneuvers. The value of r has been 

varied from 0.26 to 0.34 to see the accuracy of the algorithm on identifying the maneuver type of 

the training data set. It was observed that for r=0.26, all the left turn trips were correctly 

identified (100% accuracy), 7 right turn trips were correctly identified (88% accuracy) and 13 

through trips were correctly identified (68% accuracy) (TABLE 4). The overall accuracy of the 

maneuver identification algorithm for 0.26 was 85%. For r values ranging from 0.27 to 0.28, the 

algorithm correctly identified 8 left turn trips, 7 right turn trips, and 16 through trips with an 

accuracy of 100%, 88% and 84%, respectively (TABLE 5). The overall accuracy of the 

algorithm for the range of values was 91%. For r values 0.29, the algorithm correctly identified 8 
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left turn trips, 7 right turn trips and 19 through maneuvers with an accuracy of 100%, 88% and 

100% respectively. The overall accuracy of the algorithm was 96%. The accuracy of the 

algorithm was stabilized at 96% and did not improve further with increase in r values (TABLE 

6). Thus the value of r is selected to be 0.29. 

 

TABLE 4  Sensitivity analysis results for maneuver identification algorithm with r = 0.26 

 
 

Identified 
 

 
r 

 
Left Turn Right Turn Through %Accuracy 

Overall 

Accuracy% 

0.26 

Left Turn 8 0 0 100 

85 Right Turn 0 7 1 88 

Through 3 3 13 68 

 

 

TABLE 5  Sensitivity analysis results for maneuver identification algorithm with r values 

varying from 0.27 to 0.28 

 
 

Identified 
 

 
r   Left Turn Right Turn Through %Accuracy 

Overall 

Accuracy% 

0.27 -

0.28 

Left Turn 8 0 0 100 

91 Right Turn 0 7 1 88 

Through 2 1 16 84 
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TABLE 6  Sensitivity analysis results for maneuver identification algorithm with r values 0.29 

and higher 

 
 

Identified 
 

r   Left Turn Right Turn Through %Accuracy 
Overall 

Accuracy% 

>= 

0.29 

Left Turn 8 0 0 100 

96 Right Turn 0 7 1 88 

Through 0 0 19 100 

 

 

6.3 Results of Maneuver Identification Based on Threshold of Gyroscope Readings 

The above-described algorithm is applied to smartphone data collected during trips from 

3 four-legged intersections situated in Norfolk, VA and Virginia Beach, VA. The accuracy of the 

algorithm is assessed by matching the identified maneuver type with actual maneuver made by 

the vehicle at any particular intersection. The GPS coordinates are used as ground truth for 

detecting the actual maneuver made by the vehicle through the intersection for any particular 

trip. 

From Intersection 1, a total of 274 trips data were collected, of which 145 of the trips 

consisted of left turns only, 90 trips were of right turns only, and 39 trips were of through 

maneuvers only along the intersection. The duration of the trips varied from minimum 14 

seconds to 55 seconds. The sampling rate was set to 10 samples per second. Thus, each trip 

contained a minimum 140 to a maximum 550 data points. Seven different drivers made those 

trips. The results in TABLE 7 are presented as a confusion matrix where each row represents the 

number of left turns, right turns, and through maneuvers in an actual class, while each column 

represents the number of left turns, right turns, and through maneuvers in an identified class. Of 
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the 145 actual left turns, the algorithm accurately identified 143 trips as left turns, while it 

inaccurately identified 2 left turns as through maneuvers. Similarly, out of 90 right turn trips, the 

algorithm correctly identified 85 trips as right turns and inaccurately identified 5 trips as through 

maneuvers. Of the 39 actual through trips, the algorithm accurately identified 36 trips as through 

maneuvers and inaccurately identified 2 trips as left turns and 1 trips as a right turn. The 

algorithm had 99% accuracy for identifying left turns, 95% accuracy for identifying right turns, 

and 93% accuracy for identifying through maneuvers. The results for Intersection 2 are shown in 

TABLE 8. 7 different drivers executed the trips. Of the 124 actual left turns, the algorithm 

accurately identified 118 trips as left turns with 100% accuracy. Out of 133 right turn trips, the 

algorithm correctly identified all 133 trips as right turns (100% accuracy). Of the 157 actual 

through trips, the algorithm accurately identified 154 trips as through (99% accuracy).  

The results for Intersection 3 are presented at TABLE 9 as a confusion matrix. Of the 9 

actual left turns, the algorithm accurately identified 5 trips as left turns (56% accuracy). The 

algorithm correctly identified all 3 right turn trips (100% accuracy). Of the 56 actual through 

trips, the algorithm accurately identified all the 56 trips as through maneuvers (100% accuracy). 

Investigating the reason of the inaccurate identification of left turn trips revealed that for those 

trips, the gyroscope did not sense much rotation while the vehicle executed the turns. Intersection 

3 is a wide intersection and the vehicles were executing the turn very slowly. As a result, the 

phone were experiencing very little rotation per second, which was below the defined range 

(0.29 rad/second) to identify turns. This indicates that r value should be selected based on 

multiple intersections with various intersection widths. 

The drawback of the algorithm is that the algorithm relies on the threshold of gyroscope 

values. A gyroscope is a sensitive sensor. Although during the data collection process, the 
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smartphones are kept in stationary positions, they were not always kept fixed by a smartphone 

holder. Sometimes the smartphones were just kept lying in a cup holder. Due to potholes in the 

road surface or sudden braking of the car, the smartphone may experience some movement, 

which might result into higher values in the gyroscope readings. In such cases, even though the 

vehicle did not make any turn, due to the phone experiencing some movements, the developed 

algorithm falsely identify the through maneuvers as turns. This might be the reason of 

identifying a number of through maneuvers as left and right turns. In addition as mentioned, if 

the phone experienced very little rotation due to the vehicle executing the turn very slowly, as 

happened in Intersection 3, in such cases, this threshold method will fail to identify turns 

correctly. 

 

TABLE 7  Results for maneuver identification by threshold of gyroscope readings for 

Intersection 1 

 
Identified 

 

 
Left Turn Right Turn Through %Accuracy 

Left Turn 143 0 2 99 

Right Turn 0 85 5 95 

Through 2 1 36 93 
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TABLE 8  Results for maneuver identification by threshold of gyroscope readings for 

Intersection 2 

 
Identified 

 

 
Left Turn Right Turn Through %Accuracy 

Left Turn 118 2 4 96 

Right Turn 0 133 0 100 

Through 3 0 154 99 

 

 

TABLE 9  Results for maneuver identification by threshold of gyroscope readings for 

Intersection 3 

 
Identified 

 

 
Left Turn Right Turn Through %Accuracy 

Left Turn 5 0 4 56 

Right Turn 0 3 0 100 

Through 0 0 56 100 

 

 

6.4 Maneuver Identification by DTW Distance 

In this section, a clustering based algorithm for maneuver classification is described. As 

mentioned previously, there are similarities in patterns of gyroscope readings for each type of 

maneuver. Thus, it is invaluable to explore if the maneuvers can be classified based on the 

patterns in the gyroscope readings. For each intersection, a trip is selected as template for each 
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maneuver. Observing the gyroscope global Z component plots for each maneuver and visually 

selecting the trip that matches closely to the signature pattern, the template trip is selected. The 

gyroscope Global Z component plot for template trip representing left turn, right turn, and 

through maneuver, respectively for Intersection 1 is shown in Fig. 36, Fig. 37 and Fig. 38. The 

distance between the times series of each trip with the three template trip is calculated using 

DTW algorithm. The distance between the template left turn trip and any particular trip making a 

left turn maneuver is expected to be small, as it is expected that the gyroscope time series pattern 

will be similar. On the other hand, distance between the template left turn tip and any particular 

trip making right turn or through maneuver is expected to be large. Thus, each trip is categorized 

based on the maneuver type of template trip that has smallest distance with that trip. For 

example, if any particular trip is found to have smallest DTW distance between the template trip 

for a left turn maneuver, then that particular trip is identified as a left turn. In R software, “dtw” 

package is used for calculating the DTW distance between the gyroscope readings of trips [40]. 
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Fig. 36.  Gyroscope time series plot of template trip representing left turn maneuver at 

Intersection 1.  

 

 

Fig. 37.  Gyroscope time series plot of template trip representing right turn maneuver at 

Intersection 1. 
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Fig. 38.   Gyroscope time series plot of template trip representing through maneuver at 

Intersection 1. 

 

 

 In order to calculate the DTW distance between gyroscope time series of a template trip 

and a candidate trip, the warping matrix, w is calculated (Fig. 39). The element of w, w(i, j) is 

calculated as follows: 

w(i, j) =  d(ai , bj) + min{w(i − 1, j − 1),w(i − 1, j),w(i, j − 1) } ,         (40) 

where  d(ai , bj) =  |ai − bj|.                                                         (41) 

The conditions of d(ai, bj) are as follows: 

d(ai , bj) = {

0, if i = 0, j = 0
Infinity, if i = 0 or j = 0

d(ai , bj), if i = 1 and j − 1
 .                                            (42) 

  Minimum path is found by starting from w(1, 1) and continuing to adjacent cell with 

minimum w(i, j) path following monotonicity, continuity, and boundary constraints that are 

discussed in Chapter 4. The total DTW distance between the template trip and candidate trip is 

then  
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DTW distance =
w(n,m)

k
 ,                                                (43) 

where k is number of cells in the path. 

 

 

Fig. 39.  Warping matrix for calculating DTW distance. 

 

6.5 Results of Maneuver Identification by DTW Distance 

The results of maneuver identification based on DTW distance are presented as a 

confusion matrix for the three intersections in TABLE 10, TABLE 11 and TABLE 12. For 

Intersection 1, the algorithm has a 70% accuracy of identifying left turns, a 96% accuracy of 

identifying right turns, and a 87% accuracy of identifying through maneuvers. For Intersection 2, 

the algorithm has a 91% accuracy of identifying left turns, a 99% accuracy of identifying right 

turns, and a 95% accuracy of identifying through maneuvers. For Intersection 3, the algorithm 
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has a 100% accuracy of identifying left turns, a 100% accuracy of identifying right turns, and a 

76% accuracy of identifying through maneuvers.  For Intersections 1 and 2, the method based on 

a DTW distance/dissimilarity matrix yielded less accuracy than the threshold of the gyroscope 

value algorithm. For this method to correctly identify maneuvers, it is expected that the left turn 

and right turn have a signature pattern similar to Fig. 31 and Fig. 32. The left turn should have a 

concave curve while right turn should have a convex curve. However, this concave/convex 

pattern is not observed in all the turn trips. For example, as shown in Fig. 29(b), Trip 2, although 

it was a left turn trip, the gyroscope plot has a convex followed by concave shape.  Similarly, in 

Fig. 30(b) Trip 2 shows a gyroscope plot for a right turn trip where no distinctive convex shape 

is observed. When the DTW distance between the gyroscope readings of a trip showing 

distinctive turn pattern and that of a trip with no distinctive pattern is calculated, the distance is 

expectedly found to be large. Thus the algorithm might inaccurately identify the maneuvers. For 

Intersection 3, the accuracy for left turns and right turns identification is 100%. This indicates 

that, although the threshold of gyroscope reading was not large enough to accurately identify the 

turns (as seen in Section 6.1.2), the pattern for left and right turns existed in the time series.   

Overall, this method has less accuracy than the method based on threshold value of 

gyroscope readings for maneuver identification. 
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TABLE 10  Results for maneuver identification by DTW distance for Intersection 1 

 
Identified   

  Left Turn Right Turn Through %Accuracy 

Left Turn 101 10 33 70 

Right Turn 0 85 4 96 

Through 4 1 33 87 

 

 

TABLE 11  Results for maneuver identification by DTW distance for Intersection 2 

 
Identified   

  Left Turn Right Turn Through %Accuracy 

Left Turn 112 2 9 91 

Right Turn 0 131 1 99 

Through 4 4 148 95 

 

 

TABLE 12 Results for maneuver identification by DTW distance for Intersection 3 

 

Identified   

  Left Turn Right Turn Through %Accuracy 

Left Turn 8 0 0 100 

Right Turn 0 2 0 100 

Through 11 2 42 76 
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6.6 Maneuver Identification by Clustering Based on Maximum and Minimum Value of 

Gyroscope Reading 

As mentioned in Section 6.1, the boxplots for the gyroscope readings for the maneuvers 

indicated that the range is the most distinctive feature for identifying maneuver type.  Here, using 

the ground truth value for maneuver type, the maximum and minimum values of the Gyroscope 

Z component readings for each trip are plotted together for each intersection to see if any cluster 

can be seen visually. The plots are presented in Fig. 40, Fig. 41, and Fig. 42. The X axis and Y 

axis of the plot represents the maximum and minimum of the gyroscope global Z component 

readings for each trip respectively. Each circle in the plot represents each different trip for that 

particular intersection. The plots show that the trips from each maneuvers form 3 clusters of trips 

in each intersection. However, in real scenarios, the objective is to identify the type of maneuver 

for each trip, as no ground truth value for the maneuver type is known.  Thus, an appropriate 

clustering technique can be effective in identifying the cluster representative trip and the member 

trips for each cluster. After identification of the members forming each cluster, another algorithm 

will be applied to identify the maneuver that each cluster represents. 
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Fig. 40.  Plot of maximum and minimum gyroscope Z component readings for trips at 

Intersection 1.  

 

 

Fig. 41.  Plot of maximum and minimum gyroscope Z component readings for trips at 

Intersection 2. 
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Fig. 42.  Plot of maximum and minimum gyroscope Z component readings for trips at 

Intersection 3. 

 

A K-medoids clustering based on the minimum and maximum of gyroscope global Z 

component readings is employed to see the effectiveness of clustering the three maneuver types. 

The maximum and minimum values of gyroscope readings from each trip has been provided as 

input and k-medoids clustering is done on that input. In R software, “PAM” (Partitioning Around 

Medoid) toolbox is used for the clustering [41]. The term “medoid” refers to an observation for a 

particular cluster. The sum of the distances between that medoid and all the other members in 

that particular cluster is minimum. “PAM” toolbox identifies the clusters and produces the 

number of members of each cluster. 

To assess the accuracy of the clustering or the fitness of each member in the assigned 

cluster, a silhouette plot is employed. A silhouette plot is a plot of a measure known as silhouette 

width [42]. Silhouette width is the ratio of the closeness of a particular member to other members 
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in its own cluster to the closeness of it to members in other clusters. Suppose, j is a particular 

observation which belongs to a cluster K. d(j) is the average dissimilarity between j and all other 

members of the cluster K. For all other clusters m, d(j,m) is the average dissimilarity of j to all 

members of m. The dissimilarity between j and its “neighbor” cluster, i.e., the nearest one to 

which it does not belong is d(j,m) is e(j). e(j) is the minimum average dissimilarity between j to 

other clusters except the one it belongs to[42]. 

The silhouette width s(j) is defined as follows:  

s(j) =
(e(j)−d(j))

max (d(j),e(j))
  .                                                          (44) 

The value of s(j) near 1 means that the observation is well placed in its cluster, while value near 

0 mean that it's likely that an observation might really belong to another cluster.  

 

 

Fig. 43.  Distance between a particular observation with other observations. 

 

The silhouette plot is the plot of these silhouette width for each observation. For well fitted 

clusters, each member should have a silhouette width value close to 1. If the silhouette plot 

shows that for many observations the values are closer to zero then it means that the fit for each 

observations in its assigned cluster was not good. The overall fit is evaluated with the calculated 
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value "average silhouette width" which represents the strength of the structure of the cluster. 

TABLE 13 show the meaning of the values [42]. 

 

TABLE 13  Interpretation of silhouette width values [42] 

Average silhouette width Interpretation 

0.71- 1.0 A strong structure has been found 

0.51 – 0.70 A reasonable structure has been found 

0.26 – 0.50 The structure is weak and artificial 

< 0.25 No substantial structure has been found 

 

 

In order to show the clusters in a plot more distinctively, PCA is applied on the bivariate 

data set. PCA yields first component in terms of correlations between the two variables, such that 

the greatest variance of the data set comes to lie on the first axis, i.e., the first principal 

component, the second greatest variance on the second axis, i.e., the second principal component 

and so on[43]. For example, for a data set consisting of X and Y, a scatterplot is shown in Fig. 

44. The best fitted regression line in terms of X and Y and its orthogonal line is shown by dotted 

lines. This regression line is able to show the most variation of the data set. This line is the first 

principle component. The orthogonal line to the best fitted regression line is the second principle 

component (see Fig. 45). Plotting the first and second component will show clusters of the data, 

if there is any similarity within the data points. However, this method only divides the trips into 

clusters. It does not automatically identify which cluster represents which maneuver. For that 

identification, the maximum and minimum value of the gyroscope global Z component reading 

of each cluster representative trip is observed. As shown in the distinctive feature identification 
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section, maximum and minimum value will indicate the type of maneuver that cluster 

representative belongs to. 

 

 

Fig. 44.  Scatterplot of a bivariate dataset and the regression lines [43].  
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Fig. 45.  The scatterplot showing the principal components [43]. 

 

6.7 Results of Maneuver Identification by Clustering Based on Maximum and Minimum 

Gyroscope Readings 

Results of clustering based on the features (minimum and maximum gyroscope readings 

of each trip) performed well to cluster the trips. For Intersection 1, the clustering algorithm 

divided the trips into 3 clusters. The first cluster has 46 observations and average silhouette 

width 0.64. The second cluster has 142 observations and average silhouette width 0.67. The third 

cluster has 86 observations and average silhouette width 0.70. The silhouette width refers that the 

observations are well fitted to its assigned cluster. The overall average silhouette width 0.67 

indicates that all these clusters have reasonably strong structure (Fig. 46). The cluster plot shows 

that the clusters are distinctive and does not have much overlap with each other (Fig. 47).   
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Fig. 46.  Silhouette plot of clusters for trips at Intersection 1 for clustering based on features. 

 

 

Fig. 47.  Cluster plot of clusters for trips at Intersection 1 for clustering based on features. 

 

Similar results were also observed for Intersection 2, where the k-medoids clustering 

based on maximum and minimum gyroscope values for each trip divided the trips into 3 clusters. 
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The first, second, and third clusters contain 156, 123, and 135 observations, respectively. The 

average silhouette width for the 3 clusters is 0.74, 0.64, and 0.69, respectively, which indicates 

that the observations are well fitted in their assigned cluster. The overall average silhouette width 

is 0.69, which also indicates that the clusters have strong structure (Fig. 48). The cluster plot also 

shows 3 distinctive clusters with some overlap (Fig. 49).   

 

 

 

Fig. 48.  Silhouette plot of clusters for trips at Intersection 2 for clustering based on features. 
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Fig. 49.  Cluster plot of clusters for trips at Intersection 2 for clustering based on features. 

 

For the data from Intersection 3, the k-medoids clustering performed well. The clustering 

divided the trips data into 3 clusters. The first, second, and third clusters contain 9, 56, and 3 

observations, respectively. The average silhouette width for the 3 clusters is 0.67, 0.82, and 0.62, 

respectively, which indicates that the observations are well fitted in their assigned cluster. The 

overall average silhouette width is 0.79, which also indicates that the clusters have strong 

structure (Fig. 50). The cluster plot also shows 3 distinctive clusters with minimal overlap (Fig. 

51).  Thus k-medoids clustering based on maximum and minimum gyroscope values for each trip 

seem to be effective in identifying the clusters accurately. 
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Fig. 50.  Silhouette plot of clusters for trips at Intersection 3 for clustering based on features. 

 

 

Fig. 51.  Cluster plot of clusters for trips at Intersection 3 for clustering based on features. 

 

However, this method does not automatically identify which cluster represents which maneuver. 

For that identification, maximum and minimum value of the gyroscope global Z component 

reading of each cluster representative trip is observed. Maximum and minimum values indicate 

the type of maneuver to which the cluster representative belongs. Using this method of 
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identification, the confusion matrix of results of maneuver identification is generated. The results 

for the three intersections are presented in TABLE 14, TABLE 15 and TABLE 16. For 

Intersection 1, the algorithm has a 98% accuracy of identifying left turns, a 96% accuracy of 

identifying right turns, and a 100% accuracy of identifying through maneuvers. For Intersection 

2, the algorithm has a 99% accuracy of identifying left turns, 100% accuracy of identifying right 

turns, and a 99% accuracy of identifying through maneuvers. For Intersection 3, the algorithm 

has a 100% accuracy of identifying left turns, a 100% accuracy of identifying right turns, and a 

100% accuracy of identifying through maneuvers. Overall, this method has high accuracy in 

maneuver identification. It indicates for some trips, although signature pattern in the gyroscope 

reading is not observed or the gyroscope threshold value may not be large enough for turn 

maneuver identification, the maximum and minimum values of the gyroscope global Z 

component are distinctive enough for accurate maneuver identification.  

Further analysis is done to explore the trips from Intersection 1 and Intersection 2 that 

were inaccurately identified by this clustering technique. At Intersection 1, 3 left turn trips were 

identified as through maneuvers. Exploration of one such trip is provided here. First, the GPS 

plot of that particular trip is observed to make sure that the trip was indeed a left turn trip. The 

OBD speed plot was also done to see whether the vehicle was actually moving. The global Z 

component of gyroscope readings is plotted then to see if any expected variation is observed due 

to a turn. The raw gyroscope plot along X, Y and Z axis for that trip is also plotted. The plots are 

shown in Fig. 52. It becomes evident that, although the vehicle was moving and making a left 

turn, the gyroscope failed to capture the expected large variation in any of the local axis. The 

transformed gyroscope reading along global Z axis also does not show any variation. A similar 

observation was made in other turn trips that were inaccurately identified as through maneuvers. 
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This indicates that gyroscope might have malfunctioned during the trip. Although gyroscope 

sensor was capturing data, it was not accurately sensing the angular variations. For the through 

maneuvers that were inaccurately identified as turns, it was found that the gyroscope showed 

large variations even though the vehicle did not made any turning maneuver. This is probably 

due to the local movement of the phone inside the vehicle. Thus, the gyroscope sensor is very 

sensitive and may sometimes malfunction or capture local movements as well. The accuracy of 

the maneuver identification algorithm would be more if the gyroscope malfunctioning did not 

occur or the phone did not experience any local movement during the trip. 

 

TABLE 14  Results for maneuver identification by clustering based on maximum and minimum 

gyroscope reading for Intersection 1 

 

Identified   

 

  
Left Turn Right Turn Through %Accuracy 

Average 

silhouette width 

Left Turn 142 0 3 98 

0.67 Right Turn 0 86 4 96 

Through 0 0 39 100 
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TABLE 15  Results for maneuver identification by clustering based on maximum and minimum 

gyroscope reading for Intersection 2 

 

Identified   

 

  
Left Turn Right Turn Through %Accuracy 

Average 

silhouette width 

Left Turn 123 0 1 99 

0.69 Right Turn 0 133 0 100 

Through 0 2 155 99 

 

 

TABLE 16  Results for maneuver identification by clustering based on maximum and minimum 

gyroscope reading for Intersection 3 

 

Identified   

 

  
Left Turn Right Turn Through %Accuracy 

Average 

silhouette width 

Left Turn 9 0 0 100 

0.79 Right Turn 0 3 0 100 

Through 0 0 56 100 
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Fig. 52.  GPS, OBD speed, raw gyroscope readings and gyroscope global Z component reading 

plots for a left turn trip identified as through by clustering method. 

 

 

6.8 Evaluation of Magnetometer Data for Maneuver Identification 

In this section, the magnetometer data from the trips are explored to see if they could be 

utilized to differentiate the three maneuver types. Using the magnetometer data, the orientation 

of the phone relative to a global coordinate can be calculated. As mentioned in the orientation 

correction section, gravity acceleration and magnetometer data from a phone’s local coordinate 

system have been employed to identify a phone’s orientation angles. A phone’s orientation angle 

φ, θ, and ψ represent the rotation along X, Y, and Z axis of a phone’s local coordinate 

respectively. 𝜓 is also the angle made by the phone relative to Magnetic North. As the phone 
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remains stationary at its random orientation inside the vehicle, a deviation is expected in one of 

the orientation angles of the phone if a vehicle makes a turning movement. For example, suppose 

a vehicle is going North bound. The phone is oriented such that 𝜓 angle of the phone is 55 

degrees. If the vehicle makes a left turn at the intersection, then the phone experiences a positive 

90 degree turn. As a result, the end orientation of the phone related to North will be 145 degrees. 

This deviation is expected when the entire time series of the angles of the phone during any 

particular trip executing a turning maneuver is plotted. To observe, if this assumption is indeed 

true, the phone angles of all the trips from the 3 intersections were plotted. Fig. 53 shows the 

plots for orientation angle and Z component of gyroscope readings during 3 different left turn 

trips. Fig. 53(a) shows the phone’s angle related to North, 𝜓 was initially around -150 degree and 

after the left turn, the angle became around 150 degrees. The gyroscope plot at Fig. 53(b) 

confirms that the vehicle’s left turn maneuver was initiated at around the index number 125 and 

maneuver was completed at around index number 190. Thus, the change in angle related to 

North, 𝜓 within that window is due to the turning maneuver. The φ, θ  angles remains 

unchanged during the trip. Fig. 51(c) shows a different pattern in orientation angles, ψ. Initially 

the angle was -150 degrees. The angles deviated to 150 degrees between index number 25 to 80, 

then mostly remained at -150 degree until index number 150. They then deviated between -150 

degree to 150 degrees until index number 225. After that the orientation angle remained around 

100 degrees. However, the gyroscope plot showed in Fig. 53(d) that the turn was executed by the 

vehicle within index 160 to 250. Thus, there was fluctuations on orientation angle ψ all through 

the trip, although technically the fluctuation of angle, ψ should only be observed during index 

160 to 250, while the vehicle was executing the turn. Fig. 53(e) shows that the orientation angle 

ψ changes from 150 degree to 100 degree in between index number 350 to 400. The gyroscope 
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plot (Fig. 53 (f)) confirmed that the vehicle executed the turn in between index number 350 to 

400. Overall, a major deviation in orientation angle, ψ is observed if the vehicle executed a turn. 

 

 

Fig. 53.  Phone’s orientation angle and Z component of gyroscope plots for 3 different  

left turn trips. 

 

 

Next, orientation angles for through maneuvers is explored. It is expected that, for a 

through going vehicle, the orientation angle, ψ should remain unchanged. For example, if a 
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vehicle was going North bound initially and the orientation of the phone was such that the phone 

made a 50 degree angle related to North, then as the vehicle continued moving to North bound 

through the intersection, the orientation angle will not show any major deviation and remain the 

same at around 50 degrees. The plots of orientation angles and gyroscope Z component readings 

for 3 different through trips are presented in Fig. 54. Fig. 54(a) shows that the orientation angles 

did not show any major deviation as the vehicle made the through maneuver. The gyroscope plot 

shown in Fig. 54(b) also showed no deviation. However, in the trip shown in Fig. 54(c), the 

orientation angle, ψ changes from 150 degrees to -150 degrees between index number 150 to 

200. The gyroscope plot shown in Fig. 54(d) showed no major variation in gyroscope readings 

within that period. There were some variations in gyroscope readings at the beginning and end of 

trip. The range, i.e. the difference between maximum and minimum gyroscope readings, was 

calculated to be 0.15. Based on the developed maneuver identification algorithm employing 

gyroscope readings, the range needs to be higher than 0.29 to identify a trip as a turn (Section 

6.1.1). Thus the Trip 2, shown in Fig. 54, will be identified as a through trip if the decision is 

based on gyroscope readings only. But the orientation angles plots showed major deviation 

during the trip, that falsely implies the trip as a turn trip. A similar observation was made for the 

Trip 3, shown in Fig. 54. The plots for orientation angle, ψ showed a large deviation and the 

gyroscope readings also showed variation (Fig. 54(f)). However, the range of gyroscope readings 

was 0.22. This was less that the required range value 0.29 for identifying a trip as a turn.  Thus, it 

became apparent that the orientation angles of the phone were sometimes giving inaccurate 

indication of turn maneuvers even though the vehicle was actually executing a through 

maneuver.  

 



 

 

95 

 

Fig. 54.  Phone’s orientation angle and Z component of gyroscope plots for 3 different through 

trips. 

 

Another interesting case was found which is shown in Fig. 55. The orientation angle, ψ 

was found to be gradually decreasing from 150 degrees to -150 during the through trip and φ 

angle also showed large deviation during the trip. However, the gyroscope plot did not show any 

major variation during the trip (range 0.17). All these examples indicate that the orientation angle 

is not a good parameter for identifying maneuver type. The orientation angles are calculated 
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from magnetometer data. It seemed from observing the above mentioned cases that the 

magnetometer data have more vulnerability of being noisy than the gyroscope data. As a result, 

the orientation angles calculated using magnetometer data can become inaccurate. 

 

 

Fig. 55.  Phone’s orientation angle and Z component of gyroscope plots for a through trip. 

 

6.9 Maneuver Identification Algorithm using Gyroscope Readings and Phone’s Orientation 

Angles 

In this section, an algorithm is developed employing the orientation angle of a phone and 

gyroscope readings to find if the employment of this two parameters together can improve 

maneuver identification accuracy. The range value of the Z component of transformed gyroscope 

readings and the difference in value of the orientation angle, ψ for 1st 3 seconds and the last 3 

seconds of the trip are employed for the algorithm development. For any particular trip, the range 

of gyroscope reading, r is calculated as  

Range, r = max(x1, x2, x3, …… , xn) - min(x1, x2, x3, …… , xn) ,                     (45) 

where x is the global Z component of gyroscope reading for a trip with 1 to n data points. 

The range of orientation angle, s, for that particular trip is calculated as  
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 S = mean(ψ1, ψ2, ψ3, …… ,ψ30) - mean(ψn−30, ψn−29, ψn−28, …… ,ψn) ,         (46) 

where ψ is the orientation angle for a trip with n data points. 

For any particular trip, if r is equal or greater than 0.29, or alternately, s is greater than 60 

degree, the maneuver executed in the trip is identified as a turn, else identified as a through 

maneuver. For any particular trip with a maneuver identified as a turn, if the absolute value of 

the maximum positive gyroscope reading is higher than the absolute value of the maximum 

negative gyroscope reading then the turn is identified as a left turn, else it is identified as a right 

turn. The results for this algorithm are discussed in the next section. 

 

6.10 Results for Maneuver Identification using Gyroscope Readings and a Phone’s 

Orientation Angles 

Using both the gyroscope reading and orientation angles alternately for maneuver identification 

yielded poor results for identifying through maneuvers (TABLE 17). For Intersection 1, the 

algorithm had a 99% accuracy for identifying left turns, a 96% accuracy for identifying right 

turns, and a 75% accuracy for identifying through maneuvers. Similar results were observed for 

Intersection 2 (TABLE 18) and Intersection 3 (TABLE 19). The observations from the results 

are listed below: 

•  The algorithm using orientation angles and gyroscope readings alternately for maneuver 

identification showed less accuracy for through maneuver identification. 

• The algorithm had high accuracy in turn maneuver identification.  

• Overall, the accuracy of the algorithm is less than the algorithm, which used only gyroscope 

readings to identify maneuver type.  
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TABLE 17  Results for Intersection 1 by algorithm using gyroscope and orientation angles 

alternately for maneuver identification 

 
Identified   

  Left Turn Right Turn Through %Accuracy 

Left Turn 143 2 0 99 

Right Turn 0 86 4 96 

Through 6 4 29 75 

 

 

TABLE 18  Results for Intersection 2 by algorithm using gyroscope and orientation angles 

alternately for maneuver identification 

 
Identified   

  Left Turn Right Turn Through %Accuracy 

Left Turn 118 2 4 96 

Right Turn 0 133 0 100 

Through 13 12 132 85 

 

 

TABLE 19  Results for Intersection 3 by algorithm using gyroscope and orientation angles 

alternately for maneuver identification 

 
Identified   

  Left Turn Right Turn Through %Accuracy 

Left Turn 7 0 2 78 

Right Turn 0 3 0 100 

Through 2 4 50 90 
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6.11 Results Comparison between Different Methods 

 For the purpose of comparison between the performances of each method for maneuver 

identification, a bar chart of each algorithms accuracy for identifying left, right, and through 

maneuvers is created for all three intersections, separately.  The bar charts are presented in Fig. 

56, Fig. 57, and Fig. 58, respectively. The findings are listed below: 

• Using gyroscope data alone yields more accuracy of maneuver identification than using 

gyroscope and orientation angles together. 

• Clustering by maximum minimum gyroscope reading yields best result. 

 

 

 

Fig. 56.  Maneuver identification result comparison between different methods for trips at 

Intersection 1. 
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Fig. 57.  Maneuver identification result comparison between different methods for trips at 

Intersection 2. 
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Fig. 58.  Maneuver identification result comparison between different methods for trips at 

Intersection 3.  

 

 A hypothesis testing is done to see whether the accuracy results for k-medoids clustering 

by maximum and minimum gyroscope global Z component readings method is significantly 

different than other methods [44]. The total numbers of trips from all three intersections are 

summed up and the number of trips that are correctly identified by each method is calculated. 

This result can be expresses as a binomial distribution  

𝑋~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝑝) ,                                                                             (47) 

where 

n          is the  total number of trips,  
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p          is the number trips correctly identified. 

For example, among the 756 total trips from all three intersections, 746 trips are correctly 

identified using the k-medoids clustering method. This can be expressed as a binomial 

distribution 𝐺𝑇_𝐿~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(756, 746). Similarly, for each maneuver, each method’s accuracy 

can be expressed as binomial distribution. Thus, for each maneuver, there are four binomial 

distributions representing the accuracy of the four methods. 

  Let 𝑋 ~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛1, 𝑝1) and 𝑝1̂ = 
𝑝1

𝑛1
  and 𝑌 ~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛2, 𝑝2) and 𝑝2̂ = 

𝑝2

𝑛2
  

represents the results for two different methods for identifying a particular maneuver. To check, 

if the accuracy results are significantly different, a hypothesis is presented where the null 

hypothesis states that the accuracy of two methods are same. Thus, 

𝑛𝑢𝑙𝑙 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠, 𝐻0: 𝑝1 = 𝑝2,                                      (48) 

alternate hypothesis, 𝐻1: 𝑝1 ≠ 𝑝2,                                    (49) 

The score test statistic for this null hypothesis is 

 

𝑇𝑆 =
𝑝1̂− 𝑝2̂

√𝑝(1−𝑝)(
1

𝑛1
+ 

1

𝑛2
)
  ,                                              (50) 

where 

𝑝 =
𝑛1𝑝1̂+𝑛2𝑝2̂

𝑛1+ 𝑛2
 .                                                                (51) 

For a two tailed test, at 95% confidence level, the critical region value is 1.96. Thus, if 

absolute value of TS is greater than 1.96, the null hypothesis that the two method’s accuracy is 

the same is rejected. Else, the null hypothesis is accepted. This method is applied to do one-on-

one pair wise hypothesis testing between k-medoids clustering method with other methods. The 

results are presented in TABLE 20. It is found that k-medoids clustering by maximum and 
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minimum method gives significantly different accuracy result than gyroscope threshold method, 

DTW method and gyroscope and orientation angle method. Thus k-medoids clustering method is 

the most accurate method for maneuver identification as recognized by this dissertation. 

 

TABLE 20  Hypothesis test results for k-medoids clustering with other three methods. The test 

statistics value is shown in parenthesis. 

 

Gyroscope 

threshold 
DTW 

Gyroscope 

and 

orientation 

angle 

Clustering 

by max 

and min 

gyroscope 

Significantly 

different 

(2.3) 

Significantly 

different 

(8.0) 

Significantly 

different 

(5.7) 
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CHAPTER 7 

DIRECTION IDENTIFICATION 

In this section the methodology for identifying the direction of the vehicle through the 

intersection and results are described.  

 

7.1 Methodology 1: Using OBD Speed, Accelerometer, and Gyroscope Readings for Trip 

Direction Identification 

The phone collects the accelerometer readings while the GoGreen app is running. As the 

phone is kept in stationary position inside the vehicle, the acceleration experienced by the phone 

is due to the movement of the vehicle. More specifically, the acceleration captured by the phone 

is the acceleration of the vehicle. The raw accelerometer readings recorded by the phone is based 

on the phone’s local coordinate system and the axis that shows variation of acceleration values 

depends on the orientation of the phone inside the vehicle. As an orientation correction technique 

is applied, the raw accelerometer readings are converted to readings at global coordinate system. 

At the global coordinate system, the positive X axis points towards East and Positive Y axis 

points towards North direction. For a four-legged intersection that is aligned to magnetic North-

South and East-West direction, the accelerometer readings, with respect to a global coordinate 

system, will indicate the direction of vehicle’s movement. For example, if a vehicle is moving 

toward in an East bound direction, the transformed accelerometer readings will show variation 

along X axis, as the X axis of the global coordinate system represents the East-West direction.  

The Y axis will not show any significant variation as the phone is kept stationary and it only 

experiences the linear acceleration along the vehicle’s direction of movement. Similarly, if a 

vehicle is moving towards North bound direction, then the transformed accelerometer readings 
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will show variation along Y axis of the global coordinate system, as the Y axis represents the 

North-South direction. This concept is used to identify the vehicle’s direction in an intersection. 

As the vehicle can make a turning maneuver at the intersection the direction of the vehicle will 

change as a result. Therefore, it is critical to select a segment of the accelerometer readings 

during which the vehicle did not initiate any turning movement.  

 

7.1.1 Description of Algorithm 

 A smartphone’s accelerometer, gyroscope readings and instantaneous speed information 

from OBD have been utilized to identify the direction of a vehicle. The algorithm contains three-

steps. In the first step, whether the vehicle was moving towards the North-South or East-West 

direction at the beginning of the trip was identified. First, the instantaneous speed information of 

the vehicle was employed to determine whether the vehicle was at accelerating, decelerating, 

cruising, or in a stopped state at a particular instance. For any instance, if the speed of the vehicle 

is higher than its immediate previous instance, then the vehicle is determined to be in an 

accelerating state (A). If the speed is lower, then the vehicle was in a decelerating state (D). If no 

change of speed is detected, than the vehicle was in a cruising state (C). Finally, if the 

instantaneous speed was 0, then the vehicle is determined to be in a stopped state (S) during that 

instance. Using a rolling window throughout the time series of linear accelerometer readings, 3 

seconds time periods were identified where OBD state is consecutive accelerating (A) or 

decelerating (D). 

 In the second step, among the selected time periods from the first step, only one time 

period is required to be selected for further exploration for direction indication. Also, it needs to 

be ensured that during that time period the vehicle did not initiate any change of direction.  
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 A threshold value is applied on gyroscope readings for the time periods to ensure that the 

vehicle did not initiate any change of direction within that time period.  Thus, the objective was 

such that a time period needs to be selected in which the linear acceleration shows significant 

variation but the gyroscope reading are within a specific threshold value. It was considered here 

empirically that for a consecutive 5 second time period if the median value of the gyroscope 

reading was less than 0.03 and greater than -0.03 radian/sec, then the vehicle did not initiate any 

change of direction. Also, as the linear acceleration can show variation in either the X or Y axis, 

both the X and Y components of the acceleration reading are evaluated to see which time period 

has the maximum variation and at the same time, the median gyroscope readings are within the 

threshold. Thus, a time period is found with following objective functions: 

Objective function 1: 

 

𝑀𝑎𝑥(∑ 𝑎𝑥𝑗

𝑗+29
𝑗 ),                                                     (52) 

subject to                  median( Gxj
, Gxj+1

, Gxj+2
, …… , Gxj+29

) <  0.03,                                      (53) 

median( Gyj
, Gyj+1

, Gyj+2
, …… , Gyj+29

) <  0.03,                                     (54) 

median( Gzj
, Gzj+1

, Gzj+2
, …… , Gzj+29

) <  0.03,                                    (55) 

 

where ax      is the X component of linear acceleration readings, 

j        is the index of the start of time period during which the vehicle was at consecutive 

A or D state, 

            Gx      is the X component of gyroscope reading, 

            Gy      is the Y component of gyroscope reading, 

            Gz     is the Z component of gyroscope reading. 
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 Objective function 2: 

 

𝑀𝑎𝑥(∑ 𝑎𝑦𝑗

𝑗+29
𝑗 ),                                                              (56) 

subject to    median( 𝐺𝑥𝑗
, 𝐺𝑥𝑗+1

, 𝐺𝑥𝑗+2
, …… , 𝐺𝑥𝑗+29

) <  0.03,                           (57) 

𝑚𝑒𝑑𝑖𝑎𝑛(𝐺𝑦𝑗
, 𝐺𝑦𝑗+1

, 𝐺𝑦𝑗+2
, …… , 𝐺𝑦𝑗+29

) <  0.03,                            (58) 

𝑚𝑒𝑑𝑖𝑎𝑛(𝐺𝑧𝑗
, 𝐺𝑧𝑗+1

, 𝐺𝑧𝑗+2
, …… , 𝐺𝑧𝑗+29

) <  0.03,                              (59) 

 

where ay       is the Y component of Linear acceleration readings, 

             j      is index of the start of time period during which the vehicle was at  consecutive A or 

D state, 

            Gx        is the X component of gyroscope reading, 

           Gy        is the Y component of gyroscope reading, 

           Gz        is the Z component of gyroscope reading. 

 

 From objective function 1, the time period having the maximum variation of the linear 

acceleration along the X axis is found. From objective function 2, the time period having the 

maximum variation of the linear acceleration along the Y axis is found. Comparing these two 

time periods, the period, T, that has more variation of linear acceleration is selected. 

 In the third step, the linear acceleration reading of time period, T, is explored to identify 

the axis of vehicle’s movement. The axis associated with the time period, T, is the axis showing 

the (X or Y) most variation. The linear accelerometer readings will show more variation in one 

particular axis than the other. As the raw linear accelerometer readings have been transformed to 

a global coordinate system, for any perpendicular intersection, more variation of linear 
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accelerometer readings along X axis represents movements along an East-West direction, while 

more variation of linear accelerometer readings along Y axis represents movements along a 

North-South direction. Thus, observing the principal variation axis during the period, T provides 

information regarding the direction of the vehicle. For example, if more variation of a linear 

accelerometer is observed along Y axis for the selected 3 seconds time period when the vehicle 

was at an accelerating or at a decelerating state, then it indicates that the vehicle was going 

towards in either a North bound or a South bound direction and Y is the principal variation axis. 

On the other hand, if the maximum variation is observed along X axis, then it indicates that the 

vehicle was going towards in either an East bound or a West bound direction and X is the 

principal variation axis. In Figure 4, linear acceleration plots of two trips are presented. The top 

part of Figure 4 shows linear acceleration plot for Trip 1 in which the vehicle was initially at the 

North bound leg of intersection and made a through maneuver to go straight through the 

intersection. The bottom part of Figure 4 shows linear acceleration plot for Trip 2 in which the 

vehicle was initially at the South bound leg of intersection and went straight through the 

intersection executing a through maneuver.  As expected, both the plots show more variation of 

linear acceleration along Y axis (blue curve) compared to X axis (red curve), indicating that the 

vehicle was either going in a North bound or a South bound direction.  

In the fourth step of the algorithm, the sign of the linear accelerometer readings along the 

principal variation axis identified in step 3 for the 3 second time period is observed. As in the 

global coordinate system, a positive Y axis indicates North, thus, for a vehicle in an accelerating 

state, if the linear acceleration readings along the Y axis are positive this indicates movement in 

a North bound direction; else, if the acceleration readings along the Y axis are negative this 

indicates movement in a South bound direction. Similarly, as a positive X axis is East in a global 
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coordinate system, the positive acceleration readings along the X axis for a vehicle at 

accelerating state indicates movement in an East bound direction and negative readings indicate 

movement in a West bound direction.  

 For a vehicle in a decelerating state, negative linear acceleration readings along the Y 

axis indicate movement in a North bound direction and positive acceleration readings for a 

vehicle in a decelerating state indicate movement in a South bound direction. Similarly, as a 

positive X axis is East in a global coordinate system, the negative accelerometer readings along 

X axis for a vehicle in a decelerating state indicate movement in an East bound direction and 

positive readings indicate movement in a West bound direction. The logic is represented in 

TABLE 21. Thus, the direction of the vehicle can be pinpointed. The trips shown in Fig. 59 and 

Fig. 60 were in accelerating state for consecutive 3 second time period. The accelerometer 

readings along Y axis for that time period for Trip 1 were positive, thus indicating that the 

vehicle was moving towards Northbound direction (Fig. 59). For Trip 2, the accelerometer 

readings along Y axis for that time period were negative, indicating that the vehicle was moving 

towards Southbound (as shown in Fig. 60). 
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TABLE 21  The logic of direction identification based on linear acceleration readings 

 

  

 The fifth step determines whether the direction identified observing the linear 

accelerations from the selected time period indicates the initial direction of the vehicle (before 

executing a maneuver at an intersection) or a final direction of the vehicle (after executing a 

maneuver at an intersection). Using the maneuver identification algorithm, the maneuver type of 

the trip is already known. For trips that have been identified as through by the maneuver 

identification algorithm, the initial and final direction remains same. But for trips that have been 

identified as turn by the maneuver identification algorithm, the direction changes due to the 

maneuver. Comparing the index of start time of period T, and the index of maximum (minimum) 

Z component of gyroscope reading of left turn (right turn) will indicate whether the selected time 

period, T, is from before or after the vehicle executed the turning maneuver.  For example, for a 

trip that has been identified as a left turn by the maneuver identification algorithm, the index of 

the maximum value of Z component of gyroscope reading is 150. The index of the starting of 

time period, T, found by the second step of the direction identification methodology is 20. Thus, 

it indicates that the selected time period, T, is before the vehicle executed the turning maneuver. 

Major Variation Axis of Linear 

Acceleration 

Vehicle’s 

State 

Sign of Linear Acceleration 

readings 

Trip 

Direction 

 

Y axis 

Accelerating 

(Decelerating) 

+ 

(-) 
Northbound 

Decelerating 

(Accelerating) 

+ 

(-) 
Southbound 

 

X axis 

Accelerating 

(Decelerating) 

+ 

(-) 
Eastbound 

Decelerating 

(Accelerating) 

+ 

(-) 
Westbound 
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Therefore, the direction that is identified by further exploring the linear accelerations during time 

period, T, is the initial direction of the vehicle.  

 In the sixth step, the direction information from step 4, information regarding whether the 

direction is the initial or final direction of the vehicle (obtained from step 5) and maneuver type 

information obtained using the maneuver identification algorithm is merged to identify the 

vehicle’s trajectory. For example, if the maneuver identification for a trip revealed that the 

vehicle made a through maneuver and the fourth step of the direction identification algorithm 

revealed that the vehicle was traveling in a Northbound direction, and the fifth step indicated that 

the direction was the initial direction, then merging these three information points provides the 

total trip direction of that trip along that particular intersection, which is North bound – North 

bound. This means that the vehicle was going in a North bound direction initially before the 

intersection and then executed a through maneuver at the intersection to go straight in a North 

bound direction. 

  

  

 

Fig. 59.  Linear acceleration plot of a trip going North bound through the intersection. 
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Fig. 60. Linear acceleration plot for Trip 2 going South bound direction through the intersection.  

 

7.1.2 Results 

 

At first, to assess the accuracy of the algorithm, the above-described algorithm is applied 

to trip data collected at a control condition. During the trip, a phone was held stationary in  a 

phone holder. In addition, no lane changes were made during the trip at the intersection. This is 

done to ensure that the variation in acceleration and gyroscope data is experienced only because 

of the vehicle’s motion along the direction of movement. The results are presented in TABLE 

22. The results indicate that the algorithm correctly identified all 19 of the through trips and 

correctly identified 15 of 16 turn trips.  

 

TABLE 22  Results of direction identification algorithm for trips at control condition 

Maneuver type  #Trips  
Direction correctly 

identified 
%Accuracy 

Through 19 19 100 

Turn 16 15 94 

 

 

While the phone collected trip data from the 3 intersections chosen for analysis, the 

phone was not always held in a phone holder, but rather may be placed loosely in a cup holder. 
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This might result into some movement of phone itself due to the movement of the vehicle. Also a 

driver may or may not execute lane changes during the trip. Thus, it is imperative to see how the 

algorithm performed on trip data collected from the three 4-legged intersections.  

Intersection 1 had total 274 numbers of trips. Among those, 39 trips were going through 

the intersection and 235 trips were trips that made turning maneuver at the intersection. The 

direction identification algorithm has multiple steps and requires the trip data to meet certain 

requirements, i.e., the OBD state need to be in a consecutive 3 second acceleration or 

deceleration condition and, at the same time, the median value of the gyroscope readings during 

that 3 second period need to be within a specific threshold (<0.03 rad/s). Little of the trip data did 

not meet those requirements and thus did not get excluded from direction identification. The 

results of the direction identification algorithm are shown in TABLE 23. Of the 39 through trips, 

29 trips met the consecutive accelerating or decelerating state and gyroscope threshold value 

requirements. Among, them the direction of 24 trips were identified correctly. The accuracy was 

83%. Of the 235 turn trips, 178 trips met the consecutive accelerating or decelerating state and 

gyroscope threshold value requirements. Among them, direction of 131 trips was correctly 

identified with accuracy being 74%.   

 

TABLE 23  Direction identification results for Intersection 1 

Maneuver Type 

Final # of trips for 

trip direction 

identification 

Direction 

correctly 

identified 

%Accuracy 

Through 29 24 83 

Turn 178 131 74 
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As there are some trip data losses due to the algorithm requirements, a further breakdown 

is presented to see in which step trip data is lost. The breakdown is presented in TABLE 24. 

Among the 39 through trips, 8 trips did not have the 3-second consecutive accelerating or 

decelerating state and thus did not pass the first step of the direction identification algorithm. 

Among the rest of the 31 trips, 2 trips had gyroscope readings outside the threshold value and 

thus did not pass the second step of the direction identification algorithm.  Of the total 39 

through trips, the rest of the 29 trips got qualified to go through steps 3 to 6 of the algorithm for 

direction identification. Among these 29 trips, the maneuver identification algorithm inaccurately 

identified 3 of the trips. Among the 235 turn trips, 4 trips did not have the 3-second consecutive 

accelerating or decelerating state and thus did not pass the first step of the direction identification 

algorithm. Fifty three trips had gyroscope readings outside the threshold value and thus did not 

pass the second step of the direction identification algorithm. Thus, of the total 235 turn trips, 

178 trips got qualified to go through steps 3 to 6 of the algorithm for direction identification. 

Among these 178 trips, the maneuver identification algorithm inaccurately identified 7 of the 

trips.  

 

TABLE 24  Breakdown of trip data loss for Intersection 1 

Maneuver 

Type 

Actual 

# of 

trips 

No 

consecutive 

3 seconds 

accelerating/

decelerating 

state found 

Gyroscope 

outside of 

defined 

range 

Final # of 

trips for trip 

direction 

identification 

Maneuver 

correctly 

identified 

Direction 

correctly 

identified 

Through 39 8 2 29 26 24 

Turn 235 4 53 178 171 131 
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The results for Intersection 2 and the breakdown of data loss are presented in TABLE 25 

and TABLE 26. Of the 157 through trips, 120 trips met the consecutive accelerating or 

decelerating state and gyroscope threshold value requirements. Among, them the direction of 95 

trips were identified correctly. The accuracy was 79%. Of the 257 turn trips, 242 trips met the 

consecutive accelerating or decelerating state and gyroscope threshold value requirements. 

Among them, the direction of 183 trips was correctly identified with an accuracy of 76%.   

 

 

TABLE 25  Direction identification results for Intersection 2 

Maneuver Type 

Final # of trips for 

trip direction 

identification 

Direction 

correctly 

identified 

% Accuracy 

Through 120 95 79 

Turn 242 183 76 

 

 

TABLE 26  Breakdown of trip data loss for Intersection 2 

Maneuver 

type 

Actual # 

of trips 

No 

consecutive 3 

seconds 

accelerating/

decelerating 

state found 

Gyroscope 

outside of 

defined range 

Final # of 

trips for trip 

direction 

identification 

Maneuver 

correctly 

identified 

Direction 

correctly 

identified 

Through 157 19 18 120 117 95 

Turn 257 0 15 242 236 183 
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The results for Intersection 3 are presented in TABLE 27. Of the 56 through trips, 49 

trips met the consecutive accelerating or decelerating state and gyroscope threshold value 

requirements. Among, them the direction of 43 trips were identified correctly. The accuracy was 

88%. Of the 12 turn trips, 11 trips met the consecutive accelerating or decelerating state and 

gyroscope threshold value requirements. Among them, direction of 5 trips were correctly 

identified with an accuracy of 46%.  The reason for the low accuracy of turn identification is 

revealed when breakdown of trip data loss is performed (TABLE 28). Among the 11 turn trips 

that met the requirement of the direction identification algorithm, the maneuver, the maneuver 

identification algorithm inaccurately identified 4 of them. As mentioned in Section 6, the 

gyroscope was not able to capture strong rotation rate while the vehicle was making turn, the 

maneuver identification algorithm was not able to identify the turn maneuvers correctly. As a 

result the direction identification also yielded wrong results for those trips.  

 

TABLE 27  Direction identification results for Intersection 3 

Maneuver type 
Final # of trips for trip 

direction identification 

Direction 

correctly 

identified 

%Accuracy 

Through 49 43 88 

Turn 11 5 46 
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TABLE 28  Breakdown of trip data loss for Intersection 3 

Maneuver 

type 

Actual 

# of 

trips 

No 

consecutive 3 

seconds 

accelerating/

decelerating 

state found 

Gyroscope 

outside of 

defined 

range 

Final # of 

trips for trip 

direction 

identification 

Maneuver 

correctly 

identified 

Direction 

correctly 

identified 

Through 56 3 4 49 49 43 

Turn 12 0 1 11 7 5 

 

 

This work demonstrates the ability to identify a vehicle’s trajectory without relying on 

GPS information. During the analysis, some trips were observed in which inaccurate trajectory 

information of the vehicle is found if only GPS coordinates are considered. Due to errors 

incurred with GPS coordinates, the position of a vehicle found by GPS contained deviation from 

its actual position. Plotting the GPS coordinates on a map showed a large deviation from the 

vehicle’s actual trajectory. In such cases, the above-mentioned algorithm was able to correctly 

identify the trajectory of the vehicle. One such scenario is presented in Fig. 61. The actual 

trajectory of the vehicle is marked by green line whereas red balloons show the GPS plot of the 

trip. The GPS plots show large deviation from the actual trajectory. In reality, the vehicle was 

initially at West leg of intersection going in an East bound direction and made a right turn at the 

intersection to go directly towards South bound direction. The driver of the vehicle confirmed 

this trajectory information. The algorithms for maneuver and trip direction identification was 

able to accurately identify the trajectory. This signifies the importance of decreasing sole 

dependence on GPS and utilizing alternate sensors for trajectory identification. 
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Fig. 61.  GPS plot, actual trajectory and trajectory identified by our algorithm for a trip. 

 

  

The algorithm has some drawbacks. The algorithm has some data loss issues as discussed 

above. Also the algorithm requires that a phone remain in stationary position inside a vehicle. If 

the phone moves inside the vehicle, then the direction identified using the accelerometer values 

would not be able to be identified accurately. In addition, the overall accuracy depends on 

accuracy of maneuver identification and direction identification as well. If the maneuver is 

incorrectly identified, the direction of the vehicle identified will be incorrect as well. Finally, if 

lane changes occurred during a trip, acceleration due to lane changes will affect the result. As for 

the trips in control condition, no lane changes occurred, the results for direction identification for 

through trips were 100% and turn trips were 94%. However, for trip data collected from the 3 

intersections, lane change information was not available. Thus, it was possible that drivers might 



 

 

119 

have changed lanes during the trip at the intersection. In such cases, the direction identification 

will be less accurate.  

7.2 Method 2: Using Magnetometer Data to Find Orientation of Vehicle 

This method utilizes 3 coordinate systems: a phone’s local coordinate system, a vehicle’s 

coordinate system,  and a global coordinate system. The phone collects the inertial sensor data in 

a phone’s local coordinate system. These raw data are then converted to a vehicle’s coordinate 

system. Then, using the transformed magnetometer data and gravity data, the orientation of the 

vehicle related to a global coordinate system is obtained. For transformation from a phone’s 

coordinate system to a vehicle’s coordinate system, a method developed by Wang et al. [14] is 

employed. A phone’s local coordinate system and a vehicle’s coordinate system is defined as 

shown in Fig. 62. 

 

 

Fig. 62.  A phone’s coordinate system, a vehicle’s coordinate system, and a global coordinate 

system [14]. 
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Three unit coordinate vectors î, ĵ and k̂ is defined as for the Xc, Yc, and Zc axis, 

respectively. The rotation matrix R is defined as  

R= (

𝑥𝑖 𝑥𝑗 𝑥𝑘

𝑦𝑖 𝑦𝑗 𝑦𝑘

𝑧𝑖 𝑧𝑗 𝑧𝑘

)  .                                                  (60) 

The raw gravity acceleration readings and the linear acceleration readings (when the vehicle was 

decelerating) was employed to calculate the rotation matrix R [14]. The raw sensor readings, Sp 

are aligned from phone’s local coordinate to vehicle’s coordinate by applying R on Sp. The 

transformed readings, Sv at the vehicle’s coordinates is thus found by following [14]: 

Sc = Sp x R.                                                        (61) 

For this dissertation, using this method, the magnetometer data are transformed from a 

phone’s local coordinate to a vehicle’s coordinates. The transformed magnetometer data are then 

used to determine the orientation of the vehicle with the following equations:  

Pitch(𝜑𝑐) = tan−1 (
𝑔𝑌𝑐

𝑔𝑍𝑐
) ,                                               (62) 

Roll (𝜃𝑐) = tan−1(
−𝑔𝑋𝑐

𝑔𝑌𝑐 sin𝜑𝑐+𝑔𝑍𝑐 cos𝜑𝑐
),                           (63) 

Yaw (𝜓𝑐)= tan−1(
𝑚𝑋𝑐 cos𝜃𝑐+𝑚𝑌𝑐 sin𝜃𝑐 sin𝜑𝑐+𝑚𝑍𝑐 sin𝜑𝑐 cos𝜑𝑐

𝑚𝑍𝑐 sin𝜑𝑐−𝑚𝑌𝑐 cos𝜑𝑐
).         (64) 

The angle, ψc is the angle that vehicle’s forward direction makes related to global North. The 

direction is found by the logic shown in TABLE 29. Thus, the vehicle’s direction is expected to 

be known using this algorithm. 
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TABLE 29  Vehicle’s angle related to North and direction of movement 

Angle related to North, ψ𝐜 Direction 

-45 to 45 Northbound 

>45 to 135 Eastbound 

>135 to 180 or -180 to <-135 Southbound 

< -45 to -135 Westbound 

 

 

7.2.1 Results 

The above described method is applied on a data set consisting of 35 trips. The location is 

the intersection between Powhatan Avenue and 49th Street in Norfolk, Virginia. One driver made 

all 35 trips. Before the start of each trip, the magnetometer is calibrated in order to remove any 

bias.  The results are indicated in TABLE 30. Of the total 35 trips, 19 trips were through and 16 

trips were turn trips. Of the 19 through trips, the algorithm correctly identified direction of 9 trips 

resulting in a 47% accuracy. Of the 16 trips, the algorithm correctly identified the direction of 11 

trips resulting in a 67% accuracy. Although the magnetometer was calibrated before the 

beginning of each trip and the phone was not touched during the trip, the results indicated that 

due to the sensitive nature of the magnetometer, the direction found by using magnetometer 

values are not always accurate. 

 

TABLE 30  Direction identification results using vehicle orientation related to North 

Maneuver Type Trips # 

Direction 

correctly 

identified 

%Accuracy 

Through 19 9 47 

Turn 16 11 69 
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CHAPTER 8 

TRAJECTORY IDENTIFICATION 

In this chapter, the method for trajectory identification of a vehicle is explained.  

8.1 Method for Trajectory Identification 

The gyroscope readings, linear acceleration readings and OBD speed values are utilized 

to identify a vehicle’s trajectory in an urban grid network. The method is illustrated through an 

example. Let’s suppose a vehicle’s origin and destination are known (as shown in Fig. 63). The 

route taken by the vehicle to traverse from the origin to the destination is unknown. The traffic 

network is a grid-based urban network. For going from the origin, O to destination, D, there are 

multiple routes (as shown in Fig. 64). It is imperative to identify the route taken by the vehicle as 

the route information can provide insights for vehicle counts in different routes. The smartphone 

collected inertial sensor data and OBD speed information have been collected for that particular 

vehicle during its trip from the origin to destination. The trajectory identification method has 3 

steps: maneuver identification, distance estimation, and trajectory identification. 
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Fig. 63.  Map showing the origin and destination of the vehicle considered. 
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Fig. 64.  Few of the possible routes from origin to destination. 

 

The maneuvers executed by the vehicle during the trip are identified by the gyroscope 

readings. The noise removal and orientation correction techniques were applied to the raw 

gyroscope readings. The transformed gyroscope along global Z axis is plotted and are shown in 

Fig. 65. As described in the maneuver identification chapter, the signature pattern for left turn 

and right turn is observed in the gyroscope plots for vehicle’s making turning maneuvers. For 

this particular trip, in the example, 3 turning maneuvers were observed during the trip. Among 

them, 2 are right turns and 1 is a left turn maneuver. 
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Fig. 65.  Plot for gyroscope readings along the trip. 

 

The sequences of the turning maneuvers are as follows: 

Start…RT....LT….RT....Destination. 

The sequences can be numbered as follows: 

Start…RT1…LT1….RT2...Destination 

where, RT1 and RT2 indicate a first and second right turn, respectively.  

Similarly, LT1 indicates a first left turn. 

The initial direction of the vehicle is identified employing the direction identification 

method described in Section 7. The initial direction is identified as West bound. Next, using the 

sequences of turns and identified initial direction of the vehicle, map matching is executed from 

the origin to the destination. Observing the map, it becomes clear that there are multiple routes 

through which if the vehicle travels, then the sequence of gyroscope patterns will be as follows: 

Start… RT1…LT1….RT2…Destination. 
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Fig. 66 shows three different routes from the origin to destination, which will have the above-

mentioned sequence of gyroscope readings pattern. Thus, it is important to find a way to 

differentiate between the routes that will generate similar sequences. The OBD speed readings 

are employed for the purpose.  

 

 

Fig. 66.  Multiple routes that will show similar gyroscope signature. 

 

The distance is estimated using OBD speed readings. The index of number of the 

highest/lowest gyroscope readings for each left turn or right turn signature pattern observed is 

stored in I. 

I=[ IRT1, ILT1, IRT2] 

The latitude longitude of the origin of the trip and destination of the trip is known. 
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The distance for each instance is measured as: 

  𝐷𝑖 = 𝑣𝑖 ∗ 𝑑𝑡,                                                    (65) 

where     i = index, 

               vi= OBD speed at ith index, 

              dt = 0.1. 

Thus, the total distance is measured from origin to the first right turn as following: 

𝐷𝑅𝑇1 = ∑ 𝐷𝐼
𝐼𝑅𝑇1
𝐼=0  .                                                (66) 

 Similarly, the distance is measured from origin to the first RT, the two consecutive 

turning maneuvers, and the last turning maneuver to the destination point. The estimated distance 

by OBD speed and the actual distance measured using latitude and longitude is shown in Fig. 67. 

It is observed that the estimated distance may vary from 0 to 20 meter from actual distance. 

Thus, an error range equals actual distance, 𝐷𝑎𝑐𝑡𝑢𝑎𝑙 ±  𝜀 and is defined where 𝜀 is error valued as 

20 meters. For trajectory identification via route matching, if a path is found to have an actual 

distance, 𝐷𝑎𝑐𝑡𝑢𝑎𝑙 and the estimated distance is within 20 meter of 𝐷𝑎𝑐𝑡𝑢𝑎𝑙, then that path is 

selected to be the trajectory of the vehicle. 
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Fig. 67.  Estimated distance and actual distance between turns.  
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 Next, an algorithm is derived to identify trajectory of the vehicle via route matching. The 

algorithm is described through an example, where a node-node representation of the network a 

vehicle had traveled through is presented in Fig. 68. Each node represents an intersection. There 

are 12 nodes and the vehicle started from node s=1 and ended at node, t = 12. The vehicle 

originally took the path 1-2-3-7-10-11-12. 

 

 

Fig. 68.  Node-node representation of an example network. 

The relative direction of each node with respect to its adjacent node is presented in a 

matrix form and is shown in Fig. 69. The distance between each adjacent node is presented in 
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another matrix and is shown in Fig. 70. Based on the initial direction that the vehicle enters a 

particular node and the maneuver executed at that node, the final direction the vehicle proceeded 

to can be identified. For example, if the vehicle entered the node with direction being West 

bound and made a right turn at that node, then the final direction of the vehicle will be North 

bound. Thus, the vehicle would proceed to the node that is at North bound of the initial node. 

This direction identification logic is presented in TABLE 31. 

 

 

Fig. 69.  Matrix representing relative direction of node with its adjacent node. 
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Fig. 70.  Matrix representing distance of node with its adjacent node.
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TABLE 31  Logic for direction finding 

Initial Direction Turn at Intersection Outbound Direction 

West bound 

Right turn North bound 

Left turn South bound 

East bound 

Right turn South bound 

Left turn North bound 

North bound 

Right turn East bound 

Left turn West bound 

South bound 

Right turn West bound 

Left turn East bound 

 

 

For this example, the following information is known about the vehicle’s trajectory: 

Start node, s=1 

Destination node, t =12 

Initial direction, ID: West bound 

Turn type, T =[T1, T2, T3] 

T can take value 0 or 1, where 0 represents a right turn and 1 represents a left turn. 

Distance, D=[DST1, DT1T2, DT2T3, DT3D] 

The algorithm for trajectory matching is as follows: 
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1.3 Go to source node and find which node is at initial direction of source node. For this 

example, the node West bound to start node 1 is node 2 (see the matrix shown in Fig. 69). Go to 

that node. Example: go to 2. 

2.3 Check distance d1 2 

3.3 If d1-2 – ε < DST1 < d1 2 + ε, then path 1-2. ε is set to be 20 meter empirically. 

4.3 If not, then check which node is at ID of 2. In the example, node 3 is at a West bound 

direction of node 2.  Thus go to node 3. 

5.3  Check distance d2 3 

6.3  If d1 2+d2 3 - ε < DST1< d1 2+d2 3 - ε, then path 1-2-3. If not, then check which node is at ID of 

3. 

 These steps will be repeated until the distance traveled from source to a node is found to 

be within the error margin. Once the path is found, then check the turn type at T. In this example, 

T1= right turn. Using the logic presented in TABLE 31, find the outbound direction of the 

vehicle. For this example, the outbound direction is North bound. Thus, go to the node that is 

northbound to the current node. In this example, the node is 7. 

7.3 Check distance d3 7. 

8.3 If d1 2+d2 3 + d3 7 - ε < DST1+ DT1T2 < d1 2+d2 3 + d3 7 + ε, then path 1-2-3-7. If not, then 

check which node is at North bound of 7. 

 These steps will be repeated until the total path from source to destination node is found.  
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 The algorithm can be presented in the following flow chart (Fig. 71). 

 

 

Fig. 71.  Flow chart of trajectory identification algorithm. 

 

8.2 Results and Discussion 

This algorithm has been applied to a small data set containing 4 trips. The trips have the 

same origin and destination (shown in Fig. 63) but the route for each was different. Two different 

drivers drove for these trips. The algorithm was able to correctly identify vehicle’s trajectory for 

each of the trip. The accuracy of the algorithm, however, also depends on the accuracy of the 

maneuver identification and the direction identification algorithm. If the maneuvers and initial 

direction of the trip are not accurately identified, then the identified trajectory of the vehicle will 

be inaccurate. For future work, a correctional method will be developed to correct the trajectory 
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in cases if the trajectory was identified incorrectly due to incorrect maneuver or direction 

identification.  
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CHAPTER 9 

CONCLUSIONS 

The summary, benefits, and potential applications, contributions and future works of this 

dissertation are presented in this chapter. 

 

9.1 Summary 

This dissertation presents methods to detect a vehicle’s trajectory at an intersection by 

using smartphone-collected inertial sensor data and speed data collected from an On Board 

Diagnostic device. Additionally, a method for identifying a vehicle’s trajectory at an urban 

network is also demonstrated.  The main highlight of the work is that the trajectory identification 

is done without applying information obtained from GPS. As GPS has several limitations, such 

as, connectivity issues, high power consumption, low precision, vulnerability to spoofing attacks 

etc., the objective of this dissertation was to minimize GPS dependency and supplement 

information from other sensors to identify a vehicle’s trajectory. Due to the inherent noise in the 

accelerometer data and the variation in phone’s orientation, detecting vehicle trajectory was 

found to be nontrivial. Thus, data preprocessing was an important step before developing any 

algorithm for trajectory identification. In this dissertation, a two-step noise removal technique is 

demonstrated. In the first step, a threshold value on gravity acceleration data was applied to 

remove noise from raw data due to sudden movement of the phone. In the second step, a median 

filter is applied on raw data for data smoothening.  In order to ensure that, the developed 

methodology is applicable to data collected from mobile devices regardless of their orientation 

inside the vehicle, an orientation correction technique is developed and applied on the cleaned 

data. Using the orientation angle estimation method developed by [39], the orientation angle of 
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the phone is determined. A quaternion transformation is then applied on the cleaned data to 

transform the data from a phone’s local to a global coordinate system. Once these preprocessing 

steps are completed, then different methodologies for trajectory identification are explored. 

The trajectory identification problem is approached in two steps. First, the maneuver 

made by the vehicle at the intersection is identified. Next, the direction of the trip through the 

intersection is identified. A vehicle can undergo three different maneuver types: left turn, right 

turn, and through at an intersection. Gyroscope and magnetometer readings from smartphones 

are employed to develop four different methodologies for maneuver identification. The 

developed methods are tested on trip data collected from 3 different intersections.  Different 

parameters of gyroscope readings (mean, median, range, etc.) have been explored and range of 

gyroscope is found to be the most distinctive feature for maneuver identification. Among the 

different methods developed, a k-medoids clustering based on maximum and minimum of 

gyroscope global Z component readings was found to be most accurate for maneuver 

identification. For the Intersection 1, which had 274 trips, the algorithm had a 98% accuracy for 

identifying left turns, a 96% accuracy for identifying right turns, and a 100% accuracy for 

identifying through maneuvers. In Intersection 2, which had 414 trips, the algorithm had a 99% 

accuracy for identifying left turns, 100% accuracy for identifying right turns, and a 99% 

accuracy for identifying through maneuvers. For Intersection 3 with 68 trips, the algorithm had a 

100% accuracy for identifying left turns, right turns, and through maneuvers, respectively. 

Additionally, other methodologies were tested for maneuver identification. An algorithm is 

developed based on the threshold value of gyroscope readings and sensitivity analysis of that 

value is done. A method using DTW distance between a signature pattern of each maneuver was 

also evaluated to see its effectiveness in maneuver identification. The magnetometer data were 
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also evaluated to assess their accuracy for maneuver identification. Among all the methods 

developed and tested, the k-medoids clustering algorithm based on maximum and minimum 

value of gyroscope readings yielded the highest accuracy for distinguishing different maneuver 

types. 

 Next, the direction of the trip through the intersection is identified. Two different 

methods were developed and tested for direction identification. Of the two methods, a 6 step 

algorithm developed employing accelerometer data, gyroscope data, and speed information from 

the OBD is found to be more effective to identify trip direction. For Intersection 1, among the 29 

trips that met the consecutive accelerating or decelerating state and gyroscope threshold value 

requirements, 24 trips were identified correctly. The accuracy was 83%. Of the 235 turn trips, 

178 trips met the consecutive accelerating or decelerating state and gyroscope threshold value 

requirement and of them the direction of 131 trips were correctly identified with accuracy being 

74%.   

 An algorithm is described that can be used to identify a vehicle’s trajectory in an urban 

grid network. First, a method is developed to estimate the distance traveled by the vehicle using 

OBD speed. Then, an algorithm is demonstrated to match the trajectory with different available 

routes from the origin to destination based on the estimated distance. 

 The results demonstrate that the algorithms are effective in identifying a vehicle’s 

trajectory information at an intersection. Overall, this work demonstrates the feasibility of 

extracting trajectory information through other sensors and, thus, eliminates need for continuous 

GPS connectivity.  
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9.2 Benefits and Potential Applications of Vehicle’s Trajectory Identification 

The proposed methods of vehicle trajectory identification have the potential to be used in 

several fields. Some of the possible applications are defined in the following sections. 

9.2.1 GPS Localization Correction 

 

GPS has some significant issues, such as low precision of localization, vulnerability to 

spoofing attacks, etc.  In urban cities with dense high-rise buildings and underpasses, the GPS 

signals can get obstructed, causing GPS outage for an extended period of time. In some 

situations, blockages of some satellites but not others occur resulting in large errors in positional 

coordinates. Thus, exact vehicle location information may not be available at all times. This 

study aims to fill this gap by using the smartphone inertial sensor data and speed data collected 

using OBD to identify the trajectory of the vehicle at an intersection. In addition, GPS is 

vulnerable to spoofing attacks [2]. This study should help to identify vehicle’s trajectory in 

situations when GPS is spoofed. Using GPS along with the developed methods in this research 

will increase the localization accuracy of a vehicle.  

9.2.2 Minimize GPS Dependency for Trajectory Information 

The work done in this dissertation eliminates the need for continuous GPS connectivity 

for a vehicle’s trajectory identification. High-power consumption while GPS is in use [3, 4] is a 

significant drawback of using GPS in mobile devices. Our work can act as a supplement to GPS 

and thus freeing from continuous GPS dependency. 

9.2.3 Queue Length, Traffic Flow, Travel Time Estimation 

This work can be used as an important basis for estimating traffic flow through the 

intersection. Using this work, vehicle trajectories for each movement can be determined. This 

information can be incorporated in methods developed by researchers to estimate traffic flow 
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[45]  and queue lengths [46] at intersections. Using the trajectory information, travel time 

between different origins to destinations can also be estimated. Queue length, traffic flow, and 

travel time are all valuable information for intersection design, signal time optimization, signal 

coordination, and traffic management. Thus, this dissertation work can provide valuable insights 

for infrastructure developments and road network expansion requirements. 

9.2.4 Input for Traffic Simulation Software 

Using the developed methods for trajectory identification, travel time in route can be 

estimated. This information can be incorporated into traffic simulation software to evaluate 

traffic flow dynamics, traffic signal operations, what-if scenarios of different traffic control 

measures, and to visualize overall network performance.  

 

9.3 Contributions  

The research has the following contributions: 

9.3.1 Developing a Maneuver Identification Method 

An effective method is developed to differentiate three different maneuvers that a vehicle 

can execute in an intersection: left turn, right turn and through using smartphone’s inertial sensor 

data. 

9.3.2 Developing a Vehicle Direction Identification Method 

An effective method is developed to identify vehicle’s direction at an intersection using 

smartphone’s inertial sensor data and speed data from OBD device, for example, identifying 

whether a vehicle is going towards North bound direction or South bound direction. 

 

 



 

 

141 

9.3.3 Developing an Algorithm for a Vehicle’s Trajectory Identification 

An algorithm is developed to estimate the distance traveled by the vehicle by using 

inertial sensor data and OBD speed data. An algorithm is demonstrated that can be utilized to 

identify the vehicle’s trajectory via route matching with multiple routes from a known origin to a 

known destination.  

9.3.4 Developing a Noise Removal and an Orientation Correction Technique 

An appropriate noise removal technique is developed in this dissertation to filter out 

noises from smartphone collected raw data. Also an orientation correction technique is 

developed to find a method for trajectory identification that is applicable to all data collected 

from all smartphones regardless of their orientation. 

9.4 Future Work 

Future work will include quantifying positional error on GPS coordinates, frequency of 

GPS signal loss, and estimating the accuracy of trajectory identified by the developed algorithm 

over the accuracy of a trajectory identified by GPS on a larger dataset. Additionally, it is 

intended to refine the current algorithm such that it would be applicable to more complex 

intersection configurations beyond the typical four-legged intersection. Also, research is 

underway to develop an additional algorithm to identify a phone’s movements due to user 

interaction and apply this to filter out data generated by any local movement. This will enable the 

current algorithm for maneuver and trip direction identification to be applicable to data collected 

by phones that were not in a stationary position during the data collection period. In addition, in 

situations where multiple phones are present inside the vehicle and collecting data 

simultaneously, it is intended to develop an approach to differentiate data collected by different 
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phones and identifies the location of phone inside the car based on data collected by a particular 

phone.    
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APPENDIX A: PREVIOUS METHODOLOGY 

 In this section, a method for maneuver using the orientation angle of phone and 

gyroscope readings is discussed. The objective is to find if the employment of these two 

parameters together can improve maneuver identification accuracy. This method was later 

abandoned as it was found that using the gyroscope reading and orientation angles alternately for 

maneuver identification yields better accuracy than using both simultaneously. 

A1  Algorithm for Maneuver Identification using both the Gyroscope Reading and 

Orientation Angles Simultaneously 

The range value of the Z component of transformed gyroscope readings and the 

difference in value of the orientation angle, ψ for 1st 3 seconds and the last 3 seconds of the trip 

are employed for the algorithm development. For any particular trip, i, the range of gyroscope 

reading, r is calculated as  

Range, r = 𝑚𝑎𝑥( 𝑥1, 𝑥2, 𝑥3, …… , 𝑥𝑛) - 𝑚𝑖𝑛( 𝑥1, 𝑥2, 𝑥3, …… , 𝑥𝑛)                     (67) 

where,  

x   The Z component of gyroscope reading for a trip 

The range of orientation angle, s, for that particular trip is calculated as  

 s = 𝑚𝑒𝑎𝑛{𝜓1, 𝜓2, 𝜓3, …… ,𝜓30}- 𝑚𝑒𝑎𝑛(𝜓𝑛−30, 𝜓𝑛−29, 𝜓𝑛−28, …… ,𝜓𝑛)              (68) 

where,  

𝜓   The orientation angle for a trip with 1 to n data points 

For any particular trip, if r is greater than 0.29, and at the same time, s is greater than 60 degrees, 

the maneuver executed in the trip is identified as a turn, else it identified as a through maneuver. 
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For any particular trip with maneuver identified as a turn, if the absolute value of the maximum 

positive gyroscope reading is higher than the absolute value of the maximum negative gyroscope 

reading then the turn is identified as a left turn, else it is identified as a right turn. The results for 

this algorithm are discussed in the next section. 

A2  Results 

Using both the gyroscope reading and orientation angles simultaneously for maneuver 

identification yielded poor results for identifying turns. For Intersection 1, the algorithm had a 

55% accuracy for identifying left turns, a 63% accuracy for identifying right turns, and a 100% 

accuracy for identifying through maneuvers (TABLE 32). For Intersection 2, the algorithm had a 

51% accuracy for identifying left turns, a 58% accuracy for identifying right turns, and a 99% 

accuracy for identifying through maneuvers (TABLE 33). For Intersection 3, the algorithm had a 

34% accuracy for identifying left turns, a 67% accuracy for identifying right turns, and a100% 

accuracy for identifying through maneuvers (TABLE 34).  

The observation from the results are listed below: 

• The algorithm using both orientation angles and gyroscope readings for maneuver 

identification showed less accuracy for turn maneuver identification 

•  The algorithm showed high accuracy in through maneuver identification.  

• Overall, the accuracy of the algorithm is less than the algorithms that used only gyroscope 

readings to identify maneuver type.  
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TABLE 32  Results of maneuver identification using both gyroscope and orientation angles 

simultaneously for Intersection 1 

 
Identified   

  Left Turn Right Turn Through %Accuracy 

Left Turn 79 0 66 55 

Right Turn 0 56 34 63 

Through 0 0 39 100 

 

 

TABLE 33  Results of maneuver identification using both gyroscope and orientation angles 

simultaneously for Intersection 2 

 
Identified   

  Left Turn Right Turn Through %Accuracy 

Left Turn 63 0 61 51 

Right Turn 0 77 56 58 

Through 1 0 156 99 

 

 

TABLE 34  Results of maneuver identification using both gyroscope and orientation angles 

simultaneously for Intersection 3 

 
Identified   

  Left Turn Right Turn Through %Accuracy 

Left Turn 3 0 6 34 

Right Turn 0 2 1 67 

Through 0 0 56 100 
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