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ABSTRACT

EMERGENCE OF COLLECTIVE LIGHT SCATTERING IN ATOMIC
87RB SAMPLES

Kasie Jean Kemp
Old Dominion University, 2016
Director: Dr. Mark D. Havey

Over the past half century, atomic ensembles have been used to create sensors, clocks, and

quantum information systems. As these devices become more compact, and as the number

of atoms increases to improve the sensitivity for detection, the atomic samples are increasing

in density and optical depth. As such, the spectroscopic properties of the atomic media are

modified due to interactions among the particles in the ensemble. We report investigation

of near-resonance light scattering from a cold atomic sample of 87Rb. Initially prepared in

a magneto-optical trap, the atoms are loaded into a far-off-resonance optical dipole trap

(FORT) in which the ensemble has a temperature near 100 µK and initial Gaussian radii

of ∼3 µm and ∼280 µm in the transverse and longitudinal directions, respectively. With

atomic densities in the range of 1010 - 1013 atoms/cm3, measurements are made on the

F = 2 → F ′ = 3 nearly closed hyperfine transition. The experimental geometry consists of

projecting a near-resonance collimated laser beam onto the entire volume of the FORT and

detecting the diffusely scattered light. The measured scattered light intensity as a function

of detuning, atomic number, and sample size suggests that collective light scattering depends

on the optical depth of the system.
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CHAPTER 1

INTRODUCTION

In the past century, developments in experimental and theoretical physics have con-

tributed to the progression of modern technology. Among other advancements, the study of

the interactions between light and matter has led to the development of atomic clocks [1–3]

and sensors, such as magnetometers and gyroscopes [4–8]. These developments have led

to the proposal of creating a gravitational wave detector using an optical lattice atomic

clock [9, 10]. Additionally, with the advent of quantum information and computing, atoms

are also being used as storage devices and logic gates [11, 12]. Whether the atoms are in

hot vapor cells [13], or confined to a cold atomic sample - perhaps trapped on a chip [14] or

contained in an optical fiber [15] - spectroscopy of the various ensembles is utilized to obtain

precise and stable measurements.

The study of light-matter interactions can scale from a single photon with a single

atom [16], up to higher intensities or increasingly larger samples [17–21]. The light scat-

tering properties for a single atom include a resonant frequency, cross section, excited state

lifetime, and the associated resonance width. In general, increasing the number of atoms N

will not modify these properties; the measured fluorescence will increase by a factor of N ,

and the scattering rates will remain constant. For low density, optically thin samples, the

light scattering process for below-saturation intensities can be described as the sum of the

ensembles’ constituent scatterers.

Within an atomic sample, aggregate matter can behave differently than the sum of its

individual components. For atomic samples with higher optical depth and density, and with

a correspondingly lower average interatomic spacing r, the ensemble scatters light collectively

as a bulk medium. The scattering rate and resonance widths are no longer constant, but

depend on the macroscopic properties of the sample. Additionally, the spatial distribution

of the atoms can lead to resonant energy shifts in absorption and emission of light [22–24].

Collective scattering, in which the total scattering can be described similar to that of

a macroscopic object rather than the sum of individual microscopic objects, occurs over a

broad range of conditions. Here it is important to distinguish between the two scattering

regimes. For this thesis, we have defined collective scattering as the process in which the

scattered field depends on the properties of the sample, rather than that of its individual
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constituents. Cooperative scattering is a coherent process in which the atoms interact to

modify their scattering properties [25]. This can happen when atoms are close enough

together to interact, such as in the dipole-dipole interaction [26]. If the excitation of the

sample is coherent and created in such a way that all of the atoms are in phase together,

then cooperative scattering may take place as in the case of timed Dicke states [19, 27–29].

Additionally, the Collective Lamb Shift [23, 30–33] is a cooperative process in which virtual

photons are exchanged, leading to a shift in the resonant energy levels. Superradiance

and subradiance, in which the atoms decay cooperatively at a rate faster or slower than

the natural lifetime, may also occur. These mechanisms are strongly dependent upon the

macroscopic properties of the sample. Recent work has observed the effects of sample size,

shape, density, and optical depth [18,21,24,26,34–46] on the spectroscopic properties of the

medium.

One example of the experimental observation of the N dependence of collective scattering

is the suppression of light scattering from 87Rb atoms within a sample with dimensions near

the wavelength of excitation [26]. The atoms act cooperatively to scatter when they interact

through the dipole-dipole potential, which depends on the interatomic separation r between

two dipoles and their respective polarizations. As r reduces and approaches the wavelength

of the associated transition, the collective radiative decay rate of the excited state can be

increased. This leads to an associated resonance broadening. Both the resonant width of the

transition and the intensity of the scattered light show a scaling with the number of atoms

N in the sample. Additionally, a shift in the resonant frequency occurs that scales linearly

with N .

Another example of collective scattering has shown a dependence on the optical depth b of

a sample. In a spherical magneto optical trap (MOT), it has been found that the spontaneous

decay rate is modified by b. As the cold atomic sample expands, the optical depth increases

due to the increase in the radius of the sample, and collective modes of the sample lead to

atoms that can decay from a subradiant state (stay excited for longer periods of time) [19]

or superradiant state (decay faster than the natural decay rate) [47]. Likewise, in a forward

transmission experiment using 88Sr, the detuning needed for maximum transmission of light

scales linearly with b.

The emergence of new phenomena when transitioning from microscopic to bulk media

has been of general interest to the scientific community for decades [48]. The introduction

of more constituents in an ensemble can induce overall properties that can not be reduced

to the sum of the individuals’; the mechanisms behind the emergent properties derive from



3

the global dynamics of the system. From the formation of columnar joints at the Giant’s

Causeway [49], to superconductivity [50], the emergence of new and interesting phenomena

can be seen on a multitude of scales.

The goal of this thesis is to study the effects of sample properties on the transition from

microscopic to macroscopic scattering. Through this transition, the emergence of the effects

of multiple scattering are observed. We create samples with a wide range of properties

in order to cover the large phase space associated with collective scattering. The effects

of the number of atoms, sample geometry, and detuning of the optical excitation from a

resonant transition will be shown. On resonance, the emergence of collective scattering

depends on both the number of atoms and their distribution in space; the sample behaves

as a macroscopic object that can be described by the optical depth of the system. By

having control of the number of atoms and the physical size of the sample, we are able to

dynamically observe the effects of density and optical depth. While much of the experimental

setup is similar to [26], the number of atoms is much higher and the samples are physically

larger. Thus the interatomic separation is greater and we are not quite in the dipole-dipole

scattering regime.

Because we will be studying the emergence of collective light scattering, it is important to

first understand scattering from a single atom. Thus, this thesis will begin with a description

of a two level atom, and the near-resonance scattering cross section, resonance width, and

lifetime of the excited state are derived. Diffusion of light through an ensemble of atoms is

described, and a random walk model is developed to depict this scattering process.

Following the introduction to light scattering, the methods for creating and characterizing

the atomic samples are outlined. Lasers are utilized to cool and trap atomic 87Rb first in

a magneto optical trap (MOT), and then transferred into a far off resonance optical dipole

trap (FORT). The MOT and FORT are characterized with numerous methods to accurately

measure the number of atoms, temperature, and spatial size of each sample.

Finally, the experimental setup and methods are described. A low intensity probe

laser beam, much larger than the size of the sample, excites atoms near the nearly closed

5s2S1/2, F = 2 → 5s2P3/2, F
′ = 3 transition. The scattered light is collected off-axis from

the initial excitation direction. The sample properties are modified to study the dependence

of on-resonant scattering on the number of atoms and the spatial size of the sample. Addi-

tionally, the probe laser is tuned about resonance to observe near-resonance scattering for an

expanding sample. The results of the experiments are shown and compared with the results

of the random walk model.
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CHAPTER 2

LIGHT SCATTERING INTRODUCTION

In this chapter, numerous methods are explored to derive spectroscopic properties of a

single atom. While these approaches will be simplified to that of an atom with two levels (a

ground state |0〉 and a sole excited state |1〉,) they are also applicable to systems in which

there are multiple excited states. While there is an abundance of literature available on the

two level atom, including probably nearly every thesis in cold atomic physics, a selection

of the various approaches will also be described below. Loudon’s The Quantum Theory

of Light [51] and Metcalf’s Laser Cooling and Trapping [52] are both helpful resources for

further information.

2.1 SCHRÖDINGER’S EQUATION

Consider an atom described by a set of orthonormal basis states denoted by |n〉, 〈m|n〉 =

δmn. Applying the Hamiltonian H0 to the state |n〉, we can find the associated energy

En = ~ωn:

H0|n〉 = En|n〉. (1)

Introducing a small time dependent potential V (t) to the atom can cause a change in the

state of the system. Substituting the total Hamiltonian H = H0 + V (t) into Schrödinger’s

equation yields

(H0 + V (t)) |Ψ〉 = i~
∂

∂t
|Ψ〉 (2)

with solutions of the form

|Ψ〉 =
∞∑
k=0

ak(t)e
−iωkt|k〉. (3)

Substitution of Eq. 3 into Eq. 2 gives

(H0 + V (t)) |Ψ〉 = i~
∞∑
k=0

(
ȧk(t)e

−iωkt − iωkak(t)e−iωkt
)
|k〉. (4)
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Multiplying by 〈n| and applying orthonormality reveals that the rate of change of the prob-

ability amplitude for a state is

ȧn(t) =
1

i~

∞∑
k=0

ak(t)e
−i(ωk−ωn)t〈n|V (t)|k〉. (5)

For experiments with narrow-band lasers tuned close to a resonance and energy levels

that are well separated in frequency space, the atoms can be described to first order as

having only two levels: the ground state |0〉 and excited state |1〉 with a frequency difference

ω10 = ω1−ω0. Using a two-level atom model, Eq. 5 reduces to a system of two equations [51].

ȧ0(t) =
1

i~
a1(t)e

−iω10t〈0|V (t)|1〉 (6)

ȧ1(t) =
1

i~
a0(t)e

iω10t〈1|V (t)|0〉. (7)

Note that only the off-diagonal terms remain, as the potential to drive electric dipole tran-

sitions

V = −q
−→
E · −→r (8)

is spatially odd. Here q = −e is the charge of an electron and −→r describes the atom’s

electron coordinates. The applied electric field
−→
E is oscillating in time with a frequency ω

and has a given polarization ε̂:
−→
E = E0 cos (ωt) ε̂, (9)

V = eE0 cos (ωt) ε̂ · −→r . (10)

For an atom initially in the ground state that is weakly excited with the potential described

by Eq. 10, ground and excited state coefficients have the following conditions: a0(0) =

1, a1(t) ≈ 0, a0(t) ≈ 1. Substituting Eq. 10 into Eq. 7 and integrating over time from 0 to t

yields

a1(t) =
1

2i~
〈1|eE0ε̂ · −→r |0〉

(
ei(ω+ω10)t − 1

i(ω + ω10)
+
e−i(ω−ω10)t − 1

−i(ω − ω10)

)
(11)

Because the excitation frequency ω is near the bare resonance ω10, the rotating wave approx-

imation (RWA) is applied. This removes the high frequency components ω + ω10 from the

solution, while the terms with the detuning from resonance δ = ω − ω10 remain. Applying
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the RWA simplifies the probability amplitude a1(t) to

a1(t) =
1

2i~
〈1|eE0ε̂ · −→r |0〉e−iδt/2 sin (δt/2)

1

δ
(12)

and the probability of an atom to be in the excited state as a function of time P1(t) = |a1(t)|2

is

P1(t) = |Ω10|2
sin2 (δt/2)

δ2
. (13)

Here we have introduced the Rabi frequency [51]

Ωnm =
1

~
〈m|eE0ε̂ · −→r |n〉 (14)

which signifies how well the driving field couples with the atom and depends on the intensity

of the field, as well as the orientation of the polarization with the atom. While Eq. 13

predicts that the atom will oscillate in time between the ground and excited state, this is

an incomplete model, as it does not allow for the spontaneous emission of a photon. This is

a form of loss and does not appear within the framework of the Schrödinger equation. To

more fully describe the system, other approaches must be taken.

2.2 RATE EQUATIONS

Rate equations are a valuable tool in predicting energy level populations within an en-

semble. Using a phenomenological approach, the decay rates from each state to another can

be used to create coupled rate equations [53]. These equations can be solved to describe the

time evolution of the system. We begin by treating N two-level atoms with N0 atoms in the

ground state |0〉 with a degeneracy of g0 and N1 atoms in the sole exited state |1〉 with a

degeneracy of g1. The energy difference between the two discrete levels is

~ω10 = E1 − E0. (15)

It is assumed that an atom can exist only in these two states, so N0 + N1 = N . An atom

that is initially in the ground state can be driven to the excited state with an absorption

probability rate of B01W , where W is the energy density of the excitation source with a

bandwidth of δw. In the case of excitation by a narrowband laser with intensity I, this

energy density is W = I/c, where c is the speed of light. Once an atom is in the excited

state |1〉, there are two mechanisms which will allow for the atom to return to the ground
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state. Stimulated emission of a photon occurs at a rate B10W , and spontanous emission of a

photon occurs at a rate γ. Note that the notation used here is for consistency throughout the

various methods. Historically, B01 and B10 are known respectively as Einstein’s B coefficients

B12 and B21 for transitions involving a ground state |1〉 and excited state |2〉. Additionally,

γ is known as Einstein’s A coefficient A21. The lifetime of the excited state

τ = 1/γ (16)

is the average time it takes for an atom in the excited state to spontaneously decay to the

ground state.

The rate of change of the number of atoms in |1〉 is

Ṅ1(t) = −γN1 +B01WN0 −B10WN1 (17)

and for the ground state

Ṅ0(t) = −Ṅ1(t). (18)

In the steady state regime, the occupation of each level is constant. Setting Eq. 17 equal to

0, the excited state population is

N1

N
=

B01W

γ +B10W +B01W
. (19)

This excited state probability can be compared to that found in Eq. 13 with the relation

P1 = B01〈W 〉t to find the decay rate γ of the excited state. The average probability over

time to be in the excited state is

P1 = |〈1|ε̂ · −→r |0〉|2 q
2πW

ε0~2
t. (20)

Taking the ensemble average over all angles between the orientations of the atoms and

polarization of light,

|〈1|ε̂ · −→r |0〉|2 = cos2 θ|〈1|r|0〉|2 =
1

3
|〈1|r|0〉|2. (21)

Using the relations between the Einstein coefficients

g0B01 = g1B10, γ =
~ω3

10

π2c3
B10 (22)
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and comparison of Eqs. 19 and 20, we find that the decay rate for a two-level degenerate

atom is

γ =
1

3

g0
g1

q2

πε0~
ω3
10

c3
|〈1|r|0〉|2. (23)

2.3 OPTICAL BLOCH EQUATIONS

While the rate equation method is able to describe state probabilities for an atomic

ensemble, it does not allow for coherence effects and does not provide state amplitudes. In

this section, we will use a density matrix approach to describe the atomic state amplitudes.

The time-dependent Schrödinger equation using this formalism is

i~ρ̇ = [H, ρ] (24)

with the density matrix ρ for a two level atom in a pure state given by

ρ =

(
ρ11 ρ10

ρ01 ρ00

)
=

(
a1a

∗
1 a1a

∗
0

a0a
∗
1 a0a

∗
0

)
. (25)

In general, the rate of change of the density matrix elements is

ρ̇ij = ȧia
∗
j + aiȧ

∗
j , (26)

with the time derivatives of the coefficients being the same as those in Eqs. 6 and 7. However,

the rate of change must include spontaneous emission, so Eq. 26 must be modified [51]:

i~ρ̇ = [H, ρ]− ρ̇sp, (27)

where the relaxation matrix is given by

ρ̇sp = γ

(
−ρ11 1

2
ρ10

1
2
ρ10 ρ11

)
. (28)

Using these equations and the notation ρ̃01 = ρ01e
−iδt, ρ̃10 = ρ10e

iδt, δ = ω−ω10, the Optical

Bloch Equations in the RWA are

ρ̇00 = γρ11 +
i

2
(Ω∗ρ̃10 − Ωρ̃01) (29)



9

ρ̇11 = −γρ11 +
i

2
(Ωρ̃01 − Ω∗ρ̃10) (30)

˙̃ρ01 = −
(γ

2
+ iδ

)
ρ̃01 +

i

2
Ω∗ (ρ11 − ρ00) (31)

˙̃ρ10 = −
(γ

2
− iδ

)
ρ̃10 +

i

2
Ω (ρ00 − ρ11) (32)

The Rabi frequency Ω is the same as that given in Eq. 15.

We are interested in what happens in the steady state regime, when the derivatives are

all set equal to 0. Using the conservation of probability (ρ00 + ρ11 = 1) and the fact that

ρ10 = ρ∗01, we find that

ρ10 =
iΩ

2(γ/2− iδ)(1 + s)
(33)

for the saturation parameter s given by

s =
s0

1 +
(

2δ
γ

)2 (34)

with the on-resonance saturation parameter s0 = 2|Ω|2/γ2. For low saturation saturation

parameters (s << 1), the excited state probability is found to be

ρ11 =
s0/2

1 + s0 +
(

2δ
γ

)2 . (35)

2.4 ELECTRIC FIELD PROPAGATION

So far, we have only been concerned with the dynamics associated with the state of the

atom or atoms within an ensemble. However, much can be learned from the excitation field

itself. We begin with an electromagnetic plane wave of frequency ω and complex polarization

ε̂ propagating through a dielectric medium [54]. The electric field with amplitude E0 is

defined by
−→
E = E0e

−i(ωt−
−→
k ·−→r )ε̂. (36)

The wave vector
−→
k = kk̂ travels in the direction of propagation k̂ with a magnitude k = ω

c
n,

where n is the complex index of refraction for the dielectric medium. Using

n = nr + ini, (37)
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Eq. 36 becomes
−→
E = E0e

−i(ωt−ωnr
c
k̂·−→r )e−

ωni
c
k̂·−→r ε̂. (38)

There are two components of the electric field. The real part of the index of refraction

appears in the phase, while the intensity through the medium is determined by the imaginary

part of the index of refraction. This becomes more apparent if we calculate the intensity of

the electric field, which is equivalent to the time-averaged Poynting vector 〈S〉. Given that

−→
S =

1

µ0

−→
E ×

−→
B (39)

and
−→
B =

1

c
k̂ ×
−→
E , (40)

averaging over time yields that the intensity I(z) of the field propagating in the z direction

is

I(z) =
E2

0

2µ0c
e−

2ωni
c
z. (41)

As the wave propagates through the medium, its intensity is attenuated exponentially

with distance. The attenuation coefficient for the medium is given as

κ =
2ω

c
ni (42)

and the peak intensity I0 =
E2

0

2µ0c
such that

I(z) = I0e
−κz. (43)

In general, the index of refraction of a material is dependent upon its permittivity ε and

permeability µ:

n2 =
ε

ε0

µ

µ0

. (44)

Because 87Rb has a single valence electron, the atoms are paramagnetic and µ ≈ µ0. In

addition, the permittivity is related to the susceptibility χ by ε = ε0(1 +χ). For a dispersive

material, the real (χr) and imaginary (χi) parts of the frequency-dependent susceptibility

χ(ω) = χr(ω)+ iχi(ω) are connected through the Kramers-Kronig relations, a pair of Hilbert

transforms in in the form of principal value integrals [55].

χr(ω) =
2

π
PV

[∫ ∞
0

sχi(s)

s2 − ω2
ds

]
(45)
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χi(ω) =
2

π
PV

[∫ ∞
0

ωχr(s)

ω2 − s2
ds

]
(46)

We can find a relationship between χ and n:

χi = 2ni (47)

χr = 2(nr − 1). (48)

The susceptibility is related to the polarizability of the ensemble as given by

−→
P =

ε0E0

2

(
χ(ω)e−iωt + χ(−ω)eiωt

)−→ε . (49)

Given an ensemble with a density n0, the polarizability is proportional to the average dipole

moment 〈
−→
d 〉 for a single atom:

−→
P = n0〈

−→
d 〉 = n0〈Ψ(t)|qε̂ · −→r |Ψ(t)〉. (50)

Using Eqns. 3 and 11 and comparing Eqns. 49 and 50 yields

χ(ω) =
1

3

n0q
2

ε~
|〈1|r|0〉|2 1

ω10 − ω − iγ/2
. (51)

Thus, the imaginary part of the susceptibility is

χi =
1

3

n0q
2

ε0~
|〈1|r|0〉|2 γ/2

δ2 + (γ/2)2
(52)

and the real part, which leads to dispersion in the phase velocity of the wave is

χr =
1

3

n0q
2

ε0~
|〈1|r|0〉|2 −δ

δ2 + (γ/2)2
. (53)

Finally, the cross-section σ for light scattering from an individual atom with ground state F

and excited state F ′ to remove energy from the plane wave is σ = κ
n0

. Substituting Eqn. 52

in Eqn. 42, and noting that λ = 2πc/ω, gives the total cross-section

σ =
2F ′ + 1

2F + 1

λ2

2π

1

1 + (2δ/γ)2
. (54)

The attenuation of the intensity of the plane wave due to propagation through the entire
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medium follows Beer’s Law (also known as the Beer– Lambert– Bouguer law.) The final

intensity IT is reduced from the initial intensity I0 due to the optical depth b of the system:

IT = I0e
−b. (55)

The unitless optical depth b is dependent on multiple factors of the medium, which include

density, the length of the sample, and the atomic cross section σ. For any given sample, b is

given by

b =

∫ ∞
−∞

σn(z)dz (56)

where n(z) is the number density in the direction of propagation z.

2.5 DIFFUSION AND RANDOM WALKS

As photons propagate through a medium, they undergo a multitude of scatterings. This

results in the light being scattered randomly in any direction, as depicted in Fig. 1. Accord-

ing to the Ewald-Oseen theorem, the total scattered electric field
−→
ET is the superposition of

the incident field
−→
E0 and the field radiated from dipoles in the medium

−→
ES

−→
ET =

−→
E0 +

−→
ES. (57)

The scattered field in the medium is

−→
ES(z) = −

−→
E0e

iκz +
2

n(ω) + 1

−→
E0e

in(ω)κz (58)

which has a component that exactly cancels with the incident field [56]. Thus, the intensity

appears to be attenuated in the forward direction.

For a diffusely scattering medium, in which the scatterers are randomly distributed and

not situated in a lattice, the fluorescence that is observed off-axis from the original excitation

can be considered incoherent [57]. This is due to spatial averaging of the phase dependence

of the scattered light. The photon distribution in space at any time is given by Φ = Φ(−→r t),
and can be solved using the diffusion equation

∂Φ

∂t
=
−→
∇ ·

(
D(−→r )

−→
∇Φ

)
. (59)
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FIG. 1: As photons travel through an atomic sample, their paths (indicated by the arrows)
are randomized as they scatter off atoms (circles).

Here D(−→r ) is the density dependent diffusion coefficient [58], [59]. For a photon initially lo-

cated at −→r0 at t = 0 within an infinite, isotropic, homogeneous sample, the three dimensional

solution of the diffusion equation yields

Φ =
1

(4πDt)3/2
e−|
−→r −−→r0 |2/(4Dt) (60)

and the diffusion coefficient is

D =
lvE
3
. (61)

Here we have introduced the mean free path l of the sample, which is the average distance

a photon will travel between scattering events. The rate at which the energy is transported

through the sample is vE. Given a sample density n and atomic cross-section σ, the mean

free path is

l =
1

nσ
. (62)

In reality, the atomic sample used in the experiment is not isotropic, but has a bi-Gaussian

density distribution. In order to simulate this diffusive process, a discretized random walk

can be used [57]. Averaging over many random walks of photons through the medium will

replicate the diffusion model. The solution will not account for the phases of individual pho-

tons, which contribute to coherent backscattering and attenuation in the forward direction,

so this model should only be used to observe off-axis scattering.
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2.5.1 A 3D RANDOM WALK MODEL

A 3D random walk model has been developed to describe the spatial distribution of

the scattered light from an atomic sample, the results of which will be compared to the

experimental results. Due to computational power constraints, a maximum of 10,000 atoms

are used. Keeping the number of atoms in the simulation constant, the relative length scales

are then modified to reproduce the same density as that found in the experiment. The

simulation distance dsim scales with the experimental distance dexp as

dsim = dexp
(
104/N

)1/3
, (63)

where N is the number of atoms in the experiment.

Each atom ai can be described by its center of mass position −→ri . The distribution of N

atoms can be described by a three dimensional bi-Gaussian density distribution

n(−→r ) = n0e
−r2⊥/(2r

2
0)−z2/(2z20), (64)

r2⊥ = x2 + y2, with radii r0 and z0 and peak density n0,

n0 =
N

(2π)3/2r20z0
. (65)

The physical radius R of each atom is found from the cross-section

σ = πR2. (66)

The cross-section for the F = 2→ F ′ = 3 transition is used. Using Eq. 54, the radius is

R =

(
2F ′ + 1

2F + 1

λ2

2π2

1

1 + (2δ/γ)2

)1/2

. (67)

Therefore, R is greatest on resonance and the atoms effectively become smaller as the de-

tuning δ becomes greater.

An atom outside of the sample is given a position −→r0 chosen from a uniform random

distribution to mimic the constant intensity of the probe over the distribution of atoms.

This first atom is forced to decay in the direction k̂ of the probe. The position of the photon
−→p over time is −→p = −→r0 + vtk̂. The closest distance between each atom and the photon’s
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path is

di =
|(−→ri −−→r0 )× (−→ri −−→p )|

|−→p −−→r0 |
. (68)

The closest atom aj to a0 that has dj ≤ R will scatter the photon. At that point

the photon will scatter into a random direction k̂j with uniform probability and will be

described by the vector −→rj + k̂j. This scattering process will continue until the photon does

not scatter from any of the atoms in the sample. The final position of the photon is found

from propagating the last decay path out to a distance of 10z0 from the center of the sample.

A sample of the Mathematica program written to model a three dimensional random walk

of a photon in an atomic sample with the same geometries and characteristics as the samples

in the diffuse scattering experiment is shown in Appendix A.

FIG. 2: This histogram shows the distribution of distances a photon - initially positioned
at the center of the sample - travels to the first scattering event. The theoretical mean free
path l0 is 395 nm, while the median of this distribution gives l = 508 nm.

One critical test to make sure this model fairly describes the atomic system is to check

the path length of the photons. For a sample with a relatively low density n0, in which

dipole-dipole interactions are negligent, the mean free path l0 for a photon initially at the

center of the sample should be

l0 =
1

n0σ
. (69)

As shown in Fig. 2, the simulation agrees fairly well with theory in approximating the mean

free path. While the photon travels through the sample, the mean free path l is actually
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(a) 18.7 atoms/µm3 (b) 0.25 atoms/µm3

FIG. 3: The radial position (r2⊥ = x2 + y2) of the first atom to scatter each photon is shown
in black, overlapping a contour plot that indicates the density of the atomic sample. a) At a
peak density of 18.7 atoms/µm3, we see that initial scattering takes place near the effective
surface of the sample. b) At a density of 0.25 atoms/µm3, we see that the photons are able
to penetrate into the sample before scattering.

position dependent:

l (−→r ) =
1

n (−→r )σ
. (70)

The reduction in density with distance contributes to the increase in the mean free path.

By recording the position of the first atom that scatters each photon, we can see how

the light is able to penetrate further into the sample when the sample expands and the

density is low. As shown in Fig. 3, the initial photons are unable to penetrate the atomic

sample with a peak density of 18.7 atoms/µm3. This means that most of the signal is from

surface scattering. However, once the sample expands and the peak density is reduced to

0.25 atoms/µm3, the photons are able to travel far into the sample before scattering. Notice

as well that the number of photons scattered is increased drastically as the physical size of

the sample increases.

More information can be learned from recording the number of times an individual photon

is scattered within the sample. An example of these results for both a low and high density

(large and small volume) can be found in Fig. 4. We see that with smaller sample radii, the
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(a) (b)

FIG. 4: a)The distribution of the number of times an individual photon is scattered within
the sample is shown for 780,000 atoms but two different volumes corresponding to densities
of 18.7 atoms/µm3 and 0.43 atoms/µm3. b)As a sample expands, the scattering number η
is reduced, such that photons transition from multiple scattering to single scattering events.

total number of photons scattered is reduced due to the reduction of the physical size of the

sample, but the photons that are scattered undergo multiple scattering. Conversely, with

physically large sample, a large percentage of photons are only scattered a few times.

Fitting the number of occurrences O as a function of the number of scatterings N to a

decaying exponential

O = O0e
−N/η (71)

we can define a scattering number η that corresponds to the number of times a single photon

is scattered. Likewise, the total number of photons scattered, and the number of single

scattering photons, is shown in Fig. 5. These figures show that for high density samples the

number of scattered photons is reduced, but they undergo multiple scattering; for samples

with larger volumes, the number of scattered photons is increased, and they are able to

penetrate the sample more, but they do not rescatter as frequently.

By recording the final position of all of the photons, the spatial scattering distribution

is found. The number of atoms, radii of the sample, and detuning of the probe beam are
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FIG. 5: The total number of scattered photons increases as the sample expands and the
density is reduced. At higher densities (lower volumes), photons are more likely to undergo
multiple scattering.

changed to study their effects on the scattering distribution and to compare with experimen-

tal results. As stated before, this model does not include the phase of the scattered light,

but only contains information on the final position. As such, this would not be an accurate

model for forwards or backwards scattering, but is suitable for diffuse scattering.
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CHAPTER 3

EXPERIMENTAL SETUP

This chapter begins with the optical and electronic setups required to create the cold

atomic 87Rb sample. After the sample is created, numerous characterization techniques are

used to fully quantify the sample parameters. Finally, a description of the experimental

setup to observe diffuse scattering is given at the end of this chapter.

3.1 RUBIDIUM

Rubidium is an alkali metal with two main isotopes (85Rb and 87Rb). It is a convenient

element to work with in cold atomic physics, as narrow-band laser diodes (with wavelengths

near the ground state resonance transitions) are both economic and readily available. Ad-

ditionally, rubidium’s spectroscopic properties are well understood due to the similarities to

the hydrogen atom, since there is only one valence electron. A Grotrian diagram showing

many of the lowest electronic energy levels of rubidium is shown in FIG. 6.

The relevant transitions for this experiment, shown in FIG. 7, are from the ground state

5s2S1/2 to the first excited state 5s2P3/2, which is known as the D2 line. The essential

properties of 87Rb are shown in Table 1, along with the 52S1/2 → 52P3/2 transition optical

properties. Due to coupling between the nuclear spin I with the total electronic angular

Atomic Number Z 37

Atomic Mass m 1.443160648(72) ×10−25 kg

Nuclear Spin I 3/2

Ionization Limit EI 4.17712706(10) eV

Lifetime τ 26.2348(77) ns

Decay rate γ 2π × 6.0666(18) MHz

Saturation Intensity (circular light polarization) Is 1.66933(35) mW/cm2

Total cross section (isotropic light polarization) σ0 1.356456704271(31) ×10−9 cm2

TABLE 1: Properties of atomic 87Rb and the 52S1/2 → 52P3/2 transition optical properties
[61]
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FIG. 6: This Grotrian diagram shows the lowest energy levels of rubidium, with wavenumbers
given by [60]. The ground state configuration is 5s2S1/2, and the ionization energy, indicated
by the red dashed line, is 4.18 eV. [n] indicates the nth level, and the ellipses indicate a
progression of n towards higher excited states nearing the continuum. The letters s, p, d,
and f indicate states with electronic orbital angular momentum L = 0, 1, 2, and 3 respectively.

momentum J, J = L+S, the energy levels are split into what are known as hyperfine levels.

The total angular momentum is thus

F = I + J, (72)

and the magnitude F is an integer in the range

|J − I| ≤ F ≤ J + I. (73)

The Hamiltonion is

Hhfs = AhfsI · J +Bhfs

3(I · J)2 + 3
2
(I · J)− I(I + 1)J(J + 1)

2I(2I − 1)J(2J − 1)
, (74)
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Magnetic Dipole Constant - 5s2S1/2 Ahfs 3417.341 MHz

Magnetic Dipole Constant - 5s2P3/2 Ahfs 84.845 MHz

Electric Quadrupole Constant - 5s2P3/2 Bhfs 12.52 MHz

TABLE 2: The relevant magnetic dipole and electric quadrupole constants contribute to the
energy splittings due to hyperfine interactions [52].

which results in hyperfine energy splittings

∆Ehfs =
1

2
AhfsK +Bhfs

3
2
K(K + 1)− 2I(I + 1)J(J + 1)

4I(2I − 1)J(2J − 1)
(75)

where

K = F (F + 1)− I(I + 1)− J(J + 1) (76)

The magnetic dipole constants Ahfs for the ground and excited states, and the excited state

electric quadrupole constant Bhfs, have been experimentally measured and are listed in Table

2 [52, 53, 61]. The same type of selection rules for dipole transitions from the ground to the

excited state still apply. Namely, the change in the total angular momentum must be zero

or 1:

∆F = 0,±1. (77)

Additionally, the change in the magnetic quantum number mF depends on the polarization

of the excitation. For linearly polarized light, ∆mF = 0, while for light of σ± polarization,

∆mF = ±1.

By using a narrow-band continuous wave (CW) laser, we can drive transitions with great

precision. The laser used to probe the F = 2 → F ′ = 3 transition has a bandwidth of

∼ 1 MHz, much less than the hyperfine splittings shown in FIG. 7. As such, when the

probe is tuned near resonance, the 87Rb atoms can be considered to a good approximation

as only having two levels. The other hyperfine levels are far enough away that there is little

spectroscopic contribution to the scattering process.
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FIG. 7: The hyperfine structure for the relevant transitions for this experiment is shown
(not to scale.) The ground level hyperfine splitting is 6.8 GHz, while the excited levels span
nearly 500 MHz.(Values from [61])
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3.2 LASERS

Lasers are truly the workhorse of cold atomic physics. Since the 1980’s, the techniques

and resources for using laser diodes has greatly improved [62]. They have been critical in

cooling and trapping atoms; from creating an optical molasses [63], to cooling atoms below

the Doppler limit [64,65], lasers have been at the forefront of experimental progress in atomic

physics. In this section, the various types of lasers utilized for this experiment are outlined.

Additionally, the optical arrangements and techniques for locking and manipulating the

lasers’ properties are described. For this thesis, a combination of extended cavity diode

lasers (ECDLs), a distributed feedback laser (DFB), and a fiber laser are used to create and

probe the sample. We utilize two locking techniques - Doppler free saturated absorption and

injection locking- to stabilize the ECDLs and DFB.

3.2.1 EXTENDED CAVITY DIODE LASER (ECDL)

A free-running diode laser may lase at a wavelength far from the desired wavelength. By

placing a diffraction grating in the laser beam’s path and diffracting the first order back into

the diode, a cavity is created. The optical feedback from the grating allows the diode to be

tuned over a range of frequencies. Because the grating is outside of the physical structure of

the diode as shown in FIG. 8, this setup is known as an extended cavity diode laser (ECDL).

This specific setup is known as the Littrow configuration. While ECDLs are historically

known as being finicky [62], they produce laser beams that have narrow linewidths (on the

order of 1 MHz), and can be stable over the course of an experimental run.

While commercially available as a package, the ECDLs in this experiment are home-built.

We use a diode purchased from ThorLabs (# DL7140-201S) capable of emitting 70 mW of

power. The construction of the laser enclosure and the mounts to hold the components in

place was chiefly performed by a previous graduate student [41]. There are three main ways

to control the wavelength/frequency of the ECDL: current, temperature, and diffraction

grating angle. A home-built current controller supplies power to the diode and is tuned

so the laser is close to the desired wavelength. Because the cavity length (and therefore

the cavity frequency) is temperature dependent, a thermoelectric cooler (TEC) is placed

in close contact with the laser diode. A home-built temperature controller stabilizes the

temperature of the diode so that slow drifts in room temperature do not disturb the diode

or cavity. Finally, the grating is mounted on a piezo electric transducer (PZT). Applying a

voltage to the PZT causes it to change in length, thereby slightly extending or contracting
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Thermo-electric cooler
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FIG. 8: A schematic of a Littrow configuration ECDL is shown. The light emitted from the
diode is collimated using a lens, and then is incident on a diffraction grating. The first order
is diffracted back to the diode, while the zeroth order is reflected towards a mirror where it
is then directed outside of the laser enclosure.

the length of the cavity. Therefore, the PZT is used to fine-tune the frequency of the ECDL.

More details of how the current and PZT are used will follow in a later section.

3.2.2 DISTRIBUTED FEEDBACK LASER (DFB)

Another type of laser used in this experiment is a distributed feedback laser (DFB),

purchased from Eagle Yard (part # EYP-DFB-0780-00080-1500-TOC03-0000.) For this

laser, a commercial dual current and temperature controller (SRS # LDC501) is used. While

the DFB is capable of providing up to 80 mW of power, it is very sensitive to optical feedback

from reflections off of various optics. It is important to isolate as many of the reflections

as possible. Additionally, noisy current and temperature controllers can easily disturb the

DFB. We have observed that both electrical noise and reflections can broaden the spectral

width of the DFB from the stated value of 2 MHz up to 6 MHz, so great care must be taken

to achieve stated linewidths.

3.2.3 FIBER LASERS

Finally, the last type of laser used in this experiment is a fiber laser. Whereas the ECDL

uses a semiconductor as the gain medium, the fiber laser uses a fiber doped with ytterbium
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to create gain. At a wavelength of 1.064 µm, the fiber laser (IPG Photonics # YLR-30-1064-

LP) is capable of providing up to 30 W of power. Care must be taken while aligning and

using this laser, as the power is much greater than that of a diode laser, and it is beyond

the spectral range of the human eye. Use of an infrared viewer is required to view the laser

beam. If the fiber laser is focused, it is easily capable of catching paper, clothes, and wood

on fire.

3.2.4 OPTICAL ARRANGEMENTS

There are two optical tables used in this experiment. The first, named the laser table,

includes the ECDLs and DFB, as well as the associated optics and electronics. The laser

table is used to condition the frequencies of these lasers to the desired values. The second

optical table, known as the experiment table, is used to create the atomic sample. This is

also where the fiber laser is held. Laser beams are transferred from the laser table to the

experiment table through fiber optic patch cables. In this section, the optical layouts for the

laser table are described. The optical elements key is located in the preface on page vi.

For this experiment, there are two major optical transitions of concern, shown in Fig.

9. The trapping transition is the nearly closed 5S1/2, F = 2 → 5P3/2, F
′ = 3 transition.

The ECDL tuned near this transition is colloquially called the MOT laser. The second

transition is driven by the ECDL that is called the repumper laser. Due to off resonance

Raman transitions, some atoms excited by the MOT laser are actually in the F ′ = 2 state.

As such, they have the ability to decay to the F = 1 state. The repumper, tuned to the

5S1/2, F = 1 → 5P3/2, F
′ = 2 transition is used to ”repump” those atoms back into the

F = 2 ground state. The probe laser is picked off from the MOT laser and is tuned about

the F = 2→ F ′ = 3 transition as well.

Shown in Fig. 10, the repumper laser layout is the least complex on the laser table.

The ECDL, which is very close to the surface of the laser table, requires a periscope to

make further alignments easier to manage. Directly after the periscope is an optical isolator

(OFR # IO-3-780-PSCL), which relies on Faraday rotation to reduce the transmission of

reflections back towards the diode. There is then a pick-off that reflects a small percentage

of the intensity towards a saturated absorption (SA) setup (described in the next section) to

frequency lock the laser. The light that is transmitted through the pick-off goes through an

acousto-optic modulator (AOM) (Gooch & Housego # R23080-1-LTD). AOMs are a valuable

tool for fine-tuning the frequency of a laser beam. They may also be used as a switch,

as their turn-off time is much shorter than that of a mechanical shutter. A transducer
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FIG. 9: The probe, MOT, and repumper lasers are tuned to the relevant transitions for this
experiment. (Not to scale.)

is attached to a crystal inside the AOM. Modulation of the transducer at a determined

frequency causes an acoustic wave to propagate through the crystal. A laser beam traveling

nearly perpendicular to the transducer will experience Bragg diffraction, and the optical

frequency of the transmitted light is increased (decreased)in the +1 (-1) order by the same

amount as the frequency of the acoustic wave [66]. Finally, the +1 order beam from the

AOM is launched into a non-polarization preserving fiber to go to the experiment table.

Shown in Fig. 11, the MOT laser layout is more complex than that of the repumper.

However, the same basic optics are used. In addition, polarizing beam splitter cubes are

used in conjunction with half-wave plates to control the polarization and intensity through

different segments of the setup. In the MOT laser setup, two double pass (DP) AOM setups

are used. In a DP AOM layout, the frequency of the first transmitted laser beam is shifted

by the frequency of the AOM. Taking that same order and reflecting it back through the

AOM creates a doubly transmitted laser beam that has a net frequency change of twice the
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FIG. 10: The optical layout for the repumper laser is shown.

frequency at which the AOM is operated. The first DP AOM (Brimrose # EM200-50-780)

setup is located so that only the light going to the saturated absorption is shifted. This

AOM is denoted as DPSA AOM, while the other DP AOM (also Brimrose # EM200-50-780)

setup shifts the rest of the light that is not picked off to go through the SA.

After passing through a DP AOM, the intensity of the MOT laser is greatly reduced.

To increase the power available to trap and probe the atoms, the MOT laser and DFB are

set up in a master-slave configuration. The rest of the optical layout for the laser table is

shown in Fig. 12. The optical isolator for the DFB (ThorLabs # IO-8-780-PBS) is much

stronger than the other two used and has an isolation of 35 dB, which helps with stability

of the DFB. After the isolator, a telescope is used to reduce the waist size of the laser. A

small portion of the intensity is picked off and used as the probe, while the remaining laser

beam passes through another AOM (Gooch & Housego # R23080-1-LTD) and is then fiber
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FIG. 11: The optical layout for the MOT laser is shown.

launched through a polarization preserving fiber to the experiment table. The intensity of

the trapping laser at the experiment table is about 25 mW. The probe laser beam is sent

through a different AOM (NEOS # 23080-1) before being attenuated by neutral density

filters. Then, it is fiber launched through a polarization preserving fiber to the experiment

table.

3.2.5 FREQUENCY STABILIZATION

In order to trap the 87Rb atoms and selectively probe a single transition, most of the

lasers must be frequency locked. Additionally, we require the ability to precisely tune the

frequency. Two methods are utilized to frequency stabilize the lasers on the laser table.

The primary method of stabilization, known as saturated absorption (SA), is described

below. Both ECDLs use a feedback loop provided from their respective SA setups to stay
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FIG. 12: The optical layout for the DFB laser is shown. The DFB is used to create the
MOT trapping laser beam, as well as the probe.

locked at a set frequency. Additionally, the MOT ECDL and the DFB are in a master-

slave configuration, in which the laser beam from the ECDL is injected into the DFB. If

the DFB is lasing near the same frequency as the ECDL before injection occurs, then the

DFB will behave as a slave and follow the ECDL master frequency [67]. Through the use

of AOMs, individual laser beams can then have their frequency varied with respect to the

locking frequency.

Saturated absorption

There are two key components to a saturated absorption (SA) setup: the optical layout,

and the electrical setup used to lock the laser. The optical setup allows for viewing the
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frequency of the laser beam and creates an electrical signal that can be used to provide a

reference frequency at which to lock the laser. Electrical feedback loops then control the

laser system to stabilize the laser frequency.

As shown in Fig. 13, a wedged pick-off creates two low intensity parallel laser beams

(called probes) that propagate through a test cell filled with 87Rb and 85Rb atoms. As the

near-resonance laser beams pass through the cell, some of the light is absorbed. The trans-

mitted laser beams are directed towards a balanced photodetector, which takes the difference

between the two spectroscopic signals. Because the atoms are at room temperature, their

resonances undergo Doppler broadening, and subtraction of the two laser beams removes the

Doppler-broadened piece of the signal. A critical part of the SA setup is the higher inten-

sity laser beam (called the pump beam) that is reflected such that it is counterpropagating

against one of the probe beams. An atom that has a velocity −→v will observe a laser beam

+

Balanced photodetector

FIG. 13: Doppler-free saturated absorption provides a reference frequency at which to lock
the ECDLs.

(propagating in the k̂ direction with frequency fL) at a Doppler-shifted frequency

f = fL

(
1 +
−→v · k̂
c

)
. (78)
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The probe-pump configuration in SA relies on this Doppler effect. Atoms that do not

have a velocity component in the same direction as the laser beams will experience no shift,

and will absorb light when the laser is at the resonant frequency. Atoms that are traveling

towards the probe will observe higher frequencies, while atoms traveling away from the probe

will observe lower frequencies, than the probe frequency in the lab reference frame. Because

the probe and pump beams have the same frequency, but are counterpropagating, the atoms

that are traveling towards the probe will be on resonance with a blue-shifted pump, and those

traveling away from the probe will experience resonance with a red-shifted pump beam.

The maximum absorption of the probe for atoms with a non-zero velocity in the k̂ di-

rection will occur at what are known as cross-over frequencies, which are halfway between

each resonance line. By applying a voltage ramp to the piezo in the ECDL, the frequency

of the laser beam can be modulated to show the full SA spectrum. The spectrum will then

show absorption lines for the non-shifted resonances and each cross-over resonance. The

SA spectrum for the MOT and repumper lasers are shown in Figs. 14 and 15, respec-

tively. The MOT SA shows the resonant transitions F = 2 → F ′ = 1, 2, 3, as well as the

cross-over resonances F = 2 → F ′ = 1 − 2, 2 − 3, 1 − 3. Comparatively, the repumper SA

shows the resonant transitions F = 1 → F ′ = 0, 1, 2, as well as the cross-over resonances

F = 1→ F ′ = 0− 1, 1− 2, 0− 2. Using electrical feedback loops, we can lock the lasers to

the peaks of these resonances.
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FIG. 14: Doppler-free saturated absorption of the MOT laser provides a reference frequency
at which to lock the ECDL. The laser is locked to the F = 2 → F ′ = 2 − 3 cross-over
transition, as indicated by the arrow.

F'=0F'=1
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F'=0-1

F'=1-2

FIG. 15: Doppler-free saturated absorption of the repumper laser provides a reference fre-
quency at which to lock the ECDL. The laser is locked to the F = 1→ F ′ = 1−2 cross-over
transition, as indicated by the arrow.
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FIG. 16: Several electrical circuits are used to stabilize the ECDLs. a) A constant 10 kHz
modulation in the current of the ECDL is used as a reference frequency for the lock-in
amplifier. b) The SA photodetector voltage is used as an input to create a feedback loop to
drive the piezo of the ECDL and keep it locked to a set frequency. c) The temperature is
stabilized with the use of a thermo-electric cooler and thermistor.
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Electronic feedback loops

Electronic feedback loops are used to stabilize the ECDLs. The basic setup is shown in

Fig. 16. The laser diode is driven by a DC current controller, but a 10 kHz modulation is

added to this DC current. By passing the same modulation to the reference input of a lock-in

amplifier (SCITEC # 410) and using the SA photodector signal as the input, an output is

created that is a derivative of the SA signal. When the laser is exactly on resonance, the

lock-in amplifier output will ideally be 0 volts. However, if the laser drifts above or below

resonance, the respective output will be a positive or negative voltage. The output of the

lock-in amplifier is routed through a home-built lock box. The lock box serves two purposes:

the first is to act as a switch between the 4 Hz ramp and the lock-in amplifier output, and

the second is to allows fine tuning of the central voltage and gain (amplitude) of the ramp.

The output of the lock box goes directly to the piezo of the ECDL.

The lock-in amplifier is used to create a derivative of the SA signal, and is described in

Appendix B. The SA signal and the resulting output of the lock-in amplifier is shown in Fig.

17. The lock box is used to reduce the gain of the ramp until a single transition is shown

on the oscilloscope. At that point in time, the input of the lock box is switched so that the

piezo voltage is controlled by the lock-in amplifier. Given the proper laboratory conditions,

this lock loop can be stable for many hours at a time. A temperature feed back loop helps to

stabilize the ECDL and extends the period over which the laser can be locked. Having a quiet,

vibration free setting and an environment that does not drastically change temperatures is

ideal. For this thesis, the MOT laser is locked to the F = 2→ F ′ = 2−3 cross-over transition

shown in the SA spectrum. The repumper laser is locked to the F = 2→ F ′ = 1− 2 cross-

over transition. Through the use of AOMs, the frequency of each laser beam is controlled.

AOMs

Once the ECDLs are locked to a transition using saturated absorption spectroscopy, their

frequencies are fine-tuned using accousto-optic modulators (AOMs). By rotating the AOM

with respect to an incident laser beam, a ±1st order diffracted beam is created, as shown

in Fig. 18. The frequency of the nth order diffracted beam is offset from the incident laser

beam by nf , where f is the frequency of the sound wave emitted by the transducer in the

AOM. In a double pass setup, the diffracted beam is directed back through the AOM and

the resulting diffracted beam’s frequency shift is twice that of frequency of the AOM.

A combination of electronics from Mouser Electronics are used to drive the AOMs. The
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FIG. 17: The lock-in amplifier creates a derivative (blue) of the MOT SA signal (white).

circuitry for each AOM is shown in Fig. 19. Each AOM will run at a modulation frequency

determined by a voltage controlled oscillator (VCO) (# ZOS-100 for the MOT, repumper,

and probe AOMs, # ZOS-300 for both double pass AOMs). For an AOM that stays at

one frequency, a voltage divider supplied with 12 V is used to tune the VCO to the desired

frequency as observed on a frequency counter. For AOMs that are required to run at multiple

frequencies during an experimental run, a digital level box supplies the voltage to the VCO.

The digital level boxes are home-built power supplies that provide low noise TTL switchable

voltages [41]. A variable voltage attenuator (# ZX73-2500) powered by a digital level box

is attached to the VCO in the MOT and repumper circuits so that the intensity of the

diffracted beams can be modified during the experimental procedure as well. Because the

MOT, repumper, and probe AOMs also serve as optical switches to effectively turn off the

laser beams during the experiment, a TTL triggered switch (# ZYSWA-2-50D) is used. A

Shottky diode is used to reduce the ringing associated with the TTL signal reflecting back

from the switch. Finally, the electrical signal passes through a radio-frequency (RF) amplifier

before being sent to the AOM.
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FIG. 18: An acousto-optic modulator (AOM) uses a sound wave emitted by a transducer
(direction indicated by the arrow) to cause diffraction of a laser beam traveling through a
crystal. a) By rotating the AOM w.r.t. the laser beam, a +1st order beam is created that
is diffracted away from the transducer. b) Likewise, by rotating the AOM in the opposite
direction, a −1st order beam is created.

Each AOM serves to shift the frequency of the laser beam until it reaches a desired

frequency for the experiment. The repumper laser, locked to the F = 1→ F ′ = 1− 2 cross-

over transition, is passed through a single AOM (Gooch & Housego # R23080-1-LTD) set

to a frequency of 78.5 MHz. Taking the +1st order beam results in the repumper laser beam

being tuned directly to the F = 1→ F ′ = 2 transition. The MOT laser has a comparatively

more complex setup.

A double-pass AOM (Brimrose #EM200-50-780) setup- denoted as SADP AOM- is sit-

uated such that the frequency of the portion of the laser used in the SA is lower than that

of the actual ECDL laser frequency. Another double-pass AOM (Brimrose #EM200-50-780)

setup- denoted as DP AOM- is used so that the frequency of the laser beam after the setup is

close to that of the laser beam in the SA. However, the DP AOM frequency can be changed

with the use of a digital level box so that multiple frequencies can be achieved. The DFB

laser frequency is the same as that of the laser beam after it passes through the DP AOM.

A portion of the DFB laser beam is used as the probe and passes through a single AOM

(NEOS 23080-1), while the rest of the DFB laser beam is used as the MOT laser beam

and passes through its own AOM (Gooch & Housego # R23080-1-LTD). Locking to the

F = 2 → F ′ = 2 − 3 cross-over transition, which is ∼ 133.325 MHz below the desired

F = 2→ F ′ = 3 transition, the MOT and probe laser frequency detunings (with respect to

the F = 2→ F ′ = 3 transition) are as follows:

δMOT = 2|DP | − 2|SADP |+ |MOT | − 133.325MHz (79)
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FIG. 19: Home-built AOM drivers are used to control the power and frequency of each AOM.
Digital level boxes are used to switch between voltages during the experimental procedure;
the frequency and intensity of the diffracted laser beam through each AOM can be changed
by using voltage controlled oscillators and variable voltage attenuators.

δprobe = 2|DP | − 2|SADP |+ |probe| − 133.325MHz (80)

The SADP, MOT, and probe AOMs stay at their set frequencies of 225.16 MHz, 85 MHz,

and 67 MHz respectively, while the DP is changed throughout the experimental process and

can be tuned around 200 MHz over a range of ∼ 50 MHz. The advantage to the DP and

SADP AOM setups is that the angular displacement of the laser beam on output does not

change with frequency like it does in a single pass setup. Additionally, a larger range of

frequencies can be achieved since the frequency of the AOM is effectively doubled. Finally,

since both of the DP AOM setups are before the DFB slave laser, there are no intensity

fluctuations from the frequency dependent efficiency of the AOM. Thus, the master-slave

configuration creates laser beams with stable high intensities and the ability of the DFB to

accept feedback allows it to easily follow the frequency changes of the DP AOM.
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3.3 VACUUM CHAMBER

An ultrahigh vacuum is required to create and probe the atomic samples without having

too much loss over the experimental run time due to background gas collisions. The vacuum

chamber assembly used in this experiment, shown in Fig. 20, consists of 12 viewports, a

20 l/s ion pump, an electrical feedthrough attached to SAES rubidium getters, and a valve.

A total of 8 viewports are 2-3/4” Del-Seal conflat flanges that have an antireflection (AR)

coating for 780 nm. In addition, there is a pair of off-axis 2-1/8” non-AR coated viewports

used for probing, and a pair of 4-1/2” windows AR coated for 1.064 µm light used for the

fiber laser.

FIG. 20: The full vacuum chamber assembly includes the main chamber, an ion pump, valve,
and getters attached to electrical feedthroughs. [41]

The SAES getters are doped with rubidium, which when heated will emit the atoms into

the chamber. A total of 10 getters are available to use with the electrical feedthroughs; there

are 3 setups that consist of two getters attached in series, and one setup uses 4 getters in

series. A power supply is used to send up to 6 A of current through the getters. When they

are first placed in the vacuum chamber, 6 A is supplied sequentially to each set of getters,
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which bakes off any impurities. Once the vacuum chamber walls are coated with a thin layer

of rubidium, the getter current is reduced to approximately 3 A. This creates a slow, steady

flow of rubidium.

While the pressure guage on the Varian ion pump controller (# 921-0062) only has a

sensitivity of 10−8 Torr, the current gauge can be used for calibration purposes. After

replacing the SAES getters and running a high current through each set, the pressure inside

of the vacuum chamber is relatively high- on the order of 10−6 Torr. While both the current

and pressure gauges are readable, a pressure calibration curve (Fig. 21 can be made. Then,

the current gauge can be used to find pressures below 10−8 Torr. For this specific controller,

a measured current I (µA) corresponds to a pressure P (Torr)

P = 5.6(9) · 10−9e0.113(4)I . (81)

After a few months of constant pumping, the pressure in the vacuum chamber is reduced to

∼ 10−9 Torr.

FIG. 21: A calibration curve between the current and pressure gauges on the ion pump
controller is used to track pressures below 10−8 Torr. An exponential fit (line) is found for
the data indicated by circles.
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3.4 CONTROL SYSTEM

The sequencing and timing of the experimental process chiefly relies on use of the PCI-

DIO-32-HS digital card from National Instruments. This card runs a LabView program that

has the ability to output 12 independent TTL pulses to control various devices. A matrix

of 0’s and 1’s determine if a ”LOW” or ”HIGH” signal is sent. Each column is a different

output channel, while the time for each event is included for each row. Due to the available

memory in our computer, this program is limited to 10 µs precision. The AOM switches

and the digital level boxes used to change VCO frequencies and VVA intensities relies on

this program. Additional outputs are used to open and close shutters, turn the fiber laser

on and off, and trigger data collection devices. By using one output to trigger another pulse

generator (Quantum Composer (QC) #9614), an additional 4 channels can be used. The

QC has a resolution of 10 ns, which allows for finer time control.

During fluorescence imaging, a liquid nitrogen (LN2) cooled charge coupled device (CCD)

camera (Princeton Instruments # LN/CCD-TKM512) is used to acquire images. The Na-

tional Instruments card is used to trigger the camera, and WinView is used to collect the

images. Time-dependent measurements use a photomultiplier tube (PMT) (Hamamatsu

#R9110) running at its maximum voltage of 1250 V. The output of the PMT is connected

to a multichannel scaler (MCS) (SRS # SR430). In both experimental procedures, care

must be taken not to saturate the imaging devices. If saturated by room light, the LN2 CCD

requires several exposures to recover, while the PMT can take weeks to fully recover. While

this may be cause for concern, the sensitivity to light is advantageous for low-saturation

imaging.

3.5 LASER TRAPPING AND COOLING

Cold atomic samples are advantageous when studying fundamental scattering processes;

the reduction of the temperature dependent Doppler broadening and the corresponding in-

crease in the decoherence time of the sample allows for collective and cooperative scattering

to be observed. In order to have a sample with a relatively high density (on the order of

1013 atoms/cm3), we begin first by creating a magneto optical trap (MOT). One of the

most widely used atomic traps, a MOT uses a combination of optical and magnetic fields.

Through the exploitation of atomic transition selection rules, photons exchange momentum

with a thermal distribution of atoms and effectively cool an ensemble by reducing its mean

velocity. Creating a spatial dependence to this scattering process traps the cooled atoms to
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create the MOT. A small percentage of the atoms trapped in the spatially larger MOT, with

a density on the order of 109 atoms/cm3, are transferred into far off resonance optical dipole

trap (FORT.) With temperatures near 100 µK, the atoms within the FORT are practically

stationary over the course of the measurements. When the FORT trapping laser is turned

off, the atoms are able to be measured in free-space, without the influences of external mag-

netic or optical fields. The following sections will cover the theory and experimental setup

for both the MOT and the FORT.

3.5.1 MAGNETO OPTICAL TRAP (MOT)

Theory

A single atom initially in an excited state that spontaneously emits a photon will expe-

rience a radiative force
−→
F = ~

−→
k γρ11, (82)

with
−→
k = 2π

λ
k̂ being the wave number of the photon with wavelength λ initially traveling in

a direction k̂, γ is the decay rate of the excited state, and ρ11 is the excited state amplitude

of the atom as given by Eq. 35 [52]. An atom that has a velocity −→v will observe a Doppler

shift of the laser frequency, ωD = −
−→
k · −→v , and the net force for an atom will thus reduce to

−→
F =

~
−→
k γ

2

s0
1 + s0 + (2(δ − ωD)/γ)2

, (83)

where δ is the laser’s detuning from resonance and s0 is the on-resonance saturation param-

eter. By including two counter-propagating laser beams, the sum of the forces results in a

velocity-dependent net force of
−→
F ∼= −β−→v , (84)

β =
8~k2δs0

γ (1 + s0 + (2δ/γ)2)2
. (85)

Atoms that travel towards a red-detuned laser beam (δ < 0) will experience a force that

causes a deceleration. By counter-propagating two laser beams, an atom’s velocity along

that axis will be reduced by the radiative force no matter which direction it travels. By

aligning three orthogonal pairs of counter-propagating laser beams, an optical molasses can

be created. The atoms are cooled, meaning their average velocity has been reduced, but

there is no restoring force to spatially confine atoms within the laser beams’ paths. This

results in an optical molasses, in which the atoms are cooled while within the laser beams’
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paths but are free to escape the sample.

When a current I flows through a wire formed into a loop of radius R with N turns, the

resulting magnetic field along the axis of symmetry can be found using the Biot-Savart Law.

Assuming the magnetic field is directed along the z axis, we have

Bz =
µ0

2

NR2I

(z2 +R2)3/2
, (86)

where z is the distance from the center of the loop, and the permeability of free space is µ0.

Orienting another coil a distance h away and directing the current to flow in the opposite

direction creates what is known as an anti-Helmholtz configuration. The resulting magnetic

field near the middle of the configuration (h/2 below the upper coil and h/2 above the lower

coil) can be well described for small z by

B(z) = B0z, (87)

where z is now the distance from the center of the two coils, and the strength of the magnetic

field is

B0 =
µ0NR

2I

2
. (88)

When this magnetic field is applied, the energy levels of the atoms experience a spatially

dependent Zeeman shift. With weak magnetic fields (below the strong-field Paschen-Back

limit), the energy splitting for a given magnetic quantum number mF for an isolated tran-

sition is

∆E = µBgFmFB, (89)

where the Bohr magneton is µB = e~
2me

and gF is the hyperfine Landé g-factor.

gF =

(
1 +

J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)

)(
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)

)
(90)

As shown in Fig. 22, atoms with mF < 0 will have their energies shifted below bare resonance

when z > 0. In contrast, atoms with mF > 0 will experience a negative Zeeman shift when

their position is negative. We can take advantage of these energy splittings to force an atom

to selectively interact with only the laser beam with which it is counter-propagating.

A MOT uses a laser with frequency ωL close to a bare resonant frequency ω0 such that

δ = ωL − ω0 is negative. Transitions with ∆mF = ±1 are detuned by ±δ± from the laser

beam. An atom positioned at z < 0 would be more likely to scatter light that excites
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FIG. 22: Applying a magnetic field B = B0z creates a position dependent Zeeman shift. A
laser with frequency ωL and detuning δ from the mF = 0 → mF ′ = 0 transition is applied.
The detuning δ+ from the mF = 0 → mF ′ = +1 transition (indicated in blue) is less than
the detuning δ− from the mF = 0→ mF ′ = −1 transition (indicated in red) when atoms are
at z = −z′. For z = z′, δ− < δ+.

transitions of ∆mF = +1, because δ+ < δ−. Likewise, at atom positioned at z > 0 would

have a higher probability to scatter light that can excite ∆mF = −1 transitions. By aligning

a σ+ (right circularly polarized) laser beam that points from −z to +z and a σ− (left

circularly polarized) laser beam that points from +z to −z, atoms selectively interact such

that they are cooled and trapped around B = 0.
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MOT Loading

The 87Rb MOT relies on both the MOT and repumper lasers. The MOT laser is detuned

−3γ from the F = 2→ F ′ = 3 transition, where γ = 6 MHz is the natural decay rate of 87Rb,

and this laser is used to trap the atoms. However, because there is a non-zero probability

of being excited to the F ′ = 2 state, some atoms are optically pumped to the F = 1 ground

state. To combat this loss, the repumper laser, tuned to the F = 1 → F ′ = 2 transition,

optically pumps atoms back into the F = 2 ground state. As shown in Fig. 23, the MOT

and repumper lasers are combined using a polarizing beam splitter cube. The polarization

of the laser beams is fixed using a half-wave (λ/2) plate such that 1/3 of the intensity is

passed through to one arm of the chamber, while the remaining intensity is split equally

into two more arms. Each arm passes through a quarter-wave (λ/4) plate, which transforms

the laser beam from linear polarization to circular polarization. After passing through the

vacuum chamber, another λ/4 plate is present, followed by a mirror. Upon entering the

vacuum chamber, the retro-reflected laser beam will have the opposite circular polarization

of the incoming beam.

After exiting the polarization preserving fiber, the MOT laser beam has a power of

approximately 25 mW. Meanwhile, the repumper only has about 4 mW upon exit from the

non-polarization preserving fiber. Each laser beam is focused through a shutter (Uniblitz #

LS6Z2) before being collimated to a beam waist of ∼1.3 cm. The shutters are necessary for

two reasons. First, the AOMs cool off, and thus their efficiency changes, if they are left off for

too long. The shutters can then be used to block laser light that is not needed while keeping

the AOMs warm. Secondly, even if the AOMs are off, there is still residual leakage due to

electrical noise amplified by the RF amplifier being passed to the AOM. After the beam

splitter cubes, the laser beams are aligned with the center of the vacuum chamber viewports

so that they will intersect at the middle of the chamber. We are able to retroreflect each

laser beam all the way back to the optical fiber. However, to avoid standing waves in the

MOT, the final arrangement requires a minor misalignment.

The magnetic quadrupole field is created by running 10 A of current through the anti-

Helmholtz coils mounted in the z (vertical) direction. This creates a field gradient about the

center of the vacuum chamber. However, residual magnetic fields due to external sources

must be combatted. Additional trim coils are mounted on the three viewports for the initial

inputs of the laser beams. This way, a small magnetic field can be created that cancels

out stray fields in all three directions. A Sanyo video camera is used to see the MOT on a

TV monitor. When the magnetic field is switched off, an optical molasses is formed. The
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FIG. 23: The a)side and b)top views of the optical setup for creating a MOT are shown.
c)The polarization of each laser beam and the direction of the current in the magnetic coils
is shown in the schematic. Additional trim coils mounted outside of the vacuum chamber
windows with σ+ laser beam inputs, used to fully cancel out extraneous magnetic fields, are
not shown.
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trim coils are adjusted until the molasses expands freely and equally in all directions. The

molasses can be seen using an infrared (IR) viewer as well, but the video camera is beneficial

in being able to magnify the image. The MOT is visible to the naked eye and appears to

glow red as it scatters the MOT and repumper laser beams.

3.5.2 FAR OFF RESONANCE OPTICAL DIPOLE TRAP (FORT)

Theory

One of the simplest optical dipole traps consists of one single-mode focused Gaussian

laser beam. The intensity profile (in cylindrical units) of a laser beam with wavelength λ

that is tightly focused with peak intensity I0 at r = z = 0 is well characterized by

I(r, z) = I0
exp (−2r2/(w(z))2)

1 + (z/zR)2
, (91)

with a beam waist radius of w∗, w (z) = w∗
√

1 + (z/zR)2, and a Rayleigh range of

zr =
πw2
∗

λ
. (92)

The spatially dependent trap potential, with depth U0, is given by

U(r, z) = U0I(r, z)/I0. (93)

The potential well creates a trap in which atoms are able to be loaded and contained.

For an alkali atom, the depth is determined by the detunings δ1/2 and δ3/2 from the

respective D1 and D2 resonances [68]. For a linearly polarized laser beam, the trap depth is

U0 =
~γI0
24Is

(
1

δ1/2
+

2

δ3/2

)
. (94)

For a far off resonance trap, δ1/2 and δ3/2 are on the order of 100 THz. The ground and

excited state hyperfine splittings are negligible in this case, as they are smaller by a factor

of approximately 6.8× 10−5 and 5× 10−6 respectively.

The trap potential can also be defined by the polarizability α of the atoms, which is

related to the dipole moment: ~p = α~E. For a laser beam with frequency ω detuned from a
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resonant frequency ω0, the complex dipole polarizability is

α = 6πε0c
3 γ/ω2

0

ω2
0 − ω2 − i(ω3/ω2

0)γ
. (95)

The potential depth of the trap is then

U0 =
α0P

πε0cω2
0

. (96)

Here P is the total power of the laser beam related to the intensity I = 2P
πw2
∗

and the static

polarizability is α0. At the wavelength of the laser used in this experiment ( 1.064 µm), α0

of 87Rb is

α0 ≈ 711 · 4πε0a30 (97)

where a0 is the Bohr radius [69].

Atoms are loaded from the MOT into the FORT. Scattering from the MOT trapping

beam tuned near the F = 2 → F ′ = 3 transition, the 87Rb atoms decay via inelastic

Raman and elastic Rayleigh scattering to the F = 1 and F = 2 ground states respectively.

Extinguishing the repumper laser at the end of the loading period ensures that most of the

atoms are held in the lower energy potential well of the F = 1 ground state.

While the trap depth scales as I0/δ, the scattering rate γs decreases at a faster rate

∝ I0/δ
2,

γs(r, z) =
πc2γ2

2~ω3
0

(
1

δ21/2
+

2

δ23/2

)
I(r, z). (98)

By increasing the detuning and the intensity of the laser at a linear rate, a constant trap

depth can be maintained. However, the scattering rate is greatly reduced. By creating a far

off resonance optical dipole trap (FORT) and reducing this heating mechanism, atoms are

able to be trapped with lifetimes beyond one second [70–72].

FORT Loading

To create the FORT, a single-mode fiber laser (IPG Photonics # YLR-30-1064-LP) with

a wavelength of 1.064 µm is aligned such that the focal point is overlapped near the center of

the MOT, as shown in Fig. 24. Atoms within the MOT excited by the MOT laser undergo

inelastic Raman scattering to decay into the F = 1 ground state. The light shift caused by

the focused fiber laser creates a potential well that traps these atoms. The efficiency of this

process depends on many factors, which will be explained in further detail below. Through
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FIG. 24: The optical layout for the fiber laser is shown. Tightly focused, the laser beam is
overlapped near the MOT to transfer atoms into the FORT.

several iterations of optimization, we are able to achieve a local maximum in the number of

atoms loaded from the MOT into the FORT.

The basic timing for FORT loading is shown in Fig. 25. Before the fiber laser is turned

on, the MOT is formed and held until the MOT reaches a plateau in the number of atoms,

which takes a few seconds. The fiber laser is turned on, and atoms begin to load into the

FORT. The MOT laser intensity is reduced to approximately 20 mW, while the repumper

laser intensity is drastically diminished to approximately 10 µW. Additionally, the DP AOM

frequency is changed so that the MOT detuning changes from -3γ to ∼-6.5γ. Through this

process, the radiation pressure on the MOT is reduced; a compressed MOT, shown in Fig.

26, is formed that has better spatial overlap with the fiber laser beam. At the end of the

loading process, the repumper laser is fully extinguished to ensure that the atoms are being

loaded into the F = 1 ground state. After about 5 ms, only the fiber laser is kept on, and
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FIG. 25: A timing diagram during the FORT loading process is shown. Before the fiber laser
is turned on (red section), the MOT is being held with the trapping and repumper lasers.
During loading (green section), the trapping and repumper laser intensities are reduced, and
the fiber laser is turned on. The repumper is extinguished to allow the atoms to be trapped
in the F = 1 ground state, and then everything except the fiber laser is turned off (blue
section).

the atoms are held in the FORT.

The initial alignment of the fiber laser is the most difficult task in creating the FORT.

The optics for the fiber laser are coated for 1.064 µm, while fluorescence from the MOT is

780 nm. Additionally, the guide beam equipped with the fiber laser is a HeNe laser that

lases around 600-700 nm. The guide beam is not easily visible to the naked eye after the

mirrors, and is not visible using the IR viewer, whereas the fiber laser is only visible by use

of an IR viewer (or by catching paper on fire, which is not recommended.) The following

strategy involves translating an image of the MOT from the vacuum chamber to the output

of the fiber laser to ensure good overlap between the FORT and MOT.

Begin by roughly aligning the guide beam so that it goes through the middle of the

window in the vacuum chamber. Place the positive lens (f = 10 cm) near the window and

find the image of the MOT formed on the opposite side of the lens. Align the guide beam

with this image. Place a temporary lens on the opposite side of the vacuum chamber and

repeat the process, so that the guidebeam is now going through both images of the MOT.
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FIG. 26: A false-color image of the compressed MOT from a CCD camera is shown. The 25
µK spherical Gaussian sample has approximately 50 million atoms.

This ensures proper alignment of the fiber laser with the atomic sample. To align the focal

point, a negative lens (f = 10 cm) is added between the mirror and the positive lens so that

the MOT fluorescence appears to be collimated. Vertical and horizontal positioning of the

negative lens can be used to guide this fluorescence to the output coupler of the fiber laser.

The addition of a polarizing beam splitter cube maintains the linear polarization of the fiber

laser. This alignment should be good enough to trap enough atoms in the FORT to begin

the optimization process.

The MOT and repumper lasers are flashed at the original intensities and detunings after

a hold time of 200 ms, and the fluorescence of the FORT is either captured on a CCD or

monitored using a PMT connected to an oscilloscope (see Fig. 27.) During optimization,

the goal is to increase the peak number of counts on the CCD or the maximum voltage on

the oscilloscope. The advantage is that the adjustments can be made in real time and the

effects on the number of atoms are clearly apparent. First, the repumper intensity during

MOT compression is adjusted, followed by the MOT DP AOM frequency. While only a

minor change is visible, the MOT laser intensity is then adjusted. Finally, the alignment of

the fiber laser focal point is adjusted. The associated lenses are mounted in z-translating

post holders, on a translation stage atop a rail that allows for focal point adjustments. After

the laser alignment is optimized, the power of the fiber laser is adjusted and the process is

repeated again. The LabView program timing diagram is also adjusted to change the loading

time period and time that then repumper laser is off before loading is complete. The first
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CCD

FIG. 27: Fluorescence from the FORT is collected perpendicular to the fiber laser. A
collection lens (f = 75 mm), in a 2f-2f configuration at the viewport, is used in combination
with two f = 60 mm lenses to create an image with unit magnification at the CCD. A
multi-mode optical fiber can also be placed at the focus to collect light for a PMT.

optimized FORT achieved in this lab is shown in Fig. 28.

After imaging the first FORT, we realized that the sample was too extended to create a

high-density sample. To create a sharper focus (and thereby a shorter Rayleigh range), the

positive lens is moved as close to the window as possible and the position of the negative

lens is adjusted to focus the laser beam to the middle of the chamber. After several more

iterations of optimization, the fluorescence signals reach a steady state and the number of

atoms reaches a local maximum. The resulting FORT is shown in Fig. 29. After any

optimization process, the FORT sample must be fully characterized.
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z0=1.5 mm

0.25 mm

FIG. 28: This is a CCD (13 µm x 13 µm pixels) false-color image of the first FORT created
in this lab after a round of optimization. It is tilted because the camera was not level at
the time, but was corrected shortly after taking the image. The length of this sample does
not suffice for a high density trap. The positive lens must be closer to the chamber, which
would result in a tighter focus and shorter Rayleigh range.

z0=0.25 mm

0.035 mm

FIG. 29: After reoptimization with a tighter fiber laser beam waist, the FORT axial length
is reduced.
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3.6 SAMPLE CHARACTERIZATION

In this section, numerous methods utilized to fully characterize the FORT are explained.

In order to measure the number of atoms in the FORT, we first measure the number of atoms

in the MOT using two separate methods which yield consistent results. Then fluorescence

imaging shows the transfer efficiency from the MOT to the FORT. By allowing the FORT

to undergo ballistic expansion in free space, the temperature can be measured by tracking

the rate of expansion of the radii with time. Finally, in order to ascertain the spatial size of

the FORT, parametric resonance measurements are performed. A summary of the samples’

characteristics is provided on page 64.

3.6.1 NUMBER OF ATOMS

It is important to know the number of atoms within the FORT with high confidence.

However, its reduced spatial size and number of atoms compared to the MOT makes the

following methods difficult to implement. Therefore, we perform absorption imaging and

observe optical pumping in the time domain to ascertain the number of atoms in the MOT.

Then, a fluorescence image of the MOT is taken. The number of atoms is proportional to

the number of counts observed on the CCD, which gives a conversion for counts/atom. This

ratio can then be applied to a fluorescence image of the FORT to find the number of atoms

in the experimental atomic sample. Note that for fluorescence imaging, the atomic samples

are allowed to expand so they are not optically thick.

Absorption Imaging

The first method for determining the number of atoms in the MOT is known as absorption

imaging. We begin with atoms in a MOT with a density distribution n(r) with a peak density

n0 and radius r0 described by the equation

n(r) = n0 exp

(
− r2

2r20

)
(99)

and a near-resonance beam with intensity I0 is incident on the sample. From Beer’s Law,

the transmitted light through the sample is simply

IT = I0e
−b, (100)



54

with b being the optical depth. Substitution of Eq. (99) into Eq. (56) gives the optical

depth for the MOT;

b(r, δ) =
√

2πn(r)r0σ(δ). (101)

As stated previously, the frequency dependent cross section is

σ(δ) =
σ0

1 +
(

2δ
γ

)2 (102)

with a laser detuning δ from the F = 2 → F ′ = 3 resonance and γ = 2π × 6.1MHz is the

natural resonance width of the probed transition. The peak scattering cross section for this

transition with wavelength λ = 780.24 nm is

σ0 =
2F ′ + 1

2F + 1

λ2

2π
. (103)

As shown in Fig. 30, a CCD camera takes an image of a probe. Then, a transmission

image is taken, in which the MOT absorbs some of the light of the probe. The ratio of these

two images yields an absorption image,

IT (r, δ)

I0
= exp (−b(r, δ)) . (104)

A vertical and horizontal cross section is taken of each absorption image. The on-resonance

horizontal cross section for an expanded MOT is shown in Fig. 31. Taking the negative of

the natural logarithm of the cross section yields the spatially dependent optical depth of the

sample. This can easily be fit to a Gaussian curve, with the amplitude equal to the optical

depth b(0, δ) through the center and the 1/e2 radius giving r0 of the sample. Absorption

images are taken over a range of detunings, the results of which are shown in Fig. 32. A fit

to the optical depth at each detuning provides the peak optical depth b0 = b(0, 0) and the

resonance width γ.

Integrating Eq. (99), we find that the total number of atoms in the MOT is

NMOT = (2π)3/2 n0 r
3
0 (105)

Using an on-resonance probe (δ = 0), substitution of Eqs. (101) and (102) into Eq. (105)

yields

N =
√

4π
r20 b0
σ0

. (106)
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a) 

b) 

c) 

FIG. 30: Absorption imaging of a MOT requires an image of a) the probe by itself and b)
the absorption of the probe by the MOT. c) The division of image (b) by image (a) provides
the absorption profile of the atomic sample. A fit to the natural log of this image reveals
the spatially dependent optical depth of the MOT.
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FIG. 31: An absorption image of the MOT is taken after it is allowed to expand. The
horizontal cross section is shown in black. The optical depth b(r, δ) = − ln(IT/I0) across the
sample is shown in red. A fit yields b(0, δ) and the radius of the sample r0.
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FIG. 32: Experimental results of the optical depth through the center of the expanded MOT
are plotted for various detunings. A Lorentzian fit gives b0 and γ. The fit to all data is in
black, while the fit in red omits detunings near resonance.

The main issue with using absorption imaging is that the optical depth spectrum deviates

from a Lorentzian line shape when b is greater than 1. Allowing the sample to expand helps

alleviate this issue. In addition, one can omit experimental data near δ = 0 where the optical

depth is highest. As shown in 32, fits with (black) and without (red) the central points are

shown. Including all points results in b0 = 0.96(1) and γ = 8.7(2) MHz. Removal of the

central points reduces γ to 5.2 MHz, with a standard error of 1.4 MHz. Using this fit, the

peak optical depth is 2.6(7). To combat the uncertainty in the actual value of the optical

depth- and hence the number of atoms in the MOT- another method is used in conjunction

with absorption imaging.

Optical Pumping

A second method is used for directly measuring the number of atoms in the MOT.

Instead of probing the F = 2 → F ′ = 3 transition, the probe laser beam is tuned to the

F = 2→ F ′ = 2 transition. Atoms excited by the probe are no longer on a closed transition,

but are able to decay to either F = 1 or F = 2 with equal probability p = 1/2 [52, 73, 74].

The expectation value 〈Np〉 for the number of photons an atom absorbs before decaying to
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the F = 1 ground state is given by the sum

〈Np〉 =
∞∑
n=1

n(1− p)n−1p =
1

p
. (107)

Thus, for a probe tuned to the F = 2→ F ′ = 2 transition, an average of 2 photons will be

absorbed per atom. By measuring the reduction in the probe intensity, the number of atoms

in the MOT can be measured.

85,0mm
3,3in

80,0mm
3,15in

20,0mm
0,79in

30,0mm
1,18in

FIG. 33: The transmitted intensity of a probe tuned to the F = 2 → F ′ = 2 transition is
measured in the time domain using a photodetector. When atoms are present, the light will
be absorbed at rate of 2 photons/atom.

The optical layout for measuring the forward transmission of the probe is shown in Fig.

33. First, the power of the probe is measured using a power meter. Then, the probe is pulsed

for 0.5 ms and the power as a function of time is measured using a photodetector (Thorlabs

# PDB450A) and viewed on an oscilloscope (Tektronix TDS 3034B). With this setup, for 10

µW of power, the corresponding voltage on the oscilloscope is 0.275 V. The probe is pulsed

while the MOT is present, and the intensity is measured again. The transmitted signal with

and without the MOT present is shown in Fig. 34.

Taking the difference of the two signals and converting to power reveals the probe power

lost during the optical pumping process, as shown in Fig. 35. Integration of this curve to

a decaying exponential, and subtraction of the offset due to power fluctuations during the

experimental process, shows a total loss of ∆E = 7.35× 10−11 J. The total number of atoms
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N in the MOT is given by

N =
1

2

∆Eλ

hc
. (108)

For this MOT, N = 144× 106. By taking a fluorescence image immediately after the optical

pumping process, a conversion between fluorescence counts and atom number can be made.

Using absorption imaging as a calibration a conversion factor of 0.35(1) atoms/count is

measured. The optical pumping method reconfirms this measurement with a conversion of

0.358(9) atoms/count. Using this conversion factor, the number of atoms in the FORT can

be measured through fluorescence imaging.
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FIG. 34: The probe intensity over time is shown with (red) and without (black) the MOT
present. Each atom absorbs on average 2 photons from the probe.

FIG. 35: The power lost over time corresponds to the number of atoms decaying to the
F = 1 ground state. Once all of the atoms are optically pumped from the F = 2 ground
state, the probe is fully transmitted through the MOT.
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3.6.2 TEMPERATURE

After finding the number of atoms in the FORT, it is necessary to know the temperature

of the atom sample. The FORT has a bi-Gaussian distribution of atoms

n(r, z) = n0 exp

(
− r2

2r20
− z2

2z20

)
(109)

and a Maxwell Boltzmann distribution of velocities [52]

f(v) =

(
2πkBT

m

)−3/2
exp

(
− mv2

2kBT

)
. (110)

Here, m is the mass of an individual atom, kB is the Boltzmann constant, and T is the

average temperature of the sample. When atoms in the FORT are released from the trap,

their position will change with time

~r = ~r ′ + ~v t. (111)

The new distribution of atoms, which is itself a bi-Gaussian distribution, is given by

n(~r) =

∞∫∫∫
−∞

d3v f(v) n(~r − ~v t). (112)

FIG. 36: During ballistic expansion, the trapping laser is extinguished and the FORT ex-
pands over time. The rate of expansion depends upon the temperature of the sample.

If we allow the cloud of atoms to ballistically expand, we can find the two radii of the

sample as a function of time. Fluorescence images of the FORT are taken, as in Fig. 36, and

the vertical and horizontal cross sections are fit to a Guassian distribution. The temperature



62

of the sample is related to the rate at which the sample expands.

r2 = r20 + kBT
m
t2

z2 = z20 + kBT
m
t2

(113)

A fit of r2 vs. t2 and z2 vs. t2 results in a slope of kBT/m, as shown in Fig. 37. Typical

FORT and MOT temperatures are ∼100 µK, while the compressed MOT temperature is

∼25 µK.

FIG. 37: The radius of the FORT is measured during ballistic expansion after a hold time
of 200 ms. The slope of the linear fit for r2 vs. t2 gives the radial temperature (black), and
z2 vs. t2 gives the axial temperature (red).

3.6.3 PARAMETRIC RESONANCE

Finally, to find the initial radii of the FORT potential, and thus the effective volume, we

utilize parametric resonance. Because the sample of atoms does not fully fill the trap, the

radial and axial radii for the sample are smaller than the beam waist and Rayleigh range.

The dipole potential can be approximated as a harmonic oscillator

U(r, z) ≈ −U0

(
1−

(
z

z2r

)2

− 2

(
r

w2
∗

)2
)
. (114)
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This can be rewritten to include a radial oscillation frequency ωr and transverse frequency

ωz

U(r, z) = −U0 +
1

2
m ω2

r r
2 +

1

2
m ω2

z z
2 (115)

with harmonic oscillation frequencies of [70]

ωr =
√

4U0

mw2
∗

ωz =
√

2U0

mz2r
.

(116)

We begin with a trapping beam with an intensity given by Eq. (91), and then apply a

sinusoidal modulation to this intensity using a pulse generator (BK Precision 4084 20 MHz

function generator) for a fixed time while the atoms are held in the potential. The strength

of the modulation is h, and the frequency is ω.

I(r, z, t) = I(r, z) + I0 h cos (ω t) . (117)

The one dimensional Mathieu equation describes the motion of atoms within the trap

r̈ + κ ṙ + ω2
r r (1 + h cos (ω t)) = 0 (118)

with a relaxation rate κ. A resonance occurs when

ω = 2ωr/n, n = 1, 2, . . . . (119)

After undergoing intensity modulation for 200 ms, the atoms remaining in the FORT

are allowed to expand before a CCD image of the FORT fluorescence is taken. The central

portion of the signal is integrated over a region of 6 pixels × 6 pixels and plotted over a

range of frequencies. On resonance, the atoms are thermally excited out of the FORT and

the fluorescence signal is diminished [75], as shown in Fig. 38. Fitting the loss curve to a

Guassian gives the first radial resonance of ω = 2ωr = 2π×8.34(4) kHz. Because zR >> w∗,

the transverse resonance ωz is a much lower frequency that is not easily resolvable.

The sample’s thermal and spatial density distribution in the potential well is determined

by

n(−→r ) = n0 exp

(
−U(−→r )

kBT

)
. (120)

with a thermalized temperature given by T , and kB being Boltzmann’s constant. Comparison
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Radial frequency ωr 2π× 4.17(2) kHz

Transverse frequency ωz 2π× 0.087(4) kHz

Beam waist ω∗ 17.4(5) µm

Rayleigh range zr 897(10) µm

Trap depth U0 700(10) µK

Scattering rate γp 2π× 1.1(1) Hz

TABLE 3: The FORT trap characteristics for a sample with a temperature of 96(5) µK and
a power of 2 W are found using parametric resonance.

MOT Compressed MOT

N (×106) 145(5) 50(1)

T (µK) 100(10) 25(1)

r0 (µm) 750(30) 500(25)

n0 (atoms/cm3) 2.2(3) ×1010 2.5(4) ×1010

TABLE 4: Typical sample characteristics for the MOT and compressed MOT are listed.

with the spatial density of the FORT in Eq. (109) gives the radii of the atomic sample in

terms of the temperature and parametric resonance frequencies.

r0 =

√
kb T

mω2
r

; z0 =
√

2π r0 ω∗/λ (121)

3.6.4 SAMPLE CHARACTERISTICS

By using the methods previously described, the MOT, compressed MOT, and FORT can

be characterized. The physical properties of the uncompressed and compressed MOT are

listed in Table 4. These are all typical values, and must be taken as general properties of the

samples. Fluctuations in MOT number and density occur depending on how much warm

Rb vapor is available in the chamber. The values listed for the FORT in Table 5 are after a

200 ms hold time, which allows time for the atoms to thermalize in the trap.

3.7 CONTROLLING SAMPLE PROPERTIES

In order to study the effects of a broad range of sample parameters, we need a dependable
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FIG. 38: The first parametric resonance, at ω = 2ωr causes the integrated fluorescence from
the center of the FORT to be reduced. This is for a modulation depth of h = 0.025.

N (×105) 7.8(1)

T (µK) 100(6)

r0 (µm) 3.4(1)

z0 (µm) 250(10)

b0 (Radial) 20

b0 (Axial) 1500

n0 (atoms/cm3) 2 ×1013

TABLE 5: Typical sample characteristics for the FORT are listed.



66

and repeatable way to modify the peak density and optical depth of the system.

3.7.1 HOLD TIME

The first method to reduce the density is to change the number of atoms within the

FORT. The change in the number of atoms in the FORT can be described by

dN

dt
= −ΓN − βN2, (122)

where Γ in an exponential loss rate due to background gas collisions, and β is a collisional

loss coefficient that derives from atom-atom collisions within the FORT [68]. Initially, the

FORT has a large distribution of temperatures. Atoms within the sample collide and become

thermalized at a rate of β.

FIG. 39: The decay of the number of atoms in the FORT follows a double exponential curve.

By holding the atoms for a longer time in the FORT before probing, the number of atoms

is reduced, as shown in Fig. 39. The decay is fit to a double exponential

N = ae−t/τ1 + be−t/τ2 + c (123)

where τ1 = 67(12) ms is the fast decay time due to collisions within the sample, and τ2 =

1.25(5) s is the lifetime of the trap. After the initial fast decay, the FORT is near thermal
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equilibrium. There is still residual cooling (∼ 10%) from 200 ms to 5 seconds, which resorts

in the sample having smaller Gaussian radii with extended hold times.

3.7.2 EXPANSION

The second method to modify sample parameters is to allow the sample to expand. After

turning off the fiber laser, the atoms are allowed to expand before probing. The radii are then

given by Eq. 113. For each FORT hold time, the number of atoms N and the temperature T

is measured, while the parametric resonance frequencies are not changed. Thus, the Gaussian

radii of the sample after some expansion time t are given by

r2 =
kbT

m

(
1

ω2
r

+ t2
)

(124)

z2 =
kbT

m

(
1

ω2
z

+ t2
)
. (125)

The peak density of the FORT is

n0 = N

((
2πkbT

m

)3/2 (
1/ω2

r + +t2
) (

1/ω2
z + t2

)1/2)−1
(126)

and the optical depth in the radial direction is

b0 = n0σ0

√
2πkbT

m

(
1

ω2
r

+ t2
)
. (127)
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CHAPTER 4

DIFFUSE SCATTERING

4.1 DATA ACQUISITION

To observe diffuse scattering from the FORT, a linearly polarized probe laser beam tuned

in the vicinity of the F = 2→ F ′ = 3 transition is used. Because the atoms are trapped in

the F = 1 ground state, the repumper laser is used to optically pump the atoms into the

F = 2 ground state before data acquisition begins. This process occurs after the fiber laser

is turned off and takes 8 µs. The probe laser beam, with a power of 40 µW and 1/e2 radius

of 4.4 mm, is then directed through the pair of off-axis windows in the vacuum chamber, and

the fluorescence from the FORT is collected through a window perpendicular to the fiber

laser, as shown in Fig. 40. The collected light is transmitted through a multimode optical

fiber to a photomultiplier tube (PMT) (Hamamatsu # R9110) supplied with 1250 V, which

is connected directly to a multichannel scalar (MCS) with 40 ns time bin resolution.

To reduce the total time required to take data, a sequence of 10 1 µs probe pulses occur

while the sample is expanding, with each pulse being separated in time by 40 µs. Because

the intensity of the probe is 0.08 s0, optical pumping to the F = 1 ground state is not a

concern. We are able to acquire data for a constant number of atoms in 10 different spatial

volumes V . Here, V = (2π)3/2r2z2 is the Gaussian volume such that the peak density for

a sample of N atoms is n0 = N/V . With N being held constant, the effects of the probe

detuning are studied along with V .

Additional measurements are performed in which the probe laser is tuned directly to

resonance. The hold time of the FORT is extended, leading to a reduction in N . For

each designated hold time, N is measured using fluorescence imaging. Additionally, the

temperature of the sample is found. The peak density during expansion for each hold time

is shown in Fig. 41. The number of accumulations for each N is varied to maintain the same

signal to noise throughout the experimental process and to reduce the total run time. A

single accumulation at the shortest hold time, from forming the MOT to collecting scattered

probe light from the FORT, takes 6.1 seconds. Increasing the hold time also increases

the time for each accumulation. As such, a single data point can take up to nearly 5 hours.
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L1L2A

Fmm

E

5 cm 5 cm 20 cm

FIG. 40: Fluorescence due to scattering from the probe is collected off-axis. The linear
polarization of the electric field of the probe ~E is indicated by the arrow. A pair of lenses
L1 and L2 with respective focal lengths f1 = 10 cm and f2 = 7.5 cm are used to collect and
focus the light into a multimode non-polarization preserving fiber Fmm. An aperture A in
front of the fiber is used to block residual background light.

Therefore, as the number of atoms is reduced, the total number of accumulations is increased

proportionally, as shown in Table 6. The final data is scaled accordingly.

The signal from the MCS after a 200 ms FORT hold time with an on-resonance probe is

shown in Fig. 42. Because of the limits of our pulse generator, the repumper is also flashed

before each probe flash. The fluorescence due to hot atoms in the chamber is visible in the

timing sequence, but is easily subtracted by performing a background run when no FORT

is present. For better visibility, all 10 probe pulses are shown together in Fig. 43.
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FIG. 41: By increasing the hold time and expansion time, the density of the FORT can
be modified by reducing the number of atoms and increasing the spatial size of the sample.
Data is taken for a set hold time and corresponding number of atoms. The fluorescence from
each probe pulse is recorded for the sample as it expands.

Hold time (ms) Number of accumulations

250 480

350 600

750 830

1200 1160

1800 2172

TABLE 6: For the on-resonance measurements, the number of accumulations for each hold
time increases due to the reduction in the signal. The final data is scaled by the ratio of
the number of accumulations to that of the 1800 ms hold time. The spectral response was
measured using 2400 accumulations.
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(a)

(b) (c)

FIG. 42: The signal output from the multichannel scalar (MCS) during the probing process is
accumulated into time bins. a) FORT fluorescence due to light scattering from the repumper
and probe over a sequence of 10 pulses is shown. b) The atoms fluoresce as they are optically
pumped by the repumper laser from the F = 1 to the F = 2 ground state, and then scatter
light from the probe. c) The fluorescence from the probe during the first of 10 1 µs pulses is
shown.
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FIG. 43: From left to right, all 10 probe pulses for an expanding sample are shown in
sequential order, with the time scale adjusted to clearly see the dynamics for each pulse. Each
pulse is integrated over 1 µs to find the total fluorescence scattered for the corresponding
volume.
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4.2 RESULTS

4.2.1 SPECTRAL DEPENDENCE

For a hold time of 200 ms, the probe laser frequency ω is set to a detuning δ = ω − ω0

from the F = 2 → F ′ = 3 transition frequency ω0. As the sample expands, the probe is

flashed for 1 µs in 40 µs increments. After 2400 cycles, the probe detuning is changed and

the experiment is repeated. The measured fluorescence as a function of optical depth b0

with constant detuning is shown in Fig. 44. On resonance, the sample scatters collectively

with increased optical depth. With N being constant, the total fluorescence increases as the

sample expands. The effective optical depth b = b0/(1 + (2δ/γ)2) is greatly reduced when

the probe is detuned from resonance; this results in the fluorescence returning to a constant

intensity regardless of sample size. The same effects are seen using the random walk (RW)

model.

(a) (b)

FIG. 44: a) For a set probe detuning, the detected fluorescence decreases with increasing
optical depth. Detuning well from resonance reduces the effective optical depth of the system
and the fluorescence appears to remain constant with volume. b) The RW model shows a
decrease in light scattered in the φ = π/2 direction with increasing on resonance optical
depth. Detuning of the excitation and the reduction in the optical depth shows a nearly
constant scattering intensity.

A plot of the spectral dependence of the scattered light at each sample expansion time

is shown in Fig. 45. Each curve is fit to a Lorentzian with a resonance width γ,

I =
I0

1 + (2δ/γ2)
. (128)
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While the natural resonance width of 87Rb is 6.1 MHz, there is a pronounced broadening

with increased optical depth in both the experiment and RW model, as shown in Fig. 46. A

fit to the experimental results reveals the broadening scales as
√
b0. For b < 1, the light is

able to penetrate the sample and classical scattering takes place. The detuning of the probe

for this process scales as

δ =
γ

2

√
b0. (129)

FIG. 45: The experimentally measured spectral response of the atomic system for an ex-
panding sample with a constant number of atoms is shown. As the sample expands, the
peak fluorescence increases until it approaches a steady-state value. Each curve is fit to a
Lorentzian line shape.
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(a)

(b)

FIG. 46: a)The experimentally measured width γ increases with optical depth. The natural
resonance width γ0 = 6.1 MHz is indicated by the red dashed line. b)The RW model predicts
a spectral broadening with increased optical depth.
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4.2.2 ON RESONANCE

The spectral response of the sample is only measured for a sample with constant N and

increasing V . To observe the effects of both N and V together, the probe is tuned directly

to resonance. In Fig. 47, the volume dependence of the scattered light at constant N is

shown. For the samples with a shorter hold time, corresponding to increased N , density

n0, and optical depth b0, we see that the scattering rate is reduced for smaller volumes. As

the samples expand, the scattering becomes constant for each N . As the number of atoms

reduces, the scattered light remains constant with volume.

(a)

FIG. 47: For a constant number of atoms N , the on-resonance scattered light decreases as
the sample becomes more compact in both a) experiment and b) the RW model.

Similarly, we can study the effects of increasing N at constant volumes V . In the steady

state regime, the total scattered light should be proportional to N . However, as shown in

Fig. 48, the FORT exhibits collective scattering in which the total scattered field does not

scale linearly with N for small volumes. As the sample expands, the volume increases and we

see a return to a linear scaling. According to Beer’s Law, the scattered light intensity should

scale as 1 − e−b, which is equal to the optical depth for small b. With V being constant,

the number of atoms is proportional to b. In samples with b >> 1, the total scattered light

no longer scales linearly with the optical depth, but asymptotically approaches a constant

value. This appears as a reduction in the scattering rate of the sample.

In classical scattering, the total scattered light intensity should be proportional to the



77

(a) (b)

FIG. 48: a) For a constant Gaussian volume V , the experimentally measured on-resonance
scattered light decreases with increasing N . Here, V0 = 6.6(3) × 10−8 cm3 is the volume
of the FORT with a 200 ms hold time and 10 µs expansion time. Allowing the sample to
expand will return a linear relationship between the scattered field and N , as indicated by
the blue dashed line. b) A similar reduction in signal is observed in the RW model.

number of scatterers. We clearly see that is not the case, and is largely dependent on global

sample parameters. A plot of the scattered light as compared to the optical depth of the

system is shown in Fig. 49. Here we can see the increase in scattered light with increasing

N . By normalizing the measured scattered fluorescence by N for each sample, we can see

a clear reduction in the scattering cross section per atom that scales as 1/
√
b0, as shown

in Fig. 50. As the resonance width γ increases as ∼
√
b0, the scattering rate is inversely

proportional. The spectral integral should remain constant to conserve probability.
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(a) (b)

FIG. 49: For a constant number of atoms N , both a) experiment and b) the RW model show
that the collected scattered light decreases with increasing optical depth b0.

(a) (b)

FIG. 50: The signal from Fig. 49 is normalized to the number of atoms N in the
atomic sample. Both a) experiment and b) the RW model show that the collected sig-
nal per atom (S/A) falls along a single curve. The fit to the experimental data results in
S/A = 1.2(1)

(
1 + 1/

√
b0
)
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CHAPTER 5

CONCLUSIONS

The atomic samples studied in this thesis have a range of physical characteristics. The

number of atoms ranges from 180,000 to ∼1 million, while the Gaussian volumes are

(105 → 107)λ3, where λ = 780.24 nm is the wavelength of the probe. With peak densi-

ties n0 in the range of 4 × 1010 → 2 × 1013 atoms/cm3, we are able to investigate samples

with radial on-resonance optical depths b0 in the range of 0.5 → 20. The probe frequency

can be offset from the 5s2S1/2, F = 2 → 5s2P3/2, F
′ = 3 transition by an amount δ. The

optical depth b is then reduced,

b =
b0

1 + (2δ/γ)2
, (130)

where γ is the resonance width for the sample.

By studying such a large range of parameters, the emergence of collective scattering has

been observed in the mesoscopic regime, between the microscopic and macroscopic regimes.

For atomic samples with b ∼ 1, the scattered light intensity is well described as the sum

of N independent atoms. As N increases, or V decreases, there is an increase in b0. This

results in the scattering rate being determined by the sample parameters, rather than the

individual atomic responses. When the probe is detuned from resonance, the effective optical

depth is reduced, and the atomic sample once again scatters classically. It is important to

note that collective scattering is present even though the atomic separation r is large. Only

the 1/kr component could contribute significantly in the dipole-dipole interaction, yet the

suppression of scattering is still observed, similar to that of atoms in a microtrap [26].

The experimental results have been compared to a random walk (RW) simulation. For

similar sample parameters and excitation geometries, qualitatively similar results have been

observed. Resonance width broadening and the associated reduction in the scattering cross

section show a clear scaling with the on-resonance optical depth of the system. Using the RW

model, we can see a clear transition from single to multiple scattering. Larger samples scatter

more light due to the increase in the flux of photons traversing the sample, and the photons

statistically scatter fewer times within the sample before escaping. More compact samples

have a lower probability of initially scattering a photon, but photons that are scattered

undergo multiple scattering. Additionally, as the optical depth increases, surface scattering

occurs, in which the light is not able to initially fully penetrate the sample.
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For b0 << 1, the light should be able to fully penetrate the sample. As b0 increases, the

incident probe is unable to penetrate the sample, which would result in more light being

scattered in the backwards direction. As such, future investigations into this process should

include observing the spatial distribution of the scattered light. Probing along the long

axis of the FORT would provide an optical depth 75 times as that of the radial direction,

arguably greater than that of similar experiments. Measuring the forward transmission of

light parallel and perpendicular to the FORT’s long axis can reveal more information about

the collective and cooperating scattering properties of the ensemble.

Experimentally, the largest constraint in collecting more data is the duty cycle for trap-

ping atoms and probing the FORT. Improvements have already been implemented to probe

and retrap the atomic sample up to 300 times before repeating the loading process from the

MOT. This can drastically reduce the total running time for an experiment and allow future

investigations to take considerably less time.

The emergence of collective scattering can have a large effect on atomic quantum sen-

sors and devices. Resonance broadening and a reduction in the scattering cross section may

reduce the effectiveness of increasing atomic densities and/or optical depths for purposes of

increasing signal-to-noise. As the ensemble behaves more like a macroscopic object, a micro-

scopic description of the individual scatterers is no longer an accurate model for the system.

Rather, the spectroscopic properties must scale with the large-scale physical parameters.
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APPENDIX A

RANDOM WALK CODE

The following Mathematica code [76] is a sample of the simulations used to compre-

hensively study diffusion of light and random walks. A large parameter space is studied;

the number of atoms, sample radii, and probe detuning from resonance are all dynamically

changed to observe their effects on the spatial distribution of the scattered light. For each

simulation, a total of 10,000 atoms are used. In order to keep the same densities as those in

the experiments, the length scales must be reduced by a factor of (NNormal/105)1/3, where

NNormal is the number of atoms in the experimental atomic sample.

After the sample properties are defined, the atomic positions are set in a three-

dimensional bi-Gaussian distribution. A single atom is placed outside of the sample and its

position is a random uniform distribution to simulate the creation of a probe with constant

intensity. The first atom is forced to decay in the same direction as the probe propagates

in the experiment; the photon’s decay vector is propagated, and if the distance between the

vector and an atom is less than the cross-section, the photon will scatter from the atom.

The decay direction from the second atom is selected from a uniform random distribution

over all space, simulating a random walk. This process is continued until the photon’s decay

path no longer coincides with an atom. The final position of the photon is recorded once

the photon’s distance is 10z0(10) from the center of the sample, where z0(10) is the largest

radius of the sample. Another random sample is created, and the process is repeated for a

total of 1000 samples. The parameter NA is set at the beginning of the code and determines

the number of atoms in the experimental sample. Through nested Do loops, the sample size

and detuning of the probe are incrementally changed. By changing NA, the code can be ran

again for a different number of atoms.

NNormal = {78 , 62 , 45 , 32 ,

18}∗10ˆ4; (∗Number o f atoms in exper imenta l sample ∗)

NAtoms = 10000 ; (∗Number o f atoms in s imu la t i on ∗)

DG = {0 , . 2 , . 4 , . 6 , . 8 , 1 . 0 , 1 . 2 , 1 . 4 , 1 . 6 , 1 . 8 ,

2 .0} (∗Detuning , in un i t s o f gamma∗)

NA = 1 ;



89

r0 = {3 .2834 , 5 .3090 , 8 .2942 , 11 .5156 , 14 .8199 , 18 .1619 , 21 .5241 ,

24 .8982 , 28 .2801 ,

31 .6672}/( NNormal [ [NA] ] / NAtoms)ˆ(1/

3 ) ; (∗Radius o f samples . The s c a l i n g f a c t o r reduces the rad iu s \
in t h i s s imu la t i on so that the dens i ty i s the same in experiment and \
theory . ∗ )

z0 = {245 .7915 , 245 .8269 , 245 .9095 , 246 .0392 , 246 .2160 , 246 .4397 ,

246 .7103 , 247 .0275 , 247 .3912 ,

247 .8013}/( NNormal [ [NA] ] / NAtoms)ˆ(1/

3 ) ; (∗Radius o f samples a long long a x i s . Make equal to r0 to \
have a s p h e r i c a l sample . ∗ )

Do [ j j = 1 ;

\ [ Lambda ] =

N[ . 7 8 ∗ Sqrt [ ( NNormal [ [NA] ] / NAtoms)ˆ(1/3)∗ (7/

10)/(1 + (2∗DG[ [ j j j ] ] ) ˆ 2 ) ] /

Pi ] ; (∗This determines the p h y s i c a l s i z e o f the atom .

I t i s the square root o f the c r o s s s e c t i o n d iv ided by pi . ∗ )

CloseD = {} ;

ResultsCoords = {} ;

Do [ SeedRandom [ ] ;

(∗The f o l l o w i n g c r e a t e s a bi−Gaussian sample o f atoms .

P o s i t i o n s with x1 , y1 ,

and z1 are f o r the l o c a t i o n o f the f i r s t photon . ∗ )

Po s i t i on sx =

RandomVariate [ NormalDistr ibut ion [ 0 , r0 [ [ j j ] ] ] , NAtoms − 1 ] ;

Po s i t i on sy =

RandomVariate [ NormalDistr ibut ion [ 0 , r0 [ [ j j ] ] ] , NAtoms − 1 ] ;

P o s i t i o n s z =

RandomVariate [ NormalDistr ibut ion [ 0 , z0 [ [ j j ] ] ] , NAtoms − 1 ] ;

Pos i t i on sx1 =

RandomVariate [

Uni formDist r ibut ion [{−2 r0 [ [ 1 0 ] ] + 0.41074∗ z0 [ [ 1 0 ] ] ,
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2 r0 [ [ 1 0 ] ] + 0.41074∗ z0 [ [ 1 0 ] ] } ] , 1 ] ;

Po s i t i on sy1 =

RandomVariate [

Uni formDist r ibut ion [{−2 r0 [ [ 1 0 ] ] + 1.73205∗ z0 [ [ 1 0 ] ] ,

2 r0 [ [ 1 0 ] ] + 1.73205∗ z0 [ [ 1 0 ] ] } ] , 1 ] ;

P o s i t i o n s z 1 = {z0 [ [ 1 0 ] ] } ;

Atom =

Prepend [ Table [{ Pos i t i on sx [ [ i ] ] , Po s i t i on sy [ [ i ] ] ,

P o s i t i o n s z [ [ i ] ] } , { i , 1 , NAtoms − 1} ] , {Pos i t i on sx1 [ [ 1 ] ] ,

Po s i t i on sy1 [ [ 1 ] ] , P o s i t i o n s z 1 [ [ 1 ] ] } ] ;

ClosestAtom := 1 ;

Do [ SeedRandom [ ] ;

(∗This i s where the random walk happens .

After the f i r s t photon decays in the d i r e c t i o n o f the l a s e r beam ,

the r e s t are a l lowed to decay in to 4 p i . ∗ )

I f [ k == 1 , Decayx = {−0.41074∗ z0 [ [ 1 0 ] ] } ,

Decayx =

RandomVariate [ Uni formDist r ibut ion [{− r0 [ [ j j ] ] , r0 [ [ j j ] ] } ] , 1 ] ] ;

I f [ k == 1 , Decayy = {−1.73205∗ z0 [ [ 1 0 ] ] } ,

Decayy =

RandomVariate [ Uni formDist r ibut ion [{− r0 [ [ j j ] ] , r0 [ [ j j ] ] } ] , 1 ] ] ;

I f [ k == 1 , Decayz = {−z0 [ [ 1 0 ] ] } ,

Decayz =

RandomVariate [ Uni formDist r ibut ion [{− r0 [ [ j j ] ] , r0 [ [ j j ] ] } ] , 1 ] ] ;

DecayHat =

Flat ten [{Decayx , Decayy , Decayz } ] /Norm[{Decayx , Decayy , Decayz } ] ;

r1 = Atom [ [ ClosestAtom ] ] ;

Decay =

r1 + DecayHat ; (∗This c r e a t e s a vec to r that beg ins at the \
l o c a t i o n o f the atom and po in t s in the d i r e c t i o n o f the decay . ∗ )

(∗PhotonD i s the d i s t anc e from the decay path to the cente r o f \
each atom . ∗ )

PhotonD =
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Table [{ i ,

I f [ i != ClosestAtom && Dot [ Decay , Atom [ [ i ] ] ] >= 0 ,

Norm [

Cross [ Atom [ [ i ] ] − Atom [ [ ClosestAtom ] ] , Atom [ [ i ] ] − Decay ] ] /

Norm [ Decay − Atom [ [ ClosestAtom ] ] ] , {} ]} , { i , 1 , NAtoms } ] ;

(∗Now we choose those atoms that are with in one c r o s s s e c t i o n o f \
the decay path . ∗ )

Do [ I f [ PhotonD [ [ i , 2 ] ] < \ [ Lambda ] ,

AppendTo [ CloseD , PhotonD [ [ i ] ] ] , ## & [ ] ] , { i , 1 ,

Length [ PhotonD ] } ] ;

I f [ Length [ CloseD ] == 0 , Break [ ] ] ; (∗ I f no atoms are c l o s e enough ,

we are done with t h i s loop . ∗ )

(∗We w i l l choose the next atom to be that which i s c l o s e s t to the \
decaying atom and with in the c r o s s s e c t i o n o f the decay path . ∗ )

ClosestAtom =

F i r s t [ SortBy [

Table [{CloseD [ [ i , 1 ] ] ,

Norm [ Atom [ [ 1 ] ] − Atom [ [ CloseD [ [ i , 1 ] ] ] ] ] } , { i , 1 ,

Length [ CloseD ] } ] , {# [ [ 2 ] ] & } ] ] [ [ 1 ] ] ;

CloseD = {} ;

Clear [ Decayx , Decayy , Decayz ]

, {k , 1 ,

1 0 0} ] ; (∗The 100 here has been s e t to ensure we g ive mult ip ly \
s c a t t e r e d photons enough events to escape the sample .

I f you i n c r e a s e the dens i ty o f the sample ,

you may want to check the number o f s c a t t e r e r s to make sure the \
photons are ab le to escape . ∗ )

t1pos =

NSolve [ R a t i o n a l i z e [

Norm [ r1 ]ˆ2 + t ˆ2 + 2 t∗ r1 . DecayHat == 100 z0 [ [ j j ] ] ˆ 2 ] && t > 0 ,

t ] ; (∗Propagate the l a s t decay so that i t i s i n c i d e n t on a \
sphere o f rad iu s 10 z0 .

This w i l l g ive a p o s i t i o n vec to r in c a r t e s i a n coo rd ina t e s . ∗ )
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r f p o s = Flat ten [ Evaluate [ r1 + DecayHat∗ t / . t1pos ] ] ;

AppendTo [ ResultsCoords , r f p o s ] ;

Clear [ Pos i t i onsx , Pos i t i onsy , Pos i t i ons z , Pos i t ionsx1 , Pos i t ionsy1 ,

P o s i t i o n s z 1 ]

, { j , 1 , 1 0 0 0} ] ; (∗Determines the number o f samples /

i t e r a t i o n s f o r the s imu la t i on . ∗ )

ResultsAngs =

CoordinateTransform [ ” Cartes ian ” −> ” S p h e r i c a l ” ,

ResultsCoords ] ; (∗Transforms c a r t e s i a n coo rd ina t e s to s p h e r i c a l . ∗ )

\

Export [”\\Detuning with V\\” <> ToString [DG[ [ j j j ] ] ] <>

” gammaCartesianResults ” <>

ToString [N[ NAtoms/((2∗Pi )ˆ (3/2 )∗ ( r0 [ [ j j ] ] ) ˆ 2 ∗ z0 [ [ j j ] ] ) ] ] <>

” . txt ” , ResultsCoords , ”Table ” ] ;

Export [”\\Detuning with V\\” <> ToString [DG[ [ j j j ] ] ] <>

” gammaSphericalResults ” <>

ToString [N[ NAtoms/((2∗Pi )ˆ (3/2 )∗ ( r0 [ [ j j ] ] ) ˆ 2 ∗ z0 [ [ j j ] ] ) ] ] <>

” . txt ” , ResultsAngs , ”Table ” ] ;

, { j j j , 1 , Length [DG] } ] ;
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APPENDIX B

LOCK-IN AMPLIFIERS

Lock-in amplifiers are used in electronic feedback loops to frequency stabilize the MOT

and repumper ECDLs. As described below, by creating a derivative signal from a photodiode

in the saturated absorption (SA) setup, the output of a lock-in amplifier can be used to lock

the lasers to the desired frequency. For transitions that are fairly separated in frequency

space, the voltage signal VPD(t) from the balanced homodyne photodiode detector for a

single transition can be well described as a Lorentzian [77]

VPD(t) =
V0

γ2 + ∆(t)2
, (131)

with a peak voltage V0, width γ, and the detuning ∆(t) of the laser from the transition of

frequency ω0 is (ω(t)− ω0).

The frequency of the laser ω(t) has a constant AC frequency modulation fmod of 10 kHz

applied through the current controller. Additionally, the length of the cavity is changed

with the use of a triangle wave ramp applied to the piezo mounted behind the grating in the

ECDL. Applying these two modulations to the laser that is initially lasing at a frequency

ωL, we have

ω(t) = ωL + at+ b sin(fmodt), (132)

where a and b are the amplitudes of the ramp and AC modulation, respectively.

VPD is applied to the input of the lock-in. The output of the function generator supplying

the AC frequency modulation is also connected to the mixer input of the lock-in. The lock-in

multiplies the two inputs and is capable of shifting the mixer input by a phase φ. The output

of the lock-in Voutput is then this signal integrated over a time τ :

Voutput(T ) =

∫ T+τ

T

V0b sin(fmodt+ φ)dt

γ2 + (ωL + at+ b sin(fmodt)− ω0)
2 . (133)

With φ = 0 and τ = 3 ms, the output of the lock-in is a derivative of the SA signal.

The lock box is used to reduce the amplitude a of the linear ramp until a single transition

is being swept over. Then, a switch is used to turn off the ramp and allow the output of
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the lock-in to control the piezo. As the laser frequency drifts, the lock-in signal provides

feedback to keep the laser locked near the center of the desired transition.
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