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ABSTRACT

ITSBLUE
A DISTRIBUTED BLUETOOTH-BASED FRAMEWORK FOR

INTELLIGENT TRANSPORTATION SYSTEMS

AHMED AWAD ALGHAMDI
Old Dominion University, 2017
Director: Dr. Tamer Nadeem

Inefficiency in transportation networks is having an expanding impact, at a vari-
ety of levels. Transportation authorities expect increases in delay hours and in fuel
consumption and, consequently, the total cost of congestion. Nowadays, Intelligent
Transportation Systems (ITS) have become a necessity in order to alleviate the ex-
pensive consequences of the rapid demand on transportation networks. Since the
middle of last century, ITS have played a significant role in road safety and comfort
enhancements. However, the majority of state of the art ITS are suffering from sev-
eral drawbacks, among them high deployment costs and complexity of maintenance.
Over the last decade, wireless technologies have reached a wide range of daily users.
Today’s Mobile devices and vehicles are now heavily equipped with wireless communi-
cation technologies. Bluetooth is one of the most widely spread wireless technologies
in current use. Bluetooth technology has been well studied and is broadly employed
to address a variety of challenges due to its cost-effectiveness, data richness, and pri-
vacy perverseness, yet Bluetooth utilization in ITS is limited to certain applications.
However, Bluetooth technology has a potential far beyond today’s ITS applications.
In this dissertation, we introduce itsBlue, a novel Bluetooth-based framework that
can be used to provide ITS researchers and engineers with desired information. In
the itsBlue framework, we utilize Bluetooth technology advantages to collect road
user data from unmodified Bluetooth devices, and we extract a variety of traffic
statistics and information to satisfy ITS application requirements in an efficient and
cost-effective way.
The itsBlue framework consists of data collection units and a central computing unit.
The itsBlue data collection unit features a compact design that allows for stationary
or mobile deployment in order to extend the data collection area. Central computing
units aggregate obtained road user data and extract a number of Bluetooth spatial
and temporal features. Road users’ Bluetooth features are utilized in a novel way



to determine traffic-related information, such as road user context, appearance time,
vehicle location and direction, etc. Extracted information is provided to ITS ap-
plications to generate the desired transportation services. Applying such a passive
approach involves addressing several challenges, like discovering on-board devices,
filtering out data received from vehicles out of the target location, or revealing vehi-
cle status and direction.
Traffic information provided by the itsBlue framework opens a wide to the develop-
ment of a wide range of ITS applications. Hence, on top of the itsBlue framework,
we develop a pack of intersection management applications that includes pedestrians’
volume and waiting times, as well as vehicle queue lengths and waiting times. Also,
we develop a vehicle trajectory reconstruction application.
The itsBlue framework and applications are thoroughly evaluated by experiments
and simulations. In order to evaluate our work, we develop an enhanced version of
the UCBT Network Simulator 2 (NS-2). According to evaluation outcomes, itsBlue
framework and applications evaluations show promising results. For instance, the
evaluation results show that the itsBlue framework has the ability to reveal road
user context with accuracy exceeding 95% in 25s.



iv

Copyright, 2017, by AHMED AWAD ALGHAMDI, All Rights Reserved.



v

ACKNOWLEDGEMENTS

First and foremost, I praise God, the almighty, for His showers of blessings and
bounties in my entire life, including his guidance of this research work.

I would like to express my sincere gratitude to my advisor, Dr. Tamer Nadeem,
for the continuous support of my Ph.D. study and related research. His guidance has
helped me to develop my researching and writing skills, in this dissertation.

My sincere thanks also go to Dr. Mecit Cetin for his helpful feedback and ideas,
and for granting me access to his laboratory and his research facilities. I also would
like to extend my thanks to the rest of my committee members, Dr. Kurt Maly and
Dr. Ravi Mukkamala, for their insightful comments and encouragement. And I will
never forget my late co-advisor Professor Hussien Abdelwahab who admitted me into
the Ph.D. program and continuously supported me throughout my Ph.D. study until
he passed away in December of 2016. God bless his soul.

During my Ph.D. study time at Old Dominion University, I have been surrounded
by many colleagues and friends who have made it enjoyable. I would like to express
my thanks to my colleagues in the Smart Wireless and Mobile Systems Research Lab
(SWiMSys). And would like to extend my thanks to my friends in Norfolk, Virginia,
who have eased my homesickness, especially to Abdullah Alhamli.

I would like to sincerely thank my uncle Ali Hajar, who inspires me. I am the
oldest among my brothers and sisters, but he has been always there as an older
brother for me. I also would like to extend my thanks to all of my uncles and aunts
for their spiritual support, sincere wishes, and prayers.

I feel a deep sense of gratitude for my grandparents. I am named after one of
my grandparents, and each one played a significant role in the development of my
identity and in shaping the person who I am today. God bless their souls.

Special words of thanks go to my dear brothers Saad and Omar and to my dear
sisters Areej and Hebah, for supporting me, believing in me, being proud of me, and
taking care of my parents in my long times of absence.

This achievement would not have been possible without the support of my family.
Words cannot express how grateful I am to my wife Areej Ramzi for the countless
sacrifices that she has made to help me reach my goals and aspirations. My lit-
tle man Areeb, thank you for our conversations about my work and the pride you
have shown in me; they have been always strong motivations; thank you. My little



vi

princess Jasmine, my face in your drawings , and your emotional comments about the
drawings, have made this journey enjoyable; thank you. My sweet baby Mohammed,
your cheerful face has been the cure after each long day of hard work; thank you.

No words of thanks can sum up the gratitude that I owe to my parents who raised
me with unconditional love and support, and who encouraged me in all my pursuits.
I owe them a great deal for the love, patience, and understanding they showed when
I was away from home during my Masters and Ph.D. study time. I pay homage to
them by dedicating my thesis to my mother, Maryam Hajar, and my father, the late
Awad Alghamdi, under whose careful protection I have been able to reach this level
of education and success. It was my father’s wish to see me with a doctorate degree,
and he has always been in my thoughts on this journey. He will remain there forever.
God bless his soul.

I acknowledge Al Imam Mohammad Ibn Saud Islamic University, for providing a
generous scholarship to assist me in the pursuit of my doctoral studies.



vii

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Chapter

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 STATE OF THE ART SOLUTIONS OVERVIEW . . . . . . . . . . . . . . . . . 1
1.2 WIRELESS SENSING FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 BLUETOOTH FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 ITSBLUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 CONTRIBUTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 DOCUMENT ORGANIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2. RELATED WORK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 INDUCTIVE LOOPS DETECTION (ILD) . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 MAGNETIC SENSORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 MICROWAVE SENSORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 ULTRASONIC SENSORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 ACOUSTIC SENSORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 LASER SENSORS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7 INFRARED SENSORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.8 IMAGE-BASED SENSORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.9 PARTICIPATORY SENSING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.10 WIRELESS SENSING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.11 CONCLUSION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3. ITSBLUE FRAMEWORK OVERVIEW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1 DATA COLLECTION LAYER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 BASIC BLUETOOTH FEATURES EXTRACTION LAYER . . . . . . . . 25
3.3 ADVANCED ROAD USER FEATURES EXTRACTION LAYER. . . . 25
3.4 TRAFFIC INFORMATION PROVISION LAYER . . . . . . . . . . . . . . . . . 26
3.5 APPLICATION LAYER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4. DATA COLLECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1 DATA COLLECTION INFRASTRUCTURE . . . . . . . . . . . . . . . . . . . . . . 28
4.2 BLUETOOTH DATA COLLECTION PROCESS . . . . . . . . . . . . . . . . . . 31
4.3 BLUETOOTH RADIO SIGNALS FILTERING . . . . . . . . . . . . . . . . . . . . 34
4.4 BLUECOLLECT OPERATING MODES AND DATA COLLEC-

TION MECHANISM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4.1 BLUECOLLECT STATIONARY OPERATING MODE . . . . . . 35



viii

4.4.2 BLUECOLLECT MOBILE OPERATING MODE . . . . . . . . . . . 36

5. BASIC BLUETOOTH FEATURES EXTRACTION. . . . . . . . . . . . . . . . . . . . . . . . 39
5.1 BLUETOOTH FEATURES EXTRACTION . . . . . . . . . . . . . . . . . . . . . . 39

6. ADVANCED ROAD USER FEATURES EXTRACTION. . . . . . . . . . . . . . . . . . . 44
6.1 PEDESTRIAN AND VEHICLE DIFFERENTIATION . . . . . . . . . . . . . 44
6.2 VEHICLE LOCATION IDENTIFICATION AT SIGNALIZED IN-

TERSECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2.1 OFFLINE PHASE: RADIO SIGNAL STRENGTH MAP

CREATION: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2.2 ONLINE PHASE: VEHICLE LOCATION IDENTIFICATION: 52

6.3 VEHICLE STREET SEGMENT AND DIRECTION DETERMINA-
TION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3.1 VEHICLES DETECTED BY MOBILE BLUECOLLECT

UNITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3.2 VEHICLES DETECTED BY STATIONERY BLUECOL-

LECT UNITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7. TRAFFIC INFORMATION PROVISION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.1 API DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.2 SERVICE APIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8. ITSBLUE APPLICATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.1 INTERSECTION MANAGEMENT APPLICATIONS . . . . . . . . . . . . . . 67

8.1.1 VEHICLE QUEUE LENGTH EXTRACTION . . . . . . . . . . . . . . 68
8.1.2 VEHICLE WAITING TIME EXTRACTION . . . . . . . . . . . . . . . 69
8.1.3 PEDESTRIANS VOLUME AND WAITING TIMES DETER-

MINATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.2 VEHICLE TRAJECTORIES RECONSTRUCTION. . . . . . . . . . . . . . . . 70

8.2.1 VEHICLE TRAJECTORY INCONSISTENCY RESOLUTION 71
8.2.2 VEHICLE TRAJECTORYGAPS DETECTION AND FILLING 72

Vehicle Trajectory Gaps Detection . . . . . . . . . . . . . . . . . . . . . . . . . 73
Vehicle Trajectory Gaps Filling . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.3 EVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
8.3.1 EVALUATION TESTBED AND SIMULATION PACKAGE . . 78
8.3.2 VEHICLE QUEUE LENGTH ESTIMATION EVALUATION . 80

A. Vehicle Locations Identification at Signalized Intersection
Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

B. Vehicle Queue Length Extraction Application Evaluation . . 82
8.3.3 PEDESTRIANS VOLUME AND WAITING TIMES DETER-

MINATION EVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Experiment Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Simulation Scenario No. 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87



ix

Simulation Scenario No. 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
8.3.4 VEHICLE TRAJECTORIES RECONSTRUCTION EVALU-

ATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
A. Vehicle Location and Direction Determination Features Val-

idation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
B. Vehicle Trajectories Reconstruction Application Evaluation . 91

9. CONCLUSION AND FUTURE DIRECTIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
9.1 CONCLUSION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
9.2 FUTURE DIRECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

9.2.1 BLUECOLLECT UNITS INTERCOMMUNICATION AND
COORDINATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

9.2.2 BLUECOLLECT LIGHT VERSION . . . . . . . . . . . . . . . . . . . . . . . 101

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

VITA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108



x

LIST OF TABLES

Table Page

1 Annual Congestion Delay and Costs in the USA. . . . . . . . . . . . . . . . . . . . . . . 2

2 Frequency Hopping Synchronization (FHS) Packet Contents . . . . . . . . . . . . 32

3 itsBlue Framework APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Vehicle Spots Occupancy Distribution on a Signalized Intersection Approach 82

5 Vehicles Detection Percentages with Multiple BlueCollect Units Configu-
rations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



xi

LIST OF FIGURES

Figure Page

1 Number of Cellphone Users Worldwide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Comparison of Several Wireless Technologies Power Consumption Rates . 8

3 Industrial Bluetooth Adapter Range with Multiple Antennas . . . . . . . . . . . 9

4 itsBlue Framework Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 Example of Inertial Sensors (Accelerometer) Activity Signatures. . . . . . . . . 16

6 itsBlue Framework Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

7 itsBlue Main Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

8 itsBlue Framework Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

9 BlueCollect Unit Hardware Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

10 Road User Collected and Processed Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

11 Bluetooth Inquiry Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

12 Bluetooth Advertisement Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

13 Mobile BlueCollect Unit Carrier Street Segment Identification . . . . . . . . . . 37

14 Average Bluetooth Device Appearance Time . . . . . . . . . . . . . . . . . . . . . . . . . 45

15 Average Number of Received Messages of Bluetooth Device . . . . . . . . . . . . 46

16 Bluetooth Device RSS Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

17 Bluetooth RSS Distribution Histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

18 Target Intersection is divided into vehicle spots . . . . . . . . . . . . . . . . . . . . . . . 51

19 Vehicle Location Identification - Online Phase . . . . . . . . . . . . . . . . . . . . . . . . 53

20 Vehicle Location Identification Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

21 Misleading vehicle location and direction provided by a mobile BlueCol-
lect unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



xii

22 Vehicle Queue Length Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

23 Vehicle Trajectory Reconstruction Time Lapse Example . . . . . . . . . . . . . . . 71

24 Reconstructed Vehicle Trajectory Inconsistency . . . . . . . . . . . . . . . . . . . . . . . 72

25 Vehicle Trajectory Inconsistency Resolution Flowchart . . . . . . . . . . . . . . . . . 73

26 The Use of Vehicle Appearance at Intersections in Filling Reconstructed
Trajectory Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

27 Enhanced NS-2 UCBT Bluetooth Extension Validation Experiment Setup 79

28 Mean of RSS Obtained from Transmitters on Several Distances in Simu-
lation and Field Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

29 Vehicle Locations Identification Evaluation Experiment Setup . . . . . . . . . . 81

30 Vehicle Locations Identification Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

31 Vehicle Locations Identification Error Distribution . . . . . . . . . . . . . . . . . . . . 84

32 The Configuration of one of traffic light approaches on the Intersection of
Vehicle Queue Length Extraction Evaluation Simulation Scenario . . . . . . . 84

33 Vehicle Queue Length Estimation Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . 85

34 Pedestrian and Vehicle Differentiation Evaluation Experiment Setup . . . . . 86

35 Vehicle Classification Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

36 Pedestrian Classification Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

37 Pedestrian and Vehicle Differentiation Simulation Scenario No. 1 . . . . . . . . 89

38 Pedestrian and Vehicle Differentiation Simulation Scenario No. 2 . . . . . . . . 89

39 Bluetooth Features Obtained From Data Collected on a 120m Roadway . . 91

40 Bluetooth Features Obtained From Data Collected on a 240m Roadway . . 92

41 Bluetooth Features Obtained From Data Collected on a 480m Roadway . . 93

42 Simulation Ground Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

43 Reconstructed Vehicle Trajectories Correctness . . . . . . . . . . . . . . . . . . . . . . . 94

44 Reconstructed Vehicle Trajectories Completeness . . . . . . . . . . . . . . . . . . . . . 95



1

CHAPTER 1

INTRODUCTION

The demand for transportation is rapidly increasing and the numbers are indicat-
ing serious consequences. According to the United States Department of Transporta-
tion (US DOT) in the Transportation Statistics Annual Report 2016, congestion in
the USA raised delay hours from 4.6 billion in 2000 to 6.9 billion in 2014 [1]. This
jump in delay hours resulted in the consumption of 3.1 billion gallons of gas. Conse-
quently, the total cost of congestion reached 160 billion US dollars. According to the
2015 Urban Mobility Scorecard that was issued by the Texas A&M Transportation
Institute, the total cost of congestion is expected to grow to 192 billion US dollars
in 2020 (Table 1). One of the most significant contributors to this increase is the
anticipated increase in fuel consumption to 3.8 billion gallons, much of which will be
wasted in 8.3 billion hours of delay [2].

The high demand on the transportation network is leading to serious compli-
cations at various levels including the environment, the economy and the public’s
and individuals’ health. Environmentally, high fuel consumption used on an ineffi-
cient transportation network severely impacts air quality and contributes to global
warming. “The transportation sector is the second largest producer of greenhouse
gas (GHG) emissions”, notes the US DOT [1]. In 2014, about1300 million tons of
CO2 were emitted on USA roads [1]. The environmental impact was expected to
expand due to an anticipated increase in fuel consumption in delays. Economically,
the annual price of traffic congestion in the USA is expensive. Compared to 2014,
the a 20% increase is expected in 2020’s level of congestion. Besides the economic
impact of road accidents in the USA, the number of highway vehicle fatalities grew
from 34,641 in 2014 to 35,092 in 2015. Also, 2015 witnessed an increase in highway
injuries – to 2.44 million. Furthermore, the unpleasant road experience is another
adverse effect of the inefficient transportation network. The US DOT stated that,
in 2014, travelers at the most congested areas had to allow 150% extra travel time
during peak periods [1]. On the average, commuters spent 63 extra hours of travel
time at congested areas, and 42 hours in any area, nationwide. The last number
indicates over a 130% increase in time wasted on roads, compared to 1982 [2].
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TABLE 1: Annual Congestion Delay and Costs in the USA.

Delay per Total delay Fuel wasted Total cost (billions
Year commuter (hours) (billion hours) (billion gallons) U.S. dollars)
1982 18.0 1.80 0.50 42
1990 26.0 3.0 1.2 65
2000 37.0 5.20 2.10 114
2005 41.0 6.30 2.70 143
2006 42.0 6.40 2.80 149
2007 42.0 6.60 2.80 154
2008 42.0 6.60 2.40 152
2009 40.0 6.30 2.40 147
2010 40.0 6.40 2.50 149
2011 41.0 6.60 2.50 152
2012 41.0 6.70 3.0 154
2013 42.0 6.80 3.10 156
2014 42.0 6.90 3.10 160

Source: Texas A&M University, Texas Transportation Institute, 2015 Urban Mobility
Scorecard [2]

1.1 STATE OF THE ART SOLUTIONS OVERVIEW

Enhancing transportation network efficiency has become both a necessity and
a priority, in order to alleviate the aforementioned consequences. Transportation
researchers and engineers have produced a vast literature regarding transportation
enhancement and congestion control. Their effort led to emergence of the Intelligent
Transportation Systems (ITS), in which a wide range of technologies are exploited
to collect traffic data and to obtain the statistics required to address transportation
challenges. ITS have played a significant role in boosting transportation network ef-
ficiency. For instance, Inductive Loop Detection (ILD) is a common ITS technology
employed to enhance the performance of traffic lights and to monitor traffic fluidity.
In addition, traffic statistics and information provided by ITS technologies will be
fundamental pillars in future transportation plans and projects, including regulation
revisions and infrastructure expansions. For example, GHG emissions data provided
by ITS have drawn the attention of environmental authorities including the United
States Environmental Protection Agency (US EPA), which has set several regula-
tions to reduce GHG emissions, such as dedicating fast roadway lanes to buses and
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carpools, in order to reduce the number of vehicles on the road.
Since the 1950s, dedicated ITS detection and monitoring technologies like mag-

netic field detectors or road surveillance cameras have significantly enhanced trans-
portation network efficiency. For instance, magnetic field detection is a popular ITS
technology that has been employed to detect vehicle passage across signalized inter-
sections in order to dynamically control green light times. However, dedicated ITS
detection technologies are suffering from number of disadvantages, such as ineffi-
ciency, expensive deployment and maintenance costs, and high privacy invasion. For
instance, ILD’s expensive and complicated installation and maintenance procedures
limit its use to important locations only.

The evolution of mobile devices and wireless technologies encouraged ITS re-
searchers and engineers to find new ways to collect traffic data. The ITS community
employed electronic devices traveling on board vehicles to collect various kinds of
data. Many of today’s ITS technologies have adopted this approach. One example
is the radio-frequency identification (RFID) transponder, which is used to identify
RFID-hosting vehicles on tollway checkpoints. Later, the smartphones revolution
led to emergence of participatory sensing, in which road users share their traffic data
via third-party applications installed on their devices. The contribution of these
technologies to ITS is undeniable. However, there are several drawbacks associated
with them, such as data limitation and privacy invasion. For example, in participa-
tory sensing, participants are assumed to have a special hardware or software, which
narrows the circle of data sources.

In the following, we browse the major disadvantages of current ITS technologies:

• Expensiveness
High price tags are associated to a wide range of most popular ITS technologies.
For instance, aerial cameras are a commonly-used technology in road monitor-
ing. However, to apply such system on a 500m roadway, seven video cameras
are required. Each one cost a couple of thousand US dollars [3]. In addition to
the sensor or detector tag price, employment of some ITS technologies include
other expenses such as installation, maintenance, and site rent. For example,
the ILD installation process involves pavement digging, wire burying, pull box
connecting and road paving. This complicated installation process requires sev-
eral costly tools and a number of well-paid professionals to complete the job.
Further, installation or maintenance process of such ITS technologies requires
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lane blocking for hours or days, which severely impacts traffic fluidity.

• Inefficiency
The performance of various ITS is adversely affected by the surrounding en-
vironmental conditions and objects. Several ITS technologies such as infrared
sensors and image-based sensors are impacted by inclement weather. Mag-
netic field detection technologies are prone to malfunctioning due to different
reasons such as inclement weather, vehicle structure, and height. 30% out of
25000 ILDs in California are not working properly [4]. Also, evaluations of
sound-based detection technologies like acoustic sensors show undercounting
during peak and off-peak periods.

• Data limitation
Available ITS technologies collect limited kinds of data. For example, mag-
netic field technologies like ILD detect vehicles; passage and count vehicles
passing over. However, magnetic field detectors are unable to provide data
about pedestrians, vehicle speeds, or trajectories. In addition, depending on
unreliable source of data, like normal smartphones, users can receive incomplete
or limited data. For example, smartphone users may stop the GPS service on
their device to extend the battery life, which in turn will affect any ITS appli-
cations that collect GPS traces.

• Privacy invasion
A wide range of current ITS technologies are invasive of privacy. For exam-
ple, surveillance cameras are able to track road users and can record footage
of their movements. Other technologies are able to go further. For instance,
smartphone participatory sensing applications have access to a wide range of
sensors such as GPS, microphones, cameras, inertial sensors, and dots which
may cause a collection of high sensitivity data. Privacy concerns have encour-
aged several authorizes and governments to restrict the use of such technologies.

1.2 WIRELESS SENSING FEATURES

The undeniable drawbacks associated with many of state of the art ITS tech-
nologies have encouraged transportation researchers and engineers to find new ways
to collect traffic data and to monitor the transportation network. In fact, the wide
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spread of mobile wireless devices has motivated the transportation community to uti-
lize wireless technologies to address a wide range of transportation challenges and to
overcome legacy solution obstacles. Over the last decade, wireless technologies have
become a hot research topic due to their capability to provide cost-effective solutions
to challenges on various levels. In the following, we explain the main advantages of
wireless technologies in addressing transportation challenges:

• Ubiquity of mobile wireless devices
Nowadays, there are more than 4.7 billion cellphone devices in use worldwide,
and over 2.3 billion of these devices are smartphones (FIG. 1). Additionally,
over 12 million smartwatches were sold in 2016 [5]. Wireless communication is
one of the essential services of mobile devices. The majority of today’s mobile
devices are provisioned with various wireless communication technologies like
Wi-Fi, Bluetooth, and NFC. Furthermore, over the last decade, vehicles have
become heavily equipped with driving assistance and entertainment systems.
Such systems rely on wireless communication technologies to connect to user de-
vices, to nearby vehicles or to roadside units. Additionally, autonomous driving
vehicle development is showing rapid progress. According to the Autonomous
Vehicle Disengagement Report issued by California DMV [6], Alphabet’s (i.e.
Google’s parent company) autonomous driving vehicle, Waymo [7], drove over
635,000 miles in 2016. Wireless communication technologies are essential in this
kind of vehicle, which allow it to collect an enormous amount of data from road
users’ wireless devices. The intensive existence of wireless technologies grants
ITS applications access to a rich data source which, in turn, allows efficient
solutions that can overcome current obstacles to be provided.

• Cost-effectiveness
The low cost of wireless sensing devices allow the provision of cost-effective ITS
applications. For instance, the Bluetooth-based ITS application cost is a frac-
tion of the ILD system cost. Also, the installation or maintenance process is
simpler and cheaper than the ILD system installation or maintenance process.
Installation of a Bluetooth-based ITS application requires placing Bluetooth
transceivers on appropriate road facilities (e.g. traffic lights, road signs, and
light poles), and connecting them to a hosting computing unit. On the other
hand, the ILD system installation or maintenance process involves roadwork
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FIG. 1: Number of Cellphone Users Worldwide

Source: Statista The Statistics Portal [5]

and electricity connections. This complicated installation or maintenance pro-
cess requires several costly tools and a number of well-paid professionals to do
the work.

• Privacy preservation
Wireless technologies ensure a high level of each user’s privacy. Compared to
legacy ITS technologies, wireless technologies are able to provide privacy pre-
serving ITS solutions. For example, road monitoring cameras are able to track
drivers and collect sensitive information such as plate numbers, and personal
photos. Whereas, in wireless technologies, the only key piece of information
that might be gathered is the transmitter networking identifier (e.g. MAC ad-
dress or Bluetooth address). However, the transmitter networking ID is not
considered to be a user’s personal information. Besides, the majority of the
state of the art wireless sensing applications scramble such information to en-
sure high privacy levels.

• Data richness
Wireless technologies have been adopted to address a wide range of challenges
due to their ability to extract various kinds of data. For example, wireless Radio
Frequency (RF) technology has been widely adopted in indoor localization
systems like RADAR [8] or Horus [9], in which wireless radio signals’ spatial
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characteristics are utilized to determine transmitter location. Further, wireless
data collected by spatial and temporal sampling approaches are behind a wide
range of today’s technologies, such as travel time estimation, incident detection,
and electronic toll collection.

1.3 BLUETOOTH FEATURES

One of the most widely used wireless technologies is Bluetooth. Bluetooth is the
IEEE 802.15.1 wireless communication standard that is designed to be a low power
consumer with a short range networking protocol, based on low-cost transceiver
microchip, in order to provide a cable replacement technology. Since it was invented
in the nineties, Bluetooth has become a hot research topic on various levels. In fact,
Bluetooth technology features several advantages that make it an ideal choice for
wide range of wireless sensing applications. For example, it makes data collection
easier. Bluetooth communication standards facilitate collecting data from off-the-
shelf Bluetooth-enabled devices with no third-party application or user involvement
requirements. In the following, we briefly browse the main Bluetooth advantages:

• High market penetration
Nowadays, 95% of adults in the USA have access to cellphones [10]. The
majority of today’s cellphones are Bluetooth-enabled. Actually, the number
of various Bluetooth-enabled portable devices (e.g. cellphones, tablets, smart
watches, etc.) is expected to grow to 10 billion devices in 2018 [11]. This shows
to a 65% increase, compared to 2012. In addition, the Bluetooth connectivity
feature is expected to reach 90% of new automobiles [12].

• Data collection simplicity
Bluetooth communication protocols facilitate collecting Bluetooth data from
devices in the vicinity. Bluetooth standards feature a discovery procedure, in
which a Bluetooth device is able to search for nearby Bluetooth devices by
broadcasting Bluetooth discovery messages, while Bluetooth visible devices in
range are forced to reply with discovery response messages, which encompass
their 48-bit Bluetooth addresses and other vital information. The Bluetooth
discovery procedure eases the collection of data from off-the-shelf Bluetooth
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FIG. 2: Comparison of Several Wireless Technologies Power Consumption Rates

Source: A Comparative Study of Wireless Protocols: Bluetooth, UWB, ZigBee, and
Wi-Fi [15]

devices, with no third-party application. In addition, the Bluetooth discov-
ery procedure allows Bluetooth devices that receive discovery messages to re-
ply automatically without any user involvement. Furthermore, the discoverer
Bluetooth device is able to collect an adequate number of discovery response
messages over a short time with no connection established. According to [13],
five Bluetooth devices are able to discover 20 nearby Bluetooth devices in 3s.
In Bluetooth version 4.0 and above, Bluetooth device discovery is completed
in 3ms [14].

• Low power consumption rate
Bluetooth’s power consumption rate is lower than the majority of the wireless
communication technologies, such as Wi-Fi or Ultra-WideBand (UWB). In a
comparison between Bluetooth, ZigBee, Wi-Fi, and UWB, Bluetooth and Zig-
Bee show very low power consumption rates, whereas Wi-Fi and UWB power
consumption rates are six times higher (FIG. 2) [15]. However, the latest ver-
sions of Bluetooth (i.e. Bluetooth version 4.0 and above) have received massive
power consumption enhancements. A recent study shows that Bluetooth Low
Energy (BLE) achieves extremely low power consumption rate [16]. Comparing
to ZigBee, the power consumption rate of BLE is 50% lower [17].
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• Wide coverage range
Bluetooth’s coverage range is able to be extended to wide ranges. In this
research, we used a Class 1 industrial Bluetooth hardware from Sena Technolo-
gies, Inc. [18]. The Bluetooth adapter is shipped with a stub antenna which
covers a range of 300m. Further, the coverage range is able to be extended to
1000m using multiple power antennas (FIG. 3).

1.4 ITSBLUE

The distinctive advantages of wireless technologies, and precisely the Bluetooth,
has encouraged researchers and engineers to employ it to address a wide range of
challenges on various levels. However, Bluetooth utilization in the ITS domain is
still limited, whereas, Bluetooth has a potential towards a wide range of transporta-
tion challenges. This, in turn, motivated us to utilize Bluetooth to build itsBlue, a
cost-effective, low-maintenance and efficient Bluetooth-based framework to provide
ITS researchers and application developers with real-time and historical traffic in-
formation. The itsBlue framework consists of data collection units distributed on a
target area to collect required data, and a central computing unit that aggregates and
manipulates the collected data to extract traffic-related information (FIG. 4). The
itsBlue data collection units are compact computing units supplied with Bluetooth
transceivers, and they are deployed on road facilities (e.g. traffic lights, road signs,
or light poles) or are carried on vehicles to collect Bluetooth data from road users
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(i.e. drivers and pedestrians). The itsBlue data collection unit collects Bluetooth
data, filters it, synchronizes it with location data, and transfers it to the central
computing unit. In addition, the data collection unit performs a part of the data
manipulation to extract the location level information in a certain operation mode.
The itsBlue central computing unit receives and aggregates the collected data, and
then obtains the road user’s basic Bluetooth features (e.g. detected device appearance
time, responsiveness, Bluetooth Radio Signal Strength (RSS) statistics, etc.). Next,
the central unit utilizes Bluetooth radio signal’s spatial and temporal characteristics
in a novel way to extract a road user’s advanced features, like road user context
(i.e. vehicle rider or pedestrian), vehicle locations at intersection, or moving vehi-
cle directions. Road users’ advanced features and other traffic data are provided to
ITS applications. itsBlue facilitates traffic information delivery to ITS applications
through an Application Programming Interface (API) in which a set of subroutine
definitions are provided to allow ITS applications to consume the required informa-
tion with isolation of networking complications.

In addition to the itsBlue framework, we developed several ITS applications on
the top layer, a pack of intersection management applications and a passive vehicle
trajectories reconstruction application. The intersection management applications
pack includes the following services:
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• Vehicle queue length.

• Vehicle waiting times.

• Pedestrians volume.

• Pedestrian waiting times.

The second application is a vehicle trajectories reconstruction application. This ap-
plication employs moving vehicle locations and the directions provided by mobile data
collection units to reconstruct detected vehicles trajectories. In this application, we
show the novelty of utilizing the spatial and temporal characteristics of Bluetooth
radio signals to extract the moving vehicle’s street location and direction. In ad-
dition, we address several challenges to enhance reconstructed vehicle trajectories’
correctness and completeness.

1.5 CONTRIBUTION

The following points summarize our contribution in this dissertation:

• The design and development of itsBlue, a passive Bluetooth-based framework
to provide ITS applications with number of road users traffic information, in
order to develop a wide-range transportation service in an efficient and cost-
effective way.

• The utilization of Bluetooth technology potentials to produce an independent
single site (e.g. intersection) ITS services. To the best of our knowledge,
Bluetooth adoption in ITS is limited to a certain kind of applications, those
in which a vehicle is sampled in two or more sites (e.g. along a highway) to
extract specific statistics, such as travel time and speed.

• The novel utilization of Bluetooth radio signals’ temporal and spatial charac-
teristics to extract the following traffic-related features:

– Road user context: Bluetooth radio signals received from a road user are
utilized to extract a number of Bluetooth features (e.g. RSS variance)
that allow itsBlue to differentiate between pedestrians and vehicle riders.

– Vehicle location at signalized intersection: Wireless RF technology is ap-
plied for first time in ITS to locate vehicle spots at traffic light intersection.
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– Moving vehicle street location and direction: The features of Bluetooth
radio signals received from a moving vehicle are utilized with an awareness
of the receiving location in a novel way to determine the vehicle’s street
and direction.

– Road user appearance time: Bluetooth messages received from a road user
are utilized to determine the time elapsed in a certain location.

• The extension of the UCBT Bluetooth Network Simulator-2 (NS-2) to include a
physical layer. Bluetooth simulators are rare and complicated to configure, due
to the lack of documentation. UCBT is a NS-2 extension that enables Bluetooth
simulations. However, it lacks a physical layer. Therefore, we implemented a
physical layer into UCBT NS-2 that allows us to determine Bluetooth radio
signals’ vital measurements in order to evaluate itsBlue framework and services.

• The deployment of wireless-based ITS applications with no lane or road block-
ing. A variety of wireless sensing systems, especially RF-based ones, require
a training data set which is collected during system deployment. Such a pro-
cess involves road or lane blocking to obtain the required data from pre-defined
devices placed on the road. To ensure traffic fluidity, we establish a novel train-
ing dataset collection approach that allows us to obtain the required data from
moving vehicles.

1.6 DOCUMENT ORGANIZATION

The rest of the document is organized as follows. In the next chapter, we thor-
oughly discuss state of the art ITS technologies. Chapter 3 is devoted to presenting
the itsBlue framework and its components. In Chapter 4, we describe data collection
and processing. In Chapter 5, we explain basic Bluetooth features extraction. And
in Chapter 6, the advanced road user extraction is illustrated. Chapter 7 describes
the framework services provision to ITS application using itsBlue API. Chapter 8 is
devoted to presenting ITS applications that have been developed using the itsBlue
framework. In addition, chapter 8 includes the itsBlue framework and the ITS ap-
plications evaluation, and it presents our extended version of UCBT NS-2. Finally,
in Chapter 9, we conclude the present work and discuss future directions.
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CHAPTER 2

RELATED WORK

Over the past fifty years, the ITS revolution has produced much research and
thousands of inventions in a variety of formats. In this chapter, we explore and dis-
cuss related state of the art work in ITS. Our proposed work relies on road users’
detection to provide services. Thus, in this section, we browse the sensing technolo-
gies employed in the ITS domain. To enhance the clearness and comprehensiveness,
related work is classified by technology. Every section introduces a sensing technology
and discusses its advantages and disadvantages.

2.1 INDUCTIVE LOOPS DETECTION (ILD)

ILD is a widely adopted technology in ITS. Basically, ILD is an insulated wire
buried in a shallow closed shape slot in the pavement, and connected to a pull box
from a side where a lead-in wire connects the other side to the traffic control unit.
The traffic control unit sends an electrical current through the loop, which generates
a magnetic field. The traffic control unit continuously monitors the inductance level
of the loop. When a metallic object (i.e. vehicle) stops or passes over the loop, the
inductance level of the loop decreases, which triggers the traffic controller unit to
announce a vehicle arrival [19]. Modern ILDs are able to classify vehicle profiles by
utilizing the variance of the inductance level caused by detected objects [20, 21]. The
high cost of installation and maintenance is the main advantage of ILD technology
[19]. In addition, reported ILDs malfunction is about 30%. The associated error
occurs due to several reasons, such as a vehicle’s structure and height or inclement
weather conditions [20].

2.2 MAGNETIC SENSORS

Amagnetic sensor detects the change in the Earth’s ambient magnetic field caused
by the passage of a vehicle. The magnetic sensor consists of a cylinder containing
coils which is placed under bridge or in a hole in the center of a road lane. The
magnetic sensor detecting technique is very similar to that used by ILDs, even though
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magnetic sensors outperforms ILDs in durability and installation and maintenance
easiness. On the other hand, most of ILDs’ functionality problems occur in magnetic
sensors [19].

2.3 MICROWAVE SENSORS

Microwave sensors are usually deployed on top of traffic lights or on high poles.
The microwave sensor transmits electromagnetic waves to detect vehicles in a similar
way to ILDs. This kind of sensor is broadly adopted due to the wide range of
applications that it serves. Compared to ILDs, the microwave sensor is lower in
initiation cost and easier to maintain. The disadvantage of this sensor is interference
with other microwave devices in vicinity [20].

2.4 ULTRASONIC SENSORS

The ultrasonic sensor transmits ultra sound waves at frequencies from 25KHz to
50KHz. Then it measures the reflected waves to detect vehicle passage. Ultrasonic
sensors are usually installed on the ground, whereas they might be installed over the
road for vehicle profiling purposes. Ultrasonic sensor maintenance costs are lower
than the cost for ILDs and magnetic sensors. In addition, they show a high level
of reliability and durability. However, ultrasonic sensor performance is adversely
impacted by wind or high temperatures [19].

2.5 ACOUSTIC SENSORS

Acoustic sensors rely on a vehicle’s noise to detect its passage. The acoustic sensor
consists of array of microphones which listen continuously to audible sounds in the
target area. Upon a vehicle’s approach, its acoustic energy level is increased, which
triggers the sensor to report the vehicle’s arrival. For optimum performance, the
microphones are deployed on the vehicle tires’ level and their sensing sensitivity is set
to frequencies between 50Hz and 2000Hz. However, acoustic sensors face performance
issues in inclement weather and during peak and off-peak times [20, 19].

2.6 LASER SENSORS

Laser sensors illuminate a vehicle with a laser beam and analyze the reflected light
to detect it and to discover its characteristics. Laser sensors are a widely adopted



15

technology due to their wide range of applications, such as speed detection, volume
detection, and profile detection [20], even though laser sensing technology is not
commonly used in several ITS applications such as vehicle queue length estimation.

2.7 INFRARED SENSORS

The infrared sensing technology concept is similar to laser sensing. An infrared
sensor transmits an infrared ray into the target area and analyzes the energy reflected
from a passing by vehicle to discover it. Infrared sensing technology is widely used,
as it satisfies a wide range of application requirements. However, it is an expensive
technology and its performance is adversely affected by inclement weather [21].

2.8 IMAGE-BASED SENSORS

Image-based sensing is one of the most broadly adopted techniques in pedestrian
and vehicle detection applications. Image-based sensors consist of one or more video
cameras that take a series of pictures for target area, and then transfer it to a pro-
cessing unit that utilizes image processing techniques to discover pictured objects
depending on pixel variance. Dollar et al. [22] investigated a number of image-based
pedestrian detectors. The majority of the surveyed systems suffered from significant
delays; the measured detection times were in tens of seconds per frame. However,
there are a number of image-based pedestrian detection systems that have achieved
higher speeds of 10-30 frames in few seconds, although these systems require costly
computing infrastructures [23]. Further, the pedestrian detection True Positive Rate
(TPR) of several state of the art image-based systems is around 50%. On the other
hand, the majority of vehicle image-based detection systems rely on aerial or side im-
ages. Consequently, these systems are complicated and involve a number of classifiers
and a long training process [24]. Ultimately, besides installation and calibration com-
plications, image-based sensing techniques suffer from high computation costs and
wide data transmission bandwidth requirements. Also, traffic congestion, vehicle
speed, variation of light and inclement weather adversely impact most image-based
vehicle detectors’ performance [25].
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2.9 PARTICIPATORY SENSING

Participatory sensing technology aims to utilize the ubiquity of smartphones to
collect a user’s context and the surrounding environment’s data. Modern smart-
phones have become loaded with various sensors and communication technologies,
which allow them to collect substantial data offering wide range of applications.
Participatory sensing technology aims to utilize a user’s collected data to extract
ambient information (e.g. air pollution level monitoring, ambient noise monitoring,
etc.), context, or personal information (e.g. health monitoring, physical activities,
social information, etc.).

The diversity of sensors and wireless communication technologies available on
smartphones nowadays lead to different sensing techniques. Using device inertial
sensors (e.g. accelerometer, gyroscope, or compass) to detect user activities is one of
the most common sensing practices in participatory sensing. Actually, several daily
activities have distinguishable inertial sensors signatures (FIG. 5), which allows one
to detect user context. Thus, participatory sensing ITS applications are able to infer
journey information by utilizing data collected by an on-board device. For instance,
Nericell [26] is an attempt to utilize a participatory sensing concept in ITS. The
authors proposed a system to discover the street that the vehicle is moving on from
the on-board device inertial sensor’s signature. Then, the system finds the vehicle’s
location by using the phone Global System for Mobile Communications (GSM) signal
characteristics. However, the proposed system evaluation showed 660m error 90% of
the time.

 Walk Train Bike Bus Car

FIG. 5: Example of Inertial Sensors (Accelerometer) Activity Signatures.

Source: Detecting Vehicle Stops From Smartphone Accelerometer Data [27]
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Moreover, the availability of wireless networking technologies on smartphones and
such devices motivated researchers to employ them in participatory sensing applica-
tions. For example, Bluetooth has been utilized in participatory sensing applications
to estimate the car congestion level on trains. The proposed system applies the
Bayesian theorem to estimate the likelihood of transmitter existence on train cars,
and then infers the congestion level from number devices located on that car [28]. In
addition, QueueSense is a participatory sensing system that recognizes human wait-
ing queues. It utilizes smart phone sensors and Bluetooth to continuously collect data
in order to discover devices in queues. Then it uses the collected data to separate
waiting lines using an SVM classifier, and finally it obtains the queue waiting times.
[29]. Weppner et al. [30] investigated participatory sensing in crowd density level
estimation in public locations. Their proposed system employed Bluetooth signals
and GPS locations collected from volunteers’ devices to extract a number of features
in order to predict crowd level.

In fact, participatory sensing includes all of the practices of sensing by collecting
data via third party hardware or software. Probe vehicle is one of the most common
practices of participatory sensing in ITS domain. In definition, probe vehicle is an
ITS technology designed for specific applications such as traffic monitoring, incident
detection, route guidance, and queue length estimation [31, 32, 33]. Probe vehicle is
a specific purpose hardware or software installed on a vehicle or an on-board device
to collect real time trip data and then transfer it to an ITS application. Probe vehicle
utilizes four techniques to collect data:

• Signpost-Based Automatic Vehicle Location (AVL): Probe vehicle com-
municates with transmitters deployed on signposts.

• Automatic Vehicle Identification (AVI): Vehicle is supplied with an on-
board electronic tag that communicates with roadside transceivers to identify
the vehicle and to obtain travel times between transceivers.

• Ground-Based Radio Navigation: It is similar to the Global Positioning
System (GPS) concept, whereas radio towers collect data from probe vehicle
in order to determine a location.

• Cellular Geo-location: Experimental technology aims to estimate travel time
data by tracking cellular telephone call transmissions.
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• GPS: On-board two-way GPS transceivers that continuously receive GPS
satellite signals and transmit them to an ITS application that provides location-
based services.

Probe vehicle is playing an essential role in various ITS applications, such as fleet
management and transit agencies’ applications [34].

Participatory sensing showed potential to assist in a variety of ITS challenges.
However, participatory sensing suffers from several disadvantages, with a high level of
privacy invasion being one of its major drawbacks. Participatory sensing applications
have access to the majority of device resources (e.g. inertial sensors, GPS, and
cameras) which violate users’ privacy by accessing sensitive information such as GPS
location. In addition, the high energy consumption rate associated with several
sensors used in participatory sensing is another disadvantage. According to a recent
study conducted on an Android platform system [35], in a certain time frame, GPS
consumes about 15%, inertial sensors consume 10% and a camera drains about 20%
of the battery power capacity. In addition, the success of participatory sensing
applications relies on the number of volunteers who are willing to share their data,
whereas a number of discouraging factors are associated with participatory sensing,
such as privacy invasion, a high energy consumption rate, a high cellular data usage
rate, or a third-party application prerequisite. These factors are enough to push a
considerable number of users not to volunteer to participate in sensing applications.
Regarding probe vehicle, the hardware on-board installation requirement makes it
unsuitable choice for various ITS applications.

2.10 WIRELESS SENSING

Nowadays, wireless communication technologies have widely spread. Modern mo-
bile devices include a variety of wireless communication means such as Wi-Fi, Blue-
tooth, ZigBee, and Near Field Communication (NFC). The availability of these well-
defined standards has motivated researchers to employ wireless sensing to address
several challenges. Wireless sensing applications utilize transmitted data packets and
radio signal characteristics to detect transmitting devices and to determine several
pieces of information about them and their surrounding areas. According to wireless
communication standards, every data packet encompasses a transmitter identifier
called a Media Access Control (MAC). This unique identifier allows wireless sensing
applications to detect and track the transmitter. In addition, physical radio signal
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characteristics include several features which are key to determining useful data. For
example, radio signal transmission power that fades over distance allows wireless
sensing applications to determine a transmitter’s location.

In fact, the main advantage of wireless sensing over other sensing technologies that
utilize wireless communication means (e.g. participatory sensing) is the ability to use
unmodified user devices to collect data. Wireless sensing applications benefit from the
wireless communication standards that govern wireless devices to collect data from
off-the-shelf devices, with no modification or third-party application prerequisite.
Wireless sensing applications utilize networking standard protocols to communicate
with devices within range and to collect the required data. Actually, Wi-Fi and
Bluetooth are the most popular technologies in wireless sensing applications, due to
their high market penetrations. However, the Bluetooth neighbors’ discovery process
facilitates obtaining the required data from in-range devices, which grants Bluetooth
an advantage over Wi-Fi.

Over the last decade, wireless sensing has employed Wi-Fi and Bluetooth to ad-
dress various challenges. For instance, the absence of a GPS satellite signal indoors
motivated researchers to investigate alternative technologies in order to provide lo-
cation services. Wireless sensing technology has been one of the most suitable alter-
natives, due to its simplicity, cost-effectiveness, and data richness. Wireless sensing
applications have adopted RF technology to estimate in-range devices’ locations. The
radio signal’s received power is the key feature in determining transmitter location.

In the ITS domain, Bluetooth is extensively utilized to estimate travel times on
highways. Simply, two or more Bluetooth transceivers are placed a bit apart on a
highway to collect the Bluetooth radio signals from vehicles traveling by them. Then,
the travel time is calculated as the difference between the signals’ receiving times [36].
A number of researchers have studied the impact of Bluetooth transceiver placement
and signal selection among received signals at a given sampling point. These re-
searchers showed the impact of Bluetooth transceiver placement and recommended
selecting the strongest and last-received Bluetooth signal to enhance the accuracy
of travel time estimation [37, 38, 39]. Further, Bluetooth contributed to route esti-
mation by collecting Bluetooth radio signals from vehicles passing by certain check-
points, in order to obtain traffic information and estimate route travel time [40].
Moreover, a number of studies have addressed pedestrian assistance challenges using
Bluetooth-based sensing. Universal Real-time Navigational Assistance (URNA) is
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a Bluetooth-based navigation system for blind persons at signalized intersections.
The system establishes a connection with a pedestrian Bluetooth device and sends
it messages about intersection topology and traffic light signals [41].

To conclude, wireless sensing technologies are intensively utilized in localization
applications to address the GPS high energy consumption rate and the absence of
indoor signals, whereas wireless sensing technology utilization in ITS is limited to
certain kinds of applications, such as travel time estimation on highways. However,
wireless sensing technologies have the potential to address various ITS challenges.

2.11 CONCLUSION

ITS researchers and engineers have investigated a wide range of sensing tech-
nologies to address transportation challenges. However, the majority of the state of
the art ITS technologies are suffering from different disadvantages. Magnetic field
sensing and image-based sensing technologies are expensive to deploy and maintain.
The performance of sound wave detection systems is adversely affected by surround-
ing environmental conditions, while inclement weather impacts the performance of
infrared-based sensing applications. Participatory sensing is providing a competi-
tive alternative by utilizing smartphones’ sensors and wireless communication tech-
nologies. However, a number of disadvantages are associated with it, such as data
limitations, high privacy invasion, and a third-party application requirement.

Wireless sensing, and Bluetooth precisely, has been well studied and broadly
adopted to address a wide range of challenges in different domains. Yet Bluetooth is
not well utilized in ITS. However, Bluetooth’s features, like its low cost, data rich-
ness, and privacy preservative nature, make it an appropriate technology to address
several ITS challenges. Therefore, in this research, we employ the Bluetooth wire-
less technology to introduce an efficient and cost-effective framework to provide the
ITS community with required traffic statistics and information. Unlike other ITS
applications, itsBlue is able to collect Bluetooth data from road users’ commodity
Bluetooth devices at single site and to extract traffic information by utilizing radio
signals’ temporal and spatial characteristics.
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CHAPTER 3

ITSBLUE FRAMEWORK OVERVIEW

The objective of itsBlue framework is to provide ITS applications with required
traffic-related information in an efficient and cost-effective way. itsBlue framework
collects and manipulates road users data to generate traffic information to be con-
sumed by ITS applications. These operations, data collection, traffic information
extraction, provision and consumption constitute the main work phases of itsBlue
framework. Thus, itsBlue framework is designed in multiple layers, every layer per-
forms a part of these operations. This design reduces framework architecture com-
plexity, and enhances interoperability and scalability. Figure 6 lists itsBlue frame-
work layers and briefly describes their functions.

Layer Function Example 

Application itsBlue information 

consumption and ITS 

services production 

Vehicle queue length at 

signalized intersection 

Traffic Information 

Provision 

itsBlue traffic information 

provision via a set of APIs 

Providing an ITS 

application with vehicle 

locations at a signalized 

intersection via 

corresponding API method 

Advanced Road User 

Features Extraction 

Road user traffic related 

Information extraction 

Classifying Bluetooth 

device to pedestrian or 

vehicle 

Basic Bluetooth Features 

Extraction 

Bluetooth spatial and 

temporal features 

extraction 

Extracting Bluetooth 

device appearance time 

Data Collection - Bluetooth and location 

data collection, filtering 

and synchronization 

- Bluetooth device data 

aggregation 

Collecting Bluetooth data 

and synchronizing it with 

collection locations 

 

FIG. 6: itsBlue Framework Layers
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In fact, each itsBlue framework layer involves several hardware and software com-
ponents to accomplish its tasks. In this chapter, we briefly describe itsBlue framework
layers and highlight hardware and software components involved in their tasks.

itsBlue framework layers tasks are performed by three parties (FIG. 7):

1. Data collection units: Perform data collection layer tasks.

2. Central computing unit: Performs the tasks of basic Bluetooth features
extraction layer, advanced road user features extraction layer and traffic infor-
mation provision layer. In addition, it receives, aggregates and stores collected
data, which are data collection layer tasks.

3. ITS applications: perform ITS applications layer tasks.

As seen on figure 8, each of above parties is powered by several software modules.
Figure 8 highlights every layer software modules with layer color on figure 6. The
following subsections describe each layer tasks and components.

Data Collection Units Central Computing Unit ITS ApplicationsData Collection Units Central Computing Unit ITS Applications

FIG. 7: itsBlue Main Components

3.1 DATA COLLECTION LAYER

In itsBlue framework, data collection is carried out by compact computing units
called BlueCollect units. The BlueCollect units are placed on road infrastructure or
carried on vehicles that are roving target area, and continuously collecting data. The
collected data is mainly Bluetooth data and location data. Besides data collection,
BlueCollect unit processes, and delivers collected data to BlueEngine, the central
computing unit. BlueEngine receives and aggregates data collected by BlueCollect
units, and stores it on the database.
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Data collection layer tasks are carried out by the following software modules:

• BlueCollect unit side:

– Bluetooth Data Collection and Processing Module: Continuously
receives Bluetooth data from road users. Obtained Bluetooth data is
filtered to remove radio signal outliers. Then, transferred to Data Prepa-
ration Module. This process is repeated on time basis (i.e. 10.24s by
default).

– Location Data Collection Module: Continuously receives GPS coor-
dinates of BlueCollect unit. Received data is transferred to Location Ex-
traction Module on time basis (set accordingly to Bluetooth data transfer
time basis).

– Location Extraction Module: Uses GPS data and target area map
data that requested through Communication Module to determine mo-
bile BlueCollect unit carrier street location and direction. Determined
street location and direction of BlueCollect unit, and raw GPS data are
forwarded to Data preparation Module and Control Module.

– Data Preparation Module: Aggregates and synchronizes collected
Bluetooth and location data. Then, transfers it to Communication Mod-
ule upon Control Module command.

– Control Module: Supervises data collection process. Control Module
initiates data collection process and organizes data transmission among
BlueCollect unit modules based on temporal and spatial triggers. In ad-
dition, it executes BlueEngine commands such as BlueCollect units time
synchronization.

– Communication Module: Handles communications between BlueCol-
lect unit and other parties.

• BlueEngine side:

– Communication Module: Facilitates communication with BlueCollect
units through TLS over TCP/IP to ensure system security and reliability.

– Data Aggregation Module: Aggregates every Bluetooth device data
and stores it on the database.
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– BlueCollect Control Module: Maintains BlueCollect units lookup ta-
ble which encompasses BlueCollect units IDs and attributes. Besides, it
is responsible for data collection process initiation and termination, and
BlueCollect units time synchronization. Further, it is allowed to change
data collection settings like Bluetooth data collection cycle time.

3.2 BASIC BLUETOOTH FEATURES EXTRACTION LAYER

Basic Bluetooth features are extracted by the Bluetooth Features Extraction
Module. This module extract a set of road user basic Bluetooth features (e.g.
appearance time, RSS Variance, . . . ) by applying certain arithmetic operations on
a range of Bluetooth data specified by location and time boarders. The basic road
user’s Bluetooth device features are:

• Strongest RSS

• Weakest RSS

• Median RSS

• RSS mean

• RSS variance

• Appearance time

• Number of received Bluetooth discovery response messages

3.3 ADVANCED ROAD USER FEATURES EXTRACTION LAYER

In this layer, itsBlue framework utilizes Bluetooth radio signals spatial and tem-
poral characteristics, and the obtained basic Bluetooth features to extract traffic
related information. This layer tasks are performed by the following five software
modules:

• Coordination Module: Obtains the basic Bluetooth features or database
data requested by layer modules, and transfers it to proper module. In addition,
it handles data exchange between layer modules.
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• Vehicle and Pedestrian Differentiation Module: Classifies road users
detected on certain location to pedestrians and vehicle riders. This module
employs machine learning technologies to classify road users relying on vari-
ances in Bluetooth feature readings.

• Vehicle Location Identification at Signalized Intersection Module:
Identifies stopping spots of vehicles on traffic light controlled intersection. This
module obtains Bluetooth radio signals received from vehicles at intersection
form the database through the coordination module. Then, applies a RF sens-
ing technology to identify vehicles locations depending on Bluetooth radio sig-
nals spatial features. Also, this module requests vehicle Bluetooth addresses
from the Vehicle and Pedestrian Differentiation Module via the coordination
module to avoid pedestrians positioning.

• Vehicle Street Location and Direction Determination Module: Uti-
lizes vehicle basic Bluetooth features and location data of mobile BlueCollect
unit carrier to determine detected vehicle street locations and directions. To do
so, two kinds of data are requested through the Coordination Module. Vehicles
detected on target area and their basic Bluetooth features from Basic Blue-
tooth Features Extraction Module. And location data of mobile BlueCollect
units detected them from the database. This module utilizes obtained data to
determine detected vehicles street locations and directions according to mobile
BlueCollect units locations and directions during data collection.

3.4 TRAFFIC INFORMATION PROVISION LAYER

This layer facilitates the delivery of extracted road user features and traffic in-
formation to ITS applications. This layer tasks are accomplished by the Traffic In-
formation Provision Module. This module implements a set of APIs that allow
ITS application to obtain required traffic information of desired location and time.
The APIs are implemented using Java Remote Method Invocation (Java RMI) which
facilitates building distributed systems using Client / Server concept. The Traffic In-
formation Provision Module includes the Java RMI server and registry. The RMI
server implements API remote interfaces, whereas the RMI registry publicizes them.
Traffic information provided by this module includes:
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• Road user context.

• Vehicle locations at signalized Intersection.

• Moving vehicle locations and directions.

• Location data of mobile BlueCollect unit.

• Road user raw Bluetooth data.

The Traffic Information Provision Module requests advanced Bluetooth features
from corresponding modules, and receives requested raw data from the database via
the Coordination Module.

3.5 APPLICATION LAYER

The application layer is where ITS applications live. ITS applications implements
Java RMI client to connect itsBlue framework, lookup required information API and
invoke it.
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CHAPTER 4

DATA COLLECTION

In this chapter, we thoroughly present data collection in the itsBlue framework.
First, we describe the data collection infrastructure hardware and software compo-
nents. Then, we discuss the advantages of Bluetooth in data collection and explain
the Bluetooth communication protocol that we exploited to collect road user Blue-
tooth data. Next, we describe the Bluetooth data filtering approach. And, on the
last section, we explain the kinds of collected data and the spatial and temporal
segmentation of data.

4.1 DATA COLLECTION INFRASTRUCTURE

Mainly, the itsBlue framework is intended to collect Bluetooth data from road
user devices in its vicinity in order to use the data in extracting traffic-related infor-
mation. To facilitate data collection, we designed and built BlueCollect, a lightweight
computing unit equipped with appropriate peripherals and powered by battery packs
provided with an additional solar panel charger (FIG. 9). The compact design of the
BlueCollect unit allows to deploy it in two modes:

GPS

Receiver

WLAN

Interface

Bluetooth

Transceivers 

Computing Unit

Cellular

Modem
Chargeable 

Battery Pack

FIG. 9: BlueCollect Unit Hardware Components

1. Stationary: Where it is placed on target area infrastructure (e.g. traffic lights,
road signs, light poles, etc.).
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2. Mobile: Where it is carried on a vehicle roving the target area.

A number of BlueCollect units are distributed on a target area to obtain the
required data. The data collected using the BlueCollect unit is mainly of two kinds:
Bluetooth data collected from road users’ devices and BlueCollect unit location
data. In order to be able to collect the required data, process it, and transfer it
to BlueEngine (i.e. the central computing unit), the BlueCollect unit encompasses
the following components:

1. Bluetooth Transceiver: One or more USB Bluetooth adapters to collect
road user Bluetooth data. BlueCollect is equipped with a Sena Parani UD100
Class 1 Bluetooth industrial adapter [18] that features up to a 1000m coverage
range.

2. Global Positioning System (GPS) Receiver: A GPS unit (i.e. NovAtel
FlexPak6 [42]) to identify data collection position in mobile operating mode.
The NovAtel FlexPak6 is equipped with a Satellite-Based Augmentation Sys-
tem (SBAS) [43] signal receiver, which narrows the location Root Mean Square
Error (RMSE) to 0.6m

3. Wireless Local Area Network (WLAN) Communication Adapter: A
USB WLAN adapter for data exchange with the BlueEngine.

4. Cellular Modem: A USB cellular modem that features a high speed connec-
tion to facilitate data exchange with the BlueEngine in absence of the WLAN
coverage.

5. Computing Unit: A credit card-sized computer (i.e. Raspberry Pi 2 Model
B [44]) to carry out data collection, processing, and the delivery process. The
computing unit synchronizes processed Bluetooth and GPS data and then
transfers it to the BlueEngine. This process is performed by the following
modules (FIG. 8):

(a) Bluetooth Data Collection and Processing Module: Responsible
for handling Bluetooth transceiver operations (e.g. Bluetooth command
fetching, error handling, etc.) and collected Bluetooth data filtering.
This module initiates Bluetooth data collection by commanding Blue-
tooth neighbors’ discovery processes, in which the Bluetooth transceiver
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broadcasts discovery messages and receives Bluetooth discovery response
messages from neighboring Bluetooth devices. This process lasts for a
specific period of time called “the Bluetooth discovery duration” 1. At
the end of the Bluetooth discovery duration, a radio signal filtering tech-
nique is applied on the received Bluetooth radio signals to remove any
signal outliers. Then, it forwards the processed Bluetooth data to the
Data Preparation Module. The Bluetooth Data Collection and Process-
ing Module repeats this process continuously.

(b) Location Data Collection Module: Responsible for handling GPS
operations (e.g. GPS command fetching, error handling, etc.). The Lo-
cation Data Collection Module receives location coordinates every 1s and
forwards it to the Location Extraction Module.

(c) Location Extraction Module: Responsible for obtaining BlueCollect
unit street location and direction. This module utilizes the GPS traces
and a mapping service to extract the BlueCollect unit street location and
direction. Then it transfers the obtained street location and direction,
along with the GPS traces, to the Data Preparation Module.

(d) Data Preparation Module: Responsible for Bluetooth and location
data synchronization and transmission to the BlueEngine. The Data
Preparation Module aggregates detected Bluetooth device data, associates
it with a receiving location, and sorts it by reception time (FIG. 10). The
prepared data is then forwarded to the Communication Module upon a
Control Module command.

(e) Control Module: Responsible for controlling prepared data transmis-
sion to the BlueEngine and executing BlueEngine commands. Transfer-
ring collected data to the BlueEngine is driven by a number of events
(e.g. reaching a certain location, the end of Bluetooth discovery dura-
tion, etc.). The Control Module recognizes an event’s occurrence and
commands the Data Preparation Module to transfer the prepared data to
the BlueEngine, accordingly. In addition, the Control Module sends the
BlueCollect unit information (e.g. the BlueCollect ID, operating mode,

1The default Bluetooth discovery process duration is 10.24s. This period of time is adjustable
within a range from 1.28s to 61.44s
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Bluetooth transceivers’ information, etc.) to the BlueEngine upon initi-
ation, and executes incoming BlueEngine commands (e.g. data gather-
ing initiation/termination, the data gathering cycle duration adjustment,
etc.). In addition, it synchronizes the BlueCollect unit time with the
BlueEngine time.

(f) Communication Module: Responsible for handling the connection with
the BlueEngine and exchanging data with it. The communication module
provides a means of communication with the BlueEngine through Trans-
port Layer Security (TLS) on a Transmission Control Protocol/Internet
Protocol (TCP/IP) in order to ensure security and reliability.

Bluetooth Device Address: 78:47:1D:A4:B9:33 

Class of Device: 0x5a020c 

BlueCollect ID: SBCU-07 

Receiving Date and Time 

Receiving Location 

RSSI 
Receiver 

Bluetooth Address Coordinates 
Street 

Segment 
Direction 

2016-11-16 16:01:15.6170 
36°53'15.6"N 

76°18'19.2"W 
49th St. W -63.52 00:01:95:0C:80:0D 

2016-11-16 16:01:17.4980 
36°53'15.3"N 

76°18'24.8"W 
49th St. W -62.27 00:01:95:0C:80:0D 

2016-11-16 16:01:19.0780 
36°53'15.2"N 

76°18'27.6"W 
49th St. E -81.96 88:9F:FA:EA:5C:9E 

2016-11-16 16:01:20.9460 
36°53'15.2"N 

76°18'28.7"W 
49th St. W -63.04 00:01:95:0C:80:0D 

 

FIG. 10: Road User Collected and Processed Data

4.2 BLUETOOTH DATA COLLECTION PROCESS

The simplicity of Bluetooth standards expedites collecting Bluetooth data from
devices in the vicinity. Bluetooth standards include a neighboring Bluetooth device
discovery procedure in which a Bluetooth device searches for nearby Bluetooth de-
vices by broadcasting Bluetooth discovery messages, while Bluetooth visible devices
within range, upon receiving a discovery message, are forced to reply with a discovery
response message. Collecting Bluetooth data using discovery process is advantageous
compared to collecting data over a traditional Bluetooth connection. The advantages
of the Bluetooth discovery process in data collection are summarized in the following
points:

1. A short data receiving time, due to the absence of a connection establishment
process.
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TABLE 2: Frequency Hopping Synchronization (FHS) Packet Contents

Parameter Description
BD_ADDR Bluetooth Device Identifier
Page_Scan_Repetition_Mode Specifies the supported page scan repetition mode
Page_Scan_Period_Mode Specifies the mandatory page scan timer value
Class_of_Device Refers to device kind

Clock_Offset The difference between local
clock and inquiring device clock

RSSI The measurement of the power present in
received radio signal in dBm (Range: –127 to +20)

2. No user involvement is required, whereas user approval is required to establish
a Bluetooth connection.

3. Radio signal transmission power is fixed, which leads to obtaining comparable
received transmission power values from transmitters, whereas, over a Blue-
tooth connection, the transmission power is adjusted by the transmitter to
reduce power consumption.

According to Bluetooth standards [45], Bluetooth operates on the unlicensed 2.4
GHz band, which may lead to interference with other communicators. Therefore,
Bluetooth uses the Frequency Hopping Scheme (FHS) to avoid interference. In Blue-
tooth 3.0 and former versions, the 2.4 GHz spectrum is divided into 79 channels and
Bluetooth devices alternate among them in a random fashion.

In Bluetooth 3.0 and former versions, the discovery of nearby Bluetooth devices is
called the Bluetooth inquiry process. In the Bluetooth inquiry process, an inquiring
Bluetooth device (i.e. master) broadcasts inquiry messages and listens to inquiry
response messages from in-range discoverable Bluetooth devices (i.e. slaves). To
start the Bluetooth inquiry process, the master enters an inquiry sub-state, in which
it uses the Inquiry Access Code (IAC) and the native clock to obtain the inquiry
hop sequence, which is a sequence of 32 channels of the available 79 FHS channels
(FIG. 11). The default inquiry process time is 10.24s, the master stays 625µs on
every channel, broadcasts inquiry messages which known as Identifier (ID) packets
in 312.5µs, and scans for replies on the other 312.5µs of the channel time window.
Particularly, the 32 inquiry hop sequence channels are split onto two trains: A and
B. The master broadcasts an ID packet on a train A channel within 312.5µs, then
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hops to a train B channel to broadcast another ID packet. Next, the master hops
back to train A channel to scan for replies, after 312.5µs, it scans for replies on train
B channel for 312.5µs. On the other hand, the slave enters inquiry scan sub-state
to listen to master’s ID packets. The slave stays 1.28s on every channel; however,
it scans for ID packets for 11.25ms only, which is enough for a master to broadcast
ID packets on one train of channels. Upon receiving an ID packet, the slave waits
for 625µs, then replies with an inquiry response message, which known as Frequency
Hopping Synchronization (FHS) packet. The slave’s FHS packet encompasses its
48-bit Bluetooth addresses and other vital information (Table 2).

 

FIG. 11: Bluetooth Inquiry Process

Note: Master’s green channels are train A, blue channels are train B

Furthermore, Bluetooth versions 4.0 and above received massive enhancements.
The new Bluetooth modifications include improvements in the Bluetooth discovery
process. Bluetooth 4.x devices operate on the same spectrum: 2402 - 2480MHz.
However, the spectrum is divided to 40 channels, 3 advertising channels and 37
data channels [46]. In Bluetooth 4.x, there are two kinds of discovery procedures:
Directed Advertising Events, to find known nearby devices; and Undirected Advertis-
ing Events, to find unknown nearby devices. In this research, we are interested in the
undirected advertising events. In undirected advertising events, the master, which is
called “advertiser” here, broadcasts the appropriate Packet Data Unit (PDU) on 3
advertisement dedicated channels (37, 38, and 39) (FIG. 12). On each channel, the
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FIG. 12: Bluetooth Advertisement Process

advertiser transmits advertisement messages, and listens to responses from nearby
visible Bluetooth devices. The advertisement event interval length is set by the ad-
vertiser, and it is adjustable within a range from 20ms to 10.24s [47]. On the other
hand, the Bluetooth device that scans for advertisements is called a scanner instead
of a slave. The scanner scans for advertisements on every advertisement channel for
up to 10.24s.

As stated above, the Bluetooth discovery process allows Bluetooth data to be
collected from in-range devices in a short time, with no connection establishment or
user involvement required. According to [13], five Bluetooth inquiring devices running
Bluetooth version 3.0 or former are able to discover 20 visible Bluetooth devices in
3s, whereas Bluetooth 4.x devices are able to discover a neighboring Bluetooth device
within 3ms [14]. Furthermore, off-the-shelf Bluetooth devices are forced to reply to
discovery messages with response messages via the Bluetooth stack, with no third-
party application requirement.

4.3 BLUETOOTH RADIO SIGNALS FILTERING

Radio signal propagation is impacted by the environment into which the signal
travels. Objects in the environment, especially metal or metal-containing objects,
influence radio frequency signals in several ways, including multipath propagation
and interference. For example, a transmitted radio signal may experience reflection,
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refraction, scattering, or diffraction, according to the medium into which it travels
and the surrounding objects, which can result in receiving the radio signal from
multiple directions. This multipath propagation could either amplify or fade the
received signal.

Even medium influence on radio signal propagation affects radio signals spatial
and temporal characteristics, which, in turn, impacts the performance of RF sensing
systems. Therefore, radio signal filtering is required, to remove the noise associated
with received radio signals.

There is no radio signal filtering technique that always outperforms the others.
A variety of radio signal filtering techniques showed strengths in different domains.
The feedback radio signals’ filtering methods showed a high performance in outdoor
environments [48]. Thus, we employ the feedback approach to filter out Bluetooth
radio signal outliers. In the feedback filter, the RSSI noise is removed, depending on
the previously evaluated RSSI. The feedback filter is governed by this equation:

RSSI(n) = vRSSI(n− 1) + (1− v)RSSI(n)

Where 0 6 v 6 1. According to [48], v is set between 0.65 and 0.8.

4.4 BLUECOLLECT OPERATING MODES AND DATA
COLLECTION MECHANISM

The advantageous compact design of the data collection infrastructure BlueCol-
lect allows it to operate in a stationary or a mobile mode. The diversity of operating
modes causes dissimilarity in the collected data. For instance, the amount of data
collected from a moving vehicle by a stationary BlueCollect is usually less than the
amount of data collected by a mobile BlueCollect moving with the vehicle. There-
fore, itsBlue considers that data collected by stationary and mobile BlueCollect units
are of different kinds. In order to best utilize collected data in traffic information
extraction, itsBlue uses certain mechanisms to collect and process each kind of data.

4.4.1 BLUECOLLECT STATIONARY OPERATING MODE

A stationary BlueCollect unit works in a cluster of units placed together on single
site to collect data in order to extract an independent single site traffic information.
In fact, a cluster of stationary BlueCollect units is placed on a signalized intersection
to collect road users’ data in order to obtain traffic-related information (FIG. 4).
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Due to its static location, a stationary BlueCollect unit is not supplied with
GPS units. Thus, collected Bluetooth data is not synchronized with the location
of the data collection. However, the BlueCollect unit identification number and the
Bluetooth transceiver address are associated with collected Bluetooth data. Data
collected by a stationary BlueCollect is transferred to the BlueEngine at the end of
the Bluetooth discovery duration.

4.4.2 BLUECOLLECT MOBILE OPERATING MODE

Complete dependence upon stationary data collection units to cover the target
area is expensive. Instead, we employ portable data collection units carried on vehi-
cles moving in the target area to extend the coverage range. The itsBlue framework
utilizes service vehicles (e.g. buses, security vehicles, etc.) that are roving the area
to carry mobile BlueCollect units and to collect data from road users. To the best
of our knowledge, BlueCollect is the first mobile Bluetooth-based infrastructure to
collect traffic data.

As noted above, the mobile BlueCollect is continuously moving and collecting
Bluetooth and location data. The collected data is divided into two kinds based on
the receiving location:

1. Street data: The data collected while the BlueCollect unit carrier is moving on
a street. The street data includes Bluetooth data and receiving street location
and direction.

2. Intersection data: The data collected while the BlueCollect unit carrier is
stopped at an intersection. The intersection data indicates the road user’s
appearance at the intersection at a certain time.

The mobile BlueCollect unit prepares the collected data and transfers it to the
BlueEngine upon the carrier’s departure of a recent street or intersection. In order to
detect the BlueCollect carrier’s street or intersection entry and departure, the mobile
BlueCollect unit uses a two-layer target area map. The first layer is a human-readable
map with street names and intersection geographic coordinates. The second layer is
a graph, where edges are the streets and vertices are the intersections. Generally,
a first layer street map includes more than one graph edge; thus, every graph edge
corresponds to a first layer map street segment. To identify a mobile BlueCollect
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unit carrier street segment, the BlueCollect unit receives the geographic coordinates
of the current location via the GPS unit. The Google Maps Geocoding Service [49]
is used to convert received geographic coordinates into a human-readable address.
Then, BlueCollect finds the mapped street and the corresponding edges that match
the given street name. To be able to recognize a carrier’s exact street segment and
direction, BlueCollect continuously calculates the distance between the most recent
three GPS coordinates and the following two points:
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FIG. 13: Mobile BlueCollect Unit Carrier Street Segment Identification

MBCU stands for Mobile BlueCollect Unit
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1. Last visited intersection geographic coordinates.

2. Possible destinations of the last visited intersection on current street according
to graph layer of the map.

The Mobile BlueCollect unit selects the street segment/edge that connects the
last visited intersection/vertex to the destination intersection/vertex with shortest
decreasing distances from recent carrier GPS coordinates (FIG. 13). In addition, the
Mobile BlueCollect carrier’s U-turns are detected when the distances between recent
GPS coordinates and the last-visited intersection/vertex are decreasing after a pe-
riod of increase. In case the current street segment is an initial segment where the
source intersection/vertex is unknown, BlueCollect calculates the distance between
the recent three GPS coordinates and all of the intersections on the current street.
The intersection with shortest increasing distance from recent carrier GPS coordi-
nates is the source intersection/vertex, and the intersection/vertex with the shortest
decreasing distance from the recent carrier’s GPS coordinates is the destination in-
tersection/vertex.

To be able to identify intersection entry, BlueCollect continuously calculates the
distance between the recent GPS coordinates and the upcoming intersection geo-
graphic coordinates given on the map. BlueCollect recognizes street segment depar-
ture and intersection entry when the distance between the current GPS coordinates
and the upcoming intersection is 15% of the street segment’s length or less.

Furthermore, Mobile BlueCollect unit carrier’s passengers may carry Bluetooth-
enabled devices, and the BlueCollect unit may unintentionally consider these devices
as vehicles. To overcome this obstacle, the mobile BlueCollect unit is supplied with
additional short-range Bluetooth transceivers (i.e. 3m) to detect on-board Bluetooth
devices. Data from Bluetooth devices detected by these special purpose Bluetooth
transceivers are discarded. To avoid discarding a vehicle mistakenly, a Bluetooth
device is considered a passenger device when it replies to 30 Bluetooth discovery
requests of special purpose Bluetooth transceiver.
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CHAPTER 5

BASIC BLUETOOTH FEATURES EXTRACTION

On the data collection layer, BlueEngine receives data collected by stationary
and mobile BlueCollect units. Then it arranges all of the detected Bluetooth device
data that is collected by multiple BlueCollect units together and stores it in the
database. In this chapter, we will introduce the basic Bluetooth features extraction
layer, which retrieves Bluetooth device data from the database and utilizes it to
extract the device’s basic Bluetooth features.

5.1 BLUETOOTH FEATURES EXTRACTION

The majority of the basic Bluetooth features are extracted by applying certain
arithmetical operations. Thus, we arrange every piece of detected Bluetooth device
data in a set. For example, the following set, di, is the Bluetooth device i’s collected
data set.

di =
{
l1, l2, . . . , la

}
Where a is the number of locations that Bluetooth device i is detected on. Let lj ∈ di

where 1 6 j 6 a. lj is a subset of BlueCollect units that collected Bluetooth device
data at location j.

lj =
{
u1, u2, . . . , ub

}
Where b is the number of BlueCollect units that collected Bluetooth device i data
at location j. Let uk ∈ lj where 1 6 k 6 b. uk is a subset of Bluetooth transceivers
that are plugged into BlueCollect unit k and collected Bluetooth device data.

uk =
{
s1, s2, . . . , sc

}
Where c is the number of BlueCollect unit k Bluetooth transceivers that collected
Bluetooth device data. Let sl ∈ uk where 1 6 l 6 c. sl is a subset of the Bluetooth
RSS samples received by Bluetooth transceiver l.
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sl =
{
r1, r2, . . . , rd

}
Where d is the number of RSS samples received by Bluetooth transceiver l.

Bluetooth signals’ spatial and temporal characteristics are utilized to extract
Bluetooth features. The following Bluetooth features are extracted for a Bluetooth
device at a certain location:

1. Strongest RSS:A set of RSS values which contains the maximum RSS value of
every RSS sample set obtained by every Bluetooth transceiver on the BlueCol-
lect unit.

max(uk) =
{
max(s1),max(s2), . . . ,max(sc)

}
For every sn ∈ uk where 1 6 n 6 c,

max(sn) = rmax

2. Weakest RSS: A set of RSS values which contains the minimum RSS value of
every RSS sample set obtained by every Bluetooth transceiver on the BlueCol-
lect unit.

min(uk) =
{
min(s1),min(s2), . . . ,min(sc)

}
For every sn ∈ uk where 1 6 n 6 c,

min(sn) = rmin

3. Median RSS: A set of RSS values which contains the middle RSS value of ev-
ery RSS sample set obtained by every Bluetooth transceiver on the BlueCollect
unit.

median(uk) =
{
median(s′

1),median(s′
2), . . . ,median(s′

c)
}

s′
n where 1 6 n 6 c, is sn ordered by RSS value. The median(s′

n) yields x̃,
which is obtained as follows:
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x̃ =


r d

2 +1, if d is odd
1
2

(
r d

2
+ r d

2 +1

)
, if d is even

4. RSS Mean: A set of values which contains the mean of every RSS value set
obtained by every Bluetooth transceiver on the BlueCollect unit.

mean(uk) =
{
mean(s1),mean(s2), . . . ,mean(sc)

}
mean(sn) where 1 6 n 6 c, is x̄, which is obtained as follows:

x̄ =

c∑
x=1

rx

c

5. RSS Variance: A set of values which contains the variance of every RSS value
set obtained by every Bluetooth transceiver on the BlueCollect unit.

variance(uk) =
{
variance(s1), variance(s2), . . . , variance(sc)

}
variance(sn) where 1 6 n 6 c, is s2, which is obtained as follows:

s2 =

d∑
x=1

[
rx −

( d∑
j=1

rj

d

)]2

d− 1

6. Bluetooth Device Appearance Time: The time elapsed while the Blue-
tooth device’s response to discovery messages sent by Bluetooth transceivers
on certain BlueCollect units. Bluetooth device appearance time is obtained
by calculating the difference between the receiving times of the first and last
Bluetooth messages received from a device by all Bluetooth transceivers on
the BlueCollect unit. To obtain a Bluetooth device appearance, let tmin(sn)

the time of receiving first Bluetooth response message by transceiver sn, where
1 6 n 6 c:

tmin(sn) = min(tr1 , tr2 , . . . , trd
)
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And let tmax(sn) the time of receiving last Bluetooth response message by
transceiver sn, where 1 6 n 6 c:

tmax(sn) = max(tr1 , tr2 , . . . , trd
)

Hence, the Bluetooth device appearance time on a Bluetooth transceiver sn,
which is denoted as DAT (sn) is obtained as follows:

DAT (sn) = tmax(sn) − tmin(sn)

The Bluetooth device appearance time is provided to the upper itsBlue frame-
work layer with tmin and tmax in a BlueCollect unit level as follows.

tmin(uk) =
{
tmin(s1), tmin(s2), . . . , tmin(sc)

}

tmax(uk) =
{
tmax(s1), tmax(s2), . . . , tmax(sc)

}
Hence, the Bluetooth device appearance time is:

DAT (uk) =
{
DAT (s1), DAT (s2), . . . , DAT (sn)

}
7. Number of Received Bluetooth Discovery Response Messages: This

set contains the number of Bluetooth discovery response messages received
from a device by every Bluetooth transceiver on the BlueCollect unit. The
number of Bluetooth discovery response messages received by transceivers on
the BlueCollect unit uk are arranged in the set DRMC(uk):

DRMC(uk) =
{
C(s1), C(s2), . . . , C(sc)

}
In addition to the device’s Bluetooth features, the itsBlue framework allows ITS

applications to obtain Bluetooth devices’ raw data. Bluetooth devices’ raw data
collected by a BlueCollect unit at certain locations and times includes the following
(FIG. 10):



43

1. Device Bluetooth address

2. Class of device

3. BlueCollect ID

4. Bluetooth response messages and related data:

• Receiving time and date

• Receiving location data (for data collected by a mobile BlueCollect unit)

• RSSI

• Bluetooth address of receiving adapter



44

CHAPTER 6

ADVANCED ROAD USER FEATURES EXTRACTION

This chapter is devoted to describe the novel utilization of extracted basic Blue-
tooth features to determine traffic information. On the advanced road user features
extraction layer, the itsBlue framework classifies Bluetooth devices on the scene based
on user context (i.e. pedestrians or vehicle riders). Next, it employs RF sensing tech-
nology to identify vehicles’ stopping spots at a signalized intersection. After that,
the itsBlue framework utilizes on-board Bluetooth device features and other related
data to determine moving vehicles’ street locations and directions.

6.1 PEDESTRIAN AND VEHICLE DIFFERENTIATION

Road user context awareness is vital to a wide range of ITS applications. For
instance, pedestrian/vehicle differentiation is essential to optimizing traffic signal
timing and coordination. Therefore, the itsBlue framework exploits a number of
extracted basic Bluetooth features to classify road users into pedestrians or vehicle
riders.

The itsBlue framework utilizes three basic Bluetooth features to differentiate
between pedestrians and on-board Bluetooth devices:

1. Bluetooth device appearance time

2. Number of received Bluetooth discovery response messages

3. Bluetooth RSS variance

The Bluetooth device appearance time and the number of received Bluetooth dis-
covery response messages are key features in revealing the context of road users. The
differences in the time spent in target area between pedestrians and vehicle riders
are reflected in the temporal Bluetooth features of their devices’ readings. Pedes-
trians spend a longer time than vehicle riders in a target area most of the time,
which means a longer appearance time and a higher number of received Bluetooth
discovery response messages. Figures 14 and 15 show the variances in the average
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FIG. 14: Average Bluetooth Device Appearance Time

appearance times and the average numbers of received discovery response messages
between six pedestrians and six vehicle riders’ Bluetooth devices. During the experi-
ment, every pedestrian or vehicle rider moved six times back and forth in a coverage
range of six Bluetooth transceivers placed on sidewalks, with three on each side. As
shown Figures 14 and 15, even with vehicles at low speeds of 20MPH and 30MPH,
the differences in the average appearance time and the average number of received
Bluetooth messages between pedestrians and on-board Bluetooth devices are clearly
quite wide.

In fact, Bluetooth devices’ appearance time and the number of received discovery
response messages are temporal features that correlate with time spent in the target
area. As long as the time spent by a vehicle and a pedestrian at an intersection
vary, these features are adequate to differentiate between them. However, in certain
circumstances (for example, at A congested intersection), a vehicle and a pedestrian
may spend similar time on the scene, which may lead to a resemblance in their
appearance times or in the number of received discovery response messages. In
these scenarios, the need for a time-independent feature is raised. Therefore, itsBlue
employs the Bluetooth RSS variance feature to differentiate between pedestrians and
vehicle riders. In congested scenarios, vehicles are slowly moving or are making
multiple stops, while pedestrians are walking at normal speeds. That variance in
movement patterns leads to a prominent disparity in the variances of RSS received
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FIG. 15: Average Number of Received Messages of Bluetooth Device

from pedestrians and on-board devices. As shown in Figure 16, the difference in
Bluetooth RSS variance between pedestrian devices and on-board devices confirms
the ability of this feature to differentiate between pedestrians and on-board devices.

The Pedestrian and Vehicle Differentiation Module obtains the basic Bluetooth
features of road users in a target area (e.g. intersection). The features of a Blue-
tooth device are provided to a BlueCollect unit level. The Pedestrian and Vehicle
Differentiation Module regenerates these features for the entire target area. For in-
stance, assume that Bluetooth device d visited location l, where b BlueCollect units
are placed, and every BlueCollect unit has c Bluetooth transceivers plugged into it.
The Pedestrian and Vehicle Differentiation Module generates the Bluetooth features
of device d at location l as follows:

1. Bluetooth device appearance time:
Given

tmin(uk) =
{
tmin(s1), tmin(s2), . . . , tmin(sc)

}
And

tmax(uk) =
{
tmax(s1), tmax(s2), . . . , tmax(sc)

}
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where 1 6 k 6 b. The receiving times of the most first and the most last
Bluetooth response messages received by every BlueCollect unit at location l

are obtained as follows:

tmin(l) = min(min(tmin(u1)),min(tmin(u2)), . . . ,min(tmin(ub)))

And

tmax(l) = max(max(tmax(u1)),max(tmax(u2)), . . . ,max(tmax(ub)))

The Bluetooth device d’s appearance time at location l is obtained as follows:

DAT (dl) = tmax(l) − tmin(l)

2. Number of received Bluetooth discovery response messages:
Given

DRMC(dl) =
{
DRMC(u1), DRMC(u2), . . . , DRMC(ub)

}
Every DRMC(un) ∈ DRMC(dl) where 1 6 n 6 b, is a set of numbers of
Bluetooth discovery response messages received by every Bluetooth transceiver
plugged into BlueCollect unit un:
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DRMC(un) =
{
C(s1), C(s2), . . . , C(sc)

}
The number of received Bluetooth discovery response messages feature of device
d at location l is obtained as follows:

DRMC(dl) =

b∑
i=1

c∑
j=1

C(sj)

c

b

3. Bluetooth RSS Variance:
Given

variance(dl) =
{
variance(u1), variance(u2), . . . , variance(ub)

}
Every variance(un) ∈ variance(dl) where 1 6 n 6 b, is a set of variance
values of RSS samples received by every Bluetooth transceiver plugged into a
BlueCollect unit un:

variance(un) =
{
variance(s1), variance(s2), ..., variance(sc)

}
The Bluetooth RSS variance feature of device d at location l is obtained as
follows:

variance(dl) =

b∑
i=1

c∑
j=1

variance(sj)

c

b

The Pedestrians and Vehicles Differentiator employs a machine learning technique
to classify Bluetooth devices. Support Vector Machine (SVM) [50] and Logistic
Regression (LR) [51] are commonly used classifiers. SVM and LR are discriminative
classifiers, in which a training dataset is required to learn Bluetooth features, in order
to use them in real time classification. In the itsBlue framework differentiator, SVM
is chosen over LR for two reasons:

1. SVM requires smaller training dataset to achieve satisfactory classification ac-
curacy
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2. SVM processing time is shorter

As noted above, Pedestrian and Vehicle Differentiator deployment goes through
two phases: data training and real time classification. In the data training phase,
the SVM classifier is provided with the Bluetooth features of predefined pedestrians’
and vehicle riders’ devices. SVM validates the gained dataset using k-fold cross
validation [52], in which the training dataset is divided into k parts. k-1 parts are
used for data training, and the remaining part is tested against them. This operation
is repeated k times to test each part once against the k-1 parts. This technique lets
the classification model fit the training data as closely as possible. On the other
hand, in the real time classification phase, SVM uses the aforementioned Bluetooth
features of road users’ devices on target areas to classify them to pedestrians and
vehicle riders.

Furthermore, to enhance classification accuracy, stationary Bluetooth devices de-
tected on the intersection are eliminated. In order to do that, a time threshold is
defined. The differentiator considers a Bluetooth device stationary when its appear-
ance time reaches the threshold. In addition, the differentiator considers any Blue-
tooth device that reappears on the intersection after a disappearance period as a new
device. The differentiator sets a time threshold. When a previously-appeared Blue-
tooth device returns to the intersection, it considered as a new Bluetooth device, if
the disappearance period exceeds the threshold. This process enhances classification
accuracy in different cases, such when a vehicle rider’s Bluetooth device is detected,
and then it appears again after a while when the carrier crosses the intersection as a
pedestrian.

6.2 VEHICLE LOCATION IDENTIFICATION AT SIGNALIZED
INTERSECTION

Nowadays, location-based services are playing a significant role in ITS. A wide
range of ITS applications rely upon location-based services. Queue length estimation
at signalized intersections and origin-destination matrix generation are among these.
Therefore, the itsBlue framework utilizes Bluetooth radio signals’ characteristics to
provide ITS applications with vehicle locations at traffic light-controlled intersections.

Bluetooth radio signals’ spatial characteristics have paved the way to identifing
transmitter location. Bluetooth radio signals received from a transmitter on certain
spot are analogous in strength, and have a distinguishable signal strength signature.
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FIG. 17: Bluetooth RSS Distribution Histogram

In a simple experiment, we placed two Bluetooth-enabled cellphones at distances
of 15m and 25m from a Bluetooth transceiver. As shown in Figure 17, Bluetooth
radio signals obtained from each spot have distinguishable strength curves, which are
called RSS distribution signatures. RSS distribution signatures of all spots create a
location signal strength distribution histogram. Thus, to identify the position of a
transmitting device located on one of these spots, we obtain a few Bluetooth RSS
samples from it, and then we apply a probabilistic theorem to find the spot with
the maximum probability, according to the location signal’s strength distribution
histogram.

The concept describe above is applied on vehicles at a signalized intersection in
two phases: An offline phase to obtain location signal strength distribution, and an
online phase to identify vehicles’ locations. In the offline phase, Bluetooth RSS sam-
ples are collected from every vehicle at an intersection and are stored in the radio
signal strength map database. In the online phase, a probabilistic approach is ap-
plied to identify the spot with the maximum likelihood, compared to the Bluetooth
RSS samples received from vehicle. In both phases, the vehicle location identifica-
tion module uses data collected by stationary BlueCollect units only. Hence, this
module works on the Bluetooth transceivers level, because Bluetooth transceivers’
dependency on the BlueCollect unit makes no difference in the received data. In both
phases, this module receives detected Bluetooth device raw data from the database,
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and associates every device’s Bluetooth Address with its RSS samples. The following
subsections describe in detail the offline and online phases.

6.2.1 OFFLINE PHASE: RADIO SIGNAL STRENGTH MAP CRE-
ATION:

The radio signal strength map is a database of intersection spots and corre-
sponding RSS samples. In the offline phase, a radio signal strength map is created
by storing Bluetooth RSS samples obtained from predefined devices at intersection
spots. To create a radio signal strength map, we divide the target interaction into
n spots (FIG. 18). Each spot is 6m × 3m, which are the typical dimensions of a
vehicle with surrounding spaces. Then, RSS samples are obtained from predefined
Bluetooth devices located at every spot. Next, the received RSS samples and their
recurrences are associated with the transmitting spots and are stored on the radio
signal strength map.

L2

L1

L8

L7 L6

L5

L4

L3

L16

L15

L23

L24

L27

L14

L13

L22

L21

L9

L10L17

L18

L25

L12

L11

L19

L20

L26Bluetooth

Transceiver 1

Bluetooth

Transceiver 3

B
lu

et
o
o
th

T
ra

n
sc

e
iv

er
 2

B
lu

et
o
o
th

T
ra

n
sc

e
iv

er
 4

FIG. 18: Target Intersection is divided into vehicle spots

Let Li be an intersection spot, where 1 6 i 6 n and n is the number of vehicle
spots on intersection L. The spot Li’s Bluetooth RSS distribution is represented by
the following matrix:
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Li =



P (r11|Li) P (r12|Li) · · · P (r1y|Li)
P (r21|Li) P (r22|Li) · · · P (r2y|Li)

... ... . . . ...
P (rx1|Li) P (rx2|Li) · · · P (rxy|Li)


Where r is RSS value. Every P (rjk|Li) where 1 6 j 6 x and 1 6 k 6 y, is

the probability of receiving Bluetooth RSS rjk from a transmitter on the spot Li by
transceiver k [53]. To obtain P (rjk|Li), we divide Crjk

, which is rjk recurrence, over
Nk, the number of RSS samples received from spot Li by Bluetooth transceiver k.

P (rjk|Li) = Crjk
/Nk

Then, the radio signal strength map can be expressed as:

M = [L1, L2, . . . , Ln]

To avoid lane blockings, we exploit the mobility advantage of the BlueCollect
unit to obtain Bluetooth RSS samples from intersection spots on-the-go. Bluetooth
RSS samples are obtained from a BlueCollect unit that is carried on a vehicle visit-
ing all of the intersection spots. The RSS sample transmitting location is obtained
by the BlueCollect unit’s GPS. In order to map the GPS location with the corre-
sponding spot, the Vehicle Location Identification Module maintains a lookup table
of intersection spots’ coordinates. The distances between the GPS coordinates of
the transmitting RSS sample and all of the intersection spots’ coordinates are calcu-
lated. Then, the spot with the shortest distance from the GPS coordinates becomes
the RSS transmitting spot.

6.2.2 ONLINE PHASE: VEHICLE LOCATION IDENTIFICATION:

In this phase, unknown vehicle locations are identified using Bluetooth RSS sam-
ples obtained from an on-board Bluetooth device, relying on a probabilistic approach.
Figure 19 illustrates this process; the arrow colors refer to the following steps. First,
stationary BlueCollect units placed on an intersection obtain RSS samples from an
on-board device. For every RSS, a list of possible vehicle spots is generated using
the Bayesian theorem, which finds transmitter existence likelihoods over all of the
intersection spots according to the radio signal strength map (black arrows). Pro-
duced lists are aggregated and corresponding spot possibilities are gathered onto one
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FIG. 19: Vehicle Location Identification - Online Phase

list (gray arrows). At this point, a list of possible locations is generated, using every
Bluetooth transceiver RSS sample. Corresponding spot possibilities on these lists
are multiplied to end up with the vehicle’s final possible spots list (hollow arrow).
Finally, the identifier selects the spot with the highest likelihood on the final list as
vehicle’s spot on intersection.

Mathematically, Bluetooth RSS samples are aggregated in matrix R:

R =



r11 r12 · · · r1y

r21 r22 · · · r2y

... ... . . . ...
rx1 rx2 · · · rxy


where y refers to the number of Bluetooth RSS samples, and x refers to the number
of Bluetooth transceivers. To find the R matrix transmitter location l, which is the
spot with the maximum probability P (l|R), we apply the Bayesian theorem:

argmaxl[P (l|R)] = argmaxl

[
P (R|l).P (l)

P (R)

]
(1)

Since P (R) is constant across intersection spots, Eqn. (1) can be simplified as:

argmaxl[P (l|R)] = argmaxl[P (R|l).P (l)] (2)

Note that P (l) is inconstant, and that vehicle distribution over time varies widely
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FIG. 20: Vehicle Location Identification Scenario

from one intersection to another. For the sake of practicality, P (l) is substituted from
the lookup table of the intersection vehicle distribution over time, where the vehicle
distribution over a red light interval is determined. So, to calculate P (R|l).P (l):

P (R|l).P (l) =
x∏

i=1

[ y∑
j=1

P (rij|l).P (lt)
]

(3)

Where P (rij|l) is retrieved from the radio signal strength map, and t is time of
receiving rij over the red light interval.

This process is applied to identify the locations of vehicles stopped at a red traffic
light using a cluster of Bluetooth transceivers. The intersection is controlled by a
group of Bluetooth transceiver clusters. For example, Figure 20 shows a cross inter-
section with four Bluetooth transceiver clusters, with each cluster controlling a zone.
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In fact, itsBlue Bluetooth transceivers transmit Bluetooth discovery messages uni-
formly in all directions. Consequently, Bluetooth transceivers that work on a certain
zone at an intersection may receive Bluetooth discovery response messages from ve-
hicles at other zones, which may lead to locating them in a wrong zone. To overcome
this obstacle, the Vehicle Location Identification Module locates only those vehicles
with high likelihood. Actually, Bluetooth radio signals received from transmitters on
the outer zones do not match the RSS signatures of controlled area spots with a very
high likelihood. According to our experiments, the location likelihood of a vehicle
on the outer zone is always less than 50%. For example, as seen in Figure 20, the
Bluetooth transceivers in Zone C received RSS samples from vehicle 11 in Zone D
and RSS samples from vehicle 9, which was traveling in the other direction on the
street. Using Zone C transceivers’ samples, the spots L5 and L6 were determined as
probable spots of vehicles 9 and 11 respectively with likelihoods of less than 50%,
whereas the location of the vehicle on Zone C was identified with a likelihood well
above 50%. Therefore, the vehicle location identifier removed vehicles 9 and 11 from
Zone C.

6.3 VEHICLE STREET SEGMENT AND DIRECTION
DETERMINATION

Vehicle location and direction is another location-based service provided by its-
Blue. The Vehicle Location and Direction Determination Module utilizes Bluetooth’s
spatial and temporal features and the awareness of the BlueCollect unit location to
determine both the street segment that the detected vehicle is located on and its
direction. In the following, we show how Bluetooth’s spatial and temporal features
can be exploited to determine the vehicle street segment and direction using data
collected by mobile and stationary BlueCollect units.

6.3.1 VEHICLES DETECTED BY MOBILE BLUECOLLECT UNITS

The data collected by mobile BlueCollect units contains vehicle detection location.
As seen in Chapter 4, data collected by mobile BlueCollect units is divided in two
kinds:

1. Street data: Includes vehicle Bluetooth data and the street segment and
direction of the mobile BlueCollect unit that detected the vehicle.
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2. Intersection data: Includes vehicle Bluetooth data and the intersection on
which the mobile BlueCollect unit detected the vehicle.

The Vehicle Location and Direction Determination Module utilizes the mobility
advantage of the BlueCollect unit to provide ITS applications with vehicle detection
streets in a target area. Such data is essential to a wide range of ITS applications.
However, vehicle street and direction data provided by a mobile BlueCollect unit is
the actual street segment and the direction of the BlueCollect unit that detected
the vehicle. This may include misleading data, as the Mobile BlueCollect unit may
detect vehicles moving on a nearby street segment or in the opposite direction. For
example, the mobile BlueCollect unit described in Figure 24 detected a vehicle on a
Hampton Boulevard Street while its carrier was moving on the 49th Street. According
to the Mobile BlueCollect unit, this vehicle was heading east on the 49th Street. To
avoid this obstacle, Bluetooth’s temporal and spatial characteristics were exploited
to determine the street segment and the direction of the detected vehicle.

49
th

 Street

FIG. 21: Misleading vehicle location and direction provided by a mobile BlueCollect
unit

The spatial and temporal features of a Bluetooth device traveling on-board a
vehicle contain vital signs to its street and direction. For instance, vehicles traveling
with a Mobile BlueCollect unit carrier on the same street segment can be distin-
guished from vehicles traveling on other nearby street segments by the number of
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received Bluetooth discovery response messages. The number of messages received
from a vehicle travelling with the Mobile BlueCollect unit carrier on the same street
segment is higher than the number of messages received from a vehicle travelling
on other street segments. Thus, the number of basic Bluetooth features that are
employed to classify a detected vehicle according to its location and direction toward
the mobile BlueCollect unit carrier as follows:

1. Vehicle traveled on the same street segment and direction

2. Vehicle traveled on the same street segment in opposite direction

3. Vehicle traveled on other street segments

Accordingly, to classify detected vehicles, this module obtains the following basic
Bluetooth features:

1. Number of received Bluetooth discovery response messages

2. Bluetooth RSS samples mean

3. Bluetooth RSS samples variance

First, the number of received Bluetooth discovery response messages is a temporal
feature that allows one to separate vehicles traveling with Mobile BlueCollect unit
carriers on the same street segment and in the same direction from vehicles going
in the opposite direction or on other street segments. Vehicles detected by a Mobile
BlueCollect unit carrier on the same street segment and direction stay in range for a
longer time than vehicles traveling in opposite directions or on nearby streets. This,
in turn, leads to a jump in the number of Bluetooth messages received from vehicles
traveling on the same street segment and in the same direction as the BlueCollect
unit carrier, compared with others.

Second, the Bluetooth RSS mean is a spatial feature that is utilized to differentiate
between vehicles on nearby streets and vehicles traveling on the same street segment
as the BlueCollect unit carrier. Vehicles detected on nearby streets are distinguished
by weak RSS means. The reason behind this is that these vehicles are usually located
on the edge of a coverage circle, while the vehicles traveling on the same street
segment with the BlueCollect unit carrier, either in the same or in the opposite
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direction, are usually closer to the BlueCollect unit, which results in stronger RSS
samples received.

Third, the difference in the BlueCollect unit’s carrier movement direction com-
pared to vehicle location and direction leads to a notable divergence in the variances
of Bluetooth signal strength samples received from vehicles of each class in the above-
mentioned vehicle location classes. The majority of Bluetooth signals received from
vehicles traveling on a BlueCollect unit carrier’s nearby streets are weak, due to the
wide distances between these vehicles and the BlueCollect unit carrier. This stability
in Bluetooth RSS samples received from these vehicles results in low variance. By
contrast, the strengths of the Bluetooth radio signals received from vehicles travel-
lling in the opposite direction of the BlueCollect unit carrier feature high variance
because of the rapid change in vehicle distance from the BlueCollect unit carrier.
This divergence in Bluetooth RSS variances is a key feature in classifying vehicles
based on the street segment and the direction they are moving on, according to the
BlueCollect unit carrier.

The Vehicle Location and Direction Determination Module receives vehicles’ de-
tection locations and basic Bluetooth features from the Coordination Module. Then,
it employs the SVM to classify the vehicle according to its location and its direc-
tion, compared to the BlueCollect unit carrier. The SVM classifier is deployed in
two phases: data training and real time classification. In the data training phase,
the SVM classifier is provided with Bluetooth features of predefined vehicles of each
class. SVM validates the gained dataset using a k-fold cross validation to let the
classification model fit the training data as closely as possible. On the other hand,
in the real time classification phase, the SVM classifies received detection locations
and the basic Bluetooth features of vehicles in the target area to determine street
segments and directions of vehicles on every street segment that vehicles are detected
on by a mobile BlueCollect unit.

The street segment and direction determination is performed using street data
only. The Vehicle Location and Direction Determination Module is unable to de-
termine street segment and direction of vehicle detected by a Mobile BlueCollect
unit at an intersection. At intersections, the Mobile BlueCollect unit carrier usually
stops, which can result in a resemblance in Bluetooth features of all of the vehicles
from all of the aforementioned location classes. Therefore, intersection data is used
to indicate vehicle occurrence at an intersection with no specific street segment or
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direction determined. Similarly, the street segment and direction of a vehicle that is
detected while the Mobile BlueCollect unit carrier is stopped (e.g. at bus stop) are
not determined, and that vehicle detection location data is discarded.

6.3.2 VEHICLES DETECTED BY STATIONERY BLUECOLLECT
UNITS

Stationary BlueCollect units are normally used to identify vehicle locations at
signalized intersections. Vehicle locations identified by the Vehicle Location Iden-
tification at Signalized Intersection Module encompass vehicle street segment and
direction. Thus, the Vehicle Location and Direction Determination Module takes
advantage of the availability of vehicle locations at an intersection and communicates
with the Vehicle Location Identification Module through the Coordination Module
in order to obtain vehicle locations at signalized intersections within the target area.
Vehicles’ locations at intersections are aggregated with these vehicles’ locations and
directions, obtained by the Vehicle Location and Direction Determination Module
using Mobile BlueCollect units. Thus, vehicle occurrences at intersections provided
by Mobile BlueCollect units are replaced by street segment and directions provided
by the Vehicle Location Identification Module for available intersections.
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CHAPTER 7

TRAFFIC INFORMATION PROVISION

In this chapter, we describe the itsBlue framework components that facilitate
providing ITS applications with obtained traffic information. The itsBlue framework
grants ITS application developers access to obtained traffic information via an API.
The itsBlue framework’s API allows ITS applications to consume the traffic infor-
mation of desired time and location. In the first section, we explain the design of the
itsBlue framework’s API and its advantages. In the second section, we describe the
set of APIs provided by the itsBlue framework to allow ITS applications to obtain
required traffic information.

7.1 API DESIGN

The API is developed using Java RMI [54] to facilitate communication with ITS
applications and traffic information consumption. Java RMI expedites building dis-
tributed systems using the Client/Server concept. In Java RMI, the server is respon-
sible for implementing remote objects and for publicizing their references on the RMI
registry, whereas the client (i.e. the ITS application) is responsible for obtaining re-
mote references to desired objects on the server. Java RMI provides the required
mechanisms for the server and the client communication and data exchange, and
handles networking complications.

In order to develop a Java RMI based API, the Traffic Information Provision
Module implements the following components:

• Methods Interface Definitions (RMI Registry): A Java class that extends re-
mote interface and declares methods that can be remotely invoked by an ITS
application.

• Methods implementations (RMI Server): A Java class that implements API
remote interfaces. This class includes the server method, which is responsible
for publicizing API methods by binding remote objects to a name in the RMI
Registry.
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On the other hand, the ITS application that consumes itsBlue traffic information
implements a Java RMI client class, which looks up the desired service in the RMI
registry and invokes it.

The following is an example of the itsBlue framework’s API implementation us-
ing Java RMI. For the sake of simplicity, the implementation shows the Java RMI
construction-related parts of one of the consumable methods, and abstracts others’
implementation details. First, the interface definition of the remote methods:

import java.rmi.Remote;

import java.rmi.RemoteException;

public interface itsBlueServices extends Remote {

List<rawData> getRawData(String StartTime, String EndTime, String[]

location) throws RemoteException; }

Second, the implementation of a remote method defined in the interface, which
also contains the main method that creates an instance of the remote object imple-
mentation, exports the remote object, and binds that instance to a name in Java
RMI registry.

import java.rmi.registry.Registry;

import java.rmi.registry.LocateRegistry;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

public class itsBlueServicesImpl implements itsBlueServices {

public itsBlueServicesImpl() throws RemoteException {}

public List<rawData> getRawData(String startTime, String endTime, String

[] location) {

List<rawData> rawDataList = new ArrayList<rawData>();

// Do Work

return rawDataList; }

public static void main(String args[]) {

try {
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itsBlueServicesImpl object = new itsBlueServicesImpl();

itsBlueServices stub = (itsBlueServices) UnicastRemoteObject.

exportObject(object, 0);

Registry registry = LocateRegistry.getRegistry();

registry.bind("itsBlue", stub);

System.err.println("Server ready");

} catch (Exception e) {

System.err.println("Server exception: " + e.toString());

e.printStackTrace(); } } }

Third, a simple consumer that locates a remote method in the RMI registry, then
invokes it.

import java.rmi.registry.LocateRegistry;

import java.rmi.registry.Registry;

public class ITSApplication {

private ITSApplication() {}

public static void main(String[] args) {

String startTime = "2014-09-10 13:07:21";

String endTime = "2014-09-10 17:11:09";

String[] location = new String[]{"ODU_03", "ODU_05", "ODU_07"};

String host = (args.length < 1) ? null : args[0];

try {

Registry registry = LocateRegistry.getRegistry(host);

itsBlueServices stub = (itsBlueServices) registry.lookup("itsBlue");

List<rawData> response = stub.getRawData(startTime, endTime, location);

System.out.println("itsBlue Traffic Information Consumed");

} catch (Exception e) {

System.err.println("Client exception: " + e.toString());

e.printStackTrace(); } } }
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7.2 SERVICE APIS

The itsBlue framework provides ITS application developers with traffic infor-
mation and raw data including Bluetooth data and data collection locations. The
Traffic Information Provision Module obtains the required road user features from
corresponding modules, and the raw data from the database, through the Coordina-
tion Module. To enhance road user privacy, detected Bluetooth devices’ addresses
are replaced by a road user ID, which is a 10-digit random number mapped with the
road user’s Bluetooth device address on the database. Table 3 describes the provided
set of APIs.

Service Pedestrians on Target Area
Description Provides developers with road user IDs and appearance times of

pedestrian Bluetooth devices appearing on specified target area
streets and intersections

Parameters Start Time1, End Time2 and Location3

Return List of locations, every location contains a list of objects, every
object includes pedestrian road user IDs and appearance times

API list<pedestrians> getPedestrians (String startTime,

String endTime, String[] location) throws

RemoteException;

1Start Time: Specifies the start time of collecting data used in information extraction. Wild-
card could be thrown to start from the earliest available time.

2End Time: Specifies the end time of collecting data used in information extraction. Wildcards
could be thrown to stop at the latest available time, or until termination.

3Location: The list of locations specifies collection locations for data used in information ex-
traction. Wildcards could be thrown to include a group of locations (e.g. ODU, which includes all
ODU streets and intersections)
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Service Vehicles on Target Area
Description Provides developers with road users’ IDs and with the appear-

ance times of on-board Bluetooth devices appearing on specified
target area streets and intersections

Parameters Start Time, End Time and Location
Return List of locations, every location contains a list of objects, every

object includes vehicle road user IDs and appearance times
API list<vehicles> getVehicles (String startTime, String

endTime, String[] location) throws RemoteException;

Service Vehicle Locations at Signalized Intersection
Description Provides developers with vehicles’ road user IDs, locations (i.e.

intersection number, street name, row number, and column num-
ber) and appearance times at specified signalized intersections

Parameters Start Time, End Time and Location
Return List of locations, every location contains a list of vehicle objects,

every object includes vehicle road user ID, street name, row num-
ber, column number, and vehicle existence likelihood at location
and appearance time

API list<vehicleIntersectionLocations>

getVehicleIntersectionLocations (String startTime,

String endTime, String[] location) throws

RemoteException;
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Service Vehicle Detection Locations and Directions on Target
Area

Description Provides developers with a list of vehicles’ road user IDs, street
segments, directions, and numbers of received Bluetooth discov-
ery response messages at a specified target area

Parameters Start Time, End Time and Location
Return List of locations, every location contains a list of vehicle objects,

every object includes vehicle road user ID, street segment, direc-
tion, number of received Bluetooth discovery response messages
and detecting BlueCollect unit information

API list<detectedVehicle> getDetectedVehicle (String

startTime, String endTime, String[] location)

throws RemoteException;

Service Location Information
Description Provides developers with location information which includes:

(1) Street segment info: Street segment distance and speed limits
of all vehicle types
(2) BlueCollect GPS locations: A series of GPS coordinates for
mobile BlueCollect unit movements on specified street segments
associated with time stamps

Parameters Start Time, End Time, Location
Return List of location objects, every object contains a street segment

info and a list of mobile BlueCollect unit objects. BlueCollect
unit object includes a list of GPS coordinates and time stamps

API list<locationInfo> getLocationInfo (String startTime,

String endTime, String[] location) throws

RemoteException;



66

Service Road Uesr Raw Bluetooth Data
Description Provides developers with discovery response messages received

in a specified target area.
Parameters Start Time, End Time, Location
Return List of locations, every location includes a list of road user

objects, every object includes road user ID, a list of received
Bluetooth discovery response messages and their receiving time
stamps, and BlueCollect unit info.

API list<rawData> getRawData (String startTime, String

endTime, String[] location) throws RemoteException;

TABLE 3: itsBlue Framework APIs
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CHAPTER 8

ITSBLUE APPLICATIONS

In this chapter, we present a number of ITS applications developed using traffic
information provided by the itsBlue framework. Then, we show an itsBlue framework
and applications evaluation, which includes our enhanced version of UCBT NS-2.

The first section describes a pack of intersection management applications, which
provides several services such as vehicle queue length, waiting time, pedestrians’
volume, etc. The second section presents the vehicle trajectories’ reconstruction
application. The third section is devoted to evaluation. It includes a description of
our evaluation approaches and tools, in which we describe the enhanced simulation
package used in evaluation. Then, we describe our ITS applications evaluation, which
includes assessments and validations of traffic information provided by the itsBlue
framework, in addition to a discussion of our results.

8.1 INTERSECTION MANAGEMENT APPLICATIONS

Insufficient intersection management is one of the top causes of congestion. Sig-
nalized intersection performance enhancement applications require intersection us-
age data and statistics. The itsBlue framework grants access to required data and
provides traffic information that allows ITS researchers and engineers to develop a
variety of intersection management and performance enhancement applications. For
instance, the itsBlue service of showing vehicle locations at signalized intersections
paves the way toward the extraction of essential information for traffic light timing
optimization, such as vehicle queue lengths and vehicle waiting times.

Furthermore, the intersection management applications pack shows the ability
of the itsBlue framework to extend Bluetooth utilization in ITS beyond the spatial
sampling approach. The intersection management applications are provided using
independent data collected by the itsBlue framework at a single site.

In the following, we describe the intersection management applications that we
have developed using traffic information provided by itsBlue framework.
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8.1.1 VEHICLE QUEUE LENGTH EXTRACTION

The availability of access to vehicle queue lengths at signalized intersections is
essential, both for transportation agencies and for commuters. For instance, vehicle
queue length is a fundamental piece of information that aids in traffic signal timing
optimization which, in turn, is reflected in traffic flow smoothness and congestion
alleviation. Additionally, this application is able to notify drivers of long vehicle
queues in order to avoid congested routes and long delays.
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FIG. 22: Vehicle Queue Length Extraction

The vehicle queue length extractor relies on vehicle location identification at a
given intersection that is provided by itsBlue framework, in order to determine the
queue lengths of stopped vehicles at a red traffic light. The vehicle queue length
extractor obtains vehicle locations at intersections via the itsBlue framework’s API.
The queue length extractor receives the vehicle locations at a target intersection,
and then extracts the number of occupied locations at each lane at a red traffic light
(FIG. 22). For each lane, the extractor counts the occupied spots from the first row
to the row of the last identified vehicle. To avoid counting an approaching vehicle
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before it reaches a stopping spot, the extractor considers only vehicles with a location
likelihood of 70% and higher. According to our experiments, the stopping vehicle
location likelihood is at least 70%.

8.1.2 VEHICLE WAITING TIME EXTRACTION

Vehicle waiting time is another essential service in reaching efficient intersection
management. The vehicle waiting time is the time elapsed while a vehicle is stopped
at red traffic light. Vehicle waiting time is another piece of information obtained
from vehicles’ locations at an intersection that is provided via itsBlue framework
API. Vehicle waiting time is estimated by calculating the difference between vehicle
occurrence and discharge times on an intersection approach. Vehicle occurrence
time is the time of the receipt of the first Bluetooth discovery response message,
and vehicle discharge time is the time of the receipt of the last Bluetooth discovery
response message from the vehicle. The waiting time extractor filters out any vehicle
with a location likelihood of less than 70%.

8.1.3 PEDESTRIANS VOLUME AND WAITING TIMES DETERMI-
NATION

Pedestrians’ volume and waiting times are significant pieces of information to-
wards the optimization of signalized intersection and toward improvements in pedes-
trian facilities. In this application, target intersections’ pedestrian volume is obtained
from Pedestrians on Target Area, that is provided by the itsBlue framework. Pedes-
trian volume is the total number of detected pedestrian Bluetooth devices in the
target area. On the other hand, pedestrian waiting time is the time elapsed while
a pedestrian is standing on a curb waiting to cross the intersection. Actually, the
pedestrian passage to the crossing zone is detected by using a short range (i.e. 2m)
Bluetooth transceiver plugged into a stationary BlueCollect unit that is placed on a
traffic light pole. To calculate pedestrian waiting time, the application retrieves road
users’ raw Bluetooth data from the target area by the itsBlue framework. Then, it
filters out road users’ IDs that are not on the pedestrian road user IDs list that was
obtained from the Pedestrians on Target Area service. Next, the application uses
Bluetooth response messages received by the special purpose Bluetooth transceiver
to determine the pedestrian waiting time. The pedestrian waiting time is the time
difference between the receipt of the first and the last discovery response messages
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from the pedestrian by the short range Bluetooth transceiver.

8.2 VEHICLE TRAJECTORIES RECONSTRUCTION

The availability of vehicle trajectories is essential to draw a complete picture of
traffic flow and to investigate traffic dynamics in order to improve transportation
network performance. The itsBlue framework facilitates vehicle trajectory recon-
struction by providing vehicle detection locations at the target area. This section
is devoted to describing vehicle trajectories reconstruction using traffic information
provided by the itsBlue framework.

The notion behind vehicle trajectories reconstruction is illustrated by the time
lapse shown in Figure 23. On time t1, a yellow vehicle with an on-board Bluetooth-
enabled device is traveling on Hampton Boulevard from south to north, while a police
patrol that is carrying a BlueCollect unit is travailing on 43rd Street across Hampton
Boulevard. The mobile BlueCollect unit receives Bluetooth discovery response mes-
sages from the yellow vehicle on-board device and simultaneously receives its current
GPS location coordinates. On t2, the yellow vehicle moves forward, while a bus with
an on-board BlueCollect unit enters the scene. On t3, the bus and the yellow vehicle
reach the intersection of Hampton Boulevard and 49th Street. The bus’ BlueCol-
lect unit receives Bluetooth discovery response messages from the yellow vehicle and
receives its location coordinates from the GPS satellites. Thereafter, the vehicle tra-
jectories reconstruction application aggregates the yellow vehicle’s Bluetooth data
and GPS locations received by the police vehicle and the bus to reconstruct the
yellow vehicle’s trajectory on Hampton Boulevard.

To apply above approach, the vehicle trajectories reconstruction application con-
sumes the Vehicle Detection Locations and Directions on Target Area that is pro-
vided by the itsBlue framework. In this instance, the application receives a series of
detection locations and times of vehicles in the target area. The vehicle detection
locations series includes street segments and intersections. As seen in Section 6.3,
the direction of a vehicle detected on an intersection by a mobile BlueCollect unit
is unobtainable. Thus, the application aggregates vehicle-visited street segments,
sorts them by detection time, and filters vehicle appearances at intersections. The
obtained series of vehicle-visited street segments constitutes the initial vehicle tra-
jectory. The initial vehicle trajectory includes visited street segments and driving
directions, and the number of Bluetooth discovery response messages received from
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FIG. 23: Vehicle Trajectory Reconstruction Time Lapse Example

each vehicle on every street segment.

8.2.1 VEHICLE TRAJECTORY INCONSISTENCY RESOLUTION

In rare cases, the vehicle reconstructed trajectory may include inconsistent street
segments. For example, incompatible directions on two or more street segments of
a vehicle reconstructed trajectory. The inconsistency in the vehicle reconstructed
trajectory may occur due to several reasons, such as a short vehicle appearance time
on a street segment, because of a BlueCollect unit carrier’s departure right after
vehicle detection. Actually, vehicle trajectory inconsistency appears in two forms:

1. Direction incompatibility between street segments. For instance, as shown in
Figure 24, the vehicle’s reconstructed trajectory is suffering from a directions
conflict between street segments B-F and F-G.

2. Forked reconstructed trajectory. An example: the vehicle traveled from a cer-
tain intersection to two or more street segments. For example, in Figure 24,
the reconstructed trajectory is forked at intersection B to street segments B-C
and B-F.

The vehicle trajectories reconstruction application resolves vehicle trajectory in-
consistency, as illustrated in Figure 25. Direction incontestability is resolved by
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enforcing the direction of preceding street segments. Applying preceding street seg-
ment direction on incompatible street segment direction ensures the compatibility
between vehicle movements’ time lines and directions. If the preceding street seg-
ments count is one, the application applies the direction of the street segment at
which itsBlue received a higher number of Bluetooth discovery response messages
from the vehicle. On the other hand, a forked trajectory is resolved by removing the
shortest branch. If both branch lengths are one, the application removes the street
segment with lower number of received Bluetooth discovery response messages from
the vehicle.

8.2.2 VEHICLE TRAJECTORY GAPS DETECTION AND FILLING

As seen above, vehicle trajectory is extracted from vehicle data that is collected
by Mobile BlueCollect units carried on vehicles roving the target area or by sta-
tionary BlueCollect units placed on intersections. Because of the mobility of Mobile
BlueCollect units, coverage interruptions may occur on some spots when BlueCollect
units are unavailable, which can result in gaps in the reconstructed vehicle trajectory.
To overcome this obstacle, we develop a vehicle trajectory gap detection and filling
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approach.

Vehicle Trajectory Gaps Detection

To detect vehicle trajectory gaps, the vehicle trajectories reconstruction applica-
tion compares extracted trajectory against a two-layer target area map similar to the
one used in the mobile BlueCollect unit (Section 4.4.2). The vehicle reconstructed
trajectory intersections are compared with the corresponding second layer graph ver-
tices. Every vertex must be preceded by the source vertex; otherwise, the application
identifies a trajectory gap between the recent intersection and the preceding one.



74

Vehicle Trajectory Gaps Filling

In order to complete the vehicle trajectory’s missing part, the vehicle trajectories
reconstruction application employs the Breadth First Search Algorithm (BFS) to
find the path between gap bordering vertices on the target area graph. The vehicle
trajectory gaps filling process involves the use of vehicle appearance at intersections
that filtered out earlier in the initial vehicle trajectory reconstruction process. In the
trajectory gap filling, the application looks for a vehicle’s appearance at intersections
in the vehicle disappearance period, which is the period of time elapsed while vehicle
is traveling between gap-bordering intersections. If the vehicle is detected on any
intersection during the disappearance period, the application uses the path that goes
through that intersection of vehicle appearance to fill the gap. For example, in Figure
26, the initial reconstructed vehicle trajectory is broken between intersections G and
E, and the vehicle is detected on intersections I and D, respectively, before it reaches
intersection E. Therefore, the vehicle trajectories reconstruction application employs
the BFS algorithm to find the path from intersection G to intersection I, then from
intersection I to intersection D, and finally, from intersection D to intersection E.

Upon vehicle trajectory gap identification, the vehicle trajectories reconstruction
application performs the following thorough steps:

1. Appoints gap bordering intersections s and d, where stime (st) < dtime (dt)

2. Calculates vehicle disappearance time as dt − st

3. Scans vehicle appearance at intersections on disappearance time

4. Sets the first found intersection of vehicle presence as d′. Note that vehicle ap-
pearances at intersections are ordered by time. Thus, intersection d′ is the first
intersection on which the vehicle is detected after its intersection s appearance

5. Applies the BFS algorithm to find the path between s and d′.

6. Renames d′ to s and repeats the steps from 2 to 6 until it reaches intersection
d.

Like the majority of graph traversal algorithms, BFS assigns weights to edges in
order to evaluate path cost. In the vehicle trajectories reconstruction application,
edge weight is the corresponding street segment travel time. Initially, street segment
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travel time is calculated by relying on the speed limit. Afterwards, the weight is
updated, based on traffic conditions. The street segment traffic condition is evaluated
by relying on the Mobile BlueCollect unit’s carrier travel time. The application
calculates the change percentage between the mobile BlueCollect unit carrier’s actual
travel time and the default travel time on the street segment. Then, the street
segment travel time of the normal vehicle, which is the corresponding edge weight,
is updated accordingly.

In detail, the vehicle trajectories reconstruction application obtains the target
street segment’s normal vehicle default travel time, the Mobile BlueCollect carrier’s
default travel time, and the Mobile BlueCollect carrier’s actual travel time by utilizing
the itsBlue framework service of Location Information which provides the application
with the following:

1. Street segment information: This encompasses the street segment speed
limits of normal vehicle and the Mobile BlueCollect unit carriers, and street
segment distance.
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2. Mobile BlueCollect unit carrier information: This is a series of GPS co-
ordinates of Mobile BlueCollect unit carrier movements on the street segments
associated with the time stamps.

Upon receiving the street segment traffic information, the application calculates the
following:

1. Vehicle Default Travel Time (VDT): This is obtained by dividing the street
segment distance by the normal vehicle speed limit.

2. BlueCollect unit Carrier Default Travel Time (BCDT): This is obtained by
dividing the street segment distance by the Mobile BlueCollect carrier’s speed
limit.

3. BlueCollect unit Carrier Actual Travel Time (BCAT): This is the actual time
elapsed while the Mobile BlueCollect unit carrier is traveling on the street
segment. BCAT is calculated by summing the time elapsed between every
two GPS locations on the street segment. Further, time elapsed on stopping
zones, such as bus stops, is excluded from the calculations. If the street seg-
ment includes a stopping zone, the application calculates the distance between
the stopping zone and all of the BlueCollect unit GPS coordinates. If three
consecutive location coordinates or more are less than 1m from the stop, the
BlueCollect unit carrier is considered to be stopping on the stopping zone, and
the location coordinates are removed from the travel time calculations.

Then, to update street segment weight, the application obtains the New up-to-date
Edge Weight (NEW) as follows:

NEW =
[(
BCAT −BCDT

BCDT

)
× V DT

]
+ V DT

The BFS algorithm is used to find all of the possible paths between a given pair
of vertices. Consequently, searching such a wide area in this kind of applications may
impact performance. To tackle this issue, we limit the search to paths with a time
similarto the time elapsed between given gap vertices. So, the application excludes
any search branch that contradicts the following condition:

branch travel time 6 time elapsed on the gap + e
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Where e is the margin of error, which is a percentage of the time elapsed on the gap.
e is set depending on the traffic conditions, it goes high in low traffic and low on in
high traffic areas. Once the BFS finds all of the paths that match above condition,
it chooses the path with the lowest:

|time elapsed on the gap + e− branch travel time|

to fill the vehicle trajectory gap.
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8.3 EVALUATION

In the evaluation section, we assess the above-mentioned itsBlue applications to
show their performance and the itsBlue framework’s efficiency. itsBlue applications
are evaluated by conducting field experiments and by using simulation packages.
Field experiments and simulation scenarios are designed to show our application’s
performance using a set of criteria that describe various performance aspects. Also,
we validate several features extracted by the itsBlue framework to show the frame-
work abilities to provide ITS applications with adequate traffic information. In addi-
tion, this section introduces our enhanced version of the UCBT NS-2 [55] Bluetooth
simulator.

The evaluation section begins with the evaluation testbed and the simulation
package. The following subsections include an itsBlue applications assessment, a
related features validation, and a results discussion.

8.3.1 EVALUATION TESTBED AND SIMULATION PACKAGE

The itsBlue framework features validation and applications evaluations that are
performed by conducting field experiments or by using simulation software. All
field experiments are conducted outdoors at the Old Dominion University campus in
Norfolk, Virginia. An experimental testbed of every experiment is illustrated in its
section.

The itsBlue framework services and applications are primarily evaluated by field
experiments to justify solutions’ validity. However, experiment results are not ade-
quate to show real-world performance, due to dataset limitations. Thus, a simulation
package is used to assess the itsBlue applications with a large-scale dataset. In this
research, we used a multiple-components simulation package. Our simulation pack-
age consists of:

1. PTV VISSIM, a microscopic multi-modal traffic simulator [56]. The PTV VIS-
SIM is used to generate traces of a transportation network elements (e.g. ve-
hicles, pedestrians, traffic lights, etc.).

2. Network Simulator 2 (NS-2) [57] with UCBT Bluetooth extension [55]. The
NS-2 with UCBT Bluetooth extension is used to simulate Bluetooth commu-
nications between the itsBlue framework and the road users.
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The PTV VISSIM traces of transportation network elements are generated in
200ms basis. The PTV VISSIM output file is converted, using a python script,
into an NS-2 input file to simulate Bluetooth communications between the itsBlue
framework and the road users.

In fact, the NS-2 UCBT Bluetooth extension suffers from the lack of a physical
layer. Baseband is the bottom protocol layer, with each baseband packet is forwarded
to the other baseband. To deliver a packet, the simulator calculates the distance
between the transmitter and the receiver; if the receiver is out of the sender’s range,
it drops the packet. Otherwise, the packet is delivered with no received signal power
consideration.

The lack of a physical layer in the NS-2 UCBT Bluetooth extension hinders the
ability to obtain Bluetooth RSS, which is essential to evaluate our work. To fill the
gap, we implement a physical layer sending and receiving component that utilizes the
shadowing radio propagation model to obtain received signal power. The shadowing
radio propagation model determines the received signal power by relying on the
following equation:

Pr(d) = Pr(d0)− 10β log
( d
d0

)
+XdB

Where Pr(d) is the received power at distance d, and d0 is Pr(d) reference point,
Pr(d) is calculated relatively to d0. β is the path loss exponent, which is determined
by field experiment. XdB is a zero mean Gaussian random variable (measured in dB)
added to reflect the variation in average received power. XdB standard deviation is
σdB, which is known as the shadowing deviation and is obtained by experiment [57].

To show the validity of the our enhanced NS-2 UCBT Bluetooth extension, we
design a field experiment to obtain a set of Bluetooth RSS samples, in order to
validate the Bluetooth RSS samples obtained from a similar simulation scenario

BlueCollect 1 3m 9m 15m 21m 27m 33m 39m 45m 51m0m

BlueCollect 1

BlueCollect Unit Bluetooth Enabled Device

FIG. 27: Enhanced NS-2 UCBT Bluetooth Extension Validation Experiment Setup
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against it. The experiment setup is shown in Figure 27, where nine Bluetooth devices
are placed along a line, with 6m separating every device from its succeeding one.
A BlueCollect unit is set next to them to collect data. The experiment and the
corresponding simulation are performed twice. After each time, the mean of the
obtained Bluetooth RSS samples is calculated for every Bluetooth device of the nine.
The experiment and simulation outputs show that the behavior of the Bluetooth RSS
over distance in NS-2 almost matches the experiment of the Bluetooth RSS (FIG.
28).

8.3.2 VEHICLE QUEUE LENGTH ESTIMATION EVALUATION

In this subsection, we evaluate one of the intersection management applications:
the vehicle queue length extraction. The vehicle queue length extraction applica-
tion is heavily dependent upon the vehicle locations identification at a signalized
intersection that is provided by itsBlue framework. Thus, the vehicle locations at a
signalized intersection are first evaluated. Then, we evaluate the vehicle queue length
extraction application.
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A. Vehicle Locations Identification at Signalized Intersection Evaluation

The vehicle location identification is evaluated by measuring the TPR of identified
vehicle locations and by studying the impact of following factors:

1. Number of used Bluetooth transceivers.

2. Number of obtained RSS samples from on-board device.

Experiment Setup

The experiment is conducted on a cross intersection-like area in parking lot 42 on
the ODU campus. Two BlueCollect units with total of five Bluetooth transceivers
are deployed, as seen in Figure 29. The experiment ground is divided into 14 spots,
representing vehicle locations at a traffic light intersection. An on-board mobile
BlueCollect unit is used as a road user Bluetooth device. The carrying vehicle
stops at every spot for less than 30s, while Bluetooth transceivers of the station-
ary BlueCollect units that are deployed on the sidewalks are scanning for nearby
Bluetooth devices. Fifty Bluetooth discovery response messages are collected from
each spot to create the area radio signal strength map. A vehicle distribution lookup
table is determined by observation, and the data is collected from the intersection
of Hampton Boulevard and 49th Street on the ODU campus on a weekday from 3
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TABLE 4: Vehicle Spots Occupancy Distribution on a Signalized Intersection Ap-
proach

Row 1 2 3 4 5 6 7
t0 - t9 70% 30% 0% 0% 0% 0% 0%
t10 - t19 42% 37% 21% 0% 0% 0% 0%
t20 - t29 28.5% 28.5% 25% 18% 0% 0% 0%
t30 - t39 21% 21% 21% 20% 13% 4% 0%
t40 - t49 19% 19% 19% 19% 14% 10% 0%
t50 - t59 16% 16% 16% 16% 16% 12% 8%

P.M. to 3:45 P.M. (Table 4). Thereafter, RSS samples that are received from on-
board Bluetooth-enabled smartphones are employed to identify their locations and
to calculate the identified vehicle locations’ TPR. The location identifier is tested
250 times, on five folds, starting with one RSS sample in the first fold. The number
of RSS samples is incremented by one, respectively, for every fold. Each testing fold
of the five is repeated 50 times, with new RSS samples set every time.

Result

The results show that the TPR of identified vehicle locations is very close to 100%
when all five Bluetooth transceivers are used (FIG. 30). In that case, the tiny error is
mostly one spot away from the actual spot (FIG. 31). The identified vehicle locations’
TPR goes slightly down to around 95% when the number of RSS samples is reduced
to three and one. In addition, the result shows the vehicle location identifier’s ability
to maintain high vehicle location identification accuracy using a combination of four
or three Bluetooth transceivers, with an error of two locations away from the actual
location about 95% of the times.

As seen in the experiment outcome, the itsBlue vehicle location identification
service shows promising performance in the 90th percentile for TPR when three
or more Bluetooth transceivers are used to identify vehicle locations, whereas the
number of obtained Bluetooth RSS samples’ impact is less than 10% in most cases.

B. Vehicle Queue Length Extraction Application Evaluation

The performance of vehicle queue length extraction application is assessed by the
TPR of the obtained queue lengths. We calculate the TPR of the extracted vehicle
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FIG. 30: Vehicle Locations Identification Accuracy

queue lengths by comparing it to the ground truth data obtained from the PTV
VISSIM simulator.

Simulation Scenario

We design a simulation scenario which features a signalized cross-intersection with
400 vehicles. The simulation duration is set to 28min, and every traffic light turns
to green for 20s and red for 60s. Six Bluetooth transceivers are distributed on the
sides of each traffic light upstream (FIG. 32) and continuously broadcast Bluetooth
discovery messages on a discovery process duration of 10.24s for each cycle. The
Bluetooth data collected from vehicle during the first 8min is used to create the
radio signal strength map, whereas the data collected on the remaining time is used
to estimate vehicle queue lengths. Each traffic light upstream is divided into 18 spots.
During the data training phase, the actual vehicle locations that are obtained from
the PTV VISSIM simulator are used in the radio signal strength map creation and
the intersection vehicle distribution extraction. In the real time phase, the actual
vehicle locations are used as ground truth.

Result

Figure 33 shows that the TPR of the vehicle queue lengths extraction on the first
Bluetooth discovery cycle is about 60% in the best case. This low vehicle queue length
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FIG. 32: The Configuration of one of traffic light approaches on the Intersection of
Vehicle Queue Length Extraction Evaluation Simulation Scenario

estimation accuracy occurs because the number of RSS samples that are obtained
after vehicle reaches the stopping spot is low on the first Bluetooth discovery cycle.
In the following discovery cycles, the vehicle queue length estimation TPR notably
increases, and reaches 96% after the fourth cycle and 98% after the fifth cycle, when
all six Bluetooth transceivers are in use. The result confirms the itsBlue application’s
ability to accurately estimate vehicle queue length at signalized interactions using
four or more Bluetooth transceivers. Despite the less than 80% vehicle queue length
estimation TPR in the first two Bluetooth discovery cycles, the vehicle queue length
extractor shows high performance by the third cycle, which means about 30s, whereas



85

the red light duration is more than 30s in most cases.
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FIG. 34: Pedestrian and Vehicle Differentiation Evaluation Experiment Setup

8.3.3 PEDESTRIANS VOLUME AND WAITING TIMES DETERMI-
NATION EVALUATION

Pedestrian volume and waiting times are extracted directly from the data pro-
vided by Pedestrians on Target Area. Therefore, in this subsection, we evaluate
pedestrian and vehicle differentiation performance, which is reflected in the pedes-
trians’ volume and waiting times’ determination performance.

In this subsection, pedestrian and vehicle differentiation is evaluated three times,
in a field experiment and in two simulation scenarios. The road users’ classification
accuracy is expressed by the TPR of classifying the pedestrians and the vehicles.

Experiment Setup

This experiment is conducted on 43rd Street on the ODU campus. Six BlueCollect
units are placed along sidewalks, with three on each side, separated by 8m (FIG.
34). Bluetooth data is collected from six Bluetooth-enabled smartphones carried by
volunteers walking back and forth on the sidewalk, three times. Then, the volunteers
drive vehicles back and forth at two different speeds, 20MPH and 30MPH, driving
at each speed three times. The collected data is divided into two parts: the classifier
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training dataset, which constitutes 10% of the collected data, and the real-time road
users data, which is 90% of collected data.

Experiment Result

The result shows the vehicle classification TPR of about 80% in 3s (FIG. 35). On
the other hand, the pedestrian classification TPR in 3s is slightly improved, com-
pared to the vehicle classification TPR (FIG. 36). Pedestrian and vehicle classifica-
tion TPRs reach the 90th percentiles in 15s. Figures 35 and 36 show the correlation
between the gradual TPR improvement and the Bluetooth discovery cycle time in-
crease. Both pedestrian and vehicle classification TPRs jumped to around 95% when
discovery cycle time reached 25s.
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FIG. 35: Vehicle Classification Accuracy

Simulation Scenario No. 1

In this scenario, BlueCollect units are distributed in similar way to the field
experiment, with 500m to separate them (FIG. 37). The PTV VISSIM simulator
generates 4000 vehicles moving on speeds ranging from 24.9MPH to 37.3MPH, and
500 pedestrians moving on sidewalks on speeds ranging from 2.4MPH to 3.8MPH.
This simulation scenario lasts for 60min.

The simulation result shows that the differentiator achieves pedestrian and vehicle
classification TPRs of 85% in 3s, and both exceed 90% in 10s (FIG. 35 and FIG.
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36). In addition, the pedestrian and the vehicle classification TPRs reach 100% when
data collected in 45s is used.

Simulation Scenario No. 2

This simulation scenario is designed to evaluate the pedestrian and vehicle differ-
entiator performance in a signalized intersection. The model includes 4000 vehicles
and 500 pedestrians crossing an intersection over an hour. As seen in Figure 38, the
BlueCollect units are placed on top of traffic lights.

The result shows that the TPR of classifying pedestrians exceeded 77% in 3s
(FIG. 36), while the vehicle classification TPR reaches 77% in 5s (FIG. 35). The
differentiator correctly classifies 90% of pedestrians, when the Bluetooth discovery
cycle is adjusted up to 20s, whereas it needs a 30s Bluetooth discovery cycle duration
to reach a vehicle classification TPR of 90%. The pedestrian classification TPR
reaches around 99% when data collected over the entire device appearance time is
used. On signalized intersections, pedestrians and vehicles appear on the scene for
longer times than on straight roads, due to stops on red traffic lights which,in turn,
allows the classifier to accurately identify them because of the high variance between
Bluetooth features readings of pedestrians and vehicles over a long time.
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8.3.4 VEHICLE TRAJECTORIES RECONSTRUCTION EVALUATION

In this subsection, we show the correctness and the completeness of reconstructed
vehicle trajectories. As seen in Section 8.2, the vehicle trajectory reconstruction ap-
plication consumes the Vehicle Detection Locations and Directions on Target Area
provided by the itsBlue framework to reconstruct vehicle trajectories. The vehicle lo-
cation and direction are extracted, relying on number of Bluetooth features. Thus, in
this subsection, we show the validity of Bluetooth features that are used to determine
vehicle location and direction.

A. Vehicle Location and Direction Determination Features Validation

As seen in Chapter 6, vehicle street segments and directions are determined by
exploiting the vehicle Bluetooth features of:

1. Number of received Bluetooth discovery response messages

2. Bluetooth RSS samples mean

3. Bluetooth RSS samples variance

These features are Bluetooth radio signal temporal and spatial characteristics, which
means that obtained readings might vary, depending on the street segment length.
Therefore, we designed simulation scenarios of three street segment lengths, 120m,
240m and 480m. In each simulation scenario, there are 500 vehicles traveling at
speeds ranging from 30MPH to 45MPH, detected by 25 mobile BlueCollect units
carried on buses moving at speeds ranging from 30MPH to 40MPH.

As seen in Figures 39, 40 and 41, the simulation outcomes show that each class
features cluster is clearly separated from other class clusters. The number of re-
ceived Bluetooth messages feature readings separate the three classes, in most cases.
Rarely, over short distances, partial overlapping between the readings from vehicles
traveling in the opposite direction of a BlueCollect unit carrier and vehicles on other
streets may occur, due to a resemblance in the time elapsed while these vehicles are
in coverage zone. Thus, we exploit Bluetooth’s RSS variance feature, which delivers
readings that clearly separate vehicles traveling in opposite direction of the BlueCol-
lect unit carrier from vehicles on nearby streets. In addition, RSS variance readings
of vehicles traveling with a BlueCollect carrier on the same street segment and di-
rection may partly overlap with readings of vehicles on other street segments, over
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FIG. 39: Bluetooth Features Obtained From Data Collected on a 120m Roadway

short distances. RSS mean readings of vehicles traveling on streets around the mobile
BlueCollect unit carrier are noticeably weaker than RSS mean readings of vehicles on
the same street segment of the BlueCollect unit carrier, regardless of the direction,
which allows them to overcome the minor overlaps caused by RSS variance readings.
Additionally, the slight overlap between the RSS mean readings of vehicles moving
in the BlueCollect unit carrier direction and vehicles moving in opposite direction
over short distances is tackled by the number of Bluetooth message feature readings,
which show a high contrast between the readings of these two classes.

B. Vehicle Trajectories Reconstruction Application Evaluation

The vehicle trajectory reconstruction application performance is evaluated using
the following criteria:

1. The correctness of reconstructed vehicle trajectory. This is expressed
by the number of correctly detected street segments over the number of all
detected trajectory street segments.

2. The completeness of reconstructed vehicle trajectory. This is measured
by dividing the number of correctly detected street segments by the actual
number of vehicle trajectory street segments.
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FIG. 40: Bluetooth Features Obtained From Data Collected on a 240m Roadway

Moreover, the evaluation includes an assessment of the impact of the number
and carrier type of mobile BlueCollect units on the reconstructed vehicle trajectory
correctness and completeness. Also, we highlight the percentage of detected vehicles.

Simulation Scenario

An evaluation dataset is extracted from a PTV VISSIM real-world simulation
scenario of downtown Boise, Idaho (FIG. 42). The simulation network contains
about 130 street segments connected by more than 50 intersections over 4km2. The
simulation is run for 15 minutes.

The vehicle trajectory reconstruction application performance’s sensitivity to the
number and carrier type of BlueCollect units is evaluated by repeating the simulation
five times with different numbers and carrier types of BlueCollect units. In the first
run, we provide 12 intersections with clusters of eight stationary BlueCollect units
for each. The second run is conducted with 12 mobile BlueCollect units carried on
buses. In the third run, another 12 mobile BlueCollect units carried on buses are
added. After that, for the fourth run, we add 24 mobile BlueCollect units carried on
police patrols. Finally, the 12 controlled intersections and the 48 mobile BlueCollect
units are used together on the fifth run.
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FIG. 41: Bluetooth Features Obtained From Data Collected on a 480m Roadway

Results

The simulator outcomes show a high correctness of reconstructed vehicle trajecto-
ries most of the time, due to the precise Bluetooth features used to determine vehicle
street segments and direction. The evaluation results show that the correctness of re-
constructed vehicle trajectories is above 90% when only 24 mobile BlueCollect units
are used (FIG. 43). That number jumps to about 95% when 48 mobile BlueCollect
units are in use.

In addition, the vehicle trajectory reconstruction application is able to detect
about 86% of the traffic using 48 mobile BlueCollect units (Table 5). Adding 12 in-
tersections with stationary BlueCollect units boosts the vehicle detection percentage
to around 91%. In addition, the evaluation results show the advantage of mobile
BlueCollect units over the stationary ones in vehicle trajectory reconstruction. 24
mobile BlueCollect units allow the application to reconstruct about 87% of vehicle
trajectory (FIG. 44). Adding 24 mobile BlueCollect units carried on police patrols in-
creases the percentage of reconstructed vehicle trajectory to 89%. The data collected
by stationery BlueCollect units and provided by the vehicle locations at signalized
intersections service boosts that percentage to around 93%.
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TABLE 5: Vehicles Detection Percentages with Multiple BlueCollect Units Config-
urations

12 Intersections 12 MBCUs 24 MBCUs 48 MBCUs All
54% 42% 67% 86% 91%
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CHAPTER 9

CONCLUSION AND FUTURE DIRECTIONS

In this chapter, we provide the dissertation conclusion. The conclusion includes
a summary of the work that we accomplished and the contribution we added. Then,
we present a road map for enhancing and extending our work in the future.

9.1 CONCLUSION

In this dissertation, we presented itsBlue, a novel Bluetooth-based framework to
provide ITS researchers and developers with real-time and historical traffic informa-
tion in an efficient and a cost-effective manner. In itsBlue, we exploit the ubiquity of
Bluetooth-enabled devices, cost-effectiveness, Bluetooth data richness and collection
easiness, and privacy preservation, to address several challenges that state of the art
ITS technologies are facing.

The itsBlue framework collects Bluetooth road users’ data and associates it with
a data collection location. Then, it utilizes the collected data to extract a variety of
road user features such as road user context, appearance time, and vehicle locations
and directions. itsBlue allows ITS applications to obtain available traffic information
via a set of APIs to facilitate connection and delivery. These operations are carried
out in five layers; every layer involves a number of hardware and software components
to perform layer tasks.

The first itsBlue layer is the data collection. In itsBlue, we designed and built a
compact computing unit called BlueCollect to collect required data. BlueCollect, a
computing unit based on a credit card-sized computer, is provided with Bluetooth
transceivers, GPS, and wireless communication adapters. The BlueCollect unit works
in two modes: stationary, where it is placed on top of traffic lights or light poles,
and mobile, where it is carried on buses or on police patrols. BlueCollect units
collect Bluetooth data from road users, and employ a radio signal filtering technique
to remove signal outliers. In the mobile operation mode, BlueCollect logs GPS
coordinates and extracts map location and the direction of data collection. Then,
road users’ Bluetooth data and collection locations are transferred to the central
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computing unit upon recognition of certain spatial or temporal triggers. BlueEngine,
the central computing unit, aggregates road users’ data and stores it in the database
for further manipulation.

In the basic Bluetooth feature layer, the BlueEngine utilizes road user Bluetooth
data to extract a number of spatial and temporal features such as the Bluetooth RSS
mean, Bluetooth RSS variance, road user appearance time, and number of received
Bluetooth discovery response messages.

The third layer is the advanced road user features layer. In this layer, BlueEngine
utilizes road user data and basic features to extract traffic-related features. The
first extracted feature is the road user context, in which we utilized the divergence
between the number of road users’ spatial and temporal features to classify them
to vehicle riders and pedestrians. To do so, we employed an SVM machine learning
technique to classify road users. The second extracted feature is the vehicle locations
at signalized intersection. To identify vehicle location at traffic light intersections,
we provide BlueEngine with Bluetooth RSS fingerprints of the target intersection to
obtain the intersection’s RSS distribution. Then, the vehicle location is identified
by matching the vehicle’s RSS samples with the intersection RSS fingerprints by
applying the Bayesian Theorem. To enhance vehicle identification accuracy, the
itsBlue framework exploits the vehicle distribution at the intersection. The vehicle
spots with a higher likelihood of occupancy are granted extra weight over others in
vehicle spot identification. Additionally, to avoid lane blocking and a lack of traffic
fluidity, we collected Bluetooth RSS fingerprints of target intersections from moving
vehicles in a novel way. The third advanced road user feature extracted in this layer is
the moving vehicles’ street location and direction. This feature is extracted by using
Bluetooth data collected by a Mobile BlueCollect unit. The BlueEngine utilized the
location data of Mobile BlueCollect units and vehicles’ spatial and temporal features
to find vehicle location and direction, according to the Mobile BlueCollect unit that
detected it. Vehicles detected by a Mobile BlueCollect units are divided into three
groups: vehicles moving with the BlueCollect unit carrier on the same street and
direction, vehicles moving with it on the same street in the opposite direction, and
vehicles traveling on nearby streets.

Next, we discussed the traffic information provision layer in which itsBlue provides
the ITS application with the required traffic information. The itsBlue framework
provides the ITS community with the following:
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1. Contexts of road users on certain locations and times

2. Vehicle locations at signalized intersection at certain times

3. Vehicle street locations and directions at certain locations and times

4. Location information of Mobile BlueCollect units at certain locations and times

5. Raw Bluetooth data collected from certain location at certain time

To facilitate providing the ITS client with required information, itsBlue imple-
mented a set of APIs using Java RMI, which both allows the ITS client to look up
and invoke appropriate APIs to obtain required information, and keeps networking
complexity behind the scene.

The top layer is the application layer, where the ITS applications are working.
On this layer, ITS applications implement Java RMI clients to invoke itsBlue desired
APIs. On this layer, we implemented an intersection management applications pack
and a vehicle trajectory reconstruction application.

The intersection management applications pack includes an application to extract
vehicle queue lengths at signalized intersections, a vehicle waiting time estimation
application, and a pedestrian volume and waiting times determination. Vehicle queue
lengths and waiting are extracted from vehicle locations at signalized intersections
that provided by itsBlue. These applications analyses obtained information to ex-
tract the number of vehicles stopping on every lane at intersections and determine
the vehicles’ waiting times. The pedestrian volume is extracted from road users’
contexts at a target location provided by itsBlue. Pedestrian waiting time to cross is
determined by calculating the time elapsed while the pedestrian’s Bluetooth device
is in coverage of a special purpose short range Bluetooth transceiver placed on the
crossing zone.

The vehicle trajectory reconstruction application utilizes vehicle street location
and direction provided by itsBlue. In this application, vehicle trajectory is recon-
structed using a series of street locations and directions in the target area. This
application development involves addressing several challenges in novel ways. The
first addressed challenge is the trajectory inconsistency caused by inaccurate vehicle
street location or direction. Vehicle trajectory inconsistency is resolved by analyzing
vehicle movement and by correcting any inconsistent vehicle trajectory parts, ac-
cordingly. Identifying and filling any reconstructed vehicle trajectory gaps is another
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challenge that we addressed. To achieve that, we adopted a BFS graph traversal
algorithm to develop a trajectory gap identification and filling application. The BFS
algorithm is used to find all of the paths that connect gap-bordering intersections.
Then, the path with most similar travel time to the time elapsed on the gap is se-
lected to fill the gap. To enhance the performance, the gap filling algorithm excludes
any branch with travel time longer than vehicle elapsed time in the gap.

The itsBlue framework and applications are evaluated in various field experiments
and simulations. The lack of a reliable Bluetooth simulation tool encouraged us to
implement an enhanced version of UCBT NS-2 in which we developed a physical layer
to be able to obtain a received Bluetooth RSS. Our simulation package includes a
PTV VISSIM to generate large-scale transportation network traces. Then, PTV
VISSM traces are converted to UCBT NS-2 to simulate Bluetooth communications.

We summarize our findings from evaluation in the following:

• The RF localization technology employed to identify vehicle locations at sig-
nalized intersection showed high performance. The TPR of vehicle locations
identified using three RSS samples received by three Bluetooth transceivers
reached 96%. The high vehicle location identification accuracy is reflected on
beneficiary ITS applications. The vehicle queue length obtained by relying on
occupied vehicle locations showed high performance, as well. The TPR of ve-
hicle queue length determined by four Bluetooth transceivers exceeded 90% in
about 30s.

• The utilization of Bluetooth radio signals’ spatial and temporal characteristics
to extract traffic information is promising. In the following, we highlight our
prominent findings:

– Utilizing the road user Bluetooth features of appearance time, number of
received Bluetooth discovery response messages, and RSS variance allowed
us to accurately reveal road user context. The vehicle and pedestrian
differentiation showed classification TPR of 95% and above in 25s, for
straight road, and needed an additional 20s to reach a similar TPR at an
intersection.

– The on-board Bluetooth device features of appearance time, RSS mean,
and RSS variance are utilized to discover vehicle location and direction ac-
cording to the Mobile BlueCollect unit. These Bluetooth features showed
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the ability to accurately determine vehicle street location and direction.
The number of Bluetooth discovery response messages received from vehi-
cles traveling with the Mobile BlueCollect unit carrier on the same street
segment and direction is obviously higher than the number of Bluetooth
messages received from vehicles traveling in the opposite direction or on
other streets. The variance of Bluetooth RSS samples received from a ve-
hicle traveling in a Mobile BlueCollect carrier in the opposite direction is
noticeably higher than those for vehicles traveling on mobile BlueCollect
unit carrier in the same direction or on a nearby street. The mean of Blue-
tooth RSS samples received from vehicle traveling with mobile BlueCollect
unit on the same street segment and in the same direction is clearly higher
than the RSS mean of Bluetooth samples received from vehicles traveling
on other neighboring streets.

• The validation of the RSSI samples obtained by the enhanced version of UCBT
NS-2 showed high similarity to the RSS samples obtained from the field exper-
iment

9.2 FUTURE DIRECTIONS

In this section, we discuss future research directions to extend and enhance the
work presented in this dissertation.

9.2.1 BLUECOLLECT UNITS INTERCOMMUNICATION AND CO-
ORDINATION

The BlueCollect units are independent computing units that are controlled by
BlueEngine. BlueCollect units’ coordination, such as time synchronization, is han-
dled by itsBlue, which places a high load on BlueEngine. Therefore, we intend to
provide the BlueCollect units with intercommunication, in the future. From a dif-
ferent aspect, BlueCollect unit intercommunication opens up the door widely for
BlueCollect units’ cooperation to enhance data collection.

BlueCollect units’ intercommunication will allow us to considerably enhance data
collection. One of the features that will be added to enhance the data collection pro-
cess is the cooperative Bluetooth radio channels distribution. In fact, the Bluetooth
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transceiver broadcasts and receives Bluetooth packets on a set of radio channels as-
signed based on a clock or previously assigned, which may lead to interference and
packet loss. To avoid that, we will design an approach that will allow Bluetooth
transceivers that are working on certain sites to alternate between radio channels in
a synchronized way to avoid interference and packet loss.

Furthermore, BlueCollect units’ intercommunication and synchronization will al-
low traffic information extraction on the BlueCollect level. One of the future exten-
sions that will be added by utilizing BlueCollect units’ intercommunication and syn-
chronization is the vehicle street location and direction determination at the BlueCol-
lect level, in which a BlueCollect unit will disseminate a detected vehicle’s Bluetooth
address and detection time to BlueCollect units on the same street. Once that ve-
hicle has been detected by another BlueCollect unit on the street, the BlueCollect
unit will be able to determine the vehicle’s street location and direction, relying on
vehicle traveled path.

9.2.2 BLUECOLLECT LIGHT VERSION

The data collection unit, BlueCollect, is one of the novelty aspects of itsBlue.
BlueCollect’s ability to be carried on a vehicle allows for a reduction in the frame-
work’s initiation cost and extends the target area. As a step forward, we are planning
to develop a smartphone-based BlueCollect. Actually, the wide spread of smart-
phones worldwide and their capability to collect required data are appealing in
their ability to be used to enhance itsBlue data collection. Today’s smartphones
are equipped with various wireless communication technologies and GPS which, in
turn, allows for the collection of itsBlue required data using an intentionally designed
app. Despite the drawbacks of participatory sensing, the BlueCollect Light Version
is expected to enhance the data collection as a secondary data source, wherein the
formerly presented BlueCollect unit is the main data collection component.
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