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ABSTRACT 

THE MARINE CYANATE CYCLE 

Brittany Widner 

Old Dominion University, 2016 

Co-Directors: Dr. Margaret R. Mulholland  

Dr. Kenneth Mopper 

 

 

 Cyanate (OCN
-
) is a reduced nitrogen compound with the potential to serve as a nitrogen 

and carbon source for marine microbes.  Evidence from genomes and culture studies indicated 

that several marine cyanobacterial groups, including representatives of the globally important 

genera Synechococcus and Prochlorococcus, might be capable of cyanate assimilation.  

However, prior to this study, the distribution, bioavailability, and production pathways of 

cyanate were unknown in natural systems due to the absence of a sensitive cyanate assay; and the 

ability of organisms to assimilate cyanate on relevant timescales was unknown because we 

lacked a suitable tracer for measuring uptake.  I developed a cyanate assay to measure cyanate 

concentrations in estuarine and seawater samples, and then measured distribution at sites in the 

coastal western temperate North Atlantic (NA) and eastern tropical South Pacific (ETSP)  

including the Oxygen Deficient Zone.  Cyanate concentrations ranged from below the limit of 

detection (0.4 nM) to 65 nM in natural samples examined to date.  Cyanate was produced 

photochemically and in senescent diatom cultures, but cyanate was not detectable in wet and dry 

offshore atmospheric deposition.  Using a custom-synthesized 
13

C
15

N-labeled cyanate 

compound, I also measured rates of cyanate uptake by natural microbial communities in the NA 

and ETSP.  Cyanate N uptake ranged from undetectable (< 0.02) to 13 nmol l
-1

 h
-1

 and was 

significantly higher than cyanate C uptake on all cruises.  Cyanate N uptake was up to 10% of 

total measured N uptake at an offshore oligotrophic station in the NA but contributed a smaller 

fraction of total measured N uptake (< 2%) at coastal stations in the NA and ETSP.  The results 

of this dissertation indicate that: 1) cyanate concentrations are measureable in the marine 

environment and cyanate has a biological-like distribution in marine systems; 2) cyanate is taken 

up in surface waters, probably by phytoplankton; 3) cyanate is produced photochemically in 

sunlit waters and from degradation of organic matter throughout the water column or through 



 

 

direct release by phytoplankton; and 4) cyanate is consumed in the mesopelagic region probably 

by either conversion to ammonium and then to nitrate or by cyanate-supported anaerobic 

ammonium oxidation (cyanammox) in oxygen deficient waters.   
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CHAPTER I 

INTRODUCTION 

 Nitrogen (N) is a vital macronutrient for all living organisms that limits phytoplankton 

growth in much of the world's oceans.  N speciation controls phytoplankton community 

composition and primary production in N-limited regions and drives global marine carbon flux 

on glacial/interglacial timescales (McElroy 1983).  Dissolved inorganic nitrogen (DIN), nitrate 

(NO3
-
), nitrite (NO2

-
), and ammonium (NH4

+
), and labile dissolved organic N (DON) are 

available as N sources to marine microbes (Mulholland and Lomas 2008).  DON can comprise a 

substantial fraction of N uptake with urea alone accounting for > 50% of N uptake in some 

systems (Mulholland and Lomas 2008; Sipler and Bronk 2015).  Urea and cyanate can be 

utilized in place of NH4
+ 

by some aerobic ammonia oxidizers (Alonso-Sáez et al. 2012; Koops 

and Pommerening-Röser 2001; Palatinszky et al. 2015; Qin et al. 2014).  Despite its significance 

in biogeochemical cycles, the DON pool remains poorly characterized (Sipler and Bronk 2015), 

and we lack sensitive methods for measuring many components of the DON pool.  

 Cyanate (OCN
-
) is a simple organic N compound that may be available as a source of N 

and C for microbes.  The genes for uptake and assimilation of cyanate (OCN
-
), cyanate hydratase 

(see Appendix A for enzyme structure) and a cyanate transporter, have been identified in strains 

of the ubiquitous marine cyanobacteria, Prochlorococcus and Synechococcus, which, together 

account for two thirds of marine and one third of global primary productivity (Bryant 2003; Field 

et al. 1998).  Microorganisms, including Prochlorococcus MED4, Synechococcus WH8102, and 

the harmful marine dinoflagellate, Prorocentrum donghaiense, have been grown on culture 

media supplied with OCN
-
 as the sole N source (Berube et al. 2015; Dorr and Knowles 1989; 

Harano et al. 1997; Hu et al. 2012; Kamennaya et al. 2008; Miller and Espie 1994; Taussig 1960; 

Wood et al. 1998).   

 Possible sources of cyanate to natural waters include abiotic decomposition of urea 

(Dirnhuber and Schutz 1948) produced autochthonously and supplied via urban and agricultural 

runoff (Glibert et al. 2006), and industrial water discharges (Lin et al. 2008).  OCN
-
 may also be 

released to marine systems by rapid decomposition of carbamoyl phosphate (Allen and Jones 

1964, see Appendix B for proposed intracellular pathway and Appendix C for abiotic pathway) 
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and other metabolic intermediates, direct release by intact cells, as a result of cell death, cell 

lysis, and sloppy feeding (Sorokin et al. 2001).    

 Despite the evidence for a "cyanate cycle", prior to this work, research was hampered by 

the lack of methods for measuring cyanate concentrations in the environment, its uptake by 

microorganisms, and its production in aquatic systems.  I developed a nanomolar cyanate assay 

for estuarine and sea water employing derivatization to a fluorescent product and high 

performance liquid chromatography (Chapter II) and employed this method and stable isotope 

(
15

N
13

C) techniques to address three questions:  1) What is the distribution of cyanate in marine 

systems? 2) What are the sources of cyanate to marine systems? 3) Is cyanate bioavailable? 

 The distribution of a dissolved constituent reflects the balance of production and 

consumption of that constituent, and the distributions of most dissolved N species are controlled 

biologically by assimilatory processes, such as N uptake for growth, and dissimilatory processes, 

such as nitrification and denitrification (Gruber 2008).  In N-limited regions, biologically 

available N cycling intermediates, such as NH4
+
 and NO2

-
, are generally present at nanomolar or 

sub-nanomolar concentrations throughout most of the water column.  Higher concentrations of 

NH4
+
 and NO2

-
 are often present near the base of the euphotic zone where production and 

consumption are spatially uncoupled (Gruber 2008).  The NO3
-
 distribution is also controlled 

biologically, but, while the NO3
-
 distribution is similar to those of NH4

+
 and NO2

-
 in surface 

waters, NO3
-
 concentrations are uniformly high below the euphotic zone.  Biologically 

unavailable DON compounds can also accumulate in the deep ocean where they are present in 

micromolar concentrations.   The vertical distribution of cyanate, therefore, should reveal clues 

as to its bioavailability and production.  In this dissertation, I describe the distribution of cyanate 

and discuss its implications for biological and geochemical nitrogen cycling in diverse 

environments.  I also provide direct measurements of several likely sources of cyanate to marine 

systems.  Because of the genomic and culture evidence for cyanate uptake by cyanobacteria, I 

assessed cyanate bioavailability using measurements of cyanate uptake primarily in the euphotic 

zone.   

 In Chapter III I present the initial measurements of the cyanate distribution in the western 

temperate coastal North Atlantic (NA) and measurements of cyanate production in laboratory 

and field studies.  A transect of cyanate concentrations was measured across the Gulf of Maine 

which encompasses geographical diversity in advection, nutrient supply, sediment exchange, and 
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microbial community composition.  Cyanate production was measured from photochemistry, wet 

and dry atmospheric deposition, and organic matter degradation.  To evaluate biological release 

of cyanate from organic matter, cyanate production was measured in diatom and cyanobacterial 

cultures in experiments designed to mimic phytoplankton growth in the euphotic zone and the 

degradation of sinking phytoplankton in the dark ocean.   

 In Chapter IV I present cyanate distribution and uptake data from the NA which has a 

broad continental shelf, abundant riverine input, and a seasonally variable water column 

(Townsend et al. 2006).  The cyanate distribution was measured at stations on the continental 

shelf, in the basin of the Gulf of Maine, and on the continental shelf slope.  I compared cyanate 

concentrations between these regions and between onshore and offshore locations.  I examined 

relationships between cyanate concentrations and phytoplankton biomass, the primary nitrite 

maximum, and the nitracline.  Seasonal, regional, and vertical variability in cyanate N and C 

uptake were described using measurements of uptake from four cruises (May/June 2010, 

November 2010, May/June 2011, and August 2012) across the study region.   

 The eastern tropical South Pacific (ETSP) is a region with a narrow continental shelf, 

high primary productivity, low seasonal variability, and coastal and equatorial upwelling 

(Pennington et al. 2006).  The oxygen deficient zone (ODZ) located below this highly productive 

region contributes significantly to the marine loss of fixed N (Codispoti 2007; Codispoti et al. 

2001).  In Chapter V, the vertical distribution of cyanate was measured along two transects. The 

first was located 200 nm off the coastline and parallel to the coastline, and the second was a 

longitudinal transect along 17 °S.  The cyanate distribution was compared to those of NH4
+
, NO2

-

, and NO3
-
 as well as chlorophyll a and dissolved oxygen concentrations and temperature and 

salinity.  To determine whether cyanate was an important N source in this region, I compared 

cyanate, urea, and NH4
+
 uptake kinetics.  I also calculated the fraction of measured N uptake 

attributed to cyanate.  Cyanate N and C uptake rates were measured over a diurnal cycle in 

surface water, and cyanate, urea, and NH4
+
 uptake rates were measured in the ODZ where rates 

of N uptake have not been previously measured.  ODZ uptake rates were compared to rates of 

anammox supported by cyanate, urea, and NH4
+
.   

In Chapter VI, I synthesize the cyanate distributions, production rates, and uptake rates 

described in Chapters II - V with recent discoveries made by other researchers regarding cyanate 

bioavailability to describe the marine cyanate cycle.    
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CHAPTER II 

CHROMATOGRAPHIC DETERMINATION OF NANOMOLAR CYANATE 

CONCENTRATIONS IN ESTUARINE AND MARINE WATERS BY PRECOLUMN 

FLUORESCENCE DERIVATIZATION 

PREFACE 

 The content of this Chapter is reprinted with permission from Widner, B., Mulholland, 

M.R., and Mopper, K. 2013. Chromatographic determination of nanomolar cyanate 

concentrations in estuarine and sea waters by precolumn fluorescence derivatization.  Anal. 

Chem. 85(14): 6661-6666. Copyright 2013.  American Chemical Society.  See Appendix D for 

the copyright permission, and the manuscript can be found online at 

http://pubs.acs.org/doi/abs/10.1021/ac400351c. 

INTRODUCTION 

 In the marine environment, N is often the nutrient that limits primary productivity by 

phytoplankton.  However, because dissolved N is stable in a variety of chemical forms and 

oxidation states in aquatic environments, the N cycle is complex and involves feedbacks between 

various dissolved N pools and the microbes, including phytoplankton and bacteria, that mediate 

their production, consumption, and transformation.  Phytoplankton and bacteria take up both 

organic N and inorganic N compounds (Mulholland and Lomas 2008) and the genetic capability 

for uptake and assimilation of this diverse N pool has recently been confirmed within individual 

microbes and microbial communities (Hewson and Fuhrman 2008; Scanlan and Post 2008).  

Based on recent genomic and physiological evidence, it has been hypothesized that cyanate 

(OCN
-
), a reduced N compound, contributes to the N and C requirements of marine microbial 

communities (Kamennaya and Post 2011; Palenik et al. 2003; Rocap et al. 2003). 

 Genes encoding a cyanate-specific transporter as well as an enzyme catalyzing 

intracellular cyanate decomposition, cyanase, have been identified in strains of the globally 

important marine cyanobacterial groups, Prochlorococcus and Synechococcus (Palenik et al. 
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2003).  Because these two genera are thought to account for up to two-thirds of oceanic primary 

production and one-third of global primary production (Bryant 2003), cyanate could be a 

quantitatively significant component of the marine N cycle that has not yet been examined.  

Genes related to cyanate metabolism have also been identified in other marine microorganisms 

(Berg et al. 2008; Kamennaya and Post 2011).  In addition, Synechococcus WH8102 

(Kamennaya and Post 2011), Prochlorococcus MED4 (Kamennaya and Post 2011), the 

dinoflagellate Prorocentrum donghaiense (Hu et al. 2012), and some heterotrophic bacteria 

(Dorr and Knowles 1989; Guilloton and Karst 1987; Wood et al. 1998) have been cultured in 

media containing cyanate as the sole N source, attesting to the bioavailability of this compound.  

Potential sources of cyanate to natural waters include discharges from gold mining, combustion, 

and protein manufacturing (Lin et al. 2008), in situ release of cyanate by the microbial 

community as a by-product of cellular metabolism (Sorokin et al. 2001), cyanate release through 

cell lysis or “sloppy feeding” by grazers, spontaneous decomposition of the metabolic 

intermediate carbamoyl phosphate (Allen and Jones 1964, Appendices B and C) and other 

organic cellular metabolites, herbicide runoff (Koshiishi et al. 1997), and urea runoff from urban 

and agricultural settings (Glibert et al. 2006) followed by spontaneous aqueous decomposition to 

cyanate (Dirnhuber and Schutz 1948).   

Despite the growing evidence that cyanate is bioavailable to aquatic microorganisms and 

there are many potential sources of cyanate to aquatic systems, it is unclear whether cyanate 

contributes to the N demands of microorganisms in nature because there are no measurements of 

cyanate in aquatic systems.  The distributions of nutrient elements provide clues as to their 

chemical and biological reactivity in natural systems, and quantifying cyanate distributions is a 

necessary first step toward understanding the cycling of this compound in natural aquatic 

systems.  In many estuarine and seawater samples, dissolved inorganic N concentrations range 

from at or below the limit of analytical detection (1-2 nM for most dissolved N compounds) to 

35 µM (McCarthy and Bronk 2008).  In offshore marine surface waters, where phytoplankton 

are often N limited, tight coupling of production and consumption of reduced inorganic N leads 

to ambient concentrations that are often at or near the limit of analytical detection, even though 

reduced inorganic N contributes the bulk of the N fueling primary productivity (Gruber 2008).  

Cyanate concentrations are likely to be similarly low in surface waters in N-depleted oceanic 
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regions, therefore quantification of cyanate in surface waters requires a detection limit in the low 

nanomolar range. 

While methods for quantitative cyanate determination have been developed for medical 

and industrial use, these methods generally have detection limits (low micromolar range) higher 

than those appropriate for natural waters.  Methods for measuring cyanate concentrations in 

aqueous solutions include both colorimetric and chromatographic techniques and many employ 

derivatization steps.  A qualitative test for measuring the presence of cyanate in aqueous saline 

solutions (Marier and Rose 1964) was developed using a copper cyanate-pyridine complex 

(Werner 1923), but this method was not quantitative.  Ion chromatographic (IC) methods have 

also been developed for cyanate determination (Black and Schulz 1999; Lin et al. 2004; 

Nonomura and Hobo 1989), but these are largely inappropriate for seawater samples because the 

chloride ion and other anions produce large interfering peaks and because the ~2 µM detection 

limit is not low enough for natural waters.  Cyanate was measured in blood by derivatization 

with 2-nitro-5-thiobenzoic acid followed by high performance liquid chromatography (HPLC) 

(Eiger and Black 1985); however, like the IC methods, the 1 µM detection limit of this method is 

likely not low enough for most natural aquatic samples.  Cyanate concentrations in freshwater 

bioremediation tanks were measured after converting OCN
-
 to NH4

+
 using the cyanase enzyme, 

and then measuring NH4
+
 colorimetrically (Luque-Almagro et al. 2003), but this method also has 

a relatively high detection limit (0.5 µM) and would need to account for NH4
+
 already present in 

natural waters.  A colorimetric method for quantitative cyanate determination in aqueous 

solution based on the derivatization of cyanate to 2,4-quinazolinedione (benzoylene urea) from 

2-aminobenzoic acid (anthranilic acid) (Guilloton and Karst 1985; Lange and Sheibley 1963) 

was employed to measure cyanate in gold mine drainage samples (Zvinowanda et al. 2008) and 

was adapted by Lundquist et al. (1993) to quantify cyanate in blood plasma using HPLC and 

fluorescence detection to an 8 nM detection limit.  We have significantly modified this method to 

measure cyanate concentrations at the low nanomolar level in natural aqueous samples.  Here we 

report not only the method itself but also the first measurements of cyanate concentrations in 

estuarine and marine waters. 
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METHODS 

Derivatization Procedure   

 Cyanate was measured in saline and brackish natural water samples by reacting it with 2-

aminobenzoic acid in aqueous solution to form the 2,4-quinazolinedione derivative followed by 

HPLC with fluorescence detection to quantify 2,4-quinazolinedione against a standard curve as 

described below.  A 30 mM aqueous solution of 2-aminobenzoic acid was prepared from a solid 

stock (Sigma-Aldrich, ≥ 99.5% purity) by heating at 80 ºC until fully dissolved.  After cooling to 

room temperature, the solution was stored for up to three days.  As recommended by Guilloton 

and Karst (1985), the 2-aminobenozoic acid solution was prepared in an amber glass bottle and 

stored in an opaque bottle.  2,4-Quinazolinedione was purchased from Acros organics (98%).  

Potassium cyanate (KOCN, Sigma-Aldrich, 96%) was stored in a desiccator to slow 

decomposition of OCN
-
 to NH4

+
 and CO2 (Amell 1956).  Primary KOCN standards were 

prepared in deionized water (DI) and were stored at 4 ºC for up to one month.  Working 

standards were prepared fresh in artificial seawater of the same salinity as the samples. Standard 

curves were prepared by derivatizing standards and samples simultaneously using the same 

reagents for each set of samples.  

 Samples were derivatized as follows. A 1 mL, filtered (0.2 µm) sample or standard 

solution was combined with 0.4 mL 30 mM 2-aminobenzoic acid in a combusted 4 mL amber 

borosilicate glass vial (Fisher Scientific) with a polyproplene "top hat" cap (Sigma-Aldrich, 

PTFE/silicone septum).  The vials were placed in a 35 °C water bath for 30 minutes.  

Immediately upon removal from the water bath, 1.4 mL 12N HCl (reagent grade) was added to 

each sample (6N HCl final concentration).  Samples were then run immediately on an HPLC 

equipped with a refrigerated autosampler (4 ºC). 

HPLC Conditions   

 A modular Shimadzu HPLC was used to measure cyanate concentrations in derivatized 

aqueous samples.  The pumps were model LC-10ATvp, the degasser was a DGU-14A, the 

autosampler was a SIL-10advp, the fluorescence detector was a RF-10AXL, and the system 

controller was a SCL-10Avp.  Shimadzu CLASS-VP VP1 software was employed for peak 

enumeration and integration.  Mobile phase components were HPLC grade methanol (99.9%; 
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Fisher Scientific), HPLC grade trifluoroacetic acid (TFA) (97%, Fisher Scientific), and 

Nanopure deionized water from a Barnstead system.  The mobile phase was 60:40 5% 

TFA/100% MeOH and the flow rate was 100 µL/min.   

 We used a poly(styrene-divinylbenzene) column with broad pH stability (Hamilton, PRP-

1, 2.1x150 mm, 5 µm).  Cyanate (as 2,4-quinazolinedione) was quantified using a fluorescence 

detector set at excitation and emission wavelengths of 312 nm and 370 nm, respectively.  Sample 

injection volume was 100 µL and the run time was 20 minutes. 

 The PRP-1 column is stable for at least two years (~120 L mobile phase), however 

certain HPLC components, specifically the autosampler, were easily damaged by the 

concentrated HCl (6 N) in the samples.   To minimize instrument damage and disruption of 

analyses, we recommend use of acid-tolerant components, pre-injection neutralization, or 

frequent autosampler preventative maintenance and consumable replacement. 

 Separation was first achieved using an isocratic mobile phase of 86:14 5% 

TFA/acetonitrile (ACN) and a flow rate of 110 µL/min.  We later determined that use of 

methanol (MeOH) as the organic solvent was more cost effective than ACN.  Subsequently, the 

method was altered so that the mobile phase was 60:40 5% TFA/100% MeOH and the flow rate 

was 100 µL/min.  Although lower column backpressure and shorter retention times were 

observed using ACN as the organic modifier, both sets of conditions yielded similar precision 

and accuracy.  We recommend use of MeOH, however the results presented here from the 

Chesapeake Bay Mouth were analyzed using ACN. 

Statistical Calculations and Recovery   

 Concentrations calculated from both peak area and peak height were very accurate, but at 

low cyanate concentrations (<2 nM, lower S/N) peak height yielded better precision.  Therefore, 

we used peak height to calculate cyanate concentrations using a standard curve prepared from 

stock KOCN.  R
2
 values for standard curves were 0.9999 or better for all analyses.  The limit of 

detection (LOD) was calculated as three times the standard deviation of seven blanks. 

The derivatization yield was determined by calculation of absolute recovery using the 

peak height of a derivatized 50 nM KOCN standard divided by the peak height of 50 nM 2,4-

quinazolinedione in the reagent matrix.  Analytical recovery was calculated to assess the 

efficiency of the derivatization procedure in a sample matrix.  A natural sample was spiked with 

50 nM KOCN, and the cyanate concentration of this spiked sample was divided by the sum of a 
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50 nM standard plus the sample cyanate concentration.  Absolute recovery and analytical 

recovery were calculated each time samples were analyzed. 

Determination of Reagent, Standard, and Sample Stability  

 To measure reagent stability, a 30 mM aqueous 2-aminobenzoic acid solution was stored 

for one month.  At time points of 3, 10, and 30 days, the absolute recovery was determined using 

the stored reagent to derivatize a freshly prepared 50 nM KOCN standard.   

 To determine optimal storage conditions for samples destined for cyanate analysis, a 50 

nM KOCN spike was added to a water sample collected from the Elizabeth River on February 4, 

2012 when salinity was 20.  Salinity measurements in natural waters are unitless values which 

roughly correspond to the parts per thousand (ppt) salinity measured in artificial seawater 

(Harrison et al. 1980).  Aliquots of the spiked sample (1 mL) were transferred to twelve 8 mL 

borosilicate tubes and then divided into four groups of three.  One group each was frozen at two 

different temperatures, -20 ºC and -80 ºC.  Another group was frozen at -20 ºC after the addition 

of a preservative (10 mg/L final concentration of HgCl2).  The last group of samples was 

immediately derivatized prior to storage at -20 ºC.  At the same time that natural samples were 

prepared and stored, standard curves were prepared, divided into four groups, and stored in the 

same way as spiked natural water samples.  After 14 and 270 days, the concentration of cyanate 

in the natural water sample was measured and calculated using both a standard curve prepared 

and stored on the same date and under the same conditions as the sample.  These were compared 

to standard curves that had been prepared fresh, the day samples were analyzed.  The cyanate 

concentrations calculated from the freshly prepared standard curve was used for all statistical 

analyses except in the case of the samples derivatized at the time of sample collection where a 

stored standard curve was used.   

 The stability of primary stock KOCN standards (100 mM) stored at 4 ºC was evaluated 

after 30 days by calculating the change in absolute recovery.  Seawater differs from freshwater in 

ionic strength, buffering capacity, and pH; therefore the stability of the primary standard was 

tested in freshwater (0 ppt) and artificial seawater (20 and 35 ppt). 

Natural Samples: Collection and Processing  

 Samples were collected from twelve stations along a north-south transect across the 

Chesapeake Bay Mouth (CBM) on November 7, 2011 aboard the Research Vessel (R/V) Fay 
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Slover.  This 25 km transect crosses a highly variable estuarine region influenced by three 

channels through which estuarine and oceanic waters exchange.  At each station, Niskin bottles 

were used to collect water samples from two depths: the first approximately 2 meters below the 

surface and the second at the depth of maximum chlorophyll fluorescence (460 nm excitation, 

685 nm emission) which generally corresponds to the depth where phytoplankton concentrations 

are highest.  Water was filtered directly from the Niskin bottle through a 0.2 µm Supor Pall 

capsule filter using a peristaltic pump and constant positive pressure (5 mm Hg), and the filtrate 

was collected in sterile 50 mL polypropylene centrifuge tubes.  Duplicate 1 mL sample aliquots 

were transferred from the polypropylene tubes into 8 mL acid-washed and combusted 

borosilicate tubes with polycarbonate screw caps.  Samples were stored in a -20 ºC freezer 

aboard the ship and derivatized immediately upon return to the laboratory (within four hours of 

collection).   

 In addition to the estuarine CBM samples, cyanate concentrations were analyzed at a 

station on the North American mid-Atlantic continental shelf from samples collected on August 

10, 2012, during a cruise aboard the R/V Henry B. Bigelow.  This station was located 

approximately 65 km offshore in relatively shallow waters (55 m) that are strongly influenced by 

coastal currents and riverine inputs (Townsend et al. 2004).  As for the CBM cruise, water 

samples were collected approximately 2 meters below the surface and at the fluorescence 

maximum using Niskin bottles.  Samples were filtered through a 0.2 µm Supor polycarbonate 

filter by gravity directly from the Niskin bottle, and the filtrate was collected in sterile 15 mL 

polypropylene centrifuge tubes.  Triplicate 1 mL aliquots were transferred to 4 mL pre-

combusted amber borosilicate glass vials, and samples were immediately stored at -20 ºC and 

derivatized within 48 hours of collection onboard the ship.  Derivatized samples were then stored 

at -20 ºC until analysis.   

RESULTS AND DISCUSSION 

Derivatization Optimization and Parameters  

 There are two reactions in the formation of 2,4-quinazolinedione from cyanate and 2-

aminobenzoic acid.  In the first reaction, 2-aminobenzoic acid and cyanate react to form 2-
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ureidobenzoic acid (Step I, Figure 1).  Second, strong acid converts 2-ureidobenzoic acid to 2,4-

quinazolinedione (Step II, Figure 1).   

 

Figure 1.  Derivatization reaction modified from Guilloton and Karst (1985).  

 The derivatization was optimized to reduce the reagent blank and maximize recovery of 

2,4-quinazolinedione.  All optimizations were performed using a Sargasso Sea sample (location 

in Table 1) to account for matrix effects.  In Step I, recovery was consistent at or above 8.5 mM 

2-aminobenzoic acid (Figure 2 left).  The optimal reaction temperature was 35 °C, and the 

optimal reaction time was 30 minutes (Figure 2 right).  We examined the pH of Step I and found 

consistent recovery between pH 3.5 and 5 (data not shown).  The pH of 2-aminobenzoic acid (30 

mM) was 3.7, and when this was added to a sample (pH 8.4) the resulting pH was 4.5.  The pH 

of typical marine and estuarine samples ranges from 7.5 to 8.4 (ref), so it is unnecessary to buffer 

the Step I reaction.   
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Table 1.  Matrix effects as determined by analytical recovery and the method of standard 

additions.

Sample 
Latitude 

(ºN) 

Longitude 

(ºW) 

Depth 

(m) 
Salinity Analytical Recovery (%)

1 
[OCN

-
] 

(nM) 
2 

[OCN
-
] 

(nM) 
3
 

Sargasso Sea 40.5 70.2 140 35 106 
2.64 

(0.12) 

2.88 

(0.08) 

Virginia 

Beach 
36.8 75.0 1 29 101 

13.6 

(0.94) 

13.5 

(0.86) 

Chesapeake 

Bay 
36.9 76.3 1 20 94.4 

35.2 

(0.51) 

38.7 

(0.90) 

1
 Analytical recovery calculated from DI standard curve. 

2
 [OCN

-
] calculated from DI standard curve 

3
 [OCN

-
] calculated by method of standard additions. 

 

Figure 2.  Derivatization Step I optimization.  Change in recovery in relation to final 

concentration of 2-aminobenzoic acid (left) and change in fluorescence intensity due to Step I 

reaction temperature (grey squares) and time (black diamonds) (right).  Optimizations were 

determined using a 1 µM KOCN spike in a sample from the Sargasso Sea and analyzed on a 

spectrofluorophotometer (emission 312 nm, excitation 370 nm). Recovery was verified in an 

unmanipulated sample after optimization.  In both panels, error bars represent ± 1 standard 

deviation (n=3). 

Step I [2-aminobenzoic acid] (mM)  
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 Step II was also optimized.  Recovery decreased below 6 N HCl (final concentration) and 

was consistent above 6N.  The Step II reaction proceeded rapidly and with full recovery at room 

temperature (data not shown).  This result differs from previously published methods (Guilloton 

and Karst 1985; Lundquist et al. 1993) where the reaction temperature was 100 °C.  

Additionally, Lundquist et al. (1993) halted both reaction steps by immersion of samples in an 

ice bath, but we consistently obtained ≥ 98% recovery without cooling samples.  

To lower the LOD, decrease the blank signal, and eliminate interfering and contaminating 

compounds, 2-aminobenzoic acid was recrystallized twice in hot water.  The blank peak height 

was reduced approximately two-fold by this process, but the LOD decreased only marginally (~ 

9%) to 0.4 nM (SD of seven blanks, 1.24%).  Despite this limited improvement, 2-aminobenzoic 

acid recrystallization is recommended to minimize variability between reagent batches.  

However, over the one month period, the retention time shifted by as much as one minute and 

the standard curve slope varied by 10%, highlighting the need to run standard curves with each 

group of samples.  Within a 24 hour period, the retention times and the slopes were essentially 

constant. 

Potential matrix effects were investigated by comparing the cyanate concentration 

calculated from an external standard curve prepared in deionized water (DI) and a standard curve 

prepared using the method of standard additions in three different matrices: open ocean water 

from the Sargasso Sea in the North Atlantic, a coastal sample collected from the Virginia Beach, 

VA, fishing pier located in coastal waters near the mouth of the Chesapeake Bay, and an 

estuarine sample from the Chesapeake Bay.  These three locations differ in salinity (Table 1) and 

dissolved organic matter (DOM) concentration and composition, with the estuarine sample being 

strongly influenced by terrestrial DOM (Minor et al. 2006).  The analytical recoveries were 

between 94 and 106%, and the cyanate concentration calculated from the DI curve did not 

deviate more than 10% from the concentration calculated using the method of standard additions 

(Table 1).  Given this negligible matrix effect, we recommend that external standards be 

prepared in deionized water for estuarine and marine samples.  When sampling a very different 

matrix from those examined here we recommend a matrix comparison between the method of 

standard additions and a DI standard curve.   
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Reagent, Standard, and Sample Stability   

 When 2-aminobenzoic acid solutions (40 mM) older than three days were used to 

derivatize freshly prepared 50 nM KOCN, absolute recoveries of standard additions were 

inconsistent; on some occasions absolute recovery decreased, while on others it was as high as 

280%.  We therefore recommend the solution be stored no longer than three days. 

 After 270 days, the mean concentrations of cyanate in stored samples ranged from 84.8% 

to 131% of those in the original fresh sample (Table 2).  The relative standard deviations (RSD) 

of the samples did not increase when stored at -80 °C or when derivatized before storage at -20 

°C (RSD < 1.0%, Table 2); however the RSD increased 50-fold and 7-fold during storage at -20 

°C with and without HgCl2 preservation, respectively (Table 2).  These large standard deviations 

would be problematic for samples in which cyanate concentrations are near the LOD of 0.4 nM.  

For unmanipulated samples stored at -20 
o
C, the cyanate concentrations increased 31% during 

storage (Table 2).  In addition, the standards stored at -20 °C with and without HgCl2 

preservation produced poor standard curves compared to those from the other treatments and the 

freshly prepared standard curve (see R
2
 values, Table 2).  For these reasons long-term storage at -

20 °C with or without the addition of a preservative is not recommended.  

 The high variability of the -20 
o
C samples stored with and without HgCl2 precluded 

comparison of all treatment mean cyanate concentrations to the cyanate concentration measured 

at the time of sample collection using ANOVA (Brown-Forsythe test, F = 3.73, p = 0.04).  

Therefore, we compared the mean cyanate concentrations of the treatments which did not violate 

ANOVA assumptions (storage at -80 °C  and immediate derivatization followed by storage at -

20 °C) to the mean cyanate concentration before storage and found a significant difference 

(ANOVA, F = 280.73, p << 0.05).  The concentration of cyanate in samples stored at -80 °C was 

not statistically different from the concentration measured in fresh samples (Dunnett's test, p = 

0.96), but the concentration of cyanate in samples derivatized at the time of sample collection 

and stored at -20 °C was 15% lower than the concentration measured in fresh samples (Dunnett's 

test, p << 0.05).  There was no significant difference in cyanate concentration and no change in 

RSD when treatment means were compared after 14 days of storage (data not shown).  We 

therefore recommend that for sample storage lasting longer than two weeks, samples be stored at 

-80 ºC immediately following collection until derivatization and analysis.  If storage at -80 ºC is 
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not possible, samples should be derivatized immediately and stored at -20 ºC, and if storage will 

be less than two weeks, any of the methods tested produce consistent results. 

 KOCN primary stocks (100 mM) were stable up to one month at 4 ºC, and no differences 

in stability were observed between salinities.  We recommend that fresh KOCN stock be 

prepared after one month in storage.   

Table 2.  Determination of sample stability under different storage conditions.
 
 Results are from 

samples stored for 270 days.  

 
Stored standard curve Fresh standard curve

2 

Treatment
1 [OCN

-
] 

(nM)
3 

standard deviation 

(nM)
3 standard curve R 

2 2
 

[OCN
-
] 

(nM)
3 

standard deviation 

(nM)
3 

time zero n/a n/a n/a 70.5 0.64 

-20 65.9 4.82 0.9827 92.5 5.55 

-80 69.2 0.14 0.9996 70.6 0.09 

-20p 55.1 31.8 0.9369 68.3 26.8 

-20d 59.8 0.62 0.9991 62.0 0.63 

1 
Elizabeth River samples (20 ppt) spiked with KOCN (50 nM) stored under conditions: time 

zero- concentration measured immediately after sample collection, -20 were stored at -20ºC, -80 

were stored at -80 ºC, -20p were stored at -20 ºC after preservation with HgCl2, and -20d were 

derivatized immediately after sample collection and stored at -20 ºC. 
2 

R
2
 of freshly prepared standard curve was 0.9997.  R

2
of the time zero standard curve was 

0.9999. 
3 

OCN
-
 concentrations and standard deviations were calculated from three replicates for all 

treatments. 

HPLC and Detection Optimization   

 Fluorescence emission and excitation wavelengths were selected to maximize 2,4-

quinazolinedione fluorescence and minimize 2-aminobenzoic acid fluorescence.  At the 

excitation wavelength of 312 nm, the wavelength of maximum emission by 2,4-quinazolinedione 

is 370 nm, while the wavelength of maximum emission by 2-aminobenzoic acid is 418 nm 

(Figure 3).   
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Figure 3.  Fluorescence spectra of 40 mM 2-aminobenzoic acid.  Spectra at pH ≤ 2.5 are shown 

by solid lines where the darkest line is pH 2.5 and the lightest line is pH 0.  The spectrum for 10 

M 2,4-quinazolinedione is shown for pH 2 (dotted line).  The fluorescence intensity of 2-

aminobenzoic acid decreased with decreasing pH. At pH > 2.5, the fluorescence intensisty of 2-

aminobenzoic acid is greater than or equal to that at pH 2.5 (data not shown).  The fluorescence 

spectra of 2,4-quinazolinedione at varying pH values are not shown because the spectrum does 

not change with pH.  The excitation wavelength was 312 nm.  

 Following derivatization, Lundquist et al. (1993) employed additional extraction and 

purification steps to isolate cyanate specific to their sample matrix (blood plasma), which were 

unnecessary steps for seawater samples.  This simplification permitted HPLC analysis 

immediately following derivatization and greatly reduced the potential for contamination and 

low recovery.  However, we had to contend with a large excess 2-aminobenzoic acid peak which 

would have been eliminated using the extraction procedures of Lundquist et al. (1993).  As a 

zwitterion, 2-aminobenzoic acid is protonated, neutral, or negatively charged, depending on the 

solution pH.  At neutral pH, such as the mobile phase employed by Lundquist et al. (1993), 2-

aminobenzoic acid is negatively charged (pKa 4.85), but at very low pH, 2-aminobenzoic acid is 
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protonated (pKa 2.17) and has a much lower fluorescence quantum yield (Figure 3) than the 

negatively charged and neutral species. By reducing the aqueous mobile phase component pH to 

0.5, we significantly reduced the magnitude of the 2-aminobenzoic acid peak and obtained 

excellent separation of 2-aminobenzoic acid and 2,4-quinazolinedione (Figure 4).  Consequently, 

we replaced the neutral pH 70:30 water/methanol mobile phase of Lundquist et al. (1993) with a 

low pH (< 1) mobile phase.  The pH tolerance of most C18 columns, including that used by 

Lundquist et al. (1993), is not appropriate for a mobile phase of this pH, so we employed a 

poly(styrene-divinylbenzene) column which is stable to a pH of 0.  Trifluoroacetic acid (pKa 0.2) 

was chosen to adjust the aqueous phase pH over other acids, such as phosphoric acid, because it 

did not require a salt buffer and was less corrosive to the instrument.   
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Figure 4.  Sample chromatograms.  Shown are (a) a reagent blank (relative SD (RSD) 3%), (b) a 

50 nM standard (RSD 1.5%), and (c) a sample from the Elizabeth River (21.4 nM, RSD 1.9%) 

(c) using MeOH in the mobile phase.  In all panels, the negative peak at 5 minutes is the solvent, 

the peak at 8 minutes is excess 2-aminobenzoic acid, and the peak at 12 minutes is the 2,4-

quinazolinedione (cyanate) peak.   
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 Mobile phase composition and flow rate were optimized to achieve full peak separation 

and short retention times.  Separation was first achieved using an isocratic mobile phase of 86:14 

5% TFA/acetonitrile (ACN) and a flow rate of 110 µL/min.   

Environmental Concentrations   

 Cyanate concentrations ranged from 16 to 40 nM in samples collected from surface 

waters and at the depth of the fluorescence maximum along the CBM transect where salinities 

ranged from 16.4 to 27.8 (Table 3).  In the coastal water samples salinities were higher: 31.8 and 

33.2 at the surface and depth of maximum fluorescence, respectively.  Cyanate concentrations in 

coastal North Atlantic waters were substantially lower: 1.44 nM in surface waters and 0.93 nM at 

the depth of the fluorescence maximum.  Our LOD of 0.4 nM was sufficient for quantification of 

cyanate concentrations in all CBM and coastal samples, although the concentrations in coastal 

samples were very close to the detection limit.  The absolute recovery was 98%, and the 

analytical recovery was 99% for both sets of samples, but the relative average deviation was 4% 

for samples in the CBM (n=2) and the relative standard deviation was 24% for the coastal 

samples (n=3) where cyanate concentrations were very close to the analytical detection limit.  

The measurements reported here from the Chesapeake Bay mouth and the North American mid-

Atlantic continental shelf are the first measurements of cyanate concentrations from natural 

waters.   
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Table 3.  Cyanate concentrations for representative Chesapeake Bay Mouth stations and one 

North Atlantic station.   

  
Depth 1 Depth 2 

Latitude (ºN) Longitude (ºW) 
Depth 

(m) 
Salinity

1
 

[OCN
-
] (AD)

 

(nM) 
2 

Depth 

(m) 
Salinity

1
 

[OCN
-
] (AD) 

(nM) 
2 

36.987 76.163 1.9 18.1 30.0 (1.21) 12.1 27.8 26.6 (0.43) 

37.013 76.152 1.3 18.6 27.3 (2.14) 5.1 19.4 16.6 (0.34) 

37.046 76.137 1.4 16.4 29.7 (0.46) 4.0 17.6 34.7 (1.03) 

37.072 76.113 1.4 16.7 41.1 (0.79) 8.7 26.1 33.8 (3.03) 

37.833
3 

74.579 4.9 31.8 1.44 (0.41) 15.8 33.2 0.93 (0.18) 
1
Salinity measured in natural samples is a unitless value that roughly corresponds to parts per 

thousand. 
2
[OCN

-
] shown are the average of two replicates with the exception of the coastal station.  

Average deviation (AD) in parentheses. 
3
For the coastal station (final row), [OCN

-
] is an average of three replicates. 
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CHAPTER III 

SOURCES OF CYANATE TO MARINE SYSTEMS AND AN INITIAL SURVEY OF 

CYANATE DISTRIBUTION AND UPTAKE IN THE NORTH ATLANTIC 

PREFACE 

  Part of the content of this Chapter is submitted to Environmental Science and 

Technology Letters.  Due to size limitations of Environmental Science and Technology Letters, 

the Chapter presented here has been modified to expand the body of the manuscript and include 

supplemental information in the main text.   

INTRODUCTION 

Nitrogen (N) limits phytoplankton growth in most marine environments.  Consequently, 

identifying sources and sinks of bioavailable N is critical for estimating oceanic primary and 

secondary productivity.  While many dissolved organic nitrogen (DON) compounds are known 

to be bioavailable, much of that pool is uncharacterized (Sipler and Bronk 2015).  Recently it 

was discovered that some microbes have the genetic capacity to take up and metabolize cyanate 

(OCN
-
), perhaps the simplest DON compound.  Genes encoding intracellular cyanate 

decomposition and a cyanate-specific transporter have been identified in marine cyanobacteria 

(Kamennaya and Post 2013; Palenik et al. 2003; Rocap et al. 2003). In addition, isolates of 

Synechococcus (WH8102), Prochlorococcus (MED4), the harmful dinoflagellate, Prorocentrum 

donghaiense, and some heterotrophic bacteria have been cultured using cyanate as the sole N 

source (Guilloton et al. 1993; Hu et al. 2012; Kamennaya and Post 2011), and cyanate was 

recently shown to support nitrification as both a reductant and N source in chemoautotrophic 

bacterial cultures (Palatinszky et al. 2015). 

Prochlorococcus and Synechococcus account for two thirds of present day oceanic 

primary production (Bryant 2003), therefore cyanate utilization by these two groups could be 

globally significant and its biogeochemistry may affect global primary and secondary 

production.  It has been hypothesized that the evolution of Prochlorococcus strains has been 
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driven by the availability of different N sources.  Because Prochlorococcus have streamlined 

genomes containing only the genes necessary for survival (Bryant 2003; Garcia-Fernandez et al. 

2004), it is likely that Prochlorococcus strains living in the modern ocean and containing 

cyanate-related genes utilize this compound in the environment.   

Cyanate is produced by urea decomposition (Dirnhuber and Schutz 1948) and by 

decomposition of carbamoyl phosphate, an intermediate in numerous biochemical pathways 

(Jones 1963, Appendices B and C).  As a simple molecule with chemical linkages common in 

organic matter, cyanate is likely produced by other largely unexplored biotic and abiotic 

processes in aquatic systems such as pyrimidine, protein and peptide decomposition.  However, 

the abundance and distribution of cyanate and its reactivity in marine environments is unknown 

because, until recently, we lacked a sensitive method to quantify it.  Cyanobacterial cyanate 

hydratase appears to have evolved early (Kamennaya and Post 2011) suggesting cyanate could 

have served as an N source for cyanobacteria living on the pre-oxygenated Earth (Allen and 

Jones 1964).  Cyanate may have formed on the prebiotic Earth by electric discharges in the 

presence of the prebiotic gases N2, CO2, and H2 (Danger et al. 2012; Yamagata and Mohri 1982), 

and it is possible that cyanate played important roles in early Earth biogeochemistry (Falkowski 

1997), contributing to the abiotic synthesis of pyrimidines (Ferris et al. 1968), adenosine 

diphosphate (ADP) (Yamagata 1999), N-carbarmoyl amino acids (Commeyras et al. 2005), and 

peptides (Danger et al. 2006).  Understanding cyanate cycling in the modern ocean may therefore 

give important clues to both present day and early Earth N cycling.   

I have developed a method to measure cyanate in seawater (Widner et al. 2013), and here 

I provide the first observations of: 1) cyanate distributions in present day North Atlantic coastal 

waters, 2) cyanate production through biotic and abiotic processes, and 3) cyanate uptake by 

natural microbial communities. 

MATERIALS AND METHODS 

Sample Collection and Analysis of N compounds in the coastal North Atlantic 

 Samples and in situ field data were collected during a research cruise on the NOAA 

vessel, R/V Henry B. Bigelow, in the coastal North Atlantic Ocean, August 8-23, 2012 (Figure 5). 

Water samples were collected using twelve Niskin bottles mounted to a CTD rosette.  Samples 
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for cyanate, urea, nitrate, nitrite, and ammonium analyses were filtered by gravity through a 0.2 

µm membrane Millipore filter attached directly to the Niskin bottle and collected in duplicate 

sterile 15 mL polypropylene tubes.  Three, 1 mL aliquots were transferred from the 

polypropylene tubes to acid-cleaned, combusted 4 mL amber glass vials for cyanate analysis.  

The remaining contents of the 15 mL tubes were stored at -20 °C for later analysis of urea, 

nitrate, nitrite, and ammonium concentrations.   

 Urea, nitrate, and nitrite concentrations were measured on an Astoria Pacific nutrient 

autoanalyzer using standard methods (Parsons et al. 1984). Ammonium was analyzed using the 

manual phenol-hypochlorite method (Solorzano 1969).  Samples for cyanate analysis were 

derivatized at sea < 48 hours after collection and stored at -20 °C until they were quantified using 

high performance liquid chromatography (HPLC) (Widner et al. 2013).  The method detection 

limits were 80, 70, 70, 40, and 0.4 nM for urea, nitrite, nitrate, ammonium, and cyanate analyses, 

respectively.   

 
Figure 5.  Station Locations for Chapter III. Mid-Atlantic Bight station (circle), Oligotrophic 

station (square), and the Gulf of Maine Transect stations (1-9),  are superimposed on averages of 

satellite-derived sea surface chlorophyll (left) and temperature (right) during the sampling period 

for the August 2012 cruise.  Six aerosol samples and three rain samples collected using the 

NADP sampler were collected inside the white box and  three aerosol samples and two rain 

samples collected using the funnel were collected inside the black box.  
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Sample Collection and Analysis of N Compounds in a North Atlantic Oligotrophic Gyre

 Samples and hydrographic data from the North Atlantic oligotrophic gyre were collected 

on August 9, 2014 aboard the R/V Hugh Sharp at 72.2 °West longitude and 31.5 °North latitude 

(Figure 5).  Samples were collected using Niskin bottles mounted on a CTD rosette.  Samples for 

cyanate, urea, nitrate, nitrite, and ammonium analysis were filtered using a peristaltic pump 

through a 0.2 µm membrane Millipore filter attached with cleaned silicone hosing to the Niskin 

bottle and filtrate was collected in sterile 15 mL polypropylene tubes for nitrate, nitrite, and urea, 

2 mL sterile polypropylene tubes for cyanate, and 15 mL polypropylene tubes pre-conditioned 

with the orthophthaldialdehyde (OPA) reagent for ammonium analysis (Holmes et al. 1999).  To 

minimize ammonium contamination from filtration, the filtration apparatus was plastic, and the 

filter was rinsed with 2 L of site water before sample collection began.  Filtration is believed by 

many to contaminate nanomolar ammonium samples, but I consistently measured sample 

fluorescence equal to the reagent blank, and I consider filtration necessary to stabilize samples 

for short-term storage in the refrigerator. Nutrient samples were stored at 4 °C until analysis 

within 48 hours of collection for nitrate, nitrite, and urea and 24 hours for ammonium.  Cyanate 

samples were stored at -80 °C until analysis within 1 year of collection. 

 Urea, nitrate, and nitrite were analyzed on an Astoria Pacific nutrient autoanalyzer 

according to the manufacturer’s specifications and using standard colorimetric methods (Parsons 

et al. 1984).  A waveguide was used for nitrate and nitrite to increase the sensitivity of these 

analyses (Zhang 2000).  Ammonium was analyzed using the OPA method (Holmes et al. 1999) 

with modifications outlined by Taylor et al. (2007).  Samples for cyanate analysis were thawed 

then derivatized immediately before quantification by HPLC (Widner et al. 2013).  Detection 

limits were 80, 10, 10, 10, and 0.4 nM for urea, nitrate, nitrite, ammonium, and cyanate, 

respectively.   

Atmospheric Deposition Measurements  

 Nine aerosol and five rain water samples were collected during the August 2014 cruise 

aboard the R/V Hugh Sharp (Figure 5).  Aerosol and rainwater samplers were mounted on a 

platform above the ship's wheelhouse as far as possible from overhanging structures, masts, and 

cables.  Samples were collected when the ship was steaming into the prevailing wind to avoid 

contamination from the ship's stacks and when there was minimal risk of contamination due to 

sea spray.   
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 Aerosol samples were collected using a sampler equipped with a cascade impactor (Tisch 

Series 235) loaded with six acid-cleaned (0.5 N hydrochloric acid) Whatman 41 cellulose filters 

designed to capture particles in two size fractions (less than and greater than 1 μm) (Baker et al. 

2003; Baker et al. 2007).  One quarter of each filter was leached using 750 mL of nanopure 

water.  The leachate was filtered (0.4 μm polycarbonate) and stored according to the methods 

described above for nutrient and cyanate analysis.   

 Two rainwater samples were collected using an automated N-Con Systems NADP rain 

water sampler and three rain water samples were collected using a trace-metal clean 

polyethylene funnel attached to a 2L low density polyethylene (LDPE) bottle by a Teflon collar 

(Sedwick et al. 2007).  The rain collection funnel and bottle were removed from their mountings 

immediately after rainfall ceased and samples were filtered and stored as described above.   

Photochemical Experiments 

 Water samples for the photochemical experiments were collected from three different 

water systems: the Dismal Swamp (freshwater site) on December 5, 2012, the Elizabeth River 

(estuarine site) on January 16, 2013, and the Virginia Beach oceanfront (coastal oceanic site) on 

January 13, 2013 (Table 1).  Water was filtered through a 0.2 µm Supor filter using a vacuum 

pump pressure of less than 5 mm Hg, the salinity was determined using a refractometer, and 

samples were stored in amber glass bottles until irradiation on January 16, 2013.  Samples were 

irradiated in a solar simulator which mimicked springtime noon sunlight in the UV range 

between 295 and 365 nm (Helms et al. 2008; Minor et al. 2006).  Nine quartz tubes for each 

water type were  prepared, 3 of which were wrapped in aluminum foil, and placed in the solar 

simulator.  After 2, 4, and 8 hours , duplicate quartz tubes and a dark tube were removed from 

the solar simulator to measure cyanate concentrations.  The absorbance of each sample at 300 nm 

was determined using an Agilent 8453 UV-Vis Diode Array Spectrophotometer to account for 

differences between samples of different matrices. Photoproduction rates were normalized to the 

sample absorptivity at 300 nm (Bushaw-Newton and Moran 1999).  Here, I report both absolute 

and normalized photoproduction rates (Table 1).    

Culture Experiments 

 Cultures of two diatoms (Thalassiosira pseudonana and Thalassiosira oceanica) and one 

cyanobacterium (Synechococcus FWRI isolate CCFCW 502) were grown on f/2 media (Guillard 
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1975) with sodium silicate added for diatom cultures in quadruplicate bottles.  All cultures were 

incubated in batch in loosely capped 1 L acid-washed and combusted borosilicate bottles under 

fluorescent lighting (39.5 uE m
-2

 s
-1

) supplied on a 12 h light/ 12 h dark cycle.  T. pseudonana 

and Synechococcus were incubated at 21 °C and T. oceanica was incubated at 25 °C.  The 

Thalassiosira cultures were axenic prior to the experiment, but I microscopically confirmed the 

presence of bacteria after the cultures had incubated for one week.  Non-autofluorescent bacteria 

were present in the Synechococcus cultures both before and during the experiment.  In vivo 

fluorescence and cyanate concentrations were monitored daily for 17 days and then biweekly for 

40 additional days.  When cultures reached senescence, as determined by in vivo fluorescence, 

two culture bottles were placed in 24 hour darkness, while the other two bottles were maintained 

under the original light/dark cycle.  At each time point, each culture bottle was tightly capped 

and gently inverted 3 times and then a 15 mL aliquot was removed using a sterile pipette to 

measure in vivo fluorescence on a Turner TD-700 Fluorometer equipped with a PN 7000-962 

optical filter kit (436 nm excitation, 680 nm emission).  This sample was then filtered through a 

0.2 µm sterile Supor filter, and the filtrate was transferred to a sterile polypropylene tube and 

stored at -80 °C until cyanate analysis.  Abiotic controls consisting of sterile f/2 media in acid-

washed, combusted borosilicate bottles were also incubated and sampled at each time point for 

cyanate.   

Nitrogen Uptake 

 Uptake of N from NH4
+
, NO3

-
, NO2

-
, urea, and cyanate was measured at 3 depths at a 

station in  the oligotrophic North Atlantic during a cruise aboard the R/V Hugh Sharp (72.2 °W, 

31.5 °N, Figure 5) using stable isotopes as tracers.  Incubations were initiated with the addition 

of 100 nM of highly enriched (96-99%) 
15

N-labeled substrate.  Samples were incubated for two 

hours at simulated in situ temperature and light conditions in a flow-thru deck incubator under 

neutral density screens.  After two hours, incubations were filtered through pre-combusted GF/F 

filters.  Particulate isotope enrichment was measured using a Europa 20/20 isotope ratio mass 

spectrometer equipped with an automated N and C analyzer.  Uptake rates were calculated using 

a mixing model (Montoya et al. 1996; Mulholland et al. 2006; Orcutt et al. 2001).  When 

ambient substrate concentrations were below detection, as was the case at most depths for urea, 

ammonium, and nitrite, a value one half that of the detection limit was used to calculate the 

uptake rate.  This may have caused an over-estimation of some uptake rates.   
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Satellite Data 

 Sea surface temperature data are from MODIS, and sea surface chlorophyll data are from 

SeaWIFS and MODIS-Aqua obtained from the Ocean Biology Processing Group at the Goddard 

Space Flight Center, Greenbelt, MD.  Both are averages over the cruise dates (August 8-23, 

2012). 

Gulf of Maine Section Plots 

 The Gulf of Maine section plots were constructed using Ocean Data View (Schlitzer, R., 

Ocean Data View, http://odv.awi.de, 2014). 

RESULTS AND DISCUSSION 

 Vertical profiles of cyanate were measured in the North Atlantic Ocean on the continental 

slope near the Mid-Atlantic Bight (MAB, Figure 5). Cyanate, urea, nitrite, and ammonium 

concentrations exhibited surface minima, consistent with biological consumption in the photic 

zone, and subsurface maxima, indicative of excess production over consumption at the base of 

the photic zone (Figure 6).  Profiles of this shape are generally thought to reflect the balance of 

biological consumption in surface waters, production in subsurface waters as a result of 

remineralization, and oxidation to nitrate below the nitracline (Gruber 2008).  Therefore, I infer 

that cyanate is biologically labile.  Because cyanate exhibited vertical distributions similar to 

urea, ammonium, and nitrite, it is likely that, cyanate production and consumption processes are 

similar to or linked with those N compounds at the Mid-Atlantic Bight.  Profiles of ammonium 

and nitrite generally reflect rates of removal through phytoplankton uptake in surface waters and 

ammonification and ammonium and nitrite oxidation (nitrification) in subsurface waters and 

rates of production through excretion and organic matter degradation (Gruber 2008; Lomas and 

Lipschultz 2006).  Recent evidence suggests that cultured nitrifying bacteria can also oxidize 

cyanate when ammonium is unavailable (Palatinszky et al. 2015).  If this process happens in the 

environment, it may partially explain the subsurface cyanate maximum as well as the depletion 

of cyanate below approximately 200 m.  The gradual depletion of cyanate in deep waters, is 

likely due to abiotic and/or biotic degradation of cyanate to ammonium followed by nitrification. 

Although maximal cyanate concentrations were lower than those of urea, ammonium, and nitrite, 
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cyanate utilization and remineralization can still be quantitatively important if its production and 

consumption are tightly coupled as has been shown for ammonium (Gruber 2008).   

 

Figure 6.  Cyanate Distribution at the Mid-Atlantic Bight.  Vertical profiles of density (black 

dashed line, sigma theta, kg m
-3

), chlorophyll a (grey solid line, mg m
-3

), nitrate (NO3
-
) (μM), 

nitrite (NO2
-
) (μM), ammonium (NH4

+
) (μM), urea (μM), and cyanate (OCN

-
) (μM) from a Mid-

Atlantic Bight station. The dashed vertical lines are the method detection limits (S/N=3), and the 

dashed horizontal line indicates the depth of the chlorophyll maximum.  Concentrations below 

the detection limit were plotted as equal to the detection limit.  Error bars are ± 1 standard 

deviation.   

 To determine whether the relationship between cyanate distributions and those of other 

simple N compounds is consistent across a highly productive coastal environment, cyanate, 

ammonium, nitrite, and nitrate distributions were examined with respect to salinity, temperature 

and chlorophyll a concentrations in a physically, biologically, and chemically heterogeneous 

shallow coastal region in the Gulf of Maine (GOM).  Vertical profiles were measured at nine 

stations along a south to north transect from the continental shelf slope, across Georges Bank 
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(GB) and the GOM to the coast of Nova Scotia (Figures 5 and 7, Appendix E). Cyanate was 

generally more abundant on GB and in the GOM than in the more oligotrophic Gulf Stream-

influenced slope waters.  At stations on the slope and interior GOM basin, there were cyanate 

peaks below the chlorophyll maximum similar to what was observed in the MAB (Figure 7).  

However, on GB and at the nearshore station, elevated surface cyanate concentrations were 

coincident with weak stratification and high surface chlorophyll a concentrations, and on GB, 

cyanate and chlorophyll a concentrations were also high near the bottom suggesting a possible 

sedimentary source of cyanate (Figure 7).  At these stations ammonium, nitrite, and nitrate were 

depleted in surface waters (Figure 7).   

 To help explain the vertical distributions of cyanate concentrations, I evaluated cyanate 

production from organic matter degradation.  In the Thalassiosira cultures, cyanate 

concentrations increased linearly as biomass decreased during late stationary phase. Cyanate 

production slowed and stopped when cultures were placed in the dark but continued to increase 

in cultures supplied light (Figure 8 A-D), suggesting that cyanate was produced by a light-

sensitive process such as N release by senescent diatoms.  Cyanate production continued at the 

same rate in the T. pseudonana cultures during senescence and when the cultures began growing 

exponentially again after 40 days without additional nutrient amendments or transfer (Figure 

8A).  Cyanate did not accumulate in the Synechococcus cultures possibly because they didn’t 

produce it or because it was taken up at rates similar to production.  Tight coupling between 

production and consumption has been observed for other reduced N compounds (Gruber 2008). 
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Figure 7.  Cyanate and Dissolved Inorganic Nitrogen Distributions in the Gulf of 

Maine.Chlorophyll a (mg m
-3

), temperature (
o
C), cyanate (nM), nitrate (μM), ammonium(μM), 

nitrite (μM), density (sigma theta, kg m
-3

), and salinity (kg m
-3

) along a transect in the Gulf of 

Maine here the colored contours represent interpolations of the given parameters between data 

points and data points are represented by grey lines and dots for continuous and discrete profiles, 

respectively.  To the left is the offshore station (station 1, Figure 5) and to the right is the 

nearshore station (station 9, Figure 5).  The Gulf of Maine (GOM) and Georges Bank (GB) are 

indicated in grey boxes.  See Appendix E for cyanate, nitrate, ammonium, and nitrite 

concentrations. 
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Figure 8.  Cyanate Production in Phytoplankton Cultures. The cultures were Thalassiosira 

oceanica (A and B), Thalassiosira pseudonana (C and D), and Synechococcus CCFCW 502 (E 

and F).  Cultures maintained on a 12 hour light/dark cycle for the entire experiment are shown in 

panels A, C, and E, and cultures that were transferred to 24 hour darkness after reaching 

stationary phase are shown in panels B, D, and F where the shaded area indicates when the 

cultures were placed in the dark.   In vivo fluorescence was used as a proxy for biomass and is 

shown in black, and cyanate concentrations corrected for sterile controls are shown in grey.  

Error bars are ± 1 standard deviation (n=2).  Cyanate production rates during the linear portions 

were 5.0, 4.5, 9.1, and 6.5 nM d
-1

 in T. pseudonana cultures in the light and dark and T. oceanica 

cultures in the light and dark, respectively (R
2
 0.97, 0.97, 0.93, and 0.94, respectively; all slope 

p-values  <0.0001). 
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 The vertical zonation of microbial communities with respect to light, physical gradients, 

and availability of nitrogenous substrates results in separation of nutrient regeneration processes 

by depth and the sequential accumulation of N cycle intermediates within and below the euphotic 

zone (Meeder et al. 2012).  In vertical profiles collected from the MAB (Figure 6), the cyanate 

maximum was below that of urea indicating that cyanate might be produced from urea 

decomposition, analogous to the observation that nitrite accumulates below the ammonium 

maximum as a result of nitrification (Meeder et al. 2012).  There is currently no known 

mechanism for biotic conversion of urea to cyanate, but abiotic decomposition of biologically 

produced urea and carbamoyl phosphate have been proposed as sources of cyanate production in 

marine systems (Kamennaya et al. 2008).  Because C-N linkages are so common in organic 

matter it is also likely that there are many other pathways of cyanate production and 

decomposition, both biotic and abiotic, that remain to be discovered.  Phytoplankton are also 

known to release labile metabolic intermediates when stressed (Bronk and Steinberg 2008), and 

so it is possible that T. pseudonana and T. oceanica directly released cyanate or that they 

released urea or carbamoyl phosphate which then degraded to cyanate either abiotically or 

through unknown biotic pathways.  Direct phytoplankton release could explain the light-

dependence of cyanate production in Thalassiosira cultures and the elevated cyanate 

concentrations correlated with high chlorophyll fluorescence on GB and at the nearshore end of 

the GOM transect.  Organic matter degradation could also explain this trend and that of cyanate 

accumulation below the subsurface chlorophyll maxima. 

 Atmospheric N deposition (AND) can provide N for new production and contribute to 

eutrophication in the coastal ocean (Howarth and Marino 2006).  Gaseous isocyanic acid 

(HOCN) is released by fossil fuel combustion (Nicholls and Nelson 2000), biomass burning 

(Roberts et al. 2011), and atmospheric photoproduction (Roberts et al. 2011).  This isocyanic 

acid could be deposited to marine systems through precipitation (wet deposition) and through 

direct contact of aerosol particles and gases with the ocean surface (dry deposition).  I measured 

wet and dry deposition of cyanate to the seasonally oligotrophic western North Atlantic which is 

known to receive large inputs of atmospheric N.  Cyanate was below the limit of detection (0.4 

nM) and urea was less than 1 μM in all and most rain water samples, respectively although 

dissolved inorganic nitrogen was present at micromolar concentrations in both wet and dry 

deposition samples (C. Sookhdeo pers. comm.).  Isocyanic acid is rapidly hydrolyzed in clouds, 
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resulting in a lifetime of two hours to five days, depending on cloud encounter rates (Barth et al. 

2013) and so any cyanate present in the air mass over land would likely have degraded to 

ammonium before deposition and so its absence from rain water is not entirely unexpected.   

 I observed cyanate photoproduction rates ranging from 0.4 to 14 nM h
-1

 (Figure 9, Table 

4).  These rates were similar in magnitude to previously reported ammonium and amino acid 

photoproduction rates (Mopper et al. 2015).  Photoproduction of cyanate could have contributed 

to the elevated surface cyanate concentrations on GB and at the nearshore end of the GOM 

transect, particularly if biotic uptake was lower than photoproduction as has been observed for 

other simple organic compounds (Kieber et al. 1989).  Alternatively, GOM coastal waters 

experience dense algal blooms which could produce large amounts of labile dissolved organic 

matter including cyanate and/or cyanate precursors.  Cyanate production from degrading organic 

matter could occur within dense algal blooms, just below them, or in the sediments where they 

are deposited.  Cyanate can then accumulate in place or nearby, depending on the rate of its 

production and circulation patterns.  High cyanate concentrations near the coast relative to 

continental slope waters south of GB (Figure 7) could also indicate terrestrial cyanate sources, 

including urban, industrial, and agricultural runoff and decomposition of N compounds therein 

(such as urea and organic matter) to cyanate (Dirnhuber and Schutz 1948; Glibert et al. 2006).  

Cyanate is not monitored in industrial or municipal wastewater discharges (Johnson 2015) so it is 

not known whether they are significant sources of cyanate to receiving waters.   

 When I compared cyanate uptake rates with those of nitrate, nitrite, ammonium, and urea, 

I found that cyanate contributed up to 10% of total N uptake, and cyanate uptake rates were 

comparable to those of nitrate and nitrite but lower than those of ammonium and urea which 

together accounted for > 50% of total N uptake (Figure 10, Table 5).  As for other N compounds, 

cyanate uptake was higher near the surface corresponding to lower cyanate concentrations (< 1 

nM) than at the chlorophyll fluorescence maximum where cyanate concentrations were highest 

(Figure 10A).  Cyanate turnover times were 1.6 and 76 hours in surface waters and at the 

chlorophyll maximum, respectively, which were shorter than turnover times calculated for nitrate 

and nitrite (Table 5).   
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Figure 9.  Cyanate Photoproduction.   The samples irradiate were sterile (0.2 μm filtered) fresh 

(open circles), estuarine (squares), and coastal oceanic (closed circles).  The cyanate 

concentrations shown are the concentration measured in each sample less the cyanate 

concentration in the corresponding dark control.  Error bars are ± 1 standard deviation (n=2).   

Table 4.  Cyanate Photoproduction Rates. 

 
Latitude 

(°N) 
Longitude 

(°W) 
Salinity 

Production Rate 

(nM h
-1

) 
Normalized Production 

Rate  (nM m h
-1

)
1 

1
2 2 3 1 2 3 

Great 

Dismal 

Swamp 
36.600 76.382 0 

5.6 

(0.7) 
2.3 

(0.1) 
-1.4 

(0.4) 
0.1 

(0.0) 
0.05 

(0.0) 
-0.02 

(0.0) 

Elizabeth 

River 
36.886 76.319 20 

4.4 

(0.0) 
8.4 

(3.2) 
14 

(0.1) 
5.5 

(0.0) 
10.4 

(4.1) 
17.5 

(0.1) 
Virginia 

Beach 
36.903 75.988 29 

0.4 

(0.4) 
3.4 

(1.4) 
2.6 

(0.5) 
2.4 

(2.2) 
20.9 

(8.6) 
15.8 

(3.2) 
1
 Normalized rates were the production rate normalized to the absorbance at 300 nm.  

2 
Rates were calculated for the first two hours (1), second 2 hours (2), and final 4 hours (3). 
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Figure 10. Cyanate and Total Nitrogen Uptake in at the North Atlantic Oligotrophic Station.  A) 

Cyanate uptake (diamonds), cyanate concentration (circles), and chlorophyll fluorescence 

(dashed line).  Error bars are ± 1 standard deviation (n=3).  B) Total N uptake at each depth as 

the sum of ammonium (diagonal lines), nitrate (solid black), nitrite (hatched), urea (solid grey), 

and cyanate (black and white checked) uptake.   
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Table 5.  Concentration, Uptake Rates, and Turnover Times of N compounds at the Oligotrophic 

Station.  

Depth (m) 
 

Nitrate Nitrite Ammonium Urea Cyanate 

2  

Concentration (nM) 29.0 b.d.l.
1 

b.d.l. b.d.l. 0.9 

Uptake (nmol l
-1

 h
-1

) 0.3(0.1)
2 

3.5(0.6) 3.6(0.2) 2.1(0.2) 0.6(0.1) 

Turnover Time (h) 109.9 NA
3 

NA NA 1.6 

28  

Concentration (nM) b.d.l. 36.0 b.d.l. b.d.l. b.d.l. 

Uptake (nmol l
-1

 h
-1

) 0.1(0.1) 0.4(0.1) 2.7(1.8) 2.1(1.0) 0.6(0.1) 

Turnover Time (h) NA 90.8 NA NA NA 

103  

Concentration (nM) 691.0 46.0 b.d.l. b.d.l. 5.0 

Uptake (nmol l
-1

 h
-1

) 0.3(0.0) 0.1(0.1) 1.8(0.3) 2.0(1.0) 0.1(0.0) 

Turnover Time (h) 2217 402.9 NA NA 76.1 

1 
b.d.l. signifies a concentrations below the method detection limit. 

2 
Standard deviations (n = 3) are in parentheses.   

3 
Turnover times could not be calculated when concentrations were below the limit of detection. 

 The distribution of cyanate and the similarity in magnitude of production and community 

uptake rates relative to those of other dissolved N compounds suggests that cyanate is an 

important component of nitrogen cycling in coastal marine environments and that its production 

and consumption are tightly coupled.  Here I provide the first comprehensive set of 

measurements comparing the distributions of cyanate to those of other biogeochemically 

important N compounds in the ocean.  I also demonstrate for the first time that cyanate can be 

produced via decomposition of phytoplankton and photoproduction, and that cyanate uptake is 

quantitatively important in the environment.  However, many questions remain regarding the 

biotic and abiotic sources and sinks of cyanate in disparate marine environments, the organisms 

and biochemical pathways that produce and consume cyanate in the present day ocean, regional 

and seasonal trends in cyanate biogeochemistry, and its possible role in the evolution of life. 
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CHAPTER IV 

CYANATE DISTRIBUTION AND UPTAKE IN NORTH ATLANTIC COASTAL 

WATERS 

PREFACE 

 The content of this Chapter is submitted for publication in Limnology and Oceanography. 

INTRODUCTION 

 Nitrogen (N) limits phytoplankton growth and primary productivity in much of the 

world's oceans, yet the majority of the dissolved organic nitrogen (DON) pool remains 

uncharacterized and therefore the biogeochemical reactivity of most DON compounds unknown 

(Sipler and Bronk 2015).  Cyanate (OCN
-
) is arguably the simplest organic N compound, and it 

is a source of N for marine microbial communities (B. Widner et al. unpubl.).  Genes for cyanate 

metabolism evolved early suggesting cyanate could have contributed to cyanobacterial evolution.   

These genes were likely more common in ancestral cyanobacteria than they are today 

(Kamennaya and Post 2011). 

 In modern cyanobacteria, cyanate uptake and intracellular decomposition is encoded by 

an ABC-type cyanate-specific transporter (cynABD) (Espie et al. 2007) and a cyanate lyase 

(cynS) which catalyzes bicarbonate-dependent decomposition of cyanate to ammonium (NH4
+
) 

and carbon dioxide (CO2) (Anderson et al. 1990).  cynABDS was identified in cultured strains of 

the marine cyanobacteria Prochlorococcus and Synechococcus (Palenik et al. 2003; Rocap et al. 

2003) and later identified in natural cyanobacterial populations from diverse geographical 

regions including the Red Sea, Southern Ocean, Mediterranean Sea, Indian Ocean (Kamennaya 

and Post 2013), and temperate North Pacific Ocean (A. Post pers. comm.) leading to the 

hypothesis that cyanate may serve as a N source for these ubiquitous organisms.  A second 

cyanate lyase, cynH, has been identified in cyanobacteria (Kamennaya and Post 2011), and a 

putative cyanate transporter, cynX, has been identified in some environmental microorganisms, 

including an aquatic bacterium, Chromobacterium violaceum, and a marine ammonium 

oxidizing bacterium, Nitrosococcus oceani (Anderson et al. 1990; Carepo et al. 2004; Klotz et al. 

2006; Pao et al. 1998).  To our knowledge, no cyanate transporter has been identified in 
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eukaryotes, but cynS has been identified in species of animals, plants, and fungi as well as some 

bacteria (Guilloton et al. 2002) and archaea (Spang et al. 2012). 

 The marine phytoplankton Prochlorococcus MED4, Synechococcus WH8102, and 

Prorocentrum donghaiense have been cultured on cyanate as the sole N source (Hu et al. 2012; 

Kamennaya et al. 2008; Palenik et al. 2003), as has an ammonium oxidizing archaea, 

Nitrososphaera gargensis, which also utilized cyanate as the sole reductant, oxidizing cyanate N 

to nitrite (Palatinszky et al. 2015).  Bacteria that have been grown on cyanate as the sole N 

source include Escherichia coli (Guilloton and Karst 1987), Pseudomonas fluorescens (Dorr and 

Knowles 1989), and Methylobacterium thiocyanatum (Wood et al. 1998).  Cultures of 

Synechococcus sp. PCC6301 took up cyanate C (Espie et al. 2007), and coastal microbial 

populations had a high affinity for cyanate, similar to those measured for ammonium, nitrate, and 

urea (Mulholland and Lomas, 2008; Chapter III).  Using a newly developed sub-nanomolar assay 

we measured cyanate concentrations from 0.9 to 40 nM in samples from the Chesapeake Bay and 

Mid-Atlantic Bight (Widner et al. 2013), and on the North Atlantic continental shelf and slope 

cyanate accumulated below the deep chlorophyll maximum (DCM) but was depleted in surface 

and deeper waters (Chapter III), a distribution that has also been observed for nitrite and 

ammonium (Gruber 2008) and is suggestive of net consumption in surface waters and production 

below.   

 In this study, we measured cyanate concentrations in coastal waters at 35 stations from 

Cape Hatteras to Nova Scotia including stations in the Mid-Atlantic Bight, Gulf of Maine, and 

Georges Bank.  We also measured cyanate concentrations and N- and C- specific cyanate uptake 

during four cruises to the study region in three seasons, and we evaluated trends in uptake rate by 

season, geographical region, and depth.   

METHODS 

Study Site and Sample Collection 

 Cyanate uptake was measured in samples collected during cruises aboard the NOAA Ship 

Delaware II during May 26 - June 9, 2010, November 6-21, 2010, June 3-15, 2011, and aboard 

the NOAA Ship Henry B. Bigelow during August 8-23, 2012 at stations selected at random as 

part of the NOAA Ecological Monitoring (EcoMon) program.  Randomized sampling was 
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advantageous for this study because these were the first measurements of cyanate uptake and a 

more focused sampling strategy may have biased the results.  Cyanate concentrations were 

measured during the August 2012 cruise at stations selected nonrandomly by the EcoMon 

program to monitor nutrient distributions and fluxes within important basins and at major 

estuarine outflows.  The region sampled was a portion of the North American North Atlantic 

continental shelf and slope between Cape Hatteras and Nova Scotia (65-76°W, 35-45 °N).  The 

study site is characterized by three distinct ecoregions: the Mid-Atlantic Shelf (MAS), the Gulf 

of Maine (GOM), and Georges Bank (GB; Figure 11).  Water samples were collected and 

vertical profiles of temperature, salinity, chlorophyll fluorescence, and photosynthetically active 

radiation (PAR) were measured to a maximum depth of 500 m using a CTD mounted to a 12 

Niskin rosette.  Euphotic depth was calculated as the depth at which PAR was 1% of surface 

irradiance, and mixed layer depth (MLD) was defined as a sigma-t change of 0.125.  Chlorophyll 

inventory was calculated using trapezoidal integration of the continuous chlorophyll profile 

collected by the CTD. 

 

Figure 11. Distribution stations from August 2012.  The dotted line represents the division 

between the Mid-Atlantic Shelf (MAS) and Gulf of Maine/Georges Bank (GBGOM) study 

regions, and the shading represent bathymetry.    
Mid-Atlantic 

Shelf 

Gulf of Maine 
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 Water samples for nitrate, nitrite, ammonium and cyanate analyses were collected from 

the Niskin bottles by gravity filtering (0.2 μm Millipore filter) water directly into duplicate 

polypropylene conical tubes (15 ml) for ammonium and single polypropylene conical tubes (15 

ml) for nitrate and nitrite.  Sub-samples were then transferred from the polypropylene tubes into 

3 amber glass vials (4 ml) for cyanate analysis. The remaining samples were frozen and stored at 

-20 °C until analysis.   

Nutrient and Chlorophyll a Analysis 

Nitrate and nitrite and were analyzed on an autoanalyzer using standard methods (Parsons 

et al. 1984). Ammonium was measured using the phenol hypochlorite method (Solorzano 1969).  

Detection limits were 70, 70, and 40 nM for nitrate, nitrite, and ammonium, respectively.  The 

nitracline depth was calculated as the middle depth between the first sample with a concentration 

> 100 nM and the sample above it (Dore and Karl 1996).  Chlorophyll a samples were collected 

onto GF/F filters (0.7 μM) and analyzed fluorometrically (Welschmeyer 1994).  

Cyanate Analysis and Modifications to Method 

 Cyanate was derivatized at sea in the amber vials and stored at -20 °C until analysis using 

high performance liquid chromatography (HPLC) with modifications to the Widner et al. (2013) 

method.  We encountered some anomalously high and variable data that was likely the result of 

sample contamination.  We believe this occurred at sea as the derivatization process requires 

manipulation steps during which the samples could have been exposed to airborne contaminants.  

We therefore recommend sample storage at -80 °C and derivatization in a more controlled 

laboratory environment. 

 Derivatized samples contain 6 N hydrochloric acid which damaged the HPLC 

autosampler after repeated use leading to irregular injection volume, injection of bubbles, and 

costly instrument repairs.  To ameliorate this problem, we neutralized the samples by adding 10 

N sodium hydroxide (0.72 mL) to 0.9 mL derivatized sample in a 2 ml combusted amber vial.  A 

precipitate formed upon addition of NaOH, and so, when the samples reached room temperature 

we inverted them 5 times and waited for the precipitate to settle to the bottom prior to injection 

on the HPLC.   The needle height was adjusted to prevent injection of the precipitate, and the 

autosampler chiller was turned off to prevent sample stratification from uneven cooling.  We 

found that derivatized, neutralized samples were stable up to 72 hours at room temperature.  The 
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mobile phase was adjusted to 70:30 5% TFA/ 100% methanol, and the flow rate and sample 

injection volume were adjusted to 200 μL/min and 400 μL, respectively.  

 All cyanate, nitrate, nitrite, and ammonium concentrations can be found in Appendix F, 

and a link to the CTD data can be found in Appendix G. 

Uptake Methods 

 Cyanate uptake was measured in water collected from the surface and the DCM depth on 

each cruise.  Whole water from each depth was transferred from Niskin bottles into 10 L carboys 

from which 500 ml PETG incubation bottles were filled for tracer experiments.  When weather 

conditions did not permit deployment of the CTD rosette, surface water was collected from the 

ships' flow-through systems which were located at depths of approximately 3.7 and 5 m on the 

bows of the NOAA Ships Delaware and Bigelow, respectively, and were cleaned with 5% bleach 

or flushed with freshwater before each cruise for the Delaware and Bigelow, respectively.  

Uptake experiments were initiated by amending incubation bottles with 
15

N
13

C - labeled 

potassium cyanate (KO
13

C
15

N).  Our intent was to make trace additions (2-10%) to avoid 

perturbing the community and thereby obtain realistic rates of in situ cyanate uptake (Mulholland 

et al. 2009).  In May/June 2010, marine cyanate concentrations were unknown, so we added 100 

nM KO
13

C
15

N so that tracer additions of cyanate were the same as those used to measure 

ammonium, nitrite, nitrate, and urea uptake (M. R. Mulholland pers. comm.).  Prior to the 

November 2010 cruise, we made the first measurements of cyanate in a Chesapeake Bay estuary 

and found that concentrations were < 50 nM (Chapter II).  Consequently, on the remaining 

cruises, we decreased tracer additions to 30 nM.  This addition was greater than 10% of the in 

situ cyanate concentrations during the 4
th

 cruise and so it is possible that uptake was stimulated 

by the tracer addition in some or all of our experiments. 

 Bottles were incubated in one of two deck incubators equipped with flow-through surface 

seawater to maintain surface water temperature and neutral density screens to reduce incident 

light to approximately 55% and 30% of ambient.  After two hours, each sample was filtered 

through a combusted GF/F filter (0.7 µM), rinsed with filtered seawater, placed in a sterile 

cryovial, and stored at -20 °C.  Upon return to the laboratory, filters were dried at 40 °C, 

pelletized in tin capsules, and analyzed on a Europa 20/20 isotope ratio mass spectrometer 

equipped with an automated N and C analyzer.  Uptake rates were calculated using a mixing 

model (Montoya et al. 1996; Mulholland et al. 2006; Orcutt et al. 2001).  On cruises where 
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cyanate concentrations were not measured (May/June 2010, November 2010, June 2011), the 

average cyanate concentration from August 2012 (3 nM) was used to calculate cyanate uptake 

rates.  Limits of detection (LOD) were calculated as the uptake rate calculated when the atom 

percent enrichment was equal to the LOD of the mass spectrometer (3 x the standard deviation of 

7 standards of 12.5 μg N/ 100 μg C).  Because the LOD was influenced by incubation time and 

particulate N and C concentrations, we calculated an individual LOD for each experiment and 

used that number to determine if the corresponding rate was below the LOD (BDL).  The 

average LODs were 0.02 and 0.03 nmol l
-1

 h
-1

 for N and C uptake, respectively and ranged from 

< 0.01 to 0.13 and < 0.01 to 0.05 nmol l
-1

 h
-1

 for N and C, respectively.  In statistical calculations 

uptake rates that were BDL were reported as 0.01 nmol l
-1

 h
-1

. 

Calculation of cyanate production from abiotic urea decomposition 

 Abiotic urea decomposition to cyanate and cyanate decomposition to NH4
+
 are first order 

reactions (Equations (1) and (2)) (Amell 1956; Dirnhuber and Schutz 1948; Hagel et al. 1971).                       

  urea →  cyanate + NH4
+
  (1) 

  cyanate → NH4
+
 + CO2  (2) 

Hypothetical cyanate production from abiotic urea decomposition was calculated using two 

methods.  For both methods, we assumed a urea concentration of either the mean or maximum 

observed by Filippino et al. (2011) in the Mid-Atlantic Bight (0.1 and 0.6 µM, respectively). 

First, a cyanate production rate was calculated using the urea decomposition rate constant that 

Hagel et al. (1971) developed in a sodium nitrate solution with ionic strength 0.25 at 25 °C (k, 

5.04e-8 min
-1

) according to Equation (3).   

  rate = k * [urea]   (3) 

Then a new k was calculated from the NH4
+

 production experiments of Kamennaya and 

Post (2008) and utilized to calculate urea decomposition to cyanate.  Because one mole of urea 

produces one mole of NH4
+
 during decomposition (Equation 2) and another mole of NH4

+
 is 

produced following the decomposition of the cyanate produced (Equation 3), the abiotic NH4
+
 

production rate can be calculated from Equation (4) where rateurea is the rate of urea 

decomposition (Equation 2), ratecyanate is the rate of cyanate decomposition (Equation 3), and 

rateT is the total rate of NH4
+
 production from urea.  To make this calculation, we assumed that 

abiotic decomposition of urea and cyanate were the only processes consuming urea, producing 
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and consuming cyanate, and producing NH4
+
 and that the rates of reverse reactions were 

negligible. 

 ratecyanate + (2 x rateurea) = rateT  (4) 

 Kamennaya and Post (2008) measured production of NH4
+
 from 20 µM urea and cyanate 

in solutions of abiotic Sargasso seawater.  NH4
+
 production from urea and cyanate was 8.3 and 

19.3 nmol l
-1

 h
-1

, respectively.  We used these production rates and Equation (1) to calculate a 

cyanate production rate constant (k) of 0.00028 h
-1

 from 20 μM urea.  This rate constant was 

substituted into Equation (1) to calculate a hypothetical cyanate production rate in the Mid-

Atlantic Bight based on urea concentrations observed there by Filippino et al. (2011). 

Statistics 

 All statistical analyses were performed using Matlab software.  In order to test 

differences between cyanate uptake by season, region, and depth, we performed 3 separate 3-way 

ANOVAs for N-specific uptake, C-specific uptake, and uptake C:N ratio where the factors were 

cruise (May/June 2010, November 2010, June 2011, and August 2012), region (Mid-Atlantic 

Shelf and Georges Bank/Gulf of Maine, and depth (surface and DCM).  We included interaction 

terms in the ANOVAs and used a Type III Sum of Squares because of uneven sample sizes.  The 

assumption of normality of residuals was not met, so we created a randomized F distribution 

with 10,000 iterations to calculate the p value (Manly 1997).  P values that met the criterion of α 

< 0.05 were considered significant.   

RESULTS 

Cyanate Distribution 

 The study region was heterogeneous physically, chemically, and biologically.  Surface 

temperature and salinity ranged from 5 to 25 °C and 32 to 36, respectively.  Using temperature-

salinity (TS) diagrams (Figure 12) and bathymetric features, we organized stations into three 

categories: Shelf, Slope, and Basin stations.  Shelf stations were located on the continental shelf, 

excluding deep stations in the interior Gulf of Maine, and ranged in salinity from 32 to 34.3.  

Slope stations were located in relatively deep waters on the continental slope and were more 

saline than Shelf stations ranging in salinity from 34 to 37.  Stations located in the interior Gulf 

of Maine with a maximum depth of at least 200 m were classified as Basin stations because 
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physical and bathymetric features in the Gulf of Maine cause this continental shelf sea to have 

characteristics of both Shelf and Slope stations (Townsend et al. 2006).   
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Figure 12. Temperature-Salinity diagrams of each station category.  Shelf (A), Basin (B), and 

Slope (C) stations are depicted.  Shading corresponds to cyanate concentration (nM).  Some data 

are reproduced from Chapter III. 
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Figure 13. Surface cyanate and nitrate concentrations for August 2012.  The black dots are 

stations, and the contours interpolate between them.  White space is where no data was available.  

Some data are reproduced from Widner et al. 2013 and Chapter III. 

 In surface waters, cyanate concentrations were higher nearshore than offshore, and 

cyanate was slightly elevated on shallow Georges Bank and near the Bay of Fundy (Figure 12) 

where the water column was well-mixed and chlorophyll was elevated at the surface (Chapter 

III, this Chapter).  At the majority of stations, cyanate was depleted in surface waters (Figure 13) 

and accumulated below the DCM (Figures 14 & 15).  This was especially true at Slope stations 

where cyanate concentrations decreased below the subsurface maximum (Figures 12A & 14D).  

At Basin stations, cyanate decreased below the subsurface maxima but remained detectable (~5 

nM) at the bottom of the water column (Figures 12C & 14D).  Cyanate profiles were more 

variable at Shelf stations than at Basin and Slope stations, probably because of the increased 

physical, bathymetric, and biological heterogeneity of these stations.  At some Shelf stations 

there was a subsurface cyanate maximum as observed at Slope and Basin stations (Figures 12B, 

14A), whereas at other Shelf stations, the water column was well-mixed and cyanate was 

uniformly distributed with depth (Figures 12B & 14B).  At other Shelf stations cyanate 

accumulated to maximum levels near the bottom of the water column (Figures 12B and 14C), 
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possibly due to the shallowness of the water column relative to the DCM depth or to a sediment 

cyanate source.   

 

Figure 14. Representative profiles of N and chlorophyll a.  Profiles are shown for shelf (A-C), 

basin (D), and slope (E) stations depicting chlorophyll a (chl a, shaded region), cyanate (OCN
-
, 

open circles), nitrite (NO2
-
, closed circles), and nitrate (NO3

-
, squares). Error bars are ± 1 

standard deviation (n =3). 
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Figure 15. Correlations between the depth of the cyanate and nitrite peaks and euphotic depth 

(A), nitracline (B), and deep chlorophyll maximum (DCM) (C)depths.  Cyanate and nitrite 

maximum depths are depicted in black and grey, respectively, for Basin stations (squares), Shelf 

stations (diamonds), and Slope stations (circles).   Dashed lines represent a 1 to 1 relationship 

and solid and dotted lines represent statistically significant correlations for cyanate (y = 1.4 + 20, 

p = 0.010, R
2 

= 0.47 for panel C)  and nitrite (y= 1.1 + 22, p = 0.055, R
2
 = 0.42 for panel B and y 

= 1.5 - 3.8, p = 0.001, R
2 

= 0.95 for panel C), respectively for criteria α = 0.1.  Some data are 

reproduced from Chapter III. 
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 Because the cyanate maximum was below the DCM, similar to the typical profiles of 

other labile, regenerated N compounds such as ammonium and nitrite (Gruber 2008), we 

compared vertical profiles of cyanate to these compounds as well as nitrate.  We were unable to 

directly compare the cyanate maximum with the ammonium maximum because ammonium 

maxima were not observed at many stations, possibly due to our high detection limit (0.04 μM).  

The cyanate maximum (CM) was generally deeper than the primary nitrite maximum (PNM), 

euphotic depth, nitracline, and DCM (Figure 15).  The depth of the cyanate maximum was not 

correlated with euphotic or nitracline depth, but it was loosely correlated with the DCM depth 

(R
2
 = 0.47, p = 0.010, Figure 15C) independent of station type.  The maximum cyanate 

concentration for each station was correlated with depth-integrated chlorophyll a in the overlying 

water (Figure 16A, R
2
 = 0.79, p < 0.001) at Basin and Shelf stations but not at Slope stations.  

Cyanate was not directly correlated with chlorophyll a concentrations (Figure 16B).  The 

maximum nitrite concentration for each station was not significantly correlated with depth-

integrated chlorophyll a in the euphotic zone (Figure 16A, R
2
 = 0.52, p = 0.081 ) for criteria α = 

0.05, probably due to the small sample size. 

Cyanate Uptake 

 Cyanate uptake was observed on all four cruises (Figure 17, Tables 6-9).  N uptake from 

cyanate was higher on average than C uptake from cyanate (1.3 ±1.9 and 0.4 ± 0.6 nmol l
-1

 h
-1

, 

respectively, paired t-test, p < 0.001) suggesting that cyanate was used primarily as an N source.  

Despite low data density in this heterogeneous study region, 3-way ANOVAs revealed 

significant differences between: 1) cruises for N uptake (F = 5.4, p = 0.001, R
2 

= 0.12), C uptake 

(F = 5.9, p = 0.001, R
2
 = 0.14), and C:N uptake from cyanate (F = 16.2, p < 0.001, R

2 
= 0.27 ); 2) 

regions for C uptake (F = 3.7, p = 0.049, R
2
 = 0.03) and C:N uptake from cyanate (F = 14.7, p < 

0.001, R
2
 = 0.08); and 3) the interaction between cruise and region for C:N uptake from cyanate 

(F = 10.5, p < 0.001, R
2
 = 0.18).  No significant differences were found between: 1) regions for 

N uptake, 2) depth for N and C uptake and C:N uptake from cyanate; or 3) any of the other 

interaction terms. 
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Figure 16. Relationship between cyanate concentration and chlorophyll a.  A) The maximum 

concentrations of cyanate and nitrite at each station where a well-resolved cyanate or nitrite 

subsurface maximum was found.  Maximum cyanate and nitrite concentrations are depicted in 

black and grey, respectively, for Basin (squares), Shelf (diamonds), and Slope (circles) stations.   

The maximum cyanate and nitrite concentrations were significantly correlated with chlorophyll 

inventory for all stations for α = 0.05 and 0.1, respectively (y = 0.02x + 3.7, p = 0.007, R
2 

= 0.37 

for cyanate and (y = 0.001x + 0.01, p = 0.081, R
2 
= 0.52 for nitrite, dashed line), but the 

correlation for cyanate was stronger when slope stations were excluded (y = 0.04 + 2.5, p <0.001 

R
2
 = 0.79, solid line) and there was no significant correlation for Slope stations alone.  B) There 

was no direct correlation between chlorophyll a and cyanate concentrations.  Some data are 

reproduced from Chapter III.  Error bars for cyanate are ± 1 standard deviation (n = 3).   

 C uptake from cyanate was significantly higher in August 2012 than in May/June 2010 

(Table 10), while N uptake from cyanate was significantly higher in May/June 2010 and June 

2011 than in November 2010 (Table 10).  C:N uptake from cyanate was significantly higher in 

November 2010 than during the other three cruises (Table 10).  Both C uptake and the C:N ratio 

from cyanate uptake were significantly higher in the MAS than GBGOM, while there was no 

significant difference in N uptake from cyanate by region (Table 10).  The C:N uptake ratio was 

significantly higher during the November 2010 cruise in the MAS region than during any of the 

other cruises and regions (Table 10).  This is likely a result of the extremely low N uptake rates 

from cyanate in November 2010 and higher cyanate C uptake rates on the MAS independent of 

cruise.   
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 Although there was no significant difference between N uptake, C uptake, or C:N uptake 

from cyanate between DCM and surface waters, at 65% of stations, N uptake from cyanate at the 

surface exceeded that at the DCM, at 73% of stations, cyanate C uptake at the DCM exceeded 

that measured at the surface, and the cyanate C:N uptake ratio was higher at the DCM than at the 

surface at 69% of stations (Figure 18).  Cyanate uptake was not correlated with NO3
-
+NO2

-
 

concentration, chlorophyll concentration (Figure 19), cyanate concentration (August 2012 only), 

temperature, or salinity (data not shown) except where temperature reflected seasonality.  

However, the highest rates of both N and C uptake from cyanate occurred at relatively low 

NO3+NO2 concentrations (Figures 19A and B). 

 

Figure 17. Binned uptake data from all four cruises at the surface.  The circle sizes correspond to 

the binned N-specific uptake rate. Cruises are May/June 2010 (A), November 2010 (B), June 

2011 (C), and August 2012 (D).  The greyscale represents sea surface chlorophyll (mg m
-3

). 
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Figure 18. Cyanate uptake at the surface and deep chlorophyll maximum (DCM).  A) N uptake, 

B) C uptake, and C) C:N of cyanate uptake depicted by cruise: May/June 2010 (grey diamonds); 

November 2010 (black squares); June 2011 (black circles); and August 2012 (open circles).  

Error bars are ± 1 average deviation (panels A and B only).  The dashed line is the 1:1 line where 

surface and chlorophyll maximum rates would be equal.  Uptake rates below their respective 

detection limit were plotted as 0.02 nmol l
-1

 h
-1

.   

A.  N Uptake (nmol l-1 h-1)      B.  C Uptake (nmol l-1 h-1)               C. Uptake C:N 
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Figure 19. Correlation between N- and C- specific cyanate uptake and NO3
-
+NO2

-
 and 

chlorophyll a for all cruises: May/June 2010 (grey diamonds), November 2010 (black squares), 

June 2011 (black circles), and August 2012 (open circles).  Error bars are ± 1 average deviation.  
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Table 6.  Water properties and cyanate uptake rates (N and C) in May/June 2010.  All samples were collected on the NOAA ship 

Delaware II. Standard deviations are in parentheses.  Standard deviations of 0.00 or 0.0 indicate that the standard deviation was < 0.01 

or 0.1, respectively. 

       

Cyanate uptake 

(nmol l
-1

 h
-1

)  

Latitude 

(°N) 

Longitude 

(°W) 
Region Depth (m) 

Chl a 

(µg/L) 

Temperature 

(°C) 
Salinity 

NO3+NO2 

(µM) 
N C C:N 

41.109 -71.109 MAS 2 0.3(0.0) 13.36 31.5 1.21(0.37) 0.14(0.00) b.d.l. N/A 

36.812 -75.373 MAS 2.6 0.5(0.0) 18.10 33.3 b.d.l. 2.33(0.79) 0.06(0.01) 0.03 

41.524 -69.677 GOM 2.7 0.7(0.1) 13.45 31.1 0.09(0.06) 4.40(0.03) 0.04(0.02) 0.01 

43.022 -70.099 GOM 2.7 0.5(0.1) 14.97 30.6 b.d.l. 6.49(0.09) 0.02(0.02) 0.00 

38.516 -73.690 MAS 2.8 0.3(0.0) 14.54 32.1 0.07(0.00) 1.28(0.10) b.d.l. N/A 

39.690 -73.972 MAS 2.8 0.6(0.1) 16.53 30.0 0.61(0.59) 5.66(0.43) b.d.l. N/A 

41.806 -67.813 GB 2.8 1.0(0.1) 12.46 32.1 0.26(0.31) 1.94(0.52) b.d.l. N/A 

44.230 -67.261 GOM 2.8 0.7(0.0) 9.80 32.1 0.90(0.03) 0.26(0.02) 0.09(0.02) 0.36 

37.145 -75.449 MAS 2.9 0.5(0.0) 17.98 31.3 b.d.l. 2.91(0.03) 0.10(0.04) 0.03 

40.983 -67.842 GB 2.9 2.7(0.6) 9.63 33.0 1.38(0.46) 0.70(0.01) b.d.l. N/A 

41.772 -66.462 GB 3 2.2(0.0) 9.88 32.1 0.63(0.07) 0.84(0.03) b.d.l. N/A 

40.026 -72.222 MAS 3.1 0.3(0.0) 13.11 32.2 0.07(0.16) 4.29(0.19) b.d.l. N/A 

40.497 -71.183 MAS 3.2 0.3(0.0) 14.47 32.4 b.d.l. 4.01(0.11) b.d.l. N/A 

42.897 -68.159 GOM 3.4 0.7(0.0) 12.52 31.7 b.d.l. 3.44(0.18) 0.03(0.01) 0.01 

40.983 -67.842 GB 10.7 3.5(0.8) 9.22 32.3 1.06(0.30) 0.58(0.17) 0.17(0.00) 0.30 

41.772 -66.462 GB 11.2 2.0(0.0) 8.91 32.2 1.93(0.09) 0.25(0.00) b.d.l. N/A 

41.109 -71.109 MAS 11.8 0.6(0.1) 11.57 31.5 2.49(2.84) 0.09(0.01) b.d.l. N/A 

42.897 -68.159 GOM 13.1 1.1(0.1) 11.98 31.7 0.26(0.23) 2.31(0.19) 0.03(0.01) 0.01 

37.145 -75.449 MAS 15.3 2.2(0.0) 13.97 31.5 0.11(0.08) 2.65(0.03) 0.24(0.00) 0.09 

36.812 -75.373 MAS 19.2 2.5(0.3) 12.41 31.7 b.d.l. 2.38(1.04) 0.14(0.01) 0.07 

39.690 -73.972 MAS 22.1 3.5(0.1) 8.27 31.5 1.29(1.48) 0.65(0.04) b.d.l. N/A 

44.230 -67.261 GOM 22.4 0.7(0.1) 7.96 32.3 4.08(0.04) 0.09(0.00) 0.10(0.01) 1.10 
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Table 6.  Continued 

        

Cyanate uptake 

(nmol l
-1

 h
-1

)  

Latitude 

(°N) 

Longitude 

(°W) 
Region Depth (m) 

Chl a 

(µg/L) 

Temperature 

(°C) 
Salinity 

NO3+NO2 

(µM) 
N C C:N 

41.524 -69.677 GOM 25.7 2.2(0.1) 6.44 31.8 4.25(0.33) 0.16(0.00) 0.02(0.03) 0.06 

43.022 -70.099 GOM 26.7 1.1(0.1) 6.46 31.5 1.42(0.16) 0.61(0.09) 0.04(0.01) 0.06 

38.516 -73.690 MAS 28.5 1.1(0.1) 8.34 32.8 2.46(1.68) 0.23(0.01) b.d.l. N/A 

40.497 -71.183 MAS 31.7 2.0(0.1) 8.43 32.6 b.d.l. 1.03(0.48) 0.03(0.02) 0.03 

41.806 -67.813 GB 31.9 5.2(0.1) 10.26 32.4 0.65(0.65) 3.68(0.36) 0.03(0.03) 0.01 

40.026 -72.222 MAS 32 1.0(0.1) 9.16 32.5 0.15(0.14) 0.14(0.03) b.d.l. N/A 

Table 7.  Water properties and cyanate uptake rates (N and C)  All samples were collected on the NOAA ship Delaware II. Standard 

deviations are in parentheses.  Standard deviations of 0.00 or 0.0 indicate that the standard deviation was < 0.01 or 0.1, respectively. 

                Cyanate uptake 

 (nmol l
-1

 h
-1

)   

 

Latitude 

(°N) 

Longitude 

(°W) 

Region Depth (m) Chl a 

(µg/L) 

Temperature 

(°C) 

Salinity NO3+NO2 

(µM)  

N C C:N 

42.421 -66.999 GOM 2.3 0.5(0.1) 10.5 32.6 4.88(0.04) 0.02(0.00) 0.01(0.01) 0.34 

38.778 -74.719 MAS 2.5 7.1(1.1) 13.7 32.1 b.d.l. b.d.l. 0.40(0.02) N/A 

39.730 -72.903 MAS 3 0.4(0.0) 14.6 32.9 3.98(4.23) 0.06(0.01) 0.07(0.05) 1.24 

36.142 -75.580 MAS 3 1.5(0.4) 16.3 31.5 b.d.l. b.d.l. 0.34(0.06) N/A 

41.682 -65.775 GB 3 1.9(0.4) 11.4 32.4 1.87(0.02) 0.04(0.00) 0.03(0.03) 0.69 

42.856 -67.775 GOM 3.4 1.0(0.0) 10.8 33.0 5.20(0.15) 0.10(0.03) 0.34(0.05) 3.45 

41.729 -68.779 GOM 3.5 2.5(0.0) 10.4 32.5 3.20(0.10) 0.12(0.00) 0.48(0.03) 3.91 

 



 
5
5
     

Table 7.  Continued 

                Cyanate uptake 

 (nmol l
-1

 h
-1

)   

 

Latitude 

(°N) 

Longitude 

(°W) 

Region Depth (m) Chl a 

(µg/L) 

Temperature 

(°C) 

Salinity NO3+NO2 

(µM)  

N C C:N 

40.599 -67.437 GB 4 0.8(0.2) 13.7 32.1 3.22(0.83) 0.23(0.01) 0.24(0.07) 1.02 

40.251 -72.567 MAS 3.7* 1.2(0.1) 14.5 32.5 1.91(1.04) b.d.l. 0.17(0.00) N/A 

40.486 -72.180 MAS 3.7* 1.8(0.1) 13.8 31.8 2.05(0.33) b.d.l. 0.31(0.04) N/A 

40.025 -70.147 MAS 3.7* 0.7(0.2) 16.0 31.5 4.35(0.48) 0.05(0.02) b.d.l. N/A 

41.061 -69.081 GOM 3.7* 1.5(0.0) 12.6 31.8 2.31(3.59) 0.04(0.01) 0.14(0.06) 3.46 

42.590 -70.051 GOM 3.7* 1.0(0.1) 10.6 32.5 6.78(0.06) 0.08(0.06) 0.33(0.01) 3.84 

38.069 -74.657 MAS 3.7* 0.6(0.0) 15.7 32.3 0.71(0.32) 0.14(0.02) 0.09(0.03) 0.69 

38.778 -74.719 MAS 9 5.6(0.6) 13.7 32.1 1.97(1.95) b.d.l. 0.44(0.08) N/A 

36.142 -75.580 MAS 10 1.8(0.2) 16.3 31.5 0.20(0.08) 0.07(0.02) 0.71(0.01) 10.49 

41.729 -68.779 GOM 14.8 2.1(0.3) 10.4 32.5 2.33(0.18) 0.32(0.13) 0.63(0.01) 1.96 

40.599 -67.437 GB 15 0.7(0.1) 16.6 34.6 1.63(0.43) 0.08(0.00) 0.05(0.02) 0.65 

39.730 -72.903 MAS 22 0.6(0.0) 14.7 32.9 2.20(0.76) 0.08(0.00) 0.07(0.02) 0.88 

42.421 -66.999 GOM 23 0.5(0.0) 10.3 32.6 4.57(0.19) 0.03(0.00) b.d.l. N/A 

41.682 -65.775 GB 36 1.2(0.0) 10.5 32.6 4.16(0.28) 0.05(0.00) b.d.l. N/A 

42.856 -67.775 GOM 46 2.1(0.2) 10.5 33.2 3.74(0.28) 0.06(0.02) 0.53(0.04) 9.17 

* Sample collected from ship's flow through system. 
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Table 8.  Water properties and cyanate uptake rates (N and C) in June 2011. All samples were collected on the NOAA ship Delaware 

II.  Standard deviations are in parentheses.  Standard deviations of 0.00 or 0.0 indicate that the standard deviation was < 0.01 or 0.1, 

respectively. 

               Cyanate uptake  

(nmol l
-1

 h
-1

)  

 

Latitude 

(°N) 

Longitude 

(°W) 

Region Depth (m) Chl a 

(µg/L) 

Temperature 

(°C) 

Salinity NO3+NO2 

(µM)  

N C C:N 

42.395 -65.852 GOM 2 0.4(0.1) 9.7 31.0 1.53(0.38) 0.29(0.01) b.d.l. N/A 

40.145 -71.081 MAS 2.5 0.7(0.0) 17.0 33.3 0.13(0.13) 1.94(0.04) b.d.l. N/A 

42.610 -68.953 GOM 2.6 1.8(0.1) 11.2 31.9 1.42(0.00) 3.41(0.43) 0.12(0.01) 0.0 

40.638 -68.844 GB 2.7 0.6(0.1) 13.1 32.3 b.d.l. 0.67(0.04) b.d.l. N/A 

41.020 -67.912 GB 2.7 1.5(0.1) 10.8 32.3 b.d.l. 0.64(0.00) b.d.l. N/A 

39.173 -74.108 MAS 2.8 0.8(0.0) 20.0 30.0 b.d.l. 3.62(0.06) 0.61(0.73) 0.2 

40.351 -72.558 MAS 3 0.2(0.0) 15.7 31.5 b.d.l. 2.89(1.92) b.d.l. N/A 

38.489 -73.403 MAS 3 0.2(0.0) 20.7 34.8 0.09(0.04) b.d.l. b.d.l. N/A 

36.897 -74.938 MAS 3 2.0(0.1) 22.9 30.5 b.d.l. 0.04(0.00) 0.21(0.01) 4.9 

37.395 -75.573 MAS 3 0.4(0.0) 22.2 29.6 2.25(0.00) 1.52(0.62) 4.83(0.24) 3.2 

39.523 -74.119 MAS 3 0.0(0.0) 17.6 30.1 0.71(0.73) 12.8(0.22) 1.54(0.24) 0.1 

41.524 -68.311 GB 3 1.4(0.1) 11.3 32.3 3.83(1.61) 0.18(0.00) b.d.l. N/A 

43.265 -67.513 GOM 3.7* 0.5(0.1) 12.7 31.9 0.74(0.57) 0.12(0.03) b.d.l. N/A 

42.395 -65.852 GOM 14 0.8(0.0) 5.8 31.3 0.42(0.48) 0.25(0.01) b.d.l. N/A 

40.145 -71.081 MAS 34 2.0(0.0) 12.8 33.7 1.97(0.00) 0.29(0.00) b.d.l. N/A 

42.610 -68.953 GOM 17.5 2.0(0.0) 10.9 31.9 0.38(0.36) 1.67(0.30) 0.14(0.01) 0.1 

40.638 -68.844 GB 14 2.7(0.2) 9.5 32.4 0.17(0.20) 0.49(0.01) b.d.l. N/A 

41.020 -67.912 GB 41 2.2(0.0) 10.3 32.3 b.d.l. 0.42(0.05) b.d.l. N/A 

39.173 -74.108 MAS 13.6 1.3(0.0) 13.0 30.9 0.07(0.17) 0.57(0.01) 0.60(0.02) 1.1 

40.351 -72.558 MAS 30 1.6(0.1) 6.8 32.3 b.d.l. 0.08(0.01) b.d.l. N/A 

38.489 -73.403 MAS 63 1.9(0.0) 12.6 34.4 2.54(0.42) 0.58(0.10) b.d.l. N/A 

36.897 -74.938 MAS 25 0.2(0.0) 9.2 32.7 0.34(0.4) 0.95(0.09) b.d.l. N/A 
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Table 8.  Continued 

                

  

Cyanate uptake  

(nmol l
-1

 h
-1

) 

 Latitude 

(°N) 

Longitude 

(°W) 

Region Depth (m) Chl a 

(µg/L) 

Temperature 

(°C) 

Salinity NO3+NO2 

(µM)  

N C C:N 

37.395 -75.573 MAS 15 2.0(0.2) 14.0 31.7 b.d.l. 7.48(0.86) b.d.l. N/A 

39.523 -74.119 MAS 14 0.0(0.0) 12.9 30.8 b.d.l. 6.15(1.11) 2.29(0.35) 0.4 

41.524 -68.311 GB 40 1.2(0.1) 10.4 32.2 0.46(0.39) 0.08(0.00) b.d.l. N/A 

* Sample collected from ship's flow through system. 

Table 9. Water properties and cyanate uptake rates (N and C) in August 2012.  All samples were collected on the NOAA ship Henry 

B. Bigelow. Standard deviations are in parentheses.  Standard deviations of 0.00 or 0.0 indicate that the standard deviation was < 0.01 

or 0.1, respectively.

                 Cyanate uptake  

(nmol l
-1

 h
-1

)  

 

Latitude 

(°N) 

Longitude 

(°W) 

Region Depth (m) Chl a 

(µg/L) 

Temperature 

(°C) 

Salinity NO3+NO2 

(µM)  

N C C:N 

40.371 -71.671 MAS 2.7 0.5(0.4) 23.9 31.8 b.d.l. 0.40(0.00) 0.32(0.03) 0.79 

39.358 -73.387 MAS 3 1.5(3.5) 26.4 31.2 1.08(1.35) 3.49(0.97) 0.75(0.17) 0.21 

37.456 -75.101 MAS 4 0.2(0.7) 26.8 31.2 0.22(0.10) 0.74(0.09) 0.16(0.05) 0.21 

35.985 -75.521 MAS 3 1.3(1.1) 23.6 34.2 b.d.l. 1.15(0.07) 0.57(0.05) 0.49 

38.821 -74.740 MAS 3.1 2.6(1.4) 21.3 31.8 0.30(0.00) 1.38(0.10) 0.80(0.03) 0.58 

40.874 -72.154 MAS 5 0.5(0.2) 22.6 30.9 0.12(0.00) 0.18(0.00) 0.61(0.05) 3.50 

39.933 -69.507 MAS 2.7 0.3(0.7) 23.0 32.4 1.27(0.11) 0.73(0.04) 0.33(0.08) 0.46 

40.681 -68.770 GB 4.1 0.3(1.3) 22.7 31.6 0.22(0.01) 1.34(0.11) 0.14(0.05) 0.11 

40.867 -67.659 GB 3.7 0.5(0.5) 20.1 32.4 0.24(0.00) 0.55(0.29) 0.49(0.04) 0.90 



 
5
8
     

Table 9.  Continued 

                Cyanate uptake  

(nmol l
-1

 h
-1

)  

 

Latitude 

(°N) 

Longitude 

(°W) 

Region Depth (m) Chl a 

(µg/L) 

Temperature 

(°C) 

Salinity NO3+NO2 

(µM)  

N C C:N 

41.756 -65.441 GB 3.4 0.2(0.5) 24.2 34.3 0.18(0.02) 0.50(0.03) 0.23(0.12) 0.46 

42.015 -67.676 GB 4.1 1.4(0.9) 19.6 32.4 0.31(0.00) 0.93(0.09) 0.45(0.01) 0.48 

42.687 -68.280 GOM 3.7 1.0(1.0) 20.5 31.9 0.37(0.17 0.97(0.16) 0.64(0.09) 0.67 

43.400 -67.077 GOM 3.7 1.5(1.4) 18.5 32.7 b.d.l. 1.44(0.11) 0.44(0.00) 0.31 

43.029 -67.711 GOM 4.4 2.8(0.8) 16.6 32.8 0.23(0.18) 0.83(0.10) 0.98(0.18) 1.18 

43.157 -69.847 GOM 4.2 1.0(1.5) 21.9 31.5 0.28(0.18) 1.45(0.22) 0.20(0.07) 0.14 

42.417 -70.854 GOM 4.2 2.3(1.0) 19.6 31.1 0.07(0.11) 1.01(0.24) 0.40(0.20) 0.40 

40.371 -71.671 MAS 15 2.1(0.7) 16.8 32.3 b.d.l. 0.70(0.26) 0.40(0.05) 0.57 

39.358 -73.387 MAS 14 0.8(3.5) 24.9 31.6 b.d.l. 3.52(0.21) 0.59(0.00) 0.17 

37.456 -75.101 MAS 26.4 3.2(0.3) 14.2 33.5 0.23(0.16) 0.29(0.05) 0.46(0.05) 1.61 

35.985 -75.521 MAS 17 1.3(0.7) 23.4 35.8 0.30(0.08) 0.69(0.18) 0.72(0.01) 1.04 

38.821 -74.740 MAS 8.4 4.9(0.4) 15.3 34.4 0.08(0.04) 0.41(0.09) 0.85(0.03) 2.06 

40.874 -72.154 MAS 17.8 6.7(0.4) 18.1 31.8 0.08(0.03) 0.41(0.04) 1.80(0.04) 4.42 

39.933 -69.507 MAS 30.5 1.9(0.3) 14.8 34.3 1.68(0.56) 0.30(0.03) 0.59(0.05) 1.94 

40.681 -68.770 GB 20.3 0.6(0.3) 12.8 32.7 0.39(0.08) 0.29(0.03) 1.49(0.01) 5.20 

40.867 -67.659 GB 19.8 2.0(1.8) 12.6 32.7 0.51(0.12) 1.76(0.77) 0.97(0.27) 0.55 

41.756 -65.441 GB 27.6 0.9(0.9) 16.1 35.2 3.98(0.00) 0.90(0.01) 0.48(0.02) 0.53 

42.015 -67.676 GB 24.2 2.4(0.4) 17.8 32.5 0.28(0.00) 0.42(0.09) 0.61(0.07) 1.46 

42.687 -68.280 GOM 15.8 4.4(0.7) 14.9 35.5 0.21(0.09) 0.69(0.39) 1.50(0.01) 2.17 

43.400 -67.077 GOM 25 0.3(0.4) 15.2 33.1 0.15(0.16) 0.37(0.03) 0.36(0.04) 0.97 

43.157 -69.847 GOM 17.7 2.9(4.5) 12.6 32.3 1.23(1.67) 4.50(0.29) 0.39(0.12) 0.09 

42.417 -70.854 GOM 13.2 4.6(0.3) 12.4 31.7 0.85(0.09) 0.27(0.03) 0.58(0.09) 2.11 
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Table 10. Means associated with ANOVAs + Tukey significance for cyanate uptake.  Interaction means are only shown for region and 

cruise because depth was not significant for anything. Tukey test p-values are indicated by symbols below the table. 

  N uptake (nmol l-1 h-1) C uptake (nmol l-1 h-1) Uptake C:N 

Cruise GBGOM MAS Cruise Total GBGOM MAS Cruise Total GBGOM MAS Cruise Total 

May/June 

2010 
1.4(1.7) 2.0(1.8) 1.9(1.8)* 0.0(0.0) 0.0(0.1) 0.0(0.1)

 α
 0.1(0.2)

 η
 0.0(0.0)

 λ
 0.1(0.2)

 ν
 

November 

2010 
0.1(0.1) 0.0(0.0) 0.1(0.1) *

†
 0.2(0.2) 0.3(0.2) 0.2(0.2) 2.4(2.6)

 θ
 17.9(17.7) 

η, θ, ι, κ,λ,μ,ν
 9.5(14.1)

 γ, δ, ε
 

June 2011 0.7(1.0) 2.8(3.7) 1.8(2.9) 
†
 0.0(0.0) 0.7(1.4) 0.4(1.0) 0.0(0.0)

 ι
 0.7(1.5)

 μ 
 0.5(1.1)

 δ
 

August 2012 1.1(1.0) 1.0(1.1) 1.1(1.0) 0.6(0.4) 0.6(0.4) 0.6(0.4)
 α

 1.0(1.2)
 κ
 1.3(1.3)

 ν
 1.2(1.3)

 ε
 

Region Total 1.0(1.3) 1.6(2.4)   0.3(0.4)
 β
 0.4(0.8)

 β
   0.9(1.6)

 ζ
 4.0(10.2)

 ζ
   

* p = 0.0017; † p = 0.0048; 
α 

p = 0.0006;  
β 

p = 0.0480; 
γ 
p < 0.0001; 

 δ 
p < 0.0001;

 ε
 p < 0.0001; 

ζ
 p = 0.0002; 

η
 p < 0.0001;  

θ
 p < 0.0001; 

ι
 p < 0.0001; 

κ
 p < 0.0001; 

λ
 p < 0.0001; 

μ
 p < 0.0001; 

ν
 p < 0.0



60 

 

Cyanate Production from Urea 

 Using the rate constant of Hagel et al. (1971), we calculated that the rate of abiotic cyanate 

production from urea at the Mid-Atlantic Bight could be 0.0004 nmol l
-1

 h
-1

 and up to 0.002 

nmol l
-1

 h
-1 

based on previously reported average and maximum urea concentrations in this 

region (Filippino et al. 2011).  However, building upon the work of Kamennaya and Post (2008) 

and assuming that the urea decomposition rate is independent of its concentration, the rate of 

abiotic cyanate production from urea could have been as high as 0.03or 0.20 nmol l
-1 

h
-1

 for the 

mean and maximum urea concentrations, respectively.   

DISCUSSION 

 During August, 2012, cyanate concentrations in coastal waters in the Gulf of Maine, 

Georges Bank, and mid-Atlantic Bight ranged from below the limit of detection (0.4 nM) to 11 

nM (Figure 11, Appendix G).  Nanomolar concentrations are typical for small biologically labile 

reduced N compounds (Sipler and Bronk 2015), and absolute concentrations reflect the balance 

of production and consumption.  For example, while ammonium is frequently at the limit of 

analytical detection in surface waters, it typically accounts for a large fraction of the total N 

utilization and its production and consumption are tightly coupled (Bronk and Steinberg 2008; 

Mulholland and Lomas 2008).  Cyanate concentrations were generally higher nearshore than 

offshore, suggesting either a terrestrial source or higher production rates nearshore where organic 

matter and bacterial and phytoplankton biomass are also higher (Pan et al. 2011).  Overall, 

cyanate concentrations were lower in coastal waters than in the Chesapeake Bay and its estuaries 

(17 to 41 nM and up to 100 nM (Widner et al. 2013)) and slightly higher closer to shore than on 

the slope which may indicate a terrestrial or estuarine source of cyanate to coastal systems.  

Typically estuarine dissolved N and DOM concentrations are higher than in coastal waters as a 

result of natural and anthropogenic processes in these highly productive systems.  Consequently, 

estuaries can be a large source of both N and DOM to coastal ecosystems (Raymond and Spencer 

2015; Seitzinger and Harrison 2008). 

 Cyanate likely enters marine systems through both allochthonous and autochthonous 

sources.  Cyanate may be produced in riverine, estuarine, and terrestrial systems from degrading 

organic matter and photoproduction (Chapter III).  In situ production of cyanate has been 
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demonstrated in phytoplankton cultures and primary production and degradation of sinking 

organic matter has been used to explain vertical distributions of cyanate in marine systems 

(Chapter III).  As such, variability in cyanate concentrations may be related to the trophic status 

of the system, as has been observed for other N compound (Gruber 2008).  Terrestrial processes 

may also input cyanate to coastal regions and these include release of cyanate or its precursors 

from urban runoff and wastewater and industrial and agricultural discharges (Boening and Chew 

1999; Dirnhuber and Schutz 1948; Glibert et al. 2006; Kamennaya et al. 2008).  However, a 

comprehensive investigation of cyanate sources was beyond the scope of this study. 

 Surface cyanate concentrations were not always correlated with chlorophyll a 

concentrations (Figure 14, Chapter III) which suggests that cyanate production is either 

temporally or spatially uncoupled from phytoplankton biomass or that consumption of cyanate 

exceeds its production in sunlit waters where chlorophyll a concentrations are highest.  An 

exception was that cyanate concentrations were high in surface waters at the northernmost 

station sampled in the Gulf of Maine (Figure 13B) and on Georges Bank (Chapter III) where 

chlorophyll a concentrations were also high. These areas experience persistently high 

chlorophyll a concentrations and frequent phytoplankton blooms (Townsend et al. 2006), which 

can result in rapid release and accumulation of DON in surface waters (Boneillo and Mulholland 

2014; Egerton et al. 2014; Mulholland et al. 2009).  Deep water in the Gulf of Maine originates 

from the Slope, which introduces water through the Northeast Channel below 75 m, and the 

Scotian Shelf, which introduces water at the surface (Townsend 1998).  In the stratified summer 

months, tidal upwelling transports deep water to the surface at the northern edge of the Gulf of 

Maine (Townsend et al. 1987).  This nitrate-rich plume flows southwest parallel to the coastline 

and fuels phytoplankton growth including that of the harmful bloom-forming Alexandrium sp.  In 

August 2012, we observed elevated nitrate concentrations at the northern edge of the Gulf of 

Maine suggestive of such an upwelling plume (Figures 12 and 13 and Chapter III).  However, the 

elevated cyanate concentrations in the same water cannot be explained by upwelling because 

deep Gulf of Maine waters had lower cyanate concentrations.  It is more likely that high surface 

cyanate concentrations were produced by the  high in situ productivity there. 

 The vertical distribution of cyanate was similar to those of ammonium and nitrite (Figure 

14, Chapter III) with a surface minimum, subsurface maximum, and a minimum below the 

nitracline suggesting uptake by phototrophs in the euphotic zone, production by organic matter 
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degradation at the base of the photic zone, and oxidation in deeper water below (Gruber 2008).  

At most stations, the subsurface cyanate peak was substantially deeper than the DCM, PNM, 

nitracline, and euphotic depths (Figure 15) and deeper than is typical for the nitrite and 

ammonium maxima with respect to the DCM, nitracline, and euphotic depth (Dore and Karl 

1996; Mackey et al. 2011).  So, while the depth of the cyanate maximum probably depends on 

the balance between multiple depth-dependent consumption and production processes, we do not 

yet fully understand what those processes are and how they are affected by other vertical 

gradients in the sea.  Overall the cyanate maximum appears to be analogous to the PNM 

suggesting it is an intermediate in organic matter degradation.  However, the processes involved 

in the formation of the PNM are better understood  as are its relationship with the DCM depth 

and the depth of the nitracline (Adornato et al. 2005; Dore and Karl 1996; Kiefer et al. 1976; 

Lomas and Lipschultz 2006).      

 The correlation between the maximum cyanate concentrations in vertical profiles and 

depth-integrated chlorophyll concentrations (Figure 16) suggests that cyanate is likely a product 

of organic matter degradation and dependent on the sinking flux of phytoplankton from surface 

waters.  To the best of my knowledge, no other study has examined the correlation between the 

maximum concentrations of a decomposition product in subsurface waters with the total 

overlying phytoplankton biomass.  The maximum nitrite concentration was significantly 

correlated with depth-integrated chlorophyll a concentrations only for the criteria α = 0.1, but 

this most likely relects the small sample size and low sampling resolution.  Nitrite is also 

produced from phytoplankton biomass either by direct release or as an intermediate species in 

nitrification (Ward 2008) and might be expected to be correlated with overlying phytoplankton 

biomass. 

 At most Slope and Basin stations, cyanate was depleted below the subsurface maximum.  

This indicates that cyanate production is slow at depth or that cyanate is consumed by processes 

at depth which may include abiotic degradation or biologically-mediated transformation.  

Cyanate abiotically degrades to ammonium (Kamennaya et al. 2008) which can then be oxidized 

to nitrate.  Abiotic degradation of cyanate to ammonium is slow in seawater, which could explain 

why cyanate concentrations below the cyanate maximum were not as low at the shallower Basin 

stations in the Gulf of Maine and the Shelf stations compared to Slope stations.  It would also 

explain the broad tail below the cyanate maximum at some Slope stations.  In slope waters, 
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cyanate can mix into the vast deep ocean reservoir where it can slowly degrade, whereas in the 

basin of the Gulf of Maine, physical removal of water is slow (Townsend et al. 2006), so cyanate 

may accumulate.  Elevated bottom water cyanate concentrations on the Shelf may reflect a 

sediment source of cyanate potentially by oxidation of sedimentary thiocyanate or cyanide 

(Kamyshny et al. 2013).  

 Abiotic urea decomposition has been proposed as a mechanism of cyanate production in 

marine systems (Kamennaya et al. 2008), and in vertical profiles collected from the Mid-Atlantic 

Bight the cyanate maximum was below that of urea (Chapter III) indicating that cyanate could 

have been produced from urea decomposition, analogous to the observation that nitrite 

accumulates below the ammonium maximum as a result of ammonium oxidation (Meeder et al. 

2012).  Although abiotic cyanate production from urea decomposition was slow when calculated 

using Hagel et al.'s (1971) hypothetical rate constant (~ 0.001 nmol l
-1 

h
-1

), the rate calculated 

based on ammonium production from urea and cyanate in sterile, particle-free Sargasso seawater 

(~ 0.1 nmol l
-1 

h
-1

) (Kamennaya et al. 2008) was similar in magnitude to typical rates of urea 

regeneration (Bronk et al. 1998; Cho and Azam 1995; Mulholland and Lomas 2008).  Cyanate 

has also been shown to be produced by spontaneous decomposition of carbamoyl phosphate 

(Allen and Jones 1964, see Appendices B and C) which could be released from cells by sloppy 

feeding and cell lysis. While there are no known biological pathways of cyanate production from 

urea or other organic compounds, aside from carbamoyl phosphate (Allen and Jones 1964), it is 

likely that cellular or extracellular pathways exist as carbon-nitrogen linkages are common in all 

biological systems. 

 N-specific cyanate uptake rates ranged from below the limit of detection (0.02) to  12.8 

nmol l
-1

 h
-1

 which is similar in magnitude to reported rates of uptake of other dissolved inorganic 

and small organic N compounds (Mulholland and Lomas 2008).  At the majority of stations, 

cyanate uptake was ~1% of total N uptake, but at some stations it was as high as 13% of total 

measured N uptake (which included NO3
-
, NO2

-
, NH4

+
, urea, cyanate, and dissolved free amino 

acids; M.R. Mulholland, pers. comm.).  Overall cyanate uptake was a lower fraction of total N 

uptake in this coastal system than at an oligotrophic N. Atlantic station (Chapter III).  However, 

natural microbial populations from the Mid-Atlantic continental shelf had a high affinity and 

high maximum uptake rates for cyanate (Widner unpubl.) suggesting that microbes are capable 

of taking up cyanate at high rates under a range of environmental concentrations.  It is possible 
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that cyanate uptake is episodic following sporadic cyanate inputs (Espie et al. 2007) or varies 

temporally and with physiological state as is the case for other N compounds (Mulholland and 

Lomas 2008).      

 Seasonality and spatial heterogeneity resulted in large differences in temperature, water 

column structure, community structure, biomass, nutrient availability, mixing, and light 

availability between cruises (Tables 6-9).  Cyanate N uptake was higher during the summer 

cruises when the water column was generally stratified and mixed layer DIN concentrations were 

low.  Picoeukaryotes and cyanobacteria, which are known to utilize cyanate (Kamennaya and 

Post 2013; Palenik et al. 2003; Rocap et al. 2003), comprise a large fraction of the phytoplankton 

community during late summer (Pan et al. 2011; Townsend et al. 2006) and regenerated N 

compounds typically fuel productivity at this time of year when the water column is stratified 

(Lalli and Parsons 1997).  During November cyanate uptake rates were lower.  This is a time of 

year when winter mixing typically results in increased availability of upwelled NO3
-
 and the 

phytoplankton community is typically dominated by large eukaryotes (Pan et al. 2011) in which 

cyanate-related genes have not yet been identified.   

 C uptake from cyanate was generally low suggesting that cyanate was used primarily as an 

N source by microbes.  However, C uptake from cyanate and hence the C:N uptake ratio from 

cyanate were both higher during November than during the summer and in microbial 

assemblages collected from the DCM relative to those collected from well-lit surface waters.  

Like urea, cyanate contains reduced N and oxidized C which are converted to NH4
+
 and CO2 

intracellularly (Anderson et al. 1990; Berges and Mulholland 2008).  Most microbes readily 

incorporate NH4
+
-N, but only autotrophs are able to reduce and fix CO2.  If cyanate-derived CO2 

is not rapidly fixed it diffuses out of the cell resulting in higher N than C incorporation, which 

may explain why we observed statistically higher overall uptake of N than C.  Cyanate C could 

be used to augment photosynthetic C uptake, but low light during winter and at the depth of the 

DCM would have limited light-mediated C assimilation, and primary productivity was 

significantly higher at the surface compared to the DCM in this study region (M.R. Mulholland, 

unpubl.).   

 C uptake in excess of N could also result from the occurrence of a dissimilatory nitrogen 

process coupled with C fixation.  Recent evidence indicates that ammonium oxidizers may 

oxidize urea-N and fix urea-C (Alonso-Sáez et al. 2012).  Since ammonium oxidation is 
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dissimilatory, this process would result in excess C uptake relative to N.  We speculate that a 

similar process might be at work for cyanate.  CynS has been identified in an ammonium 

oxidizing archaeon from a microbial mat (Spang et al. 2012), cynX has been identified in a 

marine ammonium oxidizing bacterium (Klotz et al. 2006), and an ammonium-oxidizing 

archaeon, Nitrososphaera gargensis, has been grown on cyanate as the sole source of N and 

reductant (Palatinszky et al. 2015).  CynS is also widespread in nitrite oxidizing bacteria, and 

Palatinszky et al. (2015) demonstrated that a nitrite oxidizing bacteria, Nitrospira moscoviensis, 

decomposed cyanate when it was supplied at millimolar concentrations.  The resultant NH4
+
 was 

then available for ammonium oxidation and subsequent nitrite oxidation by N. moscoviensis.  

However, no cyanate uptake transporter has been identified in nitrite oxidizers and it is unknown 

whether this process occurs at the nanomolar cyanate concentrations observed in marine and 

estuarine systems to date.  If cyanate is an intermediate species in nitrification, the subsurface 

cyanate maximum could reflect vertical zonation of this process relative to cyanate production 

pathways. 

 To date, cynA and cynX have only been identified in bacteria (Kamennaya and Post 2013; 

Pao et al. 1998), and cynA expression has been primarily observed in cyanobacteria, largely 

Prochlorococcus.  It has been suggested that eukaryotic phytoplankton are also capable of 

utilizing cyanate (Berg et al. 2008; Hu et al. 2012; Wurch et al. 2011; Zhuang et al. 2015), but 

cyanate uptake has not been conclusively demonstrated for these organisms and no cyanate 

transporter has been identified in their genomes or in any eukaryotic genome published to date.  

Our study region was not dominated by Prochlorococcus as this genus is less abundant in coastal 

waters and north of 40 °N (Partensky et al. 1999).  There are coastal strains of Synechococcus 

(Scanlan et al. 2009), but no cyanobacterial cynA was amplified from samples collected during 

the May/June 2010 cruise at stations where cyanate uptake was observed (A. Post, pers. comm.).  

Although failure to detect cyanobacterial cynA does not unequivocally confirm its absence, these 

results combined with the dominance of eukaryotic phytoplankton in this system (Pan et al. 

2011) suggest that cyanate was likely taken up by eukaryotes.   

 Decomposition of cyanate converts 1 mole each of HCO3
-
 and cyanate to two moles of 

CO2, and it has been suggested that CynS may function as a carbon concentrating mechanism 

(CCM) in photosynthetic organisms (Guilloton et al. 2002).  The highest cyanate concentrations 

observed to date in marine environments are three orders of magnitude lower than typical 
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oceanic CO2 concentrations (Emerson and Hedges 2008), and the half-saturation constants of 

phytoplankton RuBisCo (range from 6 to 185 μM) are three to five orders of magnitude higher 

than the highest cyanate concentrations in marine and estuarine waters (Badger et al. 1998; 

Widner et al. 2013, this study, Chapter III).  So, even if cyanate uptake were energetically 

favorable in comparison to other CCMs, this process would not likely generate enough CO2 to be 

assimilated by RuBisCo at a similar rate to HCO3
-
-derived CO2.   

 Overall, we have demonstrated that cyanate has a biological distribution over a large 

coastal region, cyanate is taken up in surface waters, and that cyanate is likely produced by 

organic matter degradation resulting in a subsurface cyanate maximum and higher cyanate 

concentrations below productive surface waters where phytoplankton biomass is also high.  As 

for other N compounds, the subsurface cyanate maximum is likely due to the balance between its 

production and consumption: cyanate is taken up in surface waters, produced as a result of 

decaying organic matter in subsurface waters, and oxidized slowly at depth. 
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CHAPTER V 

CYANATE DISTRIBUTION AND UPTAKE ABOVE AND WITHIN THE EASTERN 

TROPICAL SOUTH PACIFIC OXYGEN DEFICIENT ZONE 

INTRODUCTION 

Simple, reduced, organic nitrogen compounds are potentially important sources of 

nitrogen for assimilation and energy in marine systems (Alonso-Sáez et al. 2012; Palatinszky et 

al. 2015; Sipler and Bronk 2015) and yet much is still unknown about the cycling of these 

compounds.  Cyanate (OCN
-
) is perhaps the simplest organic N compound and has only recently 

been measured in marine systems (Widner et al. 2013).  OCN
- 
is produced from algal 

degradation, photochemical reactions, and abiotic urea degradation (Dirnhuber and Schutz 1948; 

Kamennaya et al. 2008; Widner et al. submitted).  Urea [CO(N2H2)2] accounts for approximately 

one third of nitrogen uptake across all aquatic systems and is released to marine systems by 

bacteria, fecal pellet leaching, sloppy feeding, zooplankton excretion, atmospheric deposition 

and anthropogenic sources such as wastewater and fertilizer (Bronk and Steinberg 2008; Glibert 

et al. 2006; Mulholland and Lomas 2008; Sipler and Bronk 2015).   Both urea and OCN
- 
are 

taken up and produced by marine microbes and therefore have distributions that are biologically 

controlled, similar to those of ammonium (NH4
+
) and nitrite (NO2

-
) (Gruber 2008; Chapter II; 

Chapter III).  Urea uptake represents 27.7 ±19.0 % of measured N uptake across all aquatic and 

marine systems (Sipler and Bronk 2015).  We found that urea uptake accounted for up to 50 % of 

the total measured N uptake at a station in the oligotrophic North Atlantic Ocean while OCN
-
 

uptake accounted for up to 10 % of total N uptake (Chapter III).   

The genetic capacity for urea uptake and intracellular decomposition are widespread 

among marine microbes, and the gene for intracellular OCN
-
 decomposition, cynS, has been 

identified in plants, phytoplankton, bacteria, and archaea (Guilloton et al. 2002).  In addition, a 

OCN
-
 transporter, cynABD, has been identified in some bacteria, including strains of the 

ubiquitous marine cyanobacteria Prochlorococcus and Synechococcus (Palenik et al. 2003; 

Rocap et al. 2003), and cynA expression has been observed in marine systems (Kamennaya and 

Post 2013).  Cultured populations of Synechococcus WH8102 (Palenik et al. 2003), 

Prochlorococcus MED4 and SB (Berube et al. 2015; Kamennaya et al. 2008), and Prorocentrum 
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donghaiense (Hu et al. 2012) have been grown on OCN
-
 as the sole source of nitrogen, and more 

recently, OCN
-
 and urea have been shown to support nitrification (Alonso-Sáez et al. 2012; 

Palatinszky et al. 2015) and anaerobic ammonium oxidation (Babbin et al. submitted).  

The region of the Eastern Tropical South Pacific (ETSP) adjacent to the Peruvian and 

Northern Chilean coastline is unique in that rapid coastal upwelling leads to high rates of 

primary productivity and consequently the largest tonnage fishery in the world (Pennington et al. 

2006).  Below these highly productive waters, decomposition of sinking particulate organic 

matter coupled with poor ventilation of subsurface waters leads to the formation of a permanent 

oxygen deficient zone (ODZ) where oxygen concentrations are below the limit of detection (10 

nM) (Revsbech et al. 2009).  Although the three major oceanic ODZs in the Eastern Tropical 

North and South Pacific and Arabian Sea account for just 0.1 % of the ocean’s volume 

(Codispoti et al., 2001), they are biogeochemically significant because they account for a third of 

oceanic N losses (Codispoti 2007) and because oxygen deficient zones are projected to expand in 

the future based on global change scenarios (Stramma et al. 2008).  These N losses occur via two 

dissimilatory anaerobic pathways - "canonical" denitrification, a heterotrophic process whereby 

oxidized nitrogen compounds are reduced to N2, and anaerobic ammonium oxidation 

(anammox), a chemoautotrophic process by which NO2
-
 and NH4

+
 are converted to N2 (Devol 

2008). 

ODZs may be analogous in some ways to the ancient preoxygenated Earth and prebiotic 

ocean (Paulmier and Ruiz-Pino 2009).  The genes for OCN
-
 assimilation are ancient, and it has 

been hypothesized that OCN
-
 may have been a key nitrogen source for early cyanobacteria in 

ancient oceans (Kamennaya and Post 2011).  OCN
-
 is likely present in abiotic extraterrestrial 

environments (Cole et al. 2015) and may have been abundant on the prebiotic Earth (Jones and 

Lipmann 1960; Yamagata and Mohri 1982) where it could have contributed to the synthesis of 

pyrophosphates (Hagan et al. 2007; Miller and Parris 1964), pyrimidines (Ferris et al. 1968), 

adenosine diphosphate (ADP) (Yamagata 1999), and peptides (Danger et al. 2006; Danger et al. 

2012) and have been linked to cyanobacterial evolution . 

In this study, we measured OCN
-
 concentrations and OCN

-
 uptake in the ETSP within 

and above the ODZ.  We compared the water column distribution and uptake of OCN
-
 to those of 

urea, NH4
+
, NO2

-
, and nitrate (NO3

-
) in the shallow oxic layer (urea distribution was not 

measured at all stations), the distributions of these compounds in the underlying waters, and rates 
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of uptake and 
15

N2 production (Babbin et al. submitted) from OCN
-
, urea, and NH4

+
 within the 

ODZ.   

MATERIALS AND METHODS 

Study Site, Sample Collection, and Cyanate and Nutrient Analysis 

 All measurements and samples were collected during a cruise aboard the R/V Nathaniel B. 

Palmer from June 27 - July 21, 2013.  Stations were located in the ETSP between 10 and 18 °S 

and 70 and 86 °W (Figure 20). Stations along two transects, one approximately 200 nm offshore 

and roughly parallel to the coastline and the other along 17 °S from 79 to 86 °W at 1 ° intervals 

and two process stations (BB1 and BB2), were occupied during the cruise.  Station BB2 was 

located within an area experiencing intense coastal upwelling but this intensity decreased farther 

offshore (Figure 1A).  Temperature, salinity, in situ chlorophyll a fluorescence (chl a), 

photosynthetically active radiation (PAR, Biospherical), and oxygen (Seabird) were measured 

using a CTD mounted to a 24-bottle rosette (10 L Niskin bottles) except at station BB2 where 

they were measured using a CTD mounted to an in situ pump profiler.  The location of the ODZ 

was verified using a highly sensitive STOX sensor (detection limit 10 nM).  No oxic intrusions 

were observed within the ODZ as has been shown previously in this area (Revsbech et al. 2009; 

Tiano et al. 2014; Garcia-Robledo  pers. comm.).    

 At station BB2, OCN
-
, urea, NO3

-
, NO2

-
, and NH4

+
 profiles were collected using an in 

situ pump profiler at ~ 4 m resolution.   At all other stations, OCN
-
 samples were collected from 

the Niskin bottles by gravity filtration through a 0.2 μm membrane filter (Millipore) into 

triplicate sterile 2 ml polypropylene microcentrifuge tubes (Thomas Scientific, catalog number 

1219F50).  OCN
-
 samples were stored at -80 °C until derivatization and analysis by high 

performance liquid chromatography (HPLC) according to Widner et al. (2013) and Chapter IV 

and urea samples were stored at -20 °C until analysis by nutrient autoanalyzer (Price and 

Harrison 1987).  At all stations other than BB2, NO3
-
 and NO2

-
 samples were collected directly 

from Niskin bottles into 30 ml acid-washed high density polyethylene (HDPE) bottles and 

analyzed shipboard within 24 hours using a nutrient autoanalyzer.  Unfiltered NH4
+
 samples 

were collected directly from Niskin bottles into 60 mL pre-conditioned HDPE bottles and 
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analyzed using the OPA method (Holmes et al. 1999).  Limits of detection for NO3
-
, NO2

-
, NH4

+
, 

urea, and OCN
-
 were 70, 70, 50, 70, and 0.4 nM, respectively. 

 

Figure 20. Station Map for the Eastern Tropical South Pacific. Locations of all CTD casts 

(circles) and stations 9, BB1, and BB2 (stars) overlie satellite-derived sea surface temperature 

(left).  The longitudinal transect (Figures 21 and 22) and the transect parallel to the coastline 

(Figures 23 and 24) are shown in red and green boxes, respectively.  Surface cyanate 

concentrations are shown in the right panel.   

Oxic Uptake Methods 

 N uptake (NO3
-
, NO2

-
, NH4

+
, urea, and OCN

-
) was measured at the surface and deep chl a 

maximum (DCM) at stations 9 and BB1; NH4
+
, urea, and OCN

-
 uptake were measured at station 

BB2.  Oxygenated water samples collected from Niskin bottles mounted to the CTD rosette were 

transferred directly to 1 L PETG incubation bottles.  Uptake experiments were initiated by 

adding highly enriched (98 %) 
15

N-labeled NH4
+
, NO3

-
, NO2

-
, and 

15
N

13
C-labeled urea and OCN

-

.  Substrate additions for oxic incubations were targeted to be between 2 and 10 % of the ambient 

concentrations of NH4
+
, NO3

-
, NO2

-
, urea, and OCN

-
 to yield reliable uptake rate measurements.  

When ambient concentrations were unknown prior to the initiation of experiments (urea and 

OCN
-
) or were < 300 nM (sometimes true for NO2

-
 and NH4

+
), 30 nM substrate additions were 
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made, which led to enrichments ≥ 10 % and may have stimulated uptake.  Incubation bottles 

were placed in deck incubators equipped with flow-through seawater and 1, 2, or 4 neutral 

density screens to simulate in situ light conditions (55, 28, and 14 % of ambient incident light).  

Incubations were terminated after 2 hours by vacuum filtration (0.7 μm GF/F, ≤ 5 mm Hg) and 

filters were stored at -20 °C until analysis.  Filters were dried at 40 °C, pelletized in tin capsules 

and analyzed on a Europa 20/20 isotope ratio mass spectrometer equipped with an automated N 

and C analyzer.  Uptake rates were calculated using a mixing model (Montoya et al. 1996; 

Mulholland et al. 2006; Orcutt et al. 2001), and limits of detection were calculated as in Chapter 

IV. 

 Uptake kinetics of NH4
+
, urea, and OCN

-
 were measured at stations BB1 and BB2 by 

making 
15

N-labeled substrate additions ranging from 10 to 1000 nM and incubating bottles for 2 

hours as described above.  To determine diurnal variability in OCN
-
 uptake in surface waters, 

OCN
-
 uptake experiments were conducted using water sampled from the ship's flow-through 

system at station BB2 and collected from a patch of water the ship followed using floating 

sediment traps as drogues.  Diurnal uptake experiments were initiated approximately every 4 

hours over a 27 hour period. 

Anoxic Uptake Rates 

 Uptake rates were determined in anoxic, sub-euphotic waters at station BB2.  To our 

knowledge, uptake rates have not been previously measured in anoxic  waters below the euphotic 

zone.  Anoxic samples were incubated in duplicate acid-washed, helium-purged, evacuated, 3.8 

L, 2-mil thick, polyvinyl fluoride (PVF) opaque gas sampling bags with dual entry points: one a 

nickel-plated brass hose barb and the other a septum (Tedlar, Cole Parmer EW-01409-92).  

Water was transferred from Niskin bottles into the bags using teflon tubing attached to the barb.  

Any helium remaining in the bag after filling was removed by syringe through the septum port.  

To minimize oxygen contamination from air at the top of the Niskin bottle, Niskin bottles 

remained sealed until immediately prior to sampling, and only one bag was filled per Niskin 

bottle.  Although these bags were used successfully on a previous cruise (Jayakumar et al. 

unpubl.), the batch of bags ordered for this cruise was unexpectedly fragile and even with careful 

handling, approximately 30 % of the bags ruptured leading to loss of replicates.   
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 For all anoxic incubations, ambient concentrations of urea, NH4
+
, and OCN

-
 were below 

the limit of detection, and substrate additions ranged from 105 to 145 nM N consequently, rate 

estimates should be considered maximum rates.  All bags were incubated in the dark at 11 °C in 

a cold room.  Because some of the anoxic incubations included water from the secondary chl a 

maximum, uptake by phytoplankton may have been underestimated in dark incubations although 

PAR at the secondary chl a maximum was < 0.1 % of surface PAR.  Because N uptake has not 

previously been measured in this environment and at such low biomass, each bag was sampled at 

multiple time points to determine the linearity of uptake over time and the optimal incubation 

length.  Incubation times (12 to 48 hours) were longer than typical uptake incubations (McCarthy 

and Bronk 2008) because particle flux, and by extension microbial biomass and uptake rates, 

decreases exponentially with depth below the euphotic zone (Martin et al. 1987).  Samples to 

measure uptake rates were collected using a peristaltic pump fitted with a GF/F (0.7 μm) housed 

in a swinnex filter holder.  The filtrate was collected in a graduated cylinder to determine the 

volume filtered at each time point.  Filters were stored at -20 °C until analysis as described 

above.  Uptake rates were calculated in two ways.  First, a rate was calculated for each time point 

using the standard method (hereon referred to as the standard calculation) described above for 

the oxic incubations and second, a rate was calculated by fitting a simple linear regression to N 

taken up over time for all replicate bags and time points (hereon referred to as the time series 

calculation), the typical method for calculating rates of dissimilatory nitrogen processes such as 

anammox (Dalsgaard et al. 2003) which was estimated in parallel incubations (Babbin et al. 

submitted) and with which we compare our uptake rates. 

Ocean Color and Sea Surface Temperature 

 Ocean color and sea surface temperature data used in this study were produced with the 

Giovanni online data system, developed and maintained by the National Aeronautic and Space 

Administration Goddard Earth Sciences Data and Information Services Center (NASA GES 

DISC) (Acker and Leptoukh 2007).    
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RESULTS 

Hydrographic Parameters and Dissolved N Distributions  

 Surface waters in the study region were characterized by cold, high chl a water nearshore 

and warmer, lower chl a water offshore (Figure 20A, data not shown).  Surface OCN
-
 

concentrations were highest at the northern- and western-most stations of the study region 

(Figure 20B) where high temperatures indicated that the water mass was influenced by the South 

Equatorial Current rather than the cold Peru current which flows along the coast (Pennington et 

al. 2006).  Overall, OCN
-
 concentrations ranged from below the limit of detection (b.d.l.; 0.4 

nM) to 45 nM above the oxycline where the mean concentration was 5.2 ± 8.5 nM (n = 286, 

where each n is the average of three replicates) and from b.d.l. to 10 nM in underlying anoxic 

waters where the mean concentration was 1.4 ± 1.8 (n = 69, where each n is the average of three 

replicates) (Figures 21-24).   
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Figure 21. Hydrographic parameters in the upper 150 m along a longitudinal transect at 17 °S.  

Cyanate concentrations, density, and ammonium, chlorophyll a fluorescence, nitrite, and nitrate 

concentrations are shown.  Black dots and lines represent sampling locations and the colored 

contours represent interpolations of the given parameters between those data points.  See Figure 

20 for station locations.  
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Figure 22. Hydrographic parameters between 150 and 500 m along a longitudinal transect at 17 

°S.  Cyanate concentrations, density, and ammonium, oxygen, nitrite, and nitrate concentrations 

are shown.  Black dots and lines represent sampling locations and the colored contours represent 

interpolations of the given parameters between those data points.  See Figure 20 for station 

locations.   
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Figure 23. Hydrographic parameters in the upper 100 m along a transect parallel to the coastline.  

Cyanate concentrations, density, and ammonium, chlorophyll a fluorescence, nitrite, and nitrate 

concentrations are shown.  Black dots and lines represent sampling locations and the colored 

contours represent interpolations of the given parameters between those data points.  The left 

side (0 km) represents the northernmost station and the right side (1500 km) represents the 

southernmost station.  See Figure 20 for station locations. 
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Figure 24.  Hydrographic parameters between 100 and 600 m along a transect parallel to the 

coastline.  Cyanate concentrations, density, and ammonium, oxygen, nitrite, and nitrate 

concentrations are shown.  Black dots and lines represent sampling locations and the colored 

contours represent interpolations of the given parameters between those data points.  The left 

side (0 km) represents the northernmost station and the right side (1500 km) represents the 

southernmost station.  See Figure 20 for station locations 

 Along the longitudinal transect, density and NO3
-
 concentrations above the pycnocline 

were higher in the east than in the west (Figure 21), likely indicating coastal upwelling which is 

common in this region (Pennington et al. 2006).  In contrast, OCN
-
 concentrations above the 

pycnocline were highest in the western half of the transect and were the highest OCN
-
 

concentrations observed in the study region (up to 45 nM, Figure 21).  Above the pycnocline 

along the longitudinal transect, NH4
+
 and NO2

-
 ranged from 0.3 to below the limit of detection 

(b.d.l.) and 0.4 to b.d.l. μM, respectively, with subsurface maxima below the chl a maximum 

(Figure 21).   

 Along the longitudinal transect, the ODZ thickened towards the coast, increasing from 40 

m in thickness at the farthest west station to 370 m at the easternmost station (Figure 22).  

Secondary NO2
-
 maxima (SNM) were present in the mid to upper ODZ, and an especially strong 

SNM was observed at the eastern end of the transect which corresponded to a decline in NO3
-
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concentrations compared to adjacent waters (Figure 22) indicating a zone of incomplete 

denitrification (Devol 2008).  NH4
+
 concentrations were less than 0.1 μM or b.d.l. below the 

oxycline, and OCN
-
 concentrations were b.d.l. below the oxycline except for small patchy local 

maxima in the middle of the ODZ mainly in the western half of the transect (Figure 22). 

 Along the transect parallel to the coastline, density was lower at the northern end (Figure 

23) delineating the influence of the warm South Equatorial Current in the North and the cold 

Peru current in the south, as is also visible from satellite-derived sea surface temperature (Figure 

20A).  Above the pycnocline, NO3
-
, NO2

-
, and OCN

-
 were highest at the northern end of the 

transect reaching concentrations of 5.5 μM, 0.6 μM, and 27 nM, respectively (Figure 23).  NO2
-
, 

NH4
+
, and OCN

-
 concentrations were patchy above the pycnocline, probably due to low 

sampling resolution in highly productive waters with variable advection along the transect.  

There was a subsurface NO2
-
 concentration maximum in the southern half of the transect (Figure 

23).   

 On the transect parallel to the coastline, the ODZ was 100 to 300 m thick (thicker in the 

North) with a SNM throughout most of the transect (Figure 24).  NO2
-
 concentrations in the 

SNM were highest at the northern end (up to 10 μM), corresponding to a decrease in NO3
-
 

concentrations relative to adjacent waters (Figure 24), as was observed at the eastern end of the 

longitudinal transect (Figure 22).  NH4
+
 concentrations were < 0.1 μM throughout the ODZ.  

OCN
-
 concentrations were patchy throughout the ODZ, likely due to low sampling resolution 

(Figure 24), and there were OCN
-
 concentration maxima at the northern and southern ends of the 

transect (6.8 and 6.4 nM).  The maximum at the northern location was located between two 

SNMs at the same station including the highest NO2
-
 concentration from the study region, but 

there was no SNM at the southern end where the other OCN
-
 maximum was observed (Figure 

24).  OCN
-
 concentrations were < 2 nM below 700 m at all stations (data not shown). 

 At station BB1 chl a was approximately 1 mg m
-3

 above 60 m with  a slight maximum 

centered at 30 m (Figure 25A).  The base of the euphotic zone (1% of surface PAR) was at 66 m 

(data not shown), the nitracline was at 60 m, and the ODZ extended from 190 to 370 m (Figure 

25A).  NO3
-
 increased with depth below the pycnocline but decreased in concentration in the 

ODZ corresponding to an increase in NO2
-
 concentrations (Figure 24B).  OCN

-
 and NH4

+
 

concentrations were highest at the surface, and there was  a subsurface maximum in urea 

concentration.  While urea and NH4
+
 concentrations peaked at approximately 0.6 μM, OCN

-
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concentrations peaked at only 10 nM (Figures 24 C-E).  OCN
-
 and NH4

+
 concentrations 

decreased to b.d.l. at the upper oxycline, although there was a small OCN
-
 peak within the ODZ 

(198 m, 3.6 nM).  

 

Figure 25. Vertical distributions and uptake rates for station BB1.  A) Chlorophyll a 

Fluorescence (Chl a, mg m
-3

) is shown in grey and oxygen concentrations (umol kg
-1

) are shown 

in black.  B) Nitrate (NO3
-
) and nitrite (NO2

-
) concentrations (μM) are shown with a dotted line 

and solid line, respectively, and uptake rates of NO3
-
 and NO2

-
 are shown with closed and open 

circles, respectively. In panels C-E concentrations (nM) of cyanate (OCN
-
), ammonium (NH4

+
), 

and urea are depicted by the solid lines, and uptake rates of OCN
-
, NH4

+
, and urea (nmol l

-1
 h

-1
) 

are depicted with closed circles, Concentrations and uptake rates below the detection limit were 

plotted as equal to the detection limit (0.6 nM for OCN
-
, 80 nM for urea, 50 nM for NH4

+
, and 70 

nM for NO2
-
 and NO3

-
).  Error bars are ± 1 standard deviation for OCN

-
 concentrations (n = 3) 

and ± 1 average deviation for uptake rates (n = 2).   
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Figure 26. Vertical distributions, uptake rates, and anammox rates for station BB2.  A) 

Chlorophyll a fluorescence (chl a, mg m
-3

) is shown in grey and oxygen (μmol kg
-1

) is shown in 

black.  B) Nitrate (NO3
-
 μM) is shown with a dotted line and nitrite (NO2

-
, μM) is shown with a 

solid line. In panels C-E concentration (nM) is depicted by the continuous solid line (samples 

collected every 4 m), uptake rate from the first time point (nmol l
-1

 h
-1

) is depicted with closed 

circles, and rate of 
15

N2 production from cyanate (OCN
-
), urea, and ammonium (NH4

+
,
 
nmol l

-1
 h

-

1
) is depicted by open circles.  Concentrations and uptake rates below the detection limit were 

plotted as equal to the detection limit (0.6 nM for OCN
-
, 80 nM for urea, and 10 nM for NH4

+
).  

Error bars are ± 1 standard deviation (concentration, 
15

N2 production, n = 3) and ± 1 average 

deviation (uptake, n = 2).  
15

N2
 
production rates and NO3

-
, NO2

-
, and oxygen profiles are 

reproduced from Babbin et al (submitted). 
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 At station BB2 there were two chl a maxima, one in the oxic layer at 25 m and one in the 

ODZ centered around 99 m (Figure 26A) where PAR was < 0.1 % of surface irradiance (data not 

shown). The base of the euphotic zone (1 % of surface PAR) was at 40 m (data not shown) and 

the ODZ extended from 90 to 400 m (Figure 26A).  As for BB1 and the transects, NO3
-
 increased 

with depth below the pycnocline but then decreased in concentration in the ODZ corresponding 

to an increase in NO2
-
 concentrations (Figure 26B).  Vertical profiles of concentrations and 

uptake rates for OCN
-
, urea, and NH4

+
 are shown in Figures 26 C - E.  Although OCN

-
 

concentrations were an order of magnitude lower than urea and NH4
+
 concentrations, the vertical 

profiles of all three were similar in shape with high surface concentrations, a subsurface 

minimum, and a maximum at 28 m. The OCN
-
, urea, and NH4

+
 maxima were shallower than the 

primary NO2
-
 maximum (PNM, 40 m) and deeper than the nitracline (25 m).  Concentrations 

decreased to below detection near the base of the oxic layer, although the decrease in NH4
+
 and 

urea concentrations with depth was sharper than the decrease in OCN
-
 concentration.   

Cyanate Uptake 

 OCN
-
 N uptake in surface waters and at the DCM at stations 9 and BB1 was less than 2 

% of total measured N uptake (NH4
+
, urea, NO3

-
, NO2

-
, and OCN

-
) (Figures 25 B-E and 27, 

Table 11), but the OCN
-
 turnover time was comparable to those of NH4

+
 and urea except at the 

surface at BB1 (Table 11).  The majority of N taken up in the upper oxic water column was from 

NH4
+
 and urea, and the turnover times of these were less than 2 days for NH4

+
 and ≤ 8 days for 

urea (Table 11).  At station BB2, OCN
-
 uptake at the surface and DCM was less than 1 % of 

NH4
+
 and urea uptake in the surface (Figure 26).  OCN

-
 and urea C uptake was below the limit of 

detection at stations 9 and BB1. 
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Figure 27. N uptake at two offshore stations.  Total N uptake is the sum of ammonium (NH4
+
, 

white), nitrate (NO3
-
, black), nitrite (NO2

-
, hatched), urea-N (grey), and cyanate (OCN

-
, black 

and white checked) uptake.  See Table 11 for uptake rates including error. 

Table 11. Uptake rates, turnover times, and ambient concentrations of nitrate (NO3
-
), nitrite 

(NO2
-
), ammonium (NH4

+
), urea, and cyanate (OCN

-
) for stations BB1 and 9.  Values below the 

limit of detection are indicated as b.d.l., and turnover times that could not be calculated because 

the uptake rate or concentration was b.d.l. are listed as N/A.  Average deviations (n =2) are 

shown in parentheses.  Uptake rates are in nmol N l
-1

 h
-1

, turnover times are in days, and 

concentrations are in μM N. 

Station 

Latitude 

(°S) 

Longitude 

(°E) 

Depth 

(m) 

 

NO3
- 

NO2
- 

NH4
+ 

Urea OCN
-
 

BB1 13.711 -81.390 2.5 

Uptake 4.2(0.8) 0.04(0.0) 7.8(0.1) 2.4(0.7) .01(0.0) 

Turnover Time  24 170 1.6 4.9 36 

Concentration  2.4 0.2 0.3 0.3 0.01 

BB1 13.711 -81.390 30 

Uptake 1.7(0.3) 0.1(0.1) 6.4(3.0) 7.1(3.1) .05(0.0) 

Turnover Time  63 110 1.9 8.0 8.1 

Concentration  2.5 0.2 0.3 1.4 0.01 

9 13.002 -82.198 2.5 

Uptake 3.5(4.3) 0.3(0.1) 5.8(2.4) 11(2.7) 0.2(0.0) 

Turnover Time  13 15 0.9 2.3 2.3 

Concentration  1.1 0.1 0.1 0.6 0.01 

9 13.002 -82.198 30 

Uptake 2.5(3.3) 0.1(0.1) 7.8(0.8) 1.0(0.2) 0.2(0.2) 

Turnover Time  17 34 0.7 N/A 2.5 

Concentration  1.0 0.1 0.1 b.d.l. 0.01 
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 OCN
-
 uptake did not reach Michaelis-Menten kinetics saturation at 1000 (BB1) or 600 

(BB2) nM (Figure 28).  Uptake kinetics could not be determined for urea or NH4
+
 at either 

station because concentrations of urea and NH4
+
 were 100 and 300 nM (for urea) and 300 and 

600 nM (for NH4
+
) at BB1 and BB2, respectively, and uptake for both was saturated at these 

concentrations (data not shown).  OCN
-
 C uptake was b.d.l. for all kinetics experiments.  There 

was Significant diurnal variability in OCN
-
 uptake at station BB2 for both N and C uptake 

(Figure 29).  Both volumetric and chl a -normalized N uptake were highest in the afternoon, but 

uptake was significantly higher on the second day (0.25 ± 0.12 nmol N l
-1

 h
-1

 at 16:20) than on 

the first day (0.04 ± 0.01 nmol N l
-1

 h
-1

 at 15:45) suggesting substantial daily variability as well.  

Volumetric and chl a -normalized C uptake was higher at night than during the day and also 

exhibited daily variability with higher uptake on the first day (0.3 ± 0.02 nmol C l
-1 

h
-1

 at 15:45) 

than on the second day (b.d.l. (< 0.02 nmol C l
-1 

h
-1

) at 16:20).  

 

Figure 28. Cyanate uptake kinetics.  Cyanate uptake at station BB1 in surface water (closed 

circles, R
2 

= 0.9981) and at water collected from the DCM (open circles, R
2
 = 0.9928), and at 

station BB2 in surface water (diamonds, R
2
 = 0.9995).  Error bars are ± 1 standard deviation (n = 

2) where error bars not visible are smaller than the symbol. 
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Figure 29. Diurnal cyanate uptake at station BB2.  Samples were collected from the ship's 

seawater flow-through system on July 18 and 19, 2013 to measure cyanate uptake.  N uptake 

rates are reported in nmol N l
-1

 h
-1

 (closed circles) and nmol N μg (Chl a)
-l
 h

-1
 (open circles), and 

C uptake rates are reported in nmol C l
-1 

h
-1

 (closed diamonds) and nmol C μg (Chl a)
-l
 h

-1
 (open 

diamonds).  Error bars are ± 1 average deviation (n=2) and time is the mean of the incubation 

length for ~ 2 hour incubations.  Carbon uptake rates that were b.d.l. are reported as equal to the 

average detection limit (0.02 nmol C l
-1

 h
-1

). 

 At station BB2, OCN
-
, urea, and NH4

+
 N was taken up just below the oxycline (95 m), at 

the SNM depth (230 m), and at the base of the ODZ (400 m) (Figures 27 C-E and 30, Table 12).  

Urea C uptake was b.d.l. at all ODZ depths, and OCN
-
 C uptake was b.d.l. at all depths and time 

points except for 95 m after 36 hours calculated using the standard calculation where the rate was 

1.4 ±0.8 pmol C l
-1

 h
-1

.  Uptake of picomolar C was detectable because the uptake detection limit 

is inversely proportional to incubation time.  NH4
+
 uptake was highest at the depth of the SNM, 

and urea and OCN
-
 uptake rates increased with depth within the ODZ and were highest at the 

base of the ODZ despite concentrations below detection for all three substrates throughout the 

ODZ (Figures 25 C-E).  OCN
-
 uptake was of similar magnitude throughout the water column 

while urea and NH4
+
 uptake were 1 to 2 orders of magnitude higher at the surface than in the 

ODZ (Figures 26 D-E).  In the ODZ, uptake rates of OCN
-
, urea, and NH4

+
 were similar in 

magnitude to rates of 
15

N2 production from those same compounds (Babbin et al. submitted, 

Figures 26 D-E).  Uptake and 
15

N2 production rates were similar at the top of the ODZ for all 
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three compounds, but uptake was significantly higher than 
15

N2 production in the middle of the 

ODZ for all compounds. 

 For ODZ N uptake rates calculated using the standard calculation (Montoya et al. 1996; 

Mulholland et al. 2006; Orcutt et al. 2001), there were no significant differences between the first 

and second time points for all substrates (NH4
+
, OCN

-
, and urea) and depths (95, 230, and 400 

m), except for NH4
+ 

at 95 m where uptake was significantly lower at the shorter time point (8 

hours) compared to the longer time point (36 hours, Figure 30, Table 2), possibly indicating 

stimulation of uptake by substrate addition.  However, uptake rates were linear for pooled 

replicate bags over the three time points as determined using the time series calculation (linear 

regression of N taken up over time for significance criterion α = 0.05), except for OCN
-
 at 95 m 

and NH4
+
 at 400 m (Table 12).  These deviations from linearity could have resulted from high 

variability between incubation bags, possibly caused by variable oxygen contamination or low 

sample size.  For future studies of OCN
-
 N uptake where only one time point is logistically 

feasible, we recommend incubation lengths of 8 to 12 hours to maximize detectability but 

minimize bottle effects.  To measure C uptake, incubation lengths should be > 36 hours.   
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Figure 30. Uptake time series in the oxygen deficient zone.  N taken up is shown for cyanate 

(OCN
-
, A), urea (B) and ammonium (NH4

+
, C) at the first anoxic depth (95 m), at the secondary 

nitrite maximum (230 m), and just above the base of the ODZ (400 m).  All incubations were 

performed at station BB2 in gas tight bags which were sampled at two time points.  Replicate 

bags are represented by grey diamonds and black circles, and the uptake rate was calculated as 

the slope of the line of the average of all replicates (solid line).  Statistical parameters and uptake 

rates are shown in Table 2.   

A. OCN- 

 
B. Urea 

 
C. NH4

+ 
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Table 12. N uptake rates in the oxygen deficient zone at station BB2 calculated using the 

standard and time series calculations.  For the standard calculation (Montoya et al. 1996; 

Mulholland et al. 2006; Orcutt et al. 2001), individual rates were calculated for each time point 

(A and B).  Average deviations (n = 2 incubation bags) are shown in parentheses and p-values 

are the result of a two-tailed t-test where a bold value indicates a significant difference in uptake 

rate between time points A and B for α = 0.05.  For the time series calculation (Dalsgaard et al. 

2003), standard errors (n = 6 or 3
 β
) are shown in parentheses, and p values shown in bold and 

italics indicate statistically significant linear uptake rates for α = 0.05 and 0.1 criteria, 

respectively.  Statistical parameters that could not be calculated due to low number of replicates 

are given as N/A. 

  
Standard Uptake Calculation   Time Series Calculation  

 
Depth (m) 

Uptake 

(nmol N l
-1

 h
-1

)
 
 

Incubation 

Time 

(hours) 

p
 
 

 
N Uptake 

(nmol N l
-1

 d
-1

)  
R

2
  p  

  
A B A B   

   

OCN
- 

95 0.07(0.03) 0.09(0.08) 8.6 36.3 0.78  0.08(0.04) 0.5689 0.0755 

230 0.14(0.02) 0.08(0.01) 25.9 47.9 0.11  0.08(0.03) 0.8182 0.0100 

400 0.13(0.00) 0.29(0.16) 10.5 28.8 0.77  0.23(0.03) 0.7309 0.0242 

Urea 

95 0.04(0.03) 0.18(0.07) 8.6 36.3 0.13  0.17(0.04) 0.8552 0.0061 

230 0.34(0.07) 0.24(0.03) 24.9 47.9 0.18  0.22(0.04) 0.917 0.0019 

400 0.45(0.31) 0.35(0.08) 10.5 28.8 0.70  0.31(0.04) 0.8638 0.0053 

NH4
+ 

95 0.09(0.00) 0.16(0.01) 8.8 36.5 0.01  0.16(0.04) 0.9847 < 0.0001 

230
 α
 0.20

α
 0.58

α
 24.9 47.9 N/A  0.47(0.04) 0.99 < 0.0001 

400
 α
 0.54

α
 0.36

α
 10.5 28.9 N/A  0.51(0.04) 0.93 0.0716 
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DISCUSSION 

Oxic Processes 

 The shallow, euphotic oxic region sampled in the ETSP was characterized by NO3
-
 in the 

low micromolar range,
 
elevated OCN

-
 relative to deeper waters, patchy NO2

-
 and NH4

+
, and high 

concentrations of chl a.  Micromolar surface DIN concentrations are typical for this region due to 

the balance between inputs from nutrient-rich equatorial waters, thermocline shoaling, coastal 

upwelling, and drawdown from high productivity (Pennington et al. 2006).  OCN
-
 concentrations 

were mostly uniform with depth above the pycnocline and below the limit of detection below the 

pycnocline with the exception of small maxima within the ODZ at some stations.  OCN
-
 uptake 

was a small fraction of N uptake in the oxic water column (< 1 %), and OCN
-
 uptake was not 

saturated after addition of 1 μM substrate, but urea and NH4
+
 uptake were saturated for all 

substrate additions (up to 1 μM).  From this we infer  that OCN
-
 did not contribute significantly 

to N uptake in this system at this time of year.   

 OCN
-
 distributions were previously measured in the coastal North Atlantic between Cape 

Hatteras and the Gulf of Maine where they ranged from 0 to 25 nM (Chapters III and IV) 

however in the ETSP OCN
-
 concentrations were at or near the limit of analytical detection 

(Chapters III and IV).  The North Atlantic study region is an N-limited temperate Western 

boundary area with a wide continental shelf and a mixed, seasonally dynamic phytoplankton 

community (Townsend et al. 2006), whereas the ETSP is a tropical Eastern boundary with a 

narrow continental shelf, coastal upwelling, general diatom dominance, and offshore iron 

limitation  (Pennington et al. 2006).  At stations on the continental shelf slope in the coastal 

North Atlantic, the OCN
-
 concentration was less than 2 nM at the surface and there was a OCN

-
 

maximum below the DCM followed by a gradual decline in OCN
-
 concentration to below 

detection below 500 m (Chapters III and IV), whereas in this study, OCN
-
 concentrations were 

high (10 to 45 nM) in shallow waters and rapidly declined below the pycnocline with no 

subsurface maxima associated with the DCM.  OCN
-
 profiles in the coastal North Atlantic were 

attributed to uptake in sunlit waters, production by degrading organic matter as it sank out of the 

euphotic zone, and oxidation at depth.  In this study, increases in surface OCN
-
 concentrations 

along the western half of longitudinal 17 
o
S transect could have been a result of degradation of 
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chl a biomass as productive upwelled water moved offshore.  High OCN
-
 concentrations above 

the pycnocline could also be explained by phytoplankton community composition.  OCN
-
 is 

produced in senescing diatom cultures (Chapter III), to our knowledge sequenced diatoms do not 

have the genes for OCN
-
 utilization (Guilloton et al. 2002), and this system is typically 

dominated by diatoms (Pennington et al. 2006).   

 OCN
-
 N uptake rates at the surface and DCM were similar (1.7 ± 1.5 nmol l

-1
 h

-1
, n = 29, 

1 cruise) to those observed in the coastal North Atlantic Ocean (1.3 ± 1.9 nmol l
-1

 h
-1

, n = 135, 4 

cruises, Chapter IV).  In both this study and the coastal North Atlantic, OCN
-
 uptake was a small 

fraction of total N uptake, while in the oligotrophic North Atlantic, OCN
-
 N was up to 10 % of 

total N uptake (Chapter III) indicating that OCN
-
 may be a quantitatively more important source 

of N in oligotrophic systems than in nutrient-rich coastal waters as suggested in previous studies 

(Kamennaya and Post 2013).  Stations 9 and BB1 are on the edge of the Peruvian Coastal 

Upwelling region, which is typically dominated by diatoms which are thought to prefer NO3
-
 as a 

N source (Pennington et al. 2006).  In the present study, NO3
-
 only accounted for 10- 29 % of 

total N uptake while the reduced forms of N, urea and NH4
+
, accounted for 8 - 53 % and 27 - 66 

% of N uptake, respectively possibly indicating that these stations were outside the main 

upwelling region.    

 OCN
-
 N uptake was highest at midday, while OCN

-
 C uptake was highest at night (Figure 

29) possibly indicating light dependence and inhibition of OCN
-
 N and C uptake, respectively, 

which may indicate different groups of organisms utilized OCN
-
 N and C.  In the coastal North 

Atlantic, over four cruises where measurements were made during the afternoon, OCN
-
 N uptake 

predominated at the surface while OCN
-
 C uptake predominated at the DCM (Chapter IV).  We 

attributed surface N uptake to phytoplankton and speculated that, at deeper depths, high uptake 

of C relative to N was because of light-inhibited  dissimilatory oxidation OCN
-
 N and uptake of 

OCN
-
 C by chemoautotrophic nitrifiers.  OCN

-
 can be used as a source of reductant by some 

ammonia oxidizers, and many NO2
-
 oxidizers, including several marine strains, have the genes 

for OCN
-
 utilization (Palatinszky et al. 2015; Spang et al. 2012).  Marine ammonia oxidation has 

been shown to be higher at night than during the day which may be attributed to reduced 

competition with phytoplankton (Smith et al. 2014) or photoinhibition of ammonia oxidation 

(Hooper and Terry 1974).  A diurnal cycle of ammonia oxidation would explain the presence of 

archaeal ammonia oxidation genes and transcripts in surface waters when ammonia oxidation 
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was previously thought to be confined to the base of the euphotic zone (Church et al. 2010; 

Pedneault et al. 2014; Santoro et al. 2010).  Our results may indicate that, in ETSP surface 

waters, OCN
-
 N is primarily taken up by photoautotrophs and that OCN

-
 is utilized as a source of 

reductant by ammonia oxidizers at night resulting in oxidation of OCN
-
 N and assimilation of 

OCN
-
 C.   

Anoxic Processes 

  OCN
-
, urea, and NH4

+
 uptake were also measured below the euphotic zone in the ODZ, 

and their uptake rates increased with depth exceeding  rates of anammox attributed to those same 

substrates at the SNM (Babbin et al. submitted).  Uptake rates at the base of the oxycline 

coincided with a small secondary chl a peak that could have been attributed to low light adapted 

Prochlorococcus which are typically found near the base of the oxycline and are known to be 

able to utilize OCN
-
 (Goericke et al. 2000; Kamennaya and Post 2013; Lavin et al. 2010).  

Nitrogen uptake is typically measured in sunlit waters where nitrogen limits phytoplankton 

growth and reproduction and consequently rates of primary production (Mulholland and Lomas 

2008).  To our knowledge, nitrogen uptake has not been measured in marine systems in the 

absence of phytoplankton biomass.  However, important heterotrophic and chemoautotrophic 

biogeochemical processes take place in ODZs (Paulmier and Ruiz-Pino 2009) and the nitrogen 

uptake observed in this study may represent N assimilation supporting the growth of these 

organisms, some of which are autotrophs.  Alternatively, our 30 nM additions could have 

stimulated NH4
+
, urea, and OCN

-
 uptake dependent on microbial community.  Denitrifiers are 

more responsive to episodic nutrient additions than are anammox bacteria (Ward et al. 2009) 

however the extent to which either process is limited by N for assimilation is not clear.  NO3
-
 and 

NO2
-
 are the abundant forms of nitrogen available for assimilation in ODZs, but assimilation of 

these oxidized forms is energetically expensive compared to reduced forms of N (Berges and 

Mulholland 2008; Mulholland and Lomas 2008).  

 NH4
+
 was taken up at rates equal to or greater than the rate of NH4

+
 consumption in 

support of the anammox reaction (Babbin et al. submitted).  While it is most often assumed that 

N taken up in incubation experiments is assimilated, it could also reflect accumulation of 

intracellular NH4
+
 to support anammox.  NH4

+
 concentrations were below the limit of analytical 

detection (50 nM) within the ODZ, as has been observed previously in marine ODZs, and these 

low concentrations have been attributed to consumption of NH4
+
 by anammox (Devol 2008).  It 
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is presently thought that biological degradation of OCN
-
 and urea to NH4

+
 are intracellular 

processes (Miller and Espie 1994; Solomon et al. 2010).  If this is the case, NH4
+
 produced from 

degradation of these compounds could be shunted to the anammox reaction assuming that 

anammox bacteria are capable of taking up OCN
-
 and urea as found by Babbin et al. (submitted).   

OCN
-
 degrades abiotically to NH4

+
 (Amell 1956; Kamennaya et al. 2008), and urea degrades 

abiotically to OCN
-
 (Dirnhuber and Schutz 1948).  It is possible that NH4

+
 produced from OCN

-
 

and urea extracellularly, whether biotically or abiotically, was rapidly taken up as NH4
+
 by the 

anammox bacteria.  The 
29

N2 excess concentration following the addition of 
15

N- OCN
-
 increased 

linearly over 24 hours, and the rate of OCN
-
-supported anammox was not significantly different 

from that of traditional anammox (Babbin et al. submitted) suggesting that OCN
-
 may be used 

directly by anammox bacteria, and there may exist a "cyanammox" pathway.  If this is a two-step 

process, this suggests that either the time-scales of our incubations were too long to detect the lag 

between NH4
+
 production from OCN

-
 or that anammox is the rate limiting step in the coupled 

reaction.  In contrast to OCN
-
, there was a 36 hour lag in urea-supported anammox during 

incubation experiments (Babbin et al. submitted).  This suggests a  slow conversion of urea to 

OCN
-
 or NH4

+
 followed by OCN

-
-supported or traditional anammox.   

 Because anammox is an intracellular process (van Niftrik et al. 2004),  the 

chemoautotrophic bacteria capable of "cyanammox" could assimilate OCN
-
 C as CO2 is released 

by cyanase.  The ratio of NH4
+ 

oxidized by the anammox pathway to C fixed by anammox 

bacteria is 15:1 (van Niftrik et al. 2004).  For the rates of "cyanammox" at 95 and 230 m, the 

maximum OCN
-
 C uptake by anammox bacteria, assuming 100% efficiency of CO2 assimilation, 

would have been 9.3 and 4.0 pmol l
-1

 h
-1

, respectively.  In fact, OCN
-
 C uptake at 95 m was b.d.l. 

after 8 hours but was 1.4 pmol l
-1 

h
-1

 after 36 hours which equates to a OCN
-
-derived CO2 

assimilation efficiency by anammox bacteria of 15% if anammox bacteria were the only 

autotrophs able to utilize OCN
-
.  At 95 m some OCN

-
 C could have been taken up by 

Prochlorococcus which is generally found in the secondary chl a maximum in ODZs (Figure 

7A) (Lavin et al. 2010) and of which some strains can utilize OCN
-
 (Kamennaya and Post 2013; 

Rocap et al. 2003), resulting in a OCN
-
-C anammox bacteria assimilation efficiency of < 15%.  

At 230 m, OCN
-
 C uptake was b.d.l. (d.l. = 0.3 pmol l

-1
 h

-1
 for a 48 hour incubation) indicating a 

OCN
-
-derived CO2 efficiency by anammox bacteria of less than 68%.  Recovery < 100% could 

indicate that anammox bacteria lack a mechanism to efficiently fix CO2 before it diffuses out of 
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the cell, that the majority of cyanase activity is not located inside anammox bacteria, or that C 

fixed by anammox bacteria is released from the cell during incubations.   

 OCN
-
, urea, and NH4

+
 were taken up and supported anammox in the ODZ despite the fact 

that these compounds were below their limits of detection, suggesting that the community was 

"primed" for utilization of these compounds and that there is a tight coupling between production 

and consumption of these compounds.  NH4
+
 is produced in ODZs by degradation of organic 

matter by denitrifiers (Devol 2008), and it is conceivable that OCN
-
 and urea are produced by 

similar pathways.  Organic matter degradation could explain the OCN
-
 maxima observed at some 

stations within the ODZ, however particle flux and nutrient remineralization decrease 

exponentially with depth (Martin et al. 1987), and the anoxic OCN
-
 maxima were deeper than 

expected (300 m) for such a feature possibly indicating consumption of OCN
-
 in excess of 

production in the upper ODZ.  In previous studies, the OCN
-
 maximum was similar in depth to 

the NO2
-
 and NH4

+
 maxima and the nitracline indicating release by phytoplankton or production 

from degrading organic matter (Chapter IV; Post et al. unpubl.).  However, measurements of 

OCN
-
 concentrations are still so limited as to preclude generalizations regarding rationalizations 

of its distribution in aquatic systems.   

 Urea is released to marine systems by microbes (Cho and Azam 1995) and zooplankton 

excretion (Sipler and Bronk 2015).  Diurnal vertical migration (DVM) of zooplankton from the 

euphotic to the mesopelagic zone can contribute significantly to C and N export (Putzeys 2013).  

Assuming no change in zooplankton excretion rates during migration, Bianchi et al. (2014) 

calculated that NH4
+
 excreted by DVM may increase the percentage of N lost by the anammox 

pathway by 13% (Bianchi et al. 2014).  However, zooplankton NH4
+
 excretion rates may 

decrease 4 to 5 fold in anoxic waters, sharply reducing the impact of DVM on anammox rates 

(Kiko et al. 2015).  As a decomposition product of urea (Dirnhuber and Schutz 1948), OCN
-
 

could form abiotically from urea excreted by DVM in the ODZ.   

 Overall, we have demonstrated that urea and ammonium were the dominant forms of N 

taken up in the euphotic zone in the study region, and OCN
-
 was not heavily utilized by the 

microbial community above the pycnocline.  We identified a novel anoxic pathway of cyanate-

supported anammox ("cyanammox") and made, to our knowledge, the first measurements of 

cyanate, urea, and ammonium uptake in an oxygen deficient zone.  
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CHAPTER VI 

CONCLUSIONS 

 In this work I developed a nanomolar cyanate method appropriate for measuring its 

concentrations in estuarine and seawater samples.  I applied the method to provide the first 

descriptions of cyanate distributions in the ocean and examine potential pathways of production 

and consumption in diverse marine environments.  Cyanate concentrations were measured 

throughout the water column in the Chesapeake Bay and the Atlantic and Pacific oceans in oxic 

and anoxic waters.  Using a custom-synthesized 
15

N and 
13

C labeled cyanate compound, I made 

the first measurements of cyanate N and C uptake across horizontal and vertical gradients, in 

three different seasons in North Atlantic coastal waters.  Cyanate distribution and uptake 

measurements were compared along onshore and offshore gradients in both western and eastern 

boundary systems that included diatom- and picoplankton-dominated waters and in vertical 

profiles that included oxic and anoxic waters.  The major findings of this research are as follows. 

 Cyanate can be measured in estuarine and sea water at nanomolar levels (d.l. = 0.4 

nM) by derivatization with 2-aminobenzoic acid to 2,4,-quinazolinedione and 

detection by fluorescence following high performance liquid chromatography. 

 In the marine systems studied here, cyanate concentrations in seawater ranged from 

below the limit of detection to 45 nM; concentrations were usually < 5 nM. 

 Cyanate distributions are non-conservative and biologically-driven. 

 Cyanate concentrations were low in environments dominated by cyanobacteria 

and picoeukaryotes who are known to take up cyanate. 

 Cyanate concentrations were higher in diatom-dominated systems and in regions 

with high rates of organic matter degradation because diatoms do not take up 

cyanate and cyanate is either released directly by diatoms or produced by 

degrading diatom-derived organic matter. 

 Cyanate was generally below detection below the euphotic zone except for patchy  

cyanate features within oxygen deficient waters where it was 5 - 8 nM. 

 Cyanate is produced autochthonously in marine and estuarine systems. 
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 Cyanate accumulated in senescent diatom cultures either by diatom release or 

degradation of dead cells. 

 Cyanate was produced photochemically. 

 Atmospheric deposition was not a source of cyanate in offshore systems. 

 Cyanate N and C are taken up in the euphotic zone. 

 Cyanate N was a larger fraction of total N taken up at offshore oligotrophic 

stations in the Atlantic (10%) relative to nearshore systems in the North Atlantic 

and eastern tropical South Pacific, where cyanate was a very small fraction of N 

uptake (< 2%). 

 Cyanate N uptake was higher in surface waters than at the deep chlorophyll 

maximum, higher during the day than at night, and higher in spring and summer 

than in autumn in the coastal North Atlantic Ocean. 

 Cyanate C uptake was higher at the DCM than in surface waters, during the night 

relative to the day, and in the autumn relative to spring and summer. 

 Cyanate N is taken up in ODZs at rates similar to ammonium and urea uptake. 

 Cyanate also appears to contribute to N loss processes in the ocean, and I present the 

first evidence that in the eastern tropical South Pacific ODZ there is a cyanate-

supported anammox ("cyanammox") pathway.  

 This work stemmed from "reverse genomics" in that the cyanate utilization pathway was 

identified in cyanobacterial genomes before cyanate uptake and assimilation were known 

quantities in natural systems.  The discovery of a pathway for cyanate uptake and degradation in 

the genes of cultured strains of of the globally important cyanobacteria, Prochlorococcus and 

Synechococcus (Palenik et al. 2003; Rocap et al. 2003) led to the discovery of expressed cyanate 

genes in marine systems (Kamennaya and Post 2013).  I then commenced this work to determine 

cyanate bioavailability using geochemical tools.  Cyanobacterial cyanate utilization was most 

important in oligotrophic systems where Prochlorococcus is the dominant primary producer 

(Chapter III).  However, the small sample size of this study precludes meaningful conclusions 

about the global significance of cyanate uptake in the vast oligotrophic gyres.   

 Since the inception of this project, our knowledge of cyanate has expanded to include 

dissimilatory nitrogen cycle processes.  Using stable isotope techniques (
15

N) as part of this work 

and in collaboration with Andrew Babbin (Babbin et al. submitted; Chapter V), we discovered 
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that cyanate can support anaerobic ammonium oxidation (cyanammox).  Concurrently, it was 

demonstrated that cyanate can also support nitrification in place of ammonia in cultured 

organisms (Palatinszky et al. 2015; Spang et al. 2012).  

 Our current understanding of the marine cyanate N cycle is summarized in Figure 31 

which includes pathways that are supported by direct measurements as well as those that are 

predicted by indirect measurements, culture studies, and genomes.  Biomass burning and fossil 

fuel combustion produce isocyanic acid (Nicholls and Nelson 2000; Roberts et al. 2011) which 

rapidly degrades to ammonium and carbon dioxide in aqueous solution.  Dry deposition of 

isocyanic acid may occur close to the combustion source in dry atmospheric conditions (Barth et 

al. 2013) but is unlikely to be a detectable source of cyanate to offshore waters.   There may be 

natural and anthropogenic fluxes of cyanate from terrestrial to marine systems (Dirnhuber and 

Schutz 1948; Glibert et al. 2006; Koshiishi et al. 1997; Lin et al. 2008; Chapter II).  Terrestrial 

and marine dissolved organic matter (DOM) may photodegrade to cyanate (Chapter III).  

Cyanate may be produced by algae (Chapter III) or by microbially-mediated degradation of 

organic matter (Chapters III-V), including urea and carbamoyl phosphate (Allen and Jones 1964; 

Dirnhuber and Schutz 1948; Kamennaya et al. 2008), and by heterotrophic bacteria.  In the 

euphotic zone, cyanate can be taken up by cyanobacteria and other groups of phytoplankton 

(Berg et al. 2008; Kamennaya and Post 2013; Zhuang et al. 2015). 

 At the base of the euphotic zone, cyanate may be produced by organic matter degradation 

in sinking particles either directly or through abiotic degradation of urea (Chapters III-IV).  

Cyanate would then be consumed by one of three processes: 1) slow abiotic conversion to 

ammonium (Amell 1956); 2) conversion by ammonia oxidizers to nitrite and carbon dioxide; or 

3) conversion by nitrite oxidizers to ammonium and carbon dioxide potentially including uptake 

of cyanate C (Palatinszky et al. 2015; Chapter IV; Chapter V).  In oxygen deficient zones 

(ODZs) cyanate production may occur by one of two pathways: organic matter degradation, 

probably mediated by denitrifiers, or slow abiotic degradation of urea generated by diurnally 

migrating zooplankton (Bianchi et al. 2014).  Cyanate N would then be oxidized to N2 directly or 

indirectly by anammox bacteria (Babbin et al. submitted), thereby contributing to marine N loss.   
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Figure 31.  A conceptual model of the marine cyanate cycle.   Sources of cyanate are 

atmospheric, terrestrial, and autochthonous.  Sinks are phytoplankton and bacterial uptake, 

oxidation by nitrifiers to nitrite, and oxidation by anammox bacteria to dinitrogen gas.  

Abbreviations are: isocyanic acid (HOCN), cyanate (OCN
-
), ammonia (NH3), carbon dioxide 

(CO2), dissolved organic matter (DOM), photochemistry (hν), particulate organic matter (POM), 

ammonium (NH4
+
), ammonia oxidizing archaea and bacteria (AOA/B), nitrite oxidizing bacteria 

(NOB), nitrite (NO2
-
), nitrate (NO3

-
), and dinitrogen gas (N2).  The "cyanammox" process is 

indicated by the red dashed box.   
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APPENDIX A 

CYANASE STRUCTURE 

 
Figure 1.  Molecular structure of cyanate hydratase (CynS) showing alpha helices (magenta), 

beta sheets (yellow), and other residues (white).  The five active sites of CynS are dimers which 

bind bicarbonate and cyanate, and CynS requires no cofactors.  Redrawn from Walsh et al. 

(2000) using RCSB Protein Data Bank and Rasmol 2.7.5.2. 
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APPENDIX B 

UREA AND CYANATE CYCLES 

 
Figure 1.  Urea cycle and proposed cyanate cycle where enzymes are shown in blue.  The urea 

cycle is redrawn from Nelson and Cox (2008) and the cyanate cycle is redrawn from Guilloton et 

al. (2002). 
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APPENDIX C 

CARBAMOYL PHOSPHATE DECOMPOSITION 

Scheme 1.  Abiotic decomposition of carbamoyl phosphate to cyanate.  In the absence of 

stabilizing enzymes, the half life of carbamoyl phosphate is < 2 s (Wang et al. 2008).  Redrawn 

from Wang et al. (2008).   
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APPENDIX E 

CONCENTRATIONS FOR THE GULF OF MAINE TRANSECT 

Concentrations are given ± 1 standard deviation in parentheses for nitrate, ammonium, nitrite, 

and cyanate.  Concentrations that were below the detection limit are listed as b.d.l.  The method 

detection limits were 70, 40, 70, and 0.4 nM for nitrite, ammonium, nitrate, and cyanate, 

respectively.   

 

Station 

ID 
Latitude Longitude Depth 

Nitrate 

(µM) 
Ammonium 

(µM) 
Nitrite 

(µM) 
Cyanate 

(nM) 

1 40.24224 67.69576 512.2 15.3(.11) 0.08(.06) b.d.l. 2.0(0.2) 

1 40.24224 67.69576 249.1 14.6(.03) 0.07(.02) b.d.l. 2.0(0.2) 

1 40.24224 67.69576 100.1 7.4(.02) b.d.l. b.d.l. 2.1(0.0) 

1 40.24224 67.69576 79.9 3.7(.11) 0.05(.01) b.d.l. 3.4(0.3) 

1 40.24224 67.69576 60.1 2.8(.06) b.d.l. b.d.l. 3.8(0.2) 

1 40.24224 67.69576 49.6 3.3(.03) 0.06(.02) b.d.l. 3.4(0.2) 

1 40.24224 67.69576 40.8 2.5(.04) 0.06(.03) b.d.l. 3.6(1.1) 

1 40.24224 67.69576 35.4 b.d.l. 0.05(.02) b.d.l. 4.2(0.3) 

1 40.24224 67.69576 20.4 0.3(.04) b.d.l. b.d.l. 3.1(0.1) 

1 40.24224 67.69576 10.6 b.d.l. 0.06(.01) b.d.l. 2.3(0.4) 

1 40.24224 67.69576 3.8 b.d.l. 0.07(.03) b.d.l. 3.0(0.2) 

2 40.38454 67.67678 420.3 14.5(.35) 0.05(.00) b.d.l. 1.8(0.2) 

2 40.38454 67.67678 344.4 11.0(.12) b.d.l. b.d.l. 1.0(0.2) 

2 40.38454 67.67678 196.9 14.9(.06) b.d.l. b.d.l. 2.7(0.3) 

2 40.38454 67.67678 87.5 5.4(.04) b.d.l. b.d.l. 5.0(0.2) 

2 40.38454 67.67678 64.9 4.6(.03) b.d.l. 0.28 4.5(0.8) 

2 40.38454 67.67678 50.6 0.3(.01) b.d.l. 0.20 2.9(0.7) 

2 40.38454 67.67678 39.9 0.4(.03) b.d.l. b.d.l. 3.0(0.4) 

2 40.38454 67.67678 34.5 0.2(.01) b.d.l. b.d.l. 1.5(0.2) 

2 40.38454 67.67678 27.3 0.1(.02) b.d.l. b.d.l. 1.3(0.1) 

2 40.38454 67.67678 20.1 b.d.l. b.d.l. b.d.l. 1.3(0.1) 

2 40.38454 67.67678 10.6 b.d.l. b.d.l. b.d.l. 1.2(0.1) 

2 40.38454 67.67678 4.4 b.d.l. b.d.l. b.d.l. 1.4(0.2) 

3 40.86695 67.65907 3.7 0.2(.02) 0.18(.03) b.d.l. 2.5(0.0) 

3 40.86695 67.65907 19.8 0.5(.12) 0.18(.01) b.d.l. 1.6(0.4) 

4 40.92918 67.70489 61.2 7.5(.19) 0.72(.01) 0.04 5.1(0.6) 

4 40.92918 67.70489 44.6 6.4(.03) 0.74(.00) 0.02 5.9(0.3) 

4 40.92918 67.70489 34.4 7.3(.01) 0.92(.02) 0.02 5.2(0.4) 

4 40.92918 67.70489 26.1 5.9(.04) 0.59(.00) 0.02 6.3(0.4) 
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APPENDIX E  Continued. 

Station 

ID 
Latitude Longitude Depth 

Nitrate 

(µM) 
Ammonium 

(µM) 
Nitrite 

(µM) 
Cyanate 

(nM) 

4 40.92918 67.70489 20.1 3.7(.02) b.d.l. 0.01 2.8(0.1) 

4 40.92918 67.70489 10.9 b.d.l. b.d.l. 0.04 1.7(0.5) 

4 40.92918 67.70489 4.5 3.7(.03) b.d.l. 0.03 1.9(0.2) 

5 41.46176 67.68459 34.7 b.d.l. b.d.l. b.d.l. 7.0(0.3) 

5 41.46176 67.68459 30.3 b.d.l. b.d.l. b.d.l. 7.3(0.5) 

5 41.46176 67.68459 25.6 b.d.l. b.d.l. b.d.l. 7.2(0.4) 

5 41.46176 67.68459 20.8 b.d.l. b.d.l. b.d.l. 8.1(0.6) 

5 41.46176 67.68459 15.3 b.d.l. b.d.l. b.d.l. 7.7(0.7) 

5 41.46176 67.68459 10.4 .4(.04) b.d.l. b.d.l. 7.1(0.6) 

5 41.46176 67.68459 4.5 b.d.l. b.d.l. b.d.l. 7.2(0.5) 

6 42.01527 67.67633 60.2 6.1(.11) 0.56(.01) 0.03 7.2(0.4) 

6 42.01527 67.67633 49.8 5.5(.06) 0.42(.01) 0.01 7.2(0.2) 

6 42.01527 67.67633 40.8 .3(.06) 0.07(.00) 0.01 6.5(0.5) 

6 42.01527 67.67633 24.2 .2(.00) b.d.l. b.d.l. 7.4(0.7) 

6 42.01527 67.67633 15.4 .1(.00) b.d.l. b.d.l. 5.5(0.2) 

6 42.01527 67.67633 4.1 b.d.l. b.d.l. b.d.l. 3.9(0.4) 

7 43.02865 67.7107 178.7 15.3(.05) b.d.l. b.d.l. 5.8(1.7) 

7 43.02865 67.7107 86.2 15.1(.01) b.d.l. b.d.l. 5.2(0.3) 

7 43.02865 67.7107 40.7 9.3(.04) b.d.l. b.d.l. 7.3(0.7) 

7 43.02865 67.7107 22.9 2.4(.03) b.d.l. b.d.l. 6.8(1.3) 

7 43.02865 67.7107 16.7 0.9(.01) 0.12(.10) b.d.l. 4.2(0.8) 

7 43.02865 67.7107 4.4 0.2(.18) 0.14(.01) b.d.l. 4.8(0.4) 

8 43.39768 67.69833 240.4 13.6(.01) b.d.l. 0.01 6.2(0.7) 

8 43.39768 67.69833 147.1 13.6(.15) b.d.l. b.d.l. 6.1(0.2) 

8 43.39768 67.69833 122.5 13.9(.16) b.d.l. b.d.l. 5.6(0.5) 

8 43.39768 67.69833 98.9 15.3(.12) 0.15(.03) b.d.l. 6.0(0.3) 

8 43.39768 67.69833 80.3 8.3(.16) b.d.l. b.d.l. 7.6(0.1) 

8 43.39768 67.69833 60.7 7.6(.06) b.d.l. b.d.l. 7.8(0.7) 

8 43.39768 67.69833 50.4 9.7(.00) b.d.l. b.d.l. 7.4(0.8) 

8 43.39768 67.69833 37.6 7.3(.03) b.d.l. b.d.l. 6.2(0.9) 

8 43.39768 67.69833 21.7 2.3(.08) 0.11(.05) 0.00 6.7(0.2) 

8 43.39768 67.69833 15.9 0.2(.02) 0.10(.00) b.d.l. 5.0(0.3) 

8 43.39768 67.69833 10.1 0.2(.01) 0.09(.01) b.d.l. 4.6(0.7) 

8 43.39768 67.69833 3.8 0.4(.00) 0.08(.00) b.d.l. 4.2(0.4) 

9 44.19895 67.70635 160.3 13.8(.15) b.d.l. 0.01 6.0(0.8) 

9 44.19895 67.70635 140 9.5(.06) b.d.l. b.d.l. 4.4(0.9) 

9 44.19895 67.70635 119.7 10.9(.03) b.d.l. b.d.l. 6.4(0.5) 

9 44.19895 67.70635 100.4 8.2(.06) b.d.l. 0.00 6.4(0.5) 

9 44.19895 67.70635 81.6 7.6(.08) b.d.l. 0.01 6.2(0.7) 
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Station 

ID 
Latitude Longitude Depth 

Nitrate 

(µM) 
Ammonium 

(µM) 
Nitrite 

(µM) 
Cyanate 

(nM) 

9 44.19895 67.70635 60.9 5.7(.01) b.d.l. 0.03 5.7(1.1) 

9 44.19895 67.70635 50.7 7.1(.08) 0.13(.02) 0.02 7.1(1.3) 

9 44.19895 67.70635 40.8 6.1(.07) 0.21(.01) 0.00 6.5(0.4) 

9 44.19895 67.70635 30.7 2.3(.04) 0.15(.01) 0.01 5.7(1.0) 

9 44.19895 67.70635 20.5 1.8(.01) b.d.l. 0.02 6.9(1.7) 

9 44.19895 67.70635 10.5 1.9(.02) b.d.l. 0.00 6.7(0.9) 

9 44.19895 67.70635 4.1 1.7(.03) b.d.l. 0.02 5.8(1.3) 
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APPENDIX F 

NO2
-
, NO3

-
, NH4

+
, AND OCN

-
 CONCENTRATIONS FOR CHAPTER IV 

All concentrations from Chapter IV are presented as ± 1 standard deviation in parentheses for 

ammonium (NH4
+
, n=2) and cyanate (OCN

-
, n=3).  Samples for nitrate (NO3

-
) and nitrite (NO2

-
) 

were not replicated.  Concentrations that were below the methodological detection limits are 

listed as b.d.l.  The method detection limits are the same as those listed in Appendix E.   

Latitude  

(°N) 

Longitude  

(°W) 

Depth 

(m) 

Nitrite  

(μM) 

Nitrate  

(μM) 

Ammonium 

(μM) 

Cyanate 

(nM) 

41.0993 70.6402 38.9 0.28 2.05 1.57(0.10) 5.2(0.4) 

41.0993 70.6402 25.5 0.18 1.20 1.59(0.05) 5.8(0.9) 

41.0993 70.6402 15.4 b.d.l. 0.30 0.14(0.02) 3.7(0.2) 

41.0993 70.6402 10.2 b.d.l. 0.36 b.d.l. 1.4(0.2) 

41.0993 70.6402 3.2 b.d.l. b.d.l. b.d.l. 3.3(0.4) 

40.3713 71.6712 2.7 b.d.l. b.d.l. 0.38(0.19) 3.8(0.9) 

40.3713 71.6712 15 b.d.l. b.d.l. 0.30(0.10) 1.5(0.4) 

39.0132 72.5875 496.3 b.d.l. 15.45 0.05(0.09) 2.2(0.9) 

39.0132 72.5875 150.1 b.d.l. 4.90 0.17(0.07) 4.1(1.1) 

39.0132 72.5875 55 b.d.l. 4.32 0.09(0.06) 7.0(0.1) 

39.0132 72.5875 40.6 b.d.l. b.d.l. b.d.l. 4.2(0.9) 

39.0132 72.5875 30.7 b.d.l. b.d.l. b.d.l. 1.4(0.0) 

39.0132 72.5875 16.3 b.d.l. b.d.l. 0.13(0.62) 1.7(0.0) 

39.0132 72.5875 3 b.d.l. b.d.l. 0.18(0.01) 1.5(0.3) 

39.3579 73.3867 3 b.d.l. b.d.l. 0.16(0.01) 4.6(0.4) 

39.3579 73.3867 14 0.21 b.d.l. 0.18(0.01) 1.3(0.2) 

37.7048 74.2531 109.1 b.d.l. 7.60 0.23(0.09) 3.4(0.4) 

37.7048 74.2531 80.3 b.d.l. 5.13 1.07(0.13) 5.9(0.7) 

37.7048 74.2531 70.3 b.d.l. 5.79 0.24(0.07) 6.3(0.4) 

37.7048 74.2531 59.2 b.d.l. 4.91 0.55(0.10) 6.5(0.6) 

37.7048 74.2531 49.4 b.d.l. 2.28 0.19(0.01) 5.8(0.5) 

37.7048 74.2531 38.8 0.19 0.77 0.61(0.05) 2.9(1.9) 

37.7048 74.2531 34.6 0.17 0.41 0.17(0.11) 1.9(0.5) 

37.7048 74.2531 25 0.12 0.69 0.25(0.13) 0.8(0.2) 

37.7048 74.2531 15.6 b.d.l. 0.17 b.d.l. 1.2(0.8) 

37.7048 74.2531 11.1 b.d.l. 0.10 0.40(0.02) N/A 

37.7048 74.2531 4.3 b.d.l. 0.10 0.15(0.00) N/A 

37.8442 74.5792 50.6 0.19 4.18 0.08(0.00) 5.6(0.2) 

37.8442 74.5792 25.4 0.46 b.d.l. 0.30(0.02) 2.6(0.5) 
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37.8442 74.5792 15.8 0.20 b.d.l. N/A 0.9(0.2) 

37.8442 74.5792 4.9 0.10 0.28 N/A 1.4(0.4) 

37.4563 75.1006 4 0.31 b.d.l. N/A 1.8(0.2) 

37.4563 75.1006 26.4 0.43 b.d.l. N/A 4.1(0.7) 

36.0075 74.6684 496.4 0.07 13.19 0.05(0.01) b.d.l. 

36.0075 74.6684 298.2 b.d.l. 12.63 0.05(0.00) b.d.l. 

36.0075 74.6684 122 b.d.l. 13.24 0.05(0.01) 1.4(0.3) 

36.0075 74.6684 49.5 b.d.l. 6.09 b.d.l. 16.9(0.4) 

36.0075 74.6684 43.2 0.07 3.78 0.07(0.01) 11.1(2.3) 

36.0075 74.6684 39.1 0.15 5.55 0.18(0.11) 4.4(0.8) 

36.0075 74.6684 32.4 0.16 3.94 0.14(0.00) 4.1(2.0) 

36.0075 74.6684 29.1 0.06 3.23 0.11(0.01) b.d.l. 

36.0075 74.6684 23.7 b.d.l. b.d.l. 0.13(0.04) b.d.l. 

36.0075 74.6684 16.8 b.d.l. 0.43 0.09(0.01) b.d.l. 

36.0075 74.6684 9.1 b.d.l. b.d.l. 0.10(0.04) b.d.l. 

36.0075 74.6684 7.1 b.d.l. b.d.l. 0.09(0.07) b.d.l. 

36.0014 75.1636 24.1 0.20 3.73 0.12(0.01) 2.8(0.2) 

36.0014 75.1636 20.1 0.12 0.10 0.09(0.02) b.d.l. 

36.0014 75.1636 14.2 0.10 0.13 0.08(0.03) b.d.l. 

36.0014 75.1636 9.2 b.d.l. b.d.l. 0.06(0.00) b.d.l. 

36.0014 75.1636 4.9 b.d.l. b.d.l. 0.07(0.07) b.d.l. 

35.9853 75.5209 17 0.43 3.87 1.23(0.02) 12.8(5.1) 

35.9853 75.5209 10 0.34 b.d.l. 0.21(0.21) 8.2(2.0) 

35.9853 75.5209 3 0.27 b.d.l. 0.12(0.15) 9.4(1.0) 

38.8213 74.7399 3.1 
 

0.30 0.14(0.03) 5.6(0.0) 

38.8213 74.7399 8.4 
 

b.d.l. 0.18(0.01) 3.8(1.0) 

40.8743 72.1543 17.8 0.19 b.d.l. 0.18(0.02) 9.0(1.1) 

40.8743 72.1543 5 0.18 b.d.l. N/A 5.6(0.0) 

39.8280 70.6209 500 0.12 13.56 0.09(0.01) N/A 

39.8280 70.6209 297.5 0.11 16.91 b.d.l. N/A 

39.8280 70.6209 120.9 0.08 8.78 b.d.l. N/A 

39.8280 70.6209 97.1 b.d.l. 6.09 b.d.l. N/A 

39.8280 70.6209 76.1 b.d.l. 5.37 0.05(0.00) N/A 

39.8280 70.6209 61.2 b.d.l. 5.22 0.05(0.00) N/A 

39.8280 70.6209 51 b.d.l. 2.61 0.05(0.00) N/A 

39.8280 70.6209 39.1 b.d.l. 1.21 0.07(0.01) N/A 

39.8280 70.6209 20.8 b.d.l. 0.03 0.07(0.00) N/A 

39.8280 70.6209 18.2 b.d.l. 0.03 0.08(0.02) N/A 

39.8280 70.6209 10.6 b.d.l. 0.03 0.11(0.02) N/A 

39.8280 70.6209 4.3 b.d.l. 0.03 0.07(0.00) N/A 

40.0477 70.6027 144.8 b.d.l. 7.86 0.12(0.04) N/A 
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40.0477 70.6027 35.1 0.16 4.97 N/A N/A 

40.0477 70.6027 23.4 0.20 0.38 N/A N/A 

40.0477 70.6027 4.1 0.31 0.04 N/A N/A 

39.9334 69.5074 2.7 0.16 1.11 N/A 2.6(0.3) 

39.9334 69.5074 30.5 0.26 1.42 N/A 6.0(0.1) 

40.6814 68.7702 4.1 0.30 b.d.l. N/A 3.5(0.5) 

40.6814 68.7702 20.3 0.27 0.12 N/A 5.1(0.1) 

40.2422 67.6958 512.2 0.07 15.33 0.08(0.06) 2.0(0.2) 

40.2422 67.6958 249.1 0.07 14.57 0.07(0.02) 2.0(0.2) 

40.2422 67.6958 100.1 0.07 7.38 b.d.l. 2.0(0.0) 

40.2422 67.6958 79.9 0.07 3.74 0.05(0.01) 3.4(0.3) 

40.2422 67.6958 60.1 0.07 2.78 b.d.l. 3.8(0.2) 

40.2422 67.6958 49.6 0.07 3.30 0.06(0.02) 3.4(0.2) 

40.2422 67.6958 40.8 0.07 2.54 0.06(0.03) 3.6(1.1) 

40.2422 67.6958 35.4 0.07 b.d.l. 0.05(0.02) 4.2(0.3) 

40.2422 67.6958 20.4 0.07 0.33 b.d.l. 3.1(0.1) 

40.2422 67.6958 10.6 b.d.l. b.d.l. 0.06(0.01) 2.3(0.4) 

40.2422 67.6958 3.8 b.d.l. b.d.l. 0.07(0.03) 3.0(0.2) 

40.3845 67.6768 420.3 b.d.l. 14.54 0.05(0.00) 1.8(0.2) 

40.3845 67.6768 344.4 b.d.l. 10.97 b.d.l. 1.0(0.2) 

40.3845 67.6768 196.9 b.d.l. 14.90 b.d.l. 2.7(0.3) 

40.3845 67.6768 87.5 b.d.l. 5.41 b.d.l. 5.0(0.2) 

40.3845 67.6768 64.9 0.28 4.58 b.d.l. 4.5(0.8) 

40.3845 67.6768 50.6 0.20 0.33 b.d.l. 2.9(0.7) 

40.3845 67.6768 39.9 b.d.l. 0.37 b.d.l. 3.0(0.4) 

40.3845 67.6768 34.5 b.d.l. 0.20 b.d.l. 1.5(0.2) 

40.3845 67.6768 27.3 b.d.l. 0.14 b.d.l. 1.3(0.1) 

40.3845 67.6768 20.1 b.d.l. b.d.l. b.d.l. 1.2(0.1) 

40.3845 67.6768 10.6 b.d.l. b.d.l. b.d.l. 1.2(0.1) 

40.3845 67.6768 4.4 b.d.l. b.d.l. b.d.l. 1.4(0.2) 

40.9292 67.7049 61.2 0.47 7.51 0.72(0.01) 5.1(0.6) 

40.9292 67.7049 44.6 0.39 6.41 0.74(0.00) 4.9(0.3) 

40.9292 67.7049 34.4 0.43 7.27 0.92(0.02) 5.2(0.4) 

40.9292 67.7049 26.1 0.48 5.92 0.59(0.00) 6.3(0.4) 

40.9292 67.7049 20.1 0.28 3.72 b.d.l. 2.8(0.1) 

40.9292 67.7049 10.9 0.20 b.d.l. b.d.l. 1.7(0.5) 

40.9292 67.7049 4.5 0.15 3.72 b.d.l. 1.9(0.2) 

40.8670 67.6591 3.7 b.d.l. 0.24 0.18(0.03) 2.5(0.0) 

40.8670 67.6591 19.8 b.d.l. 0.51 0.18(0.01) 1.6(0.4) 

41.7555 65.4406 499.8 b.d.l. 12.99 b.d.l. 1.1(0.4) 

41.7555 65.4406 241 b.d.l. 17.21 b.d.l. 0.8(0.1) 
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41.7555 65.4406 61.2 b.d.l. 8.84 b.d.l. 4.6(0.2) 

41.7555 65.4406 27.6 b.d.l. 0.15 b.d.l. 1.2(0.4) 

41.7555 65.4406 3.4 b.d.l. 0.29 b.d.l. 1.2(0.3) 

42.2261 65.7702 100.6 0.42 6.71 b.d.l. 6.0(0.5) 

42.2261 65.7702 54.6 0.19 5.59 b.d.l. 3.7(0.1) 

42.2261 65.7702 35.4 b.d.l. b.d.l. b.d.l. b.d.l. 

42.2261 65.7702 4.5 b.d.l. b.d.l. b.d.l. N/A 

42.0153 67.6763 60.2 0.41 6.07 0.56(0.01) 7.1(0.4) 

42.0153 67.6763 49.8 0.29 5.53 0.42(0.01) 7.2(0.2) 

42.0153 67.6763 40.8 0.10 0.26 0.07(0.00) 6.5(0.5) 

42.0153 67.6763 24.2 b.d.l. 0.23 b.d.l. 7.4(0.7) 

42.0153 67.6763 15.4 b.d.l. 0.13 b.d.l. 5.5(0.2) 

42.0153 67.6763 4.1 b.d.l. b.d.l. b.d.l. 3.9(0.4) 

41.4618 67.6846 34.7 b.d.l. b.d.l. b.d.l. 7.0(0.3) 

41.4618 67.6846 30.3 b.d.l. 0.11 b.d.l. 7.3(0.5) 

41.4618 67.6846 25.6 b.d.l. b.d.l. b.d.l. 7.2(0.4) 

41.4618 67.6846 20.8 b.d.l. 0.13 b.d.l. 8.1(0.6) 

41.4618 67.6846 15.3 b.d.l. b.d.l. b.d.l. 7.7(0.7) 

41.4618 67.6846 10.4 b.d.l. 0.35 b.d.l. 7.1(0.6) 

41.4618 67.6846 4.5 b.d.l. b.d.l. b.d.l. 7.2(0.5) 

42.6871 68.2800 15.8 
 

0.21 N/A 1.9(0.5) 

42.6871 68.2800 3 
 

0.37 N/A 2.4(0.3) 

42.4158 67.0022 363.8 b.d.l. 17.87 b.d.l. 4.2(0.4) 

42.4158 67.0022 251.2 b.d.l. 11.21 b.d.l. 2.6(0.3) 

42.4158 67.0022 99.8 b.d.l. 11.46 b.d.l. 3.3(0.1) 

42.4158 67.0022 80.7 b.d.l. 7.49 b.d.l. 4.1(1.4) 

42.4158 67.0022 60.8 b.d.l. 8.71 b.d.l. 5.2(1.0) 

42.4158 67.0022 50.8 b.d.l. 7.63 b.d.l. 3.7(0.4) 

42.4158 67.0022 40.6 0.12 4.73 b.d.l. 5.3(0.9) 

42.4158 67.0022 30.5 0.14 4.74 b.d.l. 3.9(0.6) 

42.4158 67.0022 17.8 b.d.l. b.d.l. b.d.l. 1.0(0.9) 

42.4158 67.0022 10.1 0.13 0.20 b.d.l. 1.5(0.7) 

42.4158 67.0022 3.5 0.18 0.37 b.d.l. 0.9(0.2) 

43.0283 66.3434 119.8 0.14 10.10 b.d.l. 3.1(1.3) 

43.0283 66.3434 50.2 N/A N/A N/A 3.2(0.7) 

43.0283 66.3434 20 N/A N/A N/A 3.5(0.2) 

43.0283 66.3434 4.3 N/A N/A N/A 3.4(0.0) 

43.3999 67.0767 3.7 N/A N/A N/A 2.3(0.1) 

43.3999 67.0767 21.5 N/A N/A N/A 1.6(0.1) 

44.4755 67.2268 107.4 0.23 5.93 0.07(0.00) 7.5(0.2) 

44.4755 67.2268 79.5 0.33 4.66 0.06(0.02) 9.3(0.4) 
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44.4755 67.2268 59.6 0.34 6.72 0.05(0.01) 7.6(1.2) 

44.4755 67.2268 40.3 0.23 7.24 0.07(0.01) 7.8(1.2) 

44.4755 67.2268 20.5 0.25 5.75 b.d.l. 9.0(0.4) 

44.4755 67.2268 11.3 0.33 6.91 b.d.l. 9.5(0.3) 

44.4755 67.2268 4 0.31 6.28 b.d.l. 10.1(0.4) 

44.1990 67.7063 160.3 0.10 13.82 b.d.l. 6.0(0.8) 

44.1990 67.7063 140 b.d.l. 9.45 b.d.l. 4.4(0.9) 

44.1990 67.7063 119.7 
 

10.92 b.d.l. 6.4(0.5) 

44.1990 67.7063 100.4 0.11 8.16 b.d.l. 6.4(0.5) 

44.1990 67.7063 81.6 0.16 7.55 b.d.l. 6.1(0.7) 

44.1990 67.7063 60.9 0.20 5.73 b.d.l. 5.7(1.1) 

44.1990 67.7063 50.7 0.23 7.10 0.13(0.02) 7.1(1.3) 

44.1990 67.7063 40.8 0.23 6.09 0.21(0.01) 6.5(0.4) 

44.1990 67.7063 30.7 0.15 2.30 0.15(0.01) 5.7(1.0) 

44.1990 67.7063 20.5 0.12 1.81 b.d.l. 6.9(1.7) 

44.1990 67.7063 10.5 0.11 1.94 b.d.l. 6.7(0.9) 

44.1990 67.7063 4.1 0.10 1.66 b.d.l. 5.8(1.3) 

43.3977 67.6983 240.4 0.10 13.56 b.d.l. 6.2(0.7) 

43.3977 67.6983 147.1 b.d.l. 13.57 b.d.l. 6.1(0.2) 

43.3977 67.6983 122.5 b.d.l. 13.85 b.d.l. 5.6(0.5) 

43.3977 67.6983 98.9 b.d.l. 15.26 0.15(0.03) 6.0(0.3) 

43.3977 67.6983 80.3 b.d.l. 8.33 b.d.l. 7.6(0.1) 

43.3977 67.6983 60.7 b.d.l. 7.55 b.d.l. 7.8(0.7) 

43.3977 67.6983 50.4 b.d.l. 9.73 b.d.l. 7.4(0.8) 

43.3977 67.6983 37.6 b.d.l. 7.29 b.d.l. 6.2(0.9) 

43.3977 67.6983 21.7 b.d.l. 2.31 0.11(0.05) 6.7(0.2) 

43.3977 67.6983 15.9 b.d.l. 0.19 0.10(0.00) 5.0(0.3) 

43.3977 67.6983 10.1 b.d.l. 0.24 0.09(0.01) 4.6(0.7) 

43.3977 67.6983 3.8 b.d.l. 0.37 0.08(0.00) 4.2(0.4) 

43.0286 67.7107 178.7 b.d.l. 15.32 b.d.l. 5.7(1.7) 

43.0286 67.7107 86.2 b.d.l. 15.13 b.d.l. 5.2(0.3) 

43.0286 67.7107 40.7 b.d.l. 9.32 b.d.l. 7.3(0.7) 

43.0286 67.7107 22.9 b.d.l. 2.40 b.d.l. 6.8(1.3) 

43.0286 67.7107 16.7 b.d.l. 0.86 N/A 4.2(0.8) 

43.0286 67.7107 4.4 b.d.l. 0.23 N/A 4.8(0.4) 

43.0010 70.4190 99.1 b.d.l. 12.33 0.05(0.00) 9.8(0.1) 

43.0010 70.4190 23.2 N/A 1.29 N/A 7.4(0.8) 

43.0010 70.4190 17.1 N/A 0.25 N/A 2.9(0.6) 

43.0010 70.4190 3.4 N/A 0.32 N/A 3.9(0.5) 

42.3014 70.2794 31 N/A N/A N/A 6.3(0.7) 

42.3014 70.2794 13.2 N/A N/A N/A 6.4(0.1) 
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APPENDIX F Continued. 

42.3014 70.2794 4.6 N/A N/A N/A 4.6(0.4) 

42.3542 70.4541 70.5 b.d.l. 9.28 b.d.l. 6.7(0.6) 

42.3542 70.4541 59.8 b.d.l. 9.43 b.d.l. 5.2(0.3) 

42.3542 70.4541 50.3 b.d.l. 6.59 b.d.l. 6.1(0.0) 

42.3542 70.4541 40.4 0.07 6.23 b.d.l. 6.6(0.6) 

42.3542 70.4541 30 0.12 5.72 0.06(0.00) 4.9(0.2) 

42.3542 70.4541 26 0.11 2.84 0.07(0.01) 5.1(0.1) 

42.3542 70.4541 21.2 0.08 2.67 0.06(0.00) 4.4(0.3) 

42.3542 70.4541 14.8 0.10 0.61 0.09(0.04) 1.9(0.3) 

42.3542 70.4541 10.4 b.d.l. 0.46 0.11(0.01) 2.0(0.3) 

42.3542 70.4541 3.8 b.d.l. 0.13 0.10(0.00) 1.1(0.1) 

42.4200 70.6182 80.7 0.12 6.81 0.09(0.01) 6.6(0.4) 

42.4200 70.6182 70 0.11 8.09 0.09(0.01) 6.7(0.7) 

42.4200 70.6182 59.9 b.d.l. 8.51 0.08(0.04) 6.8(0.3) 

42.4200 70.6182 50.4 b.d.l. 8.10 0.05(0.01) 6.2(0.6) 

42.4200 70.6182 41.1 b.d.l. 7.52 0.06(0.01) 7.1(0.8) 

42.4200 70.6182 35.1 b.d.l. 5.46 0.06(0.00) 6.1(1.3) 

42.4200 70.6182 25.2 b.d.l. 3.82 0.08(0.00) 5.3(0.1) 

42.4200 70.6182 14.3 b.d.l. 1.69 0.09(0.01) 3.1(0.3) 

42.4200 70.6182 10.8 b.d.l. b.d.l. 0.10(0.00) 1.9(0.5) 

42.4200 70.6182 3.8 b.d.l. b.d.l. 0.10(0.00) 1.1(0.0) 

42.4167 70.8542 13.2 N/A N/A N/A 3.7(0.2) 

42.4167 70.8542 4.2 N/A N/A N/A 2.4(0.3) 
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APPENDIX G 

CTD DATA FOR CHAPTER IV 

Continuous profiles of chlorophyll a fluorescence, salinity, temperature, and photosynthetically 

active radiation (PAR) can be found on the NOAA website as given below.  The cruise IDs are 

del1004 for May/June 2010, del1012 for November 2010, del1105 for June 2011, and hb1205 

for August 2012. 

ftp://ftp.nefsc.noaa.gov/pub/hydro/nodc_files/ 

ftp://ftp.nefsc.noaa.gov/pub/hydro/matlab_files/ 
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