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ABSTRACT

ANALYSIS OF DEPENDENT DISCRETE CHOICES USING
GAUSSIAN COPULA

Arjun Poddar
Old Dominion University, 2016
Director: Dr. N. Rao Chaganty

A popular tool for analyzing product choices of consumers is the well-known

conditional logit discrete choice model. Originally publicized by McFadden (1974),

this model assumes that the random components of the underlying latent utility

functions of the consumers follow independent Gumbel distributions. However, in

practice the independence assumption may be violated and a more reasonable model

should account for the dependence of the utilities. In this dissertation we use the

Gaussian copula with compound symmetric and autoregressive of order one corre-

lation matrices to construct a general multivariate model for the joint distribution

of the utilities. The induced correlations on the utilities and the choice probabilities

are studied using analytic expressions and simulations. For regression with consumer

and product specific covariates, we derive expressions for the likelihood function and

the score functions. We use numerical methods and computer code to obtain the

maximum likelihood estimates of the regression and correlation parameters. The

standard errors of the estimates were obtained using bootstrap. Comparison of our

model with other competing methods and practical applicability is illustrated using

both real world consumer preference and simulated data.
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CHAPTER 1

INTRODUCTION

Discrete choice models are statistical models that are used when an individual has

to make a choice from a list of available (discrete) options. These models are based on

the fundamental idea that an option is chosen only if the person choosing it reckons

that it has the highest value amongst all available options. Examples may include

buying a car, selecting a school for one’s child, deciding on range of expenditure on

weekly groceries etc..

1.1 CHOICE SET

In the context of a discrete choice model, the first task is to define a choice set.

A choice set is the collection of alternatives that is presented to all the consumers

in a particular situation. There are three properties that a choice set should adhere

to. First, the elements (choices/alternatives) in the choice set presented to each

consumer in the study should be mutually exclusive. This means that choosing

one option automatically eliminates all the other options from being chosen by the

consumer. This assumption is necessary to ensure that every consumer chooses one

and only one alternative. Second, a choice set should be exhaustive which means

that all possible choices/alternatives are included. This allows any consumer in the

study to choose one option. Third, a choice set should be countably finite, in that if

someone starts to count the number of choices in the set, he/she can actually finish

the counting process.

We assume that there are n consumers and each of them face c choices. Through-

out this dissertation the expressions “consumer”, “customer”, “decision maker” are

synonymous, as do “choice”, “alternative”, “option” and “product”.

The response variables Yij’s are indicator variables taking the value one if the ith
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consumer chooses the jth product. That is,

Yij =

{
1 if ith consumer chooses jth alternative

0 otherwise,
(1)

for i = 1, 2, . . . , n and j = 1, 2, . . . , c. In Table 1, we display all the choice variables

Yij’s for i = 1, 2, . . . , n and j = 1, 2, . . . , c.

Table 1: Layout of the responses

Consumer
Choice Alternatives

1 2 . . . j . . . c
1 Y11 Y12 . . . Y1j . . . Y1c
2 Y21 Y22 . . . Y2j . . . Y2c
...

...
...

...
...

...
...

i Yi1 Yi2 . . . Yij . . . Yic
...

...
...

...
...

...
...

n Yn1 Yn2 . . . Ynj . . . Ync

Each row in the table is associated with one consumer. The values in the table

are either a 1 or a 0. The property of mutual exclusiveness of the choice set dictates

that only one value in a row can be 1 and the rest should be 0’s.

1.2 RANDOM UTILITY MODEL

In the random utility model we assume that there is a random variable Uij which

reflects the utility for the ith consumer and the jth alternative. Therefore, the ith

consumer has a set of utility values {Ui1, Ui2, . . . , Uic} for the c elements in the choice

set. The underlying assumption imposed on the consumers in discrete choice model is

based on utility maximization. The term “utility” carries the same connotation here

as it does in any other parlance. It signifies the usefulness a choice (product/option)

carries to a consumer. This idea was first introduced by Thurstone (1927) in the

context of psychometrics. He described that the effect of a stimuli can lead to different

judgements in different subjects and the difference can be measured. Based on this,

Marschak (1960) first introduced the random utility model interpreting stimuli as

utility of a choice. The model states that a consumer will choose the alternative
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which has highest utility in his or her mind. That is,

Yij =

{
1 if Uik < Uij, for k = 1, 2, . . . , c, k 6= j,

0 otherwise.
(2)

For example, when we walk into a store to buy a shirt we might be presented with

a choice set of several shirts. We will attach, in our minds, an utility value to each

shirt and buy the one which has the highest utility for us.

For most of the random utility models, the utility is linearly broken down into

a deterministic and a probabilistic component. The first one, similar to any other

statistical methodology, shall be referred to as the mean of the utility and the second

component shall be called the error or the random part. We write

Uij = µij + Zij. (3)

As we shall see shortly that µij, the mean, is the quantity that brings the covari-

ates, the variables or factors or features that influence the consumer’s choice, into the

analysis. On the other hand, different assumptions on the random component (Zij)

lead to different discrete choice models. The mean can be thought of as the part of

utility which can be explained in terms of the covariates and the random component

is the unexplained part.

1.3 CHOICE PROBABILITY

Choice probability is the probability with which an alternative in the choice set

can be chosen by a customer. We denote it by Pij, the probability that the ith

consumer chooses the jth alternative. Therefore,

Pij = Pr(Yij = 1)

= Pr(Uik < Uij, ∀ k 6= j)

= Pr(Uik − Uij < 0; ∀ k 6= j) (4)

The value of Yij depends on whether Uij is the maximum among Ui1, Ui2, . . . , Uic.

It does not depend on the amount by which Uij exceeds the rest of the utilities for
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the ith consumer. On the other hand, the choice probability, Pij, depends on the

margins or the differences between Uij and the other utilities. In the next section, we

shall formalize this property of the choice probability. Note that (4) can be written

as

Pij = Pr(µik + Zik − µij − Zij < 0; ∀ k 6= j)

= Pr(Zik < (µij − µik) + Zij; ∀ k 6= j). (5)

1.4 PROPERTIES

Similar to any other probability measure, choice probabilities should be real num-

bers between 0 and 1, and they should sum to 1 for any consumer over all the choices.

In mathematical terms, 0 ≤ Pij ≤ 1 and
∑c

j=1 Pij = 1, for all i = 1, 2, . . . , n. The

second property follows from the assumption that the choice set is exhaustive.

1.5 COVARIATES

Recall that the customer/consumer picks an option from the choice set based on

the comparative utility of the option with respect to other options. It is to be noted

that the utilities ( Uij’s ) are latent variable and unobserved. They are the sum of

two parts - one deterministic and the other probabilistic. The probabilistic part is

the random component, Zij and it is normally specified by a probability distribution.

The deterministic part is the mean of utility (µij) as shown in (3). It is deterministic

because it can be measured by observing other variables associated with the customer

and/or the choice. These other variables are known as covariates in the statistical

literature. We will assume the deterministic part is a linear function of the covariates.

1.5.1 CHOICE SPECIFIC COVARIATES

In many discrete choice scenarios, data is available on different covariates based
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on each customer and each choice. For example, when choosing a mode of transporta-

tion, each passenger may have different values for some covariates such as total time

and total money required, traveling-group size etc. In case of buying a real estate

property from a choice set of various types of properties, covariates such as price of

the property, population density of the area will be different for different customers

and different properties. These type of covariates are choice specific covariates which

are different not only for different choices but also for different customers.

Table 2: Choice Specific Covariates

Covariates
Consumer Alternative Choice 1 2 . . . p

1

1 Y11 X111 X112 . . . X11p

2 Y12 X121 X122 . . . X12p
...

...
...

...
...

...
c Y1c X1c1 X1c2 . . . X1cp

2

1 Y21 X211 X212 . . . X21p

2 Y22 X221 X222 . . . X22p
...

...
...

...
...

...
c Y2c X2c1 X2c2 . . . X2cp

...
...

...
...

...
...

...
...

...
...

...
...

...
...

n

1 Yn1 Xn11 Xn12 . . . Xn1p

2 Yn2 Xn21 Xn22 . . . Xn2p
...

...
...

...
...

...
c Ync Xnc1 Xnc2 . . . Xncp

In Table 2, we showcase p choice specific covariates for each customer and each

choice. The mean µij is modeled as a linear function of the covariates and a regression

parameter vector β = (β1, β2, . . . , βp)
′, that is,

µij = X ′ij β =

p∑
m=1

Xijmβm, (6)

where X ′ij = (Xij1, Xij2, . . . , Xijp), for i = 1, 2, . . . , n, j = 1, 2, . . . , c. Based on this,

the choice probability (5) involving the choice specific covariates can be written as

Pij = Pr(Zik < (X ij −X ik)
′β + Zij; ∀ k 6= j). (7)
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1.5.2 INDIVIDUAL SPECIFIC COVARIATES

Individual specific covariates are those covariates that are unique to the cus-

tomer/consumer and they do not change from one choice to another. In the discrete

choice scenario of which insurance plan to buy, a person’s age, medical history of a

disease, income are fixed- they do not change from one insurance plan to another.

Similarly, when deciding to which school to send their child to, covariates such as

parents’ income, number of children are important covariates and convey informa-

tion about the subjects of the study and not the choices or options. These are some

examples of individual specific covariates. For the individual specific covariates we

have X ij = X i and thus the mean value of utility is

µij = X ′i βj, whereβj = (βj1, βj2, . . . , βjp)
′, (8)

and the choice probability is

Pij = Pr(Zik <X
′
i (βj − βk) + Zij; ∀ k 6= j). (9)

In this dissertation we will not consider the case of individual specific covariates and

confine our study only to the choice specific covariates.

1.5.3 TRANSLATION INVARIANCE OF CHOICE PROBABILITY

Suppose U
′
ij is the translated utility, that is, U

′
ij = Uij +α for all i and j, where α

is a constant real number. If P
′
ij denotes the choice probability of the ith consumer

and the jth product based on U
′
ij, then using (4) we get

P
′

ij = Pr(U
′

ik − U
′

ij < 0; ∀ k 6= j)

= Pr(Uik − Uij < 0; ∀ k 6= j)

= Pij,

which shows that the choice probabilities are translation invariant, that is they remain



7

the same if we change the utility values by adding a constant to all of them. Looking

at (7) and (9), and comparing them with (4) it is to be noted that only those

regression coefficients can be estimated which are captured by the differences in the

utilities.

1.5.4 SCALE OF UTILITY

As the utility in a discrete choice model is directly related to the random compo-

nents, the assumptions imposed on the random components influence the estimation

of the regression parameters. If one compares two models with different variances for

the random components, the results might be misleading if the utilities are not nor-

malized. This in turn would result in faulty comparison of the regression coefficients.

It is advisable to normalize the regression coefficients according to the variances of

the error components so that they are comparable.

1.6 GOODNESS OF FIT MEASURES

Most of the goodness of fit measures used to judge and compare the performances

of discrete choice models are based on the log-likelihood function. If θ is the vector of

parameters (accounting for the covariates and correlations), then the log-likelihood

function is given by

`(θ) = log

(
n∏
i=1

c∏
j=1

P
Yij
ij

)
=

n∑
i=1

c∑
j=1

Yij log(Pij). (10)

since Pij = P (Yij = 1). If θ̂ is the estimate of θ, then the estimated log-likelihood

value is `(θ̂). One measure of goodness of fit is the Akaike information criterion,

known as AIC. It is calculated as AIC = 2κ − 2`(θ̂), where κ is the dimension of

the parameter vector θ. This measure penalizes a model for its greater number of

parameters. Model with smaller value of AIC is the best according to this criteria.

See Akaike (1973) for more information on AIC.

McFadden (1974) introduced a goodness of fit measure which is very similar to

the coefficient of determination (R2) in regression. It is known as McFadden’s R2
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and is defined as

R2
M = 1− `(θ̂)

`0(θ̂)
,

where `0(θ̂) is the log-likelihood value of the intercepts-only model and is treated as

the total sum of squares in regression. R2
M lies between 0 and 1. High value of R2

M

is desirable. A good choice model would have its R2
M very close to 1 as opposed to a

bad model for which R2
M will be close to 0. Similar to R2

m, McFadden’s adjusted R2

is defined as

R2
M,Adj = 1− `(θ̂)− κ

`(θ̂0)
,

κ being the number of parameters in the model. This measure puts a penalty for the

number of parameters in the model. There are several other measures of goodness of

fit, and most of them mimic the coefficient of determination, R2. All such measures

are called pseudo R2’s.

1.7 POPULAR DISCRETE CHOICE MODELS

In this section, we discuss some of the commonly used discrete choice models. We

will, for the most part, describe the choice probabilities in terms of the means µij’s

of the utility functions.

1.7.1 CONDITIONAL LOGIT MODEL

The most popular discrete choice model is the conditional logit model and is

ubiquitous in the literature and in practice. In this model, it is assumed that the

choices do not depend on one another and hence the errors in the utility function are

independent and follow identical Gumbel distributions. Luce (1959) first introduced

the model by defining a theory which is now well-known as Luce’s choice axiom and

it says that the choice probability of one item compared to another one from a set

of multiple items is unaltered by the presence of other items in the set. From this

assumption, he laid out the foundation for the choice probability of a logit model

as the relative weight of an item. Marschak (1960) showed that a choice model

that follows Luce’s choice axiom is consistent with random utility maximization.

Luce and Suppes (1965) proved that if the random component of the utility function
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follows an extreme value distribution then the choice probability leads to a logit

formula. McFadden (1974) finally completed the proof by illustrating the choice

probability is given by the logit formula if and only if the underlying distribution of

the error component is Gumbel.

Suppose that the random components Zij’s follow a Gumbel distribution. The

density function of Gumbel is given by

f(zij) = e−zije−e
−zij

, −∞ < zij <∞,

and the cumulative distribution is

F (zij) = e−e
−zij

, −∞ < zij <∞.

Also assume that for any given i, Zij is independent of Zik, for k 6= j, that is

corr(Zij, Zik) = 0.

Using the assumptions of the Zij’s listed above, we derive the choice probability

according to McFadden (1974) as

Pij = Pr(Zik < (µij − µik) + Zij; ∀ k 6= j)

=

∫ ∞
−∞

Pr (Zik < (µij − µik) + z|Zik = z; ∀ k 6= j) f(z) dz

Now, we shall use the fact that Zik and Zij are independent ∀ k 6= j. So,

Pij =

∫ ∞
−∞

 c∏
k(6=j)=1

exp
(
−e−(z+µij−µik)

) e−z exp(−e−z) dz

=

∫ ∞
−∞

exp

(
−e−z

c∑
k=1

e−(µij−µik)

)
e−z dz.

Making a change of variable t = e−z in the integrand, the choice probability Pij
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becomes

Pij =

∫ ∞
0

exp

(
−t

c∑
k=1

e−(µij−µik)

)
dt

=
1∑c

k=1 e
−(µij−µik)

=
eµij∑c
k=1 e

µik
. (11)

This shows that the choice probability for the conditional logit model is in a closed

form, and is very easy to calculate and does not require evaluation of integrals. These

facts account for the widespread use of the model and implementation in various

statistical software.

Independence from Irrelevant Alternatives (IIA).

Using the formula (11) we can see that for any two choices j and k in the choice

set,

Pij
Pik

=
eµij

eµik
=
eX
′
ijβ

eX
′
ikβ

= e(Xij−Xik)
′β.

This shows that for the ith consumer, the ratio of the probabilities of choosing the

jth and the kth choices depends only on the covariates and the coefficients for those

two choices only, for all j 6= k. That is, even if we change the information on the

other choices, these two choice probabilities will change proportionately. As the ratio

of any two choice probabilities is independent of all other alternatives, this property

is called independence from irrelevant alternatives (IIA).

1.7.2 NESTED LOGIT MODELS

Nested logit models are relevant when the choice set can be partitioned into

subsets and the random components of the utilities are Gumbel random variables.

These subsets are called nests. For example, parents’ choices for their children’s

schools can be grouped into two nests, namely private school and public school.

In the case of individuals purchasing health insurance plans, the choice set can be
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partitioned into four groups such as vision and dental care included, only vision care

included, only dental care included, and both vision and dental care excluded.

The rudimentary idea of nested logit models is that the relative choice probabili-

ties among the choices in one nest always remain fixed while for choices between any

two different nests the relative choice probabilities are different.

McFadden (1978) developed the nested logit model. Let us denote the number

of nests by N and the nests (disjoint sets) as S1, S2, . . . , SN . If, ck is the number of

choices in nest Sk, then
∑N

k=1 ck = c. Within nest Nk, the choices are correlated and

it is assumed that the CDF of the random components of the utility have the joint

CDF

F (zi1, zi2, . . . , zic) = exp

− N∑
k=1

(
ck∑
j=1

e−zkj/λk

)λk
 .

The quantity λk is such that 1−λk can be treated as a measure of dependence within

Sk and its values are between 0 and 1. The extreme λk = 0 indicates complete

dependence among the choices of the nest Sk and when λk = 1, the choices in Sk are

independent of each other.

In the special case when λ1 = λ2 = · · · = λN = 0, the nested logit model

transforms to a conditional logit model. The choice probability that the ith consumer

chooses the jth product, assuming that it belongs to the nest Sk is

Pij =
exp(µij/λk) {

∑ck
l=1 exp(µil/λk)}λk−1∑N

k=1 {
∑ck

l=1 exp(µil/λk)}λk
,

and if the j′th product is in the nest k′ then the ratio of the choice probabilities for

choices j and j′ is

Pij
Pij′

=
exp(µij/λk) {

∑ck
l=1 exp(µil/λk)}λk−1

exp(µij′/λk′)
{∑c′k

l=1 exp(µil/λk′)
}λk′−1 .

When the two choices j and j′ come from the same nest, i.e. k = k′,

Pij
Pij′

=
exp(µij/λk)

exp(µij′/λk)
.
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This illustrates that IIA holds only within each nest. Another interesting observation

is that when k 6= k′, the ratio of Pij to Pij′ is dependent on the covariates of other

choices besides the jth and j′th choice, all of those choices are either in nest k or nest

k′. This implies that in the nested logit model, relative odds of choosing two choices

from two different nests only depend on covariates of choices in those two nests only.

This property is referred to as ”independence from irrelevant nests”, abbreviated as

IIN.

1.7.3 PAIRED COMBINATORIAL LOGIT

As the name suggests, the paired combinatorial logit model assumes that each

pair of choices constitute a nest and the random components of the utilities are

Gumbel variables. For a discrete choice setup with c choices, this model assumes

there are c(c − 1)/2 nests where each choice is represented in c − 1 nests. Unlike

the nested logit model, in paired combinatorial logit, the nests are intersecting. To

measure the independence within the nest formed by choices j and k, a quantity λjk

is introduced. The degree of association between choices j and k is given by 1− λk.
In the case where all λjk’s are equal to unity, this model reduces to a conditional

logit model. The choice probability for this model is of the form

Pij =

∑
j 6=k exp(µij/λjk) {exp(µij/λjk) + exp(µik/λjk)}λjk−1∑c−1

l=1

∑c
l′=l+1 {exp(µil/λll′) + exp(µil′/λll′)}λll′

1.7.4 GENERALIZED NESTED LOGIT

In generalized nested logit model, the choices are grouped into N overlapping

nests S1, S2, . . . , SN and each choice can belong to more than one nest with varying

degrees of presence. Simply put, a choice appearing in multiple nests can be more

prominent in one nest than others. If ck is the number of choices in nest Sk then∑N
k=1 ck ≥ c. An allocation parameter named αjk is included in this model which

represents the degree of presence of the jth choice in Sk, j = 1, 2, . . . , c and k =

1, 2, . . . , N . It is assumed that αjk ≥ 0 and
∑N

k=1 αjk = 1. Under these assumptions,

αjk represents the relative presence of the jth choice in the kth nest as compared to

other N − 1 nests. The probability that the ith consumer selects the jth choice for
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this model is

Pij =

∑G
k=1(αjk exp(µij))

1/λk
{∑ck

l=1(αlk exp(µil))
1/λk
}λk−1∑G

k=1 {
∑ck

l=1(αlk exp(µil))1/λk}λk
.

If all the allocation parameters have degenerate distributions with αjk = 1 for exactly

one k in 1, 2, . . . , N , then this model reduces to the nested logit model. Additionally,

if choices in each nest have zero dependency with one another, i.e., λk = 1 for all

k = 1, 2, . . . , N then the generalized nested logit model reduces to the conditional

logit model.

1.7.5 GENERALIZED EXTREME VALUE (GEV) MODEL

The GEV setup provides a framework for developing discrete choice models where

the choices (hence the random components in the utility functions) do not have to

be independent. Based on certain mathematical criteria, this setup facilitates the

derivation and computation of the choice probabilities and the dependence parame-

ters. This was originally studied by McFadden (1978, 1981, 1984, 2001).

A GEV model is derived by assuming that the random components follow stan-

dard Gumbel distribution f(zij) = e−zije−e
−zij

, −∞ < zij < ∞ and by using a

real-valued function G, defined on the c-dimensional orthant (wi1, wi2, . . . , wic) ≥ 0,

where wij = exp(µij). Furthermore, G satisfies the following four properties:

i. G(w1, w2, . . . , wc) ≥ 0 for all (w1, w2, . . . , wc) ≥ 0

ii. G is a homogenous function of degree 1, that is, G(αw1, αw2, . . . , αwc) =

αG(w1, w2, . . . , wc)

iii. limwi→∞ G(w1, w2, . . . , wc) =∞

iv. If (i1, i2, . . . , ik) is a k-tuple from (1, 2, . . . , c), then[
(−1)k

∂k

∂wi1∂wi2 . . . ∂wik
G ≤ 0

]
, for all k = 1, 2, . . . , c.

Under the above four assumptions, the utility maximizing choice probability is
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given by the formula

Pij =
wijGij

G
, (12)

where Gij = ∂G/∂wij. It is easy to verify that the conditional logit, nested logit,

paired combinatorial logit and generalized nested logit models are special cases of the

GEV model. For example, G =
∑c

j=1wij gives us the conditional logit model and

G =
∑c−1

j=1

∑c
k=j+1(w

1/λjk
ij +w

1/λjk
ik )λjk leads to the paired combinatorial logit model.

Though it is fairly easy to find functions G that satisfy the required four properties

and can lead to easy derivation of new choice formulae, Train (2004) argues that this

process is motivated by mathematical convenience rather than by scientific intuition.

1.7.6 MULTINOMIAL PROBIT MODEL

In the multinomial probit model, it is assumed that the random components of

the utility functions are distributed as normal distributions and depending on the

choice set’s setup, any correlation structure can be incorporated in this model. This

model was first studied by Thurstone (1927) in the case of two choices. Later,

Hausman and Wise (1978), and Daganzo (1979) illustrated different properties of

this model. In the utility model Uij = µij + Zij, it is assumed that the Zij’s are

normally distributed. In fact,

(Zi1, Zi2, . . . , Zic) ∼ N(0,Σ).

Then (5) for this model becomes

Pij = Pr(Zik − Zij < µij − µik; ∀k 6= j),

where each Zik − Zij, k 6= j also follows normal distribution and their joint distri-

bution is also multivariate normal of dimension c − 1. Due to this nice property

and the availability of numerous simulation techniques for normal probabilities, the

multivariate probit model has gained much popularity.



15

1.7.7 HETEROSCEDASTIC EXTREME VALUE (HEV) MODEL

The heteroscedastic extreme value model assumes that the random components

are independent Gumbel variables with different scale parameters. Whereas all the

other logit models relaxed the assumption of independence, the HEV model relaxes

the assumption of identical distributions of the Zij’s but allows them to be indepen-

dent. In mathematical terms,

f(zij) =
1

θj
e
−
zij
θj e−e

zij
θj

and F (zij) =
1

θj
e−e

zij
θj
, θj > 0 ∀ j.

The above assumptions render the variance of Zij to be π2θ2j/6.

Bhat (1970) calculated the choice probability for the HEV model as

Pij =

∫ ∞
−∞

{ c∏
k=1,k 6=j

e−e
−(µij−µik+θjv)/θj

}
e−ve−e

−v
dv,

where v = zij/θj.

1.7.8 OVERVIEW OF THE DISSERTATION

The rest of this dissertation is organized as follows. In Chapter 2, we introduce

a new choice model. This model assumes that the random components of the util-

ities are distributed as Gumbel as in McFadden’s original conditional logit model.

However our model assumes that the random components are dependent and the

joint distribution is induced by the Gaussian copula with equicorrelated correlation

structure. When the correlation parameter equals zero, our model reduces to the

conditional logit model and thus it is a generalization of McFadden’s work. We give

a brief summary of copulas with special emphasis on the Gaussian copula. We derive

analytical expressions for the choice probability and study their behavior as a func-

tion of the correlation parameter. The maximum likelihood estimation procedure is

discussed for estimating the correlation parameter and the regression parameter for

individual specific covariates. We derive simplified expressions for the score equa-

tions and develop an R code to solve them. The standard errors for the parameter
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estimates are obtained using the bootstrap method. We illustrate the practical appli-

cation of the model using a real life data, and compare the results with the conditional

logit model.

In Chapter 3 we consider the case where there is a natural ordering in the choices

or in other words, the case where the choices are categorical and ordinal. Equicor-

related correlation structure is not appropriate in that situation and we propose

replacing that with an autoregressive of order one (AR(1)) correlation structure. We

establish some properties of the multivariate normal distribution with AR(1) correla-

tion structure, in particular, we show that given the present the past is independent

of the future. As in Chapter 2 we derive simplified expressions for the choice prob-

abilities and maximum likelihood estimation for the parameters in the model. We

illustrate the method on a simulated data consisting of ordered choices.

Finally in the Appendix we state and prove several theorems regarding the mul-

tivariate normal distribution that are relevant and useful in this dissertation. We use

the R program (R version 2.15.1) and SAS R© software (version 9.3 of SAS for Win-

dows). A selection of R code that we developed for this dissertation is also included

in the Appendix.
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CHAPTER 2

EQUICORRELATED CHOICE MODEL WITH

GAUSSIAN COPULA

2.1 INTRODUCTION

In many discrete choice scenarios, the assumption of independent utilities is not

realistic. In fact, in most cases two or more choices will be correlated. This associa-

tion between the choices can be attributed to one or more covariates that affect some

choices in one way and others in a different way. For example, a customer’s inclina-

tion to buy products made in his country may discourage him to buy products made

in other countries, which means utilities of the products made within the country will

have higher correlation. In the case of choosing a route from a set of viable routes

for traveling from point A to point B, a traveler might have higher preferences for

routes that offer a more scenic and slow journey as compared to regular fast routes.

As we have discussed in the previous chapter, there are several models that ac-

count for dependence among the choices. Our goal is to generalize the conditional

logit model proposed by McFadden (1974). Though the GEV model generalizes

the conditional logit model, its assumptions are highly mathematical and lack logi-

cal intuition. In a way the GEV models work in a backwards approach in that one

has to find some mathematical functions that satisfy certain properties and then the

formula for choice probability is determined by using the functions. Our goal is to

generalize McFadden’s original model by using the same assumptions except that of

independence among the elements of the choice set.

To start with, we assume that all the choices are correlated to each other with
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the same correlation. An appropriate structure is the equicorrelation or compound-

symmetry structure. The equicorrelated correlation matrix of dimension c with pa-

rameter ρ is given by

R =


1 ρ ρ . . . ρ

ρ 1 ρ . . . ρ
...

...
...

...
...

ρ ρ ρ . . . 1

 .

c×c

(13)

The determinant of R is [1 + (c − 1)ρ](1 − ρ)c−1. For R to be positive definite,

ρ must lie in (− 1
c−1 , 1). Clearly, as c increases to ∞ the range of ρ converges to the

interval (0, 1). Though theoretically ρ can be in the negative range, for all practical

purposes we shall assume that ρ is positive, that is, we assume 0 < ρ < 1. We

will explain the rationale behind this with a contradiction. Consider three random

components in the case where the equicorrelation parameter ρ is negative. Then,

the first and the second are negatively correlated and so are the first and the third.

This implies that the first and the third should be positively correlated which is a

contradiction to the assumption of negative equicorrelation.

Let us assume that there are n consumers. Each consumer is presented with an

identical set of c items and has to choose exactly one item from that set. We assume

that the decision of subject i to choose an item j depends on the utility Uij, and the

choice of consumer i does not depend on other consumers. Standard discrete choice

models assume that the utility Uij = µij +Zij, is the sum of a deterministic part µij

and a random component Zij. For fixed i, Zi1, Zi2, . . . , Zic are dependent random

variables since choosing from the c products are inherently related for any given

consumer. In the choice problem a consumer selects item j that has the maximum

utility, that is, the consumer selects item j if Uij > Uik for all k 6= j. In this situation

we would then be interested in computing the choice probability Pij that consumer

i chooses product j, which is given by

Pij = Pr (Uij > Uik, k = 1, 2, . . . , c, k 6= j) . (14)

Suppose that the random component Zij is a continuous random variable with dis-

tribution function F and probability density function f that does not depend on i
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and j. Then (14) can be written as

Pij = Pr (Uij > Uik, k = 1, 2, . . . , c, k 6= j)

= Pr (µij + Zij > µik + Zik, k = 1, 2, . . . , c, k 6= j)

= Pr (Zik < µij − µik + Zij, k = 1, 2, . . . , c, k 6= j)

=

∫ ∞
−∞

Pr (Zik < µij − µik + zij, k = 1, 2, . . . , c, k 6= j | Zij = zij) · f(zij) dzij

=

∫ ∞
−∞

Pr
(
Zik < z∗ijk, k = 1, 2, . . . , c, k 6= j | Zij = zij

)
· f(zij) dzij, (15)

where z∗ijk = µij−µik+zij. Thus we see the choice probability Pij is a function of the

conditional distribution of (Zi1, . . . , Zi(j−1), Zi(j+1), . . . , Zic) given Zij which, in turn,

is a function of the joint distribution of (Zi1, . . . , Zi(j−1), Zij, Zi(j+1), . . . , Zic).

Following the conditional logit model by McFadden (1974), we assume that

marginally the errors Zij are distributed as Gumbel random variables. So, the density

for the unobserved utility Zij for the ith customer choosing the jth item is given by

f(zij) = e−zije−e
−zij

, −∞ < zij <∞, (16)

and the cumulative distribution is

F (zij) = e−e
−zij

, −∞ < zij <∞, (17)

The mean of this distribution is γ, known as Euler’s constant. The approximate

value of γ is 0.5772. Though the mean is non-zero, it does not affect the choice

probability because as can be seen in (15), only differences in the utility appear in

the expression. The variance of the Gumbel distribution is π2/6. When comparing

models with different variances we need to normalize the estimates.

Though the marginal distribution of the Zij’s have been specified, the condi-

tional distribution of (Zi1, . . . , Zi(j−1), Zi(j+1), . . . , Zic) given Zij is unknown. For

each i = 1, 2, . . . , n, this conditional distribution depends on the joint distribution

of the Zij’s , j = 1, 2, . . . , c. There are many forms that have been suggested as the
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joint distribution of multiple random variables the marginal distributions of which

are Gumbel distributions. All of them are very complicated, involve implicit func-

tions and not readily interpretable. For more on this, see Kotz et al. (2000). To

construct a joint distribution for the errors, we will use what is known in statistics

literature as the Gaussian copula. A brief description of copulas is given in the next

section.

2.2 COPULAS

Copulas are functions used to describe the unknown multivariate distribution

function of a set of random variables with known marginal distributions. Copulas

model the interdependence between stochastic variables and thus facilitate modeling

and estimation of distributions of random vectors in high dimensional statistical

applications. In recent years, copulas have found their use in a variety of fields

ranging from engineering to quantitative finance.

Copulas are multivariate distribution functions with uniform marginals. By the

inverse transformation method we know that when the known marginal distribution

functions are inverted they become uniform random variables on the interval [0, 1].

These newly formed uniform variables are then used as arguments in a copula with a

given dependence (correlation) structure to generate a joint distribution with known

marginal distributions. A formal definition of a copula is as follows.

Definition 2.2.1. A c-dimensional copula is a function C : [0, 1]c → [0, 1] with the

following properties.

1. C(1, . . . , 1, ui, 1, . . . , 1) = ui for all i = 1, 2, . . . , c and ui ∈ [0, 1].

2. C(u1, u2, . . . , uc) = 0 if at least one ui = 0 for i = 1, 2, . . . , c.

3. For all 0 < ui1 < ui2 < 1, i = 1, 2, . . . , c,

2∑
j1=1

2∑
j2=1

· · ·
2∑

jc=1

(−1)j1+j2+···+jc C(u1j1 , u2j2 , . . . , ucjc) ≥ 0.

4. C(u1, u2, . . . , uc) is right continuous for ui ∈ [0, 1] for all i = 1, 2, . . . , c
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The following famous theorem shows that underlying every multivariate distri-

bution there is a copula that characterizes the dependence within the multivariate

distribution.

Sklar’s Theorem:

Let Z1, Z2, . . . , Zc be c random variables with marginal cumulative distributions

F1, F2, . . . , Fc respectively. Suppose F is their joint cumulative distribution function.

1. Then there exists a function C such that

F (z1, z2, . . . , zc) = C(F1(z1), F2(z2), . . . , Fc(zc)),

where −∞ < zi <∞.

2. If Z1, Z2, . . . , Zc are continuous random variables then the copula C is unique. If

Zi is a discrete random variable then C is unique on the c-dimensional rectangle

Range(F1)×Range(F2)× . . . Range(Fc).

2.2.1 EXAMPLES

Some popular and commonly used copulas are given below.

Example 1. The independence copula is given by the function

C(u1, u2, . . . , uc) =
c∏
i=1

ui

Example 2. The Gaussian copula is given by the function

C(u1, u2, . . . , uc) = Φc

(
Φ−1(u1),Φ

−1(u2), . . . ,Φ
−1(uc); 0,R

)
,

where Φ( · ) is the cumulative distribution function of a standard normal distribution

and Φc( . ;µ,Σ) is the cumulative distribution function of a c-dimensional multivari-

ate normal distribution with mean vector µ and covariance matrix Σ. It is given
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by

Φc(x1, x2, . . . , xc;µ,Σ) =

∫ xc

−∞
. . .

∫ x1

−∞

1

(2π)c/2|Σ|1/2
e−

1
2
(z−µ)′Σ−1(z−µ) dz1 . . . dzc

In the definition of the Gaussian copula, the mean vector µ is taken to be a zero

vector and the covariance matrix Σ is assumed to be a correlation matrix R to ensure

the parameter is identifiable.

Example 3. The Comonotonicity Copula is given by the function

C(u1, u2, . . . , uc) = min{u1, u2, . . . , uc}.

Example 4. Let M be a univariate distribution function of a positive random vari-

able. Note that M(0) = 0. For x ≥ 0, let

h(x) =

∫ ∞
0

e−xzdM(z), x ≥ 0.

be the Laplace transform of M . The Archimedean copula is defined as

C(u1, u2, . . . , uc) = h

(
c∑
i=1

h−1(ui)

)

In this dissertation we will be dealing only with the Gaussian copula.

2.2.2 COPULA DENSITY FUNCTIONS

Suppose Fi is the marginal cumulative distribution function of Zi, i = 1, 2, . . . , c.

For a copula model, the joint cumulative distribution function for the vector Z =

(Z1, Z2, . . . , Zc) is given by

F (z) = C(F1(z1), F2(z2), . . . , Fc(zc)),

where C is a c-dimensional copula. If Z is continuous then its joint density function
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is

f(z) =
c∏
i=1

fi(zi) c(f1(z1), f2(z2), . . . , fc(zc)),

where fi(z) = ∂Fi(z)/∂z is the marginal density function of Zi and c(u1, u2, . . . , uc)

is the density of the copula C given by

c(u1, u2, . . . , uc) =
∂cC(u1, u2, . . . , uc)

∂u1∂u2 . . . ∂uc
.

On the other hand, if Z is a discrete random vector then the c-dimensional joint

probability mass function is

Pr(Z = z) =
2∑

j1=1

2∑
j2=1

· · ·
2∑

jc=1

(−1)j1+j2+...,+jc C(u1j1 , u2j2 , . . . , ucjc),

where ui1(zi) = Fi(z
−
i ) and ui2(zi) = Fi(zi), Fi(z

−
i ) being the left hand limit of Fi at

zi.

2.3 DISCUSSION ON GAUSSIAN AND GUMBEL DISTRIBUTIONS

As we are planning to use the Gaussian copula in this dissertation for the joint

distribution, and Gumbel distribution for the marginals, a discussion of the properties

and highlights of the reasons for these choices are in order.

The normal or the Gaussian distribution is the most studied continuous distri-

bution in statistics and its applications are countless. There is a plethora of readily

comprehensible properties for both the univariate and multivariate versions of this

distribution. The Gaussian copula inherits all of these properties, and so it is a

natural and practical choice to model dependence between discrete choices.

Gaussian copulas are constructed with mean 0 and covariance matrix R, where

R is a correlation matrix. This renders the univariate components of the copula

with an univariate normal distribution with mean 0 and variance 1. The random

components in the utility model are marginally distributed as univariate Gumbel

distribution. The support of these two distributions is (−∞,∞), but they do differ
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Figure 1: Plot of univariate normal and Gumbel densities

in the moments. The mean of Gumbel distribution is the Euler’s constant (γ), the

approximate value of which is 0.5772, and it’s variance is π2/6 ≈ 1.6449. Despite this

differences in mean and variances, the plot of the densities of these two distributions,

as shown in Figure 1, shows that the standard normal distribution can work as a

good approximation for the standard Gumbel distribution.

2.4 GAUSSIAN COPULA FOR CHOICE PROBABILITIES

Since the choice probability Pij depends mainly on j and not on i, for notational

simplicity we will omit the subscript i and write Pj instead of Pij in further simplified

analytical expressions. Thus for the ith customer the choice probability (15) can be

re-written as

Pj =

∫ ∞
−∞

Pr
(
Zk < z∗jk, k = 1, 2, . . . , c, k 6= j | Zj = zj

)
· f(zj) dzj, (18)
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We will simplify calculation of this probability assuming that the joint cumu-

lative distribution function of (Z1, Z2, . . . , Zc) is induced by the Gaussian copula.

This means,

Pr (Z1 < z1, Z2 < z2, . . . , Zc < zc)

= Φc

(
Φ−1 (F (z1)) ,Φ

−1 (F (z2)) , ...,Φ
−1 (F (zc)) ; 0,R

)
, (19)

where Φc(· ; 0, R) is the cumulative distribution function of a c dimensional multi-

variate normal with mean 0 and covariance matrix R. To make the model identifiable

we take R to be a correlation matrix. Taking partial derivatives of (19) with respect

to zj’s we get the probability density function of (Z1, Z2, . . . , Zc) as

fZ1,Z2,...,Zc(z1, z2, . . . , zc)

=
φc (Φ−1(F (z1)),Φ

−1(F (z2)), . . . ,Φ
−1(F (zc)); 0, R)∏c

k=1 φ(Φ−1(F (zk)))

c∏
k=1

f(zk), (20)

where φc and φ are the probability density functions of multivariate and univariate

normal distributions respectively. The conditional pdf of (Z1, . . . , Zj−1, Zj+1, . . . , Zc)

given Zj = zj is

fZ1,...,Zj−1,Zj+1,...,Zc|Zj=zj(z1, . . . , zj−1, zj+1, . . . , zc)

=
fZ1,Z2,...,Zc(z1, z2, . . . , zc)

f(zj)

=
φc (Φ−1(F (z1)),Φ

−1(F (z2)), . . . ,Φ
−1(F (zc)); 0, R)∏c

k=1 φ(Φ−1(F (zk)))

∏
k 6=j

f(zk). (21)

Using (21) we can write the conditional cumulative distribution function of

(Z1, . . . , Zj−1, Zj+1, . . . , Zc) given Zj as
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Pr(Zk < z∗jk, k = 1, 2, . . . , c, k 6= j | Zj = zj)

=

∫ z∗j1

−∞
. . .

∫ z∗
j(j−1)

−∞

∫ z∗
j(j+1)

−∞
. . .

∫ z∗jc

−∞

fZ1,...,Zj−1,Zj+1,...,Zc|Zj=zj(z1, . . . , zj−1, zj+1, . . . , zc)
∏
k 6=j

dzk

=

∫ z∗j1

−∞
. . .

∫ z∗
j(j−1)

−∞

∫ z∗
j(j+1)

−∞
. . .

∫ z∗jc

−∞

φc (Φ−1(F (z1)),Φ
−1(F (z2)), . . . ,Φ

−1(F (zc)); 0, R)∏c
k=1 φ(Φ−1(F (zk)))

∏
k 6=j

f(zk)
∏
k 6=j

dzk.

(22)

Substituting (22) in (15), we get

Pj =

∫ ∞
−∞

{∫ z∗j1

−∞
. . .

∫ z∗
j(j−1)

−∞

∫ z∗
j(j+1)

−∞
. . .

∫ z∗jc

−∞

φc (Φ−1(F (z1)),Φ
−1(F (z2)), . . . ,Φ

−1(F (zc)); 0, R)∏c
k=1 φ(Φ−1(F (zk)))

×
∏
k 6=j

f(zk)
∏
k 6=j

dzk

}
f(zj) dzj.

(23)

Now, we will make a change of variables. Let vk = Φ−1(F (zk)) for k = 1, . . . , c.

Then,

dvk =
f(zk)

φ (Φ−1(F (zk)))
dzk , for k = 1, 2, . . . , c

and for k 6= j,

v∗jk = Φ−1(F (z∗jk))

= Φ−1(F (µj − µk + zj))
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= Φ−1(F (µj − µk + F−1(Φ(vj)))) (24)

since z∗k = µj − µk + zj. For k = j, note that vj → −∞ as zj → −∞ and vj →∞ as

zj →∞. Therefore, we get

Pj =

∫ ∞
−∞

{∫ v∗j1

−∞
. . .

∫ v∗
j(j−1)

−∞

∫ v∗
j(j+1)

−∞
. . .

∫ v∗jc

−∞
φc (v1, v2, . . . , vc; 0, R)

∏
k 6=j

dvk

}
dvj

(25)

where v∗jk is given by (24). This can be further simplified by breaking down the

multivariate density function φc. The multivariate normal density can be written as

a product of a conditional density and a marginal density. That is, we can write

φc (v1, v2, . . . , vc; 0, R) = φc−1

(
v1, . . . , vj−1, vj+1, . . . , vc;η

(j),Σ(j)
)
φ(vj), (26)

where η(j) and Σ(j) are the mean vector and covariance matrix of

(V1, . . . , Vj−1, Vj+1, . . . , Vc) given Vj. Combining (25) and (26) we get,

Pj =

∫ ∞
−∞

{∫ v∗j1

−∞
. . .

∫ v∗
j(j−1)

−∞

∫ v∗
j(j+1)

−∞
. . .

∫ v∗jc

−∞

φc−1

(
v1, . . . , vj−1, vj+1, . . . , vc;η

(j),Σ(j)
)
dvc . . . dvj+1 dvj−1 . . . dv1

}
φ(vj)dvj

=

∫ ∞
−∞

Φc−1

(
v∗j1, . . . , v

∗
j(j−1), v

∗
j(j+1), . . . , v

∗
jc;η

(j),Σ(j)
)
φ(vj)dvj. (27)

2.5 PROBABILITIES FOR EQUICORRELATED CHOICES

We will derive the expressions for η(j) and Σ(j) in (27) in the case where the

correlation matrix R is a structured matrix with parameter ρ. More specifically, we

assume R is equicorrelated matrix given in (13).

Note that if (V1, . . . , Vj−1, Vj+1, . . . , Vc, Vj) is a permutation of (V1, V2, . . . , Vc) and

(V1, V2, . . . , Vc) ∼ N(0, R) then (V1, . . . , Vj−1, Vj+1, . . . , Vc, Vj) is also N(0, R) for the

equicorrelated structure R. We will need a well known property regarding the con-

ditional distribution of the multivariate normal distribution stated in the Appendix
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as Theorem 2. To use the theorem, let us partition the equicorrelation matrix R as

Rc×c =


1 ρ ρ . . . ρ

ρ 1 ρ . . . ρ
...

...
... . . .

...

ρ ρ ρ . . . 1

 =

(
R11 R12

R21 R22

)
,

where R11 = Rc−1×c−1, R21 = R′12 = (ρ, ρ, · · · , ρ), and R22 = 1. Now,

R12R
−1
22 R21 = R12R21

=


ρ

ρ
...

ρ


c−1×1

(
ρ ρ . . . ρ

)
1×c−1

=


ρ2 ρ2 . . . ρ2

ρ2 ρ2 . . . ρ2

...
... . . .

...

ρ2 ρ2 . . . ρ2

 .

c−1×c−1

Therefore by Theorem 2,

Σ(j) = R11 −R12R
−1
22 R21 =


1− ρ2 ρ− ρ2 . . . ρ− ρ2

ρ− ρ2 1− ρ2 . . . ρ− ρ2
...

...
...

...

ρ− ρ2 ρ− ρ2 . . . 1− ρ2


c−1×c−1

and

η(j) = R12R
−1
22 (vj − 0) = v


ρ

ρ
...

ρ


c−1×1

=


ρvj

ρvj
...

ρvj

 .

c−1×1
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Thus

(V1, . . . , Vj−1, Vj+1, . . . , Vc | Vj = vj) ∼ N(η(j),Σ(j)),where

η(j) =


ρvj

ρvj
...

ρvj


c−1×1

and Σ(j) =


1− ρ2 ρ− ρ2 . . . ρ− ρ2

ρ− ρ2 1− ρ2 . . . ρ− ρ2
...

...
...

...

ρ− ρ2 ρ− ρ2 . . . 1− ρ2


c−1×c−1

Using these results, we can see the choice probability given by (27), when the

correlation R is equicorrelated, simplifies to

Pij =

∫ ∞
−∞

Φc−1

(
v∗ij1, . . . , v

∗
ij(j−1), v

∗
ij(j+1), . . . , v

∗
ijc;η

(ij),Σ(ij)
)
φ(v) dv (28)

where v∗ijk = Φ−1 (F (µij − µik + F−1(Φ(v)))) for k 6= j. We wrote vj = v in the

above since it is simply a variable of integration. Here

η(ij) =


ρv

ρv
...

ρv


c−1×1

and Σ(ij) =


1− ρ2 ρ− ρ2 . . . ρ− ρ2

ρ− ρ2 1− ρ2 . . . ρ− ρ2
...

...
...

...

ρ− ρ2 ρ− ρ2 . . . 1− ρ2

 .

c−1×c−1

(29)

Note that the integrand in (28) is a function of the deterministic components of

the utilities, namely, it depends on the vector (µi1, µi2, . . . , µic) corresponding to ith

consumer. To be specific, the choice probability (28) depends on the deterministic

components through the differences (µij − µik) only.

2.5.1 INDUCED CORRELATION

The correlation matrix Σ(ij) in (28) is a function of ρ, which determines the

Gaussian copula. The parameter ρ is the correlation of the normal random variables.

These normal variables are transformed into the random components of the utilities

which are distributed as Gumbel. It would be interesting to find the relation between
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ρ and the correlation r of the Gumbel random variables. We study the relationship

using simulations. The idea is to simulate correlated normal variables, then transform

them to Gumbel using inverse transformation method and estimate the correlation

between the Gumbel variables. The formal steps of the simulations is given below.

Vary ρ from 0.01 to 0.99. For any fixed ρ:

Step 1 Generate N pairs of bivariate normal random variables (X1i, X2i) ∼
BV N(0, 0, 1, 1, ρ).

Step 2 Let F ( · ) be the Gumbel distribution function given in (17). Obtain

Z1i = F−1(X1i) = − log(− log(Φ(X1i))),

Z2i = F−1(X2i) = − log(− log(Φ(X2i))).

Step 3 Calculate sample correlation r from (Z1i, Z2i), i = 1, 2, . . . , N .

In Figure 2, we have plotted the difference (ρ − r) of the correlation coefficient

between the two standard normal variables and the sample correlation coefficient to

the two simulated Gumbel random variables as a function of ρ. As can be seen in

the plot, ρ − r is very close to 0 throughout the entire positive range of ρ which

shows that ρ can be treated as the correlation between the random components of

the utilities.

2.5.2 PROPERTIES

Note that the choice probability Pij given in (28) is of the form

Pij =

∫ ∞
−∞

Φc−1(v(x)) φ(x) dx

where v is a function of x. Since 0 ≤ Φc−1(v(x)) φ(x) ≤ φ(x), we have

0 ≤ Pij =

∫ ∞
−∞

Φc−1(v(x)) φ(x) dx ≤
∞∫

−∞

φ(x) dx = 1,

and therefore 0 ≤ Pij ≤ 1.
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Figure 3: Choice probabilities for two choices

Next, we need to cross check that the choice probabilities for any customer will

sum to 1, that is, Σc
j=1Pij = 1 for all i = 1, 2, . . . , n. It is very difficult to prove this

analytically, because the expression (28) of the choice probability is an integral of

a complicated multivariate function where the arguments themselves are composite

and implicit functions of the variable of integration. However we will check this

property using numerical calculations.

We first consider the case where there are only two choices in the choice set

(c = 2). Ignoring the index i for the customer, the choice probabilities become

P1 =
∞∫
−∞

Φ

(
v∗2−ρv√
1−ρ2

)
φ(v) dv, v∗2 = Φ−1 (F (µ1 − µ2 + F−1(Φ(v)))) ,

P2 =
∞∫
−∞

Φ

(
v∗1−ρv√
1−ρ2

)
φ(v) dv, v∗1 = Φ−1 (F (µ2 − µ1 + F−1(Φ(v)))) .
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For different values of the correlation parameter ρ, we calculated P1 and P2 us-

ing numerical integration. The R code is in Appendix A. We plot these proba-

bilities in a stacked bar plot for different values of ρ = 0.2, 0.4, 0.6, 0.8 and differ-

ent pairs of means of the utility functions of the two choices (µ1, µ2). We chose

(µ1, µ2) as (3, 5), (3, 4), (3, 3), (3, 2) and (3, 1), so that the difference (µ1 − µ2) is

−2,−1, 0, 1 and 2 respectively. The plots are given in Figure 3. The horizontal

axes in the plots denote µ1 − µ2 and the vertical axes signify probabilities. As can

be seen in the plots, P1 and P2 always add up to 1, for all values of ρ, µ1 and µ2.

This proves that the choice probabilities for a single consumer add up to 1 for two

choices. The calculations can easily be extended to any number of choices. Tables 3

and 4 display the probabilities in the case of three choices for different values of the

means and correlation. Once again the three probabilities sum to one.

Besides verifying that the choice probabilities for a consumer sum up to 1, Figure

3 also showcases two important characteristics of the choice probabilities when the

choices have the same correlation. When µ1 − µ2 = 0, P1 = P2 for any ρ. This

property is intuitive and expected of any choice model since an equality of the utilities

will result in equal probabilities of being chosen by the consumer, no matter what

the correlation is among the choices. Also, when µ1 − µ2 < 0, P1 decreases and P2

increases as ρ increases. The reverse happens when µ1−µ2 > 0. This tells us that an

increasing correlation always increases the chance of the choice with highest utility

to be chosen more than it increases the chance of a choice with lower utility. In short,

an increasing correlation always favors the choice with higher utility.

In Table 3, we have shown the choice probabilities for three choices for varying ρ

and means of the utility function, denoted by (µ1, µ2, µ3). The choice probabilities are

rounded up to two places of decimal. Each row in the table carries the sets of three

choice probabilities for a given ρ = 0, 0.1, . . . , 0.9 and for the mean vectors (1, 1.5, 2),

(−4,−3.5,−3) and (101, 101.5, 102) respectively. Needless to say, µ2 − µ1 = 0.5 and

µ3 − µ2 = 0.5, for all the three mean vectors.

It can be observed that all the sets of choice probabilities add up to 1. Additionally,

all three sets of probabilities in each row are the same. This is due to the fact the

differences in the utilities in the three mean vectors are the same and goes to show

that the choice probability described in (28) for the equicorrelated choices that we

developed using the Gaussian copula, conforms to the idea presented in Section 1.5.3
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Table 3: Choice probabilities for three equicorrelated
choices and same differences between utilities

ρ
(µ1, µ2, µ3)

(1, 1.5, 2) (-4, -3.5, -3) (101, 101.5, 102)
0 0.19, 0.31, 0.50 0.19, 0.31, 0.50 0.19, 0.31, 0.50

0.1 0.17, 0.30, 0.53 0.17, 0.30, 0.53 0.17, 0.30, 0.53
0.2 0.17, 0.30, 0.53 0.17, 0.30, 0.53 0.17, 0.30, 0.53
0.3 0.16, 0.29, 0.55 0.16, 0.29, 0.55 0.16, 0.29, 0.55
0.4 0.15, 0.29, 0.56 0.15, 0.29, 0.56 0.15, 0.29, 0.56
0.5 0.13, 0.28, 0.59 0.13, 0.28, 0.59 0.13, 0.28, 0.59
0.6 0.12, 0.27, 0.61 0.12, 0.27, 0.61 0.12, 0.27, 0.61
0.7 0.09, 0.25, 0.66 0.09, 0.25, 0.66 0.09, 0.25, 0.66
0.8 0.07, 0.22, 0.71 0.07, 0.22, 0.71 0.07, 0.22, 0.71
0.9 0.03, 0.16, 0.81 0.03, 0.16, 0.81 0.03, 0.16, 0.81

that only differences in utilities matter.

In Table 4, the choice probabilities according to (28) for three choices are cal-

culated for three different sets of values of ρ and different values of the mean

vector (µ1, µ2, µ3) of the utilities. We have chosen (µ1, µ2, µ3) to be (2, 2.1, 2.5),

(0.4, 0.42, 0.5) and (10, 10.5, 12.5). The second and third sets are scaled versions of

the first and are obtained by multiplying 1/5 and 5 with the first set respectively.

By doing this, we are just scaling of the mean component of the utility by a positive

factor and not the actual utility.

We notice that in Table 4 too, all the triplets of choice probabilities have unity as

their sums. But unlike in Table 3, the probabilities in a row are not same. As we

have scaled only the means in the utilities, the differences in the mean have changed

and so have the choice probabilities. This proves the idea presented in Section 1.5.4

that if we scale either the mean or the random component of the utility, the choice

probability changes.

2.5.3 CASE OF INDEPENDENT UTILITIES

Suppose that the correlation parameter ρ equals zero. This corresponds to the

assumption that the random components in the utilities are independent. We will
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Table 4: Choice probabilities for three equicorrelated
choices with scaled means of utilities

ρ
(µ1, µ2, µ3)

(2, 2.1, 2.5) (0.4, 0.42, 0.5) (10, 10.5, 12.5)
0 0.27, 0.29, 0.44 0.32, 0.33, 0.35 0.07, 0.11, 0.82

0.1 0.26, 0.29, 0.45 0.31, 0.32, 0.37 0.07, 0.11, 0.82
0.2 0.25, 0.28, 0.47 0.32, 0.32, 0.36 0.06, 0.10, 0.84
0.3 0.25, 0.28, 0.47 0.32, 0.32, 0.36 0.05, 0.08, 0.87
0.4 0.24, 0.28, 0.48 0.31, 0.32, 0.37 0.04, 0.07, 0.89
0.5 0.23, 0.27, 0.50 0.31, 0.32, 0.37 0.03, 0.06, 0.91
0.6 0.22, 0.26, 0.52 0.31, 0.32, 0.37 0.02, 0.04, 0.94
0.7 0.21, 0.25, 0.54 0.31, 0.32, 0.37 0.01, 0.03, 0.96
0.8 0.18, 0.23, 0.59 0.30, 0.32, 0.38 0.00, 0.01, 0.99
0.9 0.13, 0.18, 0.69 0.29, 0.31, 0.40 0.00, 0.00, 1.00

show in this case expression (28) reduces to a simpler form, which was originally de-

rived by McFadden (1974). When ρ = 0, clearly the mean vector and the covariance

matrix in (28) are η(ij) = 0c−1, a (c− 1)-dimensional vector with each element as 0,

and Σ(ij) = Ic−1, an identity matrix of order (c − 1). This means that the multi-

variate distribution function Φc−1(· ; 0c−1, Ic−1) is the product of (c− 1) univariate

normal distribution functions. Thus in this case (28) reduces to

Pij =

∫ ∞
−∞

(∏
k 6=j

Φ(v∗ik)

)
φ(v) dv, (30)

where

Φ(v∗ik) = Φ
(
Φ−1

(
F
(
µij − µik + F−1(Φ(v))

)))
= F

(
µij − µik + F−1(Φ(v))

)
(31)

The Gumbel distribution has the cumulative distribution function F (z) =

exp(− exp(−z)). Its inverse is F−1(z) = − log(− log(z)). Then

F
(
µij − µik + F−1(Φ(v))

)
= exp

(
− exp

[
µik − µij + log(− log(Φ(v)))

])
= (Φ(v))τk , (32)

where τk = exp
(
µik − µij

)
. Using (31) and (32), the above integral (30) can be
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written as

Pij =

∫ ∞
−∞

(∏
k 6=j

F
(
µij − µik + F−1 (Φ(v))

))
φ(v) dv

=

∫ ∞
−∞

(∏
k 6=j

(Φ(v))τk

)
φ(v) dv

=

∫ ∞
−∞

(Φ(v))(
∑
k 6=j τk) φ(v) dv. (33)

Making a change of variable ω = Φ(v) and noting that dω = φ(v) dv we see that

(33) reduces to

Pij =

∫ 1

0

w(
∑
k 6=j τk) dw

=
1

(
∑

k 6=j τk) + 1
. (34)

Recall that τk = exp
(
µik − µij

)
, and hence τj = 1. Therefore

∑
k 6=j

τk + 1 =
c∑

k=1

τk =

(
c∑

k=1

exp(µik)

)/
exp(µij)

and thus

Pij =
1(∑

k 6=j τk

)
+ 1

=
exp(µij)∑c
k=1 exp(µik)

, (35)

which is the choice probability for the conditional logit model originally derived by

McFadden (1974).

2.5.4 MAXIMUM LIKELIHOOD ESTIMATION

In this section, we present the expressions needed for maximum likelihood es-

timation of the parameters involved. Here is a quick review of the discrete model

setup. We assume that there are n consumers and c choices in our discrete choice

setup. The response is an indicator variable Yij, which takes the value one if i th
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consumer chooses j th alternative. We assume for any customer the joint distribu-

tion of the random components of the utilities is induced by the Gaussian copula

with equicorrelated correlation matrix and the marginals are Gumbel. The choice

probability corresponding to the ith consumer and the jth choice is given by Pij, as

defined in (28). Note that Pij is a function of µik’s, and ρ, the correlation parameter

of the Gaussian copula.

We assume that there are p choice-specific covariates. For the ith consumer

and the kth choice, Xikm is the mth covariate, i = 1, 2, . . . , n, k = 1, 2, . . . , c, and

m = 1, 2, . . . , p. If X ik = (Xik1, Xik2, . . . , Xikp) then the mean of the (i, k)th utility

is µik = X ′ikβ, where β = (β1, β2, . . . , βp) is a vector of regression coefficients for the

p choice-specific covariates.

If θ = (β, ρ) is the vector of model parameters, then the log-likelihood `(θ) for n

consumers is

`(θ) = log

(
n∏
i=1

c∏
j=1

P
Yij
ij

)
=

n∑
i=1

c∑
j=1

Yij log(Pij),

since Pij = P (Yij = 1) and the consumers are independent. The maximum likeli-

hood estimate (MLE) of the parameter θ is obtained by maximizing `(θ) over the

parameter-space, or simply it is obtained by solving the score equation ∂`(θ)/∂θ = 0.

Considering we have multiple parameters for the covariates (β) and one correlation

parameter ρ, the expressions for the first order derivatives of the log-likelihood are

∂`(θ)

∂θ
=

[
∂`(θ)

∂β

∂`(θ)

∂ρ

]
=

[
∂`(θ)

∂β1
, . . . ,

∂`(θ)

∂βp
,
∂`(θ)

∂ρ

]
,

with the first order partial derivatives being

∂`(θ)

∂βm
=

n∑
i=1

c∑
j=1

Yij

(
1

Pij

∂Pij
∂βm

)
,m = 1, 2, . . . , p, and
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∂`(θ)

∂ρ
=

n∑
i=1

c∑
j=1

Yij

(
1

Pij

∂Pij
∂ρ

)
.

To get the partial derivatives stated above, we have to deduce the derivatives of

the choice probability Pij with respect to βm, m = 1, 2, . . . , p and ρ. In Section 2.7,

we provide detailed derivations and expressions for the partial derivatives of the

choice probability. But before that, in the next section, we establish a theorem on

the conditional distribution in the case of a multivariate normal distribution with

equicorrelation correlation structure.

2.6 CONDITIONAL DISTRIBUTION OF A SUBSET OF NORMAL

VARIABLES WITH AN EQUICORRELATION CORRELATION

STRUCTURE

We will need the theorem below to derive the score equations for obtaining the

maximum likelihood estimates.

Theorem 1. Let V = (V1, V2, . . . , Vc) be a column vector of dimension c and assume

that it is distributed as normal with mean µ and covariance matrix R, which is

a equicorrelated correlation matrix with correlation parameter ρ. Partition V into

V 1 = (V1, V2, . . . , Vs), and V 2 = (Vs+1, Vs+2, . . . , Vc), s < c. Then the conditional

distribution of V 1 given V 2 = v2, where v2 = (vs+1, vs+2, . . . , vc), is normal with

mean

µ1|2 =



µ1 + ρ
1+(c−s−1)ρ

c∑
i=s+1

(vi − µi)

µ2 + ρ
1+(c−s−1)ρ

c∑
i=s+1

(vi − µi)
...

µs + ρ
1+(c−s−1)ρ

c∑
i=s+1

(vi − µi)


s×1

(36)

and covariance matrix
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R1|2 =
(1− ρ)(1 + (c− s)ρ)

1 + (c− s− 1)ρ


1 ρ

1+(c−s)ρ . . . ρ
1+(c−s)ρ

ρ
1+(c−s)ρ 1 . . . ρ

1+(c−s)ρ
...

...
...

...
ρ

1+(c−s)ρ
ρ

1+(c−s)ρ . . . 1

 .

s×s

(37)

Proof. Let V 1 = (v1, v2, . . . , vs) and V 2 = (Vs+1, Vs+2, . . . , Vc), s < c. Accordingly,

let µ be partitioned as µ = (µ1,µ2) and R be partitioned as

R =



1 ρ . . . ρ ρ ρ . . . ρ

ρ 1 . . . ρ ρ ρ . . . ρ
...

...
...

...
...

...
...

...

ρ ρ . . . 1 ρ ρ . . . ρ

ρ ρ . . . ρ 1 ρ . . . ρ

ρ ρ . . . ρ ρ 1 . . . ρ
...

...
...

...
...

...
...

...

ρ ρ . . . ρ ρ ρ . . . 1


=

(
R11 R12

R21 R22

)
.

The dimensions of the sub-matrices are: R11 is s×s, R12 is s× c−s, R21 is c−s×s
and R22 is c − s × c − s . It follows from the properties of the multivariate normal

distribution and Theorem 2 in the Appendix, V 1, V 2 and V 1 | V 2 = v2 follow

multivariate normal distributions of appropriate dimensions with the parameters

(µ1,R11), (µ2,R22) and (µ1|2,R1|2) respectively, where µ1|2 = µ1+R12R
−1
22 (v2−µ2)

and R1|2 = R11 −R12R
−1
22R21. Using the well known formula for the inverse of an

equicorrelated matrix we can check that

R−122 =
1

1− ρ

(
Ic−s −

ρ

1 + (c− s− 1)ρ
11′
)

=
1

1− ρ


1− ρ

1+(c−s−1)ρ − ρ
1+(c−s−1)ρ . . . − ρ

1+(c−s−1)ρ

− ρ
1+(c−s−1)ρ 1− ρ

1+(c−s−1)ρ . . . − ρ
1+(c−s−1)ρ

...
...

...
...

− ρ
1+(c−s−1)ρ − ρ

1+(c−s−1)ρ . . . 1− ρ
1+(c−s−1)ρ


c−s×c−s
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and

R12R
−1
22 =

ρ

1 + (c− s− 1)ρ


1 1 . . . 1

1 1 . . . 1
...

...
...

...

1 1 . . . 1

 .

s×c−s

Therefore, the mean of V 1 given V 2 = v2 is

µ1|2 = µ1 +R12R
−1
22 (v2 − µ2)

=



µ1 + ρ
1+(c−s−1)ρ

c∑
i=s+1

(vi − µi)

µ2 + ρ
1+(c−s−1)ρ

c∑
i=s+1

(vi − µi)
...

µs + ρ
1+(c−s−1)ρ

c∑
i=s+1

(vi − µi)


s×1

(38)

Also,

R12R
−1
22R21 =

ρ

1 + (c− s− 1)ρ


1 1 . . . 1

1 1 . . . 1
...

...
...

...

1 1 . . . 1


s×c−s


ρ ρ . . . ρ

ρ ρ . . . ρ
...

...
...

...

ρ ρ . . . ρ


c−s×s

=
(c− s)ρ2

1 + (c− s− 1)ρ


1 1 . . . 1

1 1 . . . 1
...

...
...

...

1 1 . . . 1

 .

s×s

Thus the covariance of the conditional distribution of V 1 given V 2 = v2 is

R1|2 = R11 −R12R
−1
22R21
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=
(1− ρ)(1 + (c− s)ρ)

1 + (c− s− 1)ρ


1 ρ

1+(c−s)ρ . . . ρ
1+(c−s)ρ

ρ
1+(c−s)ρ 1 . . . ρ

1+(c−s)ρ
...

...
...

...
ρ

1+(c−s)ρ
ρ

1+(c−s)ρ . . . 1

 .

s×s

(39)

It is interesting to note that the conditional covariance matrix (39) given above has

also an equicorrelated structure. This proves that if we start with an equicorrelated

multivariate normal distribution and derive the conditional distribution of any of

its subset given the rest, the equicorrelation behavior will get carried over to the

conditional distribution. The special cases where s = c− 1, s = c− 2, and s = c− 3

are presented explicitly since we will need them later.

2.6.1 SPECIAL CASES

The conditional distribution of s = c−1 random variables given one variable Vc = vc

is multivariate normal with mean and covariance matrix given by
µ1 + ρ(vc − µc)
µ2 + ρ(vc − µc)

...

µc−1 + ρ(vc − µc)


c−1

and (1− ρ2)


1 ρ

1+ρ
. . . ρ

1+ρ
ρ

1+ρ
1 . . . ρ

1+ρ
...

...
...

...
ρ

1+ρ
ρ

1+ρ
. . . 1

 .

c−1

In the case s = c − 2 the mean vector and covariance matrix of the conditional

distribution are given by

µ1 + ρ
1+ρ

c∑
i=c−1

(vi − µi)

µ2 + ρ
1+ρ

c∑
i=c−1

(vi − µi)
...

µc−2 + ρ
1+ρ

c∑
i=c−1

(vi − µi)


c−2

and
(1− ρ)(1 + 2ρ)

1 + ρ


1 ρ

1+2ρ
. . . ρ

1+2ρ
ρ

1+2ρ
1 . . . ρ

1+2ρ
...

...
...

...
ρ

1+2ρ
ρ

1+2ρ
. . . 1

 .

c−2

The mean vector and the covariance matrix of c− 3 random variables given Vc−2 =
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vc−2, Vc−1 = vc−1, Vc = vc are

µ1 + ρ
1+2ρ

c∑
i=c−2

(vi − µi)

µ2 + ρ
1+2ρ

c∑
i=c−2

(vi − µi)
...

µc−3 + ρ
1+2ρ

c∑
i=c−2

(vi − µi)


c−3

and
(1− ρ)(1 + 3ρ)

1 + 2ρ


1 ρ

1+3ρ
. . . ρ

1+3ρ
ρ

1+3ρ
1 . . . ρ

1+3ρ
...

...
...

...
ρ

1+3ρ
ρ

1+3ρ
. . . 1

 .

c−3

2.7 DERIVATIVES

In this section we will derive formulas for the derivatives of the choice probabilities

with respect to the regression and correlation parameters. Let,

V (ij) = (v∗ij1, . . . , v
∗
ij(j−1), v

∗
ij(j+1), . . . , v

∗
ijc)

where v∗ijk = Φ−1 (F (µij − µik + F−1(Φ(v)))) for k 6= j. Therefore, the choice proba-

bility (28) can be written as

Pij =

∫ ∞
−∞

Φc−1

(
V (ij);η(ij),Σ(ij)

)
φ(v) dv

Recall that µik = X ′ik β, where β = (β1, β2, . . . , βp)
′. For m = 1, 2, . . . , p,

∂Pij
∂βm

=
∂

∂βm

∫ ∞
−∞

Φc−1

(
V (ij);η(ij),Σ(ij)

)
φ(v) dv

=

∫ ∞
−∞

{
∂

∂βm
Φc−1

(
V (ij);η(ij),Σ(ij)

)}
φ(v) dv

=

∫ ∞
−∞

{ c∑
k=1,k 6=j

∂

∂v∗ijk
Φc−1

(
V (ij);η(ij),Σ(ij)

) ∂v∗ijk
∂βm

}
φ(v) dv

Using Theorem 4, the derivative of Φc−1

(
V (ij);η(ij),Σ(ij)

)
with respect to v∗ijk be-

comes

∂

∂v∗ijk
Φc−1

(
V (ij);η(ij),Σ(ij)

)
= Φc−2

(
V

(ij)
−(k);η

(ij)
−(k),Σ

(ij)
−(k)

)
φ(v∗ijk; ρv, (1− ρ2)),
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where V
(ij)
−(k) is obtained by deleting the kth element in V (ij). η

(ij)
−(k) and Σ

(ij)
−(k) are

the conditional mean and variance of V
(ij)
−(k) given v∗ijk and can be obtained from

(38) and (39). To find the derivative of v∗ijk with respect to βm, we remember that

v∗ijk = Φ−1 (F (µij − µik + F−1(Φ(v)))) for k 6= j and thus,

∂v∗ijk
∂βm

=
f((X ij −X ik)

′β + F−1(Φ(v)))

φ(Φ−1 (F ((X ij −X ik)′β + F−1(Φ(v)))))
(Xijm −Xikm)

Hence,

∂Pij
∂βm

=

∫ ∞
−∞

{ c∑
k=1,k 6=j

Φc−2

(
V

(ij)
−(k);η

(ij)
−(k),Σ

(ij)
−(k)

)
φ(v∗ijk; ρv, (1− ρ2))

f((X ij −X ik)
′β + F−1(Φ(v)))

φ(Φ−1 (F ((X ij −X ik)′β + F−1(Φ(v)))))
(Xijm −Xikm)

}
φ(v) dv,

where

V
(ij)
−(k) =


(v∗ij1, . . . , v

∗
ij(j−1), v

∗
ij(j+1), . . . , v

∗
ij(k−1), v

∗
ij(k+1), . . . , v

∗
ijc) , if k > j

(v∗ij1, . . . , v
∗
ij(k−1), v

∗
ij(k+1), . . . , v

∗
ij(j−1), v

∗
ij(j+1), . . . , v

∗
ijc) , if k < j

η
(ij)
−(k) =


ρ(v+v∗ijk)

1+ρ
ρ(v+v∗ijk)

1+ρ
...

ρ(v+v∗ijk)

1+ρ


c−2×1

=
ρ(v + v∗ijk)

1 + ρ
1c−2 and

Σ
(ij)
−(k) =


1+ρ−2ρ2

1+ρ
ρ(1−ρ)
1+ρ

. . . ρ(1−ρ)
1+ρ

ρ(1−ρ)
1+ρ

1+ρ−2ρ2
1+ρ

. . . ρ(1−ρ)
1+ρ

...
...

...
...

ρ(1−ρ)
1+ρ

ρ(1−ρ)
1+ρ

. . . 1+ρ−2ρ2
1+ρ


c−2×c−2

Now, we shall find the expression for the derivative of the choice probability with

respect to the correlation parameter ρ of the Gaussian copula.

∂Pij
∂ρ

=
∂

∂ρ

∫ ∞
−∞

Φc−1

(
V (ij);η(ij),Σ(ij)

)
φ(v) dv

=

∫ ∞
−∞

{
∂

∂ρ
Φc−1

(
V (ij);η(ij),Σ(ij)

)}
φ(v) dv.
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We proceed now to find the derivative of Φc−1

(
V (ij);η(ij),Σ(ij)

)
with respect to

ρ. As Σ(ij) is a covariance matrix, it would be easier to find the derivative if we

transform that to a correlation matrix. Note that

∂

∂ρ
Φc−1

(
V (ij);η(ij),Σ(ij)

)
=

∂

∂ρ
Φc−1

(
w∗ij1, . . . , w

∗
ij(j−1), w

∗
ij(j+1), . . . , w

∗
ijc; 0,Rc−1(λ)

)
where wijk = (vijk − ρv)/(

√
1− ρ2) for k 6= j and

Rc−1(λ) =


1 λ λ . . . λ

λ 1 λ . . . λ
...

...
...

...
...

λ λ λ . . . 1

 ,

c−1

λ =
ρ

1 + ρ
.

The above derivative can be calculated using the chain rule- by first taking the

partial derivatives of the Φc−1(.) function with respect to wijk’s, and then by taking

the derivative with respect to λ. So, if W (ij) = (wij1, . . . , wij(j−1), wij(j+1), . . . , wijc),

then

∂

∂ρ
Φc−1

(
V (ij);η(ij),Σ(ij)

)
=

∂

∂ρ
Φc−1

(
W (ij); 0,Rc−1(λ)

)
=

c∑
k=1,k 6=j

{
∂

∂wijk
Φc−1

(
W (ij); 0,Rc−1(λ)

) ∂wijk
∂ρ

}
+

∂

∂λ
Φc−1

(
W (ij); 0,Rc−1(λ)

) ∂λ
∂ρ
.

Using Theorem 4 given in the Appendix we get

∂

∂wijk
Φc−1

(
W (ij); 0,Rc−1(λ)

)
=

c∑
k=1,k 6=j

Φc−2

(
W

(ij)
−(k);λwijk1c−2, (1− λ

2)Rc−2

(
λ

1 + λ

))
φ(wijk; 0, 1).
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and using Theorem 5 we have

∂

∂λ
Φc−1

(
W (ij); 0,Rc−1(λ)

)
=

c∑
k=1

c∑
l=k+1

Φc−3

(
W

(ij)
−(kl);

λ

1 + λ
(wijk + wijl)1c−3,

(1− λ)(1 + 2λ)

1 + λ
Rc−3

(
λ

1 + λ

))
φ2

(
W

(ij)
(kl); 0,R2(λ)

)
.

Furthermore

∂wijk
∂ρ

=
ρvijk − v

(1− ρ2)3/2
,

∂λ

∂ρ
=

1

(1 + ρ2)
.

Substituting these we get

∂Pij
∂ρ

=

∫ ∞
−∞

c∑
k=1,k 6=j

Φc−2

(
W

(ij)
−(k);λwijk1c−2, (1− λ

2)Rc−2

(
λ

1 + λ

))
φ(wijk; 0, 1)

ρvijk − v
(1− ρ2)3/2

dv

+

∫ ∞
−∞

c∑
k=1

c∑
l=k+1

Φc−3

(
W

(ij)
−(kl);

λ

1 + λ
(wijk + wijl1c−3,

(1− λ)(1 + 2λ)

1 + λ
Rc−3

(
λ

1 + λ

))

φ2

(
W

(ij)
(kl); 0,R2(λ)

) 1

(1 + ρ2)
dv.

This completes the derivation of the score functions for estimating the parameters

using maximum likelihood.

2.8 MODEL FITTING

In this section, we illustrate an application of the multivariate discrete choice
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Table 5: Analysis of Travel Mode Data

Variable
MDCG Equicorrelation CNL

Estimate SD P Value Estimate SD P Value
Intercept Air 4.9635 1.1552 <0.0001 5.2047 0.9052 <0.0001

Train 4.0475 0.7952 <0.0001 4.3606 0.5107 <0.0001
Bus 3.5090 0.5160 <0.0001 3.7632 0.5063 <0.0001
Car 0 — — 0 — —

Waiting Time -0.0983 0.0155 <0.0001 -0.1037 0.0109 <0.0001
Travel Cost -0.0795 0.0206 <0.0001 -0.0849 0.0194 <0.0001
Travel Time -0.0125 0.0030 <0.0001 -0.0133 0.0025 <0.0001
Generalized Cost 0.0665 0.0224 <0.0001 0.0693 0.0174 <0.0001

ρ 0.2206 0.1093 <0.0001 — — —

AIC 394.65 384.01

R2
M 0.3332 0.3507

R2
M,Adj 0.3050 0.3255

Gumbel model with equicorrelation structure (MDCG-Equicorrelation) that we de-

veloped using the Gaussian copula, on a real life data. To compare this model with

an existing and popular model, we chose the conditional logit model (CNL) model

for which the choice probability is expressed in (11).

Consider the discrete choice data given in Table 21.2 of Greene (2003). The

data consists of information on 210 travelers’ trips between Sydney and Melbourne

in Australia for non-business purposes. The choice set is a collection a four modes

of travel, namely Air, Train, Bus and Car. Among all the 210 travelers, 58 (27.6%)

chose to travel by air, 63 (30%) chose to travel by train, 30 (14.3%) chose to travel

by bus and 59 (28.1%) chose to drive a car.

We choose several choice-specific variables for covariates such as waiting time,

travel cost, travel time and generalized cost for each traveler and for each mode

of choice. Additionally, there being four choices, we include three intercept terms

by making the intercept for the choice car to be 0. Our goal is to find maximum

likelihood estimates for different parameters and their standard errors.

The choice probability for the MDCG-Equicorrelation model given in (28) is a

very complex function as it involves integration of the multivariate normal cumulative
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distribution function (CDF) on the real line. Evaluation of the multivariate normal

CDF is itself a difficult task and numerous authors have proposed methods to solve

this problem. See Johnson et al. (2000) and Kotz et al. (2000) for a detailed

description of the methods. We have used the R-package ‘mvtnorm’ in our program

to compute the multivariate normal CDF for the MDCG-equicorrelation model. To

obtain the standard errors of the parameter estimates we will need the Hessian which

involves computing second order derivatives of the log-likelihood. However analytical

expressions for the second order derivatives are extremely complex. Therefore as an

alternative we use the bootstrap method to get the standard errors. The bootstrap

method is a resampling procedure that aids in the calculation of standard errors.

An excellent reference to the bootstrap method is Efron (1970). Below we present

detailed steps of the algorithm to calculate standard errors of the maximum likelihood

estimates.

Step 1: For b = 1, 2, . . . , B

a. Generate a random sample Ib of 210 integers by sampling with re-

placement from the set {1, 2, . . . , 210}. Let Ib = {I1, I2, . . . , I210}.
1 ≤ Ik ≤ 210 and clearly, Ik’s may not be unique, k = 1, 2, . . . , 210.

b. Generate the bth bootstrap sample S∗b by including data of the

Ikth consumers in the original sample, where Ik ∈ Ib and k =

1, 2, . . . , 210. Clearly, all the consumers in S∗b may not be unique.

c. Run the MDCG equicorrelation model on the bootstrap sample

S∗b and calculate the maximum likelihood estimates for the bth

bootstrap iteration.

Step 2: Calculate the standard error of the estimates of the parameters of the

MDCG Equicorrelation by using the following formulae: if θ̂∗b is the

bth bootstrap estimate of a parameter θ, then the bootstrap estimate

and standard error of θ are

¯̂
θ∗ =

1

B

B∑
i=1

θ̂∗b , ŝe(θ̂∗) =

√√√√ 1

B − 1

B∑
i=1

(θ̂∗b −
¯̂
θ∗)2

We chose B = 50. For the estimates of the parameters and their standard errors

using the CNL model, we used “Proc MDC” in the SAS software.
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Table 5 provides point estimates, standard errors and p-values for t-tests for both

the MDCG-equicorrelation and the CNL models. It also presents the AIC criterion

and McFadden’s R2 and adjusted R2 for comparison of likelihoods of the two models.

The R code used to generate the results in this table is provided in the Appendix of

this dissertation.

As can be seen from the estimates of the parameters in the results, both models

show almost similar behavior. Though train was the most preferred mode of travel

measured by raw numbers (30%), looking at the estimates of the intercepts in both

the models, it can be argued that that random utility maximization theory suggests

the travelers assigned more utility to traveling by air. The negative coefficients for

waiting time, travel cost and travel time indicate that consumers prefer cheaper

mode of transportation with less waiting time and/or travel time. The estimate of

the equicorrelation parameter is 0.22, and it is significant.

The AIC, R2
M and R2

M,Adj statistics for the two models are very close, but they

show that the MDCG with equicorrelation model does not perform better than the

CNL model for this data to capture the choice behavior of the travelers . It is to

be kept in mind that the fitting the models on this data set is just an exercise for

demonstration. The MDCG-equicorrelation is suited when any two alternatives in

the choice set have equal correlation- which is not the case for this data set. Air,

train and bus are public transports while car is a private transport. Hypothetically,

for traveling modes, if we had only public transport modes (or only private transport

modes) in our choice set, the suitability of the MDCG equicorrelation model would

be far more appropriate.
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CHAPTER 3

ORDERED CHOICE MODEL WITH GAUSSIAN

COPULA

3.1 ORDERED CHOICES

In some discrete choice problems, the choices are qualitative and there are situ-

ations where a natural order is inherently present within those qualitative choices.

In other words the choices could be categories that are ordinal in nature. Also there

could be a natural measure of distance between the choices. In these scenarios, from

consumer point of view, utilities of two choices close to each other will be highly

correlated compared to the ones that are further apart. For example, consider a

survey where consumers are asked to rate an application (app) that they installed on

their smart-phone. The ratings could range from “Very Bad”, “Bad”, “Mediocre”,

“Good”, and “Excellent”, or it could be a numeral rating from 1 to 5. Clearly a

rating of “Excellent” is better than “Good”, which is better than “Mediocre” and so

on. Thus there is a natural order among the choices. Another example is how much

a family spends on their weekly groceries. In this example the choices can be catego-

rized as “less than $50”, “$50-$100”, “$100-$200” and “$200 or more.” and there is

a natural ordering of the choices. Please note that ordering of the choices is different

and should not be confused with the ordering of the utilities. The latter ordering is

consumer dependent unlike the former which is independent of the consumers.

In the rating of the app example, the response of a consumer will depend on several

covariates such as frequency of the app usage, whether or not advertisements appear

while the user was using the app, and connectivity of the app to the internet etc. On

the other hand, in the second example possible covariates that influence the choices

are family income, size of the household, special dietary needs, and several other

factors. The ordered choice is selected by the consumer after ordering the utilities

which are covariate dependent. Several models have been developed to deal with
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ordered discrete choice data. McCullagh (1980) derived the ordered logit model to

do regression analysis of ordered discrete responses by using the logistic distribution.

The ordered probit model, originally proposed by Aitchison and Silvey (1957), uses

the normal distribution function to fit regression models for ordered categorical data.

Though these two models are widely used when the responses in a regression problem

are discrete and can be ordered, they do not use the random utility maximization

theory, which is the foundation for the discrete choice models. Based on the GEV

family of discrete choice models by McFadden (1978), Small (1987) introduced the

ordered generalized extreme value distribution (OGEV) model. This model assumes

that the choices are grouped into intersecting nests. And choices that are more closer

to each other in the ordering have higher correlations. In this chapter our goal is

to generalize the conditional logit model by incorporating a correlation parameter in

the case of ordered choices.

3.2 CHOICE PROBABILITY USING GAUSSIAN COPULA WITH

AR(1) STRUCTURE

To begin with, we consider the same choice situation as in Chapter 2, where

there are n consumers each facing c choices with one difference. Unlike the previous

model we assume that the choices have a natural ordering. As in Chapter 2, we

assume that the random components Zij’s of the utilities are distributed marginally

as Gumbel and they are correlated. However, the model that we consider in this

chapter differs in the correlation structure. For the ordered and dependent choices a

reasonable correlation structure is the model where for any i, corr(Zij, Zik) depends

on |j−k| in such a way that if |j−k| increases then corr(Zij, Zik) decreases. Thus an

appropriate correlation model is the autoregressive of order 1 or AR(1) correlation

matrix given by

R =



1 ρ ρ2 . . . ρc−1

ρ 1 ρ . . . ρc−2

ρ2 ρ 1 . . . ρc−3

...
...

...
...

...

ρc−1 ρc−2 ρc−3 . . . 1


.

c×c

(40)

The determinant of R is (1− ρ2)c−1. Though R is positive definite for all values of ρ
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in (−1, 1), we will restrict ρ to the positive range of (0, 1). In summary in this chapter

we consider the same discrete choice model given in Chapter 2 with one major change.

Before we employed the Gaussian copula with equicorrelated structure and in this

chapter we will use the Gaussian copula but replace the equicorrelated structure with

AR(1) structure given in (40). Since the expression (15) for the choice probability

is valid for any correlation structure the probability that the ith customer picks jth

choice is given by

Pij =

∫ ∞
−∞

Pr
(
Zik < z∗ijk, k = 1, 2, . . . , c, k 6= j | Zij = zij

)
· f(zij) dzij,

=

∫ ∞
−∞

Φc−1

(
v∗ij1, . . . , v

∗
ij(j−1), v

∗
ij(j+1), . . . , v

∗
ijc;η

(ij),Σ(ij)
)
φ(v) dv,

where v∗ijk = Φ−1 (F (µij − µik + F−1(Φ(v)))) for k 6= j, η(ij) and Σ(ij) are the mean

vector and covariance of (Vi1, . . . , Vi(j−1), Vi(j+1), . . . , Vic | Vij = v). Here

(Vi1, Vi2, . . . , Vic) ∼ N(0,R), (41)

where the correlation matrix R has the autoregressive structure given in (40). To

compute the choice probability we need to derive simplified expressions for η(ij) and

Σ(ij), which we will do in the succeeding sections.

3.2.1 INDUCED CORRELATIONS

We assumed that any two choices have a correlation among themselves which can

be ordered by the distance of the choices in the choice set and hence used the AR(1)

matrix in the Gaussian copula with ρ being the correlation parameter as expressed in

(41), but ρ is not exactly the correlation between two adjacent choices. When we use

the formula for the choice probability to maximize the likelihood to find estimates of

the parameters involved, we shall get an estimate of ρ, and it might be misinterpreted

as the correlation among two adjacent choices. Though in our method, there is no

direct way of estimating the correlation between the choices, ρ can be estimated.

In order to see how close the actual correlations between the ordered choices are to the

correlations in the copula in the case of four choices, for example, we first generate
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four Gumbel random variables from four simulated normal random variables with

an AR(1) correlation structure and calculate the correlations between the pairs of

Gumbel random variables. Here are the steps of the algorithm.

Vary ρ from 0.01 to 0.99 and for any fixed ρ:

Step 1 Generate N random vectors (X1i, X2i, X3i, X4i, X5i) ∼ N(0,R5), i =

1, 2 . . . , N , where

R5 =



1 ρ ρ2 ρ3 ρ4

ρ 1 ρ ρ2 ρ3

ρ2 ρ 1 ρ ρ2

ρ3 ρ2 ρ 1 ρ

ρ4 ρ3 ρ2 ρ 1


.

Step 2 Obtain

Z1i = − log(− log(Φ(X1i)),

Z2i = − log(− log(Φ(X2i)),

Z3i = − log(− log(Φ(X3i)),

Z4i = − log(− log(Φ(X4i)),

Z5i = − log(− log(Φ(X5i)).

Clearly, Z1, . . . , Z5 are univariate Gumbel random variables.

Step 3 Calculate four sample correlation coefficients- r1 as correlation be-

tween (Z1i, Z2i), r2 as correlation between (Z1i, Z3i), r3 as corre-

lation between (Z1i, Z4i), r4 as correlation between (Z1i, Z5i), i =

1, 2, . . . , N .

Step 4 Calculate (ρ− r1), (ρ2 − r2), (ρ3 − r3) and (ρ4 − r4).

We chose N = 100, 000 and plotted (ρ − r1), (ρ
2 − r2), (ρ

3 − r3) and (ρ4 − r4)

separately against different values of ρ. These plots are depicted in Figure 4. All

the four plots show that the difference between the correlation of the copula and the

induced correlation is very small. In fact, as we shall focus on ρ between 0 and 1,

its estimate can well be interpreted as an estimate of the correlation between the

parameters since the plots show that in the range (0, 1) the four differences are very

close to 0.
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Figure 4: Difference between correlation of the copula and induced correlation plotted
against the correlation of the copula

The first plot in Figure 4 is similar to that of Figure 2. This makes sense as in

the case of two choices the AR(1) model is exactly same as the equicorrelation model

and thus the plot of ρ − r1 looks the same. Each of the four plots show that the

difference between the induced correlations and the corresponding correlation of the

copula stay in the proximity of 0. Hence, the estimate of the correlation parameter

ρ of the copula can be treated as the estimated correlation coefficient between two

consecutive choices in the ordered choice set.
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Figure 5: Simulated choice probabilities for three ordered choices

3.2.2 PROPERTIES

It can be shown, using the same proof as in Section 2.5.2, that the choice proba-

bility for ordered choices in (46) is such that 0 ≤ Pij ≤ 1.

To show that the choice probabilities for the ith consumer add up to 1, we use

simulations. In (46) let us omit i for the time being. For c = 3, the choice probability

then is a function of (µ1, µ2, µ3) and ρ. We fixed µ1 as 3. We sequentially chose µ2 as

5, 3 and 1, µ3 as 4, 3 and 2, and ρ as 0.2, 0.5 and 0.8. For nine different combinations

of µ1 − µ3 and ρ, we plot the choice probabilities in stacked bar charts against the

three values of µ1 − µ2. These plots are illustrated in Figure 5. All of the bars in all

nine plots climb up to the value 1 in the vertical axis, indicating that, in fact, the
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choice probabilities add up to 1.

Table 6: Choice probabilities for three ordered choices and
same differences between utilities

ρ
(µ1, µ2, µ3)

(1, 1.5, 2) (-4, -3.5, -3) (101, 101.5, 102)
0 0.19, 0.31, 0.50 0.19, 0.31, 0.50 0.19, 0.31, 0.50

0.1 0.18, 0.29, 0.53 0.18, 0.29, 0.53 0.18, 0.29, 0.53
0.2 0.18, 0.28, 0.54 0.18, 0.28, 0.54 0.18, 0.28, 0.54
0.3 0.18, 0.27, 0.55 0.18, 0.27, 0.55 0.18, 0.27, 0.55
0.4 0.17, 0.26, 0.57 0.17, 0.26, 0.57 0.17, 0.26, 0.57
0.5 0.17, 0.25, 0.58 0.17, 0.25, 0.58 0.17, 0.25, 0.58
0.6 0.16, 0.24, 0.60 0.16, 0.24, 0.60 0.16, 0.24, 0.60
0.7 0.14, 0.22, 0.64 0.14, 0.22, 0.64 0.14, 0.22, 0.64
0.8 0.11, 0.19, 0.70 0.11, 0.19, 0.70 0.11, 0.19, 0.70
0.9 0.07, 0.14, 0.79 0.07, 0.14, 0.79 0.07, 0.14, 0.79

In Table 6, we calculate the three choice probabilities P1, P2, P3 for ρ

in (0, 0.1, . . . , 0.9) and three combinations of means of utilities (µ1, µ2, µ3) =

(1, 1.5, 2), (−4,−3.5,−3) and (101, 101.5, 102). It is easy to verify that sum of P1, P2

and P3 is always 1 no matter what the values of (µ1, µ2, µ3) and ρ are. This too,

along with Figure 5, illustrates that the sum of the choice probabilities for the ith

customer is 1, for all i. Also, in each row we get the same set values for P1, P2, P3 no

matter what (µ1, µ2, µ3) is. This property can be attributed to the equal differences

between µ1, µ2 and µ3 for a fixed ρ and this precisely proves that the choice proba-

bility for ordered choices derived using the Gaussian copula with AR(1) correlation

structure adheres to the idea presented in section 1.5.3 that choice probabilities are

translation invariant in their utilities.

In Table 7, the choice probabilities according to (46) for three choices are cal-

culated for three different sets of values of ρ and different values of the mean

vector (µ1, µ2, µ3) of the utilities. We have chosen (µ1, µ2, µ3) to be (2, 2.1, 2.5),

(0.4, 0.42, 0.5) and (10, 10.5, 12.5). The second and third sets are scaled versions of

the first and are obtained by multiplying 1/5 and 5 with the first set respectively.

By doing this, we are just scaling of the mean component of the utility by a positive

factor and not the actual utility.

We notice that in Table 7 also, all the triplets of choice probabilities have unity as
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Table 7: Choice probabilities for three ordered choices with
scaled means of utilities

ρ
(µ1, µ2, µ3)

(2, 2.1, 2.5) (0.4, 0.42, 0.5) (10, 10.5, 12.5)
0 0.27, 0.29, 0.44 0.32, 0.33, 0.35 0.07, 0.11, 0.82

0.1 0.26, 0.28, 0.46 0.32, 0.31, 0.37 0.08, 0.11, 0.81
0.2 0.26, 0.27, 0.47 0.32, 0.30, 0.38 0.08, 0.09, 0.83
0.3 0.27, 0.26, 0.47 0.33, 0.30, 0.37 0.07, 0.08, 0.85
0.4 0.27, 0.25, 0.48 0.33, 0.29, 0.38 0.06, 0.07, 0.87
0.5 0.27, 0.23, 0.50 0.34, 0.28, 0.38 0.06, 0.05, 0.89
0.6 0.26, 0.22, 0.52 0.34, 0.27, 0.39 0.04, 0.04, 0.92
0.7 0.25, 0.20, 0.55 0.34, 0.26, 0.40 0.03, 0.03, 0.94
0.8 0.24, 0.18, 0.58 0.34, 0.25, 0.41 0.02, 0.01, 0.97
0.9 0.19, 0.13, 0.68 0.33, 0.23, 0.44 0.00, 0.00, 1.00

their sums. Unlike Table 6, the probabilities in a row are not same. As we have scaled

only the means in the utilities, the differences in the mean have changed and so have

the choice probabilities. This proves the idea presented in section 1.5.4 that if we

scale either the mean or the random component of the utility, the choice probability

changes.

The additional property that this table showcases is that for some of the choices,

for a fixed ρ, there is a change in the relative magnitude of the values of P1, P2 and

P3. For example, starting from ρ = 0.1 to ρ = 0.9, for the second set of means,

(µ1, µ2, µ3) = (0.4, 0.42, 0.5), the second choice has the lowest choice probability in

contrast to the first and third sets of means where the first choice has the lowest

probability. This reversal of probabilities can be attributed to the small differences

between the three mean components for the second set and its interweaving with the

correlation parameter ρ in the Gaussian copula with AR(1) structure and random

components which are distributed as Gumbel variables.

3.3 CONDITIONAL MEAN AND VARIANCE FOR A

MULTIVARIATE NORMAL DISTRIBUTION WITH AN AR(1)

COVARIANCE STRUCTURE

Let V = (V1, V2, . . . , Vc)
′ be a c-dimensional random vector which is distributed



57

as N(µ,R), where µ = (µ1, µ2, . . . , µc)
′ and R has an AR(1) structure given

in (40) with parameter ρ. Our goal is to find the conditional distribution of

(V1, . . . , Vj−1, Vj+1, . . . , Vc)
′ given Vj. In order to do this, we introduce the nota-

tion V −j = (V1, . . . , Vj−1, Vj+1, . . . , Vc)
′. Accordingly, we denote the mean of V −j by

µ−j. Swapping the jth row and jth column with the last row and last column we

can write the AR(1) correlation matrix as

R =



1 ρ . . . ρj−2 ρj . . . ρc−1 ρj−1

ρ 1 . . . ρj−3 ρj−1 . . . ρc−2 ρj−2

...
...

...
...

...
...

...
...

ρj−2 ρj−3 . . . 1 ρ2 . . . ρc−j+1 ρ

ρj ρj−1 . . . ρ2 1 . . . ρc−j−1 ρ
...

...
...

...
...

...
...

...

ρc−1 ρc−2 . . . ρc−j+1 ρc−j−1 . . . 1 ρc−j

ρj−1 ρj−2 . . . ρ ρ . . . ρc−j 1


,

=

(
R11 R12

R21 1

)
, where

R11 =



1 ρ . . . ρj−2 ρj . . . ρc−1

ρ 1 . . . ρj−3 ρj−1 . . . ρc−2

...
...

...
...

...
...

...

ρj−2 ρj−3 . . . 1 ρ2 . . . ρc−j+1

ρj ρj−1 . . . ρ2 1 . . . ρc−j−1

...
...

...
...

...
...

...

ρc−1 ρc−2 . . . ρc−j+1 ρc−j−1 . . . 1


,

R21 =
(
ρj−1, ρj−2, . . . ρ, ρ, . . . ρc−j

)
, R12 = R′21.
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Note that

R12 R21 =



ρj−1

ρj−2

...

ρ

ρ
...

ρc−j



(
ρj−1, ρj−2, . . . ρ, ρ, . . . ρc−j

)

=



ρ2j−2 ρ2j−3 . . . ρj ρj . . . ρc−1

ρ2j−3 ρ2j−4 . . . ρj−1 ρj−1 . . . ρc−2

...
...

...
...

...
...

...

ρj ρj−1 . . . ρ2 ρ2 . . . ρc−j+1

ρj ρj−1 . . . ρ2 ρ2 . . . ρc−j+1

...
...

...
...

...
...

...

ρc−1 ρc−2 . . . ρc−j+1 ρc−j+1 . . . ρ2c−2j


.

From Theorem 2 stated in the Appendix, we know that V −j | Vj = vj follows a

normal distribution with mean

µ−j|j = µ−j +R12(vj − µj)

=



µ1 + ρj−1(vj − µj)
...

µj−1 + ρ(vj − µj)
µj+1 + ρ(vj − µj)

...

µc + ρc−j(vj − µj)


. (42)

and covariance matrix

R−j|j = R11 −R12R21



59

=



1− ρ2j−2 . . . ρj−2 − ρj 0 . . . 0

ρ− ρ2j−3 . . . ρj−3 − ρj−1 0 . . . 0
...

...
...

...
...

...

ρj−2 − ρj . . . 1− ρ2 0 . . . 0

0 . . . 0 1− ρ2 . . . ρc−j−1 − ρc−j+1

...
...

...
...

...
...

0 . . . 0 ρc−j−1 − ρc−j+1 . . . 1− ρ2c−2j


.

(43)

It is interesting to note that the off diagonals elements of the matrix in (43)

are zero. This establishes that given Vj = vj, the two vectors (V1, . . . , Vj−1) and

(Vj+1, . . . , Vc) are independent. Another view of this result is that when the correla-

tion structure is AR(1), conditional on the present, the future is independent of the

past. In the literature this is known as the Markov property.

3.3.1 ALTERNATIVE DERIVATION

An alternative way to establish the Markov property of the multivariate normal

distribution with AR(1) correlation structure is to consider the trivariate normal

distribution. Consider three components Vk, Vl, Vj, of V , where k < l and j is

arbitrary. Note that the correlation matrix of (Vk, Vl, Vj) is given by

R3 =


1 ρ|k−l| ρ|k−j|

ρ|k−l| 1 ρ|j−l|

ρ|k−j| ρ|j−l| 1


From Theorem 8 stated in the appendix we get the conditional covariance of Vk

and Vl given Vj is given by

σk,l|j = ρ|k−l| − ρ|j−k|+|j−l| (44)
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This shows that

σk,l|j =


ρl−k − ρ2j−k−l, if k < l < j

0, if k < j < l

ρl−k − ρk+l−2j, if j < k < l

. (45)

Thus for k < j < l, Vk and Vl are independent given Vj or the sequence Vk, Vj and

Vl satisfy the Markov property. Another method to establish the Markov property

is using partial correlation concept. The partial correlation ρk,l|j is defined as the

correlation between Vk and Vl given Vj and it is given by the formula

ρk,l|j =
ρk,l − ρk,j ρj,l√

1− ρ2k,j
√

1− ρ2j,l
.

Putting ρk,l = ρ|k−l|, for k < j < l, we get

ρk,l|j =
ρl−k − ρj−k ρl−j√

1− ρ2(j−k)
√

1− ρ2(l−j)
=

ρl−k − ρl−k√
1− ρ2(j−k)

√
1− ρ2(l−j)

= 0,

which establishes the Markov property.

3.4 CHOICE PROBABILITY

Using (42) and (43), the choice probability of an ordered choice model using

Gaussian copula with AR(1) correlation structure is given by

Pij =

∫ ∞
−∞

Φc−1

(
v∗ij1, . . . , v

∗
ij(j−1), v

∗
ij(j+1), . . . , v

∗
ijc;η

(ij),Σ(ij)
)
φ(v) dv

where v∗ijk = Φ−1
(
F (µij − µik + F−1(Φ(v)))

)
for k 6= j,

η(ij) = v
(
ρj−1, ρj−2, . . . , ρ, ρ, ρ2, . . . , ρc−j

)′
and

Σ(ij) =
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

1− ρ2j−2 . . . ρj−2 − ρj 0 . . . 0

ρ− ρ2j−3 . . . ρj−3 − ρj−1 0 . . . 0
...

...
...

...
...

...

ρj−2 − ρj . . . 1− ρ2 0 . . . 0

0 . . . 0 1− ρ2 . . . ρc−j−1 − ρc−j+1

...
...

...
...

...
...

0 . . . 0 ρc−j−1 − ρc−j+1 . . . 1− ρ2c−2j


.

(46)

3.5 DERIVATIVES

In this section, we will find the expressions for the derivatives of the choice

probability in case of Gaussian copula with AR(1) structure. As before we assume

µij = X ′ik β, where β = (β1.β2, . . . , βp)
′ is the regression vector. Now

∂Pij
∂βm

=

∫ ∞
−∞

{
∂

∂βm
Φc−1

(
V (ij);η(ij),Σ(ij)

)}
φ(v) dv

=

∫ ∞
−∞

{ c∑
k=1,k 6=j

Φc−2

(
V

(ij)
−(k);η

(ij)
−(j,k),Σ

(ij)
−(j,k)

)
φ(v∗ijk; ρ

|j−k|v, (1− ρ2|j−k|))

f((X ij −X ik)
′β + F−1(Φ(v)))

φ(Φ−1 (F ((X ij −X ik)′β + F−1(Φ(v)))))
(Xijm −Xikm)

}
φ(v) dv, (47)

where,

V
(ij)
−(k) =


(v∗ij1, . . . , v

∗
ij(j−1), v

∗
ij(j+1), . . . , v

∗
ij(k−1), v

∗
ij(k+1), . . . , v

∗
ijc) , if k > j

(v∗ij1, . . . , v
∗
ij(k−1), v

∗
ij(k+1), . . . , v

∗
ij(j−1), v

∗
ij(j+1), . . . , v

∗
ijc) , if k < j

Next we will find the derivative of the choice probability with respect to the
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correlation parameter ρ of the Gaussian copula.

∂Pij
∂ρ

=
∂

∂ρ

∫ ∞
−∞

Φc−1

(
V (ij);η(ij),Σ(ij)

)
φ(v) dv

=

∫ ∞
−∞

{
∂

∂ρ
Φc−1

(
V (ij);η(ij),Σ(ij)

)}
φ(v) dv.

The quantity Φc−1

(
V (ij);η(ij),Σ(ij)

)
is a cumulative distribution of a c− 1 dimen-

sional multivariate normal distribution with mean η(ij) and variance Σ(ij). It would

be easier to find the derivative if we transform Σ(ij) to a correlation matrix. Consider

the transformation

wijk =
vijk − ρ|j−k|v√

1− ρ2|j−k|
for k 6= j.

Then

∂

∂ρ
Φc−1

(
V (ij);η(ij),Σ(ij)

)
=

∂

∂ρ
Φc−1

(
w∗ij1, . . . , w

∗
ij(j−1), w

∗
ij(j+1), . . . , w

∗
ijc; 0,R

(ij)
)

(48)

where R(ij) =
(
rk,l|j

)
c−1×c−1 and

rk,k|j = 1, k 6= j,

rk,l|j =


ρl−k−ρ2j−k−l√

(1−ρ2|j−k|)(1−ρ2|j−l|)
, if k < l < j

0, if k < j < l
ρl−k−ρk+l−2j√

(1−ρ2|j−k|)(1−ρ2|j−l|)
, if j < k < l

.

The derivative (48) can be calculated using the chain rule- by first taking the

partial derivatives of the Φc−1(.) function with respect to wijk’s, and then by taking

the derivative with respect to ρ. Let W (ij) = (wij1, . . . , wij(j−1), wij(j+1), . . . , wijc).

Then

∂

∂ρ
Φc−1

(
V (ij);η(ij),Σ(ij)

)
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=
∂

∂ρ
Φc−1

(
W (ij); 0,R(ij)

)
=

c∑
k=1,k 6=j

{
∂

∂wijk
Φc−1

(
W (ij); 0,R(ij)

) ∂wijk
∂ρ

}

+
c∑

k=1

c∑
l=k+1

∂

∂rk,l|j
Φc−1

(
W (ij); 0,R(ij)

) ∂rk,l|j
∂ρ

.

The partial derivatives involved are

∂

∂wijk
Φc−1

(
W (ij); 0,R(ij)

)
=

c∑
k=1,k 6=j

Φc−2

(
W

(ij)
−(k);η

(ij)0
−(k),R

(ij)0
−(k)

)
φ(wijk; 0, 1),

where η
(ij)0
−(k) and R

(ij)0
−(k) are the conditional mean and covariance of W

(ij)
−(k) given wijk.

Here W
(ij)
−(k) is the vector obtained by removing wijk from W (ij). It is easy to check

that

∂wijk
∂ρ

=
αρα−1 (ρα(vijk − ραv)− v(1− ρ2α))

(1− ρ2α)3/2
, α = |j − k|, (49)

and

∂

∂rk,l|j
Φc−1

(
W (ij); 0,R(ij)

)
=

c∑
k=1

c∑
l=k+1

Φc−3

(
W

(ij)
−(kl);η

(ij)0
−(kl)R

(ij)0
−(kl)

)
φ2

(
W

(ij)
(kl); 0,R

(ij)
(kl)

)
,

where η
(ij)0
−(kl) and R

(ij)0
−(kl) are the conditional mean and covariance of W

(ij)
−(kl) given

W
(ij)
(kl). Here once again W

(ij)
−(kl) is obtained removing W

(ij)
(kl) = (wijk, wijl) from W (ij).

The derivatives of the elements of the conditional correlation matrix Rij with respect

to ρ are
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∂rk,l|j
∂ρ

=



((α−γ)ρα−γ−1−(α+γ)ρα+γ−1)
((1−ρ2|α|)(1−ρ2|γ|))

−(ρα−γ−ρα+γ)((1−ρ2|α|)2|γ|−1+(1−ρ2|γ|)2|α|−1)

((1−ρ2|α|)(1−ρ2|γ|))
3/2 , if j < k < l

0 , if k < j < l

((α−γ)ρα−γ−1+(α+γ)ρ−(α+γ+1))
((1−ρ2|α|)(1−ρ2|γ|))

−(ρα−γ−ρ−α−γ)((1−ρ2|α|)2|γ|−1+(1−ρ2|γ|)2|α|−1)

((1−ρ2|α|)(1−ρ2|γ|))
3/2 , if k < l < j

,

(50)

where α = j − k and γ = j − l. The first derivative follows from Theorem 4 and

the third derivative follows from Theorem 5 given in the Appendix. In summary the

derivative of the choice probability with respect to the correlation parameter ρ can

be written as

∂Pij
∂ρ

=

∫ ∞
−∞

c∑
k=1,k 6=j

Φc−2

(
W

(ij)
−(k);η

(ij)0
−(k),R

(ij)0
−(k)

)
φ(wijk; 0, 1)

∂wijk
∂ρ

dv

+

∫ ∞
−∞

c∑
k=1

c∑
l=k+1

Φc−3

(
W

(ij)
−(kl);η

(ij)0
−(kl)R

(ij)0
−(kl)

)
φ2

(
W

(ij)
(kl); 0,R

(ij)
(kl)

)
∂rk,l|j
∂ρ

dv, (51)

where the expressions for ∂wijk/∂ρ and ∂rk,l|j/∂ρ are in (49) and (50) respectively.

3.6 MODEL FITTING

In this section we will use simulated data to illustrate the use of the multivariate

discrete choice Gumbel model with AR(1) correlation structure (MDCG-AR(1)). Our

simulated data set consists of n = 300 consumers and a choice set with c = 3 choices.

First we generate the random components (errors) from a standard trivariate normal
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Figure 6: Density plots of the simulated covariates by chosen alternatives

distribution with mean µ = (0, 0, 0) and AR(1) correlation matrix with rho = 0.7,

R =


1 0.7 0.49

0.7 1 0.7

0.49 0.7 1

 .

This means that if zij is the random component for the ith consumer and the jth

choice, i = 1, 2, . . . , 300 and j = 1, 2, 3, then

(zi1, zi2, zi3) ∼ N3(µ,R), for all i.

We generate p = 2 covariates namely X1 and X2, both of them being simulated

from mixture distributions (see McLachlan (2000)). We choose X1 to be a mixture

of three uniform distributions with parameters (40, 42), (50, 57) and (60, 73) respec-

tively, where the mixing probabilities are 0.3, 0.35 and 0.35. Similarly, X2 is chosen

to be a mixture of three univariate normal distributions with means and variances
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(41, 4), (47, 1) and (72, 4) and the mixing probabilities are 0.4, 0.35 and 0.25 respec-

tively. The density plots of the two mixture distributions are shown in Figure 6.

As each of them come from mixture distributions with three distant distributions in

each mix, we can see that both the density plots of have three peaks. Since there are

three choices, we also introduce two intercepts as covariates, namely Int1 and Int2

where

Int1 =

{
1, if alternative = 1

0, if otherwise
and Int2 =

{
1, if alternative = 2

0, if otherwise
.

Therefore, based on (3) and (6), the utility for the ith consumer and the jth alter-

native, say Uij, can be calculated as

Uij = β01Int1 + β02Int2 + β1X1 + β2X2 + zij.

For the purpose of the exercise of fitting the choice probability model for ordered

choices using the Gaussian copula given in (46), we chose β01 = 1.4, β02 = 2, β1 = 1

and β2 = 1.5. Based on these values and the simulated data, we calculate the utility

Uij and hence the choice variable Yij for the ith consumer as

Yij =

{
1 if Uik < Uij, k = 1, 2, . . . , c, ∀ k 6= j,

0 otherwise.

An empirical summary of the simulated data shows 98 or 32.67% consumers chose

alternative 1, 109 or 36.33% consumers chose alternative 2 and 93 or 31% consumers

chose alternative 3. We fit the MDCG-AR(1) and CNL models for the simulated data

using the maximum likelihood. Estimates and standard errors for the CNL model

are obtained by using the ”Proc MDC” in the SAS software. The estimates for the

MDCG-Ar(1) model are obtained by maximizing the log-likelihood function in R.

Standard errors for the were obtained using 50 bootstrap samples. The R programs

that were developed are provided in the Appendix. The results are displayed in Table

8. It is to be noted that, the p-values are tests comparing the likelihood estimates

with the values of the parameters that were used to simulate the data. For example,

the estimate of the parameter β01, associated with the intercept for alternative 1, is

compared against the value 1.4. Similarly, estimates of β02, β1, β2 and ρ are compared
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Table 8: Analysis of simulated data of ordered choices

Variable
MDCG AR(1) CNL

Estimate SD P Value Estimate SD P Value
Int 1 1.3655 0.1945 0.23 2.0603 0.6205 0.2875

2 1.8767 0.0995 < 0.001 3.3611 0.7577 0.0728
3 0 — — 0 — —

X1 0.964 0.1464 0.0985 3.8311 0.6754 < 0.001
X2 1.4321 0.1628 0.0063 -0.6874 0.1295 < 0.001

ρ 0.738 0.1406 0.0702 — — —

AIC 27.32 74.90

R2
M 0.9735 0.898

R2
M,Adj 0.9583 0.8858

against the numbers 2, 1, 1.5 and 0.7 respectively. High p-values indicate acceptance

of the null hypothesis. Please note that the hypothesis of ρ = 0.7 is accepted for the

MDCG-AR(1) model. High values of McFadden’s R2 and adjusted R2 are expected

since the data is simulated from the model that we are fitting. The three goodness of

fit statistics described in Section 1.6 show that the MDCG AR(1) model is a better

fit to the data than the CNL model.
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CHAPTER 4

SUMMARY

We have studied discrete choices models in this dissertation. In all walks of

life, from housing, transportation, health care and grocery shopping, consumers face

many choices or products and have to make decisions on selecting a choice or picking a

product. Discrete choice models were introduced by econometricians and statisticians

to aid in understanding the consumers’ choice preferences. These models are based

on the fundamental assumption that the consumers assign utilities to the choices and

select the choice or product that maximizes their utility.

A popular and widely used discrete choice model is the conditional logit model in-

troduced by Luce (1959). This model was brought into limelight by McFadden (1974)

who laid the mathematical foundation, elucidated and showed practical applications

of the model. The conditional logit model assumes that the unobserved utility for a

choice is the sum of two components, a deterministic and a random component. The

model assumes that the random components are independent and follow a Gumbel

distribution. A major advantage of this model is that the probability a consumer

selects a particular choice, known as the choice probability, has a closed form expres-

sion. However in practice the independence assumption of the random components

is unreasonable and a better model should account for the dependence or correlation

present among the choices.

In this dissertation we generalized McFadden’s conditional logit model to account

for the correlation between the choices. We have accomplished this objective using

the Gaussian copula to construct a joint distribution for the random components.

In Chapter 2, we studied a parsimonious model where we assume the correlation

matrix of the Gaussian copula is equicorrelated, which is determined by a single

parameter. There are examples where this assumption of equal correlation between

the choices is reasonable, especially for choices that are nominal in nature. We derived

an expression for the choice probabilities, and studied their behavior as a function

of the correlation parameter. We obtained analytical expressions for the gradient
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vector of the choice probabilities and used them to develop R code for maximum

likelihood estimation of the parameters. Using a real life data we showed that our

model is comparable to existing models such as the conditional logit model.

In Chapter 3, our focus was on the situation where there is a natural order

present among the choices, that is, the choices are ordinal in nature. An appropriate

model for the ordinal choices that we studied in this chapter involves the AR(1)

correlation structure. We showed that the multivariate normal distribution with

AR(1) correlation structure has the property that the past and future are independent

given the present. This property was used to derive simpler expressions for the

choice probability and its gradient. We used the well known Plackett’s formula to

obtain computationally easier forms of the score equations. We developed another

R program to implement this model and illustrated on a simulated data. Due to the

difficulty in deriving analytical expressions for the Hessian matrix, we used bootstrap

method to estimate standard errors for both equicorrelated and AR(1) models.

Future work will focus on developing faster, more efficient R code and more

accurate estimation of the standard errors of the parameter estimates.
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APPENDIX A

RESULTS ON THE MULTIVARIATE NORMAL

DISTRIBUTION FUNCTION

A.1 DERIVATIVE OF MULTIVARIATE NORMAL CDF WITH

RESPECT TO IT’S ARGUMENTS

We will use the well known property, stated here for completeness, of the multi-

variate normal distribution.

Theorem 2. Let X be t dimensional vector that follows a multivariate normal distri-

bution with mean µ and covariance matrix Σ. If X,µ,Σ are partitioned as follows

X =

(
X1

X2

)
, µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

where X1, µ1 and Σ11 are of dimension s < t, then

X1 | X2 = x2 ∼ N(µ1 + Σ12Σ−1
22 (x2 − µ2),Σ11 − Σ12Σ−1

22 Σ21). (52)

Let Φt(x;µ,Σ) be the cumulative distribution function of X. Denote by X−k

and µ−k, the vectors X and µ after deleting the k component respectively. Let us

permute and partition Σ as follows

Σ =

(
Σ

(k)
11 Σ

(k)
12

Σ
(k)
21 σkk

)
.

Note that Σ
(k)
11 is the covariance matrix of X−k, σkk is the variance of Xk, the kth

component ofX, and Σ
(k)
21 is the covariance betweenX−k and Xk. The next theorem

gives a formula for the derivative of the multivariate normal distribution with respect

to one argument.
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Theorem 3. Suppose µ−k|k = µ−k+Σ
(k)
11 σ

−1
kk (xk−µk) and Σ−k|k = Σ

(k)
11 −Σ

(k)
12 σ

−1
kk Σ

(k)
21

denote the conditional mean and variance of X−k given Xk = xk respectively, then

∂

∂xk
Φt(x;µ,Σ) = φ(xk;µk, σkk) Φt−1(x−k;µ−k|k,Σ−k|k).

Proof.

∂

∂xk
Φt(x;µ,Σ)

=

∫ xt

−∞
. . .

∫ x2

−∞

∫ x1

−∞

∂

∂xk
φt(z;µ,Σ)dz1 dz2 . . . dzt

=

∫ xt

−∞
. . .

∫ x2

−∞

∫ x1

−∞

∂

∂xk
φ(zk;µk, σkk)

φt−1(z−k;µ−k + Σ
(k)
11 σ

−1
kk (zk − µk),Σ−k|k)dz1 dz2 . . . dzt

=

∫ xk

−∞

∂

∂xk

∫ x−k

−∞
φt−1(z−k;µ−k + Σ

(k)
11 σ

−1
kk (zk − µk),Σ−k|k)dz−k φ(zk;µk, σkk) dzk,

where

∫ x−k

−∞
=

∫ xt

−∞
. . .

∫ xk+1

−∞

∫ xt−1

−∞
. . .

∫ x1

−∞
and

dz−k = dzt . . . dzk+1dzk−1 . . . dz1.

∂

∂xk
Φt(x;µ,Σ)

=

∫ xk

−∞

∂

∂xk
Φt−1(z−k;µ−k + Σ

(k)
11 σ

−1
kk (zk − µk),Σ−k|k)dz−k φ(zk;µk, σkk) dzk

= Φt−1(x−k;µ−k + Σ
(k)
11 σ

−1
kk (xk − µk),Σ−k|k) φ(xk;µk, σkk)

= φ(xk;µk, σkk) Φt−1(x−k;µ−k|k,Σ−k|k).

A generalization of Theorem 3 is given next.



75

Theorem 4. Let X1 of dimension s and X2 be of dimension of t− s, for s < t, be a

partition of X. Then,

∂s

∂x1∂x2 . . . ∂xs
Φt(x;µ,Σ) = φs(x1;µ1,Σ11) Φt−s(x2;µ2|1(x1),Σ2|1),

where µ1,Σ11 are the mean and covariance of X1 respectively, and µ2|1(x1),Σ2|1 are

the mean and covariance of X2 given X1 = x1.

Proof. In accordance of the dimensions of X1 and X2, let us partition µ and Σ

into µ = (µ1,µ2) and

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Note that X1 and X2 are also then normally distributed with parameters

(µ1,Σ11) and (µ2,Σ22). The covariance between X1 and X2 is given by the matrix

Σ12 and Σ21 = Σ
/
12.

The conditional distribution of X2 given X1 = z1 is N(µ2|1,Σ2|1) where µ2|1 =

µ2 + Σ21Σ−1
11 (z1 − µ1) and Σ2|1 = Σ22 + Σ21Σ−1

11 Σ12. Clearly µ2|1 is a function of

z1 and henceforth we will refer to it as µ2|1(z1). We denote the t-dimensional CDF

and PDF of a normal distribution as Φt() and φt() respectively.

Our goal is to derive an expression for

∂s

∂x1∂x2 . . . ∂xs
Φt(x;µ,Σ).

We know that,

Φt(x;µ,Σ) =

∫ xt

−∞
. . .

∫ x2

−∞

∫ x1

−∞
φt(z;µ,Σ) dz1 . . . dzt−1 dzt,

where φt(z;µ,Σ) can be written as

φt(z;µ,Σ) = φs(z1;µ1,Σ11)φt−s(z2;µ2|1(z1),Σ2|1).
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Therefore,

Φt(x;µ,Σ)

=

∫ xt

−∞
. . .

∫ x2

−∞

∫ x1

−∞
φs(z1;µ1,Σ11)φt−s(z2;µ2|1(z1),Σ2|1) dz1 dz2 . . . dzt

=

∫ xs

−∞
. . .

∫ x2

−∞

∫ x1

−∞
φs(z1;µ1,Σ11)

{∫ xt

−∞
. . .

∫ xs+2

−∞

∫ xs+1

−∞
φt−s(z2;µ2|1(z1),Σ2|1)

= dzs+1 dzs+2 . . . dzt

}
dz1 dz2 . . . dzs

=

∫ xs

−∞
. . .

∫ x2

−∞

∫ x1

−∞
φs(z1;µ1,Σ11) Φt−s(x2;µ2|1(z1),Σ2|1) dz1 dz2 . . . dzs.

Hence,

∂s

∂x1∂x2 . . . ∂xs
Φt(x;µ,Σ)

=
∂s

∂x1∂x2 . . . ∂xs

∫ xs

−∞
. . .

∫ x2

−∞

∫ x1

−∞
φs(z1;µ1,Σ11)

Φt−s(x2;µ2|1(z1),Σ2|1) dz1 dz2 . . . dzs

= φs(x1;µ1,Σ11) Φt−s(x2 − µ2|1(x1); 0,Σ2|1)

= φs(x1;µ1,Σ11) Φt−s(x2;µ2|1(x1),Σ2|1).

A.2 DERIVATIVE OF MULTIVARIATE NORMAL CDF WITH

RESPECT TO CORRELATION COEFFICIENTS

Let X be t dimensional vector that follows a multivariate normal distribution

with mean 0 and covariance matrix R, where R = (rij)t×t, rij are functions of ρ for

i 6= j and rij = 1 for i = j. We define X(ij) = (Xi, Xj) and X−(ij) as the vector

obtained by removing Xi and Xj from X. The next theorem gives the derivative of

the multivariate normal distribution with respect to the correlation parameter.

Theorem 5. If Σ(ij) is the covariance of X(ij) and µ−(ij)|(ij) and Σ−(ij)|(ij) are the
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mean and covariance of the conditional distribution of X−(ij) given X(ij) = x(ij)

respectively, then

∂

∂ρ
Φt(x; 0,R) =

t∑
i=1

t∑
j=i+1

Φt−2
(
x−(ij);µ−(ij)|(ij),Σ−(ij)|(ij)

)
φ2(x(ij),0,Σ(ij))

∂rij
∂ρ

.

Proof. We will start with the derivative of the multivariate normal CDF Φt(x; 0,R)

with respect to ρ. Without loss of generality, let’s assume i < j. Then,

∂

∂rij
Φt(x; 0,R) =

∂

∂rij

∫ xt

−∞
. . .

∫ x2

−∞

∫ x1

−∞
φt(z; 0,R) dz1 . . . dzt−1 dzt

=

∫ xt

−∞
. . .

∫ x2

−∞

∫ x1

−∞

∂

∂rij
φt(z; 0,R) dz1 . . . dzt−1 dzt.

Plackett (1954) proved that

∂

∂rij
φt(z; 0,R) =

∂2

∂zizj
φt(z; 0,R).

Using this,

∂

∂rij
Φt(x; 0,R) =

∫ xt

−∞
. . .

∫ x2

−∞

∫ x1

−∞

∂2

∂zizj
φt(z; 0,R) dz1 . . . dzt−1 dzt

=

∫ xt

−∞
. . .

∫ x2

−∞

∫ x1

−∞

∂2

∂zizj

{
Φt−2

(
z−(ij);µ

z
−(ij)|(ij),Σ−(ij)|(ij)

)
φ2(z(ij),0,Σ(ij))

}
dz1 . . . dzt−1 dzt

=

∫ xj

−∞

∫ xi

−∞

{
∂2

∂zizj

∫ x−(ij)

−∞
Φt−2

(
z−(ij);µ

z
−(ij)|(ij),Σ−(ij)|(ij)

)
dz−(ij)

φ2(z(ij),0,Σ(ij))

}
dzidzj
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=

∫ xj

−∞

∫ xi

−∞

{
∂2

∂zizj
φ2(z(ij),0,Σ(ij))

Φt−2
(
x−(ij);µ

z
−(ij)|(ij),Σ−(ij)|(ij)

)
dz−(ij)

}
dzidzj

= Φt−2
(
x−(ij);µ−(ij)|(ij),Σ−(ij)|(ij)

)
φ2(x(ij),0,Σ(ij)), where

∫ x−(ij)

−∞
=

∫ xt

−∞
. . .

∫ xj+1

−∞

∫ xj−1

−∞
. . .

∫ xi+1

−∞

∫ xi−1

−∞
. . .

∫ x1

−∞
and

dz−(ij) = dzt . . . dzj+1dzj−1 . . . dzi+1dzi−1 . . . dz1.

As all the rijs are functions of ρ, to evaluate the derivative of Φt(x; 0,R) we have

to use the chain rule of differentiation for all rijs, i < j. Hence,

∂

∂ρ
Φt(x; 0,R) =

c∑
i=1

c∑
j=i+1

∂

∂rij
Φt(x; 0,R)

∂rij
∂ρ

=
c∑
i=1

c∑
j=i+1

Φt−2
(
x−(ij);µ−(ij)|(ij),Σ−(ij)|(ij)

)
φ2(x(ij),0,Σ(ij))

∂rij
∂ρ

.

We now consider a more general case. Let X be t dimensional vector that follows

a multivariate normal distribution with mean µ and covariance matrix Σ. Let D =

diag(Σ) = (σii) be the diagonal matrix of variances and R = D−
1
2 ΣD−

1
2 be the

correlation matrix.

Theorem 6. Let ρij be the (i, j)th element of R. The derivative of the multivariate

normal distribution function Φt with respect to ρij is given by

∂

∂ρij
Φt(x;µ,Σ) =

1
√
σiiσjj

φ2(y(ij); 0,Rij)Φt−2(y−(ij) ;µ−(ij)|−(ij),R−(ij)|−(ij)),
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Proof.

∂

∂ρij
Φt(x;µ,Σ)

=
∂

∂ρij

∫ xt

−∞
. . .

∫ x2

−∞

∫ x1

−∞
φt(w;µ,Σ)dw1 dw2 . . . dwt

=
∂

∂ρij

∫ xt

−∞
. . .

∫ x2

−∞

∫ x1

−∞
|D−

1
2 |φt(D

1
2 (w − µ); 0,R)dw1 dw2 . . . dwt.

We change the vector of integration from w to z, where z = D−
1
2 (w − µ). Clearly,

z is also a Gaussian vector with zero mean and variance matrix D−
1
2 ΣD−

1
2 = R,

and the Jacobian of this transformation is |D
1
2 |. Also, the upper limit of the integral

changes from x to y = D−
1
2 (x− µ). So, the above integral can be written as

∂

∂ρij
Φt(x;µ,Σ)

=
∂

∂ρij

∫ yt

−∞
. . .

∫ y2

−∞

∫ y1

−∞
|D−

1
2 |φt(z; 0,R)|D

1
2 | dz1 dz2 . . . dzt

=

∫ yt

−∞
. . .

∫ y2

−∞

∫ y1

−∞

∂

∂ρij
φt(z; 0,R) dz1 dz2 . . . dzt.

Plackett(1954) proved that

∂

∂ρij
φt(z; 0,R) =

∂

∂zlzs
φt(z; 0,R).

So,

∂

∂ρij
Φt(x;µ,Σ)

=

∫ yt

−∞
. . .

∫ y2

−∞

∫ y1

−∞

∂

∂zlzs
φt(z; 0,R) dz1 dz2 . . . dzt

= φ2(y(ij); 0,Rij)Φt−2(y−(ij)|(ij);µ−(ij)|(ij),R−(ij)|(ij)),

=
1

√
σiiσjj

φ2(x(ij);µij,Σij)Φt−2(x−(ij);µ−(ij)|(ij),Σ−(ij)|(ij)).
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A.3 CONDITIONAL CDF OF A NORMALIZED MULTIVARIATE

NORMAL DISTRIBUTION

Let X be t dimensional vector that follows a multivariate normal distribution

with mean µ and covariance matrix Σ. Let D = diag(Σ) = (σii) be the diagonal

matrix of variances and Y = D−
1
2 (X − µ). Then Y is distributed as multivariate

normal with mean 0 and correlation matrix R = D−
1
2 ΣD−

1
2 . Let X1,X2 and

Y 1,Y 2 be a partition of X and Y respectively of dimensions s and (t− s), s < t.

Theorem 7. The conditional distribution functions of X1 given X2 and Y 1 given

Y 2 are equal in the sense

Φs

(
x1;µ1 + Σ12Σ

−1
22 (x2 − µ2),Σ11 −Σ12Σ

−1
22 Σ21

)
= Φs

(
y1;R12R

−1
22 y2,R11 −R12R

−1
22R21

)
(53)

where yi = D
− 1

2
i (xi − µi) for i = 1, 2.

Proof. Note that

P (Y 1 ≤ y1|Y 2 = y2)

= P (D
− 1

2
1 (X1 − µ1) ≤ y1|D

− 1
2

2 (X2 − µ2) = y2)

= P (X1 ≤ x1|X2 = x2) (54)

since yi = D
− 1

2
i (xi − µi) for i = 1, 2. Now the conditional distribution of X1 given

X2 is normal with mean µ1+Σ12Σ
−1
22 (x2−µ2) and covariance Σ11−Σ12Σ

−1
22 Σ21. And

the conditional distribution of Y 1 given Y 2 = y2 is normal with mean R12R
−1
22 y2

and covariance R11 −R12R
−1
22R21. Therefore (53) is equivalent to (54).

Below are some results for the trivariate normal distribution with a special cor-

relation structure.
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Theorem 8. Let Xk, Xl, Xj, where k < l, be distributed as trivariate normal with

mean µ̃ = (µk, µl, µj)
′ and correlation

R̃ =


1 ρ|k−l| ρ|k−j|

ρ|k−l| 1 ρ|j−l|

ρ|k−j| ρ|j−l| 1

 .

Then the conditional distribution of Xk, Xl given Xj = xj is bivariate normal with

means µk|j = µk − ρ|k−j|(xj − µj) and µl|j = µl − ρ|l−j|(xj − µj) and covariance

Σkl|j =

(
1− ρ2|j−k| ρ|k−l| − ρ|j−k|+|j−l|

ρ|k−l| − ρ|j−k|+|j−l| 1− ρ2|j−l|

)
.

Proof. Let us partition R̃ as

R̃ =


1 ρ|k−l| ρ|k−j|

ρ|k−l| 1 ρ|j−l|

ρ|k−j| ρ|j−l| 1

 =

(
R̃11 R̃12

R̃21 1

)
.

(Xk, Xl) given Xj follows a bi-variate normal distribution with mean (Xk, Xl) given

Xj is (µk, µl)
′ + R̃12(xj − µj) and variance R̃11 − R̃12R̃21. Now,(
µk

µl

)
+ R̃12(xj − µj) =

(
µk + ρ|k−j|(xj − µj)
µl + ρ|l−j|(xj − µj)

)
, and

R̃11 − R̃12R̃21 = R̃11 −

(
ρ|k−j|

ρ|l−j|

)(
ρ|k−j|, ρ|l−j|

)
=

(
1− ρ2|j−k| ρ|k−l| − ρ|j−k|+|j−l|

ρ|k−l| − ρ|j−k|+|j−l| 1− ρ2|j−l|

)
.

If we denote the conditional mean of Xk given Xj as µk|j and covariance of Xk
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and Xl given Xj as σk,l|j, then µk|j = µk − ρ|k−j|(xj − µj), k, j = 1, 2, . . . , c, k 6= j

µk|j = µk + ρ|k−j|(xj − µj),∀k, j = 1, 2, . . . , c, k 6= j. (55)

Examples: Let us consider a multivariate normal random vector of (V1, V2, V3, V4)
′

with parameters (µ4 and R), where

µ4 =


µ1

µ2

µ3

µ4

 and R =


1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ

ρ3 ρ2 ρ 1

 .

Then, (V2, V3, V4 | V1 = x1) follows multivariate normal with parameters

(µ−1|1,R−1|1), where

µ−1|1 =


µ2 + ρ(x1 − µ1)

µ3 + ρ2(x1 − µ1)

µ4 + ρ3(x1 − µ1)

 and R−1|1 =


1− ρ2 ρ− ρ3 ρ2 − ρ4

ρ− ρ3 1− ρ4 ρ− ρ5

ρ2 − ρ4 ρ− ρ5 1− ρ6

 .

Also, if we consider (V1, V2, V4 | V3 = x3), then it is distributed as a three dimen-

sional multivariate normal distribution with parameters (µ−3|3,R−3|3), where

µ−3|3 =


µ1 + ρ2(x3 − µ3)

µ2 + ρ(x3 − µ3)

µ4 + ρ(x3 − µ3)

 and R−3|3 =


1− ρ4 ρ− ρ3 0

ρ− ρ3 1− ρ2 0

0 0 1− ρ2

 .



83

APPENDIX B

SELECTED R CODE

In this section, we provide a selection of R codes that we developed. Brief de-

scriptions of all the important functions are stated below.

1. choice.prob.Eq: For a given set of means (µ) and correlation parameter (ρ),

calculates the choice probabilities according to (28). Output is a vector of

dimension equal to the dimension of µ.

2. like.fn.Eq: Calculates the likelihood function for a discrete choice data set

and stated values of a set of parameters using the choice probability in (28).

This function is evaluated in parallel and uses a modified version of the

choice.prob.Eq function mentioned above.

3. choice.prob.AR1: For a given set of means (µ) and correlation parameter

(ρ), calculates the choice probabilities according to (46). Output is a vector of

dimension equal to the dimension of µ.

4. like.fn.AR1: Evaluates the likelihood function for a discrete choice data

set and stated values of a set of parameters using the choice probability in

(46). This function is evaluated in parallel and uses a modified version of the

choice.prob.AR1 function mentioned above.

####################################################################

########## Choice P r o b a b i l i t y f o r MDCG Equ i co r r e l a t i on #############

####################################################################

# PDF of Gumbel D i s t r i b u t i o n

pdfgmbl <− function ( y ){
f <− exp(−y )∗exp(−(exp(−y ) ) )
return ( f )

}
# CDF of Gumbel D i s t r i b u t i o n

cdfgmbl <− function ( y ){
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f <− exp(−(exp(−y ) ) )
return ( f )

}

require ( ”mvtnorm” )

cho i c e . prob .Eq <− function (mu, rho ){
c <− length (mu)

R <− rho∗matrix (1 , c , c)+(1−rho )∗diag (c )
R1 <− (1−rho ˆ2)∗ ( ( ( rho/(1+rho ) )∗matrix (1 , c−1,c−1))+

(1−( rho/(1+rho ) ) )∗diag (c−1))
prob <− c ( )

inverse <− function ( x ){
y <− qnorm( cdfgmbl (x ) )

return ( y )

}
i nv e r s e 1 <− function ( x ){

return(0− log(0− log (pnorm( x ) ) ) )

}
for ( i in 1 : c ){

condcdf <− function ( v ){
condmean <− numeric (c−1)
upper l im i t <− numeric (c−1)
for ( j in 1 : c−1){

condmean [ j ] <− rho∗v
i f ( j < i ){

upper l im i t [ j ] <− inverse (mu[ i ] − mu[ j ]+ inve r s e 1 (v ) )

}
else {

upper l im i t [ j ] <− inverse (mu[ i ]−mu[ ( j +1)]+ inve r s e 1 (v ) )

}
}
return (pmvnorm( lower=rep(− In f , c−1) , mean=condmean ,

upper = upper l imit , sigma = R1) )

}
in tegrand <− function ( z ){

p <− condcdf ( z )

p <− p∗dnorm( x = z )

return (p)

}
prob [ i ] <− i n t e g r a t e ( f = integrand , lower = −In f ,

upper = In f )$value

}
return ( prob )

}
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# Table to show only d i f f e r e n c e s in u t i l i t y matter

mu1 <− c (1 , 1 . 5 , 2)

mu2 <− mu1 − 5

mu3 <− mu1 + 100

rho <− seq (0 , 0 . 9 , by = 0 . 1 )

d i f f . e qu i c o r r <− matrix (0 , nrow = length ( rho ) , ncol = 4)

for ( i in 1 : length ( rho ) ){
d i f f . e qu i c o r r [ i , 1 ] <− rho [ i ]

d i f f . e qu i c o r r [ i , 2 ] <− paste0 ( format (round( cho i c e . prob .Eq(mu1 ,

rho [ i ] ) , 2 ) , nsmal l = 2) ,

c o l l a p s e =” , ” , sep = ”” )

d i f f . e qu i c o r r [ i , 3 ] <− paste0 ( format (round( cho i c e . prob .Eq(mu2 ,

rho [ i ] ) , 2 ) , nsmal l = 2) ,

c o l l a p s e =” , ” , sep = ”” )

d i f f . e qu i c o r r [ i , 4 ] <− paste0 ( format (round( cho i c e . prob .Eq(mu3 ,

rho [ i ] ) , 2 ) , nsmal l = 2) ,

c o l l a p s e =” , ” , sep = ”” )

}
d i f f . e qu i c o r r <− as . data . frame ( d i f f . e qu i c o r r )

colnames ( d i f f . e qu i c o r r ) <− c ( ” rho” , paste0 (mu1 , c o l l a p s e=”” ,

sep=” , ” ) ,

paste0 (mu2 , c o l l a p s e=”” , sep=” , ” ) ,

paste0 (mu3 , c o l l a p s e=”” , sep=” , ” ) )

View ( d i f f . e qu i c o r r )

# Table to show s c a l e o f u t i l i t y shou ld be normal ized

mu1 <− c (2 , 2 . 1 , 2 . 5 )

mu2 <− mu1/5

mu3 <− mu1∗5
rho <− seq (0 , 0 . 9 , by = 0 . 1 )

scale . e qu i c o r r <− matrix (0 , nrow = length ( rho ) , ncol = 4)

for ( i in 1 : length ( rho ) ){
scale . e qu i c o r r [ i , 1 ] <− rho [ i ]

scale . e qu i c o r r [ i , 2 ] <− paste0 ( format (round( cho i c e . prob .Eq(mu1 ,

rho [ i ] ) , 2 ) , nsmal l = 2) ,

c o l l a p s e =” , ” , sep = ”” )

scale . e qu i c o r r [ i , 3 ] <− paste0 ( format (round( cho i c e . prob .Eq(mu2 ,

rho [ i ] ) , 2 ) , nsmal l = 2) ,

c o l l a p s e =” , ” , sep = ”” )
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scale . e qu i c o r r [ i , 4 ] <− paste0 ( format (round( cho i c e . prob .Eq(mu3 ,

rho [ i ] ) , 2 ) , nsmal l = 2) ,

c o l l a p s e =” , ” , sep = ”” )

}
scale . e qu i c o r r <− as . data . frame ( scale . e qu i c o r r )

colnames ( scale . e qu i c o r r ) <− c ( ” rho” , paste0 (mu1 , c o l l a p s e=”” ,

sep=” , ” ) ,

paste0 (mu2 , c o l l a p s e=”” , sep=” , ” ) ,

paste0 (mu3 , c o l l a p s e=”” , sep=” , ” ) )

View ( scale . e qu i c o r r )

####################################################################

########## Like l i hood Function f o r MDCG Equ i co r r e l a t i on ############

####################################################################

require (mvtnorm)

require ( doPa ra l l e l )

require ( f o r each )

detectCores ( )

c l <− makeCluster (6 )

r e g i s t e rDoPa r a l l e l ( c l )

getDoParWorkers ( )

l i k e . fn . Eq <− function (data , theta ){
y <− data [ , 1 ]

x <− data [ , 2 : ncol (data ) ]

beta <− theta [ 1 : length ( theta ) − 1 ]

rho <− theta [ length ( theta ) ]

nc <− length ( y )

n <− nc/c

x <− data .matrix ( x )

mu <− numeric ( nc )

mu <− apply (x , 1 , function ( z ) z%∗%beta )

Mu <− matrix (mu, nrow = n , byrow = T)

Y <− matrix (y , nrow = n , byrow = T)

Prob <− matrix (0 , nrow <− n , ncol <− c )

inverse <− function ( x ){
y <− qnorm( cdfgmbl (x ) )

return ( y )

}
i nv e r s e 1 <− function ( x ){

return(0− log(0− log (pnorm( x ) ) ) )

}
cho i c e . prob . 1 <− function (Y, mu, rho ) {
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i f ( length (Y) != length (mu)){
stop ( ”Y and mu are not o f same length ” )}

c <− length (mu)

p r obab i l i t y <− c ( )

for ( i in 1 : c ){
i f ( Y[ i ] == 1){

condcdf <− function ( v ){
condmean=numeric (c )

for ( j in 1 : c ){
condmean [ j ] <− rho∗v

}
condmean <− condmean[− i ]

upper l im i t=numeric (c−1)
for ( j in 1 : c−1){

i f ( j < i ){
upper l im i t [ j ] = inverse (mu[ i ] − mu[ j ]+ inve r s e 1 (v ) )

}
else {

upper l im i t [ j ] = inverse (mu[ i ]− mu[ ( j +1)]+ inve r s e 1 (v ) )

}
}
R1 <− (1−rho ˆ2)∗ ( ( ( rho/(1+rho ) )∗matrix (1 , c−1,c−1))+

(1−( rho/(1+rho ) ) )∗diag (c−1))
return (pmvnorm( lower=rep(− In f , c−1) , mean=condmean ,

upper = upper l imit , sigma = R1) )

}
in tegrand <− function ( z ){

p <− condcdf ( z )

p <− p∗dnorm( x = z )

return (p)

}
p r obab i l i t y [ i ] <− i n t e g r a t e ( f = integrand ,

lower = −In f , upper = In f )$value

}
else {

p r obab i l i t y [ i ] <− 0

}
}
return ( p r obab i l i t y )

}

# Pa r a l l e l i z e d e va l ua t i on o f cho ice p r o b a b i l i t i e s

Prob <−
f o r each ( i = 1 : n , . combine = rbind , . packages = c ( ”mvtnorm” ) ,
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. export = c ( ” cdfgmbl ” ) ) %dopar%{
return ( cho i c e . prob . 1 (Y[ i , ] , Mu[ i , ] , rho ) )

}

prob <− matrix ( t (Prob ) )

l o g l i k e l i h o o d <− 0

for ( i in 1 : nc ){
i f ( y [ i ] == 1 & is .na( prob [ i ] ) == ”FALSE” & prob [ i ] != 0){

l o g l i k e l i h o o d= l o g l i k e l i h o o d + log ( prob [ i ] )

}
}
return(− l o g l i k e l i h o o d )

}

####################################################################

########## Model F i t t i n g ###########################################

####################################################################

# TRANSPORT DATA

c <− 4

Transport <− read . table ( ”H: /Research/Data/Transport/Transport . txt ” ,

header = T)

table ( Transport$MODE)

Int <− matrix (0 ,nrow( Transport ) , c−1)

for ( i in 1 :nrow( Transport ) ){
remainder <− i %% c

for ( j in 1 : c−1){
i f ( j==remainder ){

Int [ i , j ] <− 1

}
}

}
Data <− cbind ( Transport , Int )

Data <− cbind ( sort ( rep ( 1 : 2 1 0 , 4 ) ) , Data )

colnames (Data ) <− c ( ”Person” ,colnames ( Transport ) ,

” Int Air ” , ” Int Train” , ” Int Bus” )

# Choice s p e c i f i c c o v a r i a t e s

Reduced . Data=Data [ ,−7]

Reduced . Data=Reduced . Data [ ,−7]

colnames (Reduced . Data )
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# I n i t i a l i z wi th e s t ima t e s from SAS fo r CNL model

i n i t i a l . fromSAS <− c (−0.1036 , −0.0849 , −0.0133 , 0 .0693 ,

5 .2047 , 4 .3606 , 3 .7632)

i n i t i a l .SD. fromSAS <− c ( 0 . 0109 , 0 .0194 , 0 .002517 , 0 .0174 ,

0 .9052 , 0 .5107 , 0 .5063)

i n i t i a l <− c ( i n i t i a l . fromSAS , 0 . 05 )

system . time (

s o l . reduced <− optim( i n i t i a l ,

l i k e . fn . Eq ,

data = Reduced . Data [ , −1] ,
method = ”L−BFGS−B” ,

lower = c ( i n i t i a l . fromSAS − 1 .96∗
i n i t i a l .SD. fromSAS , 0 . 1 ) ,

upper = c ( i n i t i a l . fromSAS + 1.96∗
i n i t i a l .SD. fromSAS , 0 . 8 ) ,

control = l i s t ( trace = 6 , maxit = 500 ,

f a c t r = 1e−11) ,
he s s i an = F)

)

# Boots trap Est imat ion o f SE

s o l u t i o n = l i s t ( )

for (b in 1 : 50 ){
id=sample ( 1 : 210 , 210 , replace=TRUE)

newdata=matrix ( 0 , 1 , 9 )

for ( i in 1 :210){
persondata=as .matrix (Reduced . Data [ ( id [ i ] ∗4−3):( id [ i ] ∗4−0) , ] )

newdata=rbind ( newdata , persondata )

}
newdata <− newdata [−1 , ]

print (b)

s o l u t i o n [ [ b ] ] <− try (optim( i n i t i a l ,

l i k e . fn . Eq ,

data = newdata [ , −1] ,
method = ”L−BFGS−B” ,

lower = c ( i n i t i a l . fromSAS − 1 .96∗
i n i t i a l .SD. fromSAS , 0 . 1 ) ,

upper = c ( i n i t i a l . fromSAS + 1.96∗
i n i t i a l .SD. fromSAS , 0 . 8 ) ,

control = l i s t ( trace = 0 , maxit = 500 ,

f a c t r = 1e−11) ,
he s s i an = F) )

}
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s o l . pars <− matrix (0 , nrow = 0 , ncol = 8)

s o l . LL <− c ( )

for ( i in 1 : ncol ( s o l . pars ) ){
i f ( length ( s o l u t i o n [ [ i ] ] ) != 1){

try ( s o l . pars <− rbind ( s o l . pars , s o l u t i o n [ [ i ] ] $par ) )

}
}
summary( s o l . pars )

s o l . pars .mean <− apply ( s o l . pars , 2 , mean)

s o l . pars . sd <− sqrt (apply ( s o l . pars , 2 , var ) ∗
(nrow( s o l . pars )/ (nrow( s o l . pars )−1)))

s o l . pars . t <− c ( )

s o l . pars . pvalue <− c ( )

for ( i in 1 : ncol ( s o l . pars ) ){
s o l . pars . t [ i ] <−

sqrt (nrow( s o l . pars ) )∗ ( s o l . pars .mean [ i ] / s o l . pars . sd [ i ] )

s o l . pars . pvalue [ i ] <− 2∗pt(−abs ( s o l . pars . t [ i ] ) ,
df = nrow( s o l . pars ) )

}
s o l . pars . table <− rbind ( s o l . pars .mean, s o l . pars . sd ,

s o l . pars . t , s o l . pars . pvalue )

round( s o l . pars . table , 4)

####################################################################

########## Choice P r o b a b i l i t y f o r MDCG AR(1) #######################

####################################################################

cho i c e . prob .AR1 <− function (mu, rho ) {
c <− length (mu)

prob <− c ( )

inverse <− function ( x ){
y <− qnorm( cdfgmbl (x ) )

return ( y )

}
i nv e r s e 1 <− function ( x ){

return(0− log(0− log (pnorm( x ) ) ) )

}

for ( i in 1 : c ){
condcdf <− function ( v ){

condmean<−numeric (c )

for ( j in 1 : c ){
condmean [ j ]<−rho ˆ(abs ( i−j ) )∗v

}
condmean <− condmean[− i ]
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upper l im i t<−numeric (c−1)
for ( j in 1 : c−1){

i f ( j < i ){
upper l im i t [ j ] <− inverse (mu[ i ] − mu[ j ]+ inve r s e 1 (v ) )

}
else {

upper l im i t [ j ] <− inverse (mu[ i ]− mu[ ( j +1)]+ inve r s e 1 (v ) )

}
}
R1 <− matrix (0 , nrow = c , ncol = c )

for ( k in 1 : c ){
for ( l in min(c , ( k+1)) : c ){

i f ( k != i & l != i ){
i f ( l < i ){

R1 [ k , l ] <− rho ˆ( l−k ) − rho ˆ(2∗ i−l−k )
}
i f ( k < i & i < l ){

R1 [ k , l ] <− 0

}
i f ( i < k ){

R1 [ k , l ] <− rho ˆ( l−k ) − rho ˆ( l+k−2∗ i )
}

}
}

}
for ( k in 1 : c ){

for ( l in 1 : k−1){
R1 [ k , l ] <− R1 [ l , k ]

}
R1 [ k , k ] <− 1 − rho ˆ(2∗abs ( i−k ) )

}
R1 <− R1[− i , ]

R1 <− R1 [ , − i ]

return (pmvnorm( lower=rep(− In f , c−1) , mean=condmean ,

upper = upper l imit , sigma = R1) )

}
in tegrand <− function ( z ){

p <− condcdf ( z )

p <− p∗dnorm( x = z )

return (p)

}
prob [ i ] <− round( i n t e g r a t e ( f = integrand , lower = −In f ,

upper = In f )$value , 2)

}
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return ( prob )

}

# Table to show only d i f f e r e n c e s in u t i l i t y matter

mu1 <− c (1 , 1 . 5 , 2)

mu2 <− mu1 − 5

mu3 <− mu1 + 100

rho <− seq (0 , 0 . 9 , by = 0 . 1 )

d i f f .AR1 <− matrix (0 , nrow = length ( rho ) , ncol = 4)

for ( i in 1 : length ( rho ) ){
d i f f .AR1[ i , 1 ] <− rho [ i ]

d i f f .AR1[ i , 2 ] <− paste0 ( format (round( cho i c e . prob .AR1(mu1 , rho [ i ] ) ,

2 ) , nsmal l = 2) , c o l l a p s e =” , ” , sep = ”” )

d i f f .AR1[ i , 3 ] <− paste0 ( format (round( cho i c e . prob .AR1(mu2 , rho [ i ] ) ,

2 ) , nsmal l = 2) , c o l l a p s e =” , ” , sep = ”” )

d i f f .AR1[ i , 4 ] <− paste0 ( format (round( cho i c e . prob .AR1(mu3 , rho [ i ] ) ,

2 ) , nsmal l = 2) , c o l l a p s e =” , ” , sep = ”” )

}
d i f f .AR1 <− as . data . frame ( d i f f .AR1)

colnames ( d i f f .AR1) <− c ( ” rho” , paste0 (mu1 , c o l l a p s e=”” , sep=” , ” ) ,

paste0 (mu2 , c o l l a p s e=”” , sep=” , ” ) ,

paste0 (mu3 , c o l l a p s e=”” , sep=” , ” ) )

View ( d i f f .AR1)

# Table to show s c a l e o f u t i l i t y shou ld be normal ized

mu1 <− c (2 , 2 . 1 , 2 . 5 )

mu2 <− mu1/5

mu3 <− mu1∗5
rho <− seq (0 , 0 . 9 , by = 0 . 1 )

scale .AR1 <− matrix (0 , nrow = length ( rho ) , ncol = 4)

for ( i in 1 : length ( rho ) ){
scale .AR1[ i , 1 ] <− rho [ i ]

scale .AR1[ i , 2 ] <− paste0 ( format (round( cho i c e . prob .AR1(mu1 ,

rho [ i ] ) , 2 ) , nsmal l = 2) ,

c o l l a p s e =” , ” , sep = ”” )

scale .AR1[ i , 3 ] <− paste0 ( format (round( cho i c e . prob .AR1(mu2 ,

rho [ i ] ) , 2 ) , nsmal l = 2) ,

c o l l a p s e =” , ” , sep = ”” )
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scale .AR1[ i , 4 ] <− paste0 ( format (round( cho i c e . prob .AR1(mu3 ,

rho [ i ] ) , 2 ) , nsmal l = 2) ,

c o l l a p s e =” , ” , sep = ”” )

}
scale .AR1 <− as . data . frame ( scale .AR1)

colnames ( scale .AR1) <− c ( ” rho” , paste0 (mu1 , c o l l a p s e=”” , sep=” , ” ) ,

paste0 (mu2 , c o l l a p s e=”” , sep=” , ” ) ,

paste0 (mu3 , c o l l a p s e=”” , sep=” , ” ) )

View ( scale .AR1)

####################################################################

########## Like l i hood Function f o r MDCG AR(1) ######################

####################################################################

require (mvtnorm)

require ( doPa ra l l e l )

require ( f o r each )

detectCores ( )

c l <− makeCluster (6 )

r e g i s t e rDoPa r a l l e l ( c l )

getDoParWorkers ( )

l i k e . fn .AR1 <− function (data , theta ){
y <− data [ , 1 ]

x <− data [ , 2 : ncol (data ) ]

beta <− theta [ 1 : length ( theta ) − 1 ]

rho <− theta [ length ( theta ) ]

nc <− length ( y )

n <− nc/c

x <− data .matrix ( x )

mu <− numeric ( nc )

mu <− apply (x , 1 , function ( z ) z%∗%beta )

Mu <− matrix (mu, nrow = n , byrow = T)

Y <− matrix (y , nrow = n , byrow = T)

Prob <− matrix (0 , nrow <− n , ncol <− c )

inverse <− function ( x ){
y <− qnorm( cdfgmbl (x ) )

return ( y )

}
i nv e r s e 1 <− function ( x ){

return(0− log(0− log (pnorm( x ) ) ) )

}
cho i c e . prob . 1 <− function (Y, mu, rho ) {
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i f ( length (Y) != length (mu)){
stop ( ”Y and mu are not o f same length ” )}

c <− length (mu)

p r obab i l i t y <− c ( )

for ( i in 1 : c ){
i f ( Y[ i ] == 1){

condcdf <− function ( v ){
condmean=numeric (c )

for ( j in 1 : c ){
condmean [ j ]=rho ˆ(abs ( i−j ) )∗v

}
condmean <− condmean[− i ]

upper l im i t=numeric (c−1)
for ( j in 1 : c−1){

i f ( j < i ){
upper l im i t [ j ] = inverse (mu[ i ] − mu[ j ]+ inve r s e 1 (v ) )

}
else {

upper l im i t [ j ] = inverse (mu[ i ]− mu[ ( j +1)]+ inve r s e 1 (v ) )

}
}
R1 <− matrix (0 , nrow = c , ncol = c )

for ( k in 1 : c ){
for ( l in min(c , ( k+1)) : c ){

i f ( k != i & l != i ){
i f ( l < i ){

R1 [ k , l ] <− rho ˆ( l−k ) − rho ˆ(2∗ i−l−k )
}
i f ( k < i & i < l ){

R1 [ k , l ] <− 0

}
i f ( i < k ){

R1 [ k , l ] <− rho ˆ( l−k ) − rho ˆ( l+k−2∗ i )
}

}
}

}
for ( k in 1 : c ){

for ( l in 1 : k−1){
R1 [ k , l ] <− R1 [ l , k ]

}
R1 [ k , k ] <− 1 − rho ˆ(2∗abs ( i−k ) )

}
R1 <− R1[− i , ]

R1 <− R1 [ , − i ]
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return (pmvnorm( lower=rep(− In f , c−1) , mean=condmean ,

upper = upper l imit , sigma = R1) )

}
in tegrand <− function ( z ){

p <− condcdf ( z )

p <− p∗dnorm( x = z )

return (p)

}
p r obab i l i t y [ i ] <− i n t e g r a t e ( f = integrand ,

lower = −In f , upper = In f )$value

}
else {

p r obab i l i t y [ i ] <− 0

}
}
return ( p r obab i l i t y )

}

# Pa r a l l e l i z e d e va l ua t i on o f cho ice p r o b a b i l i t i e s

Prob <−
f o r each ( i = 1 : n , . combine = rbind , . packages = c ( ”mvtnorm” ) ,

. export = c ( ” cdfgmbl ” ) ) %dopar%{
return ( cho i c e . prob . 1 (Y[ i , ] , Mu[ i , ] , rho ) )

}

prob <− matrix ( t (Prob ) )

l o g l i k e l i h o o d <− 0

for ( i in 1 : nc ){
i f ( y [ i ]== 1 & is .na( prob [ i ] ) == F & prob [ i ] != 0){

l o g l i k e l i h o o d= l o g l i k e l i h o o d + log ( prob [ i ] )

}
}
return(− l o g l i k e l i h o o d )

}

####################################################################

########## Simulated Data on Ordered Choices #######################

####################################################################

require ( dplyr )

require ( reshape2 )

require (mvtnorm)



96

N <− 100000

n <− 300

rho <− 0 .7

c <− 3

# Generate the AR(1) c o r r e l a t i o n matrix

R <− matrix (0 , nrow= c , ncol = c )

for ( i in 1 : c ){
for ( j in 1 : c ){
R[ i , j ] <− rho ˆ(abs ( i−j ) )

}
}
R

# Generate the e r ro r s

e1 <− rmvnorm(n , mean = rep (0 , c ) , sigma = R)

head ( e1 , n = 10)

round( cor ( e1 ) , 2)

e1 <− data . frame ( e1 )

e1 <− sample n( tb l df ( e1 ) , s i z e = n)

e1 <− e1 %>%

mutate ( id = row number ( ) )

R

# Check the sample c o r r e l a t i o n matrix

round( cor ( e1 ) , 2)

# Check the sample covar iance matrix

round(cov ( e1 ) , 2)

s t r ( e1 )

e <− melt (data . frame ( e1 ) , id = c ( ” id ” ) )

e <−
e%>%

arrange ( id ) %>%

group by( id ) %>%

mutate ( a l t e r n a t i v e = row number ( id ) )

# Generate the 1 s t c o va r i a t e from a mixture o f uniform d i s t r i b u t i o n s

x1 . mix . prob <− sample ( 1 : 3 , prob=c ( 0 . 3 , 0 . 3 5 , 0 . 3 5 ) ,

s i z e=n∗c , replace=TRUE)

x1 <− round( runif (n∗c , min = c (40 , 50 , 6 0 ) [ x1 . mix . prob ] ,

max =c (42 , 57 , 73 ) [ x1 . mix . prob ] ) , 3)
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# Generate the 2nd cova r i a t e from a mixture o f normal d i s t r i b u t i o n s

x2 . mix . prob <− sample ( 1 : 3 , prob=c ( 0 . 4 , 0 . 3 5 , 0 . 2 5 ) ,

s i z e=n∗c , replace=TRUE)

x2 <− round(rnorm(n∗c , c (41 , 47 , 7 2 ) [ x2 . mix . prob ] ,

c (2 , 1 , 2 ) [ x2 . mix . prob ] ) , 2)

x <− data . frame ( x1 , x2 )

Int <− matrix (0 , nrow( x ) , c−1)
for ( i in 1 : nrow( x ) ){

remainder <− i %% c

for ( j in 1 : c−1){
i f ( j == remainder ){

Int [ i , j ] <− 1

}
}

}
Int <− data . frame ( Int )

colnames ( Int ) <− paste ( ” Int ” , 1 : (c−1) , sep = ” ” )

x <− cbind (x , Int )

head (x )

summary( x )

e <− s e l e c t ( e , −variable )
x <− cbind (x , e )

x <− s e l e c t (x , id , a l t e r na t i v e , x1 , x2 , Int 1 , Int 2 , va lue )

# Se l e c t the parameters

b1 <− 1

b2 <− 1 .5

b in t1 <− 1 .4

b in t2 <− 2

# Generate the u t i l i t i e s

x <− mutate (x , u = x1∗b1 + x2∗b2 +

Int 1∗b in t1 + Int 2∗b in t2 + value )

u t i l <− dcast (x , id ˜ a l t e r na t i v e , va lue . var = ”u” )

u t i l <−
x %>%

group by( id ) %>%

summarize (u max = max(u ) )
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# Generate the response v a r i a b l e Y

x <− l e f t j o i n (x , u t i l , by = c ( ” id ” ) )

x <− mutate (x , y = i f e l s e (u == u max, 1 , 0 ) )

sum( x$y )

unique ( table ( x$ id , x$y ) [ , 2 ] )

table ( x$y , x$ a l t e r n a t i v e )

prop . table ( table ( x$y , x$ a l t e r n a t i v e ) , 2)

data . s imulated . oredred <−
x %>%

s e l e c t ( id , y , a l t e r na t i v e , x1 , x2 , Int 1 , Int 2)

data . s imulated . oredred <− data . s imulated . oredred [ , −3]

data . s imulated . oredred$ a l t e r n a t i v e <− as . factor ( rep ( 1 : 3 , n ) )

save (data . s imulated . oredred , ”data . s imulated . oredred . rda” )

####################################################################

########## Example o f Boots trap Est imation ########################

####################################################################

# Here we es t imate the parameters o f the s imu la ted ordered

# cho ice data

require ( doPa ra l l e l )

require ( f o r each )

detectCores ( )

c l <− makeCluster (6 )

r e g i s t e rDoPa r a l l e l ( c l )

getDoParWorkers ( )

c <− 3

rho <− 0 .7

b1 <− 1

b2 <− 1 .5

b in t1 <− 1 .4

b in t2 <− 2

i n i t i a l <− c ( 1 . 9 , 1 . 6 , 1 . 3 , 1 . 7 , 0 . 5 )

i n i t i a l .CNL <− i n i t i a l [−5]

l i k e . fn .AR1(data . s imulated . oredred [ , −1] , i n i t i a l )

sim . s o l <− optim( i n i t i a l ,

l i k e . fn .AR1, data=data . s imulated . oredred [ , −1] ,
method = ”L−BFGS−B” ,
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lower = c ( 0 . 8 , 1 . 3 , 1 . 2 , 0 . 7 , 0 . 4 ) ,

upper = c ( 1 . 3 , 1 . 7 , 1 . 7 , 1 . 2 , 0 . 9 ) ,

control = l i s t ( trace=6, maxit = 5000) ,

he s s i an=FALSE)

# Boots trap es t ima t ion o f the standard e r ro r s

s o l u t i o n . sim .AR1 <− l i s t ( )

ptm <− proc . time ( )

for (b in 1 : 50){
set . seed (17624 + b)

id <− sample ( 1 : 300 , 300 , replace = T)

id <− data . frame ( id )

boots tarp . data <− l e f t j o i n ( id , data . s imulated . oredred , by = ” id ” )

print (b)

c l <− makeCluster (6 )

r e g i s t e rDoPa r a l l e l ( c l )

getDoParWorkers ( )

s o l u t i o n . boots t rap .AR1 <−
try (optim( i n i t i a l ,

l i k e . fn .AR1, data=bootstarp . data [ , −1] ,
method = ”L−BFGS−B” ,

lower = c ( 0 . 8 , 1 . 3 , 1 . 2 , 0 . 7 , 0 . 4 ) ,

upper = c ( 1 . 3 , 1 . 7 , 1 . 7 , 1 . 2 , 0 . 9 ) ,

control = l i s t ( trace=0, maxit = 5000) ,

he s s i an = FALSE)

)

s o l u t i o n . sim .AR1 [ [ b ] ] <− s o l u t i o n . boots t rap .AR1

}
proc . time ( ) − ptm

sim .AR1. pars <− matrix (0 , nrow = 0 , ncol = 5)

for ( i in 1 : 50){
i f ( length ( s o l u t i o n . sim .AR1 [ [ i ] ] ) != 1){

try ( sim .AR1. pars <− rbind ( sim .AR1. pars , s o l u t i o n . sim .AR1 [ [ i ] ] $par ) )

}
sim .AR1. pars . sd <− sqrt (apply ( sim .AR1. pars , 2 , var ) ∗

(nrow( sim .AR1. pars )/ (nrow( sim .AR1. pars )−1)))
params .AR1 <− c ( b1 , b2 , b int1 , b int2 , 0 . 7 )

sim .AR1. pars . t <− numeric (5 )

sim .AR1. pars . pvalue <− numeric (5 )

for ( i in 1 : 5){
sim .AR1. pars . t [ i ] <−
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sqrt (nrow( sim .AR1. pars ) )∗ ( sim . s o l$par [ i ] −
params .AR1[ i ] ) /sim .AR1. pars . sd [ i ]

sim .AR1. pars . pvalue [ i ] <− 2∗pt(−abs ( sim .AR1. pars . t [ i ] ) ,

df = nrow( sim .AR1. pars ) )

}
sim .AR1. pars . table <− rbind ( sim . s o l$par , sim .AR1. pars . sd ,

sim .AR1. pars . t , sim .AR1. pars . pvalue )

round( sim .AR1. pars . table , 4)

# P−va l u e s f o r CNL #

sim .CNL. pars <− c ( 3 . 8311 , −0.6874 , 2 .0603 , 3 .3611) # From SAS

sim .CNL. pars . sd <− c ( 0 . 6754 , 0 .1295 , 0 .6205 , 0 .7577) # From SAS

params .CNL <− c ( b1 , b2 , b int1 , b in t2 )

sim .CNL. pars . t <− numeric (4 )

sim .CNL. pars . pvalue <− numeric (4 )

for ( i in 1 : 4){
sim .CNL. pars . t [ i ] <− ( sim .CNL. pars [ i ] − params .CNL[ i ] ) /

sim .CNL. pars . sd [ i ]

sim .CNL. pars . pvalue [ i ] <− 2∗pt(−abs ( sim .CNL. pars . t [ i ] ) ,

df = 900)

}
sim .CNL. pars . table <− rbind ( sim .CNL. pars , sim .CNL. pars . sd ,

sim .CNL. pars . t , sim .CNL. pars . pvalue )

round( sim .CNL. pars . table , 4)
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