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ABSTRACT 
 

POTENTIAL IMPACTS OF CLIMATE CHANGE ON PHOTOCHEMISTRY                          
OF ZOSTERA MARINA L. 

 
Billur Celebi 

Old Dominion University, 2016 
Director: Dr. Richard C. Zimmerman 

 

 

Seagrasses account for approximately 10% of the ocean’s total carbon storage, although 

photosynthesis of seagrasses is carbon limited at today’s oceanic pH.  Therefore, increasing 

atmospheric CO2 concentration, which results in ocean acidification/carbonation, is predicted to 

have a positive impact on seagrass productivity.  Previous studies have confirmed the positive 

influence of increasing CO2 on photosynthesis and survival of the temperate eelgrass Zostera 

marina L., but the acclimation of photoprotective mechanisms in this context has not been 

characterized.  This study aimed to quantify the long-term impacts of ocean acidification on 

photochemical control mechanisms that promote photosynthesis while simultaneously 

protecting eelgrass from photodamage.  Eelgrass were grown in controlled outdoor aquarium 

tanks at different aqueous CO2 concentrations ranging from ~50 to ~2100 μM from May 2013 to 

October 2014, and compared for differences in optical properties and photochemistry.  Even 

with daily and seasonal variations of temperature and light, CO2 enrichment consistently 

increased plant size, leaf thickness and chlorophyll use efficiency, and decreased pigment 

content and the package effect while maintaining similar light harvesting efficiency.  These CO2 

responses resembled high light acclimation suggesting a common photosynthetic sensory 

function, such as redox regulation, controls long-term acclimation of leaf morphology.  

Laboratory incubations resolved this mutual regulation of redox state via carbon and light 

availability, by measuring O2 production, total CO2 uptake and fluorescence of the acclimated 

leaves.  The morphological acclimations due to CO2 enrichment were facilitated by improved 



 

 

photosynthetic capacity.  Increasing CO2 availability, relative to oxygen concentrations, 

maximized chlorophyll specific photosynthesis to its physiological limits at pH 6.2 by minimizing 

photorespiration, and increased the light requirement to saturate photosynthesis.  The 

instantaneous increase of photosynthesis up to 8 fold reduced the role of alternative electron 

pathways and non-photochemical quenching for photoprotection, therefore increasing quantum 

yield of oxygen production.  These findings explained how seagrasses resist photodamage in 

shallow high light environments, while maintaining long daily period of light-saturated 

photosynthesis to compensate carbon limitation and sustain growth.  The quasi-mechanistic 

models generated by this study provide a pathway for including the photoprotection and 

photoacclimation processes in understanding the dynamic response of seagrasses to fluctuating 

coastal environments and climate change. 
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CHAPTER I 

 

INTRODUCTION  

Background 

Climate change, and its acceleration by anthropogenic activity, alters the biogeochemistry 

of seawater which forces organisms and ecosystems to acclimate and/or adapt to these new 

conditions.  Photosynthesis is one of the important processes impacted by the changes in 

ocean biogeochemistry due to eutrophication, ocean acidification and warming.  The rate of this 

important energy conversion process is dependent mostly on light, temperature and inorganic 

nutrients including CO2.  While eutrophication increases available nutrients, it stimulates the 

growth of nuisance algae that decrease light penetration into the bottom, transferring the 

productivity of coastal ecosystems from the benthos to the pelagic and leading to corresponding 

trophic cascades  (Burkholder et al., 2007).  Alternatively, warming and ocean acidification alter 

the chemical distribution of dissolved inorganic carbon (DIC) in the water.  The uptake of 

increasing atmospheric CO2 by oceans lowers ocean pH and increases carbon-limited 

photosynthetic rates of some aquatic organisms (Doney et al., 2009b).  

Numerous studies have examined the impact of global warming and increasing CO2 

concentration on the physiology and ecology of terrestrial plants (Woodward, 2002).  In 

comparison, long term impacts of the simultaneous effects of warming and ocean acidification 

on marine primary producers are less well understood.  Many calcifying organisms are affected 

negatively by ocean acidification (Doney et al., 2009b) but photosynthetic rates of phytoplankton 

show variable responses to increasing CO2 concentration (Doney et al., 2009a).  In contrast, 

photosynthetic rates of a variety of seagrass species examined for short time period seem to 

benefit from ocean acidification (Durako, 1993; Invers et al., 2001; Jiang et al., 2010), which 

implies their photosynthesis is carbon limited in the modern ocean (Beer and Koch, 1996; 
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Zimmerman et al., 1997).  The few long term studies linked the positive influence of [CO2] to 

overall growth parameters such as shoot, root and seed production rates of eelgrass 

(Zimmerman et al., 1997; Palacios and Zimmerman, 2007).  Whether seagrasses will be real 

winners in the future hot climate requires additional information on the simultaneous impacts of 

[CO2], light and temperature on physiological acclimation and growth rates that can ultimately be 

scaled to population level responses (Short and Neckles, 1999; Touchette and Burkholder, 

2000).  

Seagrasses have adapted to the marine environment through morphological and 

physiological changes from their terrestrial monocotyledon origins (Larkum et al., 2006b).  Some 

of these adaptations play key roles in their differential photosynthetic responses from other 

aquatic photosynthetic organisms.  Seagrasses originated 75 to 100 MYA in a high CO2 

atmosphere, which contrasts with today’s conditions in coastal environments, and nutrient rich 

flooded sediments (Den Hartog, 1979; Hemminga and Duarte, 2000).  Eutrophication of shallow 

coastal environments causes photosynthetic competitors, namely algae, to bloom (Burkholder et 

al., 2007).  Algae have also more efficient mechanisms for uptake of inorganic carbon (Aizawa 

and Miyachi, 1986; Raven and Johnston, 1991).  The high density of algae alters both the 

quantity and quality of photosynthetically active radiation (PAR) reaching the seagrass canopy 

(Cummings and Zimmerman, 2003; Ralph et al., 2007; Vaudrey et al., 2010).  The availability of 

light may also be reduced by suspended non-algal particles (Zimmerman et al., 2015).  There 

are many in-situ studies confirming the strong correlation between the light availability and 

abundance of seagrasses (Zimmerman et al., 1991; Zimmerman, 2006; Krause-Jensen et al., 

2011).  Therefore over long term the growth and depth distribution of seagrasses is often light 

limited (Duarte, 1991).  

Attainment of net positive growth rates, either in terms of shoot density or above and below-

ground biomass, depend on the metabolic carbon balance and the availability of organic carbon 
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reserves to support growth and proliferation.  The size of the internal sugar pool is directly 

related to net carbon assimilation which relies on the ratio of photosynthesis to respiration (P:R).  

Rates of these biochemical processes depend, to a first order, on the physiological status of the 

tissue (e.g., age, pigment concentration, enzyme concentration etc.) and then on the 

environmental conditions such as the substrate concentration (CO2 for photosynthesis, O2 for 

respiration), temperature and light.  Therefore, seasonal changes in growth rates result from the 

combination of daily - even hourly - physiological constraints on C-uptake and storage, N-

assimilation and photochemistry of individual leaves (Boston et al., 1989).  

Experimental manipulations revealed that the instantaneous rate of seagrass 

photosynthesis is carbon limited in modern ocean pH ranges (Zimmerman et al., 1997; Invers et 

al., 2001).  The C-limitation is related to the rate of CO2 supply for the dark reaction of 

photosynthesis catalyzed by Ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco).  

However, Rubisco catalyzes both the carboxylation and oxygenation of ribulose-1,5-

bisphosphate in a competitive reaction process that depends on the relative concentrations of 

CO2 and O2.  The oxygenase reaction reduces the net photosynthetic capacity of many plants. 

In terrestrial plants, carboxylation exceeds oxygenation by about 4:1 at ambient levels of [CO2] 

and [O2] but the ratio is only 2:1 to 3:1 for aquatic species (Raven, 1984).  Increasing 

atmospheric CO2 should thus increase the effective CO2:O2 ratio in a way that increasingly 

favors carboxylation over oxidation, potentially increasing the net photosynthetic potential of 

many plants, including aquatic autotrophs.  

CO2 is one of the three forms (CO2, HCO3
- and CO3

-2) of dissolved inorganic carbon (DIC) 

in seawater (Emerson and Hedges, 2008; Doney et al., 2009b).  At modern ocean pH levels, the 

concentration of dissolved CO2 is only 1% of total DIC, yet it is the only form of DIC Rubisco 

reacts with.  Accumulation of CO2 from seawater by eukaryotic marine phytoplankton and 

marine angiosperms is limited by the diffusion rate and dehydration kinetics of bicarbonate to 
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CO2 (Reinfelder, 2011).  Dissolved CO2 enters the cell through simple diffusion whose rates 

depend on the flow, temperature and concentration gradient in the boundary layer along the leaf 

surface.  Various plants, many algae, and photosynthetic bacteria have evolved mechanisms 

that increase the flux of CO2 to Rubisco, including C4 carbon fixation, crassulacean acid 

metabolism (CAM), and the ability to take up other inorganic forms of carbon (Boston et al., 

1989).  The biophysics and biochemistry of uptake dependent carbon concentrating 

mechanisms (CCMs) vary within and among the dominant groups of eukaryotic marine 

phytoplankton (Reinfelder, 2011).  CCMs may include the activity of external and/or intracellular 

carbonic anhydrases (CA) (responsible for interconversion of HCO3
- and CO2), HCO3

− transport, 

and possibly a C4-like carbon pump although conclusive proof for this pathway in aquatic 

autotrophs remains elusive (Badger and Price, 1994).  In general, the efficiency of CCMs is low 

for coccolithophores, moderate for dinoflagellates and high for diatoms.  For algae, the 

expression of CCMs can be regulated by environmental factors (Beer, 1996; Beardall and 

Giordano, 2002), including photon flux and the availability of dissolved CO2 in the surrounding 

medium.  Compared to marina algae, seagrasses have much lower CCM activity (Raven et al., 

2002; Raven et al., 2011). 

Low activity of CCMs causes the photosynthesis of seagrasses to be carbon-limited (Björk 

et al., 1997; Touchette and Burkholder, 2000).  Consequently, their photosynthesis saturates at 

relatively low irradiances (Ek).  However, achieving maximum photosynthesis rates (Pmax) at low 

irradiances is often interpreted as a characteristic of shade adapted plants (Larkum 2006).  This 

kind of interpretation of P vs. E curve would categorize seagrasses as shade adapted plants.  

Yet, experiments by Zimmerman et al.(1997) showed that the Pmax of eelgrass can be increased 

under high [CO2] without affecting the efficiency of light-limited photosynthesis (), so that their 

Ek value increases instantaneously with Pmax.  True shade adaptation typically involves an 

increase in photosynthetic efficiency under low light conditions (steeper initial slope, ) but not 
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necessarily a change in Pmax.  Thus, the low Ek values of seagrasses are a result of carbon 

limited photosynthesis rather than shade acclimation.  

Because carbon limitation severely restricts instantaneous photosynthetic capacity (i.e. 

Pmax), even in the brightest light environments, seagrasses require long average daily period of 

irradiance-saturated photosynthesis (Hsat) to maintain positive carbon balance (׬ P:R
24hr

0
  ≥ 1), 

limiting them to shallow water environments with high irradiances.  These high light 

environments should make seagrass leaves vulnerable to photoinhibition, i.e. the irreversible 

photooxidative destruction of the photosynthetic apparatus, throughout much of the day when 

photosynthesis is light saturated but CO2-limited.  Yet, C-limited seagrasses thrive in high light 

environments without experiencing significant photodamage.  This adaptation might signify 

active roles of photoprotective mechanisms in seagrasses which still have not been well 

characterized.  Known photoprotective mechanisms in seagrasses include short term energy 

dissipation through the xanthophyll cycle (Ralph et al., 2002) and photoacclimation by 

adjustment of light harvesting pigment concentrations (Cummings and Zimmerman, 2003).  

During the xanthophyll cycle the epoxide groups from xanthophylls (e.g. violaxanthin, 

antheraxanthin, diadinoxanthin) are enzymatically removed to create so-called de-epoxidised 

xanthophylls (e.g. diatoxanthin, zeaxanthin).  These reactions play a key role in dissipating 

captured solar energy within light harvesting antenna proteins by non-photochemical quenching; 

therefore reducing the flow of excited electrons to the photosynthetic reaction centers (Demmig-

Adams et al., 2004).  Non-photochemical quenching (NPQ; either through the xanthophyll cycle 

or fluorescence) is one of the main ways of protecting against photoinhibition in most plant 

systems.  Therefore, understanding physiological feedback mechanisms and environmental 

factors controlling CCM activity, light requirements and photoprotection can help to identify this 

important physiological regulation. 
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Beside the diverse influence of photosynthetic routes, the P:R ratio is also altered by 

changing respiration rates.  There are two types of respiration: 1) mitochondrial dark respiration 

which generates chemical energy for cellular metabolism and 2) photorespiration, which is light 

dependent, occurs in the chloroplast and peroxisome, and represents a ‘drain’ on 

photosynthetic energy production with no apparent physiological benefit.  In most studies 

comparing P:R ratios, the respiration term accounts only for dark respiration because 

photorespiration rate is inseparably integrated into the light-dependent photosynthesis rate 

measurements.  Like all plants, dark respiration of seagrasses increases with increasing 

temperature and O2 concentration (Downton et al., 1976; Zimmerman et al., 1989; Hemminga 

and Duarte, 2000).  Indeed, respiration rates respond more dramatically to temperature than 

light-saturated but carbon-limited photosynthetic rates (Q10 of respiration ≥ Q10 of 

photosynthesis; at pH ≈ 8.1).  This imbalanced metabolic response is at least partially why 

eelgrass (Zostera marina L.) is predicted to do poorly as the climate warms (Evans et al., 1986; 

Moore and Jarvis, 2008; Moore et al., 2012) but projected CO2 increase may offset some of the 

negative effects of temperature stress by stimulating photosynthesis (Zimmerman et al., 2015; 

Zimmerman et al., 2016).  However, in addition to increasing dark respiration rates, high O2 

concentrations directly limit photosynthetic rates under carbon limitation by inducing 

photorespiration (Raven, 1991; Ogren, 2003).  

Photorespiration is due to the oxygenase activity of Rubisco, whose end products are 

phosphoglycolate and 3-phosphoglycerate (Douce and Heldt, 2004).  Phosphoglycolate is 

recycled through a sequence of reactions within the peroxisome and mitochondria, yielding 

glycine and serine, which are eventually converted to CO2 and 3-phosphoglycerate that can 

reenter the Calvin cycle. These reactions in the glycollate pathway consume both NADH2 and 

ATP, thereby decreasing the yield of photosynthetic energy available to the plant.  Since 



7 

 

 

 

photorespiration consumes energy and reduces the glucose formation rate without a clear 

metabolic benefit, it appears to be a puzzling process (Maurino and Peterhansel, 2010).   

Given that O2 competes reversibly with CO2 for the same active site of Rubisco, increasing 

the CO2:O2 ratio will enhance carbon fixation and therefore reduce carbon limitation.  This dual 

function of the Rubisco may result in zero net carbon fixation of healthy leaves under high light 

conditions when the ratio of CO2:O2 reaches a threshold at which oxygenation overcomes 

carboxylation (Caemmerer and Quick, 2004).  Atmospheric concentrations of CO2 and O2 have 

changed repeatedly throughout Earth’s history, and many plants have evolved CCMs that 

improve photosynthetic performance under low CO2 availability (Raven et al., 2008; Raven et 

al., 2011).  Therefore, ocean acidification may play a particularly important role in down 

regulating photorespiration and significantly improving photosynthetic performance of 

seagrasses.  

To date, most studies of seagrass metabolism report gross photosynthesis as the sum of 

net photosynthesis and dark respiration, and therefore do not account separately for the 

photorespiration hidden in the net photosynthesis measured in the light.  Indeed it is difficult to 

measure real gross photosynthesis of C3 plants separately from photorespiration during light 

measurements of photosynthetic rates (Sharkey, 1988).  Seagrasses are C3 plants (Beer and 

Wetzel, 1982) and there is evidence that they perform photorespiration (Beer, 1989) but not 

enough is known about this potentially important process to quantify its significance in terms of 

overall photosynthetic performance.  It is, in fact, possible that photorespiration may serve a 

photoprotective mechanism to maintain electron transport during periods of light saturated (i.e. 

carbon limited) photosynthesis (Ort and Baker, 2002).  There is also recent evidence that 

photorespiration might play a role in nitrate assimilation (Rachmilevitch et al., 2004) and 

influence multiple signaling pathways by contributing to cellular redox homeostasis (Foyer et al., 

2009).  
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A mechanistic understanding of both carbon concentrating and photoprotective 

mechanisms of seagrasses may reveal how they survive in high light environments in a low CO2 

world, and their response to a changing climate.  This study aims 1) to investigate the photo-

protective mechanisms of the temperate eelgrass (Zostera marina L.) and assess their relative 

importance while simulating future climate conditions and 2) to clarify the link between the 

environmental control of photosynthesis and regulation of carbon metabolism.  

 

Objectives of the study 

The regulation of photosynthesis in seagrasses seems to be contradictory: although 

photosynthesis is severely carbon limited at high irradiances, seagrasses require high light for 

growth.  This apparent conflict should make seagrass photosystems extremely vulnerable to 

photoinhibitory damage, but this is apparently not the case.  This study will attempt to resolve 

the puzzle of limitation of photosynthesis in eelgrass with respect to light, temperature and CO2 

availability and translate that understanding to the dynamics of metabolic carbon balance that 

determines the ecological success of seagrasses in nature.   The work will address the following 

specific questions: 

Chapter II:  Long term regulation of light harvesting in Eelgrass, Zostera marina L., in 

response to ocean carbonation 

 Does leaf pigment composition change with increasing CO2?  

 Does CO2 alter the response of photosynthetic machinery to light and temperature? 

 What are the consequences of increasing CO2 for light capture efficiency? 

Chapter III: Photorespiration in Eelgrass (Zostera marina L.): a photoprotection mechanism 

for survival in a CO2-limited world 

 (How much) Do photosynthesis, photorespiration and fluorescence and/or xanthophyll 

cycle increase with increasing light and CO2? 
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 Do the photoprotective mechanisms alter the P:R ratio? 

 Do the photoprotective mechanisms vary among leaves adapted to grow under different 

environmental conditions? 

Chapter IV: Regulation of photosynthetic control in eelgrass in response to changing 

photorespiratory conditions due to ocean acidification 

 Do increasing temperature and CO2/O2 ratio alter the ratio of photorespiration to 

photosynthesis? 

 Does the seawater CO2/O2 ratio regulate the DIC uptake, oxygen production and non-

photochemical quenching in eelgrass? 

 

Significance 

Changing environmental conditions can alter the recovery and stress responses of coastal 

ecosystems.  Seagrasses play an important role in coastal biogeochemical cycles and merit the 

attention of managers and scientists under global change scenarios.  Their population growth 

and productivity may differ from their photosynthetic counterparts, namely marine algae, due to 

their evolutionary adaptations.  Quantification and a mechanistic understanding of their 

photobiology and physiological processes is needed to predict their responses in future climatic 

conditions.  Major drivers of change in marine environments are warming and acidification.  This 

research project focusing on both aspects of the changes simultaneously will enable us to 

predict the physiological and ecological benefits and costs of climate change on eelgrass 

populations in the Chesapeake Bay region where they are at the southern limit of their 

geographical distribution along the Atlantic coast.    
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CHAPTER II 

 

LONG TERM REGULATION OF LIGHT HARVESTING IN EELGRASS, 

ZOSTERA MARINA L., IN RESPONSE TO OCEAN CARBONATION 

Introduction 

Although photosynthetic organisms are fundamentally dependent on solar energy, light 

induces stress when the ratio of photon flux to photosynthesis is high, which can occur either 

with increasing incident light or decreasing photosynthesis in response to decreased 

temperature and/or low CO2 (Demmig-Adams and Adams, 1992).  Whenever light energy 

absorption exceeds the photochemical utilization of that energy through photosynthesis, the 

excess energy must be dissipated through photoprotective mechanisms, such as thermal 

dissipation and alternative electron flow, to prevent damage to the photosynthetic unit.  These 

flexible and fast-responding photoprotective mechanisms allow plants to cope with fluctuating 

light environments (short term acclimation, <1 hr), but on a longer time scale sustained 

environmental changes trigger acclimation responses that modify the photosynthetic machinery 

via changes in gene expression and protein synthesis (Eberhard et al., 2008).  Acclimation to 

high light includes increasing the density of photosynthetic units, electron transport carriers and 

Rubisco (Walters, 2005), which may increase the capacity of alternative electron transport 

reactions in which electron acceptors other than CO2 become important, such as O2 leading to 

photorespiration and/or the Mehler reaction (Niyogi, 2000).  Nitrate reduction also uses 

electrons from photosystems as well, although not at high rates.  All these pathways increase 

the trans-thylakoid pH gradient within the chloroplast that triggers thermal energy dissipation via 

the xanthophyll cycle (Demmig-Adams and Adams, 1992).  For this reason, high light 

acclimated plants typically have larger pools of xanthophyll cycle components (i.e., more 
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carotenoids) to dissipate excess energy for protection.  For example, sun adapted crop plants 

use about 25% of absorbed light for photosynthesis, 19% for photorespiration and the remaining 

56% of the absorbed light energy is dissipated by non-photochemical processes (Demmig-

Adams and Adams, 1992).  In contrast, shade-acclimated leaves experience photodamage at 

lower light levels than sun-acclimated plants because of low capacity of electron transport and 

non-photochemical energy dissipation. 

Relative to other marine photosynthetic organisms, seagrasses have high light 

requirements for survival (Duarte, 1991; Lee et al., 2007).  The paradigm of light limited 

distribution is acknowledged by many authors studying the impacts of environmental 

parameters on seagrass survival in natural conditions as well as in mesocosm studies 

(Dennison and Alberte, 1982; Dennison, 1987; Duarte, 1991; Alcoverro et al., 1999).  Unlike 

marine algae and phytoplankton, seagrasses possess fully functional roots and rhizomes that 

depend on leaf photosynthesis for reduced carbon (Smith et al., 1988; Zimmerman et al., 1989).  

This additional 10% metabolic demand (Zimmerman et al., 2015) requires either high maximum 

photosynthetic capacity or an extended period of light-saturated photosynthesis at lower 

maximum capacity.  Light, as the primarily driver of photosynthesis, therefore becomes, an 

important controlling factor for growth, even when photosynthetic capacity is limited by CO2 

availability.  Instantaneous increase in photosynthesis with increasing CO2 (Zimmerman et al., 

1997; Invers et al., 2001) shows that the seagrass photosynthesis, especially in eelgrass, 

typically operates well below its physiological capacity, requiring long periods of saturating light 

level to satisfy the metabolic demand of above and belowground biomass, especially under heat 

stress (McPherson et.al. 2015, Zimmerman et.al. 2015).  This requirement for long daily periods 

of light saturated photosynthesis, resulting in high light requirements for seagrass survival, limits 

the distribution of seagrasses to shallow depths. 
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In contrast, the optical properties of seagrass leaves make them nearly as efficient as algae 

in terms of light harvesting (Cummings and Zimmerman, 2003), with numerous morphological 

adaptations to harvest light energy effectively in submerged aquatic environments and 

acclimate to variable light conditions (Kirk, 1994).  Structural adaptations include pigmentation 

of the epidermal layer only, while the inner mesophyll layer is populated by non-pigmented cells.  

These non-pigmented cells surround the lacunar space that is important for leaf buoyancy and 

O2 transfer to belowground tissues.  Therefore, any increase in leaf thickness associated with 

non-pigmented layers might play an important role for turgor pressure and buoyancy 

adjustments under variable salinity conditions while not contributing to light harvesting.  

Adjustments of light harvesting usually occur via the changes of pigment concentrations and/or 

their ratios (Falkowski and Raven, 2007).  Accessory carotenoid pigments present in 

seagrasses serve photoprotection purposes via the xanthophyll cycle (Ralph et al., 2002).  

Seagrasses show a typical photoacclimation response of increasing pigment concentration 

under light limitation (Cummings and Zimmerman, 2003), similar to unicellular algae and 

macrophytes, but the effectiveness of this strategy is limited by the package effect (Kirk, 1994).  

Previous studies about the package effect in seagrasses highlighted the importance of 

increasing pigment content on the optical cross section, a measure of chlorophyll use efficiency, 

yet having relatively constant light harvesting efficiencies in their native light environment 

(Cummings and Zimmerman, 2003; Enríquez, 2005).  

Seagrasses are highly affected by changes in environmental conditions that vary on both 

temporal and spatial scales (Orth et al., 2006a; Koch et al., 2009).  In addition to natural 

fluctuations, seagrass ecosystems must acclimate/adapt to long-term changes induced by the 

anthropogenic activities such as eutrophication, climate warming and ocean acidification.  

Eutrophication reduces the light quantity and quality in the water column, and alters sediment 

biogeochemistry in ways that can limit seagrass growth (Burkholder et al., 2007).  Although 
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climate warming resulting from anthropogenic increases in atmospheric CO2 is projected to 

negatively affect seagrasses, particularly those growing near their equatorial distribution limits 

(Moore and Jarvis, 2008; Moore et al., 2012), increasing CO2 availability resulting from ocean 

acidification/carbonation (the other CO2 effect) may help offset the negative impact of increasing 

temperature by increasing light-saturated photosynthetic capacity of seagrasses (Palacios and 

Zimmerman, 2007; Koch et al., 2013; Zimmerman et al., 2016).  Since high light requirements of 

sesagrasses result from the carbon limitation of photosynthesis rather than a limitation in photon 

capture efficiency, increasing photosynthesis due to ocean acidification/carbonation may impact 

light harvesting mechanisms. This photoacclimation and its consequences to the overall 

performance of seagrasses are unresolved.  The purpose of this study was to assess the long-

term photoacclimation of eelgrass leaves to ocean acidification via adjustments of pigment 

content and its consequences on leaf optical properties.  The specific objectives were to 1) 

examine the combined effects of CO2, light and temperature on the light harvesting efficiency, 2) 

link the changes in light harvesting to the photosynthetic capacity and eventually to the plant 

performance in terms of growth and survival, and 3) compare the performance under the same 

environmental conditions between long-term (15 months) CO2 acclimated eelgrass plants and 

short-term (3 months) acclimated plants to evaluate the significance of plant’s history in 

acclimation strategies.   

 

Materials and Methods 

The experimental facility 

This experiment was conducted using an outdoor aquatic climate research facility (ACRF) 

on the shore of Owls Creek at the Virginia Aquarium, Virginia Beach VA, USA (Figure 1).   
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Figure 1.  The Climate Change Experimental Facility at the Virginia Aquarium and Marine 

Science Center showing: 20 aquaria with window screens and sensor control units, water head 

tank circulating seawater from Owls Creek and CO2 source from storage tank. Small photo in 

(A) shows trays with transplanted seagrass in each aquaria.       
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Owls creek is a small polyhaline estuary located near the southern limit of eelgrass distribution 

on the Virginia coast just south of the Chesapeake Bay.  Salinity fluctuates from 20 to 30 (PSS) 

as a function of tidal exchange with the adjacent waters of the Mid-Atlantic Bight and local storm 

runoff from the small coastal watershed (Sisson et al., 2010).  Concentrations of dissolved 

inorganic nutrients (N  10 µM, P  1  µM) are consistently higher than the concentrations 

required to saturate eelgrass growth based on previous work by Zimmerman et al. (1987).  

Raw water from Owls Creek was pumped continuously into a 70 m3 head tank and gravity-

fed into the bottom of 20 fiberglass open top aquaria (3 m3 each) at one end of each aquarium.  

An overflow standpipe at the opposite end of each aquarium provided drainage and kept the 

water depth at 1 m.  The continuous flow system provided a volume turnover rate of 10 day-1 in 

each aquarium.  All aquaria were covered with a single layer of neutral density plastic window 

screen that reduced the incident irradiance by 40% to simulate their natural environment and 

protect the leaves from photodamage.  These screens were removed during February and 

March 2014 to prevent snow accumulation.  All aquaria were bubbled with compressed air 

delivered through 2 m lengths of Pentair Bio-Weave diffuser hose to enhance turbulent mixing 

and prevent boundary layer limitation of leaf metabolism. 

Beverage-grade CO2 was injected from a cryogenic storage tank into the diffuser hoses 

through solenoid valves operated by pH controllers (Eutech Alpha pH 190) poised at a gradient 

of pH values (4 aquaria at each pH) ranging from ambient (no CO2 addition, pH  7.7[CO2(aq)]  

50 µM) to pH 6.0 ([CO2(aq)] µM).  pH electrodes were calibrated weekly using NBS 

buffers.  The alkalinity of water samples collected periodically from the aquaria was determined 

by automatic titration (Gieskes and Rogers, 1973) and regressed against salinity (r2=0.86) to 

provide a continuous record of alkalinity from measured salinity.  Speciation of dissolved 

inorganic carbon for each aquarium was calculated from measured values of temperature, pH, 

and salinity/alkalinity using CO2SYS (van Heuven et al., 2011) and the NBS pH scale; CO2 



16 

 

 

 

constants: K1, K2 from Mehrbach et al. (1973) refit by Dickson and Millero,(1987); KSO4 source 

from Dickson (1990) and total boron source from Uppstrom (1974).  Although pH values below 

7.5 exceed the range of ocean acidification predicted by the IPCC through the end of the 21st 

century, estuarine systems experience a much wider, and more temporally variable range in 

pH/CO2 than the open ocean, incorporating much of the experimental range used here (Duarte 

et al., 2013; Waldbusser and Salisbury, 2014; Ruesink et al., 2015).  Further, this range 

provides a useful gradient in CO2 availability required to determine functional responses (slopes 

& intercepts) necessary for predicting the future performance of eelgrass in a high CO2 world. 

The aquaria were exposed to daily and seasonal fluctuations of ambient temperature, 

irradiance and salinity.  The temperature was measured in each aquarium using Omega 44005 

precision thermistors and custom voltage divider circuits calibrated to a precision of 0.1° C.  

Sunlight was measured as photosynthetically active radiation (PAR, in air) using a factory-

calibrated LI-COR LI190sb plane irradiance sensor (µmol photons m-2 s-1) placed 3 m above the 

aquaria.  Salinity was measured using a factory calibrated SeaBird SBE-37 MicroCAT placed in 

one of the aquaria.  All instrument readings were averaged for 1 minute and recorded at 10-

minute intervals using a National Instruments data acquisition system controlled by custom 

software written in LabView running under Windows XP.  Aquaria, electronic sensors and plants 

were cleaned weekly to control biofilm accumulation. 

The instantaneous irradiance measures were integrated to calculate the in-air and shade 

corrected (40% reduction) daily total flux (mol quanta m-2 d-1).  Additionally, the daily Hsat period, 

representing the number of hours per day when instantaneous irradiance exceeded the 

photosynthesis-saturating irradiance (Ek) values of 200 and 400 μmol quanta m-2 s-1, was 

calculated.  These Ek values were chosen based on photosynthesis versus EPAR response 

curves of eelgrass leaves grown in ambient and CO2 enriched tanks.  
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Source Population 

Eelgrass shoots, with intact roots and rhizomes, were collected by SCUBA divers using 

hand tools in May 2013 from a restored eelgrass meadow in South Bay, a coastal lagoon near 

the southern tip of the DelMarVa (USA) Peninsula (Orth et al., 2006b).  Shoots were transferred 

the same day to the Aquarium Facility in coolers filled with seawater.  Approximately 50 

vegetative shoots with intact roots and rhizomes were carefully transplanted into plastic trays, 

filled with sediment collected from Elizabeth River, VA.  Five trays were placed into each 

aquarium randomly.  All aquaria were kept at ambient pH (no CO2 addition) for 1 month to 

permit the recovery of shoots from transplantation shock, and to compare transplant 

performance across the aquaria.  CO2 enrichment of the experimental aquaria was initiated in 

June 2013 and maintained through October 2014 (18 months covering two summer growth 

periods).  Additional eelgrass shoots were collected from the same location in April 2014.  For 

each tank, 2 separate trays of these new plants (i.e. 2nd-year transplants) were added next to 

the acclimated shoots from 2013 (i.e. 1st-year transplants).  These shoots were immediately 

exposed to CO2 enrichment.  

 

Leaf optical properties (LOPs) 

For the analysis of leaf optical properties, one 2nd youngest leaf per tank from both 1st year 

and 2nd-year transplants were collected monthly.  Approximately 5 cm long segments, cut 1 cm 

above the basal meristem, were cleaned of epiphytes by wiping with a laboratory tissue.  

Lengths and widths of each segment were measured using a digital caliper.  Fresh weights 

were measured using an analytical balance.  Area specific leaf density was calculated as the 

ratio of mass to leaf area (mg cm-2, Table 1).  Spectral absorbance [D(λ)] and reflectance [(λ)] 

of intact leaf segments within the range 350-750 nm were measured in Shimadzu UV 2101PC 

scanning spectrophotometer fitted with an integrating sphere:  
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 A(750)= ቂ 1 – 10-D(750)  ቃ – ⍴(750)  (1) 

Photosynthetic leaf absorptances [AL(λ)] were calculated by subtracting the non-photosynthetic 

absorptances at 750 nm [A(750)] (Kirk, 1994).   

 AL(λ) = [ 1 – 10-D(λ)  ] – ⍴(λ) – A(750) (2) 

The photosynthetic absorptances were then used to calculate the leaf-specific photosynthetic 

absorption coefficients [aL(λ)] and the optical cross sections [a*L(λ)].   

 aL(λ) = – ln [ 1 – AL(λ) ] (3) 

 a*L(λ) = aL(λ) / [Chl a] (4) 

Photosynthetic and photoprotective pigments were extracted by homogenizing the leaf 

segments in a glass tissue grinder with ice-cold 80% acetone.  Concentrations of chlorophyll a 

(Chl-a), chlorophyll b (Chl-b) and total carotenoids (TCar) were calculated using the extinction 

coefficients of Lichtenthaler and Wellburn (1983), except for the first month of sampling.  In May 

2013, only photosynthetic pigments were extracted using 90% acetone and calculated using the 

extinction coefficients of Jeffrey and Humphrey (1975).   

  



19 

 

 

 

Table 1. List of symbols, their definition and dimensions. Parenthetic notation (λ) denotes 

wavelength dependence of the variable. 

Symbol 
Definition Dimensions 

FW Fresh Weight mg 

LA Leaf Area cm2 

Chl-a Chlorophyll a µg cm-2 or mg g-1 FW 

Chl-b Chlorophyll b µg cm-2 or mg g-1 FW 

TChl Total Chlorophyll µg cm-2 or mg g-1 FW 

TCar Total Carotenoid µg cm-2 or mg g-1 FW 

AL(λ) Leaf absorptance Dimensionless 

D(λ) Leaf absorbance Dimensionless 

(λ) Leaf reflectance Dimensionless 

aL(λ) 
leaf-specific absorption 
coefficient 

Dimensionless 

aL*(λ) Optical cross-section m2 g-1 Chl-a 

λ Wavelength nm 
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Statistical analysis 

Statistical analyses were performed with IBM SPSS Statistics 22, MATLAB R2014b and 

SigmaPlot 12.5 software packages.  Environmental data sampled at high frequency were 

converted to daily, monthly and total (18 month) averages to match the sampling frequency of 

leaf optical properties for cross-correlation analyses.  The effects of CO2 enrichment were 

analyzed by a repeated measures general linear model (SPSS) with time as the fixed factor 

(within subjects) and pH as the covariate (between subjects).  For the comparison of long-term 

trends, pH was considered as the main covariate because the levels of this parameter were 

maintained constant throughout the 18 months.  Aquaria were considered repeated subjects 

because leaf samples were collected from each aquarium every month.  Degrees of freedom 

were adjusted using the Greenhouse-Geisser Epsilon correction whenever error covariance 

matrices failed the sphericity assumption.  Additionally, the effect of CO2 on each leaf optical 

measure within each time level (month) was quantified by linear regression with respect to log 

[CO2].  These coefficient estimates for each month (i.e. monthly slopes) were compared using 

tests of within-subjects contrasts and categorized into 3 groups (high, mean and low) based on 

the deviation from a mean slope calculated for the overall CO2 effect. 

The simultaneous interacting effects of environmental parameters were analyzed using 

multiple linear regression models.  Leaf properties were regressed against environmental 

parameters averaged over the 2-week period preceding the sampling date, as 5 cm leaf 

segments used for measurements represented on average three to seven days old tissues 

during warm and cold seasons, respectively (based on monthly growth rates of leaves, sensu 

Zimmerman et al. (2016)).  This integrated time analysis accounted for the response time of the 

leaf properties and determined the relative significance of each environmental factor to drive the 

observed acclimations.  For each LOP, first a general multiple linear regression was performed 

against to all three environmental predictors, where data from all pH treatments were 
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aggregated.  Additionally, for each pH treatment, separate multiple linear regressions using the 

backward stepwise method were performed to differentiate the dominant environmental 

predictors among the different treatments.  Within each pH treatment, however, maintaining 

aquarium pH at constant values resulted in some temporal variation in [CO2] due to the 

dependency of CO2 solubility on temperature, as well as salinity.  Therefore, during these 

treatment specific multiple linear regression analysis, the collinearity statistics between CO2 and 

temperature were evaluated with precaution if the variance inflation factor (VIF) index of 

collinearity statistics exceeded the threshold value of 2 (Help IBM SPSS Statistics).  VIF 

quantifies the severity of multicollinearity in an ordinary least squares regression analysis.   

Finally, the responses of long-term acclimated plants (1st-year transplants) were compared 

to short term acclimated plants (2nd-year transplants) using a mixed linear model where the fixed 

factors were transplantation and time, and pH as a covariate.  

 

Results 

Variability in environmental parameters 

Aquarium pH averaged at 7.5 during the initial transplant recovery period prior to the onset 

of CO2 enrichment in June 2013 (Figure 2 A).  From June 2013 to October 2014, the daily 

average pH of the enriched treatments were consistent at 6.1±0.02, 6.5±0.04, 6.9±0.03, and 

7.4±0.04, confirming no overlap between the treatment levels.  The pH level of ambient 

treatments, which were not enriched with CO2, showed daily and seasonal variability 

representing the natural fluctuations in Owls creek due to both biological activity and weather 

related events.  In these aquaria, the pH ranged between 7.4 and 8.1 with an average of 

7.7±0.05 over 18 months.  In contrast, aqueous CO2 concentrations in all treatments varied 

simultaneously throughout the experimental period due to seasonal variability in salinity and 

temperature, though without an overlap among the treatments (Figure 2 B). The overall average 
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CO2(aq) for the different treatments were 55 ± 6, 107 ± 17, 371 ± 32, 823 ± 80 and 2121 ± 118 

µmol CO2 kg-1 SW during the enrichment period.  [CO2(aq)] was higher during the cold winter 

months in enriched aquaria, because decreasing temperature increases the solubility of CO2 at 

a constant pH.  In contrast, [CO2(aq)] was lower in the ambient aquaria during winter due to 

increased pH of the source water, from decreased respiratory activity in Owls creek ecosystem.   

Salinity was the same in all aquaria and influenced both by the oceanic tidal flux into the 

creek and freshwater drainage from the surrounding watershed (Figure 2 C).  Average salinity 

was 24 (PSS) during the experiment, with brief periods as low as 10 (PSS) during heavy rainfall 

events. Overall, monthly salinity averages were consistently higher than 20 (PSS), which is in 

agreement with the salinity zones eelgrass are distributed in the Chesapeake Bay (Batiuk et al., 

2000; Orth et al., 2010) and within the wide salinity tolerance range (6-35 pps) of this species 

globally (den Hartog, 1970; Hellblom and Björk, 1999).  
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Figure 2.  Environmental conditions during the experiment.  In (A) and (B) solid lines 

represent the average of daily mean values of 4 aquaria for each treatment while shaded area 

indicates the SE.  The CO2 enrichment started in June 2013 after the transplant recovery period.  

In (C) shaded area indicates maximum and minimum values.  Continuous salinity recording 

started in July 2013, prior to that average salinity value was used for CO2SYS calculations.  
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Both temperature and downwelling surface irradiance showed seasonal trends as well as 

daily patterns (Figure 3).  The seasonal time lag between temperature and light was estimated 

by cross-correlation.  The changes in light level preceded the temperature changes by 43 days 

(r =0.7).  Highest irradiances were observed during June in both years while the temperature 

was highest in July and August.  The seasonal amplitude of daily-integrated irradiances the 

eelgrasses experienced varied from 6 to 24 mol quanta m-2 d-1, with randomly scattered cloud 

effects (Figure 3 A).  The daily Hsat period based on Ek of 200 µmol quanta m-2 s-1 was 

consistently higher than 4 h d-1 reaching up to 9 h d-1 in summer months, which was important to 

compare the duration of photoprotection needed each day.  When Ek, was increased up to 400 

µmol quanta m-2 s-1  based on results presented in Chapter 3 and by McPherson et al. (2015), 

which showed Ek and Pmax increased with increasing CO2, then the Hsat period decreased below 

4 h between October and February.  Shorter duration of Hsat to sustain the same daily total 

photosynthesis (where Daily P = Hsat * Pmax) resulted from the higher maximum photosynthesis 

rates (Pmax) due to increased CO2 availability.  During these months, temperature decreased 

from 15°C to 2°C (Figure 3 B), the lowest temperature recorded during the experiment.  

Temperature ranged from 2°C in winter up to 30°C in summer.  The numbers of days with 

seawater temperature exceeding 25°C at least a 1 h per day were 97 d and 124 d, for 2013 and 

2014, respectively.  Long-term exposure to temperatures above the optimum 25°C induces a 

stress response in eelgrass, thus the heat stress period lasted 27 days longer during the 

summer of 2014.  The temperature was consistently lower than 25°C from October 2013 until 

May 2014. 
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Figure 3.  Environmental conditions during the experiment.  (A) Solid lines (on the 

secondary y-axis) show the hours (Hsat) each day the instantaneous light level exceeded the 

light level required to saturate photosynthesis (Ek).  (B) Symbols (on the secondary y-axis) show 

the hours each day the temperature was above 25°C.   
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Responses to CO2 Enrichment 

Plant size, a measure of the one-sided area of all leaves per shoot, increased linearly with 

log [CO2] after 2 months growth in the experimental aquaria (Figure 4 A).  This CO2 response, 

expressed as monthly slopes of plant size vs. log[CO2], remained consistently positive after July 

2013.  The largest plant sizes in all treatments (warm colors) were observed in fall 2013 and 

early summer 2014, which were also the months with highest response to CO2 enrichment as 

indicated by higher slope values.  These slopes in fall 2013 and summer 2014 corresponded to 

4 and 3 fold differences in plant size, respectively, between the highest CO2 enriched (i.e pH 

6.1) and ambient treatments.  In addition to more leaf area per shoot, the area specific leaf 

density (mg FW cm-2) increased logarithmically with CO2 treatment (Table 2).  The area-specific 

leaf density increased in all treatments during the hot months of both years (Figure 4 B, heat 

map) when the response to CO2 enrichment was enhanced as well.  The rate of logarithmic 

increase in area specific leaf density with available CO2 ranged from as low as 2 to maximum of 

10 mg FW cm-2 (logCO2)-1, with an overall average of 7 (solid line).  The positive CO2 effect was 

only negligible in 2 months, one being during the initial acclimation period to aquarium 

environment as expected (circle symbols).  The change in area specific leaf density had 

important consequences when pigment concentrations were normalized either to biomass for 

interpretation of metabolic acclimation or to area for interpretation of light harvesting 

acclimation.  All pigment measures, except Chl a:b, responded to CO2 enrichment significantly 

(Table 2).  Both area- and biomass-specific pigment concentrations decreased as CO2 

availability increased, indicated by consistent significant negative monthly slope values after the 

acclimation period (Figure 5 and Figure 6).  After 3 months of CO2 enrichment, the biomass-

specific total Chlorophyll (a + b) content of high CO2 treatments decreased to 35% of ambient 

treatment, even though they were exposed to the same light environment (Figure 5 A).  This 

difference in chlorophyll content among CO2 treatments was less pronounced when normalized 
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to leaf area, being as low as 55% of ambient treatments’ values (Figure 5 B).  In addition to 

stable CO2 response, chlorophyll content of all treatments increased during winter and 

decreased during summer months, resembling a classic high light photoacclimation, and were 

more obvious for biomass specific changes.  Chl a:b ratios also responded to seasonal changes 

in temperature and light but not to CO2 enrichment (Figure 5 C).  Similar to chlorophyll content, 

the negative CO2 response of total carotenoids, indicated by consistently significant negative 

monthly slopes, was more enhanced for biomass specific concentrations (Figure 6 A) than area 

specific estimates (Figure 6 B) (i.e. 60% vs. 40% reduction from ambient values).  However, 

total carotenoid content decreased less with increasing CO2 such that TCar:TChl ratios 

increased with increasing CO2, particularly during the winter of 2014 (Figure 6 C).  
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Table 2. General linear model repeated measures summary table.  Abbreviations are 

defined in Table 1.    

Measure Source Tests of effects 
Type III Sum 
of Squares df 

Mean 
Square F 

Sig. 

FW/LA pHavg between subjects  227.51 1.0 227.51 292.6 
<0.001 

  Error    14.00 18.0 0.78   
  

  Time within subjects  1311.3 14.0 93.66 5.36 
<0.001 

  Time * pHavg Sphericity Assumed 890.74 14.0 63.62 3.64 
<0.001 

  Error (Time) Mauchly's Test Sig.  0.30 4404.1 252.0 17.48   
  

Chl-a/FW pHavg between subjects  0.76 1.0 0.76 143.0 
<0.001 

  Error    0.10 18.0 0.01   
  

  Time within subjects  1.62 14.0 0.12 2.89 
<0.001 

  Time * pHavg Sphericity Assumed 1.44 14.0 0.10 2.57 
0.002 

  Error (Time) Mauchly's Test Sig.  0.19 10.11 252.0 0.04   
  

Chl-a/LA pHavg between subjects  88.42 1.0 88.42 112.5 
<0.001 

  Error    14.15 18.0 0.79   
  

  Time within subjects  482.23 6.2 77.51 3.87 
0.001 

  Time * pHavg Greenhouse-Geisser 417.98 6.2 67.18 3.36 
0.004 

  Error (Time) Mauchly's Test Sig.  0.01 2241.6 112.0 20.02   
  

TChl/FW pHavg between subjects  1.26 1.0 1.26 144.4 
<0.001 

  Error    0.16 18.0 0.01   
  

  Time within subjects  2.85 14.0 0.20 2.98 
<0.001 

  Time * pHavg Sphericity Assumed 2.39 14.0 0.17 2.50 
0.002 

  Error (Time) Mauchly's Test Sig.  0.10 17.24 252.0 0.07   
  

TChl/LA pHavg between subjects  149.56 1.0 149.56 114.8 
<0.001 

  Error    23.45 18.0 1.30   
  

  Time within subjects  905.63 5.9 153.38 3.99 
0.001 

  Time * pHavg Greenhouse-Geisser 771.88 5.9 130.72 3.40 
0.004 

  Error (Time) Mauchly's Test Sig.  0.02 4089.5 106.3 38.48   
  

Chl a:b pHavg between subjects  0.01 1.0 0.01 1.28 
0.273 

  Error    0.18 18.0 0.01   
  

  Time within subjects  4.08 4.6 0.88 2.67 
0.031 

  Time * pHavg Greenhouse-Geisser 4.35 4.6 0.94 2.85 
0.023 

  Error (Time) Mauchly's Test Sig.  0.00 27.49 83.4 0.33   
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Table 2. continued 
       

Measure Source Tests of effects 
Type III Sum 
of Squares df 

Mean 
Square F 

Sig. 

Tcar/FW pHavg between subjects  0.08 1.0 0.08 138.7 
<0.001 

  Error    0.01 18.0 0.00   
  

  Time within subjects  0.08 13.0 0.01 1.58 
0.093 

  Time * pHavg Sphericity Assumed 0.08 13.0 0.01 1.61 
0.083 

  Error (Time) Mauchly's Test Sig.  0.24 0.86 234.0 0.00   
  

Tcar/LA pHavg between subjects  8.04 1.0 8.04 83.55 
<0.001 

  Error    1.73 18.0 0.10   
  

  Time within subjects  21.18 13.0 1.63 2.08 
0.016 

  Time * pHavg Sphericity Assumed 19.46 13.0 1.50 1.91 
0.030 

  Error (Time) Mauchly's Test Sig.  0.15 183.31 234.0 0.78   
  

Tcar:TChl pHavg between subjects  0.00 1.0 0.00 15.83 
<0.001 

  Error    0.00 18.0 0.00   
  

  Time within subjects  0.03 4.1 0.01 3.79 
0.007 

  Time * pHavg Greenhouse-Geisser 0.02 4.1 0.01 3.14 
0.018 

  Error (Time) Mauchly's Test Sig.  0.00 0.12 74.5 0.00   
  

a*(430) pHavg between subjects  38.87 1.0 38.87 123.1 
<0.001 

  Error    5.68 18.0 0.32   
  

  Time within subjects  297.84 14.0 21.27 6.02 
<0.001 

  Time * pHavg Sphericity Assumed 209.60 14.0 14.97 4.24 
<0.001 

  Error (Time) Mauchly's Test Sig.  0.06 890.81 252.0 3.53   
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Figure 4.  Heat maps of (A) plant size and (B) area specific leaf density as a function of pH 

(primary left axis) and corresponding average [CO2(aq)] (secondary left axis) throughout time.  

White symbols on each plot represent the slope of the response variable vs. log [CO2(aq)] 

derived from linear regression analysis (right axis), the statistical significance of the slope is 

indicated with .  Error bars represent ± 1 S.E. of the regression slope.  Horizontal lines indicate 

slopes that were determined to be statistically identical by within-subject contrasts analysis.  
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Figure 5.  Heat maps of photosynthetic pigments per biomass (A) , per leaf area (B) and 

their ratios (C) as a function of pH (primary left axis) and corresponding average [CO2(aq)] 

(secondary left axis) throughout time.  White symbols on each plot represent the slope of the  
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Figure 5. continued 

response variable vs. log [CO2(aq)] derived from linear regression analysis (right axis), the 

statistical significance of the slopes is indicated with .  Error bars represent ± 1 S.E. of the 

regression slope.  Horizontal lines indicate slopes that were determined to be statistically 

identical by within-subject contrasts analysis.   
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Figure 6.  Heat maps of photoprotective pigments per biomass (A) , per leaf area (B) and 

their ratios to photosynthetic pigments (C) as a function of pH (primary left axis) and 

corresponding average [CO2(aq)] (secondary left axis) throughout time.  White symbols on each  
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Figure 6. continued 

plot represent the slope of the response variable vs. log [CO2(aq)] derived from linear regression 

analysis (right axis), the statistical significance of the slopes is indicated with .  Error bars 

represent ± 1 S.E. of the regression slope.  Horizontal lines indicate slopes that were 

determined to be statistically identical by within-subject contrasts analysis.   
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The changes in pigment content both with CO2 and seasonally impacted the spectral leaf 

absorptances unequally (Figure 7 A).  While absorptances in the green region (i.e. at 550nm) 

differed more among the CO2 treatments than seasons, absorptances within the blue region (i.e. 

430-460nm), where absorption maxima of chlorophylls co-occur with carotenoids, varied more 

dominantly with seasons – almost 20% increase from August 2013 (highest PAR level) to 

December 2013 (lowest PAR level).  The significant differences in chlorophyll content across 

the CO2 gradient, combined with differences in leaf absorptances, dramatically impacted the 

optical cross-section [aL*(λ)] of intact leaves (Figure 7 B), which is a measure of chlorophyll use 

efficiency.  Because the highest variability in the spectral optical cross section across treatments 

was observed within the Soret region (400 to 450 nm) primarily responsible for driving 

photosynthesis, aL*(430) was chosen to represent the response of optical cross section to CO2 

enrichment through time (Figure 7 C).  In all seasons, after the initial acclimation period, CO2 

enrichment increased aL*(430) significantly, implying increased chlorophyll use efficiency due to 

reduced package effect when photosynthesis is not carbon limited.   

Under the same range of environmental conditions, the range of area-specific leaf density 

of high CO2 acclimated plants was greater than in the ambient treatments, 5-fold vs 3-fold 

(Figure 8 A).  However, the allocation of biomass towards photosynthetic pigments was higher 

in the ambient treatments than the high CO2 treatments, even though leaf chlorophyll content 

increased in all treatments with increasing tissue biomass per unit area. The combination of 

increased tissue biomass per area, but with less pigment overall suggested an increase in the 

volume of non-photosynthetic tissues within the leaves grown under high CO2.  This 5-fold 

increase in area specific leaf density was accompanied by an 8% decrease in the absorptance 

at 677nm (Figure 8 B).  The negative effect of leaf thickness on absorptance did not differ 

among the CO2 treatments.  The optical cross section [a*L()] was not significantly affected by 

area specific leaf density but increased consistently with CO2 treatment (Figure 8 C, Table 3).  
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The differences in a*L() across treatments were, however, dependent on the area specific 

chlorophyll content (Figure 9 A).  The exponential decrease in optical cross section with more 

pigment per leaf area, regardless of leaf thickness, indicated the self-shading effect was caused 

by increasing pigment concentrations within the photosynthetic cells of surface epidermal layer.  

The package effect is defined by the nonlinear asymptotic relationship between leaf absorption 

and leaf chlorophyll, which should be linear (Beer’s Law) in the absence of package effect 

(Figure 9 B-D).  The onset of chlorophyll self-shading occurred at low pigment concentrations in 

the blue (440nm) and red (677nm) regions, 2.78 and 5.26 µg cm-2, respectively.  However, the 

low absorption in green region (550nm) required 14.3 µg Chl cm-2 to reach optical saturation.  

Whereas the chlorophyll concentrations of ambient treatments were higher than this threshold 

value all the time throughout the experiment, leaves in high CO2 treatments fluctuated around 

this threshold value. 

 

Seasonal Responses Induced by Light and Temperature 

Area specific leaf density increased with both increasing CO2 but more significantly with 

increasing temperature (indicated by higher standardized coefficients) (Table 3 and in Appendix 

Table 18).  Within each of the CO2 treatments, temperature was the most significant 

environmental predictor of area specific leaf density, whereas light and CO2 variability had no 

significant effect within high CO2 treatments (Figure 10 A, Table 4).  Area specific chlorophyll 

content showed negative relationship more strongly with CO2 than with light, but positive 

relationship with temperature (Figure 10 B, Table 3).  The response of chlorophyll content to 

temperature was reversed when expressed per biomass (Table 3 ) suggesting the dilution of 

pigment fraction within the increased biomass accumulation in summer, most likely because of 

increasing leaf thickness with non-photosynthetic tissues.   
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Figure 7.  Spectral average leaf absorptance (A) and average optical cross section (B) for 

different CO2 treatments during August 2013 (highest PAR level, [µmol photons m-2 s-1]), June 

2014 (highest daily total PAR, [mol photons m-2 d-1]) and December 2014 (lowest PAR and 

lowest daily total PAR). Error bars represent ±S.E.  (C) Heat map of optical cross section 

(analyzed only for a single wavelength, at 430nm) as a function of pH (primary left axis) and 

corresponding average [CO2(aq)] (secondary left axis) throughout time.   
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Figure 8.  Effects of CO2 enrichment on Chlorophyll content (A), Leaf Absorptance at 677 

nm (B) and optical cross section at 677 nm (C) as a function of the area specific leaf density.  

Colors represent different CO2 treatments.  For graphical clarity, only data points from three CO2 

treatments were plotted in (A) and (C).    
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Figure 9.  Optical cross section, a*L(λ), at 677 nm (A) and Leaf specific absorption 

coefficient, aL(λ), at 550 nm (B), 677 nm (C) and 440 nm (D) as a function of photosynthetic 

pigment content for all leaves across CO2 treatments (represented by different colors) and 

months.  Solid lines represent nonlinear regression analysis with 95% CI (dashed lines).  
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Analysis of CO2 treatments individually highlighted that the regulating environmental factor 

of area specific chlorophyll content depended on the CO2 environment (Table 4).  Chlorophyll 

content of ambient plants responded positively to increasing temperature and negatively to 

increasing light, whereas the seasonal variability of [CO2] at such a low CO2 environment had 

no significant impact (Figure 10 B).  High CO2 acclimated plants (i.e. pH 6.1, 6.5 and 6.9 

aquaria), however, did not change their chlorophyll content significantly with changing light or 

temperature but responded to the seasonal CO2 variability in their high CO2 environment (Figure 

10 B, Table 4).  Similar to the chlorophyll response, the main driver of negative carotenoid 

response across the treatments was [CO2] (Table 3).  Increasing light played a secondary role in 

decreasing carotenoid content.  The temperature effect was significant in low CO2 treatments 

and was not observed under CO2 saturated environments (Figure 10 C, Table 4).   

CO2 enrichment did not change the Chl a:b ratio significantly (Table 3).  Chl a:b decreased 

profoundly with increasing temperature than with increasing light (Figure 11 A).  Optical cross 

section increased with CO2 but decreased with temperature indicating a strong package effect in 

low CO2 high temperature environment (Figure 11 B).  Leaf absorptance (at 677nm), which was 

negatively correlated with area specific density (i.e. leaf thickness) (Table 3), decreased equally 

significant with increasing light and temperature.  Despite the overall negative effect, CO2 was 

the least significant predictor of leaf absorptance (Figure 11 C).   
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Figure 10.  Interactive effects of temperature and daily total irradiance (PAR) on area 

specific leaf density (A), on chlorophyll content (B) and on carotenoid content (C).  All data from 

time-series are shown with symbols and color coded for specific CO2 treatments.  Three-

dimensional planes were modeled by multiple linear regression analysis.   
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Figure 11.  Interactive effects of CO2, temperature and daily total irradiance (PAR) on 

chlorophyll a:b ratio (A), on optical cross section (B) and on absorptance (C).  All data from 

time-series are shown with symbols and color coded for specific CO2 treatments.  Three-

dimensional planes were modeled by multiple linear regression analysis.   
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Table 3. Summary of linear regression comparisons with their relative importance coefficients. * indicate significance at p<0.005 

level.  Abbreviations are defined in Table 1.   

 Standardized Coefficients 
(significance) 

 Multiple Linear Regression (3 predictors) a. Simple Linear Regression (1 predictor) 
b. Multiple Linear Regression (2 predictors) 

Dependent variable: 
Daily Average 
log[CO2] 

Daily Average 
Temp 

Daily Total PAR FW per LA (mg cm-2) Total Chl per LA (µg cm-2) 

FW per LA (mg cm-2) 
0.456* 0.731* -0.103 (p=0.039)  pH dependent   a 

Total Chl per LA (µg cm-2) 
-0.467* 0.397* -0.184*   

Total Chl per FW (mg g-1) 
-0.591* -0.329* -0.005 (p=0.929)   

Total Car per LA (µg cm-2) 
-0.487* 0.148 (p=0.024) -0.342*   

Chl a:b 
0.035 (p=0.332) -0.697* -0.154* a           -0.418*  

Tcar:TChl 
0.180* -0.544* -0.119 (p=0.044)              -0.325*  

A550 (%) 
-0.517* 0.146 (p=0.029) -0.170 (p=0.011) b           -0.206* 0.479* 

A677 (%) 
-0.151* -0.236* -0.209* -0.173* -0.099 (p=0.084) 

a*L430 (m2 g-1 Chl-a) 
0.448* -0.417* 0.124 (p=0.052)       -0.018 (p=0.565) -0.834* 

a* L677 (m2 g-1 Chl-a) 
0.351* -0.443* 0.123 (p=0.065)       -0.086 (p=0.014) -0.795* 
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 Table 4. Multiple linear regression model results for effects of environmental parameters on leaf optical properties specific for 

each pH treatment. (exc.: defined by the stepping method criteria parameters were excluded from the model if the significance level 

of their F values >0.10)  

Backward stepwise linear regression 
(#: collinearity statistics VIF>2.0) 

pH 6.1 pH 6.5 pH 6.9 pH 7.4 
pH 7.7 

Beta Sig. Beta Sig. Beta Sig. Beta Sig. Beta 
Sig. 

FW per LA 
(mg/cm2) 

Daily Average log[CO2] exc.  exc.  exc.  0.311 0.026 exc. 
 

Daily Total PAR exc.  exc.  exc.  exc.  -.239 
0.068 

Daily Average Temp 0.764 <0.001 0.741 <0.001 0.743 <0.001 0.879 <0.001 0.832 
<0.001 

Total Chl per LA 
(μg Chl/cm2) 

Daily Average log[CO2] -.375 0.004 -.351 0.008 -0.475 <0.001 exc.  exc. 
 

Daily Total PAR exc.  exc.  exc.  exc.  -.489 
0.001 

Daily Average Temp exc.  exc.  exc.  0.378 0.004 0.796 
<0.001 

Total Car per LA 
(μg Cx/cm2) 

Daily Average log[CO2] -.356 0.020 exc.  exc.  0.497 0.049# exc. 
 

Daily Total PAR -.450 0.004 -.293 0.028 exc.  -0.822 0.001# -0.509 
0.003 

Daily Average Temp exc.  exc.  exc.  0.765 0.021# 0.449 
0.008 

Chl a:b 

Daily Average log[CO2] 0.581 <0.001 exc.  0.346 0.021# exc.  -0.239 
0.022 

Daily Total PAR -0.291 0.006 -0.251 0.009 -0.225 0.029# exc.  exc. 
 

Daily Average Temp exc.  -0.672 <0.001 -0.358 0.031# -0.814 <0.001 -0.652 
<0.001 

A677 (%) 

Daily Average log[CO2] exc.  exc.  0.523 <0.001 0.225 0.086 -0.575 
<0.001 

Daily Total PAR -0.314 0.045 exc.  exc.  -0.264 0.045 exc. 
 

Daily Average Temp -0.265 0.089 -0.354 0.007 exc.  exc.  exc. 
 

a*L430  
(m2/g Chl-a) 

Daily Average log[CO2] 0.562 <0.001 0.416 0.001 0.610 <0.001 exc.  -0.485 
0.003 

Daily Total PAR exc.  exc.  exc.  exc.  0.603 
<0.001 

Daily Average Temp exc.  exc.  exc.  -0.304 0.023 -0.514 
0.001 
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Response Time of Leaf Properties to CO2 Enrichment  

CO2 enrichment of the second set of eelgrass transplants, freshly collected from the same 

field location in the spring of 2014, together with eelgrass plants exposed to CO2 enrichment 

since spring of 2013 showed the differences in response time of leaf properties to [CO2].  Within 

4 months under the same environmental conditions specific growth rate, area specific 

chlorophyll content, Chl a:b ratio and aL*(430) of 2014 transplants converged with those of 2013 

transplants in all treatments (Table 5).  These fast responding measures can be good indicator 

parameters to be measured even during short-term experiments.  However, the area specific 

leaf density, plant size and area specific carotenoid content of 2014 transplants differed 

significantly from the long-term acclimated 2013 transplants (Figure 12).  The differences were 

observed in high CO2 treatments meaning these properties have longer response time to CO2 

enrichment.  Therefore, the minimal experimental duration required to detect the impact of CO2 

enrichment depends on the response variable monitored as the impact indicator.  In ambient 

treatments, during the hot summer of 2014, plants that overwintered in their natural ecosystem 

(2014 transplants) performed similarly to plants grown in the aquaria (2013 transplants).  The 

area specific leaf density and plant size of long term acclimated eelgrass plants were 

consistently higher than 2014 transplants in CO2 enriched treatments despite the extended heat 

stress period in 2014 summer.  The CO2 acclimation took longer for these two parameters, 

which may emphasize the requirement for long-lasting metabolic adjustments, than for pigment 

and optical properties, which are likely to be plastic within a leaf for light capture efficiency and 

redox regulation.  
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Figure 12.  Validation of acclimation response time to CO2 enrichment via comparison of 1st 

year (2013) and 2nd year (2014) transplants during summer 2014.    

P
la

n
t 

S
iz

e
 

(c
m

2
 sh

o
o

t-1
)

0

20

40

60

80

100

120 Jun
Jul

Aug
Sep

A
re

a
 s

p
ec

if
ic

 L
e

a
f 

D
en

s
it

y 
(m

g
 F

W
 c

m
-2

)

15

20

25

30

35

40

45
2014 transplants
2013 transplants

average pH

6.56.56.16.1 7.47.4 7.77.76.96.9 7.47.4 7.77.76.16.1 6.96.96.56.56.56.56.16.1 7.47.4 7.77.76.96.9 7.47.4 7.77.76.16.1 6.96.96.56.56.56.56.16.1 7.47.4 7.77.76.96.9 7.47.4 7.77.76.16.1 6.96.96.56.56.56.56.16.1 7.47.4 7.77.76.96.9 7.47.4 7.77.76.16.1 6.96.96.56.56.56.56.16.1 7.47.4 7.77.76.96.9 7.47.4 7.77.76.16.1 6.96.96.56.56.56.56.16.1 7.47.4 7.77.76.96.9 7.47.4 7.77.76.16.1 6.96.96.56.5

C
ar

o
te

n
o

id
 C

o
n

te
n

t
( 
g

 c
m

-2
)

2

3

4

5

6

7

8

9 C

B

A



 

 

47
 

Table 5. Mixed linear model results for comparison of leaf optical properties between long- term acclimated and short-term 

acclimated eelgrass leaves. 

Measure 
Total Chl per LA 
(µg cm-2) 

Total Car per LA 
(µg cm-2) 

Chl a:b 
FW per LA  
(mg cm-2) 

a*430            
(m2 g-1 Chl-a) 

Plant Size 
(cm2 shoot-1) 

Specific growth 
rate (d-1) 

Source Sig. Sig. Sig. Sig. Sig. Sig. Sig. 

Intercept 0.164 0.824 <0.001* <0.001* <0.001* <0.001* 0.001* 

Transplantation 0.074 0.003* 0.153 <0.001* 0.160 <0.001* 0.348 

Time 0.077 0.254 0.608 0.278 0.004* 0.855 0.295 

pHavg <0.001* <0.001* 0.121 <0.001* <0.001* 0.001* 0.740 

Transplantation * Time 0.801 0.860 0.678 0.557 0.854 0.759 0.306 

Transplantation * pHavg 0.128 0.004* 0.147 <0.001* 0.234 0.001* 0.326 

Time * pHavg 0.325 0.731 0.707 0.292 0.017* 0.861 0.414 

Transplantation * Time 
* pHavg 

0.793 0.943 0.760 0.749 0.843 0.843 0.290 
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Discussion  

CO2 enrichment increased both biomass yield (i.e. biomass per leaf area) and the size of 

eelgrass plants (i.e. leaf area per shoot), likely because of increased photosynthetic capacity 

(Chapter 3).  However, eelgrass leaves decreased their pigment content when given high 

aqueous CO2 even though the light environment was identical across all treatments.  Although 

pigment adjustments are typically interpreted as a response to light availability (Demmig-Adams 

and Adams, 1992; Ralph et al., 2002), the down-regulation of pigment content in eelgrass 

leaves in response to increased [CO2] suggested that availability of this primary substrate for the 

dark reactions of photosynthesis plays a critical role in balancing redox state in the chloroplast, 

which regulates long term LHC expression (Backhausen and Scheibe, 1999; Pfannschmidt, 

2003; Hanke et al., 2009; Huner et al., 2012).  Redox feedback mechanisms are under the 

control of the oxidation state of plastoquinone in the thylakoid membrane that depends on the 

continuity of the electron transport under various limiting conditions (Pfannschmidt, 2003; 

Pfannschmidt and Yang, 2012).  Therefore, the photosynthetic machinery performs an important 

sensory function, in addition to energy capture, which further explains the interdependent 

regulation of pigment composition and optical properties of eelgrass leaves by CO2, temperature 

and light. 

Physiological optimization of photosynthesis requires a balance between the photochemical 

processes (photon energy capture, electron transport) and biochemical processes 

(temperature/substrate-dependent enzymatic reactions)(Pfannschmidt and Yang, 2012).  The 

enzymatic reactions of Rubisco, i.e. photosynthesis and photorespiration, are both sensitive to 

increasing temperature but antagonistically respond to increasing CO2.  Relative to 

photosynthesis, however, recycling of CO2  and Calvin-Benson Cycle intermediates through 

photorespiration increases the energy requirement from the light reactions that can be 

generated via absorbing more photons (Jones et al., 2012).  The requirement of more photon 
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absorption due to increasing photorespiration with increasing temperature might explain the 

increasing area-specific chlorophyll content of eelgrass leaves with increasing temperature in 

carbon limited ambient treatments.  This idea coincided with decreasing quantum efficiency of 

eelgrass leaves under photorespiratory conditions (Chapter 4).  In contrast, growth in a high 

CO2 environments would increase photosynthetic rates and reduce the need of alternative 

electron pathways, such as photorespiration, for photoprotective purposes, which would explain 

the observed negative relationship between chlorophyll content and CO2 in eelgrass.  

Similarly, increasing photosynthetic capacity of high CO2 acclimated plants, as observed in 

Chapter 3, could have decreased the need for photoprotection by carotenoids.  De-epoxidation 

of carotenoids in the xanthophyll cycle with increasing light is fast (in minutes), while epoxidation 

recovery when light decreases is slow (in hours), especially under additional stress (Demmig-

Adams and Adams III, 1996).  Therefore, a larger pool of carotenoids in low CO2 acclimated 

plants may allow using the NPQ dissipation pathway more effectively to reduce photo-oxidative 

damage, given that these plants are exposed to photosynthetic saturating light levels more than 

9 hrs day-1 during summer in addition to heat stress due to carbon limitation of photosynthesis.  

A supporting finding for this argument has been observed in Chapter 3 where plants in ambient 

treatments regulated their NPQ more dynamically in response to increasing light and CO2. 

Although reducing pigment concentration as a response to CO2 enrichment did increase the 

optical cross section of leaves, hence the chlorophyll use efficiency, it also reduced the leaf 

absorptances, more in green (A550) than red (A680).  However, this reduction in photon 

capturing efficiency in the red seemed to be correlated more with the increasing area specific 

leaf density.  Assuming the absolute (i.e. volumetric) density of the leaves remained unchanged 

to aid the leaf buoyancy, the increases in area specific density reported here were likely related 

to the increasing leaf thickness. This result agrees with minimized absorption per unit weight for 

thick aquatic plants while they maximize light absorption per surface (Agustí et al., 1994).  
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Microphotographs of leaf cross-sections taken in September 2013 (provided in Appendix Figure 

32 as a courtesy of Dr. Fred Dobbs) also revealed differences in leaf thickness between CO2 

enriched and ambient treatments, coinciding with the maximal increase of area specific density 

as a function of [CO2].  However, increased thickness of the non-pigmented mesophyll and 

lacunar space would not alter the light capture efficiency per unit chlorophyll, since 

photosynthetic pigments of seagrasses are found only in epidermal layers.  Restricting 

photosynthetic pigments to the epidermis in aquatic plants, such as in seagrasses, may be 

required for gas exchange (Zimmerman, 2006) but likely enhances the package effect relative to 

terrestrial plant leaves in which pigments are distributed through several vertical layers of 

mesophyll cells.  Due to constraints of leaf anatomy, the light harvesting acclimation operates at 

the areal scale for aquatic plants while metabolic acclimation, especially respiration, is 

expressed in terms of biomass (Vogelman et al.; Walters, 2005).  Therefore, the magnitude of 

the decrease in pigment content per biomass does not truly represent the extent of changes in 

light-harvesting capabilities in eelgrass.   

In all seasons Hsat values of all aquaria, were higher than the required minimum to maintain 

positive carbon balance (4 hrs in winter and 9 hrs in summer) (Zimmerman et al., 2015).  These 

Hsat estimates indicated the eelgrass plants in this study had more than enough light to saturate 

photosynthesis for most of the day and can be considered as high light grown plants. However, 

in the ambient CO2 treatments, the high light environment was insufficient to maximize growth 

and to protect eelgrass from heat stress (Zimmerman et al., 2016), even though photosynthetic 

pigment concentrations were higher than in plants exposed to elevated CO2.  Despite reduced 

light harvesting capacity, plants grown under high CO2 conditions used solar energy more 

efficiently for photosynthesis - rather than for NPQ or alternative electron transport pathways 

such as photorespiration (Chapter 4), increased biomass accumulation per leaf area and plant 

size, thus allowing the plants to store enough carbon resources to support higher respiration 
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under heat stress.  Therefore, the survival, and inevitably the depth distribution, of eelgrass rely 

on photon use efficiency rather than photon capture efficiency in today’s carbon limited coastal 

ecosystems.  Any environmental signal causing perturbation in photosynthesis thus will trigger 

acclimation, and a regulatory strategy based on photosynthesis itself will allow the plant to 

compensate various stress conditions with similar mechanisms (Anderson et al., 1995).  Such a 

strategy would also explain why the elevated CO2 response of leaf optical properties resembled 

high light response.  The optical cross-section aL*(λ), accepted as a measure of 

photoacclimation in changing light environments (Cummings and Zimmerman, 2003), 

responded to increasing CO2 as if the light was increased, meaning the underlying mechanisms 

of this acclimation is regulated by a common photosynthetic control mechanism, such as the 

redox state in the chloroplast. 

Although the outdoor design of this experiment provided important natural variability in a 

number of environmental drives that is often absent from laboratory experiments (Andersson et 

al., 2015), light and temperature were not fully independent of each other -having a correlation 

coefficient of 0.65.  However, the 43 days lag between the two factors, considering the sampled 

tissues were less than 2 weeks old, and the removal of shades during February and March 

2014 probably reduced the variance inflation factor (VIF) index of collinearity statistics in 

multiple linear regression analyses.  The low VIF index in this study assured the multiple linear 

regression models with CO2, temperature and light as predictors to be a significant explanatory 

fit.  The wide CO2 range across the treatments under a wide range of light and temperature 

environments quantitatively estimated the general linear response of leaves to the long-term 

trend of ocean carbonation.  Furthermore, the treatment specific regression analyses indicated 

that the relative importance of environmental parameters (temperature, CO2 and light) 

controlling the leaf properties differed under various CO2 scenarios, thereby highlighting the 

thresholds for different acclimation strategies. 
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Photosynthetic acclimation is a dynamic process operating at various timescales.  This 

study lasting for 18 months, allowed the annual rhythm of eelgrass performance to be examined 

under a gradient of CO2 concentrations superimposed upon natural fluctuations of 

environmental parameters.  Acclimation of area specific leaf density and plant size of eelgrass 

had a long response time, as well as acclimation of root:shoot ratio (Zimmerman et al., 2016).  

Long-term developmental processes responding to changes in growth conditions, such as 

changing leaf anatomy and root/shoot ratios, have been observed to take weeks to months to 

occur (Longstaff and Dennison, 1999; Walters, 2005; Lee et al., 2007).  In contrast, adjustments 

of photosynthetic machinery operate on much shorter timescales (Demmig-Adams and Adams, 

1992), as evidenced by the agreement of photosynthetic pigment composition of transplants 

from both years when exposed to same environmental conditions regardless of their growth 

history.  It has been suggested plants previous growth history and the natural limits of the 

species’ acclimation range may play a role in acclimation ability and its detection (Yin and 

Johnson, 2000; Walters, 2005).  The similarities and differences of various parameters 

observed in this study among the different transplants draw attention to the timescale of CO2 

acclimation to justify the length of the experiments to measure acclimation mechanisms, an 

important outcome for experimental design.   

In summary, this experiment demonstrated that the regulation of pigment composition and 

light harvesting in eelgrass not only responds to varying light environment but was also affected 

by the availability of the photosynthetic substrate CO2.  Increasing chlorophyll use efficiency and 

decreasing role of the photoprotection in high CO2 acclimated plants indicated utilization of 

absorbed light energy efficiently for photosynthetic carbon assimilation might be the key for 

long-term regulation of leaf morphology.  Further experiments to address the rates of 

photochemical pathways in such acclimated plants with respect to changes in CO2, light and 

temperature would help to understand the rate limiting physiological processes in redox 
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regulation that trigger acclimation responses.  Even so, being able to persist for almost 100 

million years in highly dynamic coastal systems combined with long-term climate trends 

highlights both the plasticity and the strong acclimation capacity of seagrass populations.  In 

addition to understanding the underlying mechanisms for their competitive survival in a dynamic 

system, this study allowed quantifying the long-term regulation of light harvesting in response to 

ocean carbonation to predict the extent of seagrasses in future climatic conditions.   
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CHAPTER III 

 

PHOTORESPIRATION IN EELGRASS (ZOSTERA MARINA L.):                       

A PHOTOPROTECTION MECHANISM FOR SURVIVAL IN A CO2-LIMITED 

WORLD 

Introduction 

Photosynthesis and photorespiration are competing processes due to the bi-functionality of 

ribulose 1,5-biphosphate carboxylase/oxygenase (Rubisco) (Spreitzer and Salvucci, 2002).   

During photorespiration the oxygenation reaction of Rubisco consumes Calvin Cycle substrates 

by combining them with O2, thereby reducing photosynthetic carbon fixation (Raghavendra, 

2000).  This photorespiratory oxygenation reaction results in the formation of glycolate (Ogren, 

2003), which is processed into glycerate via a series of reactions in chloroplast, mitochondrion 

and peroxisome (Ogren, 1984).  The glycine decarboxylation step of these reactions generates 

CO2.  Since the oxygenation reaction of Rubisco decreases the productivity of C3 plants, it has 

often been viewed as an inefficient legacy of evolution that might be engineered out of terrestrial 

plants in a quest for increased productivity (Andrews and Lorimer, 1978; Somerville, 2001; Xin 

et al., 2015).  Recent work, however, suggests that Rubisco’s CO2/O2 specificity in different 

species may be near-optimally adapted to their gaseous environment (Tcherkez et al., 2006).  

More importantly, especially for carbon-limited seagrasses, photorespiration may serve as an 

important metabolic “clutch” to protect the photochemical pathway at high irradiance (Heber and 

Krause, 1980; Osmond, 1981; Osmond et al., 1997; Igamberdiev et al., 2001).  At high 

irradiances, when Calvin Benson cycle is C- limited, continuation of light reactions results in 

excess reducing power and energy leading to oxidative stress (Voss et al., 2013).  

Photorespiration helps to maintain optimal redox state and minimize the accumulation of 

reactive oxygen species (ROS) by dissipating these excess reducing equivalents (NADPH) as 
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well as energy (ATP), despite producing H2O2 (Foyer et al., 2009).  By recycling the 

photorespired CO2, photorespiration may also facilitate carbon assimilation in CO2 limited 

environments, thereby minimizing photosynthetic inefficiencies resulting from C-limitation 

(Busch et al., 2013; Xin et al., 2015).  Additionally photorespiration plays an important role within 

the regulatory network of other metabolic pathways (Xin et al., 2015); such as nitrate 

assimilation (Rachmilevitch et al., 2004), phosphorus recycling (Ellsworth et al., 2015) and 

stress responses (Voss et al., 2013).  

In terrestrial systems, alternative carbon concentrating mechanisms (CCMs) such as CAM 

and C4 pathways reduce the potential photorespiration by increasing the CO2 availability relative 

to the interfering O2 around the Rubisco (Bauwe, 2011; Bowes, 2011).  As a result maximum 

conversion efficiency of solar energy to biomass increased from 4.6 % to 6 % (Zhu et al., 2008).  

Photorespiration was considered to operate at lower levels in aquatic systems as a result of 

other carbon concentrating mechanisms; such as the use of HCO3
- as a source of dissolved 

inorganic carbon (DIC) through active or enzyme facilitated uptake or dehydration (Bidwell and 

McLachlan, 1985; Beardall, 1989; Bowes and Salvucci, 1989; Madsen and Sand-Jensen, 1991; 

Frost-Christensen and Sand-Jensen, 1992; Madsen et al., 1993).  In today’s oceanic water ( pH 

~8.2), 89% of the DIC is in form of HCO3
- and only 0.5% exists as dissolved CO2 (Zeebe, 2012).  

However, not all aquatic C3 plants have similar efficiencies to use both forms for photosynthesis 

(Raven and Beardall, 2003; Raven et al., 2011; Raven and Beardall, 2014).  Additionally, CO2 

acquisition by simple diffusion through the leaf surface is more difficult for submerged plants 

due to the 10,000-fold lower diffusion rates of gases in a liquid environment relative to air 

(Borum et al., 2006).  Consequently, for aquatic C3 plants that do not use CCMs effectively, 

such as seagrasses, carbon limitation likely increases the photorespiratory function of Rubisco 

(Tolbert et al., 1976; Touchette and Burkholder, 2000).  
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Seagrasses are flowering marine plants that originated approximately 100 Mya from 

terrestrial ancestors (Larkum et al., 2006b), when the atmospheric and oceanic CO2 

concentrations were much higher than today’s values (Zeebe, 2012).  The resulting higher 

CO2/O2 ratios probably stimulated photosynthesis and minimized photorespiration in C3 plants 

during their early evolutionary history (Kuypers et al., 1999).  Although seagrasses are C3 

plants, their adaptation to a submerged environment has produced important anatomical 

differences from terrestrial C3 angiosperms. (Touchette and Burkholder, 2000; Larkum et al., 

2006a).  They have no stomatal openings as gas exchange occurs across the leaf surface by 

diffusion, which uncouples the carbon limitation from water limitation.  Seagrasses also have a 

lacunal system with arenchema extending from the roots to the leaves that facilitates the 

transport of O2 to the roots buried in permanently flooded anoxic sediments, and allows 

transport of CO2 from the roots to leaves, providing an alternative carbon source (Madsen and 

Sand-Jensen, 1991).  Although Rubisco activity in seagrasses is lower than the typical activities 

in freshwater emergent angiosperms and marine red algae, it is comparable to those observed 

in marine green and brown macroalgae (Beer et al., 1991).  On the other hand, seagrasses are 

typically less efficient in utilizing HCO3
- than macroalgae (Beer et al., 1991).  Simulations of 

nearshore seawater DIC distribution during the Cretaceous period have predicted that 

photosynthetic rates of seagrasses would have been similar to macroalgae (Beer and Koch, 

1996).  However, in today’s oceans, seagrass photosynthesis is generally considered to be 

carbon limited (Durako, 1993; Beer and Koch, 1996; Zimmerman et al., 1997; Invers et al., 

2001). 

Carbon limited photosynthesis also restricts seagrasses to shallow, high light environments, 

where low daytime CO2:O2 ratios in the water column may increase seagrass vulnerability to 

photorespiration (Buapet et al., 2013).  In earlier studies, photosynthesis was shown to be 

inhibited by increasing O2 concentration, resulting in higher concentrations of glycolate pathway 
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intermediates, and confirmed the photorespiration in marine plants and macrophytes (Hough, 

1974; Black et al., 1976; Burris et al., 1976; Downton et al., 1976; Hough and Wetzel, 1977; 

Andrews and Abel, 1979).  The decreasing O2 evolution rates relative to electron transfer rates 

measured by PAM fluorometry at high irradiances in Zostera marina and Halophila stipulacea 

also suggested a role for photorespiration in these seagrass species (Beer et al., 1998).  

However we still do not understand how climate warming and ocean acidification/carbonation 

will affect photorespiration and photoprotection in seagrasses (Koch et al., 2013). 

Long-term CO2 enrichment experiments simulating the ocean acidification/carbonation have 

provided quantitative information of the positive responses of growth, carbon balance, survival 

and reproductive output in eelgrass (Palacios and Zimmerman, 2007; Zimmerman et al., 2016).  

Surprisingly during the most recent one of these studies, the regulation of pigment content with 

increasing CO2 resembled the photoacclimation response to high light environment that pointed 

to the importance of redox acclimation in eelgrass (Chapter 2).  Therefore, the objectives of this 

study were to estimate the importance of photorespiration in the marine angiosperm Zostera 

marina L. (eelgrass) under today’s oceanic carbon concentrations and explore the potential 

response to ocean acidification/carbonation by 1) quantifying the photochemical rates under 

different light and CO2 availability by using eelgrass grown in a high light low CO2 environment; 

and 2) comparing how the relative contribution of different photochemical pathways in eelgrass 

changed under the same experimental conditions, once they have been acclimated to a high 

CO2 environment.  

 

Materials and Methods 

The experimental facility and sampling from pH treatments 

Eelgrass shoots used in this study were grown in an outdoor climate change experimental 

facility at the Virginia Aquarium and Marine Science Center, VA.  The details of experimental 
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design and control of manipulations for this long term project were described in Chapter 2 and 

by Zimmerman et al. (2016).  To summarize briefly, eelgrass plants, collected in May 2013 from 

the South Bay sub-tidal population in Eastern Shore, VA, USA, were transplanted into 20 

fiberglass open top aquarium tanks.  These aquaria were continuously enriched with CO2 gas 

from June 2013 to October 2014 to attain treatment levels ranging from pH 6 to ambient (pH 

~7.7), with 0.5 pH intervals between the treatments.  As discussed in detail by Zimmerman et al. 

(2016), plant performance was monitored monthly while environmental parameters, which 

varied daily and seasonally, were recorded hourly.   

For the purpose of this study, eelgrass plants from these pH treatments were used to 

measure the changes in photosynthetic response of leaves after 13 months of acclimation to the 

high CO2 environment.  During July 2014, freshly collected 2nd youngest leaves from pH 6.1, pH 

6.9 and ambient pH treatments were brought to ODU, Norfolk, VA, for laboratory measurements 

of photochemistry under fully controlled incubation conditions.  During the course of the 

measurements, the daily seawater temperature in aquaria ranged from 25 to 28°C; allowing all 

the incubation measurements described here to be conducted at the optimal temperature of 

25°C without inducing a heat shock.  The daily total surface irradiance ranged from 10 to 29 mol 

photons m-2 d-1; corresponding to more than 6 h of photosynthetically saturating irradiance 

levels ( >200 µmol photons m-2 s-1) per day, allowing to designate the leaves used in the 

incubation measurements as high light acclimated.  (Further environmental data were 

summarized in Chapter 2). 

 

Incubation measurements of leaf photochemistry 

Photosynthesis and respiration rates were measured polarographically with an oxygen 

electrode in water-jacketed glass incubation chambers (Appendix Figure 33 , 5ml volume, Rank 

Bros., Cambridge, UK).  Simultaneous to O2 evolution, leaf variable fluorescence was monitored 
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using a Pulse Amplitude Modulated (PAM) fluorometer (Mini PAM, Walz, Germany).  Incubation 

water pH (a proxy for dissolved inorganic carbon (DIC) concentration) was measured using an 

epoxy mini-electrode and pH meter (Cole-Parmer) calibrated with NBS buffers.  For this 

purpose, the lid of the chamber was modified to hold the miniature fiberoptics of the PAM device 

and the pH electrode in close proximity to the leaf surface.  A magnetic stirrer provided turbulent 

flow to prevent boundary layer limitation of gas exchange across the leaf surface.  Continuous 

analog signals from the three sensors were recorded using custom software written with 

LabView (2009 edition, National Instruments).  Voltage data were post processed into metabolic 

rates using MATLAB R2014 (The MathWorks Inc.).  A halogen (ELH) incandescent projector 

bulb (e.g. Kodak slide projector) provided photosynthetically active radiation (PAR).  The 

intensity of PAR was adjusted with neutral density filters and calibrated daily with a QSL scalar 

radiometer (Biospherical Instruments Inc.). 

Assuming alkalinity, temperature and salinity are known, ocean carbonation process via 

enriching the seawater with CO2 can be continuously controlled by monitoring the pH in both 

aquaria and incubation chamber.  Therefore, the levels of pH in aquaria (Growth pH, rounded to 

the nearest whole number) and in incubation chamber (Measurement pH) were used as proxies 

for CO2 manipulation, a direct substrate for seagrass photosynthesis.  Separate leaves, grown 

at three different pH treatments (GpH: 6, 7 and ambient (~8)), were used to measure the light 

response at three target pH levels (MpH: 6, 7 and 8); which allowed independent replications 

within and among the photosynthesis versus irradiance (P vs. E) curves.  The seawater pH in 

the incubation chamber was adjusted by bubbling CO2 and/or O2-N2 mixture prior to the 

measurement, while keeping [O2] at air saturation level.  Seawater temperature was kept 

constant at 25°C by a circulating water bath.  Leaves were cleaned of epiphytes and kept in the 

dark before the incubation measurements.  A three cm long piece of leaf tissue, cut 

approximately one cm above the meristem, was consecutively used during a 10 min dark (i.e. 
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dark respiration) and a 10 min light (i.e. net photosynthesis) measurement.  After incubations, 

pigment content and optical properties of the leaf tissues (Table 6) were measured as described 

in Chapter 2.  

The seawater used during all incubations was collected in April 2014 from Owl’s Creek, a 

tidal estuary next to the aquarium facility in Virginia Beach, VA just south of the Chesapeake 

Bay that exchanges water with the Atlantic Ocean.  This seawater stock, with salinity of 24 

(PSS), was filtered through 0.2µm Nucleopore membrane filters and stored under refrigeration 

in dark bottles.  After incubations, aliquots of seawater were taken from the chamber for 

alkalinity titrations using an automated potentiometric titrator (Metroohm).  Based on 

temperature, salinity, alkalinity and pH of the seawater during the incubations, concentrations of 

DIC species (Table 7) were calculated using CO2SYS (Ver. 2.1; Lewis and Wallace 2012).  
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Table 6.  List of symbols, their definitions and dimensions. Parenthetic notation (λ) denotes 

wavelength dependence of the variable.  

Symbol Definition Dimensions 

Chl-a  Chlorophyll a  µg 

Chl-b Chlorophyll b µg 

TChl Total Chlorophyll  µg 

TCar Total Carotenoid µg 

FW Fresh Weight mg 

LA Leaf Area cm2 

AL(λ) Leaf absorptance Dimensionless 

D(λ) Leaf absorbance Dimensionless 

R(λ) Leaf reflectance Dimensionless 

aL*(λ) Optical cross-section m2 g-1 Chl-a 

λ Wavelength nm 

PAR Photosynthetically active radiation µmol photons s-1 m-2 

PUR Photosynthetically usable radiation µmol photons s-1 m-2 

E Incident irradiance µmol photons s-1 m-2 

Ek Photosynthesis-saturating irradiance µmol photons s-1 m-2 

Pg Gross photosynthesis  

Pnet Net photosynthesis  

PT True photosynthesis  

PR Photorespiration  

RD Dark respiration  

 Photosynthetic efficiency at light-limited region of PE curve µmol O2 µmol-1 photons 

O2 Quantum yield of oxygen evolution µmol O2 µmol-1 photons 

Fm, Fm’ Maximal fluorescence from dark and light adapted leaf Dimensionless 
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Table 6. continued  

Symbol Definition Dimensions 

F0, F0’ Minimal fluorescence from dark and light adapted leaf Dimensionless 

Fv Variable fluorescence Dimensionless 

PSII Effective Quantum yield of fluorescence ( [Fm’ - F’] / Fm’ ) Dimensionless 

ETR Electron transport rate µmol electrons s-1 m-2 

NPQ Nonphotochemical quenching ( [Fm - Fm’] / Fm’ ) Dimensionless 



 

 

63
 

Table 7.  Distribution of dissolved inorganic carbon and dissolved oxygen concentrations in seawater during the incubation 

measurements of net photosynthesis at different light levels, including dark respiration measurements.  All measurements were done 

at 25°C  using seawater with salinity of 24 ppt.  

  

 Target pH 

At the start of light measurements At the start of dark measurements 

Growth pH 6 Growth pH 7 Growth pH 8 Growth pH 6 Growth pH 7 Growth pH 8 

Sample Size 6 7 7 5 7 7 5 

  7 6 6 6 6 6 6 

  8 5 5 5 5 5 5 

Average pH 6 6.09 ± 0.01 6.08 ± 0.01 6.05 ± 0.01 6.09 ± 0.01 6.08 ± 0.01 6.04 ± 0.01 

  7 6.91 ± 0.01 6.85 ± 0.02 6.87 ± 0.02 6.91 ± 0.01 6.84 ± 0.02 6.86 ± 0.02 

  8 7.94 ± 0.05 7.95 ± 0.01 7.94 ± 0.02 8.00 ± 0.04 7.98 ± 0.01 7.98 ± 0.02 

Average [TCO2] (µmol/L)  

  

6 3712.4 ± 27.9 3131.3 ± 17.9 3255.8 ± 48.4 3726.8 ± 27.2 3153.2 ± 19.5 3277.1 ± 48.9 

7 2217.9 ± 8.8 1874.3 ± 11.5 1861.1 ± 9.9 2216.6 ± 9.9 1875.9 ± 10.2 1865.5 ± 11.3 

8 1857.0 ± 15.2 1533.8 ± 3.2 1535.3 ± 4.9 1837.2 ± 14.2 1525.5 ± 3.5 1526.4 ± 4.7 

Average [HCO-3] (µmol/L)  

  

6 1963.2 ± 0.1 1623.7 ± 0.0 1624.0 ± 0.1 1963.3 ± 0.1 1623.8 ± 0.0 1624.0 ± 0.1 

7 1943.2 ± 0.7 1609.6 ± 0.7 1608.8 ± 0.7 1943.1 ± 0.7 1609.7 ± 0.6 1609.0 ± 0.7 

8 1742.3 ± 20.5 1442.2 ± 4.4 1444.2  ± 6.8 1714.4 ± 20.0 1430.6 ± 4.9 1431.9 ± 6.6 
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Table 7.  continued 
  

  

 Target pH 

At the start of light measurements At the start of dark measurements 

Growth pH 6 Growth pH 7 Growth pH 8 Growth pH 6 Growth pH 7 Growth pH 8 

Average [CO2] (µmol/L)  

  

6 1747.7 ± 27.8 1506.4 ± 17.9 1630.8 ± 48.3 1762.1 ± 27.1 1528.3 ± 19.5 1652.0 ± 48.8 

7 265.3 ± 8.4 258.2 ± 11.1 245.6 ± 9.5 264.1 ± 9.5 259.8 ± 9.8 249.8 ± 10.9 

8 22.8 ± 3.2 18.2 ± 0.5 18.6 ± 0.9 19.4 ± 2.4 16.9 ± 0.5 17.1 ± 0.8 

Average [O2] (µmol/L)  

  

6 209.5 ± 3.1 215.0 ± 3.5 215.9 ± 2.0 212.6 ± 2.3 214.6 ± 3.0 216.0 ± 2.0 

7 214.6 ± 3.0 218.4 ± 4.3 217.5 ± 3.1 215.7 ± 3.4 219.4 ± 3.3 216.3 ± 1.7 

8 206.4 ± 2.4 215.8 ± 2.4 211.8 ± 2.7 212.2 ± 3.3 218.7 ± 1.6 215.4 ± 2.8 
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Determination of photochemical rates 

Table 6 summarizes a list of parameters, their symbols and units used in the following 

calculations.  Oxygen evolution rates of each tissue were separately normalized to fresh weight, 

leaf area and total pigment concentration to account for the phenotypic differences resulting 

from acclimation to different growth conditions.  Photosynthetic parameters of P vs E. curves 

were estimated from these rates by fitting the cumulative one-hit Poisson model pioneered for 

photosynthesis by Webb et al. (1974): 

 Pnet = Pg-RD (5) 

 Pnet = [ PE *൫1- e-E/ Ek൯ ]-RD (6) 

where Pnet was the measured net photosynthesis rate and RD was the measured dark 

respiration rate, from which the gross photosynthesis Pg was calculated.  Pg was defined as a 

function of light, where PE represented the light-saturated gross photosynthesis rate varying with 

[CO2] and [HCO3
-] (sensu McPherson et al. (2015)).  Ek was the photosynthesis saturating 

irradiance.  E was separately defined as photosynthetically available radiation (PAR =∑ E(λ)700
400 ) 

and by photosynthetically utilized radiation (PUR =∑  [E(λ)*A(λ)]700
400  ), where A(λ) was the 

spectral leaf absorptance and integrated the variability of light capture efficiency due to changes 

in leaf optical properties.  Quantum yield of oxygen evolution (O2) at different light levels (in 

units of mol O2 mol-1 absorbed photon) was calculated by O2 = Pg (per Leaf Area) / PUR.  

Photosynthetic efficiency, which represents the linear slope of photosynthetic response in the 

light limited region of P vs E curve, can be described as either a function of PAR () or PUR 

(max) (Behrenfeld et al., 2004), and calculated as max = PE (per Leaf Area) / Ek (PUR).   

Although Eqn 5 represents the typical method for determining gross photosynthesis from 

measured values of Pnet and RD, this model does not account for light dependent processes that 
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use O2 in the chloroplast, i.e. photorespiration.  It was assumed that the Mehler Ascorbate 

Peroxidase pathway does not affect net O2 exchange even though it may facilitate ATP 

generation and electron flow (hence might be detected by fluorescence measurements) 

(Larkum et al., 2006a).  Following the principle explained by Raghavendra (2000) gross 

photosynthesis can be detailed as the difference between true photosynthesis (PT) and 

photorespiration (PR): 

 Pg = PT - PR (7) 

Under CO2-saturation (i.e at low pH that increases CO2:O2 ratio in seawater), PR would 

approach a minimum (~ 0), so that Pg will be an approximate estimate of true photosynthetic O2 

production (PT).  In this study, O2 production rates measured at low pH (i.e. incubation pH6) 

were assumed to represent the true photosynthesis (PT) for each growth condition.  Therefore, 

photorespiration was calculated by subtracting the carbon limited gross photosynthesis 

measured at pH>6 from the gross photosynthesis at pH 6.   

 PR [pH>6] = Pg [pH6] - Pg [pH>6]     (8) 

 PR[pH>6] = [ Pm *൫1- e-E/ Ek൯ ]
[pH6]

  -  [ PE *൫1- e-E/ Ek൯ ] 
[pH>6]

 (9) 

Under this assumption, Pg would approach PE when light and flow are at saturating values, 

and it will approach the true physiological capacity (Pm) when carbon, light and flow are 

saturating.  In this formulation, the limit of Pm is set by availability of cellular components such 

as enzyme and pigment concentrations, and may change as a function of growth conditions.   

Pulsed Amplitude Modulation (PAM) fluorescence measurements were analyzed following 

the calculations outlined in Baker (2008).  The maximum (Fm) and minimum (F0) fluorescence 

emissions were measured in the dark while measuring respiration with a short saturating pulse 

of light.  The maximum variable fluorescence yield (Fv = Fm - F0) is used to quantify the 
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maximum quantum yield of fluorescence (Fv/Fm), which is a measure of maximum efficiency at 

which absorbed light by photosystem II (PSII) can be used for photochemistry.  During 

photosynthesis, the maximum (F’m) and minimum fluorescence (Ft) emissions induced by the 

short saturating pulse of PAM were measured again, but this time in the light.  Based on these 

emissions under the presence of the actinic background light, the effective quantum yield of 

PSII (EQY, PSII), was determined as: 

 PSII = ( F 'm- Ft ) / F 'm (10) 

PSII provides an estimate of the quantum yield of linear electron flux through PSII at a given 

photon flux.  This photochemical quenching is one of the competitive pathways that reduces the 

fluorescence.  The other non-radiative energy loss that quenches fluorescence, called Non-

Photochemical Quenching (NPQ), results from the dissipation of excess excitation energy as 

heat via the Xanthophyll cycle.  NPQ was estimated as: 

 NPQ = ( Fm- F 'm ) / F 'm (11) 

For comparisons among the treatments and incubations, NPQ and PSII at different light levels 

were fitted to a four parameter logistic curve, which is commonly used for dose response 

analysis, with the following formula: 

 
NPQ = NPQmin + 

( NPQmax + NPQmin)

1+(PUR EC50⁄ )-Hillslope 
(12) 

where the Hill slope, also called a slope factor, quantified the steepness of the dose-response 

curve.  EC50 was the PUR level required to provoke a response halfway between the baseline 

and maximum responses.  The threshold for NPQmax was constrained to 10 based on literature 

values (Kalaji et al., 2014). 
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The following relationship was used to estimate the electron transport rate (ETR) based on PSII 

(Figueroa et al., 2003):  

 ETR (μmol electrons m-2s-1) = PUR* FII*PSII (13) 

where FII was the fraction of PUR captured by PSII and its light harvesting complexes 

(LHC).  The typical value of FII for Chlorophyta and seagrasses is about 0.5 (Figueroa et al., 

2003; Larkum et al., 2006a).  Photosynthetic parameters of ETR curves (i.e. ETRmax, ETR and 

Ek -ETR) were calculated by modifying the model of O2 based P vs E. curves (Eq. 6): 

 ETR = ETRmax *൫1- e-E/ Ek൯ (14) 

Linear electron flow through PSII is directly related to photosynthetic oxygen production, 

therefore the gross photosynthesis based on fluorescence measurements (Pg-ETR) were 

estimated from ETR with the following formula: 

 Pg-ETR (μmol O2 m-2s-1) = ETR*  (15) 

where  was the ratio of oxygen evolved per electron generated at PSII. Since four stable 

charge separations are necessary to generate one mole of O2 at PSII,  is equal to 0.25. 

 

Statistical analysis 

Effects of growth pH on pigment content and optical properties of leaves were analyzed by 

one-way Analysis of Variance (ANOVA) followed by the Tukey multiple comparison method 

when significant overall effects were identified.  Effects of growth pH and measurement pH on 

dark respiration rates, measured with the O2 evolution method, were analyzed by Analysis of 

Covariance (ANCOVA).   
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O2 evolution and fluorescence models were implemented by using the non-linear 

regression curve fitting tools in SigmaPlot (Systat Software Inc., Version 13.0).  This tool 

provided the mean estimates of the model parameters with their error estimates and 

significances.  Additionally, analysis of variance for the regression models were presented to 

account for the goodness of fit of the P vs E curves for each experimental condition (Appendix 

Table 19, Table 20, Table 21 and Table 22).  Significant effects of measurement pH and growth 

pH on model parameters were analyzed by ANCOVA, which allowed only using the means of 

estimates.   

 

Results 

Photoacclimation to growth CO2 

Pigment content and leaf optical properties varied significantly among the leaves grown in 

different pH treatments (Table 8).  Both total chlorophyll and carotenoid content decreased with 

increasing growth [CO2] but the molar ratio of Total Car:Total Chl remained constant across CO2 

treatments at about 0.27.  The optical cross section increased with growth [CO2], indicating a 

reduced package effect.  However, these leaves packed more biomass per the same unit of 

surface area, resulting from an increase in the thickness of the unpigmented mesophyll.  These 

phenotypic responses, described in Chapter2, had important consequences for the comparison 

of photosynthetic efficiencies due to the normalization of metabolic rates to different leaf 

properties.   
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Table 8.  Pigment content and optical properties of leaves used in photosynthesis 

measurements.  Effects of growth pH on mean concentrations (±SE) were analyzed by one-way 

ANOVA. Different letters represent significant differences among the growth pH for each 

parameter compared by Tukey method at P<0.05.  FW: Fresh Weight, LA: Leaf Area, Chl: 

Chlorophyll, Car: Carotenoid. 

Growth pH Ambient  (~8) 7 6 

Sample Size (n) 16 18 18 

FW per LA (mg cm-2) 25.8 ± 1.33 a 27.1 ± 0.92 a 36.0 ± 1.52 b 

Total Chl per LA (µg Chl cm-2) 31.2 ± 1.22 a 27.0 ± 1.20 b 20.8 ± 0.86 c 

Total Chl per FW (mg Chl g-1 FW) 1.25 ± 0.07 a 1.01 ± 0.05 b 0.59 ± 0.03 c 

Total Car per LA (µg Cx cm-2) 8.16 ± 0.28 a 7.25 ± 0.25 b 5.61 ± 0.17 c 

Chl a:b 3.44 ± 0.04 a 3.73 ± 0.07 b 3.61 ± 0.04 a, b 

TCar:TChl 0.26 ± 0.00 a 0.27 ± 0.00 a 0.27 ± 0.00 a 

Absorptance at 550nm 0.38 ± 0.01 a 0.37 ± 0.01 a 0.29 ± 0.01 b 

Absorptance at 680nm 0.75 ± 0.01 a, b 0.75 ± 0.01 a 0.73 ± 0.01 b 

Optical Cross Section (a*680) 5.90 ± 0.33 a 6.73 ± 0.29 a 8.10 ± 0.24 b 
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Light response curves of Oxygen flux  

Rates of dark respiration, whether normalized to biomass (RD (FW)) or leaf area (RD (LA)), were 

not affected by growth [CO2] or instantaneous variations of [CO2] within the incubation 

chambers, and averaged 5.96 0.31 µmol O2 hr-1 g-1 FW or 0.50 0.03 µmol O2 m-2 s-1, 

respectively (Table 9).  Dark respiration rates were independent of pH within the range 

examined here, indicating no negative impact of changing ionic composition on respiration.  In 

contrast net O2 production rates increased with light and incubation [CO2] for all plants, 

regardless of the CO2 environment in which they were grown (Figure 13). 

The biomass specific rate of light-saturated photosynthesis (PE (FW)) averaged 14.1 µmol O2 

hr-1 g-1 FW at low incubation [CO2] for all plants and increased as a function of incubation [CO2] 

(Figure 13).  However, PE (FW) of the plants grown under ambient conditions was twice as 

sensitive to increasing [CO2] than plants grown under CO2 enrichment (Table 10, 86.8 vs 33.5 

µmol O2 hr-1 g-1 FW at MpH 6 respectively).  This difference was associated with 2 fold higher 

biomass specific pigment content of the ambient plants (Table 8).  This indicates the limitation of 

oxygen evolution of ambient plants at their natural low CO2 environment is mainly due to 

photorespiration even though the plants have excess photosynthetic machinery available and 

efficiently harvesting light. 

For all plants, increased incubation [CO2] also increased the light requirement to saturate 

photosynthetic oxygen production (Ek (PAR) and Ek (PUR)); rather than changing the photosynthetic 

efficiency () within the light limited region of P versus E response curves (Table 10). Overall, 

photoacclimation of eelgrass leaves to ocean carbonation resulted in increasing Ek (PUR) values; 

17, 44 and 48 µmol absorbed photon s-1 m-2 for pH8, pH7 and pH6 plants at their growth pH, 

respectively.   
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Figure 13.  Net Photosynthesis of eelgrass leaves per biomass as a function of irradiance. 

O2 production rates were measured at different pH levels (red: pH6, black: pH7 and blue: pH8) 

using leaves grown at pH6 (A), pH7 (B) and ambient pH (C). Curves were fit using Eq.6.   
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Figure 14.  Net Photosynthesis of eelgrass leaves per total Chlorophyll content as a 

function of absorbed irradiance.  O2 production rates were measured at different pH levels (red: 

pH6, black: pH7 and blue: pH8) using leaves grown at pH6 (A), pH7 (B) and ambient pH (C).  

Curves were fit using Eq.6.    
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Table 9.  Dark respiration (RD) rates measured with O2 evolution method and estimated by 

non-linear model fit to P vs E curves. Rates are normalized both to Fresh Weight (FW) and Leaf 

Area. Effects of measurement pH and growth pH on measured RD were analyzed by ANCOVA. 

Growth pH Measurement 
pH 

Measured Dark 
Respiration 

(µmol O2 hr-1 g-1 FW) 

Modeled Dark 
Respiration 

(µmol O2 hr-1 g-1 FW) 

Modeled Dark 
Respiration 

(µmol O2 s-1 m-2) 

6 6 4.61 ± 0.75 4.73 ± 1.34  0.45 ± 0.10  

 7 5.31 ± 0.62 5.50 ± 1.15  0.51 ± 0.08  

 8 5.84 ± 0.47 5.90 ± 0.63  0.69 ± 0.07  

7 6 6.40 ± 1.14 6.90 ± 3.06  0.51 ± 0.12  

 7 6.73 ± 1.20 7.08 ± 3.02  0.53 ± 0.22  

 8 5.03 ± 0.91 5.04 ± 1.88  0.37 ± 0.12  

Ambient (~8) 6 6.52 ± 0.93 6.83 ± 2.06  0.46 ± 0.07  

 7 6.18 ± 0.75 6.71 ± 2.19  0.46 ± 0.14  

 8 7.29 ± 1.26 7.29 ± 1.05  0.56 ± 0.10  

ANCOVA of Measured RD DF SS MS F P  

Growth pH 2 11.551 5.776 1.173 0.318  

Measurement pH 1 0.531 0.531 0.108 0.744 

Growth pH x Measurement pH 2 10.206 5.103 1.037 0.363 

Residual 46 226.435 4.922 -- -- 

Total 51 255.682 5.013 -- -- 
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Table 10.  Model estimates (mean ± SE) of photosynthesis parameters generated by non-

linear regression fit to the experimental data using Eq. 6 (N.S. stands for non-significant 

parameter estimate).  Significant effects of measurement pH (MpH) and growth pH (GpH) on 

mean estimates were analyzed by ANCOVA. 

Model Estimates  Measurement pH 

 Growth 
pH 

6.0 7.0 8.0 

PE (µmol O2 hr-1 mg-1 Chl) 

GpH x MpH:  p=0.570 

GpH:  p=0.583 

MpH:  p=0.002 

6 70.2 ± 4.3 55.2 ± 3.7 24.5 ± 2.1 

7 68.0 ± 3.2 49.3 ± 3.1 12.5 ± 3.1 

8 62.6 ± 2.4 44.9 ± 4.0 20.3 ± 2.4 

PE (µmol O2 hr-1 g-1 FW) 

GpH x MpH:  p=0.240 

GpH:  p=0.185 

MpH:  p=0.014 

6 33.5 ± 2.8  40.0 ± 2.5 12.9 ± 1.1 

7 67.4 ± 7.1  54.3 ± 6.5 12.1 ± 2.9 

8 86.8 ± 4.7  62.1 ± 4.6 17.2 ± 1.7 

PE (µmol O2 s-1 m-2) 

GpH x MpH:  p=0.233 

GpH:  p=0.199 

MpH:  p=0.007 

6 3.6 ± 0.2  3.5 ± 0.2  1.5 ± 0.1 

7 5.8 ± 0.3  4.3 ± 0.5  0.9 ± 0.2 

8 5.8 ± 0.2  4.3 ± 0.3  1.5 ± 0.2 

ETRmax (µmol Electron s-1 m-2) 

GpH x MpH:  p=0.573 

GpH:  p=0.482 

MpH:  p=0.119 

 

6 35.3 ± 0.4 41.0 ± 3.3 22.4 ± 0.5 

7 93.1 ± 2.6 68.3 ± 4.2 32.4 ± 1.1 

8 58.4 ± 5.8 82.2 ± 5.5 22.8 ± 0.7 

ETR (µmol Electron  

µmol-1 absorbed Photon) 

GpH x MpH:  p=0.696 

GpH:  p=0.735 

MpH:  p=0.257 

 

 

6 0.45 ± 0.01 0.50 ± 0.07 0.52 ± 0.03 

7 0.42 ± 0.01 0.48 ± 0.04 0.44 ± 0.04 

8 0.50 ± 0.08 

 

0.46 ± 0.03  0.52 ± 0.04 
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Table 10. continued   

Model Estimates  Measurement pH 

 Growth 
pH 

6.0 7.0 8.0 

max (µmol O2 µmol-1 absorbed 
Photon) 

GpH x MpH:  p=0.263 

GpH:  p=0.314 

MpH:  p=0.100 

6 0.077 ± 0.01 0.084 ± 0.01 0.107 ± 0.03 

7 0.079 ± 0.01 0.079 ± 0.02 0.14 ± 0.24. 

8 0.083 ± 0.01  

 

0.074 ± 0.01 0.081 ± 0.03 

Ek (µmol absorbed photon s-1 m-2)  

from ‘PG per Chl vs  PUR’ 

GpH x MpH:  p=0.391 

GpH:  p=0.348 

MpH:  p=0.006 

6 47.5 ± 7.0 36.4 ± 6.0 14.5 ± 4.9 

7 64.2 ± 7.4 43.9 ± 6.9 4.7 ± 15.8 

8 68.6 ± 7.2 

 

57.1 ± 13.3 

  

17.4 ± 7.1 

Ek (µmol photon s-1 m-2)  

from ‘PG per FW vs PAR’ 

GpH x MpH:  p=0.523 

GpH:  p=0.501 

MpH:  p=0.046 

6 65.0 ± 14.5 94.7 ± 14.8 28.4 ± 8.6 

7 94.0 ± 24.2 85.3 ± 25.1 11.6 ± 23.5 

8 124.9 ± 18.6 

 

83.9 ± 16.9 

 

18.3 ± 8.7  

Ek (µmol absorbed photon s-1 m-2)  

from ‘ETR vs  PUR’ 

GpH x MpH:  p=0.560 

GpH:  p=0.469 

MpH:  p=0.117 

6 78.5 ± 2.0 82.2 ± 15.6 43.1 ± 2.9 

7 220.1 ± 10.3 142.6 ± 19.0 72.8 ± 7.3 

8 117.5 ± 27.8 180.1 ± 22.9 44.2 ± 3.8 
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The chlorophyll specific rates of light-saturated photosynthesis (PE (Chl)) were the same for 

all plants grown at different CO2 environments, and increased identically with the incubation 

[CO2] (Figure 14).  Consequently, the O2 production efficiency per unit Chlorophyll did not 

change as a function of the CO2 environment in which the plants were grown.  Therefore, for 

any plant, the increase of O2 evolution with incubation [CO2] was instantaneous at a constant 

light level (Figure 15, A).  Most likely explanation of this instantaneous response would be a 

reversible and light dependent O2 consuming process involving the chloroplast, such as 

photorespiration (PR), that is reduced/eliminated with increasing [CO2].  Therefore, for all plants, 

PE (Chl) rates at high incubation [CO2] (i.e. at MpH6) were assumed to be the true physiological 

capacity ((Pm) i.e. light, carbon and flow saturated photosynthesis) acclimated to their growth 

environment.  Based on this assumption, photorespiration rates were quantified by solving the 

Eq.9 with the chlorophyll specific gross photosynthesis models (Figure 15, B).  Using pigment 

specific models, rather than biomass or area based models, eliminated the effect of 

morphological differences among the plants on net oxygen metabolism.   

Photorespiration (PR) increased with light similar to photosynthesis (P); but decreased with 

increasing incubation [CO2], as carboxylation became increasingly favored over oxygenation 

(Figure 15, B).  Predicted PR rates increased rapidly with light to a maximum of 60 to 80% of Pm 

at low [CO2] (i.e. MpH8) (Figure 15, C).  When aqueous [CO2] was equal to aqueous [O2] (at 

MpH7, Table 7), maximum PR rates were only 20% of Pm, which is equivalent to the inherent 

carboxylation: oxygenation ratio of Rubisco.    
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Figure 15.  Modeled gross photosynthesis (A) and photorespiration (B and C) of eelgrass 

leaves as a function of absorbed irradiance.  Colors represent different pH levels at which the 

measurements (MpH) were performed; line styles represent the different pH levels at which the 

plants were grown (GpH).  Photorespiration at MpH6 were zero.   
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All plants reached the lowest Gross Photosynthesis to Dark Respiration ratio (Pg:RD) of 2 at 

low incubation [CO2] when light saturated (Figure 16, A).  This ratio increased instantaneously 

up to 12 for ambient plants (GpH8) when saturated with CO2 in the incubation medium.  

However, high CO2 grown plants downregulated their PE:RD to an average of 8.  This showed 

the consequence of pigment acclimation on metabolic balance because of growth in high CO2 

environment (Figure 16, grey arrows in B).  Having excess pigment content in a carbon-limited 

environment (as observed in pH8-grown plants) did not improve the PE:RD under normal growth 

conditions even though it allowed the instantaneous 6 fold increase of PE:RD when incubation 

[CO2] increased.  High CO2 acclimated plants, on the other hand, had 4 fold higher PE:RD than 

ambient plants at their respective growth pH even though decreasing the pigment content by 

half.   

 

Light response curves of chlorophyll fluorescence 

Maximal quantum yields of fluorescence of dark-adapted leaves were above 0.7 regardless 

of incubation [CO2], indicating all plants from different pH treatments were healthy during the 

experiments (PSII at PUR 0 µmol absorbed photon s-1 m-2, Figure 17).  For all plants, effective 

quantum yields of fluorescence (PSII) decreased faster with increasing light when the 

incubation [CO2] was low (MpH8).  The decreased photochemical yield resulted from rapid 

induction of non-photochemical quenching (NPQ) when [CO2] was limited under light saturation 

(Figure 18).  However, the onset of NPQ in response to light increased with growth CO2, 

meaning the NPQ pathway was saturated quickly for high CO2 acclimated plants at all 

incubation conditions (Figure 18 A).  The rapid saturation of NPQ in response to light was 

consistent with the decreased carotenoid content of leaves grown under high [CO2].   
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Figure 16.  Modeled ratio of gross photosynthesis to dark respiration as a function of 

absorbed irradiance (A) and as a function of Chlorophyll content at saturating irradiances (B).  

Colors represent different pH levels at which the measurements (MpH) were performed; line 

styles (GpH) and symbols (▲at pH6, ■ at pH7, ● at ambient pH) represent the different pH levels 

at which the plants were grown.  (B) Ellipses highlight when plants from different treatments 

were incubated at their corresponding growth pH.  So that, gray arrows show the trajectory of 

PE:RD as a result of phenotypic acclimation to the increasing CO2 environment.    
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Figure 17.  Fluorescence parameters of eelgrass leaves as a function of absorbed 

irradiance.  PAM measurements were performed at different pH levels (red: pH6, black: pH7, 

blue: pH8) using leaves grown at pH6 (A), pH7 (B) and ambient pH (C).  Curves were fit using 

Eq.12.    
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Figure 18.  Fluorescence parameters of eelgrass leaves as a function of absorbed 

irradiance.  PAM measurements were performed at different pH levels (red: pH6, black: pH7, 

blue: pH8) using leaves grown at pH6 (A), pH7 (B) and ambient pH (C).  Curves were fit using 

Eq.12.    
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At saturating irradiance (350 µmol absorbed photon s-1 m-2, Figure 18), NPQ values of 

ambient plants increased 5 fold with decreasing incubation [CO2] contrary to high CO2 

acclimated plants (GpH6), which reached the same NPQ of 2.5 at this light level regardless of 

incubation [CO2].  The dynamic range of NPQ regulation in ambient grown plants in response to 

instantaneous changes in [CO2] showed their high tolerance of fluctuating environmental 

conditions (Figure 18 C); similar to diurnal NPQ cycle capacity of high light acclimated eelgrass 

leaves to avoid photodamage under fluctuating light environments (Ralph et al., 2002). 

The relation between quantum yield of fluorescence (PSII) and quantum yield of oxygen 

evolution (O2) was nonlinear, and their ratios were closest to the theoretical value of 8 only at 

low light and high [CO2] conditions (Figure 19).  For this ratio to be higher than 8 either less than 

half of the photons are directed to PSII (i.e. FII<0.5, Eq.13) and/or more than four electrons are 

processed to evolve one mole of oxygen (<0.25, Eq.15).  Both of these outcomes highlight 

deviation from linear electron flow.  For ambient plants, O2 decreased faster than PSII with 

increasing light resulting in a drastic increase in PSII:O2, especially at their growth pH 8, which 

indicated these plants were using alternative electron pathways to keep electron flow running, 

as detected by PAM method, without producing and/or consuming oxygen in a light dependent 

respiratory process (i.e. photorespiration).   
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Figure 19.  Divergence of quantum yield of fluorescence (ФPSII) from quantum yield of 

oxygen (ФO2) as a function of light and incubation pH.  O2 production and fluorescence were 

measured simultaneously at different pH levels using eelgrass leaves grown at different CO2 

treatments.  Yields were calculated using PUR.  Relationship was modeled using Gaussian type 

non-linear regression fit.    
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Similar to net photosynthesis rates, electron transport rates (ETR) of all plants increased 

with light and were lowest at low incubation [CO2] (i.e. MpH8) (Figure 20, Table 10).  However, 

the increase of ETRmax with incubation CO2 was not consistent among the plants due to the non-

monotonic trend of EQY with incubation pH (Figure 17).  Only ETRmax of plants grown at pH7 

increased consistently with increasing incubation [CO2].  For all incubation experiments, PUR 

levels to saturate ETR (Ek-ETR) were consistently higher than the Ek values required to saturate 

O2 production (Table 10).  For all plants, estimated gross photosynthesis based on ETR were 

also higher than the gross photosynthesis measured by the O2 evolution method (Figure 21).  

However, this overestimation was not consistent among plants grown at different CO2 

environments. The PE (LA) to ETRmax ratio was around 0.1 for pH6 and pH8 plants when 

incubated at pH6 and pH8, instead of the theoretical value () of 0.25 (Table 10).    
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Figure 20.  Electron transport rates of eelgrass leaves as a function of absorbed irradiance.  

PAM measurements were performed at different pH levels (red: pH6, black: pH7 and blue: pH8) 

using leaves grown at pH6 (A), pH7 (B) and ambient pH (C). Curves were fit using Eq.14.   
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Figure 21.  Modeled gross photosynthesis of eelgrass leaves as a function of absorbed 

irradiance.  Solid lines are calculated from leaf area normalized O2 production rates (Eq. 5) and 

dashed lines are estimated from ETR measurements (Eq. 15).  Colors represent incubation pH 

levels.  Green dot-dashed lines represent the theoretical O2 production per absorbed photon 

under non-limiting environmental conditions.   
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Discussion 

Long-term growth under high [CO2] produced morphological and metabolic changes in 

eelgrass.  Although pigment content decreased in plants grown at high CO2, leaves increased 

the biomass yield resulting from increased photosynthetic carbon assimilation and decreased 

photorespiration.  Evidence for photorespiration was the equivalent response of chlorophyll 

normalized O2 production rates to increased incubation [CO2], independent of the growth CO2.  

Therefore, the instantaneous difference in O2 production rates in CO2-saturated vs. CO2-limited 

incubation medium corresponded to the amount of O2 consumed in the photorespiratory 

pathway.  Thus, photosynthesis and photorespiration as a function of light for each growth 

condition were precisely predictable using the P versus E curves, although the responses to 

incubation CO2 differed between biomass and pigment normalization due to changes in leaf 

morphology.  Presently, models of eelgrass performance do not consider these long-term 

morphological and metabolic acclimation responses (Zimmerman, 2003, 2006; Zimmerman et 

al., 2015).  Thus, the quasi-mechanistic model developed in this study permits integration of the 

photosynthetic and morphological acclimation due to ocean carbonation into seagrass 

productivity models, by adjusting the limits of the photosynthetic parameters based on substrate 

availability and physiological capacity. 

Morphological acclimation and regulation of pigment content, rubisco activity, light capture 

and carbon fixation as a function of CO2 availability have been previously observed in multiple 

submerged angiosperms (Madsen et al., 1996).  Increasing Pg:RD due to the enhancing impact 

of [CO2] on PE was detected even in short term (2-6 weeks) studies using tropical and 

temperate seagrass species without any CO2 effect on pigment content (Zimmerman et al., 

1997; Ow et al., 2015).  Long term studies, moreover, concluded the significant responses of 

pigment content, biomass allocation, shoot survival and reproductive output in eelgrass to CO2 

availability (Chapter 2, (Palacios and Zimmerman, 2007; Zimmerman et al., 2016).  Despite 
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decreasing pigment content and leaf absorptance, plants grown at high CO2 were able to keep 

higher Pg:RD ratio than ambient grown plants at their respective growth conditions; indicating the 

coupling between the regulation of photosynthetic structure and metabolic carbon demands.  

Such a coupling between photosynthetic regulation and growth might be poor for organisms that 

undergo photodamage because photosynthesis might accommodate the biochemical costs 

associated with protection and recovery rather than fueling the energy towards growth (Barra et 

al., 2014).  On the other hand, eelgrass plants show no sign of photodamage even when 

photosynthesis is carbon limited but light saturated.   

When incubated at low [CO2], plants from the ambient CO2 aquaria had the same 

photosynthetic O2 production as the plants grown at high [CO2].  These same photosynthetic 

rates highlighted no enhanced DIC uptake mechanisms in ambient eelgrass plants to begin 

with, as opposed to marine algae and cyanobacteria that usually upregulate their carbon 

concentrating mechanisms when CO2 availability is limited in their growth environment (Björk et 

al., 1993; Raghavendra, 2000; Falkowski and Raven, 2007).  This is also consistent with our 

inability to reduce photosynthesis of eelgrass from the Chesapeake region with an inhibitor of 

external carbonic anhydrase (McPherson et al., 2015) and Celebi - unpublished data).  

Seagrasses living in intertidal estuarine environments, like Chesapeake Bay eelgrass used in 

this study, are subject to highly variable CO2/pH levels daily and seasonally, which might explain 

the unresponsiveness of CCMs for ambient plants (Duarte et al., 2013; Ruesink et al., 2015).  

Similarly, all plants had the same PE (Chl) when measured at saturating [CO2] due to minimized 

PR, indicating all plants approached the same physiological oxygen production capacity per 

available photosynthetic machinery (i.e. Pm (Chl)  was constant across all treatments).  Therefore 

the difference in PE:RD at high incubation [CO2] among the plants resulted from the 

downregulation of photosynthetic machinery in high CO2  grown plants (i.e. chloroplast and 

rubisco content; also consistent with reduced N content – pers comm with Jinuntuya M.).   
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Despite phenotypic acclimation across the CO2 gradient, the maximum photosynthetic 

efficiency (max) remained constant for all plants (~0.08 mol O2 mol-1 absorbed photon) but 

photosynthesis-saturating light levels (Ek) increased, as was predicted by the model of 

McPherson et al. (2015).  Photosynthetic efficiency within and among seagrass species vary 

with efficiency of light absorption and efficiency of light to carbon conversion (Ralph et al., 

2007).  Although the observed  values in this study were in agreement with previous estimates 

for eelgrass (Frost-Christensen and Sand-Jensen, 1992), constant  across different CO2 

regimes is different than common literature values observed for terrestrial C3 plants (0.082 and 

0.052 mol CO2 mol-1 absorbed photon at high and low [CO2], respectively (Raghavendra, 2000).  

This difference might be due to acclimation to submerged environment where water stress is not 

coupled to CO2 response as in terrestrial plants.  The increased Ek and PE values for high CO2 

acclimated plants will decrease the estimates of Hsat (i.e. average daily period of PE) required to 

maintain positive carbon balance for the whole plant.  Hsat requirement is a useful modeling tool 

in predicting the depth distribution of eelgrass in variable light environments (Zimmerman et al., 

1991; Zimmerman et al., 1995).   

A strong correlation between NPQ (i.e. xanthophyll cycle) and high light exposure has been 

confirmed for eelgrass (Ralph et al., 2002).  A previous study found that high light acclimated 

eelgrass leaves had higher NPQ activity, and higher photosynthetic capacity, than low light 

acclimated leaves (Ralph and Gademann, 2005).  This study demonstrated a similar effect on 

NPQ activity by [CO2] availability.  Under ambient CO2 concentrations photosynthesis became 

carbon limited at lower Ek so that the excess photon absorption was diverted to NPQ, likely 

using the xanthophyll cycle.  The high CO2 incubations reduced this carbon limitation and 

increased the Ek, consequently reducing the NPQ.  Due to increased Ek, the same light 

environment becomes less damaging at high CO2, which may explain the reduction in both 

photosynthetic and photoprotective pigments observed in response to growth CO2.  This also 
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highlights the importance of photoprotective mechanisms in ambient grown plants to prevent 

photoinhibition in eelgrass, which would be costly to repair.  Thus, by reducing CO2 limitation of 

Rubisco, ocean carbonation should also reduce the vulnerability of eelgrass to excess reactive 

oxygen species (ROS) and therefore the need for photoprotection.  

Furthermore, the simultaneous measurements of variable fluorescence, and O2 flux 

performed here yielded quantitative estimates of changes in photoprotective pathways of 

eelgrass acclimated to different CO2 environments.  The difference between the theoretical O2 

evolution (i.e. the linear increase of O2 with light) and the ETR estimates of gross 

photosynthesis (Pg-ETR) accounts for the absorbed photons (energy) that did not contribute to the 

electron transport pathway (not exciting electrons at PSII).  This difference can be explained by 

quenching pathways, such as fluorescence and NPQ, which would reduce the photochemical 

quenching measured as PSII and integrated into Pg-ETR.  This difference was most pronounced 

for plants grown at high CO2 related to their significantly lower ETR values.  This trend was 

consistent with their lower area based O2 production rates at high CO2 incubations when 

compared to pH7 and ambient pH grown plants.  These plants downregulated their pigment 

content but increased the light-dependent NPQ at lower irradiances even at high incubation 

[CO2].  This may indicate that phenotypic acclimation to ocean carbonation by downregulation of 

photosynthetic machinery (i.e. less pigment per area) reduced the role of photorespiration but 

increased the role of NPQ in photoprotection.  

On the other hand, the difference between the ETR estimated gross photosynthesis (Pg-ETR) 

and the gross photosynthesis measured by oxygen production (Pg) may result from inaccurate 

assumptions of Fii and/or  (Eq.15).  In theory, 8 photons absorbed equivalently both by PSI and 

PSII (Fii= 0.5) excites total of 4 electrons producing 1 mole of O2  ( =0.25).  This equilibrium of 

linear electron flow is valid when there is no limitation of resources such as CO2 and/or 

accumulation of byproducts such as reducing equivalents and ROS (Scheibe et al., 2005; Dietz 
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and Pfannschmidt, 2011; Pfannschmidt and Yang, 2012).  Under limiting conditions, this 

balance shifts towards pathways that ensure the optimal redox state of the chloroplast resulting 

in altered photon: electron: O2 ratios (Foyer et al., 2012).  Fluorescence measurements may 

account for the number of absorbed photons used in electron excitation but not necessarily 

towards the rates of oxygen production/consumption or carbon assimilation, especially at high 

irradiances when alternative electron sinks are available (Beer et al., 1998).  Therefore, either 

more than four electrons are processed during production of one mole of oxygen (<0.25) or 

less than half of the photons are directed to PSII (i.e. FII<0.5).  Both of these outcomes highlight 

deviation from simple linear electron flow. 

Following the linear assumption that 4 electrons produce 1 O2 (=0.25) resulted in 

overestimation of the PGETR.  Since the molecular chemistry of water splitting at PSII is well-

known,  can only be reduced in an apparent sense.  This apparent ratio can result from the 

excitation of four electrons (as detected with PAM) either without producing O2 or consumption 

of O2 in the chloroplast that would remain undetected by the gas exchange method.  The former 

process will indicate cyclic electron flow around PSII, which was suggested to explain the higher 

electron flow than the O2 production under continuous light in intact Chlorella cells (Prasil et al., 

1996) but not studied in seagrasses yet.  On the other hand, two possible pathways to explain a 

reduction in  due to O2 consumption are (i) the Mehler reaction and (ii) photorespiration.  The 

Mehler reaction increases the pH gradient resulting in ATP buildup without NADPH production 

that is necessary for CO2 assimilation (Demmig-Adams and Adams, 1992).  Additionally, this pH 

gradient may induce NPQ (Demmig-Adams and Adams III, 1996; Kanazawa and Kramer, 

2002).  However, in this study NPQ induction did not happen until EQY values fell below 0.6 

while O2 yield continuously decreased.  Therefore, the observed nonlinearity between quantum 

yield of fluorescence and quantum yield of oxygen most likely resulted from O2 consumption via 

photorespiration, which probably represents the primary pathway to remove excess O2 buildup 
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and use the ATP energy from light reactions for this purpose.  NPQ is then triggered when ATP 

consumption by photorespiration is unable to lower the pH gradient forming across lumen at 

very high irradiances.  

Other pathways that keep the electron flow continuous without contributing to CO2 

assimilation are cyclic electron flow and the malate valve.  Besides preventing ROS formation 

and accumulation of reduced species, cyclic electron flow is important in triggering NPQ via 

generating a pH gradient (Munekage et al., 2004; Johnson, 2005).  If cyclic electron flow plays 

an important role, then the assumption of half of the absorbed photons going to PSII (e.g. 

Fii=0.5) would be inaccurate.  Although PAM is easily applicable in field conditions and provide 

non-intrusive information about the photoprotection of eelgrass through NPQ, the fluorescence 

measurements with PAM do overestimate the Pg-ETR and therefore are not equivalent to true 

carbon assimilation.  Still, by quantifying the ratio of PSII to O2 as a function of light and carbon 

availability, the alternative electron pathways can be accounted and corrected for in the 

estimation of photosynthesis in eelgrass. 

In conclusion, photorespiration likely serves as an important clutch to protect the 

photochemical pathway in CO2-limited eelgrass even though it has often been viewed as an 

inefficient residue of the evolution of Rubisco.  Thus, the dual function of Rubisco maintains 

electron flow preventing the inhibitory damage to photosystems due to light saturation when 

carbon assimilation is limited by CO2 supply, and prevents accumulation of reactive oxygen 

species.  Photorespiration could be more beneficial than carbon concentrating mechanisms as it 

serves multiple purposes via connecting different metabolic pathways and allows instantaneous 

energy and reductant removal under fluctuating environmental conditions.  Indeed, 

photorespiration might provide a carbon concentrating mechanism via recycling of 

photorespired CO2 and removing excess intracellular O2.  Therefore, even though 

photosynthesis is mainly carbon limited, seagrasses might require high light to keep the 
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photosynthetic machinery running to produce ATP to support photorespiration.  This becomes 

more important for permanently rooted marine plants in highly variable estuarine environments, 

where high water column productivity causes [O2] to rise and [CO2] to fall, as opposed to marine 

algae growing under more stable oceanic conditions and phytoplankton that can drift away 

vertically and horizontally.  The metabolic pathway connectivity that results in more than one 

outcome and regulated by a variety of clues might have allowed survival of eelgrass under 

changing climate conditions even without exploitation of HCO3
- via CCM.  
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CHAPTER IV 

 

REGULATION OF PHOTOSYNTHETIC CONTROL IN EELGRASS IN 

RESPONSE TO CHANGING PHOTORESPIRATORY CONDITIONS DUE TO 

OCEAN ACIDIFICATION 

Introduction 

Understanding and quantifying the photosynthetic control in eelgrass, as a model organism 

for C3 aquatic vascular plants, is important to predict the impacts of climate change on coastal 

benthic primary productivity.  Increasing CO2 and temperature are fundamentally linked in their 

effects on photorespiration, enzyme systems and carbon assimilation (Koch et al., 2013).  

Increasing temperature, decreases the solubility of CO2 more rapidly than that of O2 in 

seawater, and stimulates the oxygenation reaction relative to carboxylation due to changes in 

enzymatic properties of Rubisco, therefore strongly favoring photorespiration over carbon 

fixation (Foyer et al., 2009).  Chapters 2 and 3 focused on the acclimation of eelgrass (Zostera 

marina L.) to ocean carbonation (aka ocean acidification), quantified its positive impacts on the 

balance between photosynthesis, photorespiration and dark respiration, and identified the 

distinguishing functions of photosynthetic machinery under varying environmental conditions.  

Although the main function of the photosynthetic apparatus is to convert sunlight to cellular 

energy and sugar needed to drive metabolism and growth; it must also be capable of dissipating 

excess absorbed sunlight safely and participate in regulating the ratio of reductants required to 

satisfy various metabolic demands (Foyer et al., 2012).   

These functions are regulated through photosynthetic electron transport (PET) control 

mechanisms that operate via linear, cyclic and pseudocyclic (a.k.a. Mehler) electron pathways, 

non-photochemical quenching (NPQ) and photorespiration.  All electron flow pathways through 

the PET chain creates a pH gradient across the thylakoid membrane to generate the ATP.  
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Linear electron transport also generates the NADPH necessary to complete the C3 cycle in 

stroma.  Even so, linear electron transport alone cannot meet the basic ratio of 3ATP/2NADPH 

that is required for CO2 fixation (Osmond, 1981; Noctor and Foyer, 1998; Foyer et al., 2012).  

Photorespiration, under severe carbon limitation, increases this ratio even more.  Therefore, 

cyclic electron flow and the Mehler pathway may become important to satisfy the increased ATP 

demand by generating a pH gradient but no additional NADPH.  This pH gradient also plays an 

important role in the formation and modulation of NPQ (Kanazawa and Kramer, 2002; Makino et 

al., 2002).  The flexibility to shift between the linear and cyclic electron transport, that share the 

same cellular machinery permits fine tuning of the chloroplast redox state in response to rapid 

changes in environment conditions.  Such flexibility could allow seagrasses to tolerate large 

daily fluctuations in irradiance, [CO2] and [O2] in shallow coastal waters.  

Although cyclic electron flow and the Mehler pathway can represent important 

photosynthetic control switches each one is considered to divert no more than 10% of the linear 

flux in C3 plants (Badger et al., 2000; Foyer et al., 2012).  However, these estimates might 

increase under stress conditions induced by high irradiance or CO2 limitation.  Longstaff et al. 

(2002) estimated that these alternative electron transports might account for 40% of the electron 

transport in the marine macroalga Ulva lactuca, resulting in discrepancies between 

photosynthetic O2 fluxes and PAM based electron transport rates (ETR) measured under light 

saturation.  Thus, these photosynthetic control mechanisms have significant implications for 

estimating quantum requirements and assimilatory quotients (Tolbert, 1997; Foyer et al., 2009).  

For example, photorespiration significantly lowers the quantum efficiency estimates of higher 

plants using the C3 pathway, macroalgae and submersed angiosperms from the theoretical 

upper limit of 0.125 mol O2 mol-1 photon to as low as 0.03 (Osmond, 1981; Frost-Christensen 

and Sand-Jensen, 1992).  Burris (1981) explained the lowered photosynthetic quotient values 
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(O2/CO2) in marine algae with photorespiration based on the stoichiometry that predicts 3 O2 are 

consumed per CO2 evolved during a photorespiratory cycle.   

Another indication of photorespiration in C3 plants is the higher CO2 compensation point 

(~60 ppm), defined as, the CO2 concentration of the medium at which the net photosynthesis 

becomes zero (i.e. no net CO2 exchange at saturating irradiance) (Atwell et al., 1999).  Plants 

that evolved mechanisms to reduce the photorespiration, such as C4 plants, are therefore able 

to sustain net photosynthesis even at low external [CO2] (i.e. CO2 compensation point ~5 ppm) 

(Raghavendra, 2000).  Measuring the actual rate of photorespiration via net gas exchange 

(either O2 or CO2) often produces ambiguous results due to inter – and intracellular recycling of 

gases and the operation of different types of oxidative reactions simultaneously in the light, 

resulting in no net change of measured O2 and CO2 flux (Raghavendra, 2000).  Relative to the 

Mehler reaction, which can represent as much as 30% of dark respiration, photorespiration can 

exceed dark respiration rates by as much as 8 times (Raghavendra, 2000).  Despite the 

imprecision, under standard atmospheric conditions (400 ppm CO2 and 21% O2) the rate of 

photorespiration in C3 plants has been approximated to be one-fourth to one-third of the 

photosynthetic rate.  

The photosynthetic control mechanisms described above not only regulate the short-term 

redox requirements but also coordinate the expression of genes encoding the proteins of 

photosystems (Foyer et al., 2012).  When eelgrass leaves were incubated at high CO2 (or under 

darkness), the increased acidity inside the cytoplasm changed the membrane potential 

impacting the proton pump (H+-ATPase) and sodium exclusion mechanisms, which might 

facilitate the DIC uptake (Fernández et al., 1999).  Therefore, H+ fluxes and pH homeostasis of 

marine autotrophs may be affected by acidified seawater (Taylor et al., 2012).   

With knowledge of the long term redox acclimation patterns in eelgrass to ocean 

acidification from the previous chapters, this study focused on the regulation of photosynthetic 
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control mechanisms in eelgrass leaves prior to and after acclimation to ocean acidification using 

multiple techniques simultaneously.  These techniques differ in their principle and limitations of 

measuring photochemical pathways.  Therefore, it was assumed that the discrepancy in the 

estimates of photosynthetic rates from different instruments provides quantitative information on 

the relative rates of photochemical and photoprotective pathways under a variety of CO2:O2 

environmental scenarios.  Understanding the impact of seawater chemistry on quantum 

requirements and assimilatory quotients in eelgrass are important to predict the carbon 

sequestration efficiency of seagrasses in a changing marine environment. 

 

Materials and Methods 

The experimental facility and sampling from pH treatments 

The eelgrass leaves used in this study were grown in an outdoor climate change 

experimental facility at the Virginia Aquarium and Marine Science Center, Virginia Beach, VA.  

The details of experimental design and control of manipulations for this long term project on 

impacts of ocean acidification on eelgrass were described in Chapter 2 and by Zimmerman et 

al. (2016).  To summarize briefly, vegetative shoots with intact roots and rhizomes were 

collected in May 2013 from the South Bay sub-tidal population in Eastern Shore, VA, USA and 

transplanted into 20 fiberglass open top aquaria.  The aquaria were continuously enriched with 

CO2 gas from June 2013 to October 2014 to attain treatment levels ranging from pH 6 to 

ambient (~pH 7.7), with 0.5 pH intervals between the treatments.  For the purpose of this study, 

eelgrass plants from these pH treatments were used to measure the changes in photosynthetic 

response of leaves after one month and 15 months of acclimation to high CO2 environment, 

during July 2013 and September - October 2014, respectively.  Freshly collected 2nd youngest 

leaves from pH 6.0, pH 6.5 and ambient pH treatments were subjected to laboratory 

measurements of photochemistry under fully controlled incubation conditions described below.  
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Incubation measurements of leaf photochemistry 

For the 2013 experiments, incubation measurements were performed in water-jacketed 

oxygen electrode chambers.  The hole in the chamber cap was enlarged to permit the entry of a 

fiberoptic probe for simultaneous measurement of variable fluorescence using a Mini-PAM 

fluorometer (Walz) as outlined in Chapter 3.  The 2014 experiments were performed using a 

custom designed water-jacketed incubation chamber, constructed from clear polycarbonate 

(Appendix Figure 33).  In the new setup, photosynthesis and respiration rates were measured 

polarographically with a Clark type mini-oxygen electrode.  In both experimental setups, variable 

fluorescence (a measure of EQY, NPQ and ETR), and seawater pH (a proxy for dissolved 

inorganic carbon (DIC) uptake), were monitored using Pulse Amplitude Modulated (PAM) 

fluorometer (Mini PAM, Walz, Germany) and a glass pH electrode/meter (Cole-Parmer), 

respectively.  Turbulent flow was provided by a magnetic stirrer to prevent boundary layer 

limitation of gas exchange along the leaf surface.  Continuous analog signals from the three 

sensors were recorded using a 20-bit data logger and LabView software (2009 edition, National 

Instruments).  Voltage data were post processed into metabolic rates using linear regression 

tools in MATLAB R2014 (The MathWorks Inc.).  O2 and pH electrode drifts were measured 

without leaf tissue prior to each incubation experiment and subtracted from the rates measured 

with leaf tissue to determine net fluxes of O2 and CO2.  Illumination was provided by a Kodak 

slide projector (ELH bulb) and its intensity was adjusted with neutral density filters.  Incubation 

irradiances were calibrated daily against a scalar radiometer (QSL, Biospherical Instruments 

Inc.). 

The light saturated photosynthetic response to varying O2:DIC ratios was measured using 

leaves, grown at pH 6, pH 6.5 and ambient pH (~7.7).  Using different leaves for each 

incubation condition allowed independent replications along the pH gradient for curve-fitting 

analysis.  The pH and the oxygen concentration of the incubation water were adjusted by 
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bubbling CO2 and/or an O2 + N2 mixtures into the chamber prior to the incubation.  Incubation 

temperature (25°C simulating conditions in the aquaria at the time of the experiments, and 30°C 

inducing heat stress) was controlled by a circulating water bath connected to the water jacket of 

the chamber.  Leaves were cleaned of epiphytes by gently scraping with a razor blade, and 

placed in a dark, temperature-stabilized chamber for 20 minutes prior to initiating the 

measurements.  A three cm long piece of leaf tissue, cut ~1 cm above the meristem, was 

consecutively used during a 10 min dark (i.e. dark respiration) and a 10 min light measurement 

(i.e. net photosynthesis at 310 µmol photons m-2 s-1) during the 2013 experiments.  For the 2014 

incubation experiments, segments from 2 different leaves, each 6.5 cm long and cut ~1 cm 

above their meristems, were incubated for 16 min under darkness (i.e. dark respiration) followed 

by a 16 min long measurement at saturated light (i.e. net photosynthesis at 460 µmol photons 

m-2 s-1).  After the incubations, pigment content and optical properties of the leaf tissues were 

measured and analyzed as described in Chapter 2.  

The incubation water was collected in May 2013 and July 2014 from Owls Creek next to the 

aquarium facility.  These stocks, [salinity= 25 (PSS)], were filtered through 0. 2 µm Nucleopore 

pore filter and refrigerated in dark bottles (~5° C) prior to use.  After incubations, aliquots were 

taken from the chamber for alkalinity titrations using an automated potentiometric titrator 

(Metroohm).  The changes in concentrations of DIC species were calculated using CO2SYS 

(Ver. 2.1; Lewis and Wallace 2012) from the difference of the pH of the seawater at the 

beginning and end of the incubations, while assuming constant temperature, salinity and 

alkalinity.  The TCO2 uptake rates were derived as the sum of loss of all three DIC species 

(CO2aq, HCO3
- and CO3

2-) from the seawater.  Although CO3
2- is not directly utilized by leaves, 

changing pH due to photosynthesis in a closed system will shift the distribution of DIC species 

therefore redistributing CO3
2- into CO2aq and HCO3

-.   
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Determination of photochemical rates 

Net oxygen evolution and net DIC uptake rates were normalized to biomass, leaf area and 

total pigment content.  The effect of incubation pH on light-saturated net photosynthesis was 

estimated using the following Gaussian models: 

 

Pnet=Pm*e
൭-0.5 * ൤

pHincub -  pHm
b ൨

2

൱ 
 

(16) 

where Pm was the estimate of maximum Pnet  (i.e. light, flow and CO2 saturated net 

photosynthesis) and pHm was the pH corresponding to Pm.  The value of b controls the width of 

the bell in pH units, permitting determination of the pH at which Pnet is reduced to ~50% of Pm.  

During the analysis of 2014 samples, the pHm and Pm parameters were constrained to the 

estimates from 2013 because these experiments covered a wider pH range to define the shape 

of the bell.  

Net photosynthetic rates, combined from different incubations, were also analyzed as a 

function of initial [CO2] of the incubation water.  The CO2 compensation point, i.e. the CO2 

concentration of the medium at which the net photosynthesis became zero, was determined by 

the following exponential rise model with an offset:  

 Pnet=P0+P*(1-eቀ-a * [CO2(aq)]ቁ ) (17) 

where P0 was the estimate of Pnet  at [CO2]=0 and Pm = P + P0 at saturating [CO2]. 

Net photosynthetic rates were converted to gross photosynthesis by adding dark 

respiration.  Based on these gross photosynthetic and dark respiration estimates, the 

photosynthetic (PQ) and the respiratory quotients (RQ) for each sample were calculated by 

dividing the O2 production/consumption rate by carbon uptake/release rate.  Carbon fluxes were 

expressed in terms of either total carbon exchange (TCO2) or only exchange of aqueous CO2. 
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Photosynthetic light use efficiency was estimated through the quantum yield of oxygen 

(O2), calculated by dividing the gross oxygen evolution rate per leaf area by absorbed photons 

(PUR).  PUR values were calculated using the spectral output of the lamp and spectral leaf 

absorptance as described in Chapter 3.  The theoretical limit of O2 within the light limited region 

of P vs EPAR curves is 0.125 mol O2/mol photon (=1/8), assuming all absorbed light energy is 

used to drive photochemistry via linear electron flow and 8 mol photons are required to produce 

1 mol O2.  Within this study, O2 was measured at saturated light levels while varying seawater 

pH to explain the deviation from a linear electron flow pathway depending on DIC availability in 

high light environment. 

Variable fluorescence measurements were analyzed as described in Chapter 3 to estimate 

the quantum yield of PSII (Maximum Quantum Yield of fluorescence-MQY and Effective 

Quantum Yield of fluorescence-EQY) and Non-photochemical Quenching (NPQ) (Raghavendra, 

2000; Baker, 2008).  EQY were converted into estimates of Electron Transport Rate (ETR) 

based on the relationship as detailed in Chapter 3.  The relationship of fluorescence parameters 

with incubation pH was estimated using the Gaussian model with a y-offset: 

 

f=Q0+Q
m

*e
൭-0.5 * ൤

pHincub -  pHm
b ൨

2

൱ 
 

(18) 

where Q0 was the estimate of minimum EQY or maximum NPQ and pHm was the pH 

corresponding to maximum EQY or minimum NPQ calculated from Q0 +Qm.   

 

Statistical analysis 

Photosynthesis and fluorescence models were implemented by using the non-linear 

regression curve fitting tools in SigmaPlot (Systat Software Inc., Version 13.0).  The effects of 

incubation water [O2] and growth pH (i.e. conditions) across the incubation pH gradient (i.e. 

covariate) were analyzed by ANCOVA.  When the normality assumptions failed, significances 
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among the conditions were determined by ANOVA on ranks, followed by multiple comparisons 

using Dunn’s method.  The relationships between O2 and DIC fluxes were evaluated using 

Model I linear regression. Pigment content and leaf optical properties were compared among 

the conditions by ANOVA followed by multiple comparisons using the Tukey method.  

 

Results 

The wide pH range in 2013 experiments, manipulated via CO2 enrichment, identified for the 

first time the limit of positive CO2 impact on eelgrass photosynthesis (Figure 22).  From pH 9 

down to pH 5, the [CO2] of the seawater increased exponentially from 1 to 25000 µmol L-1, while 

[HCO3
-] barely doubled from 1100 to 1900 µmol L-1 (Figure 22 A).  In response to increasing 

[CO2], light-saturated net oxygen production increased nonlinearly 8-fold to a maximum value of 

80 µmol O2 hr-1 mg-1 Chl when pH decreased from 8.1 to 6.1, while further decrease of pH 

reduced O2 production (Figure 22 B).  Net photosynthesis increased exponentially until [CO2] 

and [O2] were equivalent at pH 7.  At pH 6, where net photosynthesis was maximal, [CO2] and 

[HCO3
-] were equivalent.  Within the experimental range, the dark respiratory oxygen 

consumption was not affected by incubation pH and averaged around 7.2 µmol O2 hr-1 mg-1 Chl 

(Table 11).  Neither the rate of change nor the pH optima of net photosynthesis were affected by 

the growth environment (pH 6 vs. ambient, Table 12 and Figure 22 B).  Reducing [O2] of the 

incubation water to half of air saturation (i.e. 122 µM O2) did not change the observed 

relationship between net photosynthesis and pH, although the pH optimum decreased from pH 

6.2 to pH 5.9 (Figure 22 B, Table 12).  The overall response of dissolved inorganic carbon 

(TCO2) uptake to seawater pH was consistent with the net O2 production trend (Figure 22 C), 

except that maximum TCO2 uptake rates at optimum pH were higher than the corresponding O2 

production rates (Table 12, coefficient Pm).  The Gaussian model also predicted the optimum pH 

for the maximum TCO2 uptake to be 0.3 pH units higher than the optimum pH of maximum O2 
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production (coefficient pHm).  However, estimation of TCO2 uptake from pH was only accurate 

within the pH range of 6 to 9.  At lower pH the absolute [TCO2] was 500 fold higher than the 

maximum uptake rates observed at optimum pH, swamping the metabolically-derived signal.  

Therefore, photosynthetic carbon uptake rates for pH incubations below 6.0 were excluded from 

further analysis.   
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Figure 22.  (A)  The absolute concentrations of O2 and dissolved inorganic carbon species 

(CO2 and HCO-
3) in the incubation seawater.  All incubations were performed at 25°C.  (B)  Net 

O2 flux and (C) Net Carbon flux of eelgrass leaves as a function of incubation pH.  Plots (B) and 

(C): Filled symbols indicate measurements at saturating light levels (310 µmol photons m-2 s-1) 

and open symbols represent the corresponding dark respiration rates. Light-saturated rates 

were fit to the Gaussian function (Eq.16).  Different initial O2 levels are indicated by color, where 

212µM is equivalent to air saturation.  Symbols represent plants grown at different pH 

treatments (GpH).   
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Table 11. Dark respiration (DR) rates measured with O2 evolution method.  Rates were normalized both to Fresh Weight (FW) 

and Pigment content. Effects of incubation pH on DR rates among different oxygen categories were analyzed by ANCOVA. 

2013 incubations 
Dark Respiration 

(µmol O2 hr-1        
mg-1 Chl) 

Dark Respiration 
(µmol O2 hr-1           

g-1 FW) 
2014 incubations 

Dark Respiration 
(µmol O2 hr-1       

mg-1 Chl) 

Dark Respiration 
(µmol O2 hr-1            

g-1 FW) 

Conditions n Mean ± SEM Mean ± SEM Conditions  n Mean ± SEM Mean ± SEM 

122µM O2 GpHamb 12 7.09 ± 0.69 8.26 ± 1.04 122µM O2 GpH6.5 25°C 9 12.96 ± 1.09 14.64 ± 1.26 

212µM O2 GpH6.0 7 8.49 ± 1.20 5.95 ± 1.05 212µM O2 GpH6.5 25°C 9 7.51 ± 0.95 8.38 ± 1.02 

212µM O2 GpHamb 7 6.19 ± 1.15 5.62 ± 0.82 212µM O2 GpH6.5 30°C 6 10.3 ± 2.62 11.29 ± 2.81 

 76µM O2 GpH6.5 25°C 6 12.41 ± 1.34 13.39 ± 1.84 

ANCOVA  for the Equal Slopes Model: Pigment normalized ANCOVA for the Equal Slopes Model: Pigment normalized 

Source of Variation df SS MS F P Source of Variation df SS MS F P 

Conditions 2 19.43 9.71 1.40 0.268 Conditions 3 185.70 61.90 4.85 0.009 

Incubation pH 1 25.10 25.10 3.61 0.071 Incubation pH 1 91.42 91.42 7.16 0.013 

Residual 22 152.87 6.95 -- -- Residual 25 319.20 12.77 -- -- 

Total 25 196.92 7.88 -- -- Total 29 566.59 19.54 -- -- 
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Table 11. continued 
 

ANCOVA for the Equal Slopes Model: Biomass normalized ANCOVA for the Equal Slopes Model: Biomass normalized 

Source of Variation df SS MS F P Source of Variation df SS MS F P 

Conditions 2 42.53 21.27 2.71 0.089 Conditions 3 217.82 72.61 3.96 0.019 

Incubation pH 1 43.33 43.33 5.51 0.028 Incubation pH 1 67.29 67.29 3.67 0.067 

Residual 22 172.94 7.86 -- -- Residual 25 458.95 18.36 -- -- 

Total 25 256.11 10.24 -- -- Total 29 720.47 24.84 -- -- 
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Table 12.  Results of non-linear regression analysis for pigment specific photosynthesis as a function of incubation pH measured 

in 2013 at different oxygen concentrations.  

2013 
incubations 

Gaussian fit:   Pnet = Pm*exp( -0.5*( [pHincub -pHm] / b)^2) 
Analysis of Variance  

(Corrected for the mean of the observations) 

  Coefficient SE t P r2    df SS MS F P 

Pnet 

(µmol O2  

 hr-1  

 mg-1 TChl) 

122µM 
O2 
GpHamb 

Pm 67.71 3.22 21.0 <0.0001 0.97 Regression 2 7358.1 3679.0 136.3 <0.0001 

b 0.92 0.06 14.8 <0.0001  Residual 9 242.9 27.0   

pHm 5.93 0.05 112.0 <0.0001  Total 11 7600.9 691.0   

212µM 
O2 
GpHamb 

Pm 78.59 5.04 15.6 <0.0001 0.96 Regression 2 4160.8 2080.4 53.5 0.0013 

b 0.84 0.06 12.98 0.0002  Residual 4 155.5 38.9   

pHm 6.16 0.07 93.2 <0.0001  Total 6 4316.3 719.4   

212µM 
O2 GpH6.0 

Pm 71.28 6.70 10.7 0.0004 0.91 Regression 2 3529.0 1764.5 21.4 0.0073 

b 0.98 0.12 7.99 0.0013  Residual 4 329.8 82.5   

pHm 6.17 0.12 51.3 <0.0001  Total 6 3858.8 643.1   
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Table 12. continued 
 

    
 

     

  Coefficient SE t P r2    df SS MS F P 

Pnet 

(µmol TCO2  

 hr-1  

 mg-1 TChl) 

122µM 
O2 
GpHamb 

Pm 81.55 1.66 49.3 <0.0001 0.997 Regression 2 9945.7 4972.9 858.8 <0.0001 

b 0.78 0.04 19.5 <0.0001  Residual 6 34.7 5.8   

pHm 6.19 0.04 143.6 <0.0001  Total 8 9980.5 1247.6   

212µM 
O2 
GpHamb 

Pm 89.84 6.74 13.3 0.0009 0.98 Regression 2 5695.3 2847.6 63.6 0.0035 

b 0.50 0.05 9.9 0.0022  Residual 3 134.3 44.8   

pHm 6.44 0.05 140.2 <0.0001  Total 5 5829.6 1165.9   

212µM 
O2 GpH6.0 

Pm 82.97 2.04 40.7 <0.0001 0.997 Regression 2 5533.7 2766.9 527.1 0.0002 

b 0.55 0.02 28.8 <0.0001  Residual 3 15.7 5.2   

pHm 6.55 0.02 384.7 <0.0001  Total 5 5549.5 1109.9   
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Maximum quantum yields of fluorescence (MQY), measured during dark respiration after 

acclimating to the pH range of the incubation experiments, were close to 0.8 indicating that the 

leaves were not stressed by the pH and O2 manipulations (Figure 23 A).  However, compared to 

oxygen flux measurements under saturating irradiance, the variable fluorescence method 

underestimated the photosynthetic response of eelgrass leaves to CO2 enrichment (Figure 23 

A).  The effective quantum yield of fluorescence (EQY) measured during photosynthesis at 

saturating light levels increased only 2-fold from 0.3 up to 0.6 when seawater pH decreased 

from 8.8 to 6.1.  Similar to net O2 production and net TCO2 uptake measurements, decreasing 

pH below 6.0 reduced the EQY.  The mirror-image pattern exhibited by non-photochemical 

quenching (NPQ) with respect to pH suggests a reduction in the photoprotective utilization of 

xanthophyll cycle when photosynthesis was maximally released from CO2 limitation at pH 6.0 

(Figure 23 B).  Contrary to the EQY, NPQ changed more drastically within the same pH range.  

NPQ increased 6-fold up to 1.8 when photosynthesis diminished at higher pH values.  At pH 

6.0, where net photosynthesis and EQY were maximum and NPQ was minimum (Table 13), 

dissolved aqueous CO2 accounted for 50% of the TCO2 in the seawater.  At pH 8, however, the 

dissolved CO2 was reduced to 1% of the TCO2 (Figure 23 C).  Therefore, the exponential 

increase in CO2 between pH 6 and 9 increased the CO2:O2 molar ratio from 0.01 up to 10, 

corresponding to the drastic increase in net photosynthesis, likely due to increased 

carboxylation and reduced oxygenation reactions of Rubisco.  On the other hand, due to 

contribution of HCO3
-, the TCO2:O2 molar ratios between pH 6 and 9 were constant at 10 for air-

saturated incubations and at 20 for reduced oxygen incubations.  The constant molar ratio 

revealed a DIC pool composed of 99% HCO3
- could not sustain the physiologically available 

photosynthetic capacity of eelgrass leaves.   

Leaf incubation experiments were repeated in 2014 only with plants grown in the optimum 

CO2 treatment (i.e. in pH 6.5 tanks), because 2013 results suggested no difference in  
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Figure 23.  Fluorescence parameters of eelgrass leaves as a function of incubation pH.  (A) 

Open symbols represent the maximum quantum yield of fluorescence (MQY) measured in 

darkness, while filled symbols represent the effective quantum yield of fluorescence (EQY) at 

saturating light levels.  (B) Non-photochemical quenching (NPQ).  Both EQY and NPQ were fit 

to the Gaussian function (Eq.18).  (C)  The relative importance of O2 and DIC in the incubation 

seawater presented by molar ratios.   
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Table 13.  Results of non-linear regression analysis for fluorescence parameters as a function of incubation pH measured in 

2013 at different oxygen concentrations. 

2013 
incubations 

Gaussian fit:   f = Q0+Qm*exp( -0.5*( [pHincub -pHm] / b)^2) 
Analysis of Variance  

(Corrected for the mean of the observations) 

  Coefficient SE t P r2    df SS MS F P 

EQY 

122µM O2 
GpHamb 

Qm 0.23 0.03 7.52 <0.0001 0.88 Regression 3 0.085 0.028 19.13 0.0005 

b 0.68 0.14 4.95 0.0011  Residual 8 0.012 0.002   

pHm 6.63 0.09 71.33 <0.0001  Total 11 0.096 0.009   

Q0 0.30 0.02 12.30 <0.0001        

212µM O2 
GpHamb 

Qm 0.19 0.04 4.97 0.0157 0.90 Regression 3 0.030 0.010 8.60 0.0553 

b 0.83 0.22 3.76 0.0328  Residual 3 0.004 0.001   

pHm 6.03 0.15 39.63 <0.0001  Total 6 0.033 0.006   

Q0 0.38 0.03 11.75 0.0013        

212µM O2 
GpH6.0 

Qm 0.17 0.11 1.57 0.2146 0.47 Regression 3 0.027 0.009 0.89 0.5354 

b 0.67 0.55 1.22 0.3109  Residual 3 0.030 0.010   

pHm 6.19 0.45 13.66 0.0008  Total 6 0.057 0.010   

Q0 0.34 0.09 4.00 0.028        

              

              



 

 

11
3 

Table13. continued 
 

    
 

     

  Coefficient SE t P r2    df SS MS F P 

NPQ 

122µM O2 
GpHamb 

Qm -1.21 0.20 -6.15 0.0003 0.85 Regression 3 2.270 0.757 14.55 0.0013 

b 1.03 0.27 3.85 0.0049  Residual 8 0.416 0.052   

pHm 5.94 0.15 40.28 <0.0001  Total 11 2.686 0.244   

Q0 1.59 0.19 8.48 <0.0001        

212µM O2 
GpHamb 

Qm -1.40 0.34 -4.17 0.0252 0.86 Regression 3 1.625 0.542 6.01 0.0875 

b 0.76 0.23 3.36 0.0437  Residual 3 0.271 0.090   

pHm 6.12 0.17 36.49 <0.0001  Total 6 1.896 0.316   

Q0 1.52 0.27 5.66 0.0109        

212µM O2 
GpH6.0 

Qm -0.69 0.46 -1.50 0.2308 0.47 Regression 3 0.398 0.133 0.89 0.5382 

b 0.49 0.37 1.32 0.2797  Residual 3 0.448 0.149   

pHm 6.01 0.43 13.92 0.0008  Total 6 0.846 0.141   

Q0 1.14 0.23 4.92 0.0161        
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photosynthetic control among the plants grown at different pH treatments.  Leaves from the 

optimum treatment, grown for 15 months in a high CO2 environment under natural light and 

temperature fluctuations, represented approximately the 6th leaf generation acclimated to ocean 

acidification (based on growth rates in Zimmerman et. al 2016).  The 2014 experiments focused 

on the combined effect of oxygen and inorganic carbon concentrations on the role of 

photorespiration by measuring the light saturated photosynthesis more frequently at higher pH 

values and wider range of [O2] to provide more levels of seawater CO2:O2 (Figure 24 A).  Even 

though [HCO3
-] decreased dramatically above pH 7.9, it exceeded [O2] more than 7 fold at all 

pH levels whereas [CO2] exceeded only below pH 7.0.  Both net oxygen production and net 

TCO2 uptake rates per total chlorophyll increased 8 to 9-fold between pH 8.1 and 6.5 (Figure 24 

B and C), similar to the rates observed in 2013 experiments.  Biomass specific dark respiration 

rates were constant as a function of incubation pH, but differed significantly among the O2 and 

temperature incubation conditions (Table 11).  Both pigment and biomass normalized dark 

respiration rates of high CO2 acclimated plants increased with increasing temperature and 

decreasing O2 concentration of the incubation seawater.  The Gaussian model fits predicted no 

difference in net photosynthetic flux among the different incubation conditions (Table 14).   

The MQY of dark adapted leaves at all incubation conditions were close to 0.8, indicating 

no physiological stress to the photosynthetic apparatus, and consistent with the 2013 

experiments (Figure 25 A).  The change of EQY as a function of seawater pH was again less 

than the change in net photosynthesis measured with O2 and TCO2 methods.  Overall, EQY 

increased from 0.1 up to 0.4 as pH decreased from 8.5 to 6.5, while NPQ decreased from 2.5 to 

1 (Figure 25 B, Table 15).  Similar to 2013 incubations, the main changes of seawater 

chemistry, driving the changes in net photosynthesis and fluorescence parameters, were 

observed in CO2:O2 and CO2:TCO2 molar ratios (Figure 25 C).    
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Figure 24.  (A)  The absolute concentrations of O2 and dissolved inorganic carbon species 

(CO2 and HCO-
3) in the incubation seawater.  (B)  Net O2 flux and (C) Net Carbon flux of 

eelgrass leaves as a function of incubation pH.  Both plots: Filled symbols indicate 

measurements at saturating light levels (460 µmol photons m-2 s-1) and open symbols represent 

the corresponding dark respiration rates. Light-saturated rates were fit to the Gaussian function 

(Eq.16).  Different initial O2 levels are indicated by color, where 212µM is equivalent to air 

saturation.  All leaves were collected from plants grown at pH 6.5 treatments (GpH6.5).  
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Figure 25.  Fluorescence parameters of eelgrass leaves as a function of incubation pH.  (A) 

Open symbols represent the maximal quantum yield of fluorescence (MQY) measured in 

darkness, while filled symbols represent the effective quantum yield of fluorescence (EQY) at 

saturating light levels.  (B) Non-photochemical quenching (NPQ).  Both EQY and NPQ were fit 

to the Gaussian function (Eq.18).  (C)  The relative importance of O2 and DIC in the incubation 

seawater presented by molar ratios.   
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Table 14.  Results of non-linear regression analysis for pigment specific photosynthesis as a function of incubation pH measured 

in 2014 at different oxygen concentrations. 

2014 
incubations 

Gaussian fit:   Pnet = Pm*exp( -0.5*( [pHincub -pHm] / b)^2) 
Analysis of Variance  

(Corrected for the mean of the observations) 

  Coefficient SE t P r2    df SS MS F P 

Pnet 

(µmol O2  

 hr-1  

 mg-1 TChl) 

122µM 
O2 
GpH6.5 
25°C 

Pm 88.57 21.70 4.1 0.0065 0.94 Regression 2 5992.6 2996.3 47.4 0.0002 

b -0.75 0.24 -3.1 0.0210  Residual 6 378.9 63.2   

pHm 6.30 0.48 13.0 <0.0001  Total 8 6371.5 796.4   

212µM 
O2 
GpH6.5 
25°C 

Pm 100.00 31.44 3.2 0.019 0.94 Regression 2 6866.4 3433.2 44.4 0.0003 

b -0.85 0.28 -3.0 0.0241  Residual 6 463.8 77.3   

pHm 6.17 0.61 10.0 <0.0001  Total 8 7330.2 916.3   

212µM 
O2 
GpH6.5 
30°C 

Pm 100.00 14.35 7.0 0.0061 0.99 Regression 2 7139.1 3569.6 173.8 0.0008 

b -0.75 0.15 -4.9 0.0161  Residual 3 61.6 20.5   

pHm 6.30 0.29 21.6 0.0002  Total 5 7200.7 1440.1   
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Table 14. continued 
    

 
     

  Coefficient SE t P r2    df SS MS F P 

Pnet 

(µmol TCO2  

 hr-1  

 mg-1 TChl) 

122µM 
O2 
GpH6.5 
25°C 

Pm 100.00 21.16 4.7 0.0032 0.93 Regression 2 7781.3 3890.6 35.2 0.0005 

b -0.83 0.25 -3.3 0.0169  Residual 6 662.6 110.4   

pHm 6.34 0.48 13.1 <0.0001  Total 8 8443.9 1055.5   

212µM 
O2 
GpH6.5 
25°C 

Pm 85.89 12.36 7.0 0.0004 0.84 Regression 2 6155.8 3077.9 16.2 0.0038 

b -0.64 0.22 -3.0 0.0252  Residual 6 1138.8 189.8   

pHm 6.60 0.31 21.3 <0.0001  Total 8 7294.6 911.8   

212µM 
O2 
GpH6.5 
30°C 

Pm 100.00 19.21 5.2 0.0138 0.98 Regression 2 5425.4 2712.7 79.5 0.0025 

b 0.99 0.23 4.3 0.0232  Residual 3 102.4 34.1   

pHm 6.18 0.46 13.4 0.0009  Total 5 5527.8 1105.6   
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Table 15.  Results of non-linear regression analysis for fluorescence parameters as a function of incubation pH measured in 

2014 at different oxygen concentrations. 

2014 
incubations 

Gaussian fit:   f = Q0+Qm*exp( -0.5*( [pHincub -pHm] / b)^2) 
Analysis of Variance  

(Corrected for the mean of the observations) 

  Coefficient SE t P r2    df SS MS F P 

EQY 

122µM O2 
GpH6.5 
25°C 

Qm 0.23 0.83 0.3 0.80 0.44 Regression 3 0.030 0.010 1.3 0.36 

b -1.11 5.03 -0.2 0.83  Residual 5 0.038 0.008   

pHm 6.00 7.63 0.8 0.47  Total 8 0.068 0.009   

Q0 0.16 0.26 0.6 0.57        

212µM O2 
GpH6.5 
25°C 

Qm 0.32 2.56 0.13 0.91 0.69 Regression 3 0.036 0.012 3.6 0.10 

b -0.57 2.47 -0.23 0.83  Residual 5 0.017 0.003   

pHm 6.00 7.05 0.85 0.43  Total 8 0.053 0.007   

Q0 0.16 0.03 5.81 0.00        

212µM O2 
GpH6.5 
30°C 

Qm 0.46 1.00 0.46 0.69 0.95 Regression 3 0.064 0.021 12.9 0.07 

b 1.57 4.08 0.38 0.74  Residual 2 0.003 0.002   

pHm 6.00 3.29 1.82 0.21  Total 5 0.067 0.014   

Q0 0.00 0.76 0.00 1.00        
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Table 15. continued 
 

    
 

 
     

  Coefficient SE t P r2    df SS MS F P 

NPQ 

122µM O2 
GpH6.5 
25°C 

Qm -1.31 285.4 0.00 1.00 0.32 Regression 3 0.746 0.249 0.77 0.56 

b -0.32 34.2 -0.01 0.99  Residual 5 1.609 0.322   

pHm 6.30 111.4 0.06 0.96  Total 8 2.355 0.294   

Q0 2.00 0.2 8.52 0.00        

212µM O2 
GpH6.5 
25°C 

Qm -1.48 26.10 -0.06 0.96 0.70 Regression 3 1.191 0.397 3.82 0.09 

b -0.37 4.54 -0.08 0.94  Residual 5 0.520 0.104   

pHm 6.30 12.41 0.51 0.63  Total 8 1.712 0.214   

Q0 2.27 0.14 16.70 <0.0001        

212µM O2 
GpH6.5 
30°C 

Qm -1.90 2441 0.00 0.999 0.80 Regression 3 1.196 0.399 2.58 0.29 

b -0.29 131.7 0.00 0.999  Residual 2 0.309 0.155   

pHm 6.30 501.2 0.01 0.991  Total 5 1.505 0.301   

Q0 1.90 0.2 8.39 0.014        
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All measurements from both years with incubation pH above 5.9 (n=51) were combined to 

estimate the CO2 compensation point of eelgrass leaves where net photosynthesis stopped 

(Figure 26).  At high [CO2], both CO2 uptake and O2 evolution models produced a maximum rate 

of net photosynthesis of 80±4 µmol hr-1 mg-1 Chl, with half saturation constants (Ks(CO2)) of 

150±12 and 130±14 µmol L-1 CO2, respectively.  The exponential rise models with y-offset 

predicted the net oxygen production to be still positive (ca. 8 µmol O2 hr-1 mg-1 Chl, Figure 26 A) 

while net CO2 uptake stopped when [CO2] reached 13 µmol L-1 (Figure 26 B).  This suggested 

the contribution of other DIC species to sustain the net positive oxygen evolution at low [CO2] 

since the CO2 uptake model relied only on the changes of aqueous CO2 concentrations during 

the incubation.  Yet the uptake rate of HCO3
 -, which relied only on the changes of HCO3

 - 

concentrations during the incubation (Figure 26 C), exceeded the O2 evolution rates highlighting 

the dynamic chemical equilibrium between the three DIC species in the seawater during 

photosynthesis.  Therefore, the true net carbon uptake rates, estimated with pH electrode 

method, needed to be based on the changes in total DIC (i.e. TCO2) rather than individual DIC 

species.  The relative effects of [O2] and [CO2] in the seawater (Figure 27) further explained the 

reason for the saturation of photosynthesis once [CO2] reached 200 µmol L-1 (Figure 26).  At 

saturating light levels, when oxygenation/carboxylation reactions of Rubisco became the rate-

limiting process, the gross photosynthesis increased linearly until the molar ratio of CO2:O2 in 

the seawater became 0.7 and 0.8, for oxygen production and for TCO2 uptake, respectively 

(Figure 27 A and B).  After this threshold, which occurred at pH 7.1, CO2aq was not a limiting 

factor and gross photosynthesis reached its maximum when [CO2] was twice as high as [O2] 

(i.e. pH 6.5).  On the other hand, incubation water chemistry could not explain the variability in 

electron transport rates (ETR) estimated from EQY measurements of fluorescence method 

(Figure 27 C).   
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Figure 26.  Net photosynthesis of eelgrass leaves as a function of aqueous [CO2].  (A) Net 

O2 flux of all samples were fit to a common exponential rise function (Eq.17). (B) Net Carbon 

flux derived from changes in [CO2]aq only.  CO2 compensation point of eelgrass leaves was 

calculated from the exponential rise function.  (C) Net Carbon flux derived from changes in 

[HCO3
-] only.    
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Figure 27.  Gross photosynthesis of eelgrass leaves as a function of CO2 to O2 ratio in 

seawater.  Net O2 flux (A) and net total Carbon flux (B) were fit to exponential rise model.  (C)  

Electron Transfer Rates (ETR) were derived from EQY    

  

G
ro

ss
 P

h
o

to
s

yn
th

e
si

s
 

( 
m

o
l 

O
2
 h

r-1
 m

g
-1

 T
C

h
l)

0

30

60

90

120

150

G
ro

ss
 P

h
o

to
sy

n
th

e
si

s 
( 

m
o

l 
T

C
O

2
 h

r-1
 m

g
-1

 T
C

h
l)

0

30

60

90

120

150

Seawater CO2:O2

0.01 0.1 1 10

E
le

c
tr

o
n

 T
ra

n
sp

o
rt

 R
a

te
( 

m
o

l 
el

ec
tr

o
n

s 
s-1

 m
-2

)

0

10

20

30

40

r2=0.76 , p<0.0001

r2=0.75 , p<0.0001

A

B

C

y = 83 * (1- exp [-x / 0.7])

y = 99 * (1- exp [-x / 0.8])

r2=0.48 , p<0.0001

y = 16.5 + 18 * (1- exp [-x / 1.1])

122M O2, GpH6.5, 25°C

212M O2, GpH6.5, 25°C

212M O2, GpH6.5, 30°C

  76M O2, GpH6.5, 25°C

122M O2, GpHamb, 25°C

212M O2, GpH6.0, 25°C

212M O2, GpHamb, 25°C



124 

 

 

The linear relationship between the O2 and CO2 based measures of gross photosynthesis 

were used to estimate the photosynthetic quotient (PQ) of eelgrass leaves (Figure 28).  When 

all samples were analyzed collectively regardless of their growth and incubation conditions, the 

PQs were 0.70±0.03 and 0.84±0.03, based on regression between O2 versus CO2 and O2 

versus TCO2, respectively.  While the O2 vs CO2 regression predicted an offset value of 16 µmol 

O2 hr-1 mg-1 Chl though no CO2 uptake, regression between O2 and TCO2 passed through the 

origin.  These PQ values were lower than the theoretical value of 1 for ideal equilibrium between 

light and dark reactions of photosynthesis.   

PQs derived from individual samples revealed effects of their growth conditions (Figure 29).  

PQ relying on the ratio of gross O2 production to TCO2 uptake showed no significant 

dependence on incubation pH but was consistently higher in plants grown at ambient CO2 

treatments (Figure 29 A, Table 16).  Contrary to PQ, RQ relying on the ratio of gross O2 

consumption to TCO2 release was significantly affected by incubation pH (Figure 29 B).  In 

particular, the decreasing oxygen concentration in the incubation seawater significantly 

increased the RQ for the plants grown at high CO2 treatment (pH 6.5) (Table 16).  Analysis of 

PQ relying only on the aqueous CO2 uptake permitted differentiation of the relative contribution 

of CO2 and HCO3
 – to the photosynthetic demands as a function of seawater pH (Figure 29 C).  

At neutral pH (pH 7), when [CO2] and [O2] in the seawater were equivalent, the RQ approached 

the theoretical value of 1 (Figure 29 B and D).  The strong pH dependency of the respiratory 

quotients showed the importance of seawater carbonate chemistry in buffering the respiratory 

release of CO2.    
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Figure 28.  Relationship between oxygen production and carbon uptake supported by 

aqueous CO2 only (A) and supported by total inorganic carbon pool (B).  The solid line 

represents the linear relationship, while dashed lines are the 95% confidence intervals.   
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Figure 29.  Photosynthetic (PQ) and Respiratory (RQ) quotients of eelgrass leaves as a 

function of incubation pH.  PQ were calculated from gross photosynthesis measurements of 

individual samples, and their corresponding RQ were derived from dark respiration rates.  

Quotients were based on the contribution of total carbon uptake/release (A and B) and based 

only on aqueous CO2 uptake/release (C and D).   
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Table 16.  Comparison of Photosynthetic (PQ) and Respiratory (RQ) quotients of eelgrass 

leaves among different oxygen concentrations and different growth pH (GpH).  Different letters 

represent significant differences between the conditions determined by Dunn’s Method following 

ANOVA on ranks analysis. Effects of incubation pH on quotients were analyzed by ANCOVA.   

 

PQ  

(µmol O2 µmol-1 TCO2)  

RQ 

(µmol O2 µmol-1 TCO2)  

Conditions  n Mean ± SEM Mean ± SEM 

122µM O2 GpH6.5  9 0.81 ± 0.03 a, b 1.61 ± 0.28 a 

122µM O2 GpHamb  9 0.99 ± 0.14 a, b 1.11 ± 0.24 a, b 

212µM O2 GpH6.5  9 0.81 ± 0.03 a 0.69 ± 0.10 b 

212µM O2 GpHamb  6 1.08 ± 0.06 b 0.92 ± 0.27 a, b 

 

Analysis of Variance for the Equal Slopes Model: PQ 

Source of Variation df SS MS F P 

Condition 3 0.49 0.16 3.025 0.046 

Incubation pH 1 0.13 0.13 2.415 0.131 

Residual 28 1.52 0.05 -- -- 

Total 32 2.05 0.06 -- -- 

 

Analysis of Variance for the Equal Slopes Model: RQ 

Source of Variation df SS MS F P 

Condition 3 4.51 1.50 4.001 0.017 

Incubation pH 1 2.23 2.23 5.928 0.022 

Residual 28 10.52 0.38 -- -- 

Total 32 16.80 0.53 -- -- 

 



128 

 

 

The molar ratio of CO2 to O2 in seawater explained the regulation of photochemical 

pathways in eelgrass under light-saturation (Figure 30).  Based on solubility constants, this 

molar ratio is around 0.06 at 25°C in air-equilibrated seawater with salinity of 25 PSS and pH 

8.1, and decreases with increasing temperature and pH, with decreasing salinity, as well as due 

to photosynthesis in net autotrophic ecosystems.  In the incubation experiments, when 

[CO2]:[O2] was <0.1, the quantum yield of oxygen (O2) was low while PQ (O2/CO2) and NPQ 

were highest.  For [CO2]: [O2] >0.1, CO2aq specific PQ decreased to minimum of 1 and O2 

increased significantly albeit the constant saturating light (Figure 30 A and B).  These changes 

in PQ and O2 corresponded to the reduction of NPQ as photoprotective pathway hence 

absorbed photons were utilized in carbon assimilation (Figure 30 C).  O2 was similar among 

the different plants and incubation conditions across the entire range, whereas increasing O2 

saturation level slightly decreased the decline rate of PQ when CO2:O2 was <1.  On the other 

hand, NPQ was higher in plants grown at high CO2 treatments (pH6.5) which might be related to 

the differences in optical properties of the leaves, such as higher Chl a:b and slightly decreased 

optical cross section.  Inducing these minute variabilities in pigment content and optical 

properties among the different incubation conditions were not intentional but resulted from the 

interactive effects of sampling season and the growth CO2 environment of the plants (Table 17).  

In contrast to the fluorescence method, gas exchange measurements permitted integration of 

these variabilities into the photosynthetic flux measurements by normalizing the rates to 

appropriate leaf properties.  The difference of NPQ between the growth conditions might also be 

related to different light levels used in 2013 and 2014 experiments (310 vs 460 µmol photons m-

2 s-1).  Nevertheless, both of these PAR levels were beyond the light requirement to saturate the 

photosynthesis of eelgrass, based on Ek values reported in Chapter 3.  As a result decreasing 

NPQ in all plants as CO2:O2 increased showed the important photoprotective role of this 

process when CO2 is limiting photosynthesis    
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Figure 30.  Photosynthetic performance and photoprotection in eelgrass as a function of 

CO2 to O2 ratio in seawater.  (A)  Quantum yield of oxygen estimates of all samples at saturated 

light levels were fit to single rectangular hyperbola function.  (B)  Photosynthetic quotient relying 

on aqueous CO2 uptake only were fit to inverse second order polynomial functions based on the 

O2 level of the incubation seawater.  (C)  The response of NPQ to photosynthetic substrate 

availability was compared between plants grown at different pH treatments.  
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Table 17.  Pigment content and optical properties of leaves used in photosynthesis measurements.  FW: Fresh Weight, LA: Leaf 

Area, Chl: Chlorophyll, Car: Carotenoid, a*: optical cross section at 680nm.   

Growth pH ambient ambient 6.0 6.5 6.5 6.5 6.5 

Incubation 
condition 

212µM O2 

25°C 

122µM O2 

25°C 

212µM O2 

25°C 

212µM O2 

25°C 

212µM O2 

30°C 

122µM O2 

25°C 

76µM O2 

25°C 

Sampling  year 2013 Jul 2013 Aug 2013 Jul 2014 Sep-Oct 2014 Oct. 2014 Sep-Oct 2014 Sep. 

Sample size 7 12 7 9 6 9 6 

FW per LA     

(mg cm-2)  
28.1 ± 1.5 ab 

26.8 ± 1.4  

bc 

32.5 ± 1.3  

a 

22.6 ± 0.9  

cd 

19.1 ± 0.4  

d 

23.1 ± 1.1  

bcd 

23.0 ± 1.0  

bcd 

Total Chl per FW 
(mg Chl g-1 FW)  

0.95 ± 0.06 
ab 

1.17 ± 0.08  

a 

0.69 ± 0.04  

b 

1.13 ± 0.04  

a 

1.10 ± 0.03  

a 

1.14 ± 0.05  

a 

1.08 ± 0.07  

a 

Total Chl per LA 
(µg Chl cm-2)  

26.2 ± 0.5  

ab 

30.2 ± 1.2  

a 

22.3 ± 1.2  

b 

25.6 ± 1.7  

ab 

20.9 ± 0.5  

b 

26.5 ± 2.0  

ab 

24.5 ± 1.3  

ab 

Total Car per LA 
(µg Cx cm-2)  

- - - 
5.74 ± 0.31  

a 

4.84 ± 0.12  

a 

5.70 ± 0.33  

a 

5.21 ± 0.33  

a 

Chl a:b 
2.55 ± 0.02  

a 

2.63 ± 0.07  

ab 

2.68 ± 0.04  

abc 

3.11 ± 0.06  

d 

3.16 ± 0.06  

d 

3.07 ± 0.10  

cd 

2.94 ± 0.18 

 abcd 

TCar:TChl - - - 0.23 ± 0.01 a 0.23 ± 0.00 a 0.22 ± 0.01 a 0.21 ± 0.01 a 

a*(680) 
5.36 ± 0.49 

ab 

5.22 ± 0.44 

ab 

6.29 ± 0.38 

a 

3.73 ± 0.28 

bc 

4.62 ± 0.12 

abc 

3.64 ± 0.25 

c 

4.08 ± 0.22 

bc 
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Discussion 

In this study, photosynthetic performance of eelgrass leaves, quantified under fully 

controlled incubation conditions, followed a Gaussian function with seawater pH, having a peak 

centered at about 6.2.  Plants may vary their photosynthetic performance depending on the 

external growth conditions but the efficiency of a particular biochemical process under 

physiological constraints and external conditions (e.g. the net photosynthesis per photosynthetic 

machinery per available substrate) often produces a Gaussian-type response curve.  Both the 

physiological maximum capacity of the photosynthetic machinery and its corresponding 

optimum pH range were consistent among the plants grown at different CO2 treatments (e.g. 

pH6, pH6.5 and ambient pH) and sampled during different seasons (e.g. summer 2013, fall 

2014).  Although the plants were acclimated to varying growth conditions, a common capacity of 

photosynthetic machinery under same incubation conditions pointed out no induction of a 

mechanism to increase the affinity for DIC uptake but only the instantaneous control of 

photorespiration, similar to the findings of Chapter 3. 

The photosynthetic rates at today’s oceanic pH of 8.1 and above were confirmed to be at 

the low-end of oxygen production and DIC uptake for eelgrass leaves.  These rates 

corresponded to approximately 15% of the maximum capacity.  The drastic increase of net 

photosynthesis from pH 8.1 to the optimum pH 6.2 resulted from the exponential increase of 

[CO2] rather than 15% increase of [HCO3
-], which was already above saturation (>1mM sensu 

Invers et al. (2001)).  This optimum incubation pH of photosynthesis validates the observed 

maximum biomass production, survival and reproductive success of the plants that were 

cultivated at pH 6 and 6.5 treatments during a 18 month long CO2 enrichment experiment that 

included two prolonged periods where temperatures exceeded the 25° C threshold for stress in 

eelgrass (Zimmerman et.al. 2016).  Similar positive effects of CO2 enrichment on seagrass 

performance have been observed both in long-term experiments and in natural volcanic CO2 
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vents (Zimmerman et al., 1997; Palacios and Zimmerman, 2007; Hall-Spencer et al., 2008; 

Jiang et al., 2010; Campbell and Fourqurean, 2011; Ow et al., 2015). 

Net photosynthesis, whether measured by gas flux (O2 and CO2) or by variable 

fluorescence both exhibited a well-behaved Gaussian response to pH with similar optimum pH 

range, although differed in their magnitudes of response.  This deviation in parameter estimation 

(i.e. different amplitudes) under the same incubation conditions suggested the use of alternative 

electron transfer pathways that are important for the instantaneous regulation of photosynthetic 

control.  Similar findings to this study using different seagrass species revealed the 

inconsistency between the two methods when photosynthesis is carbon limited and inferred the 

role of photorespiration (Beer and Björk, 2000; Silva and Santos, 2004; Silva et al., 2009).  The 

estimation of electron transfer rate (ETR) based on effective quantum yield of fluorescence 

(EQY) assumes that the heat loss term is constant and the quenching of fluorescence is due to 

the linear electron flow to drive photochemistry (Baker, 2008).  However, this assumption has 

two limitations when the PAM method is applied to measure carbon-limited photosynthesis, 

such as in seagrasses.  Firstly, the Mehler pathway and photorespiration are not accounted for, 

which maintain electron flow and therefore detected as high EQY but resulting in O2 

consumption.  Secondly, the heat loss via NPQ at saturating light levels plays a significant 

photoprotective role in seagrasses (Ralph et al., 2002; Ralph and Gademann, 2005) and cannot 

be assumed to be a constant process.  In this study, the moderate increase of EQY with 

decreasing pH, as opposed to drastic increase of oxygen production and TCO2 uptake, 

indicated the electron flow through PSII at high pH was maintained through alternative 

pathways.  These included operations of the xanthophyll cycle and photorespiration, which 

could be monitored by the drastic changes in NPQ and net oxygen production as a function of 

CO2 availability.  The regulation of NPQ as a photoprotective mechanism under changing 

seawater chemistry showed differences among the plants grown at different CO2 treatments.  
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Similar differences in NPQ response among the plants acclimated to different CO2 environments 

were explained by the variability of the leaf pigment content (Chapter 3), which not only 

corresponds to the light environment the plants are living in but also acclimates to ocean 

acidification (Chapter 2).  This study confirmed that the regulation of NPQ is also dependent on 

CO2 availability even though the plants were incubated at the same saturating light level.  This 

highlights that NPQ is not only active for high light protection but controls electron flow 

dynamically under various substrate limitations.  Therefore this inconsistency between the 

methods has important implications for the estimation of photosynthetic production rates from 

ETR measurements that use a constant 0.25 O2/ETR molar ratio (Chapter 3 and (Silva et al., 

2009).  Using the relationship of NPQ and quantum yield of oxygen to seawater CO2:O2 from 

this study, it is possible to have correction factors for this molar ratio at various CO2:O2 

conditions.  These correction factors  will allow the conversion of the ETR measurements, which 

are non-invasive and easily applicable in field conditions (Silva et al., 2009), to photosynthetic 

production rates that accounted for the photosynthetic control mechanisms.  

Within this study, one of the main assumptions to estimate the DIC uptake from the 

measurements of changes in pH was the conservation of alkalinity during photosynthesis and 

respiration.  The simplistic stoichiometry of photosynthetic O2 production relies on only CO2 

uptake, which does not change the alkalinity but removes dissolved inorganic carbon and 

acidity, thereof increasing pH.  However, operation of a H+ ATPases to create a low pH zone in 

the periplasmic space has been observed in Zostera marina, Zostera noltii, Halophila stipulacea 

and Ruppia maritima (Beer et al., 2002; Mercado et al., 2003).  Although the active efflux of H+ 

requires the expenditure of ATP, it speeds up the conversion of external HCO-
3 to CO2 to yield a 

net influx of CO2 for carbon assimilation (Raven et al., 2014).  A sensitivity analysis by assuming 

decreased alkalinity during photosynthesis measurements due to H+ efflux increased the 

estimates of DIC uptake rate, especially at high pH ranges, but also resulted in further reduction 
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of Photosynthetic Quotient (PQ) estimates.  So the low PQ values estimated in this study were 

not related to methodological inaccuracy but rather to physiological processes.  Low PQ values 

(ranging from 0.1 to 1) in two different marine algae species were correlated to photorespiration 

at [O2] greater than air saturation (Burris, 1981).  While no simple relationship between PQ and 

seawater [O2] was predicted to quantify the photorespiration rates for those marine algae, it was 

suggested that simultaneous variation of both DIC and O2 affects PQ.  A similar approach has 

been applied in this study to relate the PQ to pH and ultimately to the seawater CO2:O2.  

Varying O2 concentration and pH, via CO2 enrichment, among the incubation experiments 

altered the ratio of CO2 to O2 in the seawater, which varied the photorespiration rates of 

eelgrass leaves.  The variation of CO2:O2 ratio occurs daily and seasonally in marine 

environments because the solubility of these molecules in seawater depends on the 

temperature, pH and equilibrium with the atmosphere as well as biological processes (Mercado 

and Gordillo, 2011).  A simple comparison of O2 and CO2 solubility in air equilibrated seawater 

indicates increasing temperature from 20°C to 30°C decreases the CO2:O2  ratio in acidified 

ocean (e.g. at pH 7.7) by 10.5% (from 0.181 to 0.162), contrary to 13.6% (from 0.066 to 0.057) 

at today’s oceanic pH (i.e. pH 8.1).  Therefore, ocean acidification and warming might have 

important effects on dissolved CO2:O2 and consequently on photorespiration in eelgrass.  Since 

O2 and CO2 are competitive substrates for Rubisco, the ratio of carboxylation to oxygenation 

(Vc/Vo) depends both on the absolute concentrations of CO2 and O2 within the medium as well 

as on the affinity of Rubisco.  The Vc/Vo ratio for C3 plants is about 3-4 fold at atmospheric 

equilibrium conditions of 12 µM CO2 and 250 µM O2 (Raghavendra, 2000).  This means about 

25% of the gross CO2 fixation is lost due to the oxygenation reaction of Rubisco (Bowes, 1991).  

The terrestrial C3 plants have evolved Rubisco that has higher affinity for CO2 than algae and 

cyanobacteria, thereof having lower half saturation constants (Km), on average 10 µM CO2 for 

isolated Rubisco (Jordan and Ogren, 1981; Falkowski and Raven, 2007).  On the other hand, 
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submersed aquatic macrophytes have higher apparent half saturation constants (Ks, measured 

in vivo), ranging from 40 to 700 µM CO2 (Bowes and Salvucci, 1989).  The Ks values of 130 to 

150 µM CO2 for eelgrass from this study tied in with this range and also with the Ks values (40, 

150 and 300 µM CO2) of three different species of seagrasses (Halophila stipulacea, Halodule 

uninervis and Syringodium isoetifolium, respectively) (Madsen and Sand-Jensen, 1991).  

Increasing Ks estimates in aquatic environments is the outcome of external and internal 

resistances to CO2 assimilation (Bowes and Salvucci, 1989).  The internal resistances include 

the higher Km values of Rubisco and photorespiration, while external resistances include the 

boundary layer formation and lower diffusion rates.  The negative effect of external resistance 

on eelgrass photosynthesis because of boundary layer formation has been quantified as a 

function of flow environments by McPherson et al. (2015).  But once the external resistances 

were eliminated, leaving photorespiration as the main internal resistance, their flow and light 

saturated Monod model predicted the Ks of eelgrass leaves around 194 µM CO2 , which is in 

close proximity to estimates from this study that are 130 or 150 µM CO2  when either O2 

production or CO2 uptake method is considered, respectively.  The slight difference in Ks 

estimates between the two studies might depend on the choice of descriptive model fit, which in 

this study was a negative exponential function with y-offset to estimate the CO2 compensation 

point.  The CO2 compensation point ranges from 1-6 µM CO2 for freshwater angiosperms and 0-

10 µM CO2 for aquatic macrophytes, where high values indicate the significance of 

photorespiration (Bowes and Salvucci, 1989; Madsen et al., 1996). This study estimated the 

CO2 compensation value of eelgrass around 13 µM CO2, towards the high end of the cited 

ranges therefore implying photorespiration.  

While net CO2 uptake ceased at 13 µM CO2, net O2 production did not level off.  This 

positive O2 production was assumed to be sustained via HCO3
- uptake at high pH, since net 

TCO2 uptake rates agreed more with O2 production rates overall.  Indeed, TCO2 uptake 
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exceeded the O2 production rates all the time indicating either photorespiratory consumption of 

O2, meanwhile allowing recycling of photorespired CO2, and/or internal storage of O2 in lacunar 

space.  The lacunar space, where O2 is stored in gas form and therefore not detectable by an 

O2 electrode, plays a significant role for transport of oxygen to belowground tissues in natural 

seagrass beds (Greve et al., 2003; Pedersen et al., 2004; Borum et al., 2005; Holmer et al., 

2005; Sand-Jensen et al., 2005; Holmer et al., 2009).  To account for the undetected O2 loading 

into the phloem tissue, if the gross oxygen production rates were increased by 6%, based on 

the rates estimated by Bodensteiner (2006), the PQ (O2/TCO2) would increase from 0.84±0.03 

to 0.89±0.03, still remaining lower than the theoretical value of 1.  Internal storage of respired 

CO2 would also explain the pH dependency of the respiratory quotient.  At high pH the internally 

generated CO2 that is recycled to C3 pathway under light is not released to the medium under 

darkness, resulting in RQ < 1.  A similar closed system for CO2 utilization in seagrasses was 

discussed by Beer et al. (1980).  A more recent study demonstrated that terrestrial C3 plants 

such as rice and wheat re-assimilate both respired and photorespired CO2, thereby boosting 

their photosynthesis by 10% at ambient atmospheric [CO2] (Busch et al., 2013).  Another 

pathway that affects net oxygen production rates but will not be detected in TCO2 uptake, 

thereby resulting in lower PQ, is the Mehler reaction.  While photorespiration depends on the 

relative ratio of CO2:O2 because of the encounter probability of both molecules with Rubisco, the 

Mehler reaction is mainly stimulated by accumulation of high O2, which competes with 

ferredoxin for the electrons emitted by PSI.  In this study, the PQ (O2/CO2) of high CO2 

acclimated plants decreased with increasing levels of O2 saturation only when seawater CO2:O2 

was < 1 (Figure 30).  This decrease in PQ at high ambient [O2] even though the molar ratios of 

CO2:O2 in seawater were constant, suggested the role of the Mehler reaction.  Similarly, 

increasing [O2] decreased PQ values in two different marine algae (Burris, 1981).  

Unfortunately, variable fluorescence methods are insensitive to activity of the Mehler reaction 
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pathway since it facilitates electron flow and generates a pH gradient, but without net oxygen 

production.   This pH gradient is also important for modulation of NPQ to prevent photoinhibition 

of PSII (Rumeau et al., 2007).  That might be the reason for the agreement of O2 production 

with NPQ, rather than with EQY, under increasing seawater CO2:O2.  

To conclude, the pH dependent Gaussian model was inclusive enough to accurately predict 

the photosynthetic performance of eelgrass plants grown at various DIC concentrations and 

exposed to daily fluctuating environmental conditions of light and temperature.  Previous studies 

estimating pH dependent seagrass photosynthesis were using either linear or exponential 

models only within the pH range of 6 up to 9 (Invers et al., 2001; Zimmerman, 2006; Buapet et 

al., 2013; Campbell and Fourqurean, 2013).  This study, however, determined the boundary 

conditions of the pH effect on photosynthesis, therefore the limit of positive CO2 effect, rather 

than leaving open-ended increase with pH.  By quantifying the control of photochemistry per 

available photosynthetic machinery as a function of seawater chemistry in this study, and as a 

function of light availability in Chapter 3, and also knowing the acclimation of photosynthetic 

machinery to changes in environmental conditions (Chapter 2), it is possible to integrate a 

photosynthetic control module to the existing seagrass productivity model, GrassLight 

(Zimmerman et al., 2015), to allow the photoprotection and photoacclimation processes to 

dynamically adjust the carbon assimilation in response to fluctuating coastal environments and 

climate change.  Since these photosynthetic control mechanisms do not only regulate the 

carbon assimilation but also other metabolic pathways, for example the negative feedback of 

inhibited photorespiration on nitrogen metabolism (Raghavendra, 2000; Rachmilevitch et al., 

2004), future studies of seagrasses can explore the cross talk between C and N metabolic 

pathways for the utilized sunlight energy.  
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CHAPTER V 

 

CONCLUSION 

Climate change in terms of increased CO2 and temperature impacts aquatic photosynthetic 

organisms due to changes in the biogeochemistry of seawater (Andersson et al., 2015).  At 

today’s oceanic pH, photosynthesis of seagrasses is carbon limited due to low activity of carbon 

concentrating mechanisms, yet seagrasses account for approximately 10% of the ocean’s total 

carbon storage (Fourqurean et al., 2012; Koch et al., 2013).  Therefore, increasing atmospheric 

CO2 concentration, which results in ocean acidification/carbonation, is predicted to have a 

positive impact on seagrass productivity that may facilitate more CO2 sequestration.  Previous 

studies have confirmed the positive influence of increasing CO2 on photosynthesis and growth 

of the temperate eelgrass Zostera marina L., even enhancing survival under heat stress 

(Palacios and Zimmerman, 2007; Zimmerman et al., 2016), however the acclimation of 

photoprotective mechanisms was not well characterized.  This study aimed to quantify the long-

term impacts of ocean acidification on photochemical control mechanisms in eelgrass.   

Acclimation of leaf optical properties and photochemistry were compared using eelgrass 

plants grown in controlled outdoor aquaria at different aqueous CO2 concentrations ranging 

from 50 to 2000 µmol/kgSW (equivalent to pH 8 to 6) from May 2013 until October 2014.  Long-

term growth under high [CO2] produced morphological and metabolic changes in eelgrass.  

Plants grown in a high CO2 environment decreased the pigment content and increased the 

biomass yield, in addition to showing seasonal trends- especially responding to temperature 

changes.  Increased chlorophyll-a specific absorption coefficient with [CO2] reduced self-

shading of pigments (i.e. package effect) within a leaf.  These long-term acclimations of light 

harvesting efficiency due to increasing CO2 resembled the high light adaptation of plants.  

Therefore, the photosynthetic machinery performs an important sensory function for 
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environmental cues, in addition to harvesting sun energy, which further explains the 

interdependent regulation of pigment composition and optical properties of eelgrass leaves by 

CO2, temperature and light.  Such a signaling system have been found under the control of 

photosynthetic redox state that depends on the continuity of the electron transport under various 

limiting conditions (Pfannschmidt, 2003; Pfannschmidt and Yang, 2012).   

Laboratory incubation experiments resolved this mutual regulation of redox state via carbon 

and light availability, by measuring O2 production, total CO2 uptake and fluorescence of the 

acclimated leaves simultaneously at various pH, O2 and light levels.  At saturated light levels, 

increasing CO2 between pH 8 to 6 instantaneously increased chlorophyll specific photosynthesis 

nonlinearly up to 8 fold, regardless of the aquarium growth conditioning.  Therefore, the 

instantaneous difference in O2 production rates in CO2-saturated vs. CO2-limited incubation 

medium corresponded to the amount of O2 consumed in the photorespiratory pathway.  Thus, 

photosynthesis and photorespiration for each growth condition were predictable using the P 

versus E curves, although the response to incubation CO2 differed between biomass and 

pigment normalization due to changes in leaf morphology.  Presently, models of eelgrass 

performance do not consider these long-term morphological and metabolic acclimation 

responses (Zimmerman, 2003, 2006; Zimmerman et al., 2015).  Thus, the quasi-mechanistic 

model developed in this study will allow the photosynthetic and morphological acclimations 

resulting from ocean carbonation to be integrated into seagrass productivity models, by 

adjusting the limits of the photosynthetic parameters based on substrate availability and 

physiological capacity. 

Furthermore, photosynthetic performance of eelgrass leaves followed a Gaussian function 

of seawater pH, with a peak centered at about 6.2.  Previous studies estimating pH dependent 

seagrass photosynthesis were using either linear or exponential models only within the pH 

range of 6 up to 9 (Invers et al., 2001; Zimmerman, 2006; Buapet et al., 2013; Campbell and 
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Fourqurean, 2013).  This study, however, determined the boundary conditions of pH effect on 

photosynthesis, providing the limit of positive CO2 effect.  Both the physiological maximum 

capacity of the photosynthetic machinery and its corresponding optimum pH range were 

consistent among the plants grown at different CO2 treatments and sampled during different 

seasons.  Although the plants were acclimated to varying growth conditions, a common capacity 

of photosynthetic machinery under same incubation conditions pointed out no induction of a 

mechanism to increase the affinity for DIC uptake but only the instantaneous control of 

photorespiration. 

When photosynthesis was relieved from CO2 limitation, non-photochemical quenching, a 

photoprotective pathway to dissipate excess light energy as heat, was reduced as well.  Due to 

the alternative electron pathways (i.e. photorespiration and NPQ), however, fluorescence 

measurements overestimated gross photosynthesis (Pg-ETR) and therefore were not equivalent 

to true carbon assimilation in eelgrass.  Still, the fluorescence measurements with PAM 

provided non-intrusive information about the photoprotection of eelgrass through NPQ and are 

easily applicable in field conditions.  Therefore, quantifying the ratio of PSII to O2, as a function 

of light and carbon availability in this study, may allow to account for the alternative electron 

pathways and correct estimation of photosynthesis in eelgrass using the PAM method.   

More importantly, understanding the impact of seawater chemistry on quantum 

requirements and assimilatory quotients in eelgrass is important to predict the carbon 

sequestration efficiency of seagrasses in a changing marine environment.  With this study, by 

quantifying the control of photochemistry per available photosynthetic machinery 1) as a 

function of seawater chemistry (Chapter 4) and 2) as a function of light availability (Chapter 3), 

and 3) the acclimation of photosynthetic machinery to changes in environmental conditions 

(Chapter 2), it is possible to integrate a photosynthetic control module to the existing seagrass 

productivity model to allow the photoprotection and photoacclimation processes dynamically 
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adjust the carbon assimilation in response to fluctuating coastal environments and climate 

change (Figure 31).  Such a mechanistic understanding of the balance between photosynthesis, 

photoprotection and growth under changing environmental conditions may help to predict 

whether seagrasses can maintain their successful ecological performance in future climatic 

conditions. 

In conclusion, this 18 month long CO2 enrichment experiment demonstrated that efficient 

utilization of absorbed light energy for photosynthetic carbon assimilation reduced the 

susceptibility to light-induced damage, therefore, the need for photoprotection of photosynthetic 

apparatus via NPQ and alternative electron pathways.  Under constant high CO2 and high light 

environment, the maintenance of balanced redox state without the need for these safety valves 

to dissipate excess photons and electrons triggered long-term acclimation process for 

downregulation of pigment biosynthesis.  In contrast, under low CO2 and high light environment, 

resulting in long period of light-saturated photosynthesis, these rapidly inducible dissipation 

pathways allow eelgrass to cope with diurnal fluctuations and to survive in highly dynamic 

coastal ecosystems.  Likewise, the dual function of Rubisco maintains electron flow, thereby 

preventing the inhibitory damage to photosystems due to light saturation when carbon 

assimilation is limited by CO2 supply, and preventing the accumulation of reactive oxygen 

species.  Therefore, photorespiration likely serves as an important clutch to protect the 

photochemical pathway in CO2-limited eelgrass even though it has often been viewed as an 

inefficient residue of the evolution of Rubisco.  Indeed, photorespiration might provide a carbon 

concentrating mechanism via recycling of photorespired CO2 and removing excess intracellular 

O2.  Therefore, high light requirements of seagrasses, even though photosynthesis is mainly 

carbon limited, might be needed to keep the photosynthetic machinery running to produce ATP 

to support photorespiration.  These alternative pathways become more important for 

permanently rooted marine plants in highly variable estuarine environments, where high water 



142 

 

 

column productivity causes [O2] to rise and [CO2] to fall and alters light quantity/quality.  In 

terrestrial plants, these photosynthetic control mechanisms not only regulate the carbon 

assimilation but are also linked to other metabolic pathways, for example inhibition of 

photorespiration initiates negative feedback on nitrogen metabolism (Raghavendra, 2000; 

Rachmilevitch et al., 2004).  Therefore, future studies of seagrasses can explore the cross talk 

between photochemistry and nitrogen metabolism for the utilized sunlight energy in response to 

ocean carbonation. 
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Figure 31.  Conceptual diagram integrating photoacclimation, photosynthesis, 

photorespiration and growth in eelgrass in response to environmental parameters.  (A) 

Photochemical processes were measured using methods highlighted with red by varying 

multiple environmental parameters.  (B) Impact of acclimating photochemistry on whole plant 

metabolism were monitored throughout the 18 month long CO2 enrichment experiment by 

measuring parameters highlighted with red.  Gray shaded parameters, measured during the 

CO2 enrichment experiment and discussed in Zimmerman et al. (2016), were not within the 

scope of this study.  

  



144 

 

 

LITERATURE CITED 

Agustí S, Enríquez S, Frost-Christensen H, Sand-Jensen K, Duarte CM (1994) Light 
Harvesting Among Photosynthetic Organisms. Functional Ecology 8: 273-279 

Aizawa K, Miyachi S (1986) Carbonic anhydrase and CO2 concentrating mechanisms in 
microalgae and cyanobacteria. FEMS Microbiology Letters 39: 215-233 

Alcoverro T, Zimmerman RC, Kohrs DG, Alberte RS (1999) Resource allocation and sucrose 
mobilization in light-limited eelgrass Zostera marina. Marine Ecology Progress Series 
187: 121-131 

Anderson J, Chow W, Park Y-I (1995) The grand design of photosynthesis: Acclimation of the 
photosynthetic apparatus to environmental cues. Photosynthesis Research 46: 129-139 

Andersson AJ, Kline DI, Edmunds PJ, Archer SD, Bednaršek N, Carpenter RC, Chadsey 
M, Goldstein P, Grottoli AG, Hurst TP, King AL, Kübler JE, Kuffner IB, Mackey 
KRM, Menge BA, Paytan A, Riebesell U, Schnetzer A, Warner ME, Zimmerman RC 
(2015) Understanding ocean acidification impacts on organismal to ecological scales. 
Oceanography 28: 16-27 

Andrews TJ, Abel KM (1979) Photosynthetic Carbon Metabolism in Seagrasses 14C-Labeling 
Evidence for the C3 Pathway. Plant Physiology 63: 650-656 

Andrews TJ, Lorimer GH (1978) Photorespiration -- still unavoidable? FEBS Letters 90: 1-9 

Atwell BJ, Kriedemann PE, Turnbull CGN (1999) Plants in Action: Adaptation in Nature, 
Performance in Cultivation. Macmillan Education Australia 

Backhausen JE, Scheibe R (1999) Adaptation of tobacco plants to elevated CO2: influence of 
leaf age on changes in physiology, redox states and NADP-malate dehydrogenase 
activity. Journal of Experimental Botany 50: 665-675 

Badger MR, Price GD (1994) The Role of Carbonic Anhydrase in Photosynthesis. Annual 
Review of Plant Physiology and Plant Molecular Biology 45: 369-392 

Badger MR, Susanne von C, Ruuska S, Nakano H (2000) Electron Flow to Oxygen in Higher 
Plants and Algae: Rates and Control of Direct Photoreduction (Mehler Reaction) and 
Rubisco Oxygenase. Philosophical Transactions: Biological Sciences 355: 1433-1446 

Baker NR (2008) Chlorophyll Fluorescence: A Probe of Photosynthesis In Vivo. Annual Review 
of Plant Biology 59: 89-113 

Barra L, Chandrasekaran R, Corato F, Brunet C (2014) The Challenge of Ecophysiological 
Biodiversity for Biotechnological Applications of Marine Microalgae. Marine Drugs 12: 
1641 

Batiuk RA, Bergstrom P, Kemp M, Carter V, Gallegos C, Karrh L, Wilcox D, Ailstock S, 
Teichberg M (2000) Chesapeake Bay Submerged Aquatic Vegetation Water Quality 
and Habitat-Based Requirements and Restoration Targets: A Second Technical 
Synthesis. In, Vol EPA/903/R-00/014. U.S. Environmental Protection Agency, Annapolis, 
MD 

Bauwe H (2011) Chapter 6 Photorespiration: The Bridge to C4 Photosynthesis. In AS 
Raghavendra, RF Sage, eds, C4 Photosynthesis and Related CO2 Concentrating 
Mechanisms, Vol 32. Springer Netherlands, pp 81-108 



145 

 

 

Beardall J (1989) Photosynthesis and photorespiration in marine phytoplankton. Aquatic 
Botany 34: 105-130 

Beardall J, Giordano M (2002) Ecological implications of microalgal and cyanobacterial CO2 
concentrating mechanisms, and their regulation. Functional Plant Biology 29: 335-347 

Beer S (1989) Photosynthesis and photorespiration of marine angiosperms. Aquatic Botany 34: 
153-166 

Beer S (1996) Photosynthetic utilisation of inorganic carbon in Ulva. Scientia Marina 60: 125-
128 

Beer S, Björk M (2000) Measuring rates of photosynthesis of two tropical seagrasses by pulse 
amplitude modulated (PAM) fluorometry. Aquatic Botany 66: 69-76 

Beer S, Bjork M, Hellblom F, Axelsson L (2002) Inorganic carbon utilization in marine 
angiosperms (seagrasses). Functional Plant Biology 29: 349-354 

Beer S, Koch E (1996) Photosynthesis of marine macroalgae and seagrasses in globally 
changing CO2 environments. Marine Ecology Progress Series 141: 199-204 

Beer S, Sand-Jensen K, Madsen TV, Nielsen SL (1991) The carboxylase activity of Rubisco 
and the photosynthetic performance in aquatic plants. Oecologia 87: 429-434 

Beer S, Shomer-Ilan A, Waisel Y (1980) Carbon Metabolism in Seagrasses: II. Patterns of 
photosynthetic CO2 incorporation. Journal of Experimental Botany 31: 1019-1026 

Beer S, Vilenkin B, Weil A, Veste M, Susel L, Eshel A (1998) Measuring photosynthetic rates 
in seagrasses by pulse amplitude modulated (PAM) fluorometry. Marine Ecology-
Progress Series 174: 293-300 

Beer S, Wetzel RG (1982) Photosynthetic carbon fixation pathways in Zostera marina and three 
Florida seagrasses. Aquatic Botany 13: 141-146 

Behrenfeld MJ, Prasil O, Babin M, Bruyant F (2004) In search of a physiological basis for 
covariations in light-limited and light-saturated photosynthesis. Journal of Phycology 40: 
4-25 

Bidwell RGS, McLachlan J (1985) Carbon nutrition of seaweeds: Photosynthesis, 
photorespiration and respiration. Journal of Experimental Marine Biology and Ecology 
86: 15-46 

Björk M, Haglund K, Ramazanov Z, Pedersén M (1993) Inducible mechanisms for HCO3
– 

utilization and repression of photorespiration in protoplasts and thalli of three species of 
Ulva (chlorophyta). Journal of Phycology 29: 166-173 

Björk M, Weil A, Semesi S, Beer S (1997) Photosynthetic utilisation of inorganic carbon by 
seagrasses from Zanzibar, East Africa. Marine Biology 129: 363-366 

Black C, Burris J, Everson R (1976) Influence of Oxygen Concentration on Photosynthesis in 
Marine Plants. Functional Plant Biology 3: 81-86 

Bodensteiner LE (2006) The impact of light availability on benthic oxygen release by 
seagrasses. San Jose State University 

Borum J, Pedersen O, Greve TM, Frankovich TA, Zieman JC, Fourqurean JW, Madden CJ 
(2005) The potential role of plant oxygen and sulphide dynamics in die-off events of the 
tropical seagrass, Thalassia testudinum. Journal of Ecology 93: 148-158 



146 

 

 

Borum J, Sand-Jensen K, Binzer T, Pedersen O, Greve T (2006) Oxygen Movement in 
Seagrasses. In Seagrasses: biology, ecologyand conservation. Springer Netherlands, pp 
255-270 

Boston HL, Adams MS, Madsen JD (1989) Photosynthetic strategies and productivity in 
aquatic systems. Aquatic Botany 34: 27-57 

Bowes G (1991) Growth at elevated CO2: photosynthetic responses mediated through Rubisco. 
Plant, Cell & Environment 14: 795-806 

Bowes G (2011) Chapter 5 Single-Cell C4 Photosynthesis in Aquatic Plants. In AS 
Raghavendra, RF Sage, eds, C4 Photosynthesis and Related CO2 Concentrating 
Mechanisms, Vol 32. Springer Netherlands, pp 63-80 

Bowes G, Salvucci ME (1989) Plasticity in the photosynthetic carbon metabolism of 
submersed aquatic macrophytes. Aquatic Botany 34: 233-266 

Buapet P, Rasmusson LM, Gullström M, Björk M (2013) Photorespiration and Carbon 
Limitation Determine Productivity in Temperate Seagrasses. PLoS ONE 8: e83804 

Burkholder JM, Tomasko DA, Touchette BW (2007) Seagrasses and eutrophication. Journal 
of Experimental Marine Biology and Ecology 350: 46-72 

Burris J, Holm-Hansen O, Black C (1976) Glycine and Serine Production in Marine Plants as 
a Measure of Photorespiration. Functional Plant Biology 3: 87-92 

Burris JE (1981) Effects of oxygen and inorganic carbon concentrations on the photosynthetic 
quotients of marine algae. Marine Biology 65: 215-219 

Busch FA, Sage TL, Cousins AB, Sage RF (2013) C3 plants enhance rates of photosynthesis 
by reassimilating photorespired and respired CO2. Plant, Cell & Environment 36: 200-
212 

Caemmerer S, Quick W (2004) Rubisco: Physiology in Vivo. In R Leegood, T Sharkey, S 
Caemmerer, eds, Photosynthesis, Vol 9. Springer Netherlands, pp 85-113 

Campbell JE, Fourqurean JW (2011) Novel methodology for in situ carbon dioxide enrichment 
of benthic ecosystems. Limnology and Oceanography: Methods 9: 97-109 

Campbell JE, Fourqurean JW (2013) Mechanisms of bicarbonate use influence the 
photosynthetic carbon dioxide sensitivity of tropical seagrasses. Limnology and 
Oceanography 58: 839-848 

Cummings ME, Zimmerman RC (2003) Light harvesting and the package effect in the 
seagrasses Thalassia testudinum Banks ex König and Zostera marina L.: optical 
constraints on photoacclimation. Aquatic Botany 75: 261-274 

Demmig-Adams B, Adams III WW (1996) The role of xanthophyll cycle carotenoids in the 
protection of photosynthesis. Trends in Plant Science 1: 21-26 

Demmig-Adams B, Adams W, Ebbert V, Logan B (2004) Ecophysiology of the Xanthophyll 
Cycle. In H Frank, A Young, G Britton, R Cogdell, eds, The Photochemistry of 
Carotenoids, Vol 8. Springer Netherlands, pp 245-269 

Demmig-Adams B, Adams WW (1992) Photoprotection and Other Responses of Plants to 
High Light Stress. Annual Review of Plant Physiology and Plant Molecular Biology 43: 
599-626 

den Hartog C (1970) The sea-grasses of the world. North-Holland Pub. Co., Amsterdam 



147 

 

 

den Hartog C (1979) Seagrasses and seagrass ecosystems, an appraisal of the research 
approach. Aquatic Botany 7: 105-117 

Dennison WC (1987) Effects of light on seagrass photosynthesis, growth and depth 
distribution. Aquatic Botany 27: 15-26 

Dennison WC, Alberte RS (1982) Photosynthetic Responses of Zostera marina L. (Eelgrass) 
to in Situ Manipulations of Light Intensity. Oecologia 55: 137-144 

Dietz K-J, Pfannschmidt T (2011) Novel Regulators in Photosynthetic Redox Control of Plant 
Metabolism and Gene Expression. Plant Physiology 155: 1477-1485 

Doney SC, Balch WM, Fabry VJ, Feely RA (2009a) Ocean Acidification: A Critical Emerging 
Problem for the Ocean Sciences. Oceanography 22: 16-25 

Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009b) Ocean Acidification: The Other CO2 
Problem. Annual Review of Marine Science 1: 169-192 

Douce R, Heldt H-W (2004) Photorespiration. In R Leegood, T Sharkey, S Caemmerer, eds, 
Photosynthesis, Vol 9. Springer Netherlands, pp 115-136 

Downton W, Bishop D, Larkum A, Osmond C (1976) Oxygen Inhibition of Photosynthetic 
Oxygen Evolution in Marine Plants. Functional Plant Biology 3: 73-79 

Duarte CM (1991) Seagrass depth limits. Aquatic Botany 40: 363-377 

Duarte CM, Hendriks IE, Moore TS, Olsen YS, Steckbauer A, Ramajo L, Carstensen J, 
Trotter JA, McCulloch M (2013) Is Ocean Acidification an Open-Ocean Syndrome? 
Understanding Anthropogenic Impacts on Seawater pH. Estuaries and Coasts 36: 221-
236 

Durako MJ (1993) Photosynthetic utilization of CO2(aq) and HCO3- in Thalassia testudinum  
(Hydrocharitaceae). Marine Biology 115: 373-380 

Eberhard S, Finazzi G, Wollman F-A (2008) The Dynamics of Photosynthesis. Annual Review 
of Genetics 42: 463-515 

Ellsworth DS, Crous KY, Lambers H, Cooke J (2015) Phosphorus recycling in 
photorespiration maintains high photosynthetic capacity in woody species. Plant, Cell & 
Environment 38: 1142-1156 

Emerson S, Hedges J (2008) Chemical Oceanography and the Marine Carbon Cycle. 
Cambridge University Press 

Enríquez S (2005) Light absorption efficiency and the package effect in the leaves of the 
seagrass Thalassia testudinum. Marine Ecology Progress Series 289: 141-150 

Evans AS, Webb KL, Penhale PA (1986) Photosynthetic temperature acclimation in two 
coexisting seagrasses, Zostera marina L. and Ruppia maritima L. Aquatic Botany 24: 
185-197 

Falkowski PG, Raven JA (2007) Aquatic photosynthesis. Princeton University Press 

Fernández JA, García-Sánchez MJ, Felle HH (1999) Physiological evidence for a proton 
pump and sodium exclusion mechanisms at the plasma membrane of the marine 
angiosperm Zostera marina L. Journal of Experimental Botany 50: 1763-1768 

Figueroa F, Conde-Álvarez R, Gómez I (2003) Relations between electron transport rates 
determined by pulse amplitude modulated chlorophyll fluorescence and oxygen 



148 

 

 

evolution in macroalgae under different light conditions. Photosynthesis Research 75: 
259-275 

Fourqurean JW, Duarte CM, Kennedy H, Marba N, Holmer M, Mateo MA, Apostolaki ET, 
Kendrick GA, Krause-Jensen D, McGlathery KJ, Serrano O (2012) Seagrass 
ecosystems as a globally significant carbon stock. Nature Geoscience 5: 505-509 

Foyer CH, Bloom AJ, Queval G, Noctor G (2009) Photorespiratory Metabolism: Genes, 
Mutants, Energetics, and Redox Signaling. Annual Review of Plant Biology 60: 455-484 

Foyer CH, Neukermans J, Queval G, Noctor G, Harbinson J (2012) Photosynthetic control of 
electron transport and the regulation of gene expression. Journal of Experimental Botany 
63: 1637-1661 

Frost-Christensen H, Sand-Jensen K (1992) The quantum efficiency of photosynthesis in 
macroalgae and submerged angiosperms. Oecologia 91: 377-384 

Gieskes JM, Rogers WC (1973) Alkalinity determination in interstitial waters of marine 
sediments. Journal of Sedimentary Research 43: 272-277 

Greve TM, Borum J, Pedersen O (2003) Meristematic Oxygen Variability in Eelgrass (Zostera 
marina). Limnology and Oceanography 48: 210-216 

Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, Turner SM, Rowley 
SJ, Tedesco D, Buia M-C (2008) Volcanic carbon dioxide vents show ecosystem 
effects of ocean acidification. Nature 454: 96-99 

Hanke GT, Holtgrefe S, König N, Strodtkötter I, Voss I, Scheibe R (2009) Chapter 8 Use of 
Transgenic Plants to Uncover Strategies for Maintenance of Redox Homeostasis During 
Photosynthesis. In J Jean-Pierre, ed, Advances in Botanical Research, Vol Volume 52. 
Academic Press, pp 207-251 

Heber U, Krause GH (1980) What is the physiological role of photorespiration? Trends in 
Biochemical Sciences 5: 32-34 

Hellblom F, Björk M (1999) Photosynthetic responses in Zostera marina to decreasing salinity, 
inorganic carbon content and osmolality. Aquatic Botany 65: 97-104 

Hemminga MA, Duarte CM (2000) Seagrass ecology. Cambridge University Press 

Holmer M, Frederiksen MS, Møllegaard H (2005) Sulfur accumulation in eelgrass (Zostera 
marina) and effect of sulfur on eelgrass growth. Aquatic Botany 81: 367-379 

Holmer M, Pedersen O, Krause-Jensen D, Olesen B, Hedegård Petersen M, Schopmeyer 
S, Koch M, Lomstein BA, Jensen HS (2009) Sulfide intrusion in the tropical 
seagrasses Thalassia testudinum and Syringodium filiforme. Estuarine, Coastal and 
Shelf Science 85: 319-326 

Hough AR, Wetzel RG (1977) Photosynthetic pathways of some aquatic plants. Aquatic Botany 
3: 297-313 

Hough RA (1974) Photorespiration and Productivity in Submersed Aquatic Vascular Plants. 
Limnology and Oceanography 19: 912-927 

Huner N, Dahal K, Hollis L, Bode R, Rosso D, Krol M, Ivanov AG (2012) Chloroplast Redox 
Imbalance Governs Phenotypic Plasticity: the “Grand Design of Photosynthesis” 
Revisited. Frontiers in Plant Science 3: 1-12 



149 

 

 

Igamberdiev AU, Bykova NV, Lea PJ, Gardestrom P (2001) The role of photorespiration in 
redox and energy balance of photosynthetic plant cells: A study with a barley mutant 
deficient in glycine decarboxylase. Physiol Plant 111: 427-438 

Invers O, Zimmerman RC, Alberte RS, Pérez M, Romero J (2001) Inorganic carbon sources 
for seagrass photosynthesis: an experimental evaluation of bicarbonate use in species 
inhabiting temperate waters. Journal of Experimental Marine Biology and Ecology 265: 
203-217 

Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining 
chlorophylls a, b, c1, c2 in higher plants, algae, and natural phytoplankton. Biochem. 
Physiolo. Pflanzen 167: 191-194 

Jiang ZJ, Huang X-P, Zhang J-P (2010) Effects of CO2 Enrichment on Photosynthesis, 
Growth, and Biochemical Composition of Seagrass Thalassia hemprichii (Ehrenb.) 
Aschers. Journal of Integrative Plant Biology 52: 904-913 

Johnson GN (2005) Cyclic electron transport in C3 plants: fact or artefact? Journal of 
Experimental Botany 56: 407-416 

Jones R, Ougham H, Thomas H, Waaland S (2012) The Molecular Life of Plants. Wiley 

Jordan DB, Ogren WL (1981) Species variation in the specificity of ribulose biphosphate 
carboxylase/oxygenase. Nature 291: 513-515 

Kalaji HM, Schansker G, Ladle RJ, Goltsev V, Bosa K, Allakhverdiev SI, Brestic M, 
Bussotti F, Calatayud A, Dąbrowski P, Elsheery NI, Ferroni L, Guidi L, Hogewoning 
SW, Jajoo A, Misra AN, Nebauer SG, Pancaldi S, Penella C, Poli D, Pollastrini M, 
Romanowska-Duda ZB, Rutkowska B, Serôdio J, Suresh K, Szulc W, Tambussi E, 
Yanniccari M, Zivcak M (2014) Frequently asked questions about in vivo chlorophyll 
fluorescence: practical issues. Photosynthesis Research 122: 121-158 

Kanazawa A, Kramer DM (2002) In vivo modulation of nonphotochemical exciton quenching 
(NPQ) by regulation of the chloroplast ATP synthase. Proceedings of the National 
Academy of Sciences 99: 12789-12794 

Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press 

Koch EW, Barbier EB, Silliman BR, Reed DJ, Perillo GME, Hacker SD, Granek EF, 
Primavera JH, Muthiga N, Polasky S, Halpern BS, Kennedy CJ, Kappel CV, 
Wolanski E (2009) Non-linearity in ecosystem services: temporal and spatial variability 
in coastal protection. Frontiers in Ecology and the Environment 7: 29-37 

Koch M, Bowes G, Ross C, Zhang X-H (2013) Climate change and ocean acidification effects 
on seagrasses and marine macroalgae. Global Change Biology 19: 103-132 

Krause-Jensen D, Carstensen J, Nielsen S, Dalsgaard T, Christensen P, Fossing H, 
Rasmussen M (2011) Sea bottom characteristics affect depth limits of eelgrass Zostera 
marina. Marine Ecology Progress Series 425: 91-102 

Kuypers MMM, Pancost RD, Damste JSS (1999) A large and abrupt fall in atmospheric CO2 
concentration during Cretaceous times. Nature 399: 342-345 

Larkum AD, Drew E, Ralph P (2006a) Photosynthesis and Metabolism in Seagrasses at the 
Cellular Level. In Seagrasses: biology, ecologyand conservation. Springer Netherlands, 
pp 323-345 



150 

 

 

Larkum AWD, Orth RJ, Duarte CM, eds (2006b) Seagrasses : biology, ecology, and 
conservation. Springer, Dordrecht 

Lee K-S, Park SR, Kim YK (2007) Effects of irradiance, temperature, and nutrients on growth 
dynamics of seagrasses: A review. Journal of Experimental Marine Biology and Ecology 
350: 144-175 

Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a 
and b of leaf extracts in different solvents. Biochemical Society Transactions 11: 591-
592 

Longstaff BJ, Dennison WC (1999) Seagrass survival during pulsed turbidity events: the 
effects of light deprivation on the seagrasses Halodule pinifolia and Halophila ovalis. 
Aquatic Botany 65: 105-121 

Longstaff BJ, Kildea T, Runcie JW, Cheshire A, Dennison WC, Hurd C, Kana T, Raven JA, 
Larkum AW (2002) An in situ study of photosynthetic oxygen exchange and electron 
transport rate in the marine macroalga Ulva lactuca (Chlorophyta). Photosynth Res 74: 
281-293 

Madsen TV, Maberly SC, Bowes G (1996) Photosynthetic acclimation of submersed 
angiosperms to CO2 and HCO-3. Aquatic Botany 53: 15-30 

Madsen TV, Sand-Jensen K (1991) Photosynthetic carbon assimilation in aquatic 
macrophytes. Aquatic Botany 41: 5-40 

Madsen TV, Sand-Jensen K, Beer S (1993) Comparison of photosynthetic performance and 
carboxylation capacity in a range of aquatic macrophytes of different growth forms. 
Aquatic Botany 44: 373-384 

Makino A, Miyake C, Yokota A (2002) Physiological Functions of the Water–Water Cycle 
(Mehler Reaction) and the Cyclic Electron Flow around PSI in Rice Leaves. Plant and 
Cell Physiology 43: 1017-1026 

Maurino VG, Peterhansel C (2010) Photorespiration: current status and approaches for 
metabolic engineering. Current Opinion in Plant Biology 13: 248-255 

McPherson ML, Zimmerman RC, Hill VJ (2015) Predicting carbon isotope discrimination in 
Eelgrass (Zostera marina L.) from the environmental parameters—light, flow, and [DIC]. 
Limnology and Oceanography 60: 1875-1889 

Mercado JM, Gordillo FJL (2011) Inorganic carbon acquisition in algal communities: are the 
laboratory data relevant to the natural ecosystems? Photosynthesis Research 109: 257-
267 

Mercado JM, Niell FX, Silva J, Santos R (2003) Use of light and inorganic carbon acquisition 
by two morphotypes of Zostera noltii Hornem. Journal of Experimental Marine Biology 
and Ecology 297: 71-84 

Moore KA, Jarvis JC (2008) Environmental Factors Affecting Recent Summertime Eelgrass 
Diebacks in the Lower Chesapeake Bay: Implications for Long-term Persistence. Journal 
of Coastal Research SI: 135-147 

Moore KA, Shields EC, Parrish DB, Orth RJ (2012) Eelgrass survival in two contrasting 
systems: role of turbidity and summer water temperatures. Marine Ecology Progress 
Series 448: 247-258 



151 

 

 

Munekage Y, Hashimoto M, Miyake C, Tomizawa K-I, Endo T, Tasaka M, Shikanai T (2004) 
Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429: 
579-582 

Niyogi KK (2000) Safety valves for photosynthesis. Curr Opin Plant Biol 3: 455-460 

Noctor G, Foyer CH (1998) A re-evaluation of the ATP :NADPH budget during C3 
photosynthesis: a contribution from nitrate assimilation and its associated respiratory 
activity? Journal of Experimental Botany 49: 1895-1908 

Ogren WL (1984) Photorespiration: Pathways, Regulation, and Modification. Annual Review of 
Plant Physiology 35: 415-442 

Ogren WL (2003) Affixing the O to Rubisco: discovering the source of photorespiratory 
glycolate and its regulation. Photosynthesis Research 76: 53-63 

Ort DR, Baker NR (2002) A photoprotective role for O2 as an alternative electron sink in 
photosynthesis? Current Opinion in Plant Biology 5: 193-198 

Orth R, Williams M, Marion S, Wilcox D, Carruthers TB, Moore K, Kemp WM, Dennison W, 
Rybicki N, Bergstrom P, Batiuk R (2010) Long-Term Trends in Submersed Aquatic 
Vegetation (SAV) in Chesapeake Bay, USA, Related to Water Quality. Estuaries and 
Coasts 33: 1144-1163 

Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck KL, Hughes 
AR, Kendrick GA, Kenworthy WJ, Olyarnik S, Short FT, Waycott M, Williams SL 
(2006a) A Global Crisis for Seagrass Ecosystems. BioScience 56: 987-996 

Orth RJ, Luckenbach ML, Marion SR, Moore KA, Wilcox DJ (2006b) Seagrass recovery in 
the Delmarva Coastal Bays, USA. Aquatic Botany 84: 26-36 

Osmond B, Badger M, Maxwell K, Björkman O, Leegood R (1997) Too many photons: 
photorespiration, photoinhibition and photooxidation. Trends in Plant Science 2: 119-121 

Osmond CB (1981) Photorespiration and photoinhibition : Some implications for the energetics 
of photosynthesis. Biochimica et Biophysica Acta (BBA) - Reviews on Bioenergetics 
639: 77-98 

Ow YX, Collier CJ, Uthicke S (2015) Responses of three tropical seagrass species to CO2 
enrichment. Marine Biology 162: 1005-1017 

Palacios S, Zimmerman R (2007) Response of eelgrass Zostera marina to CO2 enrichment: 
possible impacts of climate change and potential for remediation of coastal habitats. 
Marine Ecology Progress Series 344: 1-13 

Pedersen O, Binzer T, Borum J (2004) Sulphide intrusion in eelgrass (Zostera marina L.). 
Plant, Cell & Environment 27: 595-602 

Pfannschmidt T (2003) Chloroplast redox signals: how photosynthesis controls its own genes. 
Trends in Plant Science 8: 33-41 

Pfannschmidt T, Yang C (2012) The hidden function of photosynthesis: a sensing system for 
environmental conditions that regulates plant acclimation responses. Protoplasma 249: 
125-136 

Prasil O, Kolber Z, Berry J, Falkowski P (1996) Cyclic electron flow around Photosystem II in 
vivo. Photosynthesis Research 48: 395-410 



152 

 

 

Rachmilevitch S, Cousins AB, Bloom AJ (2004) Nitrate assimilation in plant shoots depends 
on photorespiration. Proceedings of the National Academy of Sciences of the United 
States of America 101: 11506-11510 

Raghavendra AS (2000) Photosynthesis: A Comprehensive Treatise. Cambridge University 
Press 

Ralph PJ, Durako MJ, Enríquez S, Collier CJ, Doblin MA (2007) Impact of light limitation on 
seagrasses. Journal of Experimental Marine Biology and Ecology 350: 176-193 

Ralph PJ, Gademann R (2005) Rapid light curves: A powerful tool to assess photosynthetic 
activity. Aquatic Botany 82: 222-237 

Ralph PJ, Polk SM, Moore KA, Orth RJ, Smith WO (2002) Operation of the xanthophyll cycle 
in the seagrass Zostera marina in response to variable irradiance. Journal of 
Experimental Marine Biology and Ecology 271: 189-207 

Raven J, Beardall J (2003) Carbon Acquisition Mechanisms of Algae: Carbon Dioxide Diffusion 
and Carbon Dioxide Concentrating Mechanisms. In AD Larkum, S Douglas, J Raven, 
eds, Photosynthesis in Algae, Vol 14. Springer Netherlands, pp 225-244 

Raven JA (1984) Energetics and transport in aquatic plants. A.R. Liss 

Raven JA (1991) Plant responses to high O2 concentrations: relevance to previous high O2 
episodes. Palaeogeography, Palaeoclimatology, Palaeoecology 97: 19-38 

Raven JA, Beardall J (2014) CO2 concentrating mechanisms and environmental change. 
Aquatic Botany 118: 24-37 

Raven JA, Beardall J, Giordano M (2014) Energy costs of carbon dioxide concentrating 
mechanisms in aquatic organisms. Photosynth Res 121: 111-124 

Raven JA, Cockell CS, De La Rocha CL (2008) The evolution of inorganic carbon 
concentrating mechanisms in photosynthesis. Philosophical Transactions of the Royal 
Society B: Biological Sciences 363: 2641-2650 

Raven JA, Giordano M, Beardall J, Maberly SC (2011) Algal and aquatic plant carbon 
concentrating mechanisms in relation to environmental change. Photosynth Res 109: 
281-296 

Raven JA, Johnston AM (1991) Mechanisms of Inorganic-Carbon Acquisition in Marine 
Phytoplankton and Their Implications for the Use of Other Resources. Limnology and 
Oceanography 36: 1701-1714 

Raven JA, Johnston AM, Kubler JE, Korb R, McInroy SG, Handley LL, Scrimgeour CM, 
Walker DI, Beardall J, Vanderklift M, Fredriksen S, Dunton KH (2002) Mechanistic 
interpretation of carbon isotope discrimination by marine macroalgae and seagrasses. 
Functional Plant Biology 29: 355-378 

Reinfelder JR (2011) Carbon Concentrating Mechanisms in Eukaryotic Marine Phytoplankton. 
Annual Review of Marine Science 3: 291-315 

Ruesink JL, Yang S, Trimble AC (2015) Variability in Carbon Availability and Eelgrass 
(Zostera marina) Biometrics Along an Estuarine Gradient in Willapa Bay, WA, USA. 
Estuaries and Coasts 38: 1908-1917 

Rumeau D, Peltier G, Cournac L (2007) Chlororespiration and cyclic electron flow around PSI 
during photosynthesis and plant stress response. Plant Cell Environ 30: 1041-1051 



153 

 

 

Sand-Jensen K, Pedersen O, Binzer T, Borum J (2005) Contrasting Oxygen Dynamics in the 
Freshwater Isoetid Lobelia dortmanna and the Marine Seagrass Zostera marina. Annals 
of Botany 96: 613-623 

Scheibe R, Backhausen JE, Emmerlich V, Holtgrefe S (2005) Strategies to maintain redox 
homeostasis during photosynthesis under changing conditions. Journal of Experimental 
Botany 56: 1481-1489 

Sharkey TD (1988) Estimating the rate of photorespiration in leaves. Physiologia Plantarum 73: 
147-152 

Short FT, Neckles HA (1999) The effects of global climate change on seagrasses. Aquatic 
Botany 63: 169-196 

Silva J, Santos R (2004) Can chlorophyll fluorescence be used to estimate photosynthetic 
production in the seagrass Zostera noltii? Journal of Experimental Marine Biology and 
Ecology 307: 207-216 

Silva J, Y S, R S, S B (2009) Measuring seagrass photosynthesis: methods and applications. 
Aquatic Biology 7: 127-141 

Sisson GM, Shen J, Reay WG, Miles EJ, Kuo AY-s, Wang HV (2010) The development of a 
management tool to assess bacterial impacts in Rudee Inlet, Virginia Beach. Virginia 
Institute of Marine Science, Dept. of Physical Sciences, Gloucester Point, Va. 

Smith RD, Pregnall AM, Alberte RS (1988) Effects of anaerobiosis on root metabolism of 
Zostera marina; (eelgrass): implications for survival in reducing sediments. Marine 
Biology 98: 131-141 

Somerville CR (2001) An Early Arabidopsis Demonstration. Resolving a Few Issues 
concerning Photorespiration. Plant Physiology 125: 20-24 

Spreitzer RJ, Salvucci ME (2002) RUBISCO: Structure, Regulatory Interactions, and 
Possibilities for a Better Enzyme. Annual Review of Plant Biology 53: 449-475 

Taylor AR, Brownlee C, Wheeler GL (2012) Proton channels in algae: reasons to be excited. 
Trends in Plant Science 17: 675-684 

Tcherkez GGB, Farquhar GD, Andrews TJ (2006) Despite slow catalysis and confused 
substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly 
optimized. Proceedings of the National Academy of Sciences 103: 7246-7251 

Tolbert NE (1997) The C2 oxidative photosynthetic carbon cycle. Annual Review of Plant 
Physiology and Plant Molecular Biology 48: 1-25 

Tolbert NE, Osmond CB, Great Barrier Reef Photorespiration expedition (1976) 
Photorespiration in marine plants. CSIRO 

Touchette BW, Burkholder JM (2000) Overview of the physiological ecology of carbon 
metabolism in seagrasses. Journal of Experimental Marine Biology and Ecology 250: 
169-205 

van Heuven S, Pierrot D, Rae JWB, Lewis E, Wallace DWR (2011) MATLAB Program 
Developed for CO2 System Calculations. In, Ed ORNL/CDIAC-105b. Department of 
Energy, Oak Ridge, Tennessee, Carbon Dioxide Information Analysis Center, Oak Ridge 
National Laboratory, U.S. 

Vaudrey JMP, Kremer JN, Branco BF, Short FT (2010) Eelgrass recovery after nutrient 
enrichment reversal. Aquatic Botany 93: 237-243 



154 

 

 

Vogelman TC, Nishio JN, Smith WK (1996) Leaves and light capture: Light propagation and 
gradients of carbon fixation within leaves. Trends in Plant Science 1: 65-70 

Voss I, Sunil B, Scheibe R, Raghavendra AS (2013) Emerging concept for the role of 
photorespiration as an important part of abiotic stress response. Plant Biology 15: 713-
722 

Waldbusser GG, Salisbury JE (2014) Ocean acidification in the coastal zone from an 
organism's perspective: multiple system parameters, frequency domains, and habitats. 
Ann Rev Mar Sci 6: 221-247 

Walters RG (2005) Towards an understanding of photosynthetic acclimation. J Exp Bot 56: 
435-447 

Webb W, Newton M, Starr D (1974) Carbon dioxide exchange of Alnus rubra. Oecologia 17: 
281-291 

Woodward FI (2002) Potential impacts of global elevated CO2 concentrations on plants. 
Current Opinion in Plant Biology 5: 207-211 

Xin C-P, Tholen D, Devloo V, Zhu X-G (2015) The Benefits of Photorespiratory Bypasses: 
How Can They Work? Plant Physiology 167: 574-585 

Yin ZH, Johnson GN (2000) Photosynthetic acclimation of higher plants to growth in fluctuating 
light environments. Photosynth Res 63: 97-107 

Zeebe RE (2012) History of Seawater Carbonate Chemistry, Atmospheric CO2, and Ocean 
Acidification. Annual Review of Earth and Planetary Sciences 40: 141-165 

Zhu X-G, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis 
can convert solar energy into biomass? Current Opinion in Biotechnology 19: 153-159 

Zimmerman RC (2003) A Biooptical Model of Irradiance Distribution and Photosynthesis in 
Seagrass Canopies. Limnology and Oceanography 48: 568-585 

Zimmerman RC (2006) Light and Photosynthesis in Seagrass Meadows. In AWD Larkum, RJ 
Orth, CM Duarte, eds, Seagrasses: Biology, Ecology and Conservation. Springer 
Netherlands, Dordrecht, pp 303-321 

Zimmerman RC, Hill VJ, Gallegos CL (2015) Predicting effects of ocean warming, 
acidification, and water quality on Chesapeake region eelgrass. Limnology and 
Oceanography 60: 1781-1804 

Zimmerman RC, Hill VJ, Jinuntuya M, Celebi B, Ruble D, Smith M, Cedeno T, Swingle WM 
(2016) Experimental Impacts of Climate Warming and Ocean Carbonation on Eelgrass 
(Zostera marina L.). Marine Ecology Progress Series Submitted 

Zimmerman RC, Kohrs DG, Steller DL, Alberte RS (1997) Impacts of CO2 Enrichment on 
Productivity and Light Requirements of Eelgrass. Plant Physiology 115: 599-607 

Zimmerman RC, Reguzzoni JL, Alberte RS (1995) Eelgrass (Zostera marina L.) transplants in 
San Francisco Bay: Role of light availability on metabolism, growth and survival. Aquatic 
Botany 51: 67-86 

Zimmerman RC, Reguzzoni JL, Wyllie-Echeverria S, Josselyn M, Alberte RS (1991) 
Assessment of environmental suitability for growth of Zostera marina L. (eelgrass) in 
San Francisco Bay. Aquatic Botany 39: 353-366 



155 

 

 

Zimmerman RC, Smith RD, Alberte RS (1987) Is growth of eelgrass nitrogen limited? A 
numerical simulation of the effects of light and nitrogen on the growth dynamics of 
Zostera marina. Marine Ecology Progress Series 41: 167-176 

Zimmerman RC, Smith RD, Alberte RS (1989) Thermal acclimation and whole-plant carbon 
balance in Zostera marina L. (eelgrass). Journal of Experimental Marine Biology and 
Ecology 130: 93-109 

 

  



156 

 

 

APPENDIX 



 

 

15
7 

Table 18. Multiple linear regression model results for general effects of environmental parameters on leaf optical properties 

without grouping into separate pH treatments. Only the standardized coefficients were reported to highlight the relative importance of 

the significant predictors. 

Dependent Variable 
 

Predictors: Constant, Daily Average Temperature (C°), Daily Average log[CO2] (umol/kgSW), Daily Total PAR 
[Shade corrected] (M/d). These parameters were averaged over 2-week period prior to sampling date. 

 FW per LA (mg/cm2) ANOVA df Mean Square F Sig. Standardized Coefficients Beta 
Sig. 

Adjusted R Square Regression 3 3289.9 139.7 <0.001 Daily Average log[CO2] 0.456 
<0.001 

0.599 Residual 276 23.55     Daily Total PAR -0.103 
0.039 

  Total 279       Daily Average Temp 0.731 
<0.001 

 Total Chl per LA (μg Chl/cm2) ANOVA df Mean Square F Sig. Standardized Coefficients Beta 
Sig. 

Adjusted R Square Regression 3 12.93.1 47.5 <0.001 Daily Average log[CO2] -0.467 
<0.001 

0.333 Residual 276 27.23     Daily Total PAR -0.184 
0.004 

  Total 279       Daily Average Temp 0.397 
<0.001 

 Total Car per LA (μg Cx/cm2) ANOVA df Mean Square F Sig. Standardized Coefficients Beta 
Sig. 

Adjusted R Square Regression 3 49.01 41.66 <0.001 Daily Average log[CO2] -0.487 
<0.001 

0.304 Residual 276 1.18     Daily Total PAR -0.342 
<0.001 

  
Total 
 

279 
 

  
     

Daily Average Temp 
 

0.148 
 

0.024 
 

 Chl a:b ANOVA df Mean Square F Sig. Standardized Coefficients Beta 
Sig. 

Adjusted R Square Regression 3 35.21 173.8 <0.001 Daily Average log[CO2] 0.035 
0.332 

0.650 Residual 276 0.203     Daily Total PAR -0.154 
0.001 

  Total 279       Daily Average Temp -0.697 
<0.001 
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Table 18. continued 
        

 Tcar:TChl ANOVA df Mean Square F Sig. Standardized Coefficients Beta 
Sig. 

Adjusted R Square Regression 3 0.067 73.48 <0.001 Daily Average log[CO2] 0.180 
<0.001 

0.438 Residual 276 0.001     Daily Total PAR -0.119 
0.044 

  Total 279       Daily Average Temp -0.544 
<0.001 

 a*L430 (m2/g Chl-a) ANOVA df Mean Square F Sig. Standardized Coefficients Beta 
Sig. 

Adjusted R Square Regression 3 389.31 49.86 <0.001 Daily Average log[CO2] 0.448 
<0.001 

0.344 Residual 276 7.81     Daily Total PAR 0.124 
0.052 

  Total 279       Daily Average Temp -0.417 
<0.001 

 A677 (%) ANOVA df Mean Square F Sig. Standardized Coefficients Beta 
Sig. 

Adjusted R Square Regression 3 0.131 19.91 <0.001 Daily Average log[CO2] -0.151 
0.006 

0.169 Residual 276 0.007     Daily Total PAR -0.209 
0.004 

  Total 279       Daily Average Temp -0.236 
0.001 
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Figure 32.  Micrographs of eelgrass leaves sampled in September 2013 from ambient 

treatment (A) and from pH 6.1 treatment (B).  Micrographs of leaf surface and cross-sectional 

view were provided courtesy of Dr. Fred Dobbs.   
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Figure 33.  Experimental setup used during photosynthesis measurements in Chapter III 

(A) and in Chapter IV (B).  Leaf samples were incubated in sealed and temperature controlled 

chambers which were fitted with sensors for measuring O2 production, fluorescence and pH drift 

simultenously.   
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Table 19.  Results of non-linear regression analysis for pigment specific photosynthesis versus EPUR curves.  PE: Light saturated 

Gross Photosynthesis (µmol O2 hr-1 mg-1 Chlorophyll), Ek (PUR): photosynthesis-saturating irradiance calculated using 

photosynthetically usable irradiance (µmol absorbed photon s-1 m-2), RD: Dark respiration (µmol O2 hr-1 mg-1 Chlorophyll).    

Model parameters  Analysis of Variance (Corrected for the mean of the 
observations) 

Growth 
pH 

Measurement 
pH 

Coefficient SE t p r2    DF SS MS F p 

6 6.0 PE 70.2 4.3 16.4 <0.0001 0.974 Regression 2.0 9701.4 4850.7 209.2 <0.0001 

  Ek (PUR) 47.5 7.0 6.8 <0.0001  Residual 11.0 255.0 23.2   

  RD 8.7 1.8 4.9 0.001  Total 13.0 9956.4 765.9   

 7.0 PE 55.2 3.7 15.0 <0.0001 0.970 Regression 2.0 5681.2 2840.6 146.3 <0.0001 

  Ek (PUR) 36.4 6.0 6.1 0.000  Residual 9.0 174.7 19.4   

  RD 8.5 1.8 4.8 0.001  Total 11.0 5855.9 532.4   

 8.0 PE 24.5 2.1 11.4 <0.0001 0.956 Regression 2.0 1269.6 634.8 76.1 <0.0001 

  Ek (PUR) 14.5 4.9 3.0 0.020  Residual 7.0 58.4 8.3   

  RD 11.5 1.3 8.9 <0.0001  Total 9.0 1327.9 147.5   

7 6.0 PE 68.0 3.2 21.0 <0.0001 0.984 Regression 2.0 8533.8 4266.9 343.0 <0.0001 

  Ek (PUR) 64.2 7.4 8.7 <0.0001  Residual 11.0 136.8 12.4   

  RD 6.5 1.3 5.0 0.000  Total 13.0 8670.7 667.0   
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Table 19. continued             

Growth 
pH 

Measurement 
pH 

Coefficient SE t p r2    DF SS MS F p 

7 7.0 PE 49.3 3.1 15.9 <0.0001 0.973 Regression 2.0 4417.7 2208.9 162.8 <0.0001 

  Ek (PUR) 43.9 6.9 6.4 0.000  Residual 9.0 122.1 13.6   

  RD 6.7 1.5 4.5 0.001  Total 11.0 4539.9 412.7   

 8.0 PE 12.5 3.1 4.0 0.005 0.723 Regression 2.0 382.1 191.1 9.1 0.011 

  Ek (PUR) 4.7 15.8 0.3 0.775  Residual 7.0 146.6 20.9   

  RD 5.2 2.0 2.6 0.038  Total 9.0 528.7 58.7   

8 6.0 PE 62.6 2.4 26.1 <0.0001 0.992 Regression 2.0 5457.9 2729.0 458.5 <0.0001 

  Ek (PUR) 68.6 7.2 9.5 <0.0001  Residual 7.0 41.7 6.0   

  RD 5.0 1.1 4.7 0.002  Total 9.0 5499.6 611.1   

 7.0 PE 44.9 4.0 11.3 <0.0001 0.952 Regression 2.0 3681.4 1840.7 89.4 <0.0001 

  Ek (PUR) 57.1 13.3 4.3 0.002  Residual 9.0 185.4 20.6   

  RD 4.9 1.8 2.7 0.025  Total 11.0 3866.8 351.5   

 8.0 PE 20.3 2.4 8.4 <0.0001 0.922 Regression 2.0 846.2 423.1 41.5 0.000 

  Ek (PUR) 17.4 7.1 2.4 0.045  Residual 7.0 71.3 10.2   

  RD 7.8 1.4 5.5 0.001  Total 9.0 917.5 101.9   
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Table 20.  Results of non-linear regression analysis for biomass specific photosynthesis versus EPAR curves.  PE: Light saturated 

Gross Photosynthesis (µmol O2 hr-1 g-1 Fresh weight), Ek (PAR): photosynthesis-saturating irradiance calculated using 

photosynthetically active irradiance (µmol photon s-1 m-2), RD: Dark respiration (µmol O2 hr-1 g-1 Fresh weight). 

Model parameters  Analysis of Variance (Corrected for the mean of the 
observations) 

Growth 
pH 

Measurement 
pH 

Coefficient SE t p r2    DF SS MS F p 

6 6.0 PE 33.5 2.8 12.1 <0.0001 0.950 Regression 2.0 2642.4 1321.2 103.6 <0.0001 

  Ek (PAR) 65.0 14.5 4.5 0.001  Residual 11.0 140.3 12.8   

  RD 4.7 1.3 3.5 0.005  Total 13.0 2782.7 214.1   

 7.0 PE 40.0 2.5 15.8 <0.0001 0.973 Regression 2.0 2690.4 1345.2 163.7 <0.0001 

  Ek (PAR) 94.7 14.8 6.4 0.000  Residual 9.0 74.0 8.2   

  RD 5.5 1.2 4.8 0.001  Total 11.0 2764.4 251.3   

 8.0 PE 12.9 1.1 12.0 <0.0001 0.961 Regression 2.0 350.9 175.5 87.0 <0.0001 

  Ek (PAR) 28.4 8.6 3.3 0.013  Residual 7.0 14.1 2.0   

  RD 5.9 0.6 9.3 <0.0001  Total 9.0 365.0 40.6   

7 6.0 PE 67.4 7.1 9.5 <0.0001 0.925 Regression 2.0 9127.2 4563.6 67.4 <0.0001 

  Ek (PAR) 94.0 24.2 3.9 0.003  Residual 11.0 744.6 67.7   

  RD 6.9 3.1 2.3 0.045  Total 13.0 9871.8 759.4   
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Table 20. continued            

Growth 
pH 

Measurement 
pH 

Coefficient SE t p r2    DF SS MS F p 

7 7.0 PE 54.3 6.5 8.4 <0.0001 0.911 Regression 2.0 5168.3 2584.1 45.9 <0.0001 

  Ek (PAR) 85.3 25.1 3.4 0.008  Residual 9.0 506.9 56.3   

  RD 7.1 3.0 2.3 0.044  Total 11.0 5675.2 515.9   

 8.0 PE 12.1 2.9 4.2 0.004 0.741 Regression 2.0 352.1 176.0 10.0 0.009 

  Ek (PAR) 11.6 23.5 0.5 0.637  Residual 7.0 123.1 17.6   

  RD 5.0 1.9 2.7 0.031  Total 9.0 475.2 52.8   

8 6.0 PE 86.8 4.7 18.5 <0.0001 0.985 Regression 2.0 10376.8 5188.4 231.2 <0.0001 

  Ek (PAR) 124.9 18.6 6.7 0.000  Residual 7.0 157.1 22.4   

  RD 6.8 2.1 3.3 0.013  Total 9.0 10533.9 1170.4   

 7.0 PE 62.1 4.6 13.5 <0.0001 0.965 Regression 2.0 7411.8 3705.9 124.5 <0.0001 

  Ek (PAR) 83.9 16.9 5.0 0.001  Residual 9.0 267.9 29.8   

  RD 6.7 2.2 3.1 0.014  Total 11.0 7679.8 698.2   

 8.0 PE 17.2 1.7 10.3 <0.0001 0.947 Regression 2.0 681.0 340.5 62.1 <0.0001 

  Ek (PAR) 18.3 8.7 2.1 0.073  Residual 7.0 38.4 5.5   

  RD 7.3 1.0 7.0 0.000  Total 9.0 719.3 79.9   
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Table 21.  Results of non-linear regression analysis for leaf area specific photosynthesis versus EPUR curves.  PE: Light saturated 

Gross Photosynthesis (µmol O2 s-1 m-2 ), Ek (PUR): photosynthesis-saturating irradiance calculated using photosynthetically usable 

irradiance (µmol absorbed photon s-1 m-2), RD: Dark respiration (µmol O2 s-1 m-2). 

Model parameters Analysis of Variance (Corrected for the mean of the 
observations) 

Growth 
pH 

Measurement 
pH 

Coefficient SE t p r2    DF SS MS F p 

6 6.0 PE 3.6 0.2 14.5 <0.0001 0.967 Regression 2.0 25.4 12.7 161.0 <0.0001 

  Ek (PUR) 46.0 7.8 5.9 0.000  Residual 11.0 0.9 0.1   

  RD 0.4 0.1 4.3 0.001  Total 13.0 26.2 2.0   

 7.0 PE 3.5 0.2 20.8 <0.0001 0.984 Regression 2.0 21.4 10.7 279.1 <0.0001 

  Ek (PUR) 41.6 4.9 8.5 <0.0001  Residual 9.0 0.3 0.0   

  RD 0.5 0.1 6.5 0.000  Total 11.0 21.8 2.0   

 8.0 PE 1.5 0.1 13.1 <0.0001 0.966 Regression 2.0 5.0 2.5 99.2 <0.0001 

  Ek (PUR) 14.2 4.2 3.4 0.012  Residual 7.0 0.2 0.0   

  RD 0.7 0.1 9.8 <0.0001  Total 9.0 5.1 0.6   

7 6.0 PE 5.8 0.3 18.7 <0.0001 0.981 Regression 2.0 57.6 28.8 287.5 <0.0001 

  Ek (PUR) 73.2 9.3 7.9 <0.0001  Residual 11.0 1.1 0.1   

  RD 0.5 0.1 4.4 0.001  Total 13.0 58.7 4.5   
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Table 21. continued            

Growth 
pH 

Measurement 
pH 

Coefficient SE t p r2    DF SS MS F p 

7 7.0 PE 4.3 0.5 8.7 <0.0001 0.916 Regression 2.0 30.5 15.2 49.2 <0.0001 

  Ek (PUR) 53.7 15.3 3.5 0.007  Residual 9.0 2.8 0.3   

  RD 0.5 0.2 2.4 0.043  Total 11.0 33.3 3.0   

 8.0 PE 0.9 0.2 4.7 0.002 0.781 Regression 2.0 1.9 1.0 12.5 0.005 

  Ek (PUR) 6.2 10.5 0.6 0.575  Residual 7.0 0.5 0.1   

  RD 0.4 0.1 3.0 0.020  Total 9.0 2.5 0.3   

8 6.0 PE 5.8 0.2 37.5 <0.0001 0.996 Regression 2.0 47.1 23.5 964.2 <0.0001 

  Ek (PUR) 70.8 5.2 13.6 <0.0001  Residual 7.0 0.2 0.0   

  RD 0.5 0.1 6.8 0.000  Total 9.0 47.2 5.2   

 7.0 PE 4.3 0.3 13.9 <0.0001 0.968 Regression 2.0 33.2 16.6 135.5 <0.0001 

  Ek (PUR) 58.1 11.0 5.3 0.001  Residual 9.0 1.1 0.1   

  RD 0.5 0.1 3.3 0.009  Total 11.0 34.3 3.1   

 8.0 PE 1.5 0.2 8.3 <0.0001 0.921 Regression 2.0 4.3 2.2 41.0 0.000 

  Ek (PUR) 18.0 7.3 2.5 0.043  Residual 7.0 0.4 0.1   

  RD 0.6 0.1 5.5 0.001  Total 9.0 4.7 0.5   
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Table 22.  Results of non-linear regression analysis for electron transfer rate versus EPUR curves.  ETRmax: Maximum electron 

transfer rate (µmol electrons s-1 m-2 ),  max: efficiency of electron transport rate (µmol electron µmol-1 absorbed photon). 

Model parameters Analysis of Variance (Corrected for the mean of the observations) 

Growth pH Measurement pH Coefficient SE t p r2    DF SS MS F p 

6 6.0 ETRmax 35.3 0.4 87.0 <0.0001 0.999 Regression 1.0 1871.0 1871.0 14383.3 <0.0001 

  αmax 0.4 0.0 59.9 <0.0001  Residual 12.0 1.6 0.1   

        Total 13.0 1872.6 144.0   

 7.0 ETRmax 41.0 3.3 12.6 <0.0001 0.963 Regression 1.0 2304.4 2304.4 258.7 <0.0001 

  αmax 0.5 0.1 7.3 <0.0001  Residual 10.0 89.1 8.9   

        Total 11.0 2393.4 217.6   

 8.0 ETRmax 22.4 0.5 43.9 <0.0001 0.996 Regression 1.0 811.9 811.9 1857.1 <0.0001 

  αmax 0.5 0.0 17.9 <0.0001  Residual 8.0 3.5 0.4   

        Total 9.0 815.4 90.6   

7 6.0 ETRmax 93.1 2.6 35.8 <0.0001 0.999 Regression 1.0 6602.7 6602.7 10308.1 <0.0001 

  αmax 0.4 0.0 45.9 <0.0001  Residual 12.0 7.7 0.6   

        Total 13.0 6610.4 508.5   

              

              



 

 

16
8 

Table 22. continued            

Growth pH Measurement pH Coefficient SE t p r2    DF SS MS F p 

7 7.0 ETRmax 68.3 4.2 16.1 <0.0001 0.987 Regression 1.0 4969.9 4969.9 781.7 <0.0001 

  αmax 0.5 0.0 11.9 <0.0001  Residual 10.0 63.6 6.4   

        Total 11.0 5033.5 457.6   

 8.0 ETRmax 32.4 1.1 28.2 <0.0001 0.992 Regression 1.0 1455.1 1455.1 950.5 <0.0001 

  αmax 0.4 0.0 12.6 <0.0001  Residual 8.0 12.2 1.5   

        Total 9.0 1467.3 163.0   

8 6.0 ETRmax 58.4 5.8 10.0 <0.0001 0.970 Regression 1.0 3810.3 3810.3 261.3 <0.0001 

  αmax 0.5 0.1 6.3 0.000  Residual 8.0 116.7 14.6   

        Total 9.0 3927.0 436.3   

 7.0 ETRmax 82.2 5.5 14.8 <0.0001 0.992 Regression 1.0 6334.7 6334.7 1175.7 <0.0001 

  αmax 0.5 0.0 14.6 <0.0001  Residual 10.0 53.9 5.4   

        Total 11.0 6388.6 580.8   

 8.0 ETRmax 22.8 0.7 34.8 <0.0001 0.993 Regression 1.0 839.6 839.6 1162.5 <0.0001 

  αmax 0.5 0.0 14.1 <0.0001  Residual 8.0 5.8 0.7   

        Total 9.0 845.4 93.9   
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